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0. Introduction

Minimal surfaces in a space of constant curvature has been studied by many math-

ematicians (cf. [3], [7], [8], [9]). In particular, for minimally immersed 2-sphere in the

standard sphere, Calabi [4] and Barbosa [1] showed that: There exists a canonical 1-1

correspondence between the set of generalized minimal immersions χ : S2 —>> S2m{\)

which are not contained in any lower dimensional subspace of R2 m + 1, and the set of

totally isotropic holomorphίc curves Ξ : S2 —> CP 2 m which are not contained in any

complex hyperplane of CP 2 m . The correspondence is the one that associates with min-

imal immersion χ its directrix curve (§2). Note that this fact is valid for pseudo holo-

morphic map [4] from a compact Riemann surface Σ 2 instead of S2, and that the im-

age of the directrix curve is contained in a complex quadric Q2m~ι of CP 2 m .

On the other hand one of the most interesting 3-dimensional minimal submani-

folds in a sphere is the minimal Carton hypersurface (MCH) of S4, i.e. the mini-

mal hypersurface with 3 distinct constant principal curvatures in a 4-sphere (cf. [5]).

MCH is obtained from the directrix curve of the Veronese surface as follows: Let

X : S2(l/3) ->• S4(l) be the Veronese immersion from the 2-sphere with constant

Gauss curvature 1/3 to the unit 4-sphere, and let Ξ : S2(l/3) —• CP 4 be the directrix

curve of χ. Then χ is congruent to the fourth order Veronese embedding CP 1 -> CP 4

and the image Ξ(S2(l/3)) is contained in a complex quadric Q3 in CP 4 . Let P =

SO(5)/SO(3) be the set of ordered two orthonormal vectors in M5, and let P ( β 3 , Sι)

be the circle bundle over β 3 , which is given as the pullback bundle of the Hopf fi-

bration ^ ( C P 4 , Sι) with respect to the natural inclusion Q3 c CP 4 . Then MCH is

identified with the pullback bundle τrΞ : Ξ*P -> S2(l/3) such that each fiber ττ^ι(p)

for p e S2(l/3) is corresponding to the great circle which is determined by Ξ(p) e Q3
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in S4(l). In other words, MCH is realized as a tube of radius π/2 over the Veronese

surface in S4, so MCH is diffeomorphic to the unit normal bundle of the Veronese

surface in the 4-sphere.

In this paper we will study, as a generalization of minimal Cartan hypersurface,

minimal immersion of some circle bundle over a Riemann surface Σ 2 which is im-

mersed in complex quadric Qn~ι = SO(n + l)/SO(n - 1) x SO(2) to sphere Sn.

More precisely let P(Qn~\ Sι) be the circle bundle over Qn~\ where P = SO(n +

l)/SO(n — 1) is the set of ordered two orthonormal vectors in R"+1. Here P is the

pullback bundle of the Hopf fibration S2n+ι(CΨn, Sι) with respect to the natural inclu-

sion Qn~ι c CFn. Let φ : Σ 2 —• Qn~x be a conformal immersion from a Riemann

surface Σ 2 to the complex quadric, and let πφ : φ*P -> Σ 2 be the pullback bundle

over Σ 2 with respect to ψ. Then each fiber π~ι(p) for p e Σ 2 is naturally identified

with the great circle of Sn determined by the 2-plane φ(p) e Qn~ι. We can define the

map Φ : φ*P —> ^"(l) by this identification.

In §1 we review complex quadric Qn~ι and construct the circle bundle P over

Qn~ι, and in §2 we see some surfaces and holomorphic curves in Qn~ι. In §3 we

show that if a three dimensional submanifold M in a sphere Sn is foliated by great

circles of Sn, then there is an associated surface Σ 2 in Qn~ι. Conversely we construct

the map Φ : φ*P -> Sn(l) from the surface φ : Σ 2 -> Qn~ι explicitly and, on the

set of regular points of Φ, we determine the condition with respect to φ for which the

pullback bundle φ*P is minimal in Sn(l) (Proposition 3.9 and Corollary 3.10). In §4

we show that if the immersion φ : Σ 2 —• Qn~ι is holomorphic, then the corresponding

map Φ : φ*P —• Sn(l) is regular at each point in π~!(jc) for x e Σ 2 if and only if

x is not a real point (Definition 2.7) of φ. Moreover we can see that Φ is minimal if

and only if either Φ is totally geodesic or the corresponding holomorphic curve φ(Έ2)

in Qn~ι is first order isotropic (Theorem 1). As a consequence, we can construct full

and minimal immersion Φ : Ξ*P -> S2m(l) from the directrix curve Ξ : S2 -> Q2m~ι

of fully immersed minimal 2-sphere χ : S2 -> S2m(l) (Theorem 2). We also discover

relations of the curvatures between holomorphic curve φ : Σ 2 -> Qn~~ι and the immer-

sion Φ : φ*P -* Sn(l).

The author would like to express his sincere gratitude to the referee for many

suggestions and comments, and Professors Norio Ejiri, Kazumi Tsukada and Reiko

Miyaoka for their encouragement. A part of this work was done while the author was

visiting Kyungpook University. He would like to thank Professors U-Hang Ki, Young

Jin Suh and Hoil Kim for their hospitality.

