|

) <

The University of Osaka
Institutional Knowledge Archive

Tl e 759 MR T A RATLAICE T ZEREBDEL
PGNRIRR S IKEESICEY 23

Author(s) |XH, EE

Citation |KFRKZ, 2015, HIHwX

Version Type|VoR

URL https://doi.org/10.18910/52184

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



LR

7T bXRIT 4 R LALITBIT S
I EM OB LSS & IRIEZE S 2R3 A 49T

KH A
201541H

NP VNS e 2



SR/

F1E HHR

1.
1.

—

BRBTARATLADRERER ML R
2 Y 5 110 I2EH S Sn0, DIEIEHE
1.2.1 EHEE
1
1

2.2 In otsafEERE L 1T0 ZAEBOALBEMH

.2.3 Sn0, REAEBDRE T H S EEHIL
1.2.4 Sn0, RBABBDEIEHE Z* S DKL
1.3 REw FEAFRGELERES DRER
1.3.1 BRI A IC DEED - DR
1.3.2 ACF =t IcKH S EHES DRI REE
3.3 KRB S 10T S B AIKE T
EE S DRE

1.4.1 B DER YA

1.4.2 BALESHDAFHE

1.4.3 BRiL#D BB
1.5 XBIRD B
1.6 RFRXDIERK
S5 3

—

1.

.h

F2F ERTEHEE N, ICRIFTHRESFHEDOEE

2.1 KEQOBW

2.2 EBRAE

2.2.1 BEARE

2.2.2 B

2.2.3 FEETA

2.2.4 F—REHEICK SETFHEFTE

2.3 BB 75 XY EBEETHLND Sn0, 5 FED $ 14 5T
2.3.1 HEAIE

2.3.2 fhe T

31
31
31
31
34
34
35
37
37
37



2.3.3 Fx YT REAE

2.4 7T RAVARINY R U TETHLNS Sn0, FIR O 45T

2.4.1 LEIEHUAIE

2.4.2 fE&1EETE

2.4.3 R—ILAIZE

2.4.4 HERELBBEORRK
2.4 HEER

SE Xk

% 3 E Sn0,[RDEHEKHE & £ O REMMEE
3.1 XEDHEM
3.2 HWEBERITETHARAIRLF—DOFE

3.3 B—REHEICLIERELERREORAIRILE—EE

3.3.1 BtEETIL

3.3.2 StEHR

3.4 o—FEBZERV -SRIt - BEREESR
3.4.1 REAZE

3.4.2 RERHER

3.5 #E:m

SE Xk

F4E REMRIEHRIEOHMMIEE L TDRMAIBIE
4.1 KEOBEH

4.2 Sn DREBILBFERIEDIEL A H = X LITxH T HIRETRER

4.2.1 EEREH

4.2.2 REBAH*E

4.2.3 BREUVUEE

4.3 Sn REBILREWBEA DA LIZHT 5B
4.3.1 R RTRME & BRILRIEE < DR
4.3.2 BIEREMENBILHBECRITTHE

ii

41
43
44
45
50
51
55
56

59
59
60
63
63
65
65
65
66
72
73

75
75
75
75
75
76
84
84
86



4.4 5w
S Xk

E5F Sn REEEEZAVERENEERMBEES

5.1 XEDBH

5.2 Sn zAUL-EfES
5.2.1 SnBIROKREMNZ K BT AFE
5.2.2 Sn RERZEZRAW-HEEXRER

5.3 Sn-Ag REEFIRZR:-ERES
5.3.1 Sn-Ag 2 EBERZEAV-EEGHMORE
5.3.2 RETRER

5.4 #&sm

SE XXk

F6FE RiE

HiEE

AREIMXIZBET D RMX
RRXITHT H2FRER

1ii

88
89

93
93
93
93
96
98
98
99
102
103

105

109

113
113



F1RE R
1.1 BRTARATLLDRBEEM LUK

40 AERMICHRA OIS AR L Covn, HEx TOTEEZMIE L TE QO D
T A AT UAL, EEICRY 7 — XV ay XY arfe=4— #ER. 7L eI
FIHEND Z LIC ko TRMICE R L TE R, ZRUSEV, 2o Itk L, #
Y Fig. L1IORT 910 10 kM EBZ 5 L 9 1cte-7 Y,

DX ICERR TG A FF ORI T + A7 LA Tldd D03, 2 ZHUFE, il x
£9ELTWA, Fig. L2 1TEEET A A7V AIREEND T T v "ARAT 4 AT LA D
HOS TR A2 R L7ZRTH D Y ROm@Y . 77 v MSRLT AT LA OF
IXHAR, K, FERROSEHEE TG, IRES A~ > THY . v T ARE LR
bbb, ZOFKELTIE, 797V ETLEDBEXMI N K L2 ENEELTWD
EBEZBIVD, LU S | T E 3R A T B B BRI H O A% D7 T >
R RFNVT 4 AT LA HGOREZEF LT EBZBND, £ )W\ mDOf T,
HHLEA~OTIHERDT-DIT, T TITIRET 4 A7 LA ORI LAER, B A X

100
10 LCD
—_ Monitor
e
=
g 1 i eeiatal: ettt - contataetatatl et elmimieieieieiatat el et
eI et Ght e Mt VIODile i
B b S Phone  oahbii Shhhbhbihl
0.1 o ZlF=zz==zzz==zF=zzz==zzz=zfomzzsoiis
__________________ Reference : Nikkei Business Publication, Inc.
0.01 ' ' '
1985 1990 1995 2000 2005 2010
(Year)
Fig. 1.1 LCD panel market?.
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Fig. 1.2 Regional shipments of FPD (prediction)®.
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Table 1.1 LCD panel high definition advances®.

View Application  <50PPI 50PPI 100PPI 150PPI 200PPI 250PPI 300PPI >400PPI
30— 3.57 3.5" 4" 4.5”
40cm Smart Phone 480 %320 800 x480 | 1136 X 640(1920 X 1080
(165PPI) (267PP1) | (326PPI) |(490PPI)
7" 7" 7T 7"
50cm TabletPC 800 x 480 | 1024 x 600| 1280 x 800 1920 x 1200
(133PPD) |(170PPDc (216PPD I >|(323PPD)
97" 9.7" 9.7"
50cm Tablet PG 1024 x 768 , [2048 X 15362560 x 1920
(132PPD |(264PPI) '::{330PPI)
1017 101"
1017 1280 % 8001920 x 1200 1017
50cm Tablet PG 1024 X 600| (149PPD  |(224PPD) 2560 x 1600
(118PPI) | 1366 X 768/10.6” FHD| (298PPD
(155PPD 08PPD
101" 10.1"
50cm Mini—Note PC 1024 x 600( 1366 x 768

(118PPD | (155PPD
140”7 14.0” 133"
1366 x 7681600 x 900 |2560 x 1600
(112PPD _|[(131PPD)  |(227PPI)
15.6” 5.6” 156"
1366 x 7681920 x 10802880 x 1800
(100PPD) _[(141PPD _[(221PPD
185" 215" 215" 204"
1366 x 768|1920 x 10802880 x 16203840 x 2160
(85PPD  |(102PPD |(153PPD  [(216PPD
60" 60" /50" |40” 32"
LRIV RV R ATAR 1920 x 108013840 X 21603840 X 21603840 X 2160 | Reference - Nikkei Business Publication, Inc.
(37PPI) =X(73/88PPD) |(110PPD) _|(137PPD) T T T

Notebook
60cm PG/Ultra
Book
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Fig. 1.3 Structure of FPD (Plasma display panel) with transparent electrode.
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Fig. 1.4 Development history and challenges of the transparent electrode™.
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L2 L, 2O ITO IFIFEIC 72 ) Brénf72 22 TV D, LAUTEa X FOEETH
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DE N In DFFENEL BN L CTDH728D, Fig. 1.6 D L 512 In OMiFEOEEBIE Z -
W5 O 2 LT, AU ITO BHBMBORE S 2 M LN L TE T D, UL
T A AT LA DAL E VD R L RICR LT T 2RBEA TH D728, BIfETIE I
DY A 7 VFEOHZE ERL B2 < e S, In O I3 —H0 B— 27 |2 HAYE< 72 o
TETWDHDOD, RIZIZTFWZFF S 2RI TWD, £ 2T, ITO I 51%H
B BIOBRFE NGB & SILTERY . ZOEEAIE LT SN0k L ZnO Z3zsiT b, BifE
%< DRI STV D, ITO OREMEHZRD S H &ML LTE, R d 512
FERVY (5~200Q/00) | AIFDGHEE Tt 2 FF> (80%LA L) | IS, EIRAIIZ
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Fig. 1.5 Indium demand in the world™.
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Fig. 1.6 Transition of indium price®.

T, R CEREEYLOREMN /RN T LT S, S0, &, Zn0 RITFN S D
FrreBBLEmZLTWD EEZ LD,

ZnO RITEXHED ITO (T4 260D, Al (T/VI =0 L) ZEINLIZH DT
10°Q-m A —Z DR E SN TN D P, 7B e B TOMMEICEN TS, i
BT = 2 N TR FRETHDFOFENRH Y . ITO OREMEL LTHETH S
7=, %< OFFEN2ENTND, LvLZEDO—T, MEEICZ L (EVERESK 573
K) . @EiROBAMENDLEEETRIZIIAME THL LW #RN DD, FmBKUTY
Wz, FPD 0K v T/ L72 ED 100 nm A —F OIEECIIZEEHF oKy E G L, 1
EDAAAL, BEMRE L TCOMRENHIE L TLEYHER b H D, ZOMIZHIRMME, 3FE
1R & O OGTESE CRIED B 5,

ZAUZH LT SnO, RIFEMWHIZ ITO, ZnO % & HTLE  (EVEESK) 773 K) T, B
NS HIEFICLETH D, TRTIREM L LT Sn bBEITFET L0, TDOX 57K
TIHBEWEME LT ITO OB E S LTHARESS DLW EEbils,

1.2.3  Sn0, RBAEIBDIRETH HEEHRIE
ITO DREFREFE L THIREE LTS SN0, SRBEHEM ClEdH DM, T DT-0OIZF Vi
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RFIUTR SIRVEENRH 5, T 2T SN0, DML & A £ L, Table 1.2 (TR 2,
SO, RIGAEMMOIME L L TlE, TR FLERD R DTy F L IHMEITH L L, b
PN ITO, ZnO AITHARD EEWZ &, ZO T mnEFonsd, gy —r=7
TaBRZEALTEL, 7+ M) YT 74—y F U7 T YAG L—HIZLHE
BINLA D HENFFDIC Lo THREREN O, T4 AT LA ~OBABEIRE ST D,
LN L7Z2N 5, 25D SnO, 2D FRHUCES U CIIT e ED 5TV A H 00, ITO
DEIUTHARD L ETE—HLL < T4 27 LA HZEAEMRO RIS Y FV T
W, BURTIEEHIIRENE KRS, A P EDOHRICR LN TWD, it
T SN0, BB ITO ONREHEL L 72 2 72 OB U LA EERE L 72> T D,

1.2.4  Sn0, REHEEOIEEILIZ AT ZHFRHAT

SN0, DA BT, TRTOERUSEMELGTOIMENL, F¥ VT & mdlRFx V7T
BEhERFRRHCE PIAFE LR T IUTR o720, $v U7

SIBER, R IIT D EMOBEN ZH ) [REE T L 1EfL (R—1) 2L, ¥V
TEEE L IIEERPTOX Y U T OBEIO LT SOESWEIET, 2 CERBEORE
P27 m e pD E AR’ T

Table 1.2 Characteristics of the main transparent electrodes and challenges of Sn0,".

