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WCHEDLSTEREZ ) ELNTAB[I8] 26T, BAVWaAI 22— aryz2lRDIHAICH
%mbkmpawmmn%[mm 7272, a7 OREYIER O IERZIZEA L]
LTI NT VR,

7T ORETENEE S TH A I, TSI EDIIICLTHEGZ RO, %9 2 K
ifﬁ%tfwé®ﬁ%5@zh%%?%tu70ﬁzo®w—%®5%@ww—F%E%
IHENRD 2L [19], 7V DAL — FERICB T 2@ 5 E03 X DAESITHEIGIICAEZ 5720
G THBIE[20], /2D 3 237 — a VIZIRHEREBREBIEEN TV, %nﬁiﬁ
RERLEZ R ZERELHSLIIEIN TS

D& IEYORNUTENL, 2R T XD EYEEFOBERZ D 7T TIEIA IS
T 2208, RFFTN R TER TR ED © KISy — o239 $LRBT 200 vwo
JFEUIRZIZ2E D Eaho TR\, 7272, 7UPHNTF, AOHNZHZEL Tw5 LD
HFIZTRTEZHET2R8BEB 00T TREL, froz—2 v MEFEEOBRBERIIC
ko THIDOTEZ BREMICIEL TWR XKL 2, 2 Bb e, Yot
2 CEREBICHEIGL 2355 ) FLHNOIRBFLRTHI Y — v 20 EATwL, Thbb,
ZDX)BREYDOHIUTH P SERIRNE I LI, BEBIOEHOZ -2 2V B ET S
ATAICBOTHAOu Ry FPHAMNCERREEZ TS 2L, Thbb THHZHEGE @
HEWTH 3,

AT LEERERISE R THET 5 L) AEICT 20Tl R, TExoEFEPT—
PV IMIEBY T VAT LAREZ, RN TV AT LEGIHT S ETRFE LTV A
T LADOMRFRLERZ RO EZHIET) LwIEZEZrS THESH LW I)BasiRES N
T3 [12]. 72, BB EFEM L 2F—7—FE LT TAIF, L) SESREINTY
5. TRFE, w9 SEDOERIZ, BFOE»SEANIN S KBNS, =—Y v b LBREL
EDMAFHOREREANINAEERDIR D T2 E4 TH % [13]. o THA L, TAl
1 L) RN 6, 4 OHASHINICEI < 2Ry b DA & GlEEG L © AIFER
BIRZ2EE S ZEB T ZMADILATONDS L) 1Tk >TE/ [22][23). HIZIE, cxoua Ry
F DS R BRI S BN D 7 — X — 3 3 v & HERENICEL X8 %8 [24] [25] ®,
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TN DIEIHIC ) — & — % 8 & JAHIE - P ERBEO 2L E BN 2IRIEZ 5 2 LTl
WG L S B [26] [27] biThbNTw3, EIAD, $¥DL—2 = v F OMHAE
Ik > THELT 281N RIR2 I ZNHKZERERG T2 LI1FTET, Al A=X
LEFEIL v wiT R nl o 2 )R ZETIE R, Thbb, 20X 9) k- —HOMED
RNPEEABZ LT T DEHE - 21— = v FREC X BAIF Y — o % KIRA I il 3
228, HADI—Y 2y MIZEZ D0 RHIBIREZ G725 2 LI ERLRE R
WhHsb L)l ETHSD,

2.1.2 EYHEXGCEHEZRS DY

2T, AYonu Ry FEOIRSEEG G LMD S BRI N B AIFN Y —
IZOWTHRTE, 22T, ABHSREYOHITE ol L ERDORF O KA HRED S EAH
INBHENRNY—=VIZEHTAZLIZT 3,

AT L% TR CHYMERERICHIET 2REICT 2D TIE R L, 7Y AT AICH BRER
H LX) L) O 7 A 77, ABSLEYOHBIT E v o 7 1 EEDRED K E HEE % il
TAMRICEVTHIELEAGND L) ICE->TETVS, HAIE, AMREYICETS Ty
KOFALF I 7 2ZFHL LI LI BRFIATARODEICE T 1980 EREIFITHRE
SNTws, ALHIBEDOHEN? 70 —F DR THSLLOTXTOFERZR Ry b
Aty MThD LM, FEHA - ERELOMHAMFHOBEEEN IR INTETNS, A
THIREHFE D — AFH TH % Rodney Brooks (1 THEHEZ2BREEEH 2 W€ 7L & L THLARA
URETIE RV ERBLTED [28][29], 2D X9 &it& s L T Pfeifer 512 X > T THk
P EWIHIBEPRIEINTLIDLHFETH S [11].

7, YO Toat—v ar) FRRENERLED) S O, HEDF A F 7 AL
W) RICBWTIFFICESZ LS WHIZ LT AL ). BERBY T VE A LIZ0T 2l 7
BRI % IS L b EISIICATEI L T2 kZE R L, o 3k Bt~HTD=2—
OV TEDL)ICHRDROWRGHBHEZHEIL T 20725 9 A MGRICE) . ToX
) REYOTIARIR D IR DOBIEDN S, n Ry PYEYD X I ICHEDYT AL F I 7 2B EDLL
TG RITIREREZEZOoND L H IR, EYEFEL Ry FEFEIBEBIICITONS
k9o, Bz, ~vaRy b [30]1[31], N¥ FaRy b [32] R@EEke Ry b [33], B
Wu ARy b [34][351[36][37] e £ TH B, F7o, EMHKE [38][39] ICEMEZET, V25—
0 Ry b OFRERIGENICH L 72ZE b FAET 5 [40]. S 512, ABOMADRF >R % =50
TI7Fax—F L L CHZHEKE Ry P HHEI TS [41][42).

0DaE—YavyOHFTHHTEWVIBRITEHR L R IBIRACHET 5. AMLHYOL
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Dlsturbance Controlled
Signal
Reference o
__, Measurement
Signal

Fig. 2.1: Traditional control system

BT Ry — VIEREBICH O THE, MoROBRLHMmEZ ) £CHl#llds 2 Lot
FNns. Tiabb, HAOHEL ES OB BICHBlI N TV 2 L ixb I HHT
H23H. TDEHITHEYDHAT E ) FHHID S B T RTE PR CHlE T 2 &I T3
DTIERL, HHEEIT TBEICEPERI vy L v) OPBEREHHEZET 2 LTodt
LLEFA5.

TEHRICEDE R I\ E0IERZ Lo LD 9 F LRI 720011F McGeer 12 & > THREX
N ZEINEIATE % 9 [43]. ZENEISTIRRERDO YA F 7 2 LB L OME/EH & 275
ACHHATZ T, —~YUofilHlzmA 2 2 Rl fzHdHR%E S ). I OZHNEINT
EVIHBRITERT A2 LT, 2laRy ~ORFEE X OWNT [44] [45] [46] BIA L fTbh, &
BT 4 B [471[48], ZMIDOBIZEIC HIEH S 11Tw % [49][50].

ZDEHIZ, BV EEOROERBZHEHEZES2 A7 7)1, THEROREPRE L O
MAEAERIC X 2 BED 5 BEAICH < FrtkE 2 BBICTEH L Tw2 ), JERESZ X,

2.1.3 ZHHEYZATLZHSEN (FIR) HiEEBHEEHO/INZ > R

CNECTHRAOBNWTHL S S HMES 2 F LB IT 2 THE S BNGE, OREEM: 2%
O, EYounae—va v o Bk wo i RAMEZRGIEIT 2 LT, TXTEpRERERN
ICHIET 2EICT 2D Tk, THROY A F 37 2088 &L OMAERIC X 2FME%E 9
FLOAEDLT) ZENREBEL EBRTEL, 522 THRADVEHL TR 3ERIZ, 4L DEED
I—Y 2V P PBRIEABOCERAIN L HMES AT LY — v TH D, ZDOBICH
RADOBNTEIPR I3 —> 2 v 62AR THESBIEE ), BXO TBEE L OMAEMIC
K2RMEZEDT ) VI TATTIFEELEIRNE RS, ZohT, TERE L OHAMEHIC
YRR AP T, L) BRSO EFNOPKAER 512 & o THRIE S 1T\ 3 Rl E
EVIHIERTH 5.
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Z 2Tl & v AR E B g BSHLD FHA L WEHBEY AT MO THO TEZTHAD L
ZHZ L HAMES A7 L LHIEIEHEER D £ D RSB0 I IR, v ) Db BTEDTH
G IBREECHAERH L o L EEZELE b0 L T2 UMHLERZ2) BEBHD, >R
T L hEEMEICHIE T 2, Tb DB Fig. 2.1 DX ) BN TR T2 2 2 & 2 iz
ELCTHEREZITIDNS TH S, ZOFIHBEGRDE Z 1% D> A7 L ORI HEIG X 4,
74— FXXy ZHlfH & W) AR DT 6N TwE, BRY MIZBWTHZDEZ T2
AL, EEHAuRy P07 —200ERSTHIEZ EEHIH O PR A REIIE F - 746172
EEZED). KEZoOMHADRKORMEIX, TBEEEOMAEERIZTCHELERZ S, &
W RIZH .

ZO— /i THRROAYIBREL L OM AR ZBEBIICFIHL Tws, e 740 9F <,
F7V o NF R EDOHSEREEE R THH S BPREIEO AKE L Tw 2 LIFFEE 21
SV, F£722C, BREGES L UCERMIEZID B XD [51]. BRI IZRN 2 Frk &
NTL3I2b22b679, FLy FIVOEEDZBIZHE L T Walk, Trot, Gallop & #f7/%
Y=V BRBEZTHL,

D) RFEHDS, EVMDBHEDOT A F I 7 R EEEEOMAEERZTAICHHL T
52EIEIETHRL, X, BEROYAF I 7 ZADARIHA L 2ZEHBT L) BERD
5, ERSBHHRDOY A F I 7 A LBELOMICHT2RENS ¢ HHBELZ L2 L
72 [52][53]. 2L CZD &) RNz 27 LT, KREES LT OEREHIE & w ) &
FRIEL T 3 [54].

REHIE: Sk A7 2 LBE L OMAMENIC X o TR 2§l 2 EHlE, IR
fc7a 77 4 e LTHZ 52 BIHTE & 2.

Thbb, THTEEEZ TSR (Rl & Es) DA, Fig.22 0k 9
ICBRBE EMAEHA T2 2 L THAMOBIHA D X 9 2@ % % 3 28K (BRGl#EE & we8) %
HAL, BEAOETHEAI ET25DTH D [55][56], Z DEMHIMEMGRZ V2% 2 &£ T%
BB AT [52] [57] PHFIR 3 RRIEICE T2 7 77 P 284 v FOLENE [58]) Itk %
BERHIE RIS & 22 I N T E %, FAHE 513 OSCILLEX [14] #EM & L, BBl
T VARATH S CHIGNARIR S FE W2 RFICHBL Tw 3,

ZITERLAFZOERBHMHMOMEE2 L HEES AT L0 =V IBRICBWTHEA L,
Ba iz DAz —Y 2> MG 2 2N AGIHE, vRy F3EE - BB OMAEH I
K 2RHER R L 7289 — VB E TRy — Vi) EERZ L LT 5, REITIEZHK
JES 25 LD Y — VFEICI Dl Z o0 E o B4R E LT Swiss Robot 12 & % 7
T AT A L5,
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#
)
i
W

Implicit €ontrolLaw
Explicit Controlaw,

Plant

Field

(a)Control system of living things (b)Something exists?

Fig. 2.2: Implicit Control Law: overlapping hides a control law

22 ZBHEYATLIREITZEH/INY —VFEDEH

Z ZTl, SwissRobot ICk %7 7 A% EZ FTHD L5, £/, v Ry bick37 5
AR E VI NRY — v DA A 2 2 EICERZE W2 EOR Ry ks 275
A Z T % N9 5.

221 BER

%  DEBDEHIAEAG OV EANSNELHHERD Y = BEE CHET 508, 20
1T % Deneubourg % Pfeifer IC X > TIREIN T 2 Hffi o Ry Mk 2WEELE (77
AZTEL) &) BIFERI 2588 — VTG IER ICBR IR >, Deneubourg 13778 L T 2 A%
79 AZIRICIET 2782 2L — )L [59] THRETE 5 Z L 2/, L [10], Pfeifer 5135
BEZEP L7ea Ry F2iEHT 5 2 & TUMREBEDSHEBITE 5 2 L 28 L 7% [60][11].