1. Preliminaries

First of all, we recall the Fubini-Study metric on the complex projective space

CP". The Euclidean metric ( , ) on Cn+ι is given by

(z, w) = x u + y v,
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where z = x + /y, w = u + /v e Cn + 1 (/ = V—T), x, y, u, v e Rrt+1 and x y denotes the

standard inner product on Rn + 1. The sphere S2n+ι(l/c) of radius ^/c (c > 0) in Cn+ι

is the principal fiber bundle over CΨn with the structure group Sι and the projection

map π (the Hopf fibratioή). The tangent space of S2n+ι at a point z is

Let

Γz

r = {w e C"+ 1; (z, w) = (z, /w) = 0}.

Then the distribution Γz defines a connection in the principal fiber bundle 5'2"+1(CPn,

S1), because Γz

r is complementary to the subspace {ίz} tangent to the fiber through z,

and invariant under the S^action. The Fubini-Study metric ~g of constant holomorphic

sectional curvature 4/c is then given by g(Z, Y) = (X*, Y*), where X, Y e TxCΨn and

X*, F* are respectively their horizontal lifts at a point z with ττ(z) = x. The complex

structure on Tz defined by multiplication of i = Λ/—T induces a canonical complex

structure / on CΨn through π*.

Given a vector field X on CPn, there is a corresponding Z?αs/c vector field X' on

5 2 n + 1 such that at z e S2n+\ X[ e T'z and (π*)zX'z = Xπ(z). If Z, F are vector fields on

CP", the Kahlerian covariant derivative takes the form

where X'', Y' are the basic vector fields corresponding to X, Y and Vr is the Levi-

Civita connection on S2n+ι.

Next we recall a description of a complex quadric Qn~ι in CP" (cf. [13]). Let P

be the space of ordered two orthonormal vectors in Rn + 1, i.e.,

(1.1) P = {Z e M(/ι + 1, 2, R); ιZZ = E2}.

As a homogeneous space, P is isomorphic to SO(n + \)/SO(n — 1) (Stiefel manifold)

with dimiR P = 2AZ — 1. Denote Z = (e, f) e P, where e and f are column vectors of Z.

Then the tangent space of P at the point Z is

TZP = {X e M(n + 1, 2, R); *XZ +' ZX = 0},

= R(-f, e) θ {(x, y); x, y _L span{e, f}},

and the Riemannian metric g on P is given by

g(X, Y) = trace('Xr), X, Y e TZP c M(n + 1,2, R).

Let Qn~x be the space of oriented 2-planes in Rn + 1. Then P is the principal fiber

bundle over Qn~ι with the structure group S1 and the projection map π ; : P -> β " " 1
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defined by

(1.2) π'((e, I)) = span{e, f}.

Let

Γ'(e, f) = {(x, y) e M(n + 1, 2, E); x, y J_ span{e, f}}.

Then the distribution 7^ ^ defines a connection in the principal fiber bundle P(Qn~] Sι),

because Γ('e ^ is complementary to the subspace R(—f, e) tangent to the fiber through

(e, f), and invariant under the S^-action.

The metric g is then given by g(X, Y) = g(X*, 7*), where X, Y e TzQ
n~ι and

X*, Y* are respectively their horizontal lifts at a point Z = (e, f) with π'(Z) = z. The

complex structure on 7^ ^ defined by

(1.3) (x, y) h + ( - y , x)

induces a canonical complex structure J' on Qn~ι through π*. Given a vector field X

on (2"~\ there is a corresponding frαs7'c vector field X' on P such that at Z = (e, f) G

P, X^ G Tz and « ) z X z = ^π'(Z). If X, Y are vector fields on Qn~\ the Kahlerian

covariant derivative takes the form

(1.4) vfr = «)v^y/

where X\ Y' are the basic vector fields corresponding to X, Y and V p is the Levi-

Civita connection on P.

We consider an injective map 7 from P to a 2« + 1-dimensional sphere S2n+ι of

radius sfϊ in Cn + 1, defined by

7((e, ί)) = e + if.

For tangent vectors (—f, e) and (x, y) (x, y _L span{e, f}) in Γ(e,f)P, the differential map

of 7 is

(7*)(e,f)(χ, y) = x + /y,

so 7 is an embedding. Now we can define a holomorphic embedding i : g " " 1 -> CPΠ

as

z(span{e, f}) = τr(e + if).
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Hence we have the following commutative diagram:

P —Ξ-> S2n+ι

QΠ-I y (βψn
i

Qn~ι is also defined by the quadratic equation ZQ+Z^ + +z^ =0, where zo,zi,. .,zn

is a homogeneous coordinate of CPW.

REMARK 1.1. Note that P(Qn~ι, Sι) is nothing but the pullback bundle of the

Hopf fibration S2n+ι(CΨn, Sι) with respect to i. Clearly we have the following iden-

tification:

span{e, f} M- {cos θe + sin θf \ θ e Sι}
(Tι flϊ

Qn~ι {oriented great circles 5 1 c SB}.

Then for each oriented great circle C e Qn~ι, the fiber of C with respect to π r is

identified with C itself as

(cos θe + sin θf, — sin θf + cos #e) ι-> (cos θe + sin θΐ).
(w m

wr\c) c
With respect to the metric induced by T and i, P and Qn become Riemannian

manifolds, respectively, and the projection π' : P —• Qn~ι becomes a Riemannian

submersion. The normal space of P in S2n+ι (resp. Qn~ι in CP") at the point (e, f) is

spanned by the following orthonormal vectors:

(resp. Nι = (π,)ΛΓ;, V̂2 = (π«)^) .

