
Title 高調波磁束を利用した可変速ギアの研究

Author(s) アリフ, ザイニ

Citation 大阪大学, 2015, 博士論文

Version Type VoR

URL https://doi.org/10.18910/52186

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



 

 

【表紙作成見本】   

（注）・完成版作成時には朱書き文字は、削除すること。  

・各文字の書体、ポイント、レイアウトは自由とする。  

博士学位論文 

 
 

高調波磁束を利用した可変速ギアの研究  

（「論文題名」は学位申請書類の記載内容と、句読点や英文の大文字・小文字の区分を含め

相違が無いように記載すること。ただし、英文題名の場合の括弧書きによる和訳併記

は自由とする。）  

 

 

 

 

氏名  

アリフ ザイニ 

 
 

(学位申請書類を提出した年月を西暦表記で記載 ) 

２０１５年１月  

 

（研究科名までを最低限記載、所属各専攻、コース・分野等の記載は自由とする。）  

大阪大学大学院工学研究科  

知能・機能創成工学専攻  

（論文博士については専攻名の記載は不要）  

(2014.4 版 ) 





- 1 - 

 

Abstract 

 

Rising costs in fossil fuels and commitments to reduce the production of carbon 

dioxide have spurred interest in renewable energy, especially in wind energy, and due 

to this, many new wind turbines are being constructed around the world . However, 

large wind power turbines have to be installed in places that are difficult for human 

access such as on top of hills, making the mechanical gears that are utilized difficult to 

maintain. To achieve maintenance free operation of the wind turbine system, the usage 

of magnetic gears have been suggested and thus magnetic gears are becoming a 

burgeoning area of study. However the gear ratios of these magnetic gears are fixed, 

and thus the generator will not always be operating at its most efficient speed.  To 

achieve maintenance free operation of wind turbines that always operate at their most 

efficient operating speed, this thesis proposes the utilization of magnetic gears that 

have continuously variable gear ratios.  

In Chapter 1, the history of magnetic gears is discussed, the operating principle of 

magnetic gears that utilize flux harmonics are explained, and the aim of this research 

is presented. In Chapter 2, finite element analysis method (FEM), which was used in 

this research to determine the characteristics of the proposed magnetic gears are 

explained.   

In Chapter 3, two magnetic gears that can achieve a continuously variable gear ratio 

are presented, their respective characteristics are investigated and they are compared 

with each other. It was found that the Vernier version has better torque characteristics 

although steps will have to be taken to decrease its torque ripples.  

In Chapter 4, the power equations of the magnetic gears are der ived and their 

efficiency is evaluated. It was found that the proposed magnetic gears would be most 

suitable in the high speed rotation range.  

Finally, two topics that are connected to this research: the Vernier motor and the 

induction magnetic gear, are also extensively investigated and are inserted in the 

appendix.  



- 2 - 

 

Contents 

 Introduction ........................................................................................... - 4 - Chapter 1

1.1 History of Magnetic Gears  ............................................................................. - 4 - 

1.2 Fundamentals of Flux Space Harmonics  ........................................................ - 8 - 

1.3 Operating Principle of Magnetic Gears ........................................................ - 12 - 

1.4 Magnetic Gears with Variable Gear Ratios  .................................................. - 15 - 

1.5 Problem Establishment, Necessity for this Research, and Research Target  . - 20 - 

1.6 Thesis Outline ............................................................................................. - 23 - 

 FEM Analysis for Determining Model Characteristics  ......................... - 25 - Chapter 2

2.1 Introduction ................................................................................................ - 25 - 

2.2 Magnetic Field Analysis .............................................................................. - 26 - 

2.2.1 Derivation of the Fundamental Equations  ............................................ - 26 - 

2.2.2 Discretization Using Galerkin’s Method ................................................ - 27 - 

2.2.3 Non-Linearity of the Material  ............................................................... - 34 - 

2.2.4 Electromagnetic Force Calculation Method  ........................................... - 36 - 

2.3 Equation of Motion ...................................................................................... - 38 - 

2.4 Mesh Modification ....................................................................................... - 39 - 

 Magnetic Gears with Continuously Variable Gear Ratios  ..................... - 41 - Chapter 3