Pfeifer 512 & > THZE X 4172 Swiss Robot 137 4 — )V FRIZE S > 72Wfkicx LT, v
Ry b HBICEE RGN 2 NES T, AARTTICERI N TW» 5iaEw v 91 & 2 Bz A
WESOGD HTYREERE L VW) Y — VB ZEBLL Tw 5, ZORE Y-k, virvy MH
HFOWEA =X (VY RIG) ODATHRITE2HDTIIAL, aRy FHEE L OMA
ERZ YA FI7RAELTH)ELFATEIETRETZIBREEEZONTE D, KitET
WREL TR BN —VFEDOIEFIC I EHLZ EF R 5.

ZZT, Aficizu Ry MK BEESAY —VIBEETIER A, v Ry - BEBOM
HAEM Z A e LcERMLT 22 8T, Y —VIBROARE (REHEF) 2252 L
ZHNET S, I61iE, Y — VBRI BB L filf R 2 H 4 35 6 Cdfica Ry i
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Distance between  Sensor
two sensors (d) Angle (¢)

Si==x,

Infrared Sensor Infrared Sensor

HS8 Micro Computer

Motor Driver

| Left Motor |[|Right Motor |

Battery

(a) Top view of a prototype Swiss Robot (b) Mechanical structure of Swiss Robot
Fig. 2.3: Development of a Swiss Robot equipped with two infrared sensors

Bt 20 (BEWHIERIE UCi%EFT 220, 3B Es2 TR, BEL oMAaFE-H%
MAT2ZLTZ2DL) BERE ) LRI EWHIEIZFAT 20) OBRG%2%
R L, Baiumla & BNl % s s la s b 2 HlgRiE N BT 2 2 L 2 HIET.

ZOE—BREE LT, FTHMAL VY RIED A SEEHE Y — v % FZHT % Swiss Robot
ICEH L, YRR T 2 Gl 2B & oM B AERNIC X 2 B IEEE & L CHEL TWw»
52 EEHODICT S, 61, Swiss Robot & FIMRDEE Y —v DFEBEZHWE LT, #
BICDERHIEBEZBICa Ry My P RXR—ZA 7L TY RLELTHEZZDTIEEL,
Swiss Robot D ¥ 4 it % B Ak & L T Z #1272 Coronoc Robot Z#2% L, X b Ryl
HHDOEAFEZ RES LRy MK BEENY — v DT 21T . 7, ke & 2t
H£9 202,k L, Swiss Robot & b FEHYHllEIAI DAL 2 5 < L 72 Aggregator Robot % $¢42
L, BHENRY — v D217 .

2.2.2 Swiss Robot

Fig. 2.3(a) IC#{E L 7z Swiss Robot D4l %, Fig. 2.3(b) I Z DHExE%# " T, %72, Table 2.1
iRy b DERE$T X —F 2" T, Swiss Robot 14T & LRI ICHRINREE » 2 HUD A
JChHY, KR k> TR E DFEEZHIET 5 2 L23TE S, X 51T, Swiss Robot
WIEHS A avERLTH D, THOT7 LT ZALITRT I )KLy I 56 Dftiic k-
T, E=F FIANRNZNLTEY A Y ONERELE, W52 HE L Tw 3,
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Explicit Control Law 1 (Swiss Robot)

o EREVYRM: (v AY, H54Y) = (HEHE HWHE)

o EEVHYDHRI: (v AY, HF4Y) = (HEHE, HEHER) .
o AEVYDHRIL: (¥4 Y, H¥4Y) = (Hinl, NHEE) .
o EVUYRIGAZL: (v AY, 5 4Y) = (HEHE NEEE) .

L, DRI 1.8[m] D EN7 4 — NV FHIZ, —UDEZ230.09[m] D 15 DS
k% 7 v & LMIZHELE L T Swiss Robot 1 B2 &) E 217> 72, Fig. 2.4 13EBEOKRT 2R
LTED, Swiss Robot 23 ARIFN 72 fEHABE LS B 2 flf Al 72 LI, MR DBEENY — v %5
BHLTWw3E 2 EDHERTE 2,

Fig. 2.5 13 2 DOMEDBEN ED L ) IfTbN 2 D2 HENI A7 bDTH D, Wik
ADPYMEB O ICEPNSHEF 2V DO THE, v Ry Mg e3Pk, £
GELOLDe YD ERZ T 5 F THING, vy b2 v TR EZRRAIL 72 L 2
D&, ZOYEREET 2 X HICBI 20, HLTL3PKIZE vV CTEAL 2Wiko 2 1XICiE
PNB, ZOEIIWHLOYEOEETT R ZIE EHRDIIICEZ B ENTES, 22T
IZ, Swiss Robot 12 & 2 ¥{AEtEZ Ml BBle T L & LCERLT 52010, Bt LT
A2 00YEOBEICERL, S5y IBICE L CUTORERZEAT 2,

o LYK% Fig. 2.6(a) D & I ICEMRETUERIT 5.
o 2ODk RN d 13k v Y RGBS R T ERE L, Fig. 2.6(a) D &9

TN bDERZ S,
Table 2.1 Sizes and sensor parameters of the Swiss Robot
Parameter Value
Weight 0.35 [kg]
Width 0.12 [m]
Height 0.13 [m]
Depth 0.15 [m]
Sensor angle (¢) 30°
Sensor reference distance ({) 0.15 [m]

Distance between two sensors (d)  0.12 [m]
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OO[S]

Fig. 2.4: Generation of clustering patterns by the Swiss Robot in the experiment

Fig.2.5: An elementary process of clustering: how two objects come together

Fig. 2.6(a) 127”79 & 9 IZ Swiss Robot 23% 2 HAICEIWT W3 ERET S E, viry oD
LU IEYER xp (xp € R?) ERIGT 5. DX VY ORIGT 25 % Fig. 2.6(b) D X 9 I
S(P,xp) LEFET 2L, HE S(P,xp) 30y bR VI NRIA=—F P (VYO
6, BEP Uy VORIGT 208 ) B XOVMEDOME xp I2L>TRES, Thbb, LTD
XIITERTE S,

Definition 1 (> Y D RiGHEE S)
LYY ORIGT 5 S OREZ r 3 v VORIl 5L k%, $Z20ME 01k
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Object X that the sensors stimulated

Object X that the sensors stimulated

Sensory stimulation area: S(P,x )

(a) Changes of moving direction in the case of left/right sen- (b) Definition of the sensory stimulation area com-
posed of right and left sensor response area

sor stimulation

Fig. 2.6: Definition of the sensory stimulation area

Xy S(P.x;) FA %1y SP.x,)
X
N F
F c
A 1

(b) Stop on the sensory stimulation area

(a) Moving in a direction

Fig.2.7: Movement of a object by the Swiss Robot

YYDORIFTHAE ¢ EHEL 5.
Thbb, uly bW @ e RY) 2L Tw 3858, YWike 0BIE2TO X HICE

AHIENTES,
(a) Pk x 23 vV DORIGHIR S(P,xr) DIMINCH D, Witk z 1Z3u Ry b 22601 F(F, €
R2) #Z1F T3 L&, Uik 132D EICEHTH { (Fig. 2.7(a)).
(b) Yk x 3 vV DORIGHTHIK S(P, xp) 1Kz & E1E, U o 38T 2051 & i
DN F, 2%}, 2V ORICHEE S(P,xr) LI TIEE % (Fig. 2.7(b)).

FED2 oD EZF LD EUTOERTERHT LI LNTE S,

d
gd_f:F:Fa"i_Fc- 2.1

22T IRPUREL x(x € R?) IWEORE, F(F, € RY) Zu Ry b B3k z i,
N1 F(F, € R?) 3Wk x 3¢ v 3 O JOGHIR S(P,xp) DIMITIZ 0, & ¥ D JOGHIR

S(P,xp) Lick-LEICE —F, £7% %,
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Explicit Control Law:
Sensor Feedback: P(¢,l,d)

Left Sensor » Turn Right
Right Sensor » Turn Left
No Sensor » Go Straight ‘

D O O ‘ »
0 (f x&S(P,x,)) a | Field: Another object: X 1.

U= -F, (f x€S(P.x,))

Fig. 2.8: Implicit Control Law in Swiss Robot’s collecting system

Swiss Robot DEEES A 7 L ZHGlIHR LR Z 2 &, T F, ZBG0NHIER (¥ 37 X —%
P(p,l,d) 2ET 2374 —FNv 7)) LHIFINR Wk z), 2L T (R yoOLT
29k xp) LOMBEMICK > TELDIANERAZ LN TES, Thbb, A F. %
BErHlEE wy £5 22208 TE, UMTOXTEHTE 3,

Implicit Control Law 1 (Swiss Robot)

_J 0 if x¢ S(P,zr)
1“‘{—& if ©€S(P,xp) (2.2)

Z DX 91T, Swiss Robot 12 & 2 VKL ¥ — > DN &, Fig. 2.8 @ X ) Ik % B>
THERLHF TV IUEEZ H 25 (boWikD Z13) TIED % X ) 2EEIEE Y — VT
BAC AR HIERE E L THFEL TW B Z 83005, T7b b, Swiss Robot 1T X %Pkt
LB TEBWHEIERIZZ T Tl <, BREE EMAIERNIC X o CTHRIT 2 BEHlE I 2 & FH
LTy —V B EFEBLTWwEEn) 2 ETHS,

2.2.3 Coronoc Robot

Swiss Robot IZ¥AEEEE L\ 9 88 — VTR B 2 il R 2 Bl Ze & o H OIS E BB &
DMAAERIZ X > TEEL T3, Z 2 Tld Swiss Robot & [FIERDEE Y — v DFEBE%Z HINY
LT, BEICHEZHIEREZZICOR Yy My RXR=—X 7L AL ELTEHEZS
DTIE7% <, Swiss Robot Dt ¥ ¥ itz Bt & L CEEHZ 7za Ry + & LT Coronoc
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- | Passive
Semi-passive { L

Crown gear

(a) Overview (b) Bottom view

Fig.2.9: Development of a Coronoc Robot without any sensors

<=

Tl

(a) In the case of moving forward (b) In the case of changing direction

Fig.2.10: Changing robot’s posture in different situations

Robot Z 1247 %,

B ¥ L 7z Coronoc Robot D4Mii % Fig. 2.9(a) 12, 25 R X% Fig. 2.9(b) I2/R”"d, 2D
ORy MIIZETHICR =L ¥ 27 =231 >, LIRS, I3 ERERSERINTE
D, FADIAYIZE—FIC Ko CTHENT 5, HEBKEN & 1, BKEhRED SHMIC 52 B 2 HD £
J7 2 BBEDOS A YDl LThHhD, ZoMERHIHII Ry FPOHRICKD, FERIZHIITICH
Lt e s 7 ofi@EE s LT 2y, ¥4 PICKRE LAMDIDD - 751Nl BK
Bl Eds L, Z8G s L@ Ao Tws, 2LT, BHICHLI 1274 YHHLD
MFrenTkh, 77290XF7, E2FF 724 L THBlGONEEIMED 2 &I > Tw»
%. %7z, Coronoc Robot DELMIHTH I 6T 5728, Fig. 2.10(a) IS8T & 9 ITHB I
BITDYAYIIHIA E B L 2 K ) IR ->Tw 5,

ZoOuAy MEFig. 2.10(@) D X HIca Ry F DT HIANICK L TYERD 1| OFET 2856
IZiE, BARy MIRTDTEICEG TV 2720, %A OBKENE I & 3L v, S50,
EXEpig i Ry POHEICKD, MU I LA S nikElG & L <@ E, aiy b2k el
~LED D, —77, vRy OIS L TUED 2 DU BFEET 2565, BEDFLE
T 2841021%, Fig. 2.10(b) D X Hicu Ry MILBAEEZ, thA5 OMRE)linH Hil & #ikd 2,
61, KRERAMEZ 7RSI ZEmE L CEid. ZNoofEE, viry Mizol
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(a) Initial State (b) Final State

Fig.2.11: Clustering pattern formed by the Coronoc Robot in the experiment

(a) Moving in a di- (b) Stop in front of another
rection object

Fig.2.12: Movement of a object by the Coronoc Robot

THHEEL, #ETHINEEZ 5.