Transparent
electrode film ITO SnO 2 ZnO
characteristic
Problem I:Low resistance
Low resistance ©(- 10 2m) X(103~10* 2-m) A
High visible light permeability © © ©
Durability(heat resistance,
Medicinal solution tolerance, etc.) O @ X
Patterning easiness © (Proplem % Newprocessing. A (weak in acid and alkali)
Depusitiﬂn easiness @ ﬁi]’mhlrm 3: High density) @
Vacuum deposition | €YP¢ M defecis )y cpym deposition
Deposition method Vacuum deposition
(high cost) { Many problems ) (high cost)
Resources(Clarke number) Zn-0.004%
. 0 s 0 .
[Reference *Au; 0.0000001"/0] In;0.00001% Sn;0.004% n,u. ¢
*Ag; 0.00001%
Material price x © ©

(Reference:Takagi: The Present and Challenges of Transparent Conductive Film ,
The Vacuum Society of Japan, SP The 97th regular meeting for the study, 2006.2)
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p=i; (1.1)
KN ZF v U TIRE (M) | e FEBETOBKE (C) . b3+ U T OBEE MV -9)
Thbd, FRRTRLIELIZ, ZOADNLEBEXUSEEZ R HERIZIE, v VT LBH)
FERMELL 700 | ET-ZOHRPLE NI 57201213 v U TRE, BEEEZ RS T4
ERH D,

F v U TIREICBI LTI, SN0 1R ERO T b HIBATER 8K L IS L O TH
V., FEARR CIHMIEFICH D2 EFDVMEER~NER TE T, AR TTmo0F v
TIIFE LR, L UBEEROT T (K30meV) ICRIFHENZ1ED Z 212k - Tl x
BRICEBE CE DB TAERIYE, BERUREEEZG T2 2 &0k, 2L T, ZOKM
HERLIEA A DRI R—=T WA A DIRA L WO T2 RBIZ L - TERRSILD, SN0z 128
WT, ZOX KRN H7-HT b0 L LT, BFELEI, L TR—=7HE LTiE, Sb

(TrFEY) PF (TuH) 0 Ta (Fra) N ZLT Nb (=47) &5
Foins,

BT, T VT OBBIEICE L T, v U 7 ORI A TERT D H0E OZERHIN 7 AN

DY ORE LR LTV D, Fv U TRBENE 4IROK(L2)D L SRS D,

- (1.2)

ZIZT mIEF Y VT OAMNER kg . dXEREEE (L RIOBELD B RO BELE TORE
M:s) TH5DH, ZOXRLVBEELZRETHOIE, AIVEEmM LEMIERK TH5 2 L2
53D, TOBAOANEEREMITA(LIYD L S IcF SN, WHOEFHEE L BB L
TWHZEZERL TV,
292

ZIZThiZF v 7w (66262x10% 3 -s) | kid (mh) | Bl FRE— (1) T
bHb, T THDE, W KIS 2=k F RO diERER L TBY, oA Sl
FEPREL RIULBEBTORNEEN NS L) BHEREG DI ENREILND, £
LTCZOTRAX—DIRITHEDTE/ D IS CTRE L 25D TR Fig. 1.7 O X 512k
palER < SN VIR LW 5T LT LY AR ZAERCT D SnSs HUBEDER D B RE AR |
ZOFERBENEN M 325 L B2 HnD,



Z DX HIT SN0, DIEIKFUL D=z
I, BEEZEfL - F—T7HDEA, LT
FhEemtE EXIRNIE LB bD, £
I\ T HTHLR SnO, MRIIARE & 72 R
BB CIER &, (RIRBU e SR 03 it S T O
NTW5, BlZ1ESn0,12Sh % F—7L @)
= HbO T, HHE 673 kI L, S
BZERAHIT Arl0,=90/10 DIRA T A %

#1.3310" Pa (1x10° Torr) AL, )
FRBGEEERK) 1.67 nm/s T~ 27 % ka2 A

Ny B2 TIRIZE > TRET 5 Z & T,
2.0X10°Q+-m ® SO, HEA1G 55 &

HINTWD, FhFkO~T7 % ha v

ARy B Y U TVEZBWTH Tazk R—7Lizb O TlE, BEZERLFIT Ar A% 0.5Pa &
AL, EHREA 973 K & iRICT 5 2 L TL7X10° Q - m & S {KEH T SnO, 1245
% EDEREN TG B,

Fo, ITO EO T mtE R & L TUIE b OBRRE b EA LS TE/2E7# (EB :
Electron Beam) #&#51:% FIV TS L 7= SnO, BB R L Cid. HEBREE 823 K, 2.7X10%Pa
DEEFESE FORMET5 2 L10k 0 75X10° Q-m OIS b LG STV 5,

F72, SN0, ITHERMEDOWEAFEINESIEOND Z b ¥ 27 L—ik CVD

(Chemical Vapor Deposition) {ECTEBID Z ENRZV, A7 L—IETIHEEHZ SnCly <°
ShCL 23V BTV D, —filE LTI, Sb & R—7 L7= SnO, I Tli&, SnCl, » 5H,0 &
ShClz & HCI, H0 TN CoHgO IZIRA L., ik e L, 0.8kglem, DEFR I A% F+ U T H A
L L. 873K OEMITEFZET 5 Z & T, 86X10°Q - m DN A AT 5 SnO, S H L
D LHMESNTND D, —F, CVD EEA 7 L—IEIC N TEEMRICEN TB Y . KBE
DB BEMOREZ TERICHW SN TS ¥, 20 VD EE W T Sh & F—7 L
72 SnO, A VERL L 7= 32651 & LClid, 873 K IZHIEA L 7= SRS EIZ(CH;),SnCl, & Sb %
JFEE L72 CVD BR 2R E T 5 Z LIc k> T, 80X10° Q « m DHAKFL 2 OIS
STV D %,

DX DT, SO ITKE& 2T, £ v U TIRE, BENE OB HIKH Y L
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Fig. 1.7 Effect on the career paths of the
crystallinity.



RMMTONTND, ZD LD RBUROEHEGULERIZIW T, F—7HIC X 5ERITH
HHDD, FEARKNNEDO R Z 28T D 7o OICHERIRE £ 70137 =— /MEEEm< 752 &
N TH D, T 2 THMARE & FARBIOBIR 2 E Ok E FICE L, Fig. 1.8 1R
F 3N ZORDVRTIEY . EHUREN E < ARAURHARHIAN A A 2 L R0 Hius,
ZIUTHELRTEIRREDOFERMEDZ LR D B REBIRE 2 R < 5 2 & ThEftEnm B35
7D THDH, LnLERENG, HERENEATHZ LIck-> T, MHTEEMBESNTL
F o720, ZO X DITEIRICHEM A A U 5 2 L I3AERE BafE L <3V, FrZi
FEHINTWDE T LI LT NIRRT A AT VA ~OMGEBETHE, TTAT v 7 HMNK
DOHALIRIE CThd 5 573 K LT ORIEAR B D, & 9 W lo I THRERT 4 A7 LA Dids
BRI SR SN 5 HEHITH D 1.5X10° ~ 6.0X10° Q-m £/~ 3 SnO, R BRI %72
WV, FOHEHE LT, ZOREFERICBWO T, EIIOSEIR - ThH ¥ v U TRE L
BEEEOBLST SN0, BEOMEREZFE IR SV TV RV Th D, £ 2 TAMF
F2 T, 573 K LU R OIREEREI TR S5 SnO, IEOIRIKHHYIC & - TRIE L 72 D UL E
RAED SN0, FEOPERSIERE A 11 = X MZFEH Lic, WHEICIHRET 4 A7 LA DEH 5 —
DOOFEICHOWTERRT 5,

10 . . . .
-®-- Sputtering
o —=— EB vapor
= [ | CcvD
=
S
E
= 10 °f 3
k7 0
g 8-
a2 =~
Our goal\\
f Below573K ~  O8S-Swa o [ E
1.5%10%~6>x10°Qm
107° :

400 600 800

Substrate Temperature (K)

Fig 1.8 SnO; film resistivity in conventional studyle).
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1.3 BE v FESTREGERERESDRES
1.3.1  EXEHA IC MEED - DB

IR LSO E <D LV VI, FENRELT 4 A7 LA IZH1T BBV 1IC DI E
& LTI, Fig. 1.9, Fig.1.10 23753 COG (Chipon Glass) EHEN L CTH 5, COG L
HRELT A AT VA RNV DIT T AEMUNZ Ny =S TWRWIC F v T a FEET 5
HETH D, RGO HLEMR (ITO, 7V I B, Sl & ICF v 7 oR:
FerEM A o S, (LEADEEIT o7k, BRI T 5 2 & C COG FEEEIRT
%o T ORHIIELIR ACF (Anisotropic Conductive Film) & FEEiL 2 BIFMBEEFA | %]
L 7= MO M IT S B85 5kt T 5, ACF IS X 15 ~ 70 um OfEf% 7 1 L AOWNHIZ = v

(Transparent)

IC
Electrode bn

Liquid crystal

[
Glass Gold bumps

Fig. 1.9 Structure of FPD (Chip on Glass).

ACF(Anisotropic | I Conductive

Conductive Film) { [ KRR - p'icle
'—___—|

. (Transparent) IC
Liguid arystl Eicorode /] | | Undertl

Glass

Gold ll)umps
Fig. 1.10 Electrode connection using ACF.
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TNRABTIREDERE 1 —T ¢ 7 UTZEAE 3 ~ 10 um OFEMERRL -2 0B S 72 b O
T, INAEBRCHA, MBVINET 2 2 & TR/l v & IC F v 7 OB A
EESEALZENTES (Fig. 1.10) .

1.3.2  ACF I h S EREE DTN

ACF ZHIWe#2613, THE T T 4 A7 LA O COG Fdkz 30z TR #5i)7:0T
HOH, THEIZRY . HOREIMNRSSIUICH TN D,

A, BRI ED b Ly RIS, BREIA IC OBFEIIFE~ ML TE TR0, #h
DYy FHRIELS 785 TETND, ZDLH7 hL v RZxi LT ACF % HW =8Bl
ACF NOEFERI - DE A S LIS L TCET=DOTH D, 2D X 5 7354, Fig. 1.11(a) @
K ONTAKREEA D RAET D AMREMED R SN D, 7Y Y FRIZ LY Fig. 111 (b) O X
O REA T OERIR Y g — MR Z 5 ATRetE b IFFITmU Y,

Z ZTACFIZEDLAH LW RO L TER Y, 20— L LT, kv LI
WG TE DEREAGNZET b b, BEfES THIUL RO X O Bt ORR 2 X 5125
TIEXE D LB BND,

1.3.3 EREHRZEITEI SBUREAM
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Fig. 1.11 ACF bad connection in the narrow pitch connection.
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HINT\Wb, Z 27T Table 1.3 I[ZFEFEEES OUWERE N O—H % /~d, ZOHF T, Thermo
Compression Bonding I&, ElFLZmiR, @IE N TN &G THEET 5 FET, EH
BEATIII R TIETH D, L LR D, JERE L S5 - OITHEAIREN 573
~ 673 K, JIESIAS 40X 10° Pa™® & | W22 T-7 /3 AT & - TR ISR LV A S
TERFRNBILD, & 2T, IHEER STV 5825 5l Surface Activate Bonding 733
T5., REIEMCHEANEZRIE LG CTh 5, ZOHATIEL, A RKREICFEE LG
ERF L e 5@ RFREBIE LA OO HE (B —A, iR, %) CldE, BRETHZ
LIZL o TREOFAmA RN SE, T EmALE2RE G, S LIZX
VERZERSEDLFETHD, ZOHMEHWSZ & T, #mEZEF THiUuX Cu & Cu
DEBHEAPRRTHEIAREL 225 ¥, LovLAans, 2 b OmAEHNIAEEO#
AT, BB AT ne A (B) BEEEAS T R AEOT mANBINEh, £

Table 1.3 Low energy bonding list

Bonding Technique Characteristic Ref.

Thermo Compression Bonding High productivity (45)-(47)
Surface Activate Bonding R.T. and non-pressure bonding (48)-(54)

by Ar or N, Beam

Surface Activate Bonding Low temperature, low load and low | (55)-(59)

by Organic acid vacuum bonding

Hybrid Bonding with BCB Allowance for liquid phase process (56),(60),(61)
Halogenations Low temperature bonding (42)
Treatments Bonding

Direct Bond Low cost, scalability (62)

Interconnect (DBI™) and heterogeneous integration.