3.1 Introduction ................................................................................................ - 41 - 

3.2 Continuously Variable Gear Ratio Magnetic Gear  ....................................... - 41 - 

3.2.1 Introduction .......................................................................................... - 41 - 

3.2.2 Principle of Operation ........................................................................... - 42 - 

3.2.3 Static Torque Analysis .......................................................................... - 45 - 

3.2.4 Continuously Variable Gear Ratio  ......................................................... - 46 - 

3.3 Continuously Variable Gear Ratio Vernier Magnetic Gear  ........................... - 48 - 

3.3.1 Introduction .......................................................................................... - 48 - 

3.3.2 Operating Principle ............................................................................... - 50 - 

3.3.3 Static Torque Analysis .......................................................................... - 53 - 

3.3.4 Continuously Variable Gear Ratio  ......................................................... - 55 - 



- 3 - 

 

3.3.5 Effects of the Auxiliary Teeth ................................................................ - 58 - 

3.4 Comparison between CVGR-MG and CVGR-VMG ........................................ - 60 - 

3.5 Summary ..................................................................................................... - 63 - 

 Power and Efficiency ............................................................................ - 66 - Chapter 4

4.1 Power Equation ........................................................................................... - 66 - 

4.2 Efficiency .................................................................................................... - 70 - 

4.3 Summary ..................................................................................................... - 74 - 

 Thesis Summary................................................................................... - 76 - Chapter 5

Appendix 1 Vernier Motor ................................................................................... - 78 - 

1.1 Introduction .............................................................................................. - 78 - 

1.2 Operating Principle .................................................................................. - 79 - 

1.3 Auxiliary Teeth ......................................................................................... - 83 - 

1.4 Choosing the Strongest Flux Component  ................................................... - 86 - 

Appendix 2 Induction Magnetic Gear .................................................................. - 90 - 

2.1 Introduction .............................................................................................. - 90 - 

2.2 Operating Principle .................................................................................. - 90 - 

2.3 Operating Characteristics  ......................................................................... - 91 - 

2.4 Summary .................................................................................................. - 95 - 

Acknowledgements ............................................................................................... - 97 - 

Research Achievements ........................................................................................ - 98 - 

 

 



- 4 - 

 

 Introduction Chapter 1

1.1 History of Magnetic Gears 

Magnetic gears have been around for over 100 years.  They transmit torque without 

contact and so there is no energy loss from friction. Also, they are not subject to wear 

and tear, meaning that they can operate with little or no maintenance required. 

Furthermore, magnetic gears possess inherent overload protection characteristics: 

during overload, the rotors just slip – preventing breakage of the magnetic gear itself 

and protecting the surrounding equipment.   

The earliest model was by Armstrong in 1901. Armstrong’s model (Fig. 1.1) was very 

simple: it utilizes magnetic attraction by replacing  the teeth of conventional 

mechanical gears with magnetic steel segments and electromagnets. 

 

Fig. 1.1   Magnetic gear proposed by Armstrong
(1 )

.  

High-speed rotor

Low-speed rotor

Electromagnet
Steel segment
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Fig. 1.2   Magnetic gear proposed by Faus
(2 )

.  

Another similar model was by Faus in 1941 (Fig. 1.2). However, Faus ’s model is 

different from Armstrong’s in that permanent magnets were used instead of steel 

segments and electromagnets. Also, whereas Armstrong utilized magnetic attraction, 

Faus utilized magnetic repulsion. The permanent magnets were configured such that 

the N poles of both rotors were always pointing outwards.  

The first two examples were just conventional mechanical gears whose teeth were 

replaced with magnetic material. The big drawback of these models was that only one 

or two teeth from each rotor could interact with each other a t any one time. For 

conventional mechanical gears, this did not pose any problems, but for magnetic gears 

it meant that the maximum transmission torque was very small. Due to this, these two 

models were never commercialized.  