H#{E L 7= Coronoc Robot % Fig. 2.11(a) D & I ZBEICPH F /- 22 CTREE L, S 51
Withk% 7 v 7 L IR EBICTIRAE L, FEBi% 17> 7. Fig. 2.11(b) I Z DFEEFERZ R T,
Fig. 2.11 225, Bz TR L7zury P 236G 2 2 & CRIE Y — VB2 EBTE 5
ZEDTNG,

% Z T Swiss Robot DYAEELE & [FIAk, Coronoc Robot DY %2 HlHI R & 42 2, BEri
HloERZ1T .

Ry MLk 2Pk oz c R OB EZUTDEIICEZL I ENTE S,

(a) Fig. 2.12(2) D & 9 iKWk xz lZu Ry b2 501 Fu(F, € R?) 2%, Wik x 132 D7

IS TH <
(b) Yk x TS5, ZDMOVIE cp FET 2 L &, YE x ZEHATW 2

il L5k & 0] F, %31, Fig. 2.12(b) O X 5 1l U(zp) TLLE 3.
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#
)
i
W

| Plant: One object: X |

Implicit Control law Lall \ Field: Another object: X ;|

[0 Gfx@UG))
I L=F, (if x€Ux,))

Fig. 2.13: Implicit Control Law in Coronoc Robot’s collecting system
FELD 2 DDMERIELL T DX THRIT 5 2 £ TE 5,
d
5%:F:R+E. 2.3)

2 T I UREL, o(x € R?) BWIEDIREE, F,(F, € R) ZuXy bWk dJ, 5
F.(F. c R?) 3k « 235K U (zr) OIMIlITIZ 0, AMITIE —F, L% 5.

Coronoc Robot DEEES 2T L Z2lflR LA 2 &, J FIFHIENR (vXy 23 LT
Witk x) L8 (ZOMOYE cp) OMEFHICL>TEL L ANERZID I ENTE S,
Thbb, AN FAZENHIE uw, EE252E03TE, DTOATRITE 3,

Implicit Control Law 2 (Coronoc Robot)

[0 if x¢U(zr)
’”_{—ﬂ if zcU(xp) @4)

b %, Coronoc Robot DYAEEESE & > ) HlIfHRICIZ Fig. 2.13 D X 9 ICYIRBEER I
2R R DS R & L THEL T b L n) 2ETH S,
2.2.4 Aggregator Robot

Swiss Robot % Coronoc Robot D&%k, BB & OMHAEMAZ ) LT B L TY —
VB BB IR 2 B S w5, 2ol o R, MitkE Lo Tk %0
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(a) Overview (b) Bottom view
Fig. 2.14: Development of an Aggregator Robot eqipped with two photosensors

BBEADH T EDEELTOENE L TENS LHEZEL, T 2 TlE Swiss Robot X 0 FRYIFHIH]
DUATHE % 5 < L 72 Aggregator Robot #2457 %,

Fig. 2.14 IZH#l3 L 7= Aggregator Robot DAL L, T2 5 FL7z¥ %73 ¢, Aggregator Robot
ARG EERTAIC 742 ) 7L 782y 1 DT OIS TED, Fig. 2151087 k)
%7 4= IVFORRZMET 22 L3 TE S, X 51T Aggregator 12 1% Arduino 7 £ 2 ¥ 3
WMLTHD, TiDd7 VTV RLIRT LI LKLY IDODHIZE ST, E=F FI7A4 1%
L THSY A Y O, iR 2 f#lE LT3,

Explicit Control Law 2 (Aggregator Robot)

e TADEVYHBRERM: (K5 AY, H5AY) = (EHREHE, #EEEL) .

o EEVUDEERA: (¥4 Y, HivAY) = (HEMHS, WiHEig) |

o AEVYDEERA: (A4 Y, HsvAY) = (HRlEE, NHEEE) |

o TRADEVYHAZERM: (L5 AY, H5AY) = (HREME, NEREL) . .

S, B ENL 7 40—V FRIZ 10 oWk % Fig. 2.15(a) D £ ) IZ 7 ¥ ¥ L ICHLE
L, Aggregator Robot % B2 3% 17> 7z, Fig. 2.15(b) I Z DEEAS R %2R T, Fig. 2.15
76, Aggregator Robot 12 X > TYESSR OFICEE L T b 2 L0300 5.

Aggreagator Robot IZ X 2Y{k x(x € R?) DENE I TDLHIICEZDL I ENTE S,

(a) Fig.2.16(a) ® X 9 i<Wk x lZa Ry b2 501 F(F, € R?) 2%, Wik z 13201
ICFHTH <

(b) Fig. 2.16(b) D X I Wk o 3B (T U T IR 56, DiF x 38 »TW» 57510
LR E DN F, 2%, #HBTUT TlEx%
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(a) Initial state (b) Final state

Fig.2.15: Collection of objects on the black areas (the black circle/wall)

(a) Moving in a direction (b) Stop on the black area

Fig.2.16: Movement of a object by the Aggregator Robot
LD 2 DDBRIZA T ORTHRILT 5 2 LSTE 3,
dx
— =F=F,+F.. 2.5
6— + 25)

T T & IFBIUREL, o(x € R?) BMEDIREE, F (F, e R) Zury bWk id 1, 5
F.(F. € R?) 13k « 23MEER T U T’ osMilTiz 0, AllTix —F, £ %%,

Aggregator Robot DEEES A 7 L2 HlfHIR L X % &, J1 F. i ZBHIER (2 35 KOG
&5 74—FnNy 7)) EHIEINER (ery FBHLTOWE ), B8O (B OiEE
TUT') EOMAEMICE>THEL 2 AN ERAD I EWTES, Thbt, AN F, 3N
T wy EF5Z2 22 ENTE, UTORTERITE 2,

Implicit Control Law 3 (Aggregator Robot)

(0 fx¢TUT
ur_{—ﬂ/#weTUT’ (2.6)
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Explicit Control Law:
Sensor Feedback

Sensor » Change direction
No sensor » Go Straight

Plant: One object: X

Implicit Control Law | 4
0 = 0 @f x¢TuT) | Field: Black area: T U T' |
! -F, (if xerur)

Fig.2.17: Implicit Control Law in Aggregator Robot’s collecting system

2D & 91T, Aggregator Robot I3 Swiss Robot & b & FZRYIFIHI~ DK %2 F %, Fig. 2.17
D &) Ik %E 1k B HEEZ BRI E 7 4 =V FZHOWTIHREL TW 570, PIREEN
BEEHIHTE L2 L8005,

2.2.5 EER: BRE/INY—2OBRYGIE & RRRHEILH

Z 4% T Swiss Robot, Coronoc Robot, Aggregator Robot 1T & 2 ¥EEE L\ ) 8 —
AT H L, FEESEEZE U TRt & RSl 2 o 22 LTE 7, £79, Swiss
Robot [FHiffiZs & v MG G EEENR Y — V2 FHBLL T 2 96, Y —VIBRICKNE R
HEREZ Ry b EBREEE OMAFHIC X > TRHSETVEEEZLIENTES, 22
T, Swiss Robot I & 2838 — VPR DNT 2@ U T, WikZ2@E»dHELEH VT 2YiE%E
H B (hOYED Z1F) TIE® % &9 BUERD, 7 7 AV BRI LI Rl E LS LT
ELTCORBIEDThro7, T4bb, Swiss Robot ZMIREEHE L\ 9 ¥ — V% HiffiZe
STV XL (BIEHERD 720 Clidk <, B L OMAFER I X 2 Ersl#E R 2 v
TEIHL WL EFZ 5,

% 7z, Swiss Robot D+t ¥ ¥ K% GG & U CHlDIAA, X D ENHIER~ DK %2
mo7za iy b & LT Coronoc Robot Z$2% L, Swiss Robot & [AIERICEESE 85 — v 3EHT
X5 LEMER L. 2 LT, Coronoc Robot 12 % 788 — ¥ HEEK AT w035 7 il AR 1A 20 6 114 1) i
HIE LTHTEL T B 2 e 2N L 72,

52D Swiss Robot & Coronoc Robot D¥5é1%, BT 2K % 1k 2 HllfH A D) < 48
st vy IGHEE S(P,xp), L08Ry FOHITOMEIE U (xp) £ 5206, £
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CUEDPED SN ED0E, v Ry B XOVEOWIIRE ICKfET 2, 22T, "F—VIE
A BB 2 HIHEE 0T, Wik%E EDOFEBTIED 20 %F 2 5 2 L BURBHEES T DE >
ELTENDZ LTS EHEZEL, Swiss Robot & ) BRIATHIGIHIDKIFEE % & 7= Aggregator
Robot Z#2% L, WHREEMEZFIF (TUT) &£ LCHlflcE 22 L 2R L 7.

Ry MK BEENRY = DFEBUTE T, Y — VRO EIC B R %2 &4 2385
icu Ry MCEGENT 20 (BBIVHIEIHRI & UCEGEFT 220), B HHELZ TRL, BREL D
MHAEMZAMT 22 TZ2D L) ¥FEL ) B2 (BRI Z M 2 20)
DWST B L, HATHNGIEMORZ 2 2 @Eoury ~, £ Z&BRERVTHIER 2 —Un 2 4%
WBARY MCXIUERBE L IR — VIR R B, 20 3O Ry M Swiss
Robot ZE#E(2, X O EHIBIRI~ DA % 5 < L 72 Coronoc Robot, & b BaHHIHIAI~D
RAFEE % 5 < L 72 Aggregator Robot & %2> CTE D, BEiahlf & BEMEliEo T v 2 %2 52k L
7BEH NS — VIBEDOBEHRAND TN Ik b L EZA SN D,

23 770—F%  BEZEREICED <EBR/INY — U FE DRI

INET TENAY—ViFEYE, oML LT, Biize Ry MK 2WREELZID E
F, BEENY — v RTBKT 2 Il - S 2 S 22 LT E . 2 o BA G2 v 2 iR
WS, ZHMES AT LD TR NY — VEFE ) ICAKINICI) fiEric B> i Tch 5. %
DET, KFATIED ) 12 "7k LI T7AT72RETSE. ZhETutry FofT
BRI 1 T H - 7208, BNNOIRZ BRI E 2 2 LRl RL 2 HNZIR
EIRDLILETRY VDR TR AT A+ 27 ALY LR - BEPEEN, I
HH» DB 88 — v OFGEHI D %035 Z E 3 HIfFCE %,

E AN, BNUNOITENOEWEZ G2 - k23—, FREERLIHENZEAESY
7-BEREHAR OB S FBLT 2 88 — v 2l 22 IS TREIT T 2 DI IERICRETH 5. L v
) DHEEEMTIEL—Y 2 v P OB Z OMHAEMIZEBICEZ oS 70, RENIC
BRI N5 88 — v OB L & D, BEHEROMEIC O LD S L WARBESE V25T
b5,

ZITRABEBOEE - =—Y = v FHOMHAFEHIC X > THBT 2218 — V38D
A F I ARMBHTTATFEE LT Wolfram S IC k> TREIN TS LA — b2 b ik
KEHT 2., A=t by 3@EREZeVICX ) DEIT2FETHY, BEPI—
Pz v MEOMEERE 2 VEOZGHEAI LR Z 2 2 L THRY —VIBRD T a ke R & TS 5
JikETH B [61][62]. & 51 Wolfram & (FEEH > A 7 4 BTk Vo4 SRHlZ 2 —F

ZRAWTRET 22 LT, BBINDI A=V Z2EBDI FAHETLEV) T Ta—FF
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Fig.2.18: Coordinate settings in the hexagonal cellular space

EERREL TV [63]. 2O L6, FIT 239 — v O gt 2 HEi 2SR IC 76 5 & #E%E
INs.