Transit Liquid Phase Bonding Relatively low temperature bonding (63),(64)

Eutectic bonding High productivity (65)
VUV bonding ProcessingatR. T. (56)
Elastic Bonding Relatively low temperature bonding (66)
Water molecules Bonding Oxides bonding possible (67),(68)
Ultrasonic Bonding Low temperature and short time (69)

13



ML VST o AR, N R 7O E SN D, BARIZIZEAH
[CRAIREIE ST, 72 E A7 CHEADERT D TR BEENEE LUy,
AHFZETIE, ZD X IRy U PN IES 7 ot A CIRIEEMREES (B ACF 5kt E T
5K 573 KLAR) Z38T 5720l @O Sn 2 W - [EFEEESICEH Lic, Lo
L7l B, Sn IFFEFICI L Lo WEE TH 720, KEUCHT & B K im 23 i b8
BONTLEY, SHIZEDL DT L TR IO Eamfili T D & RE
9%5&L Sn0; (Al 2173K) | £721ESnO (@A 1353 K) & IERICLERB TH D
7o, IRIRTONE, BEEIFH LW EEX ObND, ZO X ITHEATHER T & LTS
WRENAAET D Sn OEFEGEZZ X T25E. EOMBEHOMEROIE N IEF IZHEET
o EEZBND, AWFETIE Sn RIGEEMESOEB L AIE L, #EAHERTFTHD
KIEFRACIEDOTEREA 71 = R L O Z B 50T 5 2 EIZE OB IRR A BN,

1.4 AL SR E

ANRD LY | HEhT 4 A7 LA OIETH LD EHGT SnO, RBZWEM] . [Sn RIK
IREFEES ) OFEBUTKT 28T W E & LTSN ZRT b b, AR TIEZ O
E#AER L. A RIT 5, £ ZTAETIIE T, ZEMEO L EEmik e a5
PRI DWW TEERT 5,

500 Sn(liquid)+Sn0O,

1.4.1 BB OERYIE: 450 °C
Fig. 11212 Sn & 23Rk DO PHRRREX 7R
T, sn ORLIILEN, S EHTE O o0or sfiquaesno, I
SnO (stannous tin oxide) &. Sn™*Z&H E' SnO,
% Sn0, (stannic tin oxide) @ _FEXADNE ‘E 300 270 °C +/- 20 °C
el e LCTIET S ™, = % sn(liquid)+SnO |
BT, BEIME MR E Sn0, = B 200f SnO+Sn.O;[ 1 _ __
LCHRIBIEAR SN L Sh0, ASEICLE smismo o ¥ ¢
feee UTIFEL B, il o . N R
LT, SnO i Fig. 1.13 @23/ ~"3 X H 1 Sn 20 40 60 O
Atomic %

ES s E 2 S, Sn?' A F 13

o -~ Fig. 1.12 Sn-O phase diagram™.
BT F-O( 5 03 )&( 05 3 NN J P J

14



% 2 F AR & o T Fig. 113 (0) 25T & 9 el i 2 B b 5 58 b b DI
TITREENTWD B, —J5 Sn0, 13 Fig. 1.14 @235 3 & 910, IEHTOLF UAEE 21
B, SN A A B HLNSNRERZ/ES & 5 IR 5LE LT a %, Z Z TFig 115
([ Sn (DT o H K- AT ) 500, 1 298.15 K (2 F81) D EEHEA AL H = R L —
1%.-515.74 kd/mol & SnO ™-251.82 ki/mol IZ kb2 & 7372 D AR < | Sn DERE) D HTlE SnO,
T b TR RETH S B, " oOZER SnO. SnO, DT E, o]

R
hsd %l I

0.48nm ©
b | ‘4(\?.,
0.38 5 380 bean *’63755
(a) tetragonal crystal (b) orthorhombic crystal

Fig. 1.13 Unit cell of SnO.

1.58nm

0.32nm

0480 ——

0.47
0.47nm 0.48nm

(a) tetragonal crystal (b) orthorhombic crystal
Fig. 1.14 Unit cell of SnOs.

15



g O T T T T T T T I T T T

2

() - .
2

3 Sn+30,7Sn0

S -200( ’/’///////,/”’//,//’//’,,,, 1
|_

c

2

E - -
£

o

&3

i=)) L 4
)

c

L

& -600f -
(I

=

% I I I I I I I | I I I

S 400 700 1000 1300
N

Temperature (K)
Fig. 1.15 Ellingham diagram of Tin Oxide.

FHE LT Sn?" e Sn*DIRAFEF T D SngOy HIFET 5 88 UL L7eid s SngO, DA
RRLEEME TSN TIIREARHRERE D S 5 0 | FHERRERI GO SN TV ARWES L 55 Y,

1.4.2 BMeSHONRFEN

FALEHO T THER O LEIIFET D SN0,y 1, TFRLF— R0 ROUA KXy v 7Rt
EALTEY, BFITEHTH D, SnO, DRI -EROZH ML, Fig. 116 D X
INAME S5 LARER O R v v 7O, £ L TH v U 7IREIRFET 2 LAHT
W5 P, AIEEHBBAR O R ORI ERE DT R LF—Xx v TS TED D
N, BEEMOBIMEIZY vV 7TREORK CTH L 7T A~ HE I L > TiRED, ZHUC
DUWTLLRIZET 5,

THNF =Xy v TOENRRKRENE ZOZRLF—Fy v 7LD /NI NTRLF—
ONFBFHNZ L BB A DY REESSE Z 53, KAWL LV, A TideolE
1%380~760 nm, TRAF—ITHRETHE 16~33eV THY ., Z OREIT RIS KUK
ELORKZA/ LRTIUTEA TH L EE 2D, 22T SnO; DHEMOMAFEMR E LTEH
—EHED Sn-0 &5 ki 0-0 MO AE/EM £ TaBE LI-imki &l N REHHE D

16



Transmissivity decrease for absorption  Wavelength to be found from plasma frequency
by the transition between bands (The position of the wavelength moves by carrier levels.)
hY

100 = \
| Transmission P
80

Reflection”
7

,
/N

60

= / Reflection to befrelated to
‘E‘ isible region - /] a conduction canrier
o d
= I*

40 Absorption I % Absorption to be|related

to a conduction darrier
20 w .
'I I" ‘.‘..- .
'I.t "J \jﬁ\ /
AT
04 06 08 10 1.2 14 16 18 20 22
Wavelength [pm]

Fig. 1.16 Light transmission, reflection and absorption spectrum of transparent semiconductor®.

A Fig. 117 19 %, 723, Fig. 1.17 OREllIE SN0, L FAMEED 7 U LT /= D
KIFRED Rz fi 3, Al 747 S A8 & O R F— N0 Ry » FIEHETE
IZEVIEBOENALNDD, Fig 117 LV, TR TAR/IND 38~40eV ThHDH, DFE Y A]
TN/ LND=HLF— (16~33eV) TiINY REEEN TX N9, Sn0,I12 &
HHORNUILZ Y 272D Th 5,

WIZ, REEMOBHEICHOWTHIAT 2, RERATIEIT 7 A LAt oF v ) 7ICX
DB BND, KIS DHOWEIZIET T A~k (77 A~<iEEOEEE)
THRDONDLEENRHY . 2O NF— LRV —DNIIRS SNhD, 77 A=
JEP 1) IR TER SN, v U TEEN (m®) OEKICR-> TS,

2
wjzg% (1.4)
ZIZTqlExv VT OER (C) . dIFER Fm) . m kg ITEMEETHD, =

DR TEEND T T X~ FI K ay & VRO RF— 2RO LT TR SN T

LF 9, Fig. 118 13 b -8RIZRBN T, v U 7IRE L FROBRER L= DT

HHWN, ZOMOE T, Fv U TIENB I 2X10% o (U TR B

BEML TS Z LD HILD, ZIULERORTHIASNDS L HIT, F4 U 7IENH
17



12t Tia) (6)
I

ns,

ﬂ_____,__._-. /""““:

T—/
-=::_¥ S
>

Z A M r X

it

-8k %

Fig. 1.17 Band structure of SnO,*.

1.0
=1 a B
21 3 e
around 2 X 104! cm-
0.8 g
] a
&}
8 @
{ 0.6 -
S a
L
—
g 0.4 = (o]
[o]
02 -
Lh o oo meEE &g oo g
Bg
0 ————rrrrry —_— e e
1023 1026 1027 10%

Carrier concentration (m-)

Fig. 1.18 Reflection caused by increasing of carrier®™.

M52 LIk o> TTI A= EEESHIIM L, BRI LTLE I NS THS, L
L7285 Sn0, DT U TIEEOKRE S (102 em® 4 —%) 7 Sflrd 2% L. Sn0,ic
18



BT, 7T X< RN K5 /DO KEHNI BN ZITE Z D 2 72neE 2 65,
ZDXEHIT SN0 ITIEVWR KXy v 7 FLTEBIZEIIZ TRy U TIREIZ
X0, AEDETIIRIN LA BIEZ S0, TRbbiEHTHAIMENE S 25,

1.43 BIEHOESHE

FATRARTZ L DT, Sn021E38~40eV DU A KXy v 7 EERTH L0, FiRICE
\F B OME T DARERA~OBBITE Z S 2o, [BEMEITRES 220, Ll
MH. SnO, FUTFEHEKEES F—7MZ8AT 5 Z L& > T, Fig. 119 297" T XL 972K
fa (RF—) HERAMSERDEDD 15~150meV FD & Z AT EN D, &5ick+
TN I D AREHOEIZ T =L BRI A - THERT 5 2, £ L TEEHOF v U 71
Fig. 1.20 D X 912 Sn ® bs §uEDER > TFlor a0 L CET 28+ 5 Z & T, Bk
Th O RPOBBORICEERZ RT 2 EBHRDLDTH D,

1.5 AHROEW
BRI TENZEENE, AL FREMEITIN A, FRLo X5 IR, BREEA A L
TWD, LU BANIFETER L TN DT 4 A7 LA OfE TH % HMEHEHL SnO,
FRIBEM (SN SRKEEFIHES | ICBT AL IR E U CHET D720, 7L
H RO X ek, FEEAZ AT 500 TRV, £ LTIO LD REEIRRED BT HEN
T AL OMIR, O A 7 = X IOV CEE i SV T W ORI £ 12 £ 72407
[

Z ZTAMETIEL, ST 4 AT LA OETH 5 HEHGT SnO, KRB EM . [Sn
RRIREREES ] OEBUZ L > THEE 225, BBLBHDTEIA 71 =X L& ZDOREEZ ]G
ML, FRCOMEEIIKRI T DR TR O TR A R T 2 LA BN E L,

1.6 AR DR
A 6 FECTHER STV D, AIFFED 7 n—F ¥ — h & Fig. 1.21 (TR, AEOE
HCHAE Y 52 ECIE 573 K LU RO E TR S D SnO, IO LA B L. I
M EPEHED VN EB 7'7 A~ 7L, v 7 hu o ARy 2 ) U ZYETHIES 115 SnO,
OYER, #EEZPIGNC L, PO FR T Ch D ¥ U TIRE, B KITT e
EW BT D, £ LTH 3 FETIL SN0, Dt Em D722, HilzZps— R Z 4R
19



SnSp

E,=15~150meV; Conduction band

| Snis — SnSs

I, — - D
I T “Donor level cgenetacy

E =3 8~4.0ey] O2per) |Valenceband
g
02pO)

0O2s
Sn4dd

Fig. 1.19 Electron subsystem of Sn0,*.

0>
0> o
...-:_,
/Al
Sn*t |1 \

=R
AR
W j o> SnSs Orbit

Fig. 1.20 Moving path of career of SnO.,.

20



EL., ZOREHONNTT D,

RIT, 54 FTIE, Sn RIRREFHES DFEHUZ & > TRANERIETH 5, Sn DX
FALZBEICE R L, 2O A =X LZHBNNIT 5, ZLTEHELSETIL, H4FTH
ST LT- Sn RE O EEE L84 L LT Sn-Ag RLEEIRA =[BRS
ZRE L. TOERREMEA T,

6 EThimm & L TANIEA £ L, #fEaih

C PG

1) WL, 7 AT LA HAREE 2013 A& EL OBk, X v T - SR L OB
% BP 1, 2012.

2) M. Mizuhashi, “Electrical properties of vacuum-deposited indium oxide and indium tin oxide
films”, Thin Solid Films, vol. 70, no. 1, pp. 91-100, Jul. 1980.

3) C. A. Pan and T. P. Ma, “High-quality transparent conductive indium oxide films prepared by
thermal evaporation”, Appl. Phys. Lett., vol. 37, no. 2, p. 163, 1980.

4) N. Srinivasa Murty, G. K. Bhagavat, and S. R. Jawalekar, ‘“Physical properties of tin oxide
films deposited by oxidation of SnCl,”, Thin Solid Films, vol. 92, no. 4, pp. 347-354, Jun.
1982.

5) R. Banerjee and D. Das, “Properties of tin oxide films prepared by reactive electron beam
evaporation”, Thin Solid Films, vol. 149, no. 3, pp. 291-301, Jun. 1987.

6) T. Minami, “Highly conductive and transparent zinc oxide films prepared by rf magnetron
sputtering under an applied external magnetic field”, Appl. Phys. Lett., vol. 41, no. 10, p. 958,
1982.

7)  FEWI, “ZnO SREHREERD, 5B, vol. 61, no. 12, p. 1225, 1992

8) K. Gurumurugan, D. Mangalaraj, S. K. Narayandass, and C. Balasubramanian, “Structural,
optical, and electrical properties of cadmium oxide films deposited by spray pyrolysis”, Phys.

Status Solidi, vol. 143, no. 1, pp. 85-91, May 1994.

21



‘Apnis siyp Jo Leydo moj4 1¢'T i

OB HUYHTNIFWHSUFEIVIS HIWEH P PREE

S FBY[E F 00 ) B H)

B 2EEE S EUS EGE

!