The next two magnetic gears proposed by Reese (3) (1967) and Martin (4) (1968), shown in 

Figs. 1.3 and 1.4 respectively, are structurally and conceptually different.  Structurally, 

instead of just two rotors, the respective inventors introduced a stationary part  in 

between the rotors. The function of this stationary part is to generate flux harmonics , 

which will be detailed in the next chapter. These magnetic gears do not operate by 

simply using magentic attraction or repulsion, but use these flux harmonics to 

transmit torque, which is what make these magnetic gears also conceptually different . 

Furthermore the stationary part and the two rotors are concentric. This means that all  

the teeth of the magnetic gear can simultaneously interact with each other, largely 

Low-speed rotor

High-speed rotor

Permanent magnet
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increasing the maximimum transmission torque. However, at that time, powerful 

rare-earth magnets widely available today had not yet been developed, and the 

maximum transmission torque was still very low and thus these magnetic gears did not 

gain much attention. 

   

Fig. 1.3   Magnetic gear proposed by Reese
(3 )

.  

 

Fig. 1.4   Magnetic gear proposed by Martin
(4 )

.  

It was only until in 2001 when Atallah combined high-performance rare earth 

magnets with the concept of magnetic gears utilizing flux harmonics (Fig. 1.5) did 

magnetic gears really gain any attention. Atallah’s paper reported the ability of his 

model to transmit a torque density of over 100kNm/m3. Two years later, Rasmussen 

was the first to successfully create a working prototype, shown in Fig. 1.6. 

Stationary part

High-speed rotor

Low-speed rotor

Stationary part

High-speed rotor Low-speed rotor
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Fig. 1.5   Magnetic gear proposed by Atallah
(5 )

.  

 

Fig. 1.6   First prototype developed by Rasmussen
(6 )

.  

In the next section, the fundamentals to the operating principle of magnetic gears 

utilizing flux harmonics will be detailed.   
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1.2 Fundamentals of Flux Space Harmonics 

 

 (a)   Array of arc-shaped permanent magnets.  

 

 (b)   Magnetomotive force distribution of array of magnets.  

Fig. 1.7   Array of PMs and resulting MMF distribution . 

Consider an array of arc-shaped permanent magnets arranged together such that the 

N and S poles alternate, as shown in Fig. 1.7(a). If the magnets are flattened out on a 

plane, as shown in Fig. 1.7(b), the magnetomotive force (MMF) of the magnet array 

would look like a square wave and can be mathematically expressed by equation (1.1)  

𝐹(𝜃) = ∑
𝐴

(2ℎ − 1)
sin{(2ℎ − 1)𝑁ℎ𝜃}

∞

ℎ=1

 (1.1) 

where A is the amplitude coefficient of the magnetomotive force and  𝑁ℎ is the number 

of permanent magnet pole pairs.  

 

S
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N
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A
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 (a)   Array of arc-shaped magnetic steel pieces. 

 

(b)   Permeance distribution of an array of magnetic steel pieces.  

Fig. 1.8   Array of magnetic steel pieces and resulting permeance distribution . 

Next, consider an array of arc-shaped magnetic steel pieces placed at equally spaced 

intervals, such as in Fig. 1.8(a). Again, if the steel pieces are flattened out on a plane, 

as shown in Fig. 1.8(b), the permeance of the steel pieces would also look like a square 

wave, and can be mathematically expressed in equation (1.2)  

𝑃(𝜃) = 𝑃0 +∑
𝐵

(2𝑠 − 1)
sin{(2𝑠 − 1)𝑁𝑠𝜃}

∞

𝑠=1

 (1.2) 

where 𝑃0 is the permeance of vacuum, B is the amplitude coefficient of the permeance, 

and 𝑁𝑠 is the number of steel pieces.  

The magnetic flux distribution in any space can be obtained by multiplying the 

magnetomotive force in that area with the permeance, as shown in equation (1.3).  