The shape operators A^ and A]y2 of <2"-1 in CP" with respect to unit normal vectors

Λ̂ i and N2 at τr(e, f) are given by

(1.5) (Aι

NιK(x, y), < ( u , v)) = - X U + y V

(A]V 2<(x,y),<(u,v)) = -

where (x, y) and (u, v) e T{eΐ).

V2 '
x v + y u
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2. Surfaces and holomorphic curves of complex quadric

Let Σ 2 be a Riemann surface and let φ : Σ 2 —> Qn~ι be a conformal immersion

to the complex quadric. Then there exists a local lift φ : U -> P (U is an open set

in Σ 2 ) of φ9 i.e., φ(p) = (e(p), t(p)) e P for p e U (cf. §1), where (e(/?), f(p)) is an

ordered orthonormal frame of the 2-plane φ(p) e Qn~ι. Put ψ = 7o φ : Σ 2 -> 5 2 n + 1 C

Cπ + 1 and ^ = z o φ : Σ 2 -> CPn, respectively. Then ^ is written as

(2.1) φ(p) = e(p) + if(p),

where e and f are both M"+1-valued function on some open set of Σ 2 .

Let (/i, ί2) be an isothermal coordinate on some coordinate neighborhood U of

Σ 2 . We put the differential of e and f with respect to (t\, ti) as

(2.2) e, := de/dtj = λ7f + p 7 , f; := de/dtj = - λ 7 e + q7- (j = 1, 2),

where λ7 : Σ 2 ->• R (y = 1, 2) is a function, and p 7 , q7 _L span{e, f}. Then the differ-

ential map (φ*)p : TP(Σ2) -> Γ^(p)(P) is

(2.3) (φ*)pΦ/dtj) = (λjt +p ; , -λye + qj),

and the horizontal part with respect to π' : P -> β"" 1 is

(2.4) Wφ*)p(d/θtj) = (Vj,qj).

Since (ίi, ί2) is an isothermal coordinate of Σ 2 , we have

(2.5) p := | | p i | | 2 + | | q i | | 2 = | | p 2 | | 2 + | |q 2II 2, Pi P2 + qi q 2 = 0.

(1.3) and (2.4) imply

Proposition 2.1. Le/ <p : Σ 2 ->• β " " 1 Z?̂  an immersion from a Riemann surface

to a complex quadric. Then

(2.6) φ is holomorphic ^=Φ> pi = q

φ is anti-holomorphic <$=>• pi = —q2 ««<i p 2 = qi

Note that the Kahler angle a of the immersion φ : Σ 2 ->• β"" 1 is given by

cosα = p-1(Jφ*(d/dtι),φ*(d/dt2))

= p~\v\ q 2 - p 2 qi)

Suppose that the immersion φ : Σ 2 -> Qn~ι is holomoφhic, i.e., (2.6) holds.

Then (2.3) is written as

(2.7) (φ*)p@/d*ι) = (λif + Pi, -λ ie - p2),
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(φ*)P(d/dt2) = (λ2f +P2, -

and the horizontal part of these vectors are

889

EXAMPLE 2.2. Let ψn : CP1 -> CP" be the Veronese embedding of order n given
by

where z is an inhomogeneous coordinate of CP 1 . Then ^ ( C P 1 ) is contained in some

Qn~ι in CP" if and only if n is even. When n = 4m (m > 1), ψ4m : CP 1 -> Q4m~ι c

is represented as:

and when n = 4m — 2 (m > 1), 4̂/w-2

Ψ4m-2(Z)

β 4 m " 3 c CP 4 1 "" 2 is represented as:

• [ •
: + z
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3 + z 4 m " 5 ) ,

4 m - 2

EXAMPLE 2.3. Let / be a holomorphic immersion from a Riemann surface Σ 2 to

CP m , and let ϊ be the inclusion of CPm to Q2m defined by π(z) H> π'((z, zz)). Then

the composition 1! o / gives a holomorphic curve of <22m.

EXAMPLE 2.4. Let / be an immersion from a Riemann surface Σ 2 to RΛ+1. Then

the Gauss map G : Σ 2 —> Qn~ι of / is anti-holomoφhic if and only if the immersion

/ is minimal (cf. [8]). So from a (non-flat) minimal surface in Rn + 1, we can find a

holomorphic curve G : Σ 2 -> 2 W - 1 by taking the complex conjugate of G.

Theorem 2.5 ([1, 4]). There exists a canonical 1-1 correspondence between the

set of generalized minimal immersions χ : S2 -> 5 2 m (l) which are not contained in

any lower dimensional subspace of R2m+ι and the set of totally isotropic holomorphic

curves Ξ : S2 -+ CP 2 m which are not contained in any complex hyperplane of CP 2 m .

The correspondence is the one that associates with minimal immersion χ its directrix

curve.

This theorem holds for pseudo-holomorphic maps [4] χ from a Riemann surface

Σ 2 to -> S2 m(l), i.e.

where <9;χ = <97χ/dz7, z is a local isothermal parameter of Σ 2 , and (( , )) denotes

the symmetric product of C 2 m + 1 .

A holomorphic curve Ξ : Σ 2 —> CP 2 m is totally isotropic if and only if Ξ(Σ 2) is

not contained in any complex hyperplane of CP 2 m and for a local expression ξ of Ξ,

((£, 0) = ((ξ\ O) = = ((Γ"1. Γ"1)) = 0,

where ξk = dkξ. In particular, the image of a totally isotropic holomorphic curve Ξ :

S2 -+ P2 m(C) is contained in Q2m~\ for ((ξ, ξ)) = 0. So Ξ gives a holomorphic curve
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of the complex quadric.