TYXTUXHA-FHOBHNHODEUSG LT BHEEEY OEY

B OR

TEEHMBOH TGN REE TvE

%

HEOSHHETH¥USHME B LAAKO

|
WERNTHEAPNF W BHEOUS

FEMMEYE O
2 AW ET OFIOUS  EEE
f XU T

O i HEHHLE
HEH—HTH EEEIONE  EFEE

(‘OUS £—AANBL) F LN\ ry ok G2
(“OUS sund) B » Y £ 8-

fgs2a ORHEEH
FEIW I OUST A TS BTH

ﬁ
MEOWHEHE ¥ OUSWHED
|

LM LBEOEL

WG 6 MTIEEE " NINGQH R T Y U A - YR OB G AN S £ 55 ) S FHEYE
W Y USE) T E MR COUSEHR E Y OOLIDS DB ) 1LY LEE YN ALY (H E

L3 =21E

22



9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)
20)

K. Gurumurugan, D. Mangalaraj, and S. K. Narayandass, “Structural characterization of
cadmium oxide thin films deposited by spray pyrolysis”, J. Cryst. Growth, vol. 147, no. 3-4,
pp. 355-360, Feb. 1995.

M. Labeau, V. Reboux, D. Dhahri, and J. C. Joubert, “New mixed oxides as thin film
transparent electrodes: Spinel phase CdIn,O,”, Thin Solid Films, vol. 136, no. 2, pp. 257-262,
Feb. 1986.

N. Miyata, K. Miyake, and S. Nao, “Physical properties of cadmium-tin oxide films deposited
by d.c. reactive sputtering”, Thin Solid Films, vol. 58, no. 2, pp. 385-389, Apr. 1979.

N. Miyata, “Transparent Conducting Cadmium-Tin Oxide Films Deposited by RF Sputtering
from a CdO-SnO, Target”, J. Electrochem. Soc., vol. 127, no. 4, p. 918, 1980.

K. Makise, K. Mitsuishi, N. Kokubo, T. Yamaguchi, B. Shinozaki, K. Yano, K. Inoue, and H.
Nakamura, “Transport properties and microstructures of polycrystalline In,O3-ZnO thin
films”, J. Appl. Phys., vol. 108, no. 2, p. 023704, 2010.

RIATE, “EHBEMROIUR &R, AAFZER S SP & 97 [RITERFIAZEE, 2006.
FIMRIRTT A« BB IRRERMNIATBOEN, “B &I~ 7 U 7L 7 1 —2013
AUl (In) », SEENRER, no. 12, pp. 139-145, 2014.

K. Ghaffarzadeh, “Do commodity prices drive innovation in printed electronics?”, Europe,
EE Times, 2013. [Online]. Available:
http://www.electronics-eetimes.com/en/do-commodity-prices-drive-innovation-in-printed-ele
ctronics-63.html?cmp_id=7&news_id=222916005.

K. ENDO, M. YAMASHITA, Y. TOBA, H. NAKAJO, H. SHIBA, S. OKUMURA, Y.
MIYAHARA, and K. TAKEDA, “Material Flow Analysis and Resources Problem of
Indium”, J. MMIJ, vol. 123, no. 3, pp. 123-129, 2007.

M. Zubkins, R. Kalendarev, K. Vilnis, A. Azens, and J. Purans, “Structural, electrical and
optical characteristics of Al-doped zinc oxide thin films deposited by reactive magnetron
sputtering”, IOP Conf. Ser. Mater. Sci. Eng., vol. 49, p. 012057, Dec. 2013.

ARG, “EIPEEREOBLR & 4% O, E2E, vol. 50, no. 2, pp. 105-110, Feb. 2007.
R. Usui, K. Nakagawa, R. Satoh, Y. Iwata, E. Morinaga, and S. Takaki, “Research on direct
laser patterning of thin films for flat panel display”, 24th International Congress on

Applications of Lasers and Electro-Optics, ICALEO 2005 - Congress Proceedings, 2005, no.

23



21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

24th International Congress on Applications of Lasers and Electro-Optics, ICALEO 2005 -
Congress Proceedings, pp. 13-19.

X. Hao, J. Ma, D. Zhang, Y. Yang, X. Xu, F. Chen, and H. Ma, “Electrical and optical
properties of SnO,:Sh films prepared on polyimide substrate by r.f. bias sputtering”, Appl.
Surf. Sci., vol. 189, no. 1-2, pp. 157-161, Apr. 2002.

J. Boltz, D. Koehl, and M. Wuttig, “Low temperature sputter deposition of SnOx:Sb films for
transparent conducting oxide applications”, Surf. Coatings Technol., vol. 205, no. 7, pp.
2455-2460, Dec. 2010.

H. lida, T. Mishuku, A. Ito, K. Kato, M. Yamanaka, and Y. Hayashi, “Sb-Doped SnO; films
deposited by the CMD (chemical mist deposition) method”, Sol. Energy Mater., vol. 17, no. 6,
pp. 407-423, Oct. 1988.

J. Ma, X. Hao, H. Ma, X. Xu, Y. Yang, S. Huang, D. Zhang, and C. Cheng, “RF magnetron
sputtering SnO,: Sb films deposited on organic substrates”, Solid State Commun., vol. 121,
no. 6-7, pp. 345-349, Feb. 2002.

B. VLSWANATHAN and S. CHOKKALINGAM, “SOME REFLECTIONS ON MIXED
TIN AND ANTIMONY OXIDE CATALYSTS”, Surf. Technol., vol. 23, pp. 231-244,
1984.

A. Tribarren, A. Martel, and J. L. Pena, “Chemical and phase composition of SnO: F films
grown by DC reactive sputtering”, Surf. Coatings Technol., vol. 148, pp. 103-109, 2001.

H. Kim and H.-H. Park, “A study on the electrical properties of fluorine doped
direct-patternable SnO, thin films”, Ceram. Int., vol. 38, pp. S609-S612, Jan. 2012.

M. DIGIULIO, D. MANNO, G. MICOCCI, R. RELLA, P. SICILIANO, and A. TEPORE,
“Growth and characterization of tin oxide thin films prepared by reactive sputtering”, Sol.
Energy Mater. Sol. Cells, vol. 31, no. 2, pp. 235-242, Nov. 1993.

Y .-S. Choe, J.-H. Chung, D.-S. Kim, G.-H. Kim, and H. K. Baik, ‘“Phase transformation and
morphological evolution of ion-beam sputtered tin oxide films on silicon substrate”, Mater.
Res. Bull., vol. 34, no. 9, pp. 1473-1479, Jul. 1999.

V. De La Garza-Guadarrama, A. Sanchez-Juarez, A. Tiburcio-Silver, and A. Ortiz, “Growth
and characterization of SnOy: F thin films prepared by pyrolysis of SnCl,”, J. Mater. Sci.
Lett., vol. 20, no. 3, p. 219, Feb. 2001.

24



31)

32)
33)

34)

35)

36)

37)

38)

39)

40)

41)

42)

43)
44)

M. Weidner, J. Brétz, and A. Klein, “Sputter-deposited polycrystalline tantalum-doped SnO,
layers”, Thin Solid Films, vol. 555, pp. 173-178, Mar. 2014.

R. G. Egdell, Science of Ceramic Interfaces Il, vol. 81. Elsevier, 1995, pp. 527-569.

H AP B BRI LA R AR 166 Z2 B4, Bd., BIPEEROH. 4 — L4
#t, 1999.

K. Suzuki and M. Mizuhashi, “Structural, electrical and optical properties of
r.f.-magnetron-sputtered SnO,:Sb film”, Thin Solid Films, vol. 97, no. 2, pp. 119-127, Nov.
1982.

M. Weidner, J. Brotz, and A. Klein, “Sputter-deposited polycrystalline tantalum-doped SnO,
layers”, Thin Solid Films, vol. 555, pp. 173-178, Mar. 2014.

H. Kaneko, “Physical properties of antimony-doped tin oxide thick films”, J. Appl. Phys., vol.
53, no. 5, p. 3629, 1982.

EURERE RE, HNEE, “fbFEAETEIC KD SnO, RO ERAIMEE”, SR, vol.
41, no. 2, pp. 134-142, 1972.

M. A. Sanchez-Garcia, “Characteristics of SnO,:F Thin Films Deposited by Ultrasonic Spray
Pyrolysis: Effect of Water Content in Solution and Substrate Temperature”, Mater. Sci. Appl.,
vol. 03, no. 10, pp. 690-696, 2012.

K. S. Shamala, L. C. S. Murthy, and K. Narasimha Rao, “Studies on tin oxide films prepared
by electron beam evaporation and spray pyrolysis methods”, Bull. Mater. Sci., vol. 27, no. 3,
pp. 295-301, Jun, 2004.

H. W. Lehmann and R. Widmer, ‘“Preparation and properties of reactively co-sputtered
transparent conducting films”, Thin Solid Films, vol. 27, no. 2, pp. 359-368, Jun. 1975.

Y. Muto, S. Nakatomi, N. Oka, Y. Iwabuchi, H. Kotsubo, and Y. Shigesato, “High-rate
deposition of Ta-doped SnO, films by reactive magnetron sputtering using a Sn-Ta
metal-sintered target”, Thin Solid Films, vol. 520, no. 10, pp. 3746-3750, Mar. 2012.
/NIET], M, SR, B0 BEBILBEE S S ORI 2 e
{BALER DN R, A B 54356, vol. 70, no. 5, pp. 402—411, 2006.

R. F. Tylecote, The solid phase welding of metals. Edward Amold, 1968, p. 203.

WEAGESL, WIAHS, EMSEE - A 91T, PEHRHIAR, 1979, pp. 96-97.

25



45)

46)

47)

48)

49)

50)

51)

52)

53)
54)

55)

A. Fan, A. Rahman, and R. Reif, “Copper Wafer Bonding”, Electrochem. Solid-State Lett.,
vol. 2, no. 10, pp. 534-536, 1999.

B. Swinnen, W. Ruythooren, P. De Moor, L. Bogaerts, L. Carbonell, K. De Munck, B.
Eyckens, S. Stoukatch, D. S. Tezcan, Z. T, J. Vaes, J. Van Aclst, and E. Beyne, “3D
integration by Cu-Cu thermo-compression bonding of extremely thinned bulk-Si die
containing 10 um pitch through-Si vias”, Electron Devices Meet. 2006. IEDM ’06. Int., no. Ic
1, pp. 1-4, 2006.

J. Fan and C. S. Tan, “Low Temperature Wafer-Level Metal Thermo-Compression Bonding
Technology for 3D Integration”, Metallurgy, Advances in Materials and Processes, pp. 71-94,
2012.

T. H. Kim, M. M. R. Howlader, T. Itoh, and T. Suga, “Room temperature Cu—Cu direct
bonding using surface activated bonding method”, J. Vac. Sci. Technol. A, vol. 21, no. 2, pp.
449-453, 2003.

C.-T. Ko and K.-N. Chen, “Low temperature bonding technology for 3D integration”,
Microelectron. Reliab., vol. 52, no. 2, pp. 302-311, Feb. 2012.

A. Shigetou, T. Itoh, K. Sawada, and T. Suga, “Bumpless interconnect of 6-um pitch Cu
electrodes at room temperature”, in Electronic Components and Technology Conference,
2008, pp. 1405-1409.

JEEMERD, “TFEEDHR < B LW B OFED O 1it5, Panasonic Tech. J., vol. 57, no. 2, pp. 4-
, 2011.

VRSN, “RETE M GIZ X D IR L ¥ —825>, FT0 b, vol. 35, no. 5, 1996.
VEMED, “FHREES O WREM, TAHE43EE, vol. 61, no. 2, pp. 98-106, 1992.

W. Lin, L. Shi, Y. Yao, A. Madan, T. Pinto, N. Zavolas, R. Murphy, S. Skordas, and S. lyer,

oo
o

[N\

[N\

“Low-Temperature Oxide Wafer Bonding for 3-D Integration: Chemistry of Bulk Oxide
Matters”, IEEE Trans. Semicond. Manuf., vol. 27, no. 3, pp. 426-430, Aug. 2014.

E. F. Schulte, K. A. Cooper, M. Phillips, and S. L. Shinde, “Characterization of a novel
fluxless surface preparation process for die interconnect bonding”, in Electronic Components

and Technology Conference, 2012, pp. 26-30.

26



56)

57)
58)

50)

60)

61)

62)

63)

64)

65)

J. Mizuno, K. Sakuma, N. Unami, M. Nimura, S. Shoji, and C. Stack, “New Chip Joint
Method for Silicon Die Bonding”, A~— k7 1t 22245k, vol. 1, no. 3, pp. 120-125,
2012.