AWFTETIE, Hg2m®i5’Zﬁﬁl—ﬁUVFWW%Eﬁ%%?%mmT%ﬁT% J5t
MO ZSNABTFoRLETS, O @) NAKFO-HIIN L TEREL2DDZ v diE T
5., IHICO0ZBY, NAKTFOHFAZEL D% yﬁﬂik?"%. INFIRE A2 IV 5 2 & D3ifE—
DFERLTIE R VDIFLRTH 505, AW T, T2 DD RLVHOHEEITRTEHL W E
WY RT, OEIRETH 2 ZACHAE T RS ANAKTFZHVE D LT 5. GEFEN
S ZNAET 72 x Zg FI2BWT, JEFn/ Sy 7BEa Ry b O 27 LB OREE
ZHWE LT, ey AT L EId 8L 2 R AEtEFEICBIT 2098 b 7> T % [64] [65].)

BEha Ry b o X9 BRI TREE R OWEOREIZ, S 2 (FHPHIKR) & LT
Rk —2 Vv FEESE(2) = R2 xS ERBITES., 20—/T, TXTOYEINANKT
DHRDIET DD ERET S E, ZOMEIXZ2 OBBETRETZ L8 TES, &5
I, ZDOMEPHERINEEOAZINS LT 5L, 0,£1y,£2y,43y,--- € S(y:=5), &KL
3y & =3y IFFELLS S, T THILDZD, v ZIDERE, vieSZiecZ LERHT S,
Thbb, MEOHEMIILTOREMEL % 2.

Zg = {0,£1,+2,3}

Thbb, HEERENETORKLI—2 )y FRESE2) 1d Z2 x Zs L BBIIN 3,
AT Z OBz 2 Y, £973,45 T Toim Ry MRk 20k 7 5 2
FIEHL Il e, ZnE7 Va7, udhy bz Tl —Y v b2
KIKIIC B 2 WEW % 345 L & 9 L& 2B, iyt o T8 R Hl RS % Fe 3
LEHHEARNLIETH S, 2 LT, ZOMEOERIIHIC X 2N Y —ViFEIEE T
LG22 %2 EMIFFL T3, 22C, 3FETIEHE-OBEEIE) S A I NS BN
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tick= 10000Qule_num= 199 tick= 10000Qule_num= 252 tick= 100000ule_num= 305 tick= 100000ule_num= 412
rule= 021101 rule= 100100 rule= 102022 rule= 120021

(a) Code 199 (b) Code 252 (c) Code 305 (d) Code 412
Fig.2.19: Formation of various structures by distributed robots with different rules [1]

Y —VikEE, 4B TIEA~T 0 REERED S B AN I N D BN Y — VEFEEER RN S,

ZLTC, S5ETIR To=7Fy X3 ey PoMnoFE sy —v ) Il i, 2
T X B2 RS —VEED Y — ¥ —INEESR, BN oMEoBEEo B2 5 kT 5[
BThHY, >=7Fy 7P AT 23 ABEZe Y o NE VO TS O X ) REED
) FLFEETZIEFICHER NS AT LA TH S, FHRIC, =7 Ky 7P AT 0IFIN0ETHE
ZTCER Tary P X2WED 7 52 25K, &) D ThRE v FNZ—Y = v
FDYIAZIER, 3 TeEY P EnIHIFINZ— 2 PO, Eholr—RA LB Z
22 EDTE, BEWAY = FEORGHRBEOBEICATZRDAT Yy FIZhb EEZ 6N
5. 22T, =7 Fy 7Lty w)HNOMBICREEEZR > L HBES AT LD %
= EETFTVLL, @27,

X 51c, HFEIREE D DRz 2 V5 L TRA 7289 — VIBR ORI D fLA T
W3, HlzE, a7 oEYERICEREZ S THAS BN TENIC X 288 — VI
Ry TH D, FANCOWTIESTHR [1] [66] ICRRT W 223, £X2—2 = v FOBE#RIZ 2 —
FaHWTHEZ B, 2 XI0FEHR 3 RIGERICB W TTRTO a— Ik 2 BEmgm o
fighr (Fig. 2.19), 8 X R MHEICHE S (ERBINFHEIZT>TWw 5, 72, 7YV ORET
B 2T, Fig.220 0 X 9% "7 2 0 ey 22k o g, omEbiT->TH
D [2], 205 DFEFIZME U BB T 280 — VB D 54 F 2 7 A3, B0
S 72 FERSE O FEGHI L > T3 DL FEHTH %,
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(a) Three pheromone trails (b) Four pheromone trails

Fig.2.20: Formation of different number of pheromone trails in foraging behaviors of ant

cononies [2]
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g3 HNOBE—EEHINSEHLD
N3N Y —VEEE

31 Bx

TITIE Toia Ry MRSk 27 RSBy &) BN Y — VR IR 1B
L, NAKTFOR Lz HOTHE L BRI CHAte Ay F OffZE, PEfTHOAZEL
7eu Ry PETNERET S

wfEEZ2 M F iz Swiss Robot % #iffi & L 72 Sense & Avoid )V — )V, RIZ, Sense & Avoid )V — )V
XD X SICHMZ Push & Turn V—) v, Z L CPull& Turn V—IV%ZE AT 5, 2L, kil
D 3FED PRy M X Z2WEEEE - L ) 8F — VRO 7 a2 ZAH93eITiEfT L Tw
(e, BlzZIEa Ry P PR RERDE N RY — VIBRICED L ) BiHEL 52 5 D%
HIfEEE (R8I 772 = 7 P, imgfRa L) 28 AL, HEtIcird 5.,

32 HEORY MK ZMEORE - BT — Y DET
Uit

321 T—yzxzrb (ARY S, 9% OEFIL-I

9, Fig. 218 D &k H g, 2 Xmr—72 Y v FEEZIEANAKTEZHWTERT 5. £,
74 —=NVFDOREZICXZHIRZE 2L TDIc, BEHICBIL T Torus P ¥ v ¥ — (Fig. 3.1
DEHITT 4 =N FOHEWMPENEDRB>TED, 74—V PO Ludy M D7%03> T
%) LLTHEZS,

NAKTTHOR S SNHEHITEWT, ARy ME Fig.32@) D kHIC 1 2DV % b
O, ZOWREIZZY, xZe £72%. PEL R Y LB Fig. 3.2(b) DXk 92 1 2DV %E G
DB, MBI HAE R 20D, ZOREBIZZE L5 120V dEEOYIE (v
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Fig. 3.1: Periodic boundary condition

3 @

(a) A robot (b) An object
Fig. 3.2: Introduction of static/dynamic agents

Ry b EPME) 2352 LIFTE R, B0z UL, FRVIZRORED?, Ry FEk
EVEDOEL SO THEIREL L >TS,

HEEORBEII AT v 7T LT 5. vRy MIBISBRZ L —)VIchE-> CRIA R d#
ADEIIED or ERICAZEZZEZDDEL 0082179 . YERIE, BEETIEEHC L
DTET, vy M Lo THENICE» I N, KwXTE, ARy MIEEOYEDHZ IR
TEREEFBIKZEDTELZLDLERET 5.

%9, Swiss Robot DH)E % & )L 4[] TH Z 7= Sense & Avoid L — L% FTRlD X H ITHEZ 5,

Rule 1 (Sense & Avoid rule)

o EEMADEILICHE (OKRY &, MF) BEEIIES: AL LELLICTVI LI
¥ % 2L 3 (Fig. 3.3(a)).

o ARIEILOAHITHE (OKRY b, ¥YMEK) BEEITIES: A EZLHMEIE 5,
(Fig. 3.3(b)).

o KRIEILOAHITYE (OKRY b, ¥YMEK) BEEITIES: LI E 2L I 5,
(Fig. 3.3(c)).

o HIADEILHZE or BIEDMEDFET BIBE: HiT D IVITHED: (Fig. 3.3(de)).

o ZNUADIZE: KA EL 6TV LICINE ZZL S S (Fig. 3.3(f).
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./ﬁgii
(a) Turn right or left (b) Turn left (c) Turn right

00
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COERO0 COBRCO
(d) Move forward (e) Push (f) Turn right or left

Fig.3.3: Sense & Avoid rule in the hexagonal cellular space
e
q‘?//“
OOIO0

(a) Move forward (b) Push (¢) Turn right or left
Fig. 3.4: Push & Turn rule in the hexagonal cellular space

Push & Turn W — NV ICHE->TCEIC B Ry MIHBDOHIH DO ILE I OXZDHITDXRILD 2 D
DX NVDIREED S HYDITEIZ LT D L H Ik 5,

Rule 2 (Push & Turn rule)

o HIADEILHZEDIZS : HiHD VIS (Fig. 3.4(a)).
o HIKDWEHEET BIBE iDLk Z 1 L Tt (Fig. 3.4(b)).
o ZNUADIZS: G b onic FVFALIC MNEREZ S (Fig. 3.4(c)).

Pull & Turn V= VIZHE>TEIC B AR Y PIZHEDOHI DL EIVCHEDE T DR LD 2
DDXIVDIREED S HE DT 2 IRET 5.
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(a) Move forward (b) Pull & Turn
Fig. 3.5: Pull & Turn rule in the hexagonal cellular space
Rule 3 (Pull & Turn rule)

o FIADEILHZEDIZE : HiH DXV (Fig. 3.5(a)).

o HIFDEIVICHYIFEDNTEEE and EADEILHDEDIZS : HiT DL IVICHFIET WK% O -
D, BADR VIS (Fig. 3.5(b)).

o HIADEIVICHENTEE and EADEIVICHEDELET BB LKL LI TV
Y LI M E %X Z D (Fig. 3.5(b)).

9, FEOXIICERL 7 3 HEEOTEIL—ILIC & - CTHERS, B X OES0RS 5
T2 ERMRET 2. I ICUREE 70t 2B L OEHIREEZ ST 12 35 = HE I g
W9 5.

Sense & Avoid ARy b

7 4 =)L FD320 x 20 = 400 (N = 20) D)L THHRLL EINTWwB EL, 20 5D Sense &
Avoid B Ry k& 40 DR Z 7 v & L IHMREEIC CRLE T 5. Fig. 3.6 13> 321 — 3
YORRTTHY, 45 TOOYET/NI VI FAYZBIRL T 5 La3yd 5, HIHIRE
EREATY I alb—yavzfiolBGaicd, Y —VBR 70 A0REREDOEIZIZ L
AER NPT,

Push & Turn AR Y k

ZOEHBAL, 74—V FD320 x 20 = 400 (N = 20) DL THHRL ST LT3,
ZL7T, 20 5D Push & Turn B R v b & 40 OWh%E 7 v & A R WIHIREICTRET 5.
Fig. 3.7 33 32l —>aryOffkFrTbh, MERRELKEEIN TV 2 L3005, WikEE
LOWMBE R TARZLET, WD B ERBNIWIIRAYZIBRL, vy bB3ZDY
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1000 step

©) 0 step @ 500 step ®

@ 2000 step ® 3000step  ® 3436 step

Fig.3.6: A clustering example by Sense & Avoid robots in spatial discretized system

0 step 500 step 1000 step \

1500 step 2000 step 2257 step

Fig.3.7: A clustering example by Push & Turn robots in spatial discretized system

FAZI) OMEZEDO B LTI FAIDPEEL T LRFDBMERTE S, £/, Xy
MT K> TN %7 72 A8 13Mi 42 DYRICTEES I, DHESNBWIZERRE L7 7 271t
BINTVBEIERTDS, ZL T, FEAEDYEPE L Z 2,000 27 v 7#I12iE 1 DDH
2L T3

2ODHEHNL—VIE->TEICBRY MK %?ﬁ%ﬁ%@%%#ﬁﬁa%kh%?% &, Push &
Turn V— IV DEGED DS, Sense & Avoid )L — IV DAL, KER T 7RI DBBRI NS

ZEDTN D



H3E HNOHE—IE» AN I N B BN Y — v FE 32

@ 0 step @) 50 step

® 100 step @ 300 step

Fig.3.8: A scattering example by Pull & Turn robots in spatial discretized system

@Iy=2=0 ) Ing=95=0 ©@Iy==1=1

Fig. 3.9: Examples: the ratios of immobile objects I,

Pull & Turn O/RY

ZOBEH 74—V ED20 x 20 = 400 (N = 20) DL THBHRL SN TwE LT3, 2
LT, 208D Pull & Turn @Ry b % F v A IRIEICCRIE L, 40 oY IZEES
FREBICCRIET 5, Fig. 38133 3 2L —2 a vk rThh, MEIIEEL Tw ik
DEIETES, IBHOBEEZ R TAZ LRy MZXk>TY 7 2 2%MillD 64 Il 4 DY)
BICHBE S N, RIS TR TOYEDIERL T 5 2 L0 h 5.