The directrix curve of a minimal immersion χ : S2 —> S2m(l) is nothing but the

map Ξ : Σ 2 -> Q2m~ι defined by Ξ(p) = the (m — l)-th normal space at p with

respect to χ.

EXAMPLE 2.6. Let χ : S2(l/3) -» S4(l) be the Veronese immersion from the

sphere of constant Gaussian curvature 1/3 to the unit 4-sphere. Then the directrix

curve of x is congruent to ψ$ : S2 -> Q3 C CP 4 of Example 2.2.

DEFINITION 2.7. For a holomorphic curve y? : Σ 2 -• Qn~ι, x s Σ 2 is called a

reα/ point [10, p. 131] if

Pl Λ p 2 = 0,

at x, and x e Σ 2 is called an isotropic point [10, p. 130], if

(2.8) IIPill2 = IIP2llVθ, a n d P l p 2 = 0.

at x, respectively, φ is called first order isotropic [10, p. 134]) if every point x e Σ 2

is isotropic.

With respect to the above notation, a holomorphic curve φ : Σ 2 —> Qn~ι is first

order isotropic if and only if (£',£') = 0. On the other hand, if every point of Σ 2

is real, then φ(Έ2) is contained in a totally geodesic Q} in Qn~ι [10, Theorem 3.1].

These definitions do not depend on the choice of the section (e, f).

For a holomorphic curve φ : Σ 2 -> β"" 1 (which in not necessary first order

isotropic), put

(2.9) p* jA = orthogonal component of -^- to span{e, f} in Rn+ι

p**k = orthogonal component of -—^- to span{e, f, pi, p2} in Rn+

Since

VvΛd/dh) = < ( p ΐ + λ p i , - p 2 ; 2 - λip 2)

and

^φ*(d/dtι)(P*(d/dt2) — 7Γ*(P2,1 ~ ^2P2? P l j ~~ λ 2 P l )

are equal (cf. (1.4)), we have

/ Ό 1 ΓW 'r*** _ι_ ¥ % * * — Γ\ r*** — ¥ ^ * *
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Suppose the holomorphic curve φ : Σ 2 -> Qn~ι is first order isotropίc. Then the

second fundamental form σφ of φ is written as

σVφ/dtu d/θtO = -σ*φ/dt2, d/dt2) = <(PΠ!, -pft),

σ*(d/dtud/dt2) = K(ϊ>^P*Cι).

Using (1.5) and the Gauss equation, the Gauss curvature KΈ of Σ 2 with respect to

the metric induced by the first order isotropic holomorphic curve ψ = toφ : Σ 2 -> CP"

i i bis given by

(2.11)
= 2 ( | | σ | | + | | A ] V i | | + | | Λ ] V 2 | | )

= 2 - L(\\σ<P(d/dtu d/dtOf + \\σ*φ/dtu d/dt2)\\2

HA^φ+id/dti), φ*Φldh))2 + (Aι

Nλφ,{d/dh), φ*φ/dt2))2

+ (Aι

Niφ*φ/dh), φ*φ/dtι))2 + (A%

Nlφ*φ/dh), φ+Φ/dh))2

= 2- ^ (2( | | p ί* 1 | | 2 + ||p**2||
2) + ( | | p 1 | | 2 - | | p 2 | | 2 ) 2 + 4 ( P l p 2 ) 2 )

= l - 4 ( l l P u l l 2 + HPΓ2II2 - 2 (IIPIH 2 l lP2l l 2 - ( P I P 2 ) 2 ) )

3. Immersions of some circle bundles over surfaces in complex quadric to

sphere

Let M3 be a 3-dimensional submanifolds foliated by (oriented) great circles of

unit sphere Sn(l) with an immersion Φ : M 3 —> Sn(l), and let C(p) be the great

circle of the foliation through p e M 3 . We note that the foliation on M 3 is regular

in the sense of Palais [16, p. 13] (i.e. every point has a coordinate chart distinguished

by the foliation, such that each leaf intersects the chart in at most one 2-dimensional

slice). This implies that the space of leaves Σ 2 is an 2-dimensional manifold, for each

C(p) is complete. Since C(p) is an element of Qn~ι, we have a map φ : M3 -> Qn~ι

defined by φ(p) = C(p). Then we can easily see that φ factors through an immersion

φ : Σ 2 -> Qn~x (cf. [5, p. 142, Theorem 4.6]).

EXAMPLE 3.1. Let M3 be a hypersurface of S4(l) on which type number (i.e.,

rank of shape operator A) of M is 2. Then each integral curve of 1-dimensional dis-

tribution kerA on M3 is a part of great circle of S4(l). In particular, minimal Car-

tan hypersurface (i.e., the minimal isoparametric hypersurface with 3 distinct constant

principal curvatures c, 0, — c and c =/ 0) of unit 4-sphere is foliated by great circles of

s4.
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EXAMPLE 3.2. As a generalization of Example 3.1, let M3 be a 3-dimensional

submanifold of Sn(l) with n > 5. Suppose dimension of subspace V(p) of tangent

space TP(M3), defined by

V(p) = {X e Tp(M3)\σM(X, Y) = 0 for any Y e TP(M3)},

is 1 for each p e Λf, where σM denotes second fundamental form of M3 in Sn{\).

Then each integral curve of 1-dimensional distribution V(p) on M3 is a part of great

circle of Sn(\).