HFEWRIR, /NLUER], “REcCEEE AW IS BB ORIREES B,

S. Koyama, Y. Aoki, and I. Shohji, “Effect of Formic Acid Surface Modification on Bond
Strength of Solid-State Bonded Interface of Tin and Copper”, Mater. Trans., vol. 51, no. 10,
pp. 1759-1763, 2010.

S. Koyama, “Influence of surface treatment on interfacial microstructure and bond strength of
diffusion-bonded tin”, Solid State lonics, vol. 172, no. 1-4, pp. 397401, Aug. 2004.

C. Ko, Z. Hsiao, Y. Chang, P. Chen, Y. Hwang, H. Fu, J. Huang, C. Chiang, S. Sheu, Y.
Chen, W. Lo, K. Chen, and S. Member, “A Wafer-Level Three-Dimensional Integration
Scheme With Cu TSVs Based on Microbump / Adhesive Hybrid Bonding for
Three-Dimensional Memory Application”, IEEE Trans. Device Matterials Reliab., vol. 12,
no. 2, pp. 209-216, 2012.

J. J. McMahon, J.-Q. Lu, and R. J. Gutmann, “Wafer bonding of damascene-patterned
metal/adhesive redistribution layers for via-first three-dimensional (3D) interconnect”,
Proceedings Electronic Components and Technology, 2005. ECTC ’05., 2005, vol. 2, pp.
331-336.

P. Enquist, “Scalability and Low Cost of Ownership Advantages of Direct Bond Interconnect
(DBI®) as Drivers for Volume Commercialization of 3-D Integration Architectures and
Applications”, MRS Fall Meeting, 2009, vol. C.

R. Agarwal, W. Zhang, P. Limaye, R. Labie, B. Dimcic, A. Phommahaxay, and P. Soussan,
“Cu / Sn Microbumps Interconnect for 3D TSV Chip Stacking”, Electronic Components and
Technology Conference, 2010, vol. 1555, no. ii, pp. 858-863.

P. Ramm, “Shrinking 3D ICs — Capabilities and Frontiers of Through Silicon Via
Technologies Global Activities in 3D Integration Technology”.

H. Gradin, S. Bushra, S. Braun, G. Stemme, and W. van der Wijngaart, “Wafer-level
integration of NiTi shape memory alloy on silicon using Au-Si eutectic bonding”, J.

Micromechanics Microengineering, vol. 23, no. 1, p. 015008, Jan. 2013.

27



66)

67)

68)

69)

70)
71)

72)

73)

74)

75)

76)

77)

78)

C. Okoro, R. Agarwal, P. Limaye, B. Vandevelde, D. Vandepitte, and E. Beyne, “Insertion
bonding: A novel Cu-Cu bonding approach for 3D integration”, Electronic Components and
Technology Conference, 2010, pp. 1370-1375.

A. Shigetou and T. Suga, “Modified diffusion bonding for both Cu and SiO, at 150 °C in
ambient air,” Electronic Components and Technology Conference, 2010, pp. 872-877.

A. Shigetou and T. Suga, “Modified Diffusion Bonding of Chemical Mechanical Polishing
Cu at 150 °C at Ambient Pressure”, Applied Physics Express, vol. 2, p. 056501,
17-Apr-2009.

PR, IR —, /B, (EBPE —, BEASR, “Cu/Ni OB F IS & £ DO
WS FEMERE AN, PaEey2am SUEE, vol. 31, no. 1, pp. 66-74, 2013,

L. Luxmann and R. Dobner, “Metall”, p. 821, 1980.

W. K. Choi, H. Sung, K. H. Kim, J. S. Cho, S. C. Choi, H. Jung, and S. K. Koh, “Oxidation
process from SnO to SnO,”, Jounal Mater. Sci. Lett., vol. 16, pp. 1551-1554, 1997.

R. W. G. Wyckoff, Crystal Structures, no. % 1 . Wiley, 1963.

J. Geurts, S. Rau, W. Richter, and F. J. Schmitte, “SnO films and their oxidation to SnO,:
Raman scattering, IR reflectivity and X-ray diffraction studies”, Thin Solid Films, vol. 121,
no. 3, pp. 217-225, Nov. 1984.

M. R. Soares, P. H. Dionisio, I. J. R. Baumvol, and W. H. Schreiner, “Influence of sputtering
parameters on the composition and crystallinity of tin oxide”, Thin Solid Films, vol. 214, no.
1, pp. 6-16, Jun. 1992.

O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park, and H. Heinrich, “A rapid hydrothermal
synthesis of rutile SnO, nanowires”, Mater. Sci. Eng. B, vol. 157, pp. 101-104, Feb. 2009.
J.-M. Wu, M. Antonietti, S. Gross, M. Bauer, and B. M. Smarsly, “Ordered mesoporous thin
films of rutile TiO, nanocrystals mixed with amorphous Ta,0Os”, Chemphyschem, vol. 9, no.
5, pp. 748-757, Apr. 2008.

R. S. KATIYAR, “Dynamics of the rutile structure I . Space group representations and the
normal mode analysis”, J. Phys. C Solid State Phys., vol. 3, pp. 1087-1096, 1970.

H. I. Zhang, “Symmetry Properties in Rutile Structure”, Jounal Korean Phys. Soc., vol. 5, no.
2, pp. 51-56, 1972.

28



79)

80)

81)

82)

83)

84)

85)

86)

87)

88)
89)

90)

M. MIKAMI, S. NAKAMURA, O. KITAO, H. ARAKAWA, and X. GONCZE,
“First-Principles Study of Titanium Dioxide : Rutile and Anatase”, Jpn. J. Appl. Phys., vol. 39,
no. 8, pp. 847-850, 2000.

Z. Nabi, A. Kellou, S. Mégabih, A. Khalfi, and N. Benosman, “Opto-electronic properties of
rutile SnO; and orthorhombic SnS and SnSe compounds”, Mater. Sci. Eng. B, vol. 98, pp.
104-115, Mar. 2003.

J.-E. Lee, K.-S. Kim, K. Suganuma, M. Inoue, and G. Izuta, “Thermal Properties and Phase
Stability of Zn-Sn and Zn-In Alloys as High Temperature Lead-Free Solder”, Mater. Trans.,
vol. 48, no. 3, pp. 584-593, 2007.

L. V. Gurvich, I. V. Veyts, and C. B. Alcock, Thermodynamic properties of individual
substances 4th ed VVolume 2. Hemisphere, 1991.

S. Cho, J. Yu, S. K. Kang, and D.-Y. Shih, “Oxidation study of pure tin and its alloys via
electrochemical reduction analysis”, J. Electron. Mater., vol. 34, no. 5, pp. 635-642, May
2005.

L.V. Gurvich, LV. Veyts, and C.B. Alcock, Thermodynamic Properties of Individual
Substances : O, H(D,T), F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn, S, N, P and Their Compounds.
CRC, 1992.

S. Cho, J. Yu, S. K. Kang, and D. Shih, “The oxidation of lead-free Sn alloys by
electrochemical reduction analysis”, JOM, vol. 57, no. 6, pp. 50-52, Jun. 2005.

GG, AL, e, 1K, ARG, I, <@ (Sn) H-oX 3Rk 7 2D
b R R T CRGR 3 2 B LRI D ~ W B R RFE & = DBt O 58,
IS, pp. 43-48, 2010.

G. Principi, A. Maddalena, and A. Gupta, “Oxidation state of surface tin in an industrially
produced float glass”, Nucl. Instruments Methods Phys. Res., vol. B76, pp. 215-217, 1993.

F. Lawson, “Tin Oxide-Sn3;0,”, Nature, vol. 25, pp. 955-956, 1967.

A. Seko, A. Togo, F. Oba, and 1. Tanaka, “Structure and Stability of a Homologous Series of
Tin Oxides”, Phys. Rev. Lett., vol. 100, no. 4, p. 045702, Jan. 2008.

J. Robertson, “Electronic structure of SnO, , GeO, , PbO, , TeO, and MgF,”, J. Phys. C Solid
State Phys., vol. 12, no. 22, pp. 4767-4776, Nov. 1979.

29



91) J. R. Bellingham, W. A. Phillips, and C. J. Adkins, “Intrinsic performance limits in
transparent conducting oxides”, J. Mater. Sci. Lett., vol. 11, no. 5, pp. 263-265, 1992.
92)  HFMERE, B4R, RARE, Akl —, EARUSEMEER LY. B, 1987, p. 197.

30



$2F HTTEE N, ICRIFTHRESGEORE
2.1 AEDEHM

SnO, DIEIEHTKIZH LT, Z4E T2 CVD (Chemical Vapor Deposition) 2 & 2 &k
195> ALD (Atomic Layer Deposition) (T2 T E % ¥ v /LR S0% ¢ it ST
%73, CVD DEii CHES 2R EE 72 7 1 A TR HIKIA 3> TLEL,
F 72 ALD DR CIIAERE |, BIERTIX AW LW ) fERRRE SN T2, 2
NHOMERIETE D780 720, 2O X 5 Ze AT C & DRk & LT L2l C,
WAIMEDS & 1) | KRS BRI T& 5 EB ABIER A Sy & ) » ZIENHIT Hius ™,
ZNHD LD IRERAETEIZ IV T, SO IED R Z B U CIIelZil ~7z X 9 IR
PGSR E < EEZRIFLTVAD L SNTEY, Kim boBEic ki ), 673 K

(400 C) LIETHFEL7-3AIT SnO, BT REZ R & SN TS, L Laenss,
IHFEER SNTWD T LRI NIRRT T AF 7 BEMITK L Tid, 573 K OFRIREE SR
RCHY, 20X REMIREETIE SnO, IIASROIEHEZFECTE 2N B2 BhD
HOD, BUR, ZOIRECCRIRE S V- HEZERRED  SnO, IEERFHEIZ DU N CREMZR 78X
HIR, FTTARETIE, 573 K LLFOEM EIZ EB Z&5&1E, KAy X ) 7L T
SIS SnOp IEODPRIR, FHEZBI LN T 22 L2 HRVE T2, R, FEx ORI
2. EOREE, AL, 2 L CEOIERFTh D F v U TIRE, BEIEICRIT TN
HHE LT,

2.2 EBRAE
2.2.1 pEAE

AREBRIZBIT D SnO, HIEORIEIZIE EB 7T A~ 7#&EE, MO~ 3R hnr Ay X
U o 7O ZFREORNEE -V, LIRS, ENEN ORI - | REBRIZISIT DAk
FETNE, SO TRRD,

(@) EB 77 A~ 75 1E
ARIBRIZEBT D EB 7T A~ 7GR ULVAC RO &R - M) ) Zdiiie plds
i (EBX2000S) ZfHH L7-, ZE&EDOWIIKX A Fig. 211779, ZDEB 77 A~ Z&KEIET
X, B —LZW B2 —7y MRS L, R - 2838 L72EFIC RF (Radio Frequency,
1356 MHz) ZHIINIT 2 Z & T, ZNbHE2 7T AIREEIZ L, ARV H DA T X8
31



[1on Gauge|Pirani Gauge|
[ \

[ \
Mass Flow Controller YT @ RF Power Source
B
Ar — ( ﬁlckncss Meter
Plasma
N; — _ ‘
—] | e—— ‘ | | GND
Main Valve Main Pump

Cryopump

Shutter

Rough Valve Fore Valve

Electron Beam o

e Rough Pump

———— *

L
W Filament w

Fig. 2.1 Schematic diagram of electron beam deposition device.

Table 2.1 EB plasma vapor deposition conditions.