3.2.2 FHERIR

CCTIEE L VWIRNY — VB O 7 at A2 EERICHEN - FHMiT 2720 DRIE%2E A
5.
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Definition 2 (RE)\ATI TV MHE) T L e N E28SUHRICEDIR-> 72/ ZF T2, 2ot
E, kBOVEKOUEEE M, 72, 2Ry MZXoTHL 2L DTE 2YERDHIADE & EF
2L, My c{1,23,4,56} LEBHTE?,

5, MR EAEZ C CN EEERT S, rEaNOMEDEIfR Bz 65T 5 2 LT,
DTDXIICEIETE, MoEE C I8 2 MEHERETRZ L LTS,

Mo =Y M. (3.1
keC

ZLT, MEORBATI TV NE [, 2 TR TOVKDES C It 2 [EifEE M, =0
ER MR DELDILE EET S,

FEBRIZ Push & Turn B Ry b2 HO TR A 72 = 7 P EK ), oftEH 2R T, 5,
Fig.3.9@) D& HIZ 1 20Ok (k= 1) BT XRTOHMICE T2 T2 L, Z2OLEH4 7Y =
7 FHERIZOTHSE, 51T, 200Yk ke C = {1,2} 2 Fig. 3.9(b) @ & 9 <P 11
PEL T 25, AL 7Y 7 FHERIZ 0 LEHETES, 2L T, 1 20k
Fig. 3.9(c) D& )2 6 2P > THEN TV B L E, 2DV 7 A¥ 13 Push & Turn B
Ry PORTEEDPTIEDTELROALI FAY RS, ZDLE, WEHEEIE Mc =0
B0, AEA 7Y 27 PR X1 %%, 72, Fig. 3.9(c) DL 5 b DR nE
DR TR I NDEAL Y 729 ZBINEY FARY LIS,

Push & Tum B ARy MZ K27 7 RAZBEZHICZED T A 2% 2 5 L, Fig.3.10 DX
ZEDY T v 5 DACEL S X - T WIIREED & IR 7 7 A DB I 1, S HICAT v 78
DM Z DI ONTHEA BRGFHTT I FAIDREL T, 22 TY 7 RAZERD 70 R % D
T 8% TR, REERD 2 @ICoET 2 2 Tk MR E gD 52,

1. “¥” FERBRE
Fig. 3.10 ® X ) ICWIHRRED S B/INAE 7 7 A F DRPICTEK S 1L 5 £ TOlfE % «
B TERGETR & 5.

2. BRRIBE
BINAE D A9 BRENTH 5 7 5 A8 DR L T Gl 2 BRI & s,

T7%bb, Push& Turn @Ry MIZX 27 7 AYERDOBAKIRFETIZ 7 7 A7 # L T»
ZUREBTRINALE Y F A D—EL>TWD, RIAET T AZ1E T OOUETIRE
NHMPIRTH 27D, 77 A7 BMBIRBERRE LB L %2 2 E23% )3 Fig. 3.11 1Tk 9

A REA T2 PHRIER R Y FOL—VITRET 2.
L ZITIRET2O0MWRICHE L TV AD, 4 ETIINERZ S0 3 OB HET 32 L 2RA S
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>
e o ® (8 ) ® e .b °
o J)o @ () oo »o ...
( B9 | )¢ () )¢ () G0
() () () $ () () ()
() () ()
® Every object is separated @ Connection of two objects ©) Connection of four objects
<
@ () -
o () [ b ()
o ( X J o ( X J oo
) () o0
® () — ® () — ] () —
() () (0] [ ) () ()
() () ()

@ Demolition of a building cluster ®  Challenges of rebuilding a cluster ® Formation of an invariant cluster

Fig.3.10: A process to create the invariant cluster by Push & Turn robots

MR 22 27 — A MREET 5. 7, SHESAKTEHCTW S 720, RINAEY
T AZIINATBOIIR E 72 253, Fig. 3.12 @ & 9 ICIEST KT % FV CHERUL L 72354 D
AED FAZFEHTEDIGRE 270, BRI 7 7 AV IZIEA B ZAGOEZbD L
%5,

RIZ, BREICTBRINT 7 FAYOREIZEFIVLEEL L UTOL) Z@BBR L %
T 5,

Definition 3 (F®EFR) WHE L 2 T X CTOWEKRIBHE L TV 22D ILVOEDEG LT 5%,

b DR % DU IR T, Fig. 3.9(a) D & ) IZWEPINL L THEET 2854, Z Dilnl
RLIZ6LERD, 61T, Fig.39b) DX I 2 DOYEDIBEE L T2 & &, R L 1%
8 %%, ZL T, Fig.3.9(c) DX I ITIH/IALE I FAZ ZBH L T3 & &, R L1d 12
Ei 5,

b L I3BORE I IKEL TE D, MEROBDEIED £ &, LT XTOYEIILL
THHET 2 EE WRBECBEL TuRWnEE), RKERD, 20K TUHEKLE (TE3
ZUTBIRD) 1 DD 7 7 AZ %R L TwWb L ERNERD,

BT SRS OMNMERLVEE G TIREE 2 ER L TWw 323, NELLVEZHWT S IZIZRAEO#SHRT
ERR
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Fig.3.11: An example of cluster shapes in the final states: formed terrain patterns are a

combination of the smallest invariant clusters

y

o0
o0
19, X

Fig.3.12: Different shapes of the smallest invariant cluster in the square cellular space

33 NY—YOERTALR-BEELIBEIVNCLTETITS
mH?-

Push & Turn robot: 500 EDQ¥EZAWIES

¥9, Push& Turn B Ay MZEREZYUT, 74—V FOREZIICHLTrEAY FPELD
MEDB % B S LBED Y — VB 7T re ADE EHFHRNL, 74— VFORKES %
100 x 100 = 10,000 (N = 100) IZ[EHE L, kD% 500 (74 =1V FDOED 5%) &
1,000 fi# (10%) 12, vy D% 100 & (1%) 26 4,000 & (40%) £ TEILIEEED
BEE L\ 9 8y — VIR Z f@NT T 5.

9, Wiko¥E 500 iz, ThbbYkoRERE 5% ICEET S, Z2LTC, vRy b
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Fig.3.13: Distribution of the initial ratio of immobile objects for 500 objects in the case of
using Push & Turn robots

(a) 1%(100 robots) (b) 5%(500 robots) (¢) 10%(1, 000 robots)

(d) 20%(2, 000 robots) (e) 30%(3, 000 robots) (f) 40%(4000 robots)
Fig. 3.14: Final states for different densities of Push & Turn robots in the case of 500 objects

DFHEL % 1,5,10,20,30,40% I2ZLE¥, v Ry FOJKFEKICH L OELaRy 2
U LBMREEICEL, a2l —2arE 100 BV E LT, 2oL E, Wl
B A 7Y = 7 PRSI Fig. 313 DL )1k D, —EEMIICHHL T35 I LBy
Db, DT EIE, PHHEMFICBT 2SI OREZIFALCTHE I LEZRBL TV,
Fig. 3.14 131 X v b OFHEHED 1,5,10,20,30,40% BT B> T 2L — a VFEREZRT,
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Fig.3.15: Time histories of the ratio of immobile objects for different densities of Push &

Turn robots in the case of 500 objects

ZDLEDZNZENDOUR Y FOTHEED AT v 7TEICNT 24884 72 = 7 P RO E
Fig. 3.15 IC/”" 3. %7, Table 3.1 ICAZE Y 7 A BRI I NS £ T (KEHMERE) O
AT v THD 100 [ OFHfiE %233, Table 3.1 2> S EIHOBRO 2 7 v 78z Xy L DF
BRI 5% TIO/NI o T0E T8, 1% TIEREL, FRFEREIWMT 2 12/0->TK
EBOoTRLIELTD S, £/, Fig.3.15 6 buiky b OREROEINAE > THKIE
BOBEREL o TWw B I EDMERTE S, COMEAIZUTDOXIICEZL I ENTES, 1
Ry P OFREEBHMT 21200 T, WEBPXVEHLINPTAS, JOI LIIREEND
DA CIRIGBORTED 2 7 v 7BRbEL w3 2 L, BLY, EoREEKIZ Figl3.16 DX I %
ALY FAZICKRDEID “FH 7 527 O 2 LTI EEZTRBLTWS,
512, Fig. 3.5 o ARE 7 7 A DIURE £ BICAEA 72 = 7 b RPN T 2

Table 3.1 Duration of core-creating phase in the case of 500 objects

Robot density[%] 1% 5% 10% 20% 30% 40%
Initial phase[steps] 305 154 245 924 2725 4876
Table 3.2 Coast length L in the final state
Robot density[%] 1% 5% 10% 20% 30% 40%

Coast length . 453 301 200 130 111 102
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(a) Two objects are connected. (b) Division into two parts.

Fig.3.16: Demolition of premature cluster

IKADTWE L, BLXUOAEA 7Y =7 FEND ZHEL TR % LA 84 7Y 27 b HE
DEMDFBERT > TVB I EBIERTE 3,

F7z, Table 3.2 130Xy M OEFRERIIHT 2 AREOImIR L @ 100 Mo FHfE%,
Fig. 3.17 WS NFc 7 7 A BDO A% RS, v Ry F OFEEROHEIM S T, fiHhi L
BLXO7 7 AZEBHFNTHDI L T B 2 L3005,

Push & Turn robot: 1,000 EQ¥EZRBAW5E

RIZ, Pik% 1,000 (7 4 =)L FIZRL T 10% OFHEK) 2HWEE%2E2%, afy
F DFEHKE T EOgA LR 1,5,10,20,30,40% ICELE R, Yol —varEiTT.
ZLT, vy FPOZRERIHL UKL Ry b2 T VY L RPIREEICEIE L T,
PIal—varvE 100 DR LiTo%k, 2ot E, WA EA 7Y 27 bR D S I
Fig. 3.18 D L 9 Ic% ), —EEMEICHHLTWE 2 Eng0 5%, Fig.3.19icn Ry DR
B A1,5,10,20,30,40% OEED 1 DD I 2L — a ViR, Fig. 320 &Ry b D
RERICE T 2R84 7Y = 7 FHERORHZ L Z RS, 74, Table 3.3 ICAZEY 7 A3

=~

RONCTER E NS FTOAT v 78D 100 [FDOF¥E%Z7~$. Table 3.3 72 65 FRHE K BN L

Table 3.3 Duration of the core-creating phase (1, 000 objects)
Robot density[%] 1% 5% 10% 20% 30% 40%

Initial phase 196 56 41 46 71 90

Table 3.4 Coast length L in the final state
Robot density[%] 1% 5% 10% 20% 30% 40%
Coastlength L 938 779 638 496 427 408
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Fig.3.17: Histograms of the number of formed clusters for differnt densities of Push &

Turn robots
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Fig. 3.18: Distribution of the initial ratio of immobile objects for 1,000 objects in the case

of using Push & Turn robots

_

(d) 20% (2, 000 robots) (e) 30% (3, 000 robots) () 40% (4, 000 robots)
Fig. 3.19: Final states for different densities of Push & Turn robots in the case of 1, 000 objects

DB <, W EBEFEIC A>T 5 2 L b Fig. 3.20 6 R TE 5,

Table 3.4 131 A v r@%ﬁ,ﬁﬂ XY B IRAREDIRENE L O VHiEZ R L Tw 3, nsh
FELOMHEAELTIIZFEDEALEIZEAEEZDLD IR (ThbbuRy FOFREEDOR
INctE-> T LS 3 2). Lo Lads, 2oz PHINLH RO 65127k -
TEE, V2MARES BB IENFREINDG) IVKREL BTV BI LD D. TDT L
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Fig.3.20: Time histories of the ratio of immobile objects for different densities of Push &