𝜑 = 𝐹 × 𝑃 (1.3) 

2𝐵 + 𝑃0

Permeance

θ𝑃0
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Therefore, in the case when only the magnets exist, the magnetic flux distribution in 

the space above the magnets would be   

𝐹(𝜃) = ∑
𝐴𝑃0

(2ℎ − 1)
sin{(2ℎ − 1)𝑁ℎ𝜃}

∞

ℎ=1

. (1.4) 

It is almost the same as the magnetomotive force equation in (1.1) except the 

permeance of vacuum 𝑃0 has been added. 

  

(a)   Steel pieces surround permanent magnets. 

 

(b)   Distorted flux distribution when steel pieces are added  

Fig. 1.9   Flux distribution of area above magnet and steel pieces . 

Next, when the steel pieces are placed around the magnets as in Fig. 1.9(a), the 

magnetic flux distribution around the steel pieces , which is illustrated in Fig. 1.9(b) 

and is obtained by multiplying equations (1.1) and (1.2), becomes equation (1.5).  

𝜙(𝜃) = ∑
𝐴𝑃0

(2ℎ − 1)
sin(𝐶1𝜃)

∞

ℎ=1

+∑∑𝐶0

∞

𝑠=1

 [cos(𝐶2 − 𝐶1) 𝜃 − cos(𝐶2 + 𝐶1) 𝜃]

∞

ℎ=1

 (1.5) 



θ

𝐴𝐵

−𝐴𝐵
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Equation (1.5) contains the variables 𝐶0, 𝐶1, and 𝐶2, which are used to simplify 

calculations. Their definitions are shown in equations (1.6), (1.7), and (1.8). 

𝐶0 =
𝐴𝐵

2(2ℎ − 1)(2𝑠 − 1)
 (1.6) 

𝐶1 = (2ℎ − 1)𝑁ℎ (1.7) 

𝐶2 = (2𝑠 − 1)𝑁𝑠 (1.8) 

Fig. 1.9 shows that the flux distribution has now become distorted, indicating the 

existence of harmonics in the flux distribution waveform. Indeed, we can confirm this 

in equation (1.5), where we can see that along with the original component of equation 

(1.4) when only the magnets existed, which will be called the Fundamental Component,  

now two new components can be seen. These two components are the flux harmonics.  In 

this section, they will be called Harmonic 1 and Harmonic 2.   They exist due to the 

steel pieces modulating the magnetic flux.  What is most interesting and also crucial 

about these harmonics to the principle of magnetic gears is explained next. 

Assume that the array of magnets has rotated 𝜔ℎ𝑡 radians, where 𝜔ℎ is the angular 

velocity of the magnets, and 𝑡 is time. The new MMF distribution is: 

𝐹(𝜃) = ∑
𝐴

(2ℎ − 1)
sin{(2ℎ − 1)𝑁ℎ(𝜃 − 𝜔ℎ𝑡)} .

∞

ℎ=1

 (1.9) 

Thus the new flux distribution is:  

𝜙(𝜃) = ∑
𝐴𝑃0

(2ℎ − 1)
sin 𝐶1(𝜃 − 𝜔ℎ𝑡)

∞

ℎ=1

+∑∑𝐶0

∞

𝑠=1

 [cos(𝐶2 − 𝐶1) (𝜃 +
𝐶1

𝐶2 − 𝐶1
𝜔ℎ𝑡)− cos(𝐶2 + 𝐶1) (𝜃 −

𝐶1
𝐶2 + 𝐶1

𝜔ℎ𝑡)]

∞

ℎ=1

. 