EXAMPLE 3.3. Let Σ 2 be a 2-dimensional surface of CP m . Then M3 = π~ι(Έ2) is

a 3-dimensional submanifold foliated by great circles π~ι(p) for p e Σ 2 of S 2 m + 1(l).

EXAMPLE 3.4. Let Sι(c\) x S2(c2) be a Riemann product of the circle of radius

l/y/cϊ in R2 and the round 2—sphere of radius l/*Jcl on which \/c\ + \/c2 = 1 holds.

We parameterize the immersion Φ : Sι(c\) x S2(c2) -> 54(1) into the unit 4-sphere as:

( —— (cos#, sin#), -—=(coswcosυ, cos M sin υ, sinw))

Then integral curves of the vector field d/dθ are great circles of S4.

Let φ : Σ 2 ->• β"" 1 be a conformal immersion from a Riemann surface Σ 2 to the

complex quadric Qn~ι as in §2, and let P(Qn~\ Sι) be the circle bundle over Qn~ι

(cf. §1), which is the pullback bundle of the Hopf fibration S2n+ι(CFn, Sι), where P is

the space of ordered two orthonormal vectors in Rw+1. We denote the pullback bundle

over Σ 2 with respect to φ as πφ : φ*P —> Σ 2 , and let M3 = φ*P. By the definition,

there is a bundle chart {(Ua, φa)} (a e Λ) of φ*P such that

u e π~ι(Ua) -• (πφ(ul φa{u)) e Ua x Sι

gives a homeomorphism. If Ua Γ\ Uβ =/ 0, then ^(w)(^α(w))~1 gives rise to the tran-

sition function

x eUanUβ^ Θβa(x) e Sι = R/2πZ.

Note that if Ua Π Uβ Π UΊ i- 0, then we can see that

&Ίa(p) = ®Ίβ(p) + ®βa(p), peuanuβn uΊ.

For each a e Λ, we can take the (differentiable) section pa : Ua —> π~ι(Ua) as

πφ(Pa(p)) = P, ψa(pa(p)) = e (identity).
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If UaΠUβ i- 0, then we have

(3.1) pa(p) = pβ(p)®βa(p), peUaΠ Uβ.

Since pa(p) and pβ(p) are viewed as elements in P, we may write them as

Pa(p) = (eα(p), fα(p)), pβ(p) = (eβ(p), fβ(p)),

where ea(p), ΐa(p) and e^(/?), f/?(p) are oriented orthonormal basis of the two-plane

φ(p) e Qn~ι. Then (3.1) is written as

(3.2) (eα(p), ta(p)) = (cos θβa(p)eβ(p) + sin ®βa(p)fβ(p),

- sin Θβa(p)eβ(p) + cos ®βa(p)fβ(p)).

Note that the pullback bundle M 3 = φ*P is also realized as the quotient space Λ x

Σ 2 x S1/ ~, where

(3.3) (α, p, β) - 08, ^, 0 ^=» P = q e Ua Π ί/p, and C = β + Θ ^ .

For each p e Σ 2 , the fiber π~ι(p) with respect to TΓ̂  : φ*P -> Σ 2 is identified with

the great circle φ(p) e Qn~ι (cf. Remark 1.1).

We define the map Φ : M3 = φ*P -+ Sn(l) as

(3.4) Φ([α, p, θ]) = cos θea(p) + sin θϊa(p),

where [a, p, θ] is the equivalence class of (a,p,θ) e Λ x Σ 2 x S1. By (3.2) and

(3.3), Φ is well-defined. We can see that Φ maps each fiber ττ~ι(p) for p e Σ 2 to the

corresponding great circle φ(p) e Qn~ι

If p e Ua c Σ 2 , then p H> (eα(p), ta(p)) gives a lift of φ\Ua : ί/α -> Q""1

to P. For simplicity we denote (e(/?), f(/?)) instead of (eα(/?), fα(/?)), and we use the

same notations as §1. We may view Φ as a Rn+1-valued function on M 3 . Using (2.2),

we get that the first order differential of Φ is

dΦ
(3.5) Φ# = —- = - sin θe + cos θt,

uθ
dΦ

(3.6) Φj = — =cosβ(λ J f + p y ) + sinβ(-λ J e + q7 ) (7 = 1,2),

and

(3.7) Φ Λ Φ^ = e Λ f.

Denote

(3.8) Ψ7 : = Φ7 - λ 7 Φ0
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= cosθpj + sin#q7, (j = 1, 2).

So

ψj Λ Ψ2 = cos2 #(pi Λ p2) + cos θ sin 0(pχ A q2 — p 2 Λ qi)

+ sin2 0(qi Λ q2).

Hence we have

Proposition 3.5. Let φ : Σ 2 -> β"" 1 be a conformal immersion from a Riemann

surface Σ 2 to the complex quadric Qn~x, and let P(Qn~ι, S1) be the circle bundle

over Qn~ι, where P = SO(n + l)/SO(n — 1) is the space of ordered two orthonormal

vectors in Rn+ι. Then

(1) The map Φ from the pullback bundle φ*P to Sn(l) defined by (3.4) maps each

fiber π~ι(p) for p e Σ 2 of the circle bundle πφ : P —> Σ 2 to the corresponding

great circle φ(p) e Qn~ι of Sn{\).

(2) Φ is regular at [a, p, θ] e φ*P if and only if at p e Ua C Σ 2 , φ satisfies

cos2 0(pi Λ p2) + cos θ sin0(pi Λ q2 — p 2 Λ qi) + sin2 θ(q\ A q2) -φ 0.