Turn robots in the case of 1,000 objects

X, TRy N OFHEED 40% D & ETEX Z, Fig. 3.19() O X I ICKNHEIED 7 5 2 5 31
BMENTWE I Lo bERTE 3,

Sense & Avoid ARy b : 500 EO¥WEZERAWIES

RIZ, Sense & Avoid B ARy MZHERZY T, Push& Turn 2Ry b & & EFEIEE, 74 —L
FORE X% 100 x 100 = 10,000 (N = 100) IZEET 5. F72, WikoE 500 (7 1 —
LV EDOED 5%) ICEEL, aXfy Fo%zE 1046 (%) 225 4,000 & (40%) & {h3E
Sal—YyarEfr),

ORy FOZFRERICH L TR ER Ry bR T U LARYPREICREL T, YL —
avz 100 DR LiTo7%, CoLE, PYHAEL 7Y =7 b HED I IE Fig. 3.21
DEHITHY, —EEMECTHEL TSI ENTH» 5, Fig. 322 13n Xy b OFEEN
1,5,10,20,30,40% DEED> S 2L —Y a V#ERZ 2R L TWw5s, £/, vy FOKA
EARINT 2 mAGREE DR L @ 100 [F[DF-YiEi % Table 3.5 12739, Table 3.5 > 5 Sense
&Avoid B ARy MIu Ay FOFELEZLIETHMAE L IZIFEAEZ{LL TwRnT

Table 3.5 Coast length L in the final state
Robot density[%] 1% 5% 10%  20%
Coast length L 1,144 1,141 1,145 1,155

40%
1,171

30%
1,162
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Fig.3.21: Distribution of the initial ratio of immobile objects for 500 objects in the case of
using Sense & Avoid robots

(d) 20% (2,000 robots) (e) 30% (3,000 robots) (f) 40% (4,000 robots)

Fig. 3.22: Final states for different densities of Sense & Avoid Robots in the case of 500 objects

EDRahG, 51T, UMROFEKLZEBN I T I al— 3 vy 2o LBEA5TH RO
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ARETIROHO Ry PRI X 281507 7 7 ZAYTERL &\ ) B Y — o3R8 % A IS
ZEL, Hfte Ry  OE2e, mETEI0 A% 5 L 28T 7V £ LT, Sense & Avoid B R v
F, Push& Tum B Ay b+, I5ICPull& Turn vy FE2EALKL, 3612, 77 AYDE
7 0t A% g 2 (AEiAd 72 = 7 PR, mdlER L) ZEAL, Push&
Turn A > &, Sense & Avoid B Ry M X % 7 7 A ¥R &GN FE % o CTREbT L 72,

%9, Push& Turn @Ry MZK 37 7 AFHICE T “BInpw” L7 7
§ (TODMEKRTHRING 7 7 A7) DRI DS EFTOREHBEREIe Ry M OFRERD
B> TR RS 2L, ThbbuRy FMOWIIIES> T 7 AZ RN T L H L
BEOLITTIERWI L, BIXORMKNITERINDE 7 7 A BB EEFNS Z & 2L
7. ZD—J}T, Sense & Avoid B ARy M X %7 7 AV TIX, 320k T Bk
W RIE T AR INDS O, uRy PORERZEIEELTH B B
WERORIICKREGAFHSNL W Lghot,
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g48 BhOATOBKRLSEH
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41 B=R

INnEFTuAR vy bIZ Push & Turn )L —)V, Sense & Avoid /L'—) L, Pull & Turn L —I)L &> 9
BfEIE 2 5- 2, ZNZNOEFRIED 5 EANIND 7 7 A YT - BEE L ) [ER 8 —
VIHERDENT %2 T > C&E7, Push& Turn B AR v 5 Sense & Avoid v iy M2k %7 7 A%
TEHIZEWTIZO ELLOREY FAIDBRINE LZD 7 7 AZIE BT Il L
X707z, ZNZENOENEEIED A TIZ Y 7 XY TEBGHRECRACIREZHIH T2 2 & 138 L
W, 22T, Push& Turn @R F%° Sense & Avoid @Ry Xk %7 7 A5 DK E Pull &
Tun BAY MK 27 A DOBIEL %2 ) $XIRBEZ 2T FRAYERZHIHITE 2D T
ERVPEEZBICES T,

RETIE, ~7 0 BfEEgEE, 213 Push & Turn L —)b, Pull & Turn b —)L & > 9 B
R IZHE > CTH < vl v M EEZ KRR - 2HNICIREI Y A 2 LT 2 AF TR - B L w D
NRY = PEDEHCEMLL T Or%EEZ S BAEM 2w LT, iz
EOMkE I FAYELTERETZ20E0) 77 AFBRE (F#h4 72 =7 P )., B
BERAENZD L DD 7 FAFIEET 2 0) TREZ 7 A5 BL, BXUMEEZ L 2
BET 20 E0) T2 7 RAYTERME IEHL, ZNZ@irzi79.

£9, ~T7 0 B EIE 2 B 2R ORE S a0 2T 5. 2 LT, &0
Ry FBAEH ORI RITEER (Wikz8E» L, B3I khok b wIHTEIERE) oKk
W72y A7 L OEPEIRE (B4 7Y = 7 FEHER) 2HEET 2 Tk, 8 X OOPEREE (g
77 AE) 2PHIT 5FE wbld TRINA 79— &G FiEziREdT 5. 20k, &

| RBETIZ 7 9 A Z R Push & Turn @R v F 2 TWw 5208, Sense & Avoid B Xy k2w 78E& 1B W»
THIRIFFARDOERITRETDH 5.
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TRy PRV RAT LOHEE - FUNCIHEDE, ~7 v 2EEHEE (Push & Turn L —)L & Pull &
Turn )V —)V) Z BN OEIWICTI D2 2 TATOBRBESBROBNRA A v F VT, 2HE
L, Y32l —a VI TREFEOZ LW ZHGEET 5.

12 H—YOBRTOLRCEF AT OBEIREAD 5 X
zpE

F 9, Push & Turn /L' — /)L & Pull & Turn )V —)L &9 T 0 BRI ICHE > CTE S v
Ry P2 ZBEINIIRE L 725818 — VB ED & 5 ICB{LT 20T 5.

4.2.1 RIBEE

74—V FDOREI% 100 x 100 = 10,000 (N = 100) IZ[EE L, PiEOE %z 500 f# (7 4 —
WV ED5%) 1c#ET 2. Push& Turn 2R v b & Pull & Turn 2R v b O&EHEUE 1,000 &
(74 =NV FD10%) IKEEL, @&y FEFEICHT % Pull & Tum 0 Xy F OFEFE
0—10% I2Z{L&%, ¥ Tal—varzfi.

4.2.2 BEREOER-FEATY U N EROEYT

Pull & Turn B X v F OFEHEEH 0,1,2,4,5,10% (B3 10 TAT v 7HICE TS5 2 2
L—ya VEERO 6% Fig. 4.1 12T, £, A#A4 7Y 27+ ROREZA{L% Fig. 4.2
ICRY. &I, OBAT Y 76 10 TATy 7IC8B T 2R84 72 =27 R Iy DA
E A7 0ELTFig 4310”8 Y, Fig 43526, A8 7Y 27 VR I, 8H 25—
DHFEPFHNTHEIN R L e > TV B 2 3%, $£7-, Fig. 4.1, Fig. 4.2 %> 5 Pull & Turn
uRy P OREEOWMI LS TAEA 72 = 7 P I 235984 L TwE, Pull & Turn B
Ry PP —EHU EOROFRELTIE Y JAIBBRINECI LD E. ZDkHicn
By PRI L TCPul & Turn v Ry P23 10% BEEEFNS L7 7 AT IFTERI L0,
2@ Push & Turn 2R v + & Pull & Turn B R v b OIEFSEEICEE T 28208 (R A) 12T
f79. Pull & Turn B Ry FOFREKEAHA 72 = 7 MK 1), OBIRZ Fig. 4.4 IR 7.
Fig 4.4 123 L CHIREaH 2479 &, BRI E FGRIEIZNZNLUTOL I ITRD B Z Lh
TE5.

y = —13.22 + 102, 4.1)
r? = 0.917. 4.2)
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Fig.4.1: Simulation results for various densities of heterogeneous agents
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Fig.4.2: Changes of the ratio of immobile objects for various densities of heterogeneous agents
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Fig.4.3: Histograms of the ratio of immobile objects for various densities of heteroge-
neous agents
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N2 ZREIICIRAE L 725t B T 2 Ri& 7 7 A RO 2479 .

%9, Push & Turn V—)V &) FIE REI{EEIE SRR S 5 7 7 A Bz d 5. &
Sal—Yarvz 100 R#EDIELITY, MRS FAZEDE R 77 L% Fig. 4.5(a) I
"9, Fig.4.5() 75 Push& Turn 0 Ry DA THRI NS 7 7 A7 HF 5,62 E—7 &
LTl T3 EB0h5,

Vi

RIZ, ~7T 0 Z@EEIEO 0 Ry FREPERINIORTE L 258 IR I N5 7 7 A Y Hi%x
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Fig. 4.4: Ratio of Pull & Turn robots v.s Ratio of immobile objects
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Fig. 4.5: Statistical analyses of the number of formed clusters
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Turn @Ry ) ZIBEIVLGEED 7 7 AYEEE (RE4A 72 =7 FIeHR), 77 A5 D
fEtt 2 io7. ABA 7Y =27 FHRICBIL TiZ Pull & Turn 2 Ry b OFEERICHH L TZ
DEDHEFNNS S B ey hrote, £ 7 AL TR U TOLIICELL L
DTES, D Pull & Turn B ARy FSRINHEIFET 2 2 LIZV A ZD/NS KT 57 A5 DK
M, 2L THA ADRELRT FAYDEHK - JREICOHLDE, ZD—JT, %D Pull & Turn
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Fig. 4.6: Local action memory of the robot: 5 record patterns

DRy FDVEREIEAET A EIIRELR T TIRAY DRI O %,
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4.3 BHATHF—IEE VAT LDIREKE - Tl

7 7 ARG E T 2AEA 7Y = 7 FHE, ®f&7 7 A F NGRS AT L ORI 516
W oRMET2HTH S, 22T, &Fury FPHFOFR RN EER»S EDLH Ty
AT LDBIERETH 2484 72 =7 FHFE, BIORKZ 7 A7 BzHE - TS 20,
WblE TR 79— N3G FEICO L GERT 5. 2 LT &udy MO HSOTHIEE
D25 7 9 AR DBIIREE, PHRREE &\ o 72 KISHREE R HEE - THITE 2 2 L 23BR 3,

43.1 1TENEREDRTE

L B u Ry kA Push & Turn LV — )L TEIWTW 3546, 8 X O Pull & Turn L —) L THEjL
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HBT&sbDLd 3,
Push & Turn b — V25> TH K BUZIZ DA T D TENEREZ B L T b D LT 5,

(A) Pushed a object (see Fig. 4.6(a)).

(B) Encountered a cluster (i.e. more than two objects are laid in front of the robot) (see
Fig. 4.6(b)).

(C) Other cases (see Fig. 4.6(c)).