(1.10) 

From (1.10), we can see that rotation angle of the Fundamental Component is  the 

same as the magnets, which is 𝜔ℎ𝑡. However the rotation angles of the harmonics are 

different. This is all summarized in Table 1.1. 
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Table 1.1 Summary of the rotation angles of the flux components  

Component Name Harmonic Order Rotation Angle 

Fundamental 

Component 
𝐶1𝜃 𝜔ℎ𝑡 

Harmonic 1 𝐶2 − 𝐶1 −
𝐶1

𝐶2 − 𝐶1
𝜔ℎ𝑡 

Harmonic 2 𝐶2 + 𝐶1 
𝐶1

𝐶2 + 𝐶1
𝜔ℎ𝑡 

It is this characteristic of the harmonics whereby it rotates at different angular 

velocities from the magnets that can be utilized to create a magnetic gear.  

1.3 Operating Principle of Magnetic Gears 

Continuing from the previous section, to create  a magnetic gear, the flux harmonics 

have to be utilized. This is done by introducing another set of magnets that have the 

same number of magnetic pole pairs as the harmonic order of either harmonic 

component outside of the steel pieces. In other words, the following equation must hold 

true 

𝐶2 ∓ 𝐶1 = (2𝑙 − 1)𝑁𝑙 (1.11) 

where 𝑁𝑙 is the number of permanent magnet pole pairs outside the steel pieces and l 

is a positive integer.  When this is done, the new set of magnets will couple with the 

harmonic component and rotate with it.  

Fig. 1.9(a) shows 6 magnet pole pairs and 9 steel pieces. From Table 1.1, i f we input 

𝑁ℎ = 6, 𝑁𝑠 = 9 into Harmonic 1, possible harmonic orders  become 3, 15, 21, 39, ... . If we 

input the same variables into Harmonic 2, possible harmonic orders become 15, 27, 

33, ... . If the harmonic order of 3 (ℎ = 1, 𝑠 = 1) from Harmonic 1 is chosen to be used for 

our magnetic gear, then 3 magnet pairs must be introduced to the space outside of the 

steel pole pieces (see Fig. 1.10). Since the number of magnet pairs outside of the steel 

pieces are the same as the order of a harmonic component  (3 in this case), the outside 
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magnets will couple with the harmonic and rotate together with it.   

The gear ratio for this particular magnetic gear is 

𝐺𝑟 =
𝑂𝑢𝑡𝑝𝑢𝑡 𝑟𝑜𝑡𝑜𝑟 𝑠𝑝𝑒𝑒𝑑

𝐼𝑛𝑝𝑢𝑡 𝑟𝑜𝑡𝑜𝑟 𝑠𝑝𝑒𝑒𝑑
=

−
𝐶1

𝐶2 − 𝐶1
𝜔ℎ𝑡

𝜔ℎ𝑡
= −

𝐶1
𝐶2 − 𝐶1

= −
6

9 − 6
= −2: 1 (1.12) 

with the magnets outside rotating twice as fast as the magnets inside. It should be 

pointed out that the rotor with fewer magnets will rotate faster than the rotor with a 

larger number of magnets. Due to this reason, for this particular magnetic gear, the 

magnets outside becomes the High Speed Rotor (HSR) and the  magnets on the inside 

become the Low Speed Rotor (LSR), as shown in Fig. 1.11(a).  

 

Fig. 1.10   Example of a magnetic gear.  

However it is actually not necessary for the steel pieces to be stationary. Another 

popular configuration for the magnetic gear is to fix the rotor with the more magnets 

and leave the steel pieces and rotor with the fewer magnets to rotate.  In this 

configuration, the steel pieces will become the Low Speed Rotor and the rotor with the 

fewer magnets will become the High Speed Rotor (see Fig. 1.11(b)). Another 

configuration is to fix the rotor with the fewer magnets, and leave the steel pieces and 

rotor with the more magnets to rotate . The steel pieces become the Low Speed Rotor 

and the rotor with the more magnets become the High Speed Rotor  (see Fig. 1.11(c)).   

Of course, different rotating parts will mean different gear ratios.  How the gear 

ratios change with which part is being fixed is summarized in Table 1.2. 
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(a) Steel pieces stationary configuration  

 

(b) More magnets stationary configuration  

 

(c) Fewer magnets stationary configuration 

Fig. 1.11   Possible configurations of the magnetic gear.  