Sample No. P, (Pa) RF Power(W) [ Substrate Temp.(K) | Rate(nm/s)
1 0 0.21
2 1.30x 103 0.22
3 2.50% 103 0.21
4 3.20x10°3 500 RT 0.23
5 3.90x 103 0.23
6 5.10% 1073 0.24
7 6.50x 1073 0.26

JEZ X O IR S/ TR RN —A A 2 I E R S TRET 5 HiETH D,
ARFEBRIZIT D SO, IS DFE/ % Table. 2.1 (274, FRIBERFOERZEFEE /3T A —
2L UCGRIRU7ZHEIE, oBRYEIZHBWT SN0, O HHEHISEER I L TRELE
b2 Z ERRESNTNDT0THS M0, SN0, DRFICES LT, ZREROMEHIIE,
SnO, (i 99.99%. JEZHk Grains 2 ~ 5 mm) % JAV /-, A8 W EEE R AT T A K (AGC #4 PD200,
40 mm £4 X 2.8 mm JE) (TR & LT B EIRIEAEEE (A= X7 ¢ —F+HY US-2)
Z FHWCH KT 5 40/ (300s) . =% /—/LfC555M (300s) BERHIHFZITV, S
BIZ0, 7T A= T 1043/ (600s) LALFKRT v 7 &aiTol, £ LT, BEEEN
DEZEFEN 50X 10* Pa LA FICEGET D £ TR LTZ, SO X DI S T AR
Iz ERED Table. 2.1 TR UMD T, |IBTRIE L7, F-BEFEDED 0 ORFIE, 7
32



TR ERESEDTD, TN T AEEANL,

(b) ~ TR a ARy B T

KREBRICBIT D~ 7R b ARy &Y TR ¥ ) 7 R0 SO AT IR
A8y BB AR U, EEOMKX % Fig. 22 1RT, A8y XY o ZEITEZEHR T
BT HZ LKV T T A ERAEIE, 2OT T AHOA 4 BWABBO X —7
MR E N TEOREICEZE L, ZTOERIZL > TH—7 v MNEFHPROH T Z & 25
AT2H0T, RO LIz —5y NETZ2HK BICHEE S & OEEZ R T 5 0O TH
Do L DANY B Y U TEDOHFT, v~ 73 bar ANy 2 ) o 7HETZ —7 v FEREIC
R EZHINL T Ar TR E DA A AEROBELIER ST, #—7 > MhEICEHBES
TAHERSE D LT, IEHEOEFRILA A L7 b D TH D,

RIEBRZIIT D SnO, FilFESA: % Table. 2.2 (-4, EB 77 A~RFE L ITR 2, &
DOREMEETIET VA ANy 2 Y 7 %FH U TCBIEEZATORITIUTR B RN T, #IiZ
TN AT AGBNUSIEEAT o To, RERIZBWTIE, =A@ BiEk st ilo 23y
B H—I7 s b (BEREEIE 95 %) & FHVY, SnO, T Ta0s & 3wt%, Nb,Os & 1 wi%eishn L7z
bOE MWz, BIEICOWTIT EB 77 A~ LAtk T AR AMAKLE =52 ) —)L
ERWCTEBEMN IS L, RS E IR e 24—y hEEy LR, Tv o 3—HNOE
ZERE7S 8X 10°Pa LA FICHET 5 £ TR L., £ 0% 10 0 (600s) . 74T KN,

CX || ®0
-
XbH
Ol
O

Fig. 2.2 Schematic diagram of magnetron sputtering deposition device.
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Table 2.2 Sputtering deposition conditions.

Sample No. P, (Pa) RF Power(W) | Substrate Temp.(K) | Rate(nm/s)
8 0.00 0.11
9 1.4% 103 0.1
10 26103 0.11
1 41%103 0.11
12 6.6% 103 RT. 0.11
13 1.30 X 102 0.11
14 1.94 % 102 0.11
15 3.20% 1072 > 0.11
16 6.19% 102 0.11
17 0.00 0.11
18 | 4% 103 0.11
19 26%103 573 K 0.11
20 11%103 0.11
21 6.6 %107 0.11

FIRRPCT v T LN T AR R L=, T v 7, Table 22 1074k D
T, Z—7y b — SR EIEEAE 65 mm, RF /ST —50 W CHEA1T - 72,

2.2.2 #nE

ARFEER I, BYOUBRIZ X DRSS IEZA S tRPL, & v U TIREE, BB RIF T Es
2 72D plEF%  ADVANTEC #1840 il z2.4546% (DRD3BODA) % Fv 1T 873 K (600 °C)
T304 (1800s) . REFFPAKH THIELELZAT > 7,

2.2.3 SRR

I O P B (X U BREHE IS X D IRPUER (Z# P, A LA X —IP

MCP-HT260) % HWTATV, IO v U 7IREE, v U 7 BEIE 3R —/VHlE 2 FIVW T

I L7, A—/VHIE & 1X, Fig. 2.3 23 L 512, EIROFEALTND b D% L, &It

BEE LW 2N T D & B &GO FITEATT A RNCEE I NBLID L)) R—L

R AEFIH LICELETH 5, MBI 2 T CTAELLRENV EZET 52T
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Fig. 2.3 Hall effect.

2.2.4 F—REFRICKSEFIEEFTM

ABFFE Tl B IS < BB HR 2 VT SnO, 12 361T 2 B FIRRBART 21T -
oo HB—IRHEIEITT RNV A Y 7 MERO, BEPBIENE LR T v v L& VT
T R L A RS Y 7 b TAdvance/PHASE %18 L7= Y7, Fig. 2.4 ICAZHEIC
BIFb7u—F v — Ry, ZOFETIE, A—"—t AP OFEFEE Q. A THIEL
& LTHLEME L pp. 36 KOS BIBIL Hop Z50E L. Fig. 2.4 HPOWEIRES D 58T
DIEHFET, Kohn-Sham 2 ),

(Hks(pinp) - Ei) ¥ =0 (2.2)
iR, = L ThoiITOMREBRIEN G- 2 B,
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DIFEBEMEV IR AT Z L2k KRADEEFTL D THD, DR, AL RLF—
6 DIEEBI H T 2 Al EfRIRT 2 Z N TEXHDT, ZOHELH 0 IZE3< L H I
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Fig. 2.4 Flow chart of this calculation.

Fig. 2.5 Super cell model of SnO, for calculation.
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Fig. 2.6 The effect of oxygen partial pressure and annealing

on resistivity.

37



imd 572912 XRD, FE-SEM, KON XPS & HW Tttt - 217> 72, F9° XRD IZ &

D R R 21T o TR & Fig. 2.7 IR,

— AN SNOL I LLE 72 (IE 7 g/ VTF V& 22 & 0 . XRD 28V Tid (110) . (101)

(211) PfEGEEOE—2 & LTEND & ShTWb Y, Fig. 2.7 (@) LY. ARIEE % Ok
ITWTNDEEE BB T HIAE R E— 2 2R S7, A7 MLE LTI7 r— NIk
R LTRY, ZOEENRTENLT 7 ZRETHHZ L 2R LTS, —Ji, Fig. 2.7 (b)
LV, BOEEH L=V 7 IET =— U U I RIRIC L 0 RS M B L, (110)

(101) . (211) ETE—Z ZRL TV,

WIZ, Fils% K OBLER % O RO RE DBIEE 2 FE-SEM Z W TIT o 7ok &
Fig. 2.8 |29, Fig. 2.8 [3akEr%, MENNELEE Chy b HEGUEMED > 75 (RSB0 T =
250X 10° Pa) DEMEEL DY 7L & BRBE DY TN Th 5, Wi GE X 0 R
HOWE (Fig. 28 (@) 1%, 1Z- XV & LIoEN T T . FFRETH D, —F, Bl

P OWNE (Fig. 2.8 (b)) (RIS & U TREBAE L T2 Z 23 bitd, Ziuddk
? XRD DOFERAEZET D L. FIEEE T &2 LITEA LT AEIEES, INELEE I X
Y SO, DTN AEGERR L T DRGSR DB NEB L THRE L TS Z &I2L Db
DIZEHEETE Do

BT, ZNHDT T IUZ DT XPS (2 LV 5D Sn 5s LB OfE A 3k LF —IREE

(110)
i (101) (211)
0,:6.50x10° Pa 0,:6.50x 103 Pa |
I 0,:510%10% Pa | 0,:5.10x 103 Pa
E 0,:390x103Pa | = | 0,:3.90%10° Pa |
£ 1 1 £
E 0,:320%103Pa | < 0,:320%103 Pa
= =
5 0,:250x10°Pa | 35 0,:250% 107 Pa
= =
0,:1.30%10°3Pa 0,:1.30x10°Pa
%
0,:0.00 Pa 0,:0.00 Pa
20 40 60 80 20 40 60 80
26 (degree) 2 8 (degree)
(a) as deposition (b) after annealing

Fig. 2.7 XRD spectra films deposited by EB.
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(a) as deposition

——

Glass Substrate

(b) after annealing

Fig. 2.8 Cross-section morphology photograph of the SnO, by FE-SEM.
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Fig. 2.9 XPS spectra of Sn 3d orbits.
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Fig. 2.12 Reduction of the oxygen defect by annealing.

Oxygen defect
O IX\F‘) Sn
) -
j f > \?9 :
N/
— SiO: layer SiO: layer
SnO: layer SnO: layer SnO: layer
Glass Substrate Glass Substrate Glass Substrate
(a) as deposition (b) SiO; film forming (c) annealing

Fig. 2.13 Production process of SnO,-SiO, two-layer films.
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Fig. 2.14 Resistivity of SnO,-SiO, two-layer films.
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Fig. 2.19 XRD spectra of R. T. deposition.
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Fig. 2.20 XRD spectra of deposition on 573 K substrate.
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Fig. 2.22 Surface energies of the oxidized and reduced terminations of SnO, (110) and (101) %.
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Fig. 2.23 Crystal growth mechanism by annealing.
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Fig. 2.27 Partial charge density to each plane direction.
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Fig. 2.29 Moving path of Sn 5s overlap in SnO,,
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Fig. 3.9 Morphology photograph of SnO2 film surface on each substrate.

Fig. 3.10 Cross sectional TEM image of interface of Sapphire substrate and SnO film.
(a) Sapphire substrate and amorphous SnO- film. (b) Crystal phase in the amorphous

phase. (c) Amorphous phase. (d) Interface of amorphous phase and Sapphire substrate.
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Fig. 3.11 Cross sectional TEM image of interface of SnO, substrate and SnO; film.
(@) SnO;, substrate, Amorphous phase film and Crystal phase of SnO,.
(b) Crystal phase of film. (c) Interface of crystal phase and amorphous phase.
(d) Interface of amorphous phase and SnO, substrate (crystal).
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Fig. 3.13 Misfit relaxation phase of SnO,.
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Fig. 3.14 Free energy change due to the

interfacial energy increase.
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Table 3.2 Resistivity of SnO, film on each substrate.

Glass Sapphire subst. | SnO, subst.

Resistivity (Q-m) 3.08% 10 9.50x 10 1.70 X 105

OR

10 E

annealing
10 °F

Resistivity (2 = m)

10 ¢

/%' ~ as depo.
RSRREE il

With SnQO, seed subst.

Fig. 3.15 Effect of SnO, substrate for resistivity.
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LLEDFER LD | SN0, v — REM A AV 2 2 & CIERITHESIED BAFRIE, OV CIHK
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WA T B4 3 2 ¥ LR D £ 9 IR O %2 SO STV R IZRE & 1T D |
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AEVREFFS AR O Ny 7 72 AT 52 LT, @l Ch - TGk
PEVIEAEONIZRFIEL 525, ZIUCL Y| ITO O-EHT (10°Q - m) i3 kiE
2B OO, Table 3.3 2RI L DIZ, ANy ZEE LTI ER S L~V OEEST SnO,
W AARD 2 ERHPR, Ay ZIETHIKAEM SN0, RIEABMNEI TE 5 2 L &R
ZENTE,

3.5 Tl
R AT REZR A /Xy 2 U w7 B RO TTIRIRGL SnO, #2155 Z L # B E L, v —
RIE 2RI LTz mifb i bR 23 i R, IRD K D e T E RN o7,

(1) BEZEA 3 & R X0 SRR U 7B L X, SRR OfS IR AR 2
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R LTz, FRZ, 22 L EDNHIRF STV, fifmtEomWnty 7 407

(ALO; Hiffidh) ORMEITH LT, FidmfEaTE Q%UWN) BEWIcbibbd, 7E
VT 7 AFEFREE LB S Vo T, EToBROZ L2036, TENLT 7 AD

Table 3.3 Comparison of resistivity with other research.

Substrate

year Deposition Resistivity(Q = m) Reference
Temp.(K)

1982 Sputter 2.0x10” 673 9)

1984 Reactive Sputter | 1.0x10™ 473 10)

2012 Sputter 8.0x107° 423 11)

2012 Sputter 6.4x10° 473 12)

2014 Sputter 1.7x10% 573 13)

2014 Sputter 1.7x10° 973 13)

Thiswork | Sputter 1.7x10° 573
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Fig. 4.1 Cross sectional TEM image of tin film after O s.
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[100]
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Fig. 4.2 Cross sectional TEM image of tin film after 6 min.
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Fig. 4.4 Cross sectional TEM image of tin film after 1 h.
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Fig. 4.5 (b) Extended image Fig. 2.10 (a)
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Fig. 4.6 Comparison of depth direction survey spectra of tin film after 199h exposure

to the atmosphere.
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Fig. 4.7 Specimen model for calculation of tin

oxide thickness.
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Fig. 4.8 XPS spectra of 199 h exposure to the atmosphere at (a) 0 s and (b) 50 s

argon ion etching..
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Table 4.1 Binding energies of tin 3ds;, from tin and its oxides tin.