¥ 72, Pull & Turn )V —VIZHiE> THIS BRI IZDL T ofTEER A2 0B L T D LT 5,

(D) Pulled a object (see Fig. 4.6(d)).
(E) Other cases (see Fig. 4.6(¢e)).
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Fig.4.7: Ratio of moved objects v.s Ratio of immobile objects
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r? = 0.950. (4.4)
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ZHHRETMT 2 LML LT,



H4E O~ T i) o EANI NS B NY — VFFE 52

N
o

M one cluster
[six clusters

Frequency [%]
-

o

% 5 10 15 20 25 30
Number of encountering a cluster in 1000 step

Fig. 4.8: Histograms of the number of encountering a cluster within 1,000 steps

44 FEATY U b ELZED S ELHIE

HIffiicC, 7 7 AR OBIEIRETH 2484 7 = 7 FHEBIKEw Ry b ORFTNZ2AT
IR (FEE, 77 A9 EBR) polifEcEs 22l 22T, fufy FOfEE
K (“UkEED L, R EED» S hd o), BXU7 7 AV EBE L W) TEIERED S
AEA 7Y 27 FPHEERZHEEL, ~T v SHEHEE (Push & Turn /L —)L & Pull & Turn )V —
V) & BEEN»OBNCYI D Z 2 2 ETAREIA 7Y 2 7 PHEZTIETE 2 LR BRD,

44.1 R/EFZE  ATOLGEFERBOBNRALYFVT

I E TOMRHTD S, Push & Turn V— b &) BfEIGIE 7 5 2 % O » &R %, Pull
&Turn V—NIE 7 7 A OBEZH->TWE EEXL LW TE S, I T, Push & Turn
W=k 27 F7AYDEELE Pull & Turn V—LIZ X %7 7 A DWIED NN T v A% HED Z
EMTENE, AEA 72 27 FEEZGIHITEZ 2D TRV EER T,

ITIE, AEA 7Y =7 MBSO Ry L ORFTINRITENRE SHEERRETH 5 Z &
ZHWT, %u Xy b2 Push & Turn )L —)L & Pull & Turn L —) V% HAM OB Y] b
Z, AEFA 7Y =7 b HRZ RENICHIE 2 Tk, T4 5ANTOBBFEROBNRA 1 v

Table 4.1 Average of the number of encountering a cluster within 1,000 steps

Number of clusters 1 2 3 4 5 6
Average number of encountering
a cluster in 1000 steps 87 102 121 134 147 16.8
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10%) 1ZTH19).

B K, % Ky = 10 IZ[EE L, Pull & Turn L — V%5 Push & Turn L — L ~YI O # 2 3 %
AV Ky 224038, Y Talb—vavzfrof, TOLE, Futy FOREORI m
IZm=3,000 27 v ZICHEL T3, Fig. 4912 K1 =10, Ky = 1 TR EL BN 2 2
L—>avofkfzmL, Fig. 4.10 1T Ko DEZZLI B BOAE A 7Y = 7 F O ZA
CNC

KIZ, Pull & Turn L — 225 Push & Turn V— A AYIDEEZ 294 SV 7 Ky % Ky =112
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2,000 step ©) 5,000 step

@ 10,000 step ® 40,000 step ® 100,000 step

Fig. 4.9: Examples: Distributed control of the ratio of immobile objects (K; = 10, Ko = 1)
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ViGERD—fl% Fig. 4.11(a)-4.11(c) 1&” . Fig. 4.12 IC87% % Ky DfEICNT 24884 72 =
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WHIE “TRTD” A7y TIEMEE T I aLb—Yarviirofk, Fig 4.13 IZAEA 7
Yz 7 b IEROKHZLZ R T,

Fig. 410 226, AEA 72 =7 MR Ty 208 TCE 52, ZLTCZOAEA 7Y =
7 PR Iy OAEIZ Fig. 4.7 ICB T 2 8B EIE F = 20[%] O LRETH 2 4884 72 = 7 F
R Iy = 60[%] 12— T 22 L, BEO K, DIEDOBEINCHES THRA A A 72 = 7
FHCEOMEIHA L, Ko =10 L\ W) RERED & ZITIE T TR DEEIN RO & Hah
5. ¥£7, Fig. 41226 K| D223 5 2 L TRAZ AL 7Y = 7 FHE T, OfEic
STEHIEEITIRECH 2 2 E WD, 51, Fig. 413 680 Ry PSR TE 3EEDE
m DZAGIZHES T, Fig. 4.7 28T 2B HEE F = 20[%] DAE A 72 = 7 FHE [y Dl
TEMNT 22, $RBESEFICECEAICE, YATL0REZ ) HETET, Uk
DEEI NV Lo T,

IS OfERIE, vl y FORFTNRITEEEL 4 79— N E LT AT 2 0MERE (F
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Fig.4.11: Simulation results for various switching parameters K
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Fig. 4.12: Changes of the ratio of immobile objects for different values of the threshold K3
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Fig. 4.13: Changes of the ratio of immobile objects for different memory lengths
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(a) Histogram of the number of clusters (b) A simulation result (8 clus-
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Fig. 4.14: Statistical analysis for fracturing threshold Ny = 12
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Fig. 4.15: Statistical analysis for fracturing threshold N2 = 90
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@ 0 step @ 40,000 step ©) 80,000 step

@ 120,000 step ® 160,000 step ® 200,000 step

Fig.4.16: Change of the cluster position by anisotropic robots
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(a) A robot sheepdog (b) A sheep

Fig. 5.1: Introduction of differnt types of dynamic agents
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Fig.5.2: Sheep model: Sheep position D;, other sheep position D, robot position 2
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EK ) ECHEMMETHEINTVLE I L0005,

EREIE
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Fig. 5.3: Center-targeting control: Sheep center F'; Robot position R; Goal positon G
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Fig. 5.4: Sheep heading simulation based on Center-targeting control



l

&

F 5 HNOMBOREENE L ~T ot 5 AN I NS E Y — v 66

100 i i i 100,
80r 1 = 80r
o
) (o)
% 60r O 60r
+—
3 Q R
E 40t S w0 S
o -,
200 | - : O .
o. ..O
(S N
X % 9o 0t eaneterogee® .
% 500 1000 1500 2000 % 500 1000 1500 2000
Step Step
(a) Variance of the flock (b) Distance to the goal

Fig.5.5: Analyses based on evaluation indices in the case of using Center targeting control

DIAEBIERDAIHE ) ERELZEED 5% DT —¥BEEN M0t Thh, X
B3 DEIHICKBEING, 18T A=FIBHL T, nflD 28D T =% (21,91) — (Tn, Yn)
ICXF LT g, pyy FZNENDVY, 0,0, ZZNETNDTHEL, p IFHNREEZ LT,

(x—pa)® _ o (@me)ly=py) 4 (u= “y) = 5.991(1 — p?) (5.3)

:@i5&%%%@%ﬁ%@mftvvwﬁm%ﬁMLfﬁﬁﬁé:a%%za1@56
IKRT XIS =7 Fy JONIE R 22 95% SHERfmAGHOERZ 5 &, HEHN G »
SEWHOERE Z £ 55, Lmaw REDS S — 7b/7®Lﬁ«7rwR2éﬁ@®
T,V 3 Z D W, V3R Z 5 BB, Vo 13 A 58 X 7 3
EERT.

— — —,> —
Ry =Vz+V;+ Vg (5.4)

$7, Fig. 5.6 HICy — 7 Ry JOMEN 2 b L Ry # KEAITHL, %A (1), KA
Q), KA Q) 2R ZhX G4 D1, 2, 3FEIENEL TS, 2ZRZHOEIE, V, =
Komin(|FG|, K)RZ /K, V} = K,2ZR)|ZR|*, Vo = K,3GR/|GR| £ ¥ 3. K, i3> —7
Ry 7Bey ot GBREH) 7 A v, Ko 3y —7Fy 7BeyPofind
Stz OFN1) o754y, ¥/ Ka 3> —7Fy Z7OHEHS SR DAL TD7S A~
Th 5,

ST Ry SO A V% Ky =3, Ko = 3, Ky = 20, K = 3 IC3E L, Jeorh bk
ERRRDERBEIC Ty S aL—vavafrok, Fig. 5.7 e Y PoOFEEOKTE2RT, £,
Fig. 5.8 3 Y Y OFEIFICE T 5 &Y YOI BORHZN, IOty Y O OELE
6 HEME E COHBORMZILZ TR L TED, EVCOHNPHSIEE I %) ELH
B THUSNTVE I END D
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Fig. 5.6: Schematic explanation of Tangent-targeting control
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Fig.5.7: Sheep heading simulation based on Tangent-targeting control
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Fig.5.8: Analyses based on evaluation indices in the case of using Tangent targeting control
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INFTY—7Fy JOEEEK L U ChiBihk & BERRaINE 2 R L TE ., AETIX
ZNZNOENEHIFICAN L T Y P ORIZIREDI TS 3207 )L (BE)), >—7Fv
706 DikikE), @5 F) D7 A VOB EREY I AL —va vtk VEITT 5. 351,
=7 Ry JOEERIRET S 3007 bV GEBREH, FH, BIDIA&RN) OF 4 v D
Z RNt 5.

531 RIBEE

YIial—vavBRELLTIE74—)LF% 100 x 100 = 10,000 IZEEL, &Y 20k
% (30,30) — (40,40) OHFHNIZ 7 v & L HIHIEEICTRIET 5. £/ —7 Fy 709
friEld (50,10) £ L, by Y OiFEHE A% (75,25) LIXET S, =7 Fv7or4 i
Koy =3K»o=3K;3=20K=3IZHETS. TXTOEYIRHEMHES 10 2 ILIE
BEWNICEET 5 EEFEDT T L7zE L, 10,000 AT v 7RICHEEDT T L TR nEEIC
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532 EVIOFEHEI—T Ry OENEEEE & DR

IITREBEeYYD (BEN, >—7Fy 7ok, 96F) B52 5% &2 250
BEa G (FhUDaBEERE, BERLEBNE) 2 L TRIEY S 2L —> 3 v 2 v TR
ER-P

BRETA1Y K; ORE

FT, EVPOMNLIBRERIRET 2HET A ¥ K OWEZBNT 2, Zofioeyy
DA V% Kpp = 1000, Kz =20 IC[EHET 5. Y PDEETA Y Ky % Kpp =525
Ky =30 $c&bs, LBk, SHoamk e v 2 BEHOB{ERIgICN L T2z
100 [l DR L > 2 2L —a vy 27> o, FERIEE, FERAGOTHDOTE, 7
IR O 2 i~ 5, HlBERE 2 F e 72 BRORR 2 Table 5.1 12, HGEHNEZ V- 7B
DR % Table 5.2 IZR T,

HLBENEZ V72 Table 5.1 225, &Y P OEEET A v K DA T 212000 CRIIIRIEL
BHBL STV I EDHERTES, TNBEYYORET A v Ky NS B 2Icoh0
T, Fig.5.9@) DX I Y CBEBD IV —T (HEN) oW LT o7 2 EBENE
EEZoNS, hiBEEZ VW gE, =7 Py 793k Y Y OO ELICIAD > TH <
ZEps, BV PORNOEEND L 5B I2oNT, BAOIMID by BN 5 T
LEMICH B, ZD—TT, HHHEENEZ V2854 Tl Table 5.2 @ X 5 ICBEHES A4 v DV

Table 5.1 Results based on Center-targeting control (K ro = 1000, K y3 = 20)
K 5 10 15 20 25 30
Number of successes 0 O 2 11 52 85
- 7329 2844 1889 2602
- 930 598 421 3383

Average of simulation times [step]

Average of variance in the final state

Table 5.2 Results based on Tangent-targeting control (/s = 1000, K3 = 20)
K 5 10 15 20 25 30
Number of successes 48 93 97 100 100 100
Average of simulation times [step] 1152 935 1222 1910 3449 7667
Average of variance in the final state 12.48 7.77 498 4.18 3.80 3.55
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(a) Harnessing fails; the sheep split (b) Harnessing fails; the sheep stay
into two clusters. on the way to goal.

Fig.5.9: Typical situation of unsuccessful guidance of the flock

S (Kp =5,10) AT EY Y2 ) $AFEHTE T L0005,

7, BETA Y Kp DYEMT 2120 203> THREICh 2 2REPELS Z>Tws I E
DHERTE S, TNZ, Kp DEPIRELS B ZIIONTE =T Fy 7okt kh b
VY DEETIDBHNCKREL 2D, eV PPFEICK ko I EDBERARLEEZ N,
Fig. 5.9(b) D L) Ice Y @ TIEE > TL £)RTFOMERTE .

V—TRYITDOSDRRT A Ko DFE

RIS, =T Ry T0oilkiF 2 2RET 2887 A~ Ko OFEZENTT 5, Yok
WA Y Ky % Ky = 2000 IEH L, £ CORESA Y K % Kpy = 5, 10, 15, 20, 25,
30 1T s, thlBENE L EBINEIC O LW TZEREFNS T 2L — a % 100 Bl DK
LiTo 7., ZNZNOEEIZICE T 2 8B, & X O EEEREH %2 Table 5.3, Table 5.4
IR,

HlBFREICFED  FE 2 Table 5.1 8 X Of Table 5.3 Z# Ll 9 2 &, lE7r 4 V3R EL o
DIy BHNDL ST LT R, FEICKKT 2ESEE > LT R 5.