 

LSR

HSR

Stationary part

LSR

HSR

Stationary part

LSR

HSR

Stationary part



- 15 - 

 

Table 1.2 Gear ratio according to different gear configurations.   

 Stationary Part HSR LSR Gear Ratio 

(a) Steel Pieces Fewer magnets More Magnets －2 : 1 

(b) More Magnets Fewer Magnets Steel Pieces 3 : 1 

(c) Fewer Magnets More Magnets Steel Pieces 1.5 : 1 

One would probably notice by now that this magnetic gear is quite similar to the 

planetary gear train (see Fig. 1.12) in terms of having three main parts and also three 

possible operating configurations . Due to this, this magnetic gear that utilizes flux 

harmonics is also sometimes called a magnetic planetary gear train in some 

literature (7-9). 

 

Fig. 1.12   Mechanical planetary gear train. 

1.4 Magnetic Gears with Variable Gear Ratios 

All the magnetic gears that have been introduced thus far have a fixed gear ratio. In 

this section, magnetic gears with variable gear ratios are introduced.  

Fig. 1.13 shows a model proposed by Daif (10). Instead of permanent magnets, 

electromagnets powered by DC currents are used instead. The outer most part is fixed, 

much like the configuration of the permanent magnet version shown in Fig. 1.11(c).  A 

variable gear ratio is achieved by changing the polarity of the electromagnets and also 

the number of electromagnets being used. In his paper, Daif analyzed two gear 

ratios:  𝐺𝑟 = −3:1 shown in Fig. 1.14(a) and 𝐺𝑟 = −1: 3 shown in Fig. 1.14(b).  

Daif ’s proposal at first glance seems like an excellent idea to obtain various gear 

Sun Gear

Planetary Gear

Ring Gear
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ratios. However the number of gear ratios that can be achieved practically  is actually 

very limited. This is due to the fact that for the gear to function properly, equation 

(1.11) must always be satisfied, and this severely limits the gear ratios possible.  

Daif ’s prototype in Fig. 1.13 uses 30 coils each on the stator and inner rotor, and 20 

steel pieces. With 30 coils in the stator and inner rotor, by changing the polarity of the 

coils, 15, 10, 6, 5, 3 or 1 magnetic pole-pairs can be obtained. However this  flexibility 

in the number of poles is severely limited by the 20 steel pole piece  because when the 

possible number of magnetic pole-pairs and the 20 steel pieces are substituted into 

equation (1.11), one quickly realizes that only the two gear ratios shown in Fig. 1.14 

can be obtained.  

 

Fig. 1.13   Variable gear ratio magnetic gear by Daif
(10 )

.  

 

      

(a)   𝐺𝑟 = −3: 1                         (b)   𝐺𝑟 = −1: 3 

Fig. 1.14   Different gear configurations by Daif.  

Outer Rotor
Inner Rotor

Stator
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 Shah (11) proposed a model illustrated in Fig. 1.15(a) whereby the steel pieces of 

Atallah’s model shown in Fig. 1.5 are connected to a motor.  By controlling the rotation 

of these steel pieces, which he calls the Control Rotor, a continuously variable gear 

ratio can be achieved. The operating principle for this is  explained next. 

  

(a) Illustration of concept                 (b) Experimental setup of prototype 

Fig. 1.15   Magnetic gear with control rotor proposed by Shah
(11 )

.  

 

 

Fig. 1.16   Case where only HSR and Control Rotor are present.  

Consider the case where only the HSR and Control Rotor are present, such as in Fig. 