(3) If φ(Σ2) is not contained in a totally geodesic Qn~2 in Qn~x, then Φ(φ*P) is

not contained in a totally geodesic Sn~ι(l) in 5"(1).

We suppose that Φ is an immersion, i.e., with respect to a basis {Φ#, Ψi, Ψ2} of

the tangent space Γ(P^)Λf, the metric of M induced by Φ is given as follows:

I2 = llPi II2 cos2 θ + 2pi qi cos θ sin θ + ||q! | |2 sin2 (9,

Ψ2 = pi p 2 cos2 θ + (pi q2 + p 2 q θ cos θ sin θ + qi q2 sin2 #,
2 = ||p2||

2cos26> + 2p2 q2cos<9sin6>+ | |q 2 | | 2 sin26>.

We find the condition whether the tangent vectors Φ# of each great circle corre-

sponding to a two-plane φ{p) C Rn is a null direction of the second fundamental form

σ φ of Φ : M3 -» Sn(l) or not. Since DΦθΦθ = - Φ , clearly

(3.9)

where D is a flat connection of Rn+1. By the fact that

(3.10) DΦθ Ψ7 = - sin 0py + cos 0q_/ (7 = 1, 2)

is orthogonal to Φ and Φ<9, we have

σφ(Φθ, Ψy) = 0 ^ Φ i Λ Ψ 2 Λ A D * ^ = 0.
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Hence

(3.11)

and

(3.12)

σφ(Φθ, Φi) = 0 <=>•

J \

σφ(Φθ, Ψ 2 ) = 0 <^=>

> r

M. KlMURA

- p i Λ qi Λ (cos 0p2

f

Ipi Λqi Λp2 = 0
[pi Λ qi Λ q2 = 0,

" P2 Λ q2 Λ (COS # p i H

ί p 2 Λ q 2 Λ p i = 0

I p 2 Λ q2 Λ qi = 0.

+ sin #q2) :

hsin^qi) =

= 0

= 0

Consequently we have

Proposition 3.6. Let φ : Σ 2 -> Qn~ι be an immersion from a surface to a com-

plex quadric, and let Φ : M 3 = φ*P -> Sn(l) be the corresponding immersion defined

by (3.4). Then the tangent vectors Φ# of each great circle corresponding to a two-

plane ψ(p) C M" is a null direction of the second fundamental form σΦ of Φ if and

only if

dimspan{pi,qi,p2, q2} < 2.

Because of Proposition 2.1, we get

Corollary 3.7. Under the same assumption as in Proposition 3.6, if φ is either

holomorphic or anti-holomorphicy then the tangent vectors Φ$ of each great circle cor-

responding to a two-plane φ(p) C W1 is a null direction of the second fundamental

form σΦ of Φ.

REMARK 3.8. In Example 3.4, generalized Clifford torus Φ : Sι(cι) x S2(c2) ->

54(1) C Sn(l) is given by a totally real surface Σ 2 in Qn~ι. But there is no null

direction of the second fundamental form σ φ of Φ.

Next we try to find the condition such that the immersion Φ : M 3 = <p*P -> Sn(l)

is minimal. Since Φ Λ Φ# = e Λ f, Φ is minimal if and only if

(3.13) Φi Λ Φ 2 Λ { | | Φ 2 | | 2 D Φ I Φ I - ( Φ I Φ2)(£>Ψ1Φ2 + £>Ψ2ΦI)

Z)φ2Φ2} = 0 mod(e,f).

Differentiating Ψ7 by Ψ^ = Φ^ — XkΦθ (see (3.5)), we get

L>Ψ,Ψ; = cos0(p M - λkqj) + sinθ(qjtk
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where p ; ^ = dpj/dtk and q ^ = dqj/dtk in Rn+1, respectively. Put

Λ = P*,* - λikqy, p*jtk = Vj,k + (Pj p*)e + (p, q*)f,

q*jtk = qjΛ + (q, pjk)e + (q ;

i.e., p*^ and q*^ are orthogonal components of p7)fc and qj^ to span{e, f} in Rn + 1,

respectively. Then we obtain

Dψ^Ψy = cos ΘAjtk + sin ΘBjj mod (e, f).

Note that (2.2), (3.2) and d2Φ/dtjdtk = d2Φ/dtkdtj imply

Â jk = A*?; and B ; ̂  = #*,./.

By direct calculations, we have

= cos3 ΘC0 + cos2 θ sin 6>Ci + cos θ sin2 0C2 + sin3 ΘC3, mod (e, f)

where

Co = | |P2| | 2AU - 2 ( P l .p2)A1,2+ ||pi||2A2,2,

+ 2(p2 q2)A u - 2(pi q2 + p 2 qi)A1 ) 2 + 2(pi qi)A2?2

C2 = Hq2l l 2 A u -2(q 1 .q 2 )A 1 , 2 + ||q1 | |
2A2,2,

+ 2(p2 q2)#i,i - 2(pi q2 + p 2 qi)θi> 2 + 2(pi

C3 = Ilq2l|2^i,i - 2(qi q , ) ^ , , + ||qi||2Z?2,2.