RIZ, PERLBEREICHE-D C FEH Table 5.2 8 X O Table 5.4 Otk # 179 . wkiltr 4 v % K&
(BRETHIEICEST, eV PORENNRE Y (Kp = 30,25) DEEICEIT LYY D
B o T0 B I W05, ZO—HT, eV POREND/NI W (Kp =5,10)
LEicix, VBN SN B LI OoLE -0, FEICKIT B — A2 T
Wa I EBMERTE S,
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WsSEFALY Kys DRE

RBICEYDILEZ 0 EDT AV Kis DEBICOWTHEZS, Ky = 0 ITHREL,
Ky DA% 5,10,15,20, 25,30 ICZL S, FulbBENE & EHUBINEIC DLW TZNZ NS S 2
L—aryz2 100 B DR LIT->7, 20200 Ky OREICN T 2 K0E, & & OFEER
[E] D F-¥9 % Table 5.5, Table 5.6 IZ/89, KIS, Ky =40 ICE&EL, BOVELY I 2L —
¥ a v rRITo A DGR % Table 5.7, Table 5.8 IZ/R T,

UL EERNE 2 72 Table 5.1, Table 5.5, Table 5.7 DfiR» 5, VYV IICEZ 50T 0%k
W5 EVHEMPAOFERICHEELERE Lo TRE I EWTh 5.

kIS, BERLERREZ F V72 Table 5.2 & Table 5.6 DFERDL S LT S TDOHRLEZE
WERTZIENTES, 51T, Table 5.8 DFERPEWSLEDTA V2FEDLIET, LD
Y IBHERT L B0, FEICHD»HRHPE E>Tw5 2 EbERTE S, 20—
JiT, Table5.8 D Ky =5 DFFRPEREVD S FWCERL T Y IRESTRT kD%
B, WO FWREVIEERINEEDSENE Z EITIZBTLEORBE B EBEZ 5,

Table 5.3 Results based on Center-targeting control (K ro = 2000, K3 = 20)

K 5 10 15 20 25 30
Number of successes o 0 o0 o0 O 2
Average of simulation times [step] - - - - - 3511

Table 5.4 Results based on Tangent-targeting control (/s = 2000, K3 = 20)
K 5 10 15 20 25 30
Number of successes 19 65 96 98 100 85
Average of simulation times [step] 968 633 700 981 1495 2589

Table 5.5 Results based on Center-targeting control (K s, = 1000, K3 = 0)
K 5 10 15 20 25 30
Number of successes 0 O 0 0 0 0

Average of simulation times [step] - - - - - -
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Table 5.6 Results based on Tangent-targeting control (K ro = 1000, K y3 = 0).
K 5 10 15 20 25 30
Number of successes 11 o O O 0 O

Average of simulation times [step] 761 - - - - -

Table 5.7 Results based on Center-targeting control (K ro = 1000, K y3 = 40)

K 5 10 15 20 25 30
Number of successes 0O 0 O 7 21 57
Average of simulation times [step] - - - 3709 2212 1830

Table 5.8 Results based on Tangent-targeting control (K o = 1000, K 3 = 40)

Ky 5 10 15 20 25 30
Number of successes 0 83 91 95 98 100
Average of simulation times [step] - 1829 1493 1564 1793 2193

hulERRE & EFIREIRNEDER

INFTOREY I aL—va v, FUBINE L EFLEBNE &) 2 DDOEIERIKICD
WTELEDS,

hubBENEZ Wiz ey Y OFFEMERIEHENOTLE Y =Ty FELTwEYD, EVYPD
ﬁ%f%yKﬂ®f’ﬁ%<%ﬁtfﬁm?%’k ZD—77 T, EHLNBENE IR DM

ICWBREYYY =7y bk, EVPORETA Y K WASHIGTE S 2 ENE
25,

e, EVTYDEETA Y K DVNEC, 7 A ¥ K BREEEITIIE Y 2037
T3 2 EICRRK L ZFERKD, ZDO—TT K BREL, Km#¢§w W ERR AR N

FEckEoTcLE) L tlbtﬁﬁiﬁﬁt 5 BT, ﬁé_,tvvv
B2 20005 TOMBIIBRT T Y INIEE 2D %2WTL b 70, HEELLHE 2R
2L TWA I EDMERTE .
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Table 5.9 Results for K4 =5, Ko = 3, K,3 = 20
K 5 10 15 20 25 30
Number of successes 5 32 85 96 97 100

Average of simulation times [step] 1957 992 746 1047 1716 3037

Table 5.10 Results for K1 =1, K, = 3, K,.3 = 20
K 5 10 15 20 25 30
Number of successes 0O O 0 0 0 0

Average of simulation times [step] - - - - - -

533 Y—TRyvIJTOEE

CINETORBEY I 2L —2a vtk a2 —7 Ky JOEIEERG L L CHLERNE
DENEEMER L 72, 2 2 TREMEREZHVWTS — 7Py VOERBY A v K, RI5A
v Ko, FIDIABRST A v K3 DEEERGITT 5 .

BETIY K, DFE

¥, =7 Py IDBRTAV Ky OWEIZOWTHENT S, oy 4 ik Ko = 3,
K3 =20, K=3KEET2. VD7 Ky =1000 & Ky =20 ICEEL, BEE
74V K % Ky = 5,10,15,20,25,30 £ 2{0S¢, 32— ar% 100 F#EEDEL
f1o7-.

K1 =5 ICRE L 7B OF5 5% Table 5.9 12773, Table 5.2 & Table 5.9 Z ik § 2 &, > —
TRy JOBRTYA v ERELSRETZIETEY POFERMIZEL 2o T3 I L H3E
WTED, ZO—TKp DWHhSOVEHAICEBWTEFERKT 27 —ZABHEATW5I LD
T05B,. DG, ©Y UBERDORNICTHET 2 BIRMERTE . %7, Table 5.10 I
K, =1tRELEBOMBEZ/RT. Table 5.10 2256 TR TDOF7 — ZIZEB W THFERRK L Tw
HIEWDD, UL, =T Py TOBRTA VIVNS K holctc®d, &Y DR
BHIZIEEF DRI ol LRHREEEZ NS,

* RELBETIE, FHICHD 370D > — 7' F v 7 OB EERIE IS ELENNE & $ 5,
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Table 5.11 Results for K1 = 3, K, =5, K,3 = 20
K 5 10 15 20 25 30

Number of successes 55 89 100 99 100 100
Average of simulation times [step] 1330 915 1227 1890 3480 7769

Table 5.12 Results for K,1 =3, K, =1, K,3 = 20
K 5 10 15 20 25 30

Number of successes 51 93 99 100 100 100
Average of simulation times [step] 1580 924 1216 1906 3428 7600

RHOTAY Ko DRZE

RIS =T Ky TORNTA Y Ko DFBEIZOWTHRNS, o7 4 ik Ky = 3
K.3=20,K=3EET 2. eVYPD7AE Ko =1000 & Kpz =20 IZIEE L, HEE
74V Kpn % Ky = 5,10,15,20,25,30 £ 2L, a2l —3a vz 100 F#EDIEL
f1o7-.

Kpo =5 ICREL-BRORE % Table 5.11 12, F7- Table 5.12 12 Ko = 1 EFEL BD
ERERT, WHDKRP OGS =T Ry TOFRNTA v Kg DFBIINIWEEZ 5,

-

BIDRAHT ALY K, 3 DFE

BB DIART A v K3 DWEZEN TS, o7 4 VIE Ky =3, Ko=3K=3I
BELTEL, EVPDFA VI Ko = 1000 & Kyg =20 ICHEEL, BETS A Y Kp %
K1 =5,10,15,20,25,30 £ 2S¢, ¥ Talb—>ar% 100 H#EDIELIT- 7%,

K3 =10 IZ3%E L 2B D5 H % Table 5.13 12, %7z Table 5.14 12 K3 = 40 & i%& L 72K
DFERERT. K3 /NS KRET 5 2 &I BE LS 2 5 B DAL 1H/N S <, B
HNeRELTHIELICODLEDND, Ky ZRESKRETDHILIEBZDH LD, ZDROHIH
Dy —ATIE Table 5.13 D X ) I Y ORI THEL T < 7 2 235583 < 72 2 F5H
2, BEDTF—ATIE Table 5.14 DX H I Y P ORI TEEL IS K 2228, FHEICHD D
FBRIZREL B afRiIc kot EZ NS,
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Table 5.13 Results for K, = 3, K, = 3, K,3 = 10

K 5 10 15 20 25 30
Number of successes 0 18 71 82 97 97
Average of simulation times [step] - 1149 756 892 1234 2203

Table 5.14 Results for K1 = 3, K, = 3, K,.3 = 40
K 5 10 15 20 25 30

Number of successes 100 100 100 4 0 0
Average of simulation times [step] 6007 4825 6948 9787 - -
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DBWITEZEYPOKRTZ RN oiflEd s, ZenBfons, 2LC, 202 mId5EHR
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T3 Fikzilatbel IANTOBKDES - BRIy FV T, 2RET S

541 VZARFV2TICED S ERDBENDEEBIRDRS

INEFTY—7Fy JICiae Yy P ONDOFEENRY - OBE T VEREL, YUkt
ZHET BB AN EEEIG L LT ThiinBERE & TEERDEENE 2REL, £
OB T 2L — a VITTHEHNICIT 27> T &%, 2L ¢, FIHREICBLwTEY Y
231 DOWNETER L T BT ICE T 2 FulnBIiEE X CERHEINE DGR 2 B 7.
ZD—J77T, HINEBINE, BERLUEENEIC TR THE tlLT%ﬁ%%?%ﬁAﬁ%%:a
ZHER L7, 22T, eV Y2 O EOMNZFIRL T 258108 ) 3 AN HEEE
RET 5.

BnoRE7ILIIVXLA
22T, Fig. 5.10 IR T X920 ey Yoz oS¢ 3 Ic HES ICHEE T 3
LxEZS, 2T, 2oz S0 ZNZ oY 2T 5, HED 7L —
TOREEEIMETAICEB T B 7 FAY ) v TFENRINTH 57:0, ey okl T
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IR L TeY P OED/NS DR % Cluster 1, BDIKZ W DN % Cluster 2, #d
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WERZ 7, LT3, INGDREPST—T Py ZTOHERY7 vz (5.5) 12737,
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ZNENDQER, Vy = KyRZimin(|[FFy|, K)/K, V), = K2ZiR)|ZR]P, Vi, =
K,3FR/|FR| 55, Ky 3y —7 Ry Z70E Yy LOBISESC T GERA) o
KESRETFA Y, Kp 33— 7 Fy Z7DE Y SORND MRS (FF) ORE

S KHLTIE 2 OO N —TOHNENEL, FETZIL2EL2D, TV—TOEPENL LRI 5
AZY T RTO, BELTOIFEFELZHGS Z LIZRETH 5.



F5F HNOMMBOREENE & ~T o) 5 A AN SNBSS —

&

77

. '\
i
Cluster 1.-‘ [ ‘
Cluster2 7~ 7~(
1 oFQ‘ ;

Nt

Fig. 5.10: Tangent-targeting control using bisectional clustering
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Fig.5.11: Effectiveness of bisectional clustering
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Table 5.15 Results based on bi-sectional clustering

K 5 10 15 20 25 30

Number of successes 77 96 100 100 100 100
Average of simulation times [step] 2933 1013 1139 1733 3161 7033
Average of variance 1728 898 5.13 437 397 382
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Table 5.16 Results based only on Tenter-targeting control
K 5 10 15 20 25 30
Number of successes o 0 o0 o 0 o0

Average of simulation times [step]

Average of variance - - - - - -
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Fig. A.1: Pull & Castling rule in the hexagonal cellular space
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Fig. A.2: Compasion of the results between Pull & Turn rule and Pull & Castling rule in

the case of using Push & Turn robots
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Fig. A.3: Compasion of the results between Pull & Turn rule and Pull & Castling rule in

the case of using Sense & Avoid robots
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(a) A simulation example: formation of a single cluster by distributed robots
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Fig. B.1: Statistical analysis of single cluster formation by distributed robots
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