1.16.  At time 𝑡, let the HSR be rotating at an angular velocity of  𝜔ℎ, and the Control 

Rotor at 𝜔𝑠. Essentially, since this is still the same magnetic gear that was explained 

in section 1.2, the initial equation shown in equation (1.9) expressing the MMF 

distribution is used again here. However, this time since the steel pieces are rotating 

too, the permeance distribution of the Control Rotor becomes 

𝑃(𝜃) = 𝑃0 +∑
𝐵

(2𝑠 − 1)
sin{(2𝑠 − 1)𝑁𝑠(𝜃 − 𝜔𝑠𝑡)}

∞

𝑠=1

. (1.13) 

 

Control rotor

HSR

LSR

motor

motor
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Multiplying equations (1.9) and (1.13) yields the new flux distribution outside of the 

Control Rotor, which is 

𝜙{𝜃} = ∑
𝐴𝑃0

(2ℎ − 1)
sin𝐶1(𝜃 − 𝜔ℎ𝑡)

∞

ℎ=1

 

+∑∑𝐶0

∞

𝑠=1

{cos(𝐶2 − 𝐶1) (𝜃 −
𝐶2𝜔𝑠𝑡 − 𝐶1𝜔ℎ𝑡

𝐶2 − 𝐶1
) − cos(𝐶2 + 𝐶1) (𝜃 −

𝐶2𝜔𝑠𝑡 + 𝐶1𝜔ℎ𝑡

𝐶2 + 𝐶1
)}

∞

ℎ=1

. 

(1.14) 

Again, the fundamental component and 2 harmonic components in the flux 

distribution can be observed. The rotation angle of each component is summarized in 

Table 1.3. 

Table 1.3 Summary of the rotation angles of the flux components  

Component Name Harmonic Order Rotation Angle 

Fundamental 

Component 
𝐶1𝜃 𝜔ℎ𝑡 

Harmonic 1 𝐶2 − 𝐶1 
𝐶2𝜔𝑠𝑡 − 𝐶1𝜔ℎ𝑡

𝐶2 − 𝐶1
 

Harmonic 2 𝐶2 + 𝐶1 
𝐶2𝜔𝑠𝑡 + 𝐶1𝜔ℎ𝑡

𝐶2 + 𝐶1
 

As was stated in section 1.3, to create a magnetic gear, the flux harmonics have to be 

utilized. This is done by introducing another set of magnets outside of the magnetic 

pole pieces (see Fig. 1.15(a)) that has the same number of magnetic pole pairs as the 

harmonic order of either harmonic component outside of the steel pieces . When this 

happens, the new set of magnets will couple with the selected flux harmonic and their 

rotation speeds will be in synch as shown in the next equation  

𝐶2𝜔𝑠𝑡 ∓ 𝐶1𝜔ℎ𝑡

𝐶2 ∓ 𝐶1
= 𝜔𝑙𝑡 (1.15) 

where 𝜔𝑙 is the angular velocity of the new rotor outside. 

Differentiating both sides with respect to time yields  

𝐶2𝜔𝑠 ∓ 𝐶1𝜔ℎ

𝐶2 ∓ 𝐶1
= 𝜔𝑙 . (1.16) 
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Since both 𝐶1 and 𝐶2 are constants, equation (1.16) is essentially an equation linking 

the angular velocities of the HSR (𝜔ℎ), Control Rotor (𝜔𝑠), and LSR (𝜔𝑙). Therefore, if 

for example the HSR is the input rotor and is rotated at a constant angular ve locity, by 

controlling the angular velocity of the Control Rotor, any arbitrary angular velocity 

and consequently gear ratio can be obtained at the output rotor, which in this case is 

the LSR. 

As has been shown thus far, Shah’s prototype can achieve a continuous gear ratio. 

However, as can be seen in the experimental setup in Fig. 1.15(b) , the Control Rotor 

(labelled PP shaft in the picture) has to be connected to the servo motor through a 

large chain reduction gear so that sufficient torque can be generate d to rotate the 

Control Rotor. This defeats the whole purpose of the magnetic gear, which was to 

transmit torque through non-contact means. 

 

Fig. 1.17   Wang’s magnetic gear proposal
(12 )

.  