Ref. No.

Tin metal (V)

SnO (eV)

Sn0, (eV)

(6)

484.2

485.9

486.7

(7).(8)

484.0

485.7~486.1

486.6~487.0

9)

485.0

(10)

486.7

(11)(12)

486.8

(11)(13)

487.0

(11)(14)

486.8

(15)

485.8

486.3

(16)(17)

485.0

485.9

476.6

(18)

484.4

486.8~486.9

Summary

484.0~485.0

485.7~486.1

486.3~487.0

SnO,

SnO

 Peak position

Intensitry (arb. units)
%};
OO |0O
niumium

490

488 486

484

482

Binding Energy (eV)

480

Fig. 4.9 XPS spectra of 199 h exposure to the atmosphere at 0 s ~ 100 s argon ion etching.
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Fig. 4.10 Relationship of FWHM (Full Width at Half Maximum) and etching time.

84



ELT, #EB2 Lum @ Sn - PR SN DB LR S 2= ) 7 A~ U CEHf
L7f5 B2 L | JHERSHA L7= 3 um O Sn 8o X8 LTI S D B IEIE & 25500
A = F L ARE LIRS D BRI R, KD | AR O KRKRTER & L
RS S OBIRIE, O OMELBRLZE 8T 5 2 Envbnd, - Z ORI T
RLTZE 912, Massoud 5 2MER L= V4@ OB LI & IBEOBIR 22 L 7= RRE

D Coxp(-2) 4.4
dt ~ (xta) T O D (4.4)

E XL —ET D Z ENALMNIR 0Tz, T2 TxIIRREIEE, tI3iR iR, A BiZEN
.,

1 1
a=2p,(1+7) (4.5)
B =2D ¢ 4.6
=20, (4.6)

THREOLNDTEE. C. D IIMEEF D/ T A—4ThD, F72:(45). 4.6)IZHB T D,
(TR LI R OREFE DILBEREL, K ILRIA & ER A D SR CIEE 2 2 BRI O RO R E L
h (IR EE T DR OMERERE, C I3t OREE ORI, Xo IZYIH
PEIEE CTh 5,

10 E T """| LR | A | A | AL | T
- ° Ref. (19)-(22)
£ - " Ref. (23) (XPS)
S " Ref. (23) (AC |mpedance) . OIA
@ 10" 2 Our work 5 % 5
é’ i
(&)
= A
@ o Massoud model 1
-S—: 10 : 1
o i
_1 PRI i sl T | T | il PR T T
10 ' 2

10° 10° 10
Exposure time (h)

Fig. 4.11 Relationship of exposure time to the atmosphere and oxide thickness in an indoor

environment at 25 °C (298 K).
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Fig. 5.4 TEM images of Sn-Sn bonding with 0.37><1O6 Pa pressurization at 453K.
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Fig. 5.5 XPS spectra of tin films for exposure time 6 min and 199 h.
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Bonding Tome (s) 40 60 80 100 120 300 600
Sn-Sn X X X X X X X X X X
Ag/Sn-Sn/Ag X X X x0O 0]®) O O O
BAEMF M EE . O-2ENLGES. X >XES)

WRIZ Fig. 5.7 ([Z82A W 600 s TIT» 7288 > 7 VO JLiki % FE-SEM (2 X 0 @182 L 7= 4%
A3, Komh, o oid 0D, #EENERINTWD, F/2 EDX 12X
DFIHTOFRERN D, Sn & Ag BMRESEBL, YW—IZ@BRtEmEER L D, £ L
TEDORELN Dm0 B EEY AgsSn L HEE 415,

FEWNT, ZOERIZBWT, Sn & Ag DZE), £ L TENOPMEAVEICRITT AL
BT D, £ S FMEITHRITE & RRRO BNRERA: CTRUR S 7o 2 g A (TR REE] 0.37 X
10° Pa ilE L7235 453 K & THIEA L, Z DETHLE & AFM IZ X 0 43T L7-#E % Fig. 5.8
(RT, ZOREY | INERHE 50 s fR E CIIERIEH S VN E <20 . TORITHEN—E
2725 TWD Z EMFROBLIND, ZAUTNMENT LY Sn RG220 . BN
D REMMOMMOEFRZ N OSINTNE, DL A TEBHEIMEIEL TWDHZ LERL
TWb, 2F 0, BIFEOHEAITEBW T, Fig.5.1 @), (b)D X o Z2¥MEEIC X p A
PEKIFHIS0s TIEIET S L EZ BND,

WIZ, ZIEERAATERRIEA L, ZOREIBT 5 Ag R T DR A XPS 73T L -
THATHFERE Fig. 5.9 1737, ORIV, REZBT D Ag ORI > C
ML TWE, 200 FE C—EILR > TND Z ENRFEDBND, ZOFRLY FTED Ag 2

100



Intensity (CPS)

"
8i =
—

Cu

N
|
\
0. l
ol B oY

J;‘ ‘

’:- Sn
=
—
& :
= §
Fig. 5.7 Elements line analysis result at the bonding cross-sectional.
15
20 <
= U ——
g : 0 o5 C
W 101 . b
5 < K
= i
gh % o P
o | £ !"
; 100 5 O;'O
& 2 st O!«'
Z : ;
él ;’
fl
He
OO 200 400 600 OQ el : ! : ! :
_ _ 0 200 400 600
Heating Time (s) Heating Time (s)
Fig. 5.8 Surface roughness for each heating Fig. 5.9 Ag concentration at surface for each
time. heating time.

Sn HHAHEEL L CuvE, 200s B2 T Sn & Ag DEBRULEMINE BT 5 Z &N HEE T
&5,

RBIZ, ZNENONENR N I1T 2 BERE Z TR D701, EAMIS )R ER 21T -
7o TOfER% Fig. 510 (TR, ZORILY , FHEICfE- THEATENEML TWD 2 &
DFRO HIVD, 7RI OBMZSIEIME T 5 50 s i 2 T HEEEIREEIN L TV 5

101



BB Ag DILBDEATEICR & < 58
ERIFL TN EHEETE D,

INHORER LY, AEBE LK
Sn-Ag SR A VT ARTRE R AV
TODT = —ARHD5HEND T ENIAL
WeTpoi, Tihebb, BETaRAY)
L sn Rt T 5 /PTIEIS
F o T, BLRME) e S AVE A1) 7082
BINERSIND, Dk, Ag & Sn OFH
AU K> TRBRUEEMDTERL, B
RLTWS Z & THREIAHES DIR(LE
IR L TV & R ESICED
VD T EDMERIICHEE TE DR L
o7,

5.4 TR

ey Tkl

Shear stress (MPa)

15

—_
(=
T

n
T

200 400 600

Heating Time (s)

Fig. 5.10 Shear stress for each heating time.

HIGTE S Sn RMKIEEMZEGOFILZ g LT, maMRmoMh, <

L CHEGIRERF CTh DML BEDOMIEZH 5 Sn REBRLEWDIZE, BRI L

T, HrL< Sn-Ag RS 2%
Hik7=,

L. BRFEREIT TR,

AT OMmRAESED Z &N

(1) BEATHERTFTH D Sn OREEALEZENIFEL T TH, TDEINEWGA (K
REmRF 6 min LAWN) T, Sn RLOKIEEAMEES (457 K. 0.37MPa, 300s) 73

HOTHNTIERL T D LW 2k
2 E=x
B IRIEICIT
=D,
©)

B 5T
DATENER LRI DFEAIRREI XA B Sn DOFE A RREIC TV N =8,
JELS TR LT bR L D 9D

Aoy

(1) THRLNIHRT YRS SR Z YRS S 720

AT EPEDORRE
RIGHELLT W EHEET

ISNn DO FEIZAg HFRCE LT- & 2

A, R EoBEES: (457 K, 0.37MPa, 300s) CARHMISBEENER SN, 2
1%, Sn-Ag REBRULEWDOIERL. Bl X B LR EOREE SR U, B2 TR

102



HRTEIZZENEL TV DL EHEETE D,

PILEDORER LY . WIS T «+ A7 LA OBGMEEZ 7 L — 27 Z)—3 2 1KIEE
BEAOFEBATREME 2R 2 LR, T OBESITIEELT 4 AT LA DI HT, I BT
Pt FINBELR I A FHERT A ASBHZB W T HiEf T 5 a[REMEA D TV 5,

EE PG

1) W. H. King and W. A. Owczarski, “Diffusion Welding of Commercially Pure Titanium”,
Weld. J., vol. 46, pp. 289-297, 1967.

2) AR, EEEREA O A B =X L LA, FEIEH, vol. 52, no. 7, pp. 8-14, 2011.

3) B. N. J. Persson, “Contact mechanics for randomly rough surfaces”, Surf. Sci. Rep., vol. 61,
no. 4, pp. 201-227, Jun. 2006.

4) W. F. Hosford, Fundamentals of Engineering Plasticity. Cambridge University Press, 2013, p.

93.
5)  SWARFIR, B T 7%, 1967.
6) i E, FRIL, PRE S CLSI Sy — 20 Au-Sn R EES AN, TR R

SC4E, vol. 15, no. 1, pp. 180186, 1997.
7y EVERE, T U — XA TERIEEIN O R, KRBTSR FAIRSERT, 2000.
[Online]. Available: http:/mww.sanken.osaka-u.ac.jp/labs/rci/nano/down/leadfree-basic.pdf.
8) WY, “@BbEMIINT Z > 7 2% 2 AuNI-P 8RR A 7E 855800 S ma Rk
CAEETREERHMY, KRBT B LEWIIER F6e - BEREAIR L5 22w
3, 2013.

103



104



F6E KiE

RIAIIET 4 AT LA ORI T DR R TH S HEHEDT SnO, KB AN |
[Sn SRR EFRES ) DI Z AR LT, @ d 2WE Th DM@ OMR - TR A 7
AL LNI L, EREOMRITROFIATREM 2T Z L2 R E L, BEE T 72

T2 N

1)

e

)

4)

®)

(6)

(7

8

©)

(10)

LIF ORI T BT,

EB 7' T X~ &1L T B LD SnO, D HARFLIIIE R /3 TR E S BT 5 2 &0
I | RRCERFESYIE 3107 Pa Bt THVIMEZ R4 2 & B LR 5 T2,
NREVILERZ X 0 HARHIASE L DRI & LC, BRB RO RIZ L Di58x v U 7
OO BIELL TS Z L EH LM LT,
EB 7' T A~ KL THBILD SO, IR pmAFIIC & £ T Y AEHED Sno;
FLRN B INTBEL TN D Z EFRD BTz,
ZAUTKI LT, w7 R b ARy &2 U ZETH LIV SnO, IR TAFEAEIZITY Vil
CH D Z ENRBO BT,
TR IR ARy Z Y CTEICL Y IR LT SnO, G EB 7T A~ A IERIER,
FESESYEIZE DIIRPUIE L, WIERRRENENFIET D 2 E B LNI /25T,
VIR IR ANy B2 Y TIRIZEBWTEBOMBARIEIZ & 2 ah ] - C ekt
SEEDBHMDFED bz,
F 7o FEMONENENE Z 35\ Tk, i =R/ — OB CIEEESR 4= Tl (101)
M, EEEFRSEEIRTIE (110) mAMESRINCAEET 5 2 LB bR 5T,
Ay B W LR BRI D OREMRERE A 7 = X LR BT, T70bb,
SHIRAIEEEZ K > TR LN T BT 7 AR — KRR DI D5E880 B L, HER
RSN CAS: D U7 A SRl T SE L S R d iR 972 R RZRE DR BT,
BB A SRR LV ER L, nEUE L7REE, SnO, (110) mlcERIA
(ZH T DBMNERTHZ LN, BRIGBEEAMS EE5b 5 5s
EOHER D PRENZ EEZH LT LT, ZOREFITERIC X D EIEHY L & 13135
SLTW5,
BELZE Ry H T X0 SREIEC TR U 7B LSl T, Fobiae i ot e ot
Wb b3, mEERE, FREEEI I DEE AR LT 'L T 7 AMEIEE LD
ZEHAM U, BRI, 2B F R LRI STV, REaEEO WY 7
105

gt

St mb 4



747 (ALOs Hiffifh) ORI LT, MBS L%LN) BEmWnic bbb
T TENNT 7 AREFWEGE LGRS IR o T, ETMRO T ERNn G, TEL
7 7 AD SiOp R T AFMERMEITH LTH, TN T 7 AFEFIEIE LR S 4172
WZ EDHA LMo,

(1) L2 L7Zenin, fEftEomEy SnOp FotkZRmioxt L TiE, BakkR & & bic, fmic
20 nm R DT /N T 7 ARAEIE ZTERL LT2D B FEfaPED @Y SnO, 23TERL S 41
HZ EaRMLT,