Since cos5 θ, cos4 θ s in#, . . . , sin5 θ are independent functions in (3.13), we get

Proposition 3.9. Let φ : Σ 2 —>• β n - 1 be an immersion from a surface to a com-

plex quadric, and let Φ : M 3 = φ*P —• ̂ "(l) ^ ί/ι̂  corresponding immersion defined

by (3.4). Γ/ẑ « Φ is minimal if and only if the following equations hold:

Pl Λ p 2 Λ Co = 0,

(Pi Λ q2 - p 2 Λ qO Λ Co + pi Λ p 2 Λ Ci = 0,

q! Λ q2 Λ Co + (pi Λ q2 - p 2 Λ qO Λ Ci + pi Λ p 2 Λ C2 = 0,

qi Λ q2 Λ Ci + (pi Λ q2 - p 2 Λ qO Λ C2 + pi Λ p 2 Λ C3 = 0,

qi Λ q2 Λ C2 + (pi Λ q2 - p 2 Λ qO Λ C3 = 0,

qi Λ q2 Λ C3 = 0.
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Corollary 3.10. Under the same assumption as Proposition 3.9, suppose n > 5

and dim span{pi, qi, p 2 , q2} = 4. Then Φ is minimal if and only if the following equa-

tions hold:

Co =

C\ =

C2 =

C3 =

where μo, μ\, μ2, vo, v\, v2 are some functions on Σ 2 .

4. Three dimensional submanifolds of the sphere given by holomorphic

curves of the complex quadric

In this section, as a special case of §2, we investigate 3-dimensional submanifold

M3 of Sn(l) given by holomorphic curve Σ 2 of Qn~ι. We use the same notation as

§2 and §3.

Let φ : Σ 2 —> Qn~ι be a holomorphic immersion from a Riemann surface Σ 2

to the complex quadric Qn~ι and let πφ : φ*P -> Σ 2 be the pullback bundle of the

circle bundle P(Qn~\ Sι) (P = SO{n + \)/SO(n-\) is the set of ordered orthonormal

2-vectors in Rn + 1) with respect to φ. We consider the map Φ : φ*P —> Sn(l) defined

by (3.4). Using (2.2), we get that the first order differential of Φ is

dΦ
Φθ = -^7Γ = — sin θe + cos #f,

σθ
dΦ

Φi = —— =
όt\

dΦ
Φ 2 = T — =

ot2

As in §3, we denote

Ψ2 := Φ 2 — λ2Φ6> = cos^p2 + sin#pi.

Using Proposition 3.5, we get

Proposition 4.1. Let φ : Σ 2 —> Qn~ι be a holomorphic immersion from a Rie-

mann surface Σ 2 to the complex quadric Qn~ι, and let φ*P(Έ2, Sι) be the pullback

bundle of the circle bundle P(Qn~\ Sι) (P = SO(n + l)/SO(n - 1)) with respect to

φ. Then the map Φ : φ*P —> Sn(l) defined by (3.4) is regular at each point in π~ι(x)

for x e Σ 2 if and only if x is not a real point for φ (Definition 2.7). Consequently if
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the holomorphic curve φ : Σ 2 —> Qn~ι is first order isotropic, then the corresponding

map Φ : φ*P —> Sn(l) is always an immersion.

With respect to a basis {Φ<9, Ψi, Ψ2} of the tangent space Γ ^ p ^ M , the metric of

φ* P induced by Φ is given as follows:

1, Φ 0 Ψ ! Φ 0 Ψ 2 O,

= | | p i | | 2 c o s 2 0 - 2 P l . p 2 c o s 0 s i n 0 H I P 2 l l 2 s i n 2 0 ,

= Pi P2(cos26>-sin26>) + ( | | P l | |
2 - ||p2||

2)cos(9sin(9,

= ||p2 | |
2cos2(9 + 2p1 .p 2 cos0sin0+| |pi | | 2 sin 2 <9.

Put

P = IIPill2 + llP2ll2,

(4.1) Pi = l |pill2-| |P2ll2,

P2 = 2pi p 2 .

Note that the holomoφhic immersion ψ : Σ 2 -+ Qn~x is first order isotropic (cf. Def-

inition 2.7) if and only if px-ρ2- 0. Then we have

-

. ψ 2 = -(Pι sin 20 + p2cos20),

and

Δ := ||Ψi||2 | |Ψ2ll2 - (Ψi Ψ2)2 = P " ^ ~ Pl

= IIPill2IIP2ll2-(Pi P 2 ) 2 > 0 .

Next, we calculate the second fundamental form of Φ : M 3 —> Sn(l). By (3.9),

(3.11) and (3.12), we have

σΦ(Φθ, Φθ) = σφ(Φθ, Φ7 ) = 0 (7 = 1,2).

(3.10) yields that

Z)ψ ; Ψi = cos θ(p\j + λ 7 p 2 ) + sin θ(—p2j

D Φ .Ψ 2 = cosθ(p2J - λ pi) + sin(9(pi,7 + λ 7 p 2 ).
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Since span{Φ} + TΦ(M3) is spanned by e, f, pi,p2, second fundamental form of Φ is

(cf. (2.9) and (2.10))

σ n := σφ(Ψi, Ψi) = cosflpft - sin<9pΐ*2,

σ n •= σφ(Ψi, Ψ2) = cos0pί*2 + sinΰpft,

σ2 2 := σ φ (Ψ 2 , Φ2) = - cosflpft + sin0pί*2.