(12) AU, sEEIFNCIZE U7 b8l X, Sl AR S Lo & 0 B2 0O Tlidie
<, FTHIOEMEC Lo TE, — HIRfmHAREREE 2 B D & O D SR
WEHLTEY, HOREESR, RET /X =B Ik, 2 O8RS

ZhtmOfE e U THREEMEDRWEDR R L2 2 & EHEETE 5,

(13) LR X 9 ITHESEME SnOy FAK D EIZ ANy 7 TR L 72 B o kb
17x10°Q +m &, AN w & U U PETIEMR b v 7 LULd SnO, #ilE A 1SS Z &
MTET, ZIUTED ITO B DL mAENE, (KA, EiiiE 72 SnO, oD S8
AREtE A R Z LR TE T,

WIZ, Z OIRETERFR LRI L, & OXHRIZ 3 D B IR LEMFEFERL A T = K
ZHT D Sn FEEALEEIZOWTZEOREE LA I = XL ALl £ LTED
b BHERFTH 5D Sn REFAEEAIZEE LR, UIFOZ ERHLMNNI -7,

(14)  Sn Z#KRETEBE L THE LD LHIL, TROIIOBRE (B{LFRE~6 min) T
1L Sn FEAAE IR L Ca b — Lo MEACT 5725, BRIEAFHE] 1h (2725 & Sn LR(k
#) SnO D FURIIHEE RN & TR T 5, S HICE LR e & (199h~) | Simic
TENT 7 AEEEET DB L TS 2 E B T LMo T,

(15) R & B LR ORR LV | BRI AAIERIZIZ Sn 2> HEEL L 72 Sn
A 2 DIEBA AL L TS & F LD PRI LG58 B, 48 Sn @
RIAIBHRR L E R I TBDOND 2 E B BN T,

(16) SISO LNT 'V T 7 ARLEHIRIL SN EWREH DI AT v N atENT S
BRI DNy 7 7 TH D EHEETE 5,

(17) EREOMGET T HiER CETEAIERFTH D Sn ORMmB VNS FE L TV T

106



b, ORI PENE ORKEEIERHH 6 min LIN) Tl Sn AHORIREHES
(457 K, 0.37MPa, 300s) ASEROHNIEERLT D &V D Z &R LT~ Tz,

(18) S DO LEIRORE G IRARIZ AR Sn DOFFEIRIBITITN 20, A FEEEDI
@t G IRRRICIT Y, JE TR LIZRAEEIR L O b3~ BEAA TR0 L HEE
TE D,

(190 A7) THLNTH R EGTERZ LR T 572012 Sn O FEIC Ag ZRE L7z &
Z A, A EOBEETRENRESPER SN, UL, Sn-Ag ReBRLAHO
TRk, BRI L0 B LR EOBIEN R U, BTEROBH AR TE 722 LA
LTWD EHEETE %,

(20) ZOEEIFIHWIHIOERHI 7L, 2 LT Sn-Ag REBLAWIERRE BB L= # L
BEATHY., ZHUCEVIELT 4 A7 LA OMFETH 5 IKIREHES (457 K,
0.37MPa, 300s) DI AIHEM 2R Z & 3SR,

PLE, ARIFZEZ I | REET 4 AT LA OFBEIZEE 53 DI LFREBEDIERL A 7 =K
E LT TENT 7 AN K D B ORI D N 7 7 fHZ IO TRIT 2 & A3 IR,
L LZHOFIE, B2 DA =L THY | [FEEOHOTII R, F722nH0
ANZALEBESTHZ LT, EHE T L— 20— DRI ROFEH AREME 274 2
EINTET,

107



108



P

AWFZEE, KRR BT TR~ T U 7 OVAERERMERI SE-BAFRIEEZ OBE) T
B HHHREO T, BT UG b D TY, fAFREDOFAETH 23, KamXDOEEL
PRSHIEZTTLEED, 2L TEL DRl Z/NMEDTOIZHIE, #FREL T /EE o7
ZEHROLIVEEELET,

AW A HED DI T- 0 R ZHREZBH Y FEE & L CoREZE R L < |
FIRHTIT AR CIRE L Qe & £ L, RIRKRZEREDE TR~ 7 U 7 v
AEPERM R a8 AR IR < BefE L £ 97

KRR TEGeR~ 7 U 7 VAERER SRR AN = BdR I IIRIE 2 B5 | &
ZUTTRE , KX OFEL LOGERICY -0 EELMEER, P82 HEE L, F2%
DL, WFEE T 5B, WHEEDE X IRV THEFEE, HHifE L C\WeEEE Lz, D&
DL L P ET,

KKK T GeR~ 7 U 7 VAERER R BRI R0 TR 2 5| &
ZUFTEX, TENORENREFEEZIGY £ Lz, SRR 220, BRI/ NMEDFR ST
MRk 2 PR L, ET & S MRICEHZBOR L TIHES E Lz, LI VLR L BT ET,

AW EBED DI T W i = & & TEIC, RS ZTHE F L2 KoK T
PEFIBPEATS B — AR TR I TR TGN = L E 7

AIFEZAED DI T2 ) ZEEROMMRESRE, WHEREFICET o8~ 2B EHY £ L
KBRS K4 BB ZIR T L E TS

KK T A 2 AT A VBEWR ' & — ) IBRRHTHEEIR I X
FEAMEEORNED 72 B, Bilg T, EEMEREZ < OFMEIFICOWT, A
VWIS O o TIHFRETHE £ Lo, 2 2SS OEEZ R LET,

AIFFeE MDD L TREHMER. SHTIZIBWTE KA T ) & THO T IBAE IR,
=HeRicEtk sttt &St o st isiNg 77 RSty e F L
B, —RUEA MST OBIRE D J5 2 (L BIEFLE L B $4,

AW A A TT DT ORI L7286 — R EE . Y 7 | Advance/PHASE A FIlHI ST
7272 92T, BREKREIILSD, 7 RRUVARY T N (BR) D% < OBERE OJ5 2 12
NEEXE L, ZZIEHOBEE2RLET,

109



My heartfelt appreciation goes to Mr. Paul Aoyagi whose comments and suggestions were of
inestimable value for my study.

AMWFIE 2 D OMIRITIZAT T D120, RIORT: ESFEEEAET A B A A ERTIE
BUTHEERD A T F U A Was OB EFIE OB ESEZ R &Y £ LT, Fi/h
EOWFEICED D Z & ThTEMR Z & THIFREME L TIHE E Lz, 2 ZITHEK
HELETS

WFFEATEIZ BT, FBITFER TR 2 £ O ITHEBFREEE, %O TOIFEHLE L
TMEEX AT E LICRIORS: BEESEEEAHD SnARVERIF- R EF IR O 2R L £
R

RIRFERZFBE TEgeRl~ 7 U 7 VAEERSER Aokse B2, e &< L
TERMEFREZZITI5Y £ Uiz, FRCRSCOMEKZE 2 5 ECEE AT 2 1H8)
BlIFREZE LRV E L, LEVEILHE L BT E TS

H % OWIFEEBIO T TRAEWVEE LAV, 2T E0, —FEICFRIRE L T2k
SRS LR~ 7 U 7 OVAERERIERIL o AT 5T VA L BEIROERRI 1T K72 21
EIZIHD £ Lz, FHIEIFRZR G HRASHRE) | FTEFBAIKR, BEARDK, &
FRIRIZIINEDIEZ A TT 218 HTe > T, Z< OB £ Lic, ZZITEHOE
ERLET,

Rk ETH DIk (Bl BFPERE) ROZMFREK G sklathd—x2 i R)
SITH=FRE BT I L, FpZIEEE LWBEE, RS LW 2 A L, pigeE &
L COAEEZENNZT D EDNHANDOBNT CTHRE LIz, LEVEHOEEZRLE
EE

INEDMERECRAME E CAIFRZ T TE I L1, L THGO TR, 7T
D/NEDJE Y D5 2 DJEMEISER L #ll ) OFRETE L Z 2 THE Y £3, Bk O
EEND TR HABIIFETHI L2 o THRLERA S THE LW EFELET,

FIFEAVERITF/O T, BEHAFEGE ORFEZIENRD ST E N Nb LT, HIZ
B < IMEZIGER L, XX T NZFHECR L IR KREOME EHEEZRLET, £
LT, FERERDEVISEEND Lo BA b Lo, WMHOHAXTHD THEIC
HFLTHRILL ) 2y b—IZHBT, £RTOFEICET TR A, #HSTHEIRT 2 2
EHRZZITBENET,

110



BARIZ, AR & K0 /INVEOIITEE & L TONRTERUTRIKT: FEFSEEEATS Ve
T ERHEBAZ OMFREREERED T, BT L2 b D TT, RWAEICHAD LIFRITHE
WHIIClZd 0 £ L7, R TEd 0 LIRS 22T 70 s Bk o CTE T/ MED A
IEE, INEDONEDOKREIZ D EREE L TR 9, BAENDFBATIIZHE L LToOEME
DT, HRIEBHET D2 bo T MLEMRASETWEEE LW EFLETS

111



112



ARXICEATHARMAX

1 KHEEA, HETE, AEHANEG, TIEZ, &5, MAM4, <5
FLEIHEIZ KL D SnO, K% A E M D & IR BB MEAT & IRIRBUEICBE T 20858, &
B2 SC4E, Vol. 30, No. 1, 2012, pp. 86-93.

CoKME A, ERET O, AHERENG, EAHLE, EEER, MARL, FHLAT
HI, < i = R TR B R Ag/Sn R % B 7 IR RE M R B A IS B B P,
R 20 SCHE, Vol. 32, No. 3, 2014, pp. 201-206
3. BHINEE, R T, HEMNG, FkK T, KHEA, NEEE, EHRIL,
BEEBE—, T 54 2 Ag R & Mt B2 J8 SO I B9~ 2 8 987, 8 F 2
4, Vol. 30, No. 1, 2012, pp. 94-99.

ARMXICEHT HIFERER
KRB, T, A EENG, EEESRE, SFEALY T, BIIEREE, “Sn0;
RBEBREMO T E X T v LR EZFH L CRETEICE T 25, = b

J hu=7RZBTL~A 7 vwfEs - FREINRN ORI T A MR, 2011
F£2H.

2. KHE A, EBETE, AHENE, EEF &R, B)IEZ, 86 - REHEZH
W72 SnOp R EM OB FIRBMITICE T 2%, =L 7 tn=272ICk

JhH~A 7 aEs - BN R T A, MR 201242 A,

3. KHEEA, kT, & HENG, EXEE RS, MAMmM, <kttt 3D-SiP i
RIEAK N Sn-Ag R#Emt FICTEH T HM%8”, A~v— vk Rx%a KE
WE a2, KBk, 2012 4% 11 H .

4. KHEN, kT, HHENR, EEE R, MAML, “kitft 3D-SiP M
KIERE#Em AR ICET %R, 2L 7 ba=J RACBTDL~A 7 o
Ao FEEEN R YT A ML 2013441 H.

5. Kiyoto Yoneta, Ryohei Sato, Yoshiharu Iwata, Koichiro Atsumi, Kazuya

=

Okamoto and Yukihiro Sato, “Study of Low Load and Temperature Solid-Phase
Sn-Ag Bonding with Formation of High Heat-Resistant AgsSn Intermetallic
Compound Via Nanoscale Thin Film Control for Wafer-Level 3D-Stacking for 3D

LSI”, International Conference on Electronics Packaging(ICEP), Osaka, Japan,

113



April, 2013.

6. Kiyoto Yoneta, Ryohei Sato, Yoshiharu Ilwata, Koichiro Atsumi. Kazuya

Okamoto and Yukihiro Sato, “Study of Low Load and Temperature, High
Heat-Resistant Solid-Phase Sn-Ag Bonding with Formation of AgsSn Intermetallic
Compound Via Nanoscale Thin Film Control for Wafer-Level 3D-Stacking for 3D
LSI”, Electronic Compornents and Technology Conference(ECTC), Nevada, USA,
May, 2013.

7. Kiyoto Yoneta, Ryohei Sato, Yoshiharu Iwata, Koichiro Atsumi. Kazuya

Okamoto, Yukihiro Sato and Takumi Shigemoto, “Study of Extreme Low
Temperature and Load Solid-Phase Sn-Ag System Bonding Mechanism for 3D 1Cs”,
Electronic Compornents and Technology Conference(ECTC), Florida, USA, May,
2014,

114



	1.内表紙
	2.目次
	3.第1章
	4.第2章
	5.第3章
	6.第4章
	7.第5章
	8.第6章
	9.謝辞
	10.本論文に関する公表論文