Hence the mean curvature vector Hφ of Φ : M3 —> Sn(l) is

HΦ = ^ ( 2 2

= —

Consequently we obtain

Theorem 1. Let φ : Σ 2 —>• Qn~ι be a holomorphic immersion from a Riemann

surface Σ 2 to complex quadric Qn~ι, and let πφ : φ*P —> Σ 2 be the pullback bundle

of the circle bundle P(Qn~\ Sι) with respect to φ, where P = SO(n + l)/SO(n - 1)

is the set of ordered two orthonormal vectors. Suppose the map Φ : φ*P —• Sn(l)

defined by (3.4), i.e. each fiber ττ~ι(p) for p e Σ 2 is mapped to the corresponding

great circle φ(p) G Qn~ι, is an immersion. Then Φ is minimal (i.e. Hφ = 0 ) if and

only if either Φ is totally geodesic (p*\ = p**2 = 0) or the holomorphic curve φ is first

order isotropic (p\ = p 2 = 0).

Theorem 1 and Proposition 4.1 imply

Theorem 2. Let χ be a full minimal immersion from 2-sphere S2 (resp. a pseudo

holomorphic map [4] from a Riemann surface Σ 2 ) to 5 2 m (l) and let π Ξ : Ξ*P —• S2

(resp. Σ 2 ) be the pullback bundle of the circle bundle P(Q2m~\ Sι) (P = SO(2m +

l)/S0(2m - 1)) with respect to the directrix curve Ξ : S2 (resp. Σ 2 ) -> Q2m~\ Then

the immersion Φ : φ*P ->• 5 2 m(l) defined by (3.4), i.e. each fiber π^ι(p) for p e

S2 (resp. Σ 2 ) is mapped to the corresponding great circle Ξ(p) e Q2m~x, is full and

minimal.

REMARK 4.2. In Theorem 2, the minimal immersion Φ : Ξ*P —>• 5 2 m(l) is real-

ized as a tube of radius τr/2 over the minimal 2-sphere S2 or the pseudo-holomorphic

map Σ 2 with respect to the (m — l)-th normal space. More precisely, let e2m_i, e2 m be

a local orthonormal frame field of the (m — l)-th normal space on some open neigh-

borhood U of either a minimal S2 or a pseudo holomorphic Σ 2 . Then on π^ι(U) =

U x S1, Φ is given by

Φ(x, θ) =
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EXAMPLE 4.3. Let ψ4 : CP1 -> Q3 c CP 4 be the Veronese curve of order 4 in

Example 2.2. Then the minimal immersion Φ from the pullback bundle over CP1 with

respect to Ψ4 to S4(l) given by (3.4) is nothing but the Cartan minimal hypersurface

(cf. Example 3.1).

Put

g 1 1 = | |Ψ 2 | | 2 /Δ, gn = - Φ i Φ 2 /Δ, g22 = | |Ψi | | 2 /Δ

Then the square of the length of Hφ is

σ2 2 + 2gng22σn σ2 2

4 ί 2
= X 2 ( C 0 S

5 | | 2 - ||p**||2))

sin |

The square of the length of the second fundamental form | |σφ | | 2 is given by

\\σΦ\\2 = (gn)2\\σn\\2 + (g22)2\\σ22\\2

+ 2 ( g V 2 + (g 1 2 ) 2 ) | |σ 1 2 | | 2 + 2(gu)2σn σ2 2

Ugl2σn σi2 + 4g 1 2g 2 2σ 1 2 σ2 2.

Hence, using σ\\ = — σ22, we get

l | H φ | | 2 - | | σ φ | | 2 = 2((g 1 2 ) 2 -g 1 V 2 )( | |σ 1 1 | | 2 +| |σ 1 2 | | 2 )

+ 8 ( £ 2 2 - g 1 V 2 σ 1 1 σ12

• (2pft pt*2 cos 2^ + (||pt* | | 2 - ||p«21|2) sin20).

Since cos 4Θ cos 20, cos 40 sin 20, sin 40 cos 20 and sin 40 sin 20 are independent func-

tions, we finally obtain

Theorem 3. Let φ : Σ 2 —• Q"" 1 ^ α holomorphic immersion from a Rie-

mann surface Σ 2 to the complex quadric Qn~ι, and let Φ be the immersion from

of the pullback bundle πφ : φ*P -> Σ 2 of the circle bundle P(Qn~l,Sl) (P =

SO(n + l)/SO(n — 1)) with respect to φ to sphere defined by which each fiber π~ι(p)

for p e Σ 2 is mapped to the corresponding great circle φ(p) € Qn~ι (cf. (3.4)).

(1) If the length of the mean curvature vector \\HΦ\\ with respect to Φ is constant

along each great circles φ(p) for p € Σ 2 , then M is minimal.
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(2) The scalar curvature RM = 6 + \\HΦ\\2 - | |σ φ | | 2 of M3 is constant along each

great circles φ(p) for p e Σ 2 if and only if the corresponding holomorphίc

curve φ satisfies either

(i) p\ = P2 = 0, i.e., first order isotropic, or

( ϋ ) IIPίΓi I'2 = HP1Γ2II2 ^^^ P1Γ1 P1Γ2 = °-
(3) The scalar curvature RM is constant on M3, if and only if the corresponding

holomorphic curve φ satisfies either

(i) First order isotropic and the Gauss curvature KΣ is constant, or

(ii) Not first order isotropic, | |p** | | 2 = ||pΐ*2||
2, p** p?*2 = 0 and HpftH2 +

IIPull2 = C( | |p i | | 2 | | p 2 | | 2 - (Pi p 2) 2) for some constant C.

(4) Suppose the holomorphic immersion φ : Σ 2 —> Qn~ι is of first order isotropic,

and so the immersion from M3 = φ*P to Sn(l) defined by (3.4) is minimal. Then

the scalar curvature RM of M3 is constant if and only if the Gauss curvature

KΈ of the corresponding holomorphic curve φ is constant.
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