Wang’s magnetic gear (12) proposal is shown in Fig. 1.17. His magnetic gear can also 

achieve a continuously variable gear ratio.  It uses the same concept as  Shah whereby a 

Control Rotor is used to adjust the gear ratio. However, instead of rotating the Control 

Rotor mechanically like Shah, Wang installed a set of coils on the outside and 

magnetically rotates the Control Rotor.  This overcomes the problem of mechanical 

transmission of torque that Shah had. However this model becomes large and 

complicated. Furthermore, a large amount of permanent magnets is used. Apart from 

being hard to manufacture, this also increases the manufacturing cost.    

Control
rotor

HSR

LSR
Stator
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1.5 Problem Establishment, Necessity for this Research, 

and Research Target 

Magnetic gears can be used anywhere. However, due to the high costs of rare -earth 

permanent magnets, it would not be cost-effective to use such a gear in normal vehicles 

or factory machines. Instead it should be utilized for applications that can take 

advantage of its 2 biggest assets, which are its virtually maintenance free operation 

and inherent overload protection property. 

One of the applications proposed for the magnetic gear is in wind power generation. 

Fig. 1.18 illustrates a common system used in wind power generation. The propeller 

shaft is connected first to a mechanical gear before being connected to a gen erator. The 

function of the mechanical gear is to increase the rotation speed of the generator. 

However, since it is a mechanical gear, it requires regular lubrication and maintenance, 

experiences a lot of stress during strong winds and is one of the first  components to fail. 

And since medium and large size wind turbines (currently up to 200 m) are installed at 

places far away from human existence, it becomes clear that maintaining these wind 

power turbines is costly and time consuming.  

 

Fig. 1.18 Common system used in wind power generation  

Furthermore, the problem with this setup is that the rotation speed of the propellers 

is solely dependent on the wind speed. This means that on windy days , the propeller 

rotates very fast and the amount of power and the frequency of the voltage being 
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Gear

Induction
generator

Network
transformer

Grid

Breaker
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generated becomes too high. On the other hand, on relatively quiet days, the propeller 

rotates too slowly. Not only that, with all the constant changing of the wind speed, the 

generator is almost never operating at its most efficient speed. 

Currently, conventional wind power generation systems try to control the propeller 

speed by adjusting the angle of the propeller with respect to the wind or try to control 

the rotation speed of the generator itself using flux weakening systems. Whilst they 

can reduce the rotation speed of the generator on windy days to bring the operating 

speed of the generator back to its most efficient point, they cannot increase the 

rotation speed of the generator.  

Using a magnetic gear that has a continuously variable gear ratio can immediately 

solve these problems. First since the magnetic gear is a non-contact mechanism and 

does not require regular lubrication, maintenance free operation can be achieved. On 

top of that, due to its inherent overload protection characteristics, the magnetic gear is 

safe from breakage during strong winds. Furthermore, having a continuously variable 

gear ratio means that the rotation speed of the generator can be controlled  by the 

magnetic gear and the generator can always produce electricity at its most efficient 

rotation speed. Also, no equipment will be necessary to control the angle of the 

propeller, and thus the overall size of the wind turbine can be reduced.   

Although the initial cost of manufacturing a wind turbine utilizing a magnetic gear 

would be higher than manufacturing a wind turbine utilizing a mechanical gear, 

money and time saved from not having to maintain the magnetic gear makes it a 

worthwhile investment in the long run. 

As was already mentioned in the previous section, so far, only 3 magnetic gears that 

have variable gear ratio characteristics have been found in literature. Daif ’s model (10) 

had a variable gear ratio but it was discrete and he could only obtain two. T herefore 

although Daif ’s model could solve the maintenance and overload problem of the 

conventional wind power generator setup, it would be impossible to control the speed 

of the generator so that it is always rotating at its most efficient speed.  
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Shah’s model (11) on the other hand could output a continuous gear ratio. However to 

achieve this, he used a servo motor that was connected to large mechanical gear chains. 

This means that although his magnetic gear itself would be maintenance free and 

immune to overload problems, the control system is not and this idea totally defeats 

the purpose of developing magnetic gears.  

Wang’s model (12) is also able to achieve a continuous gear ratio and he did it without 

using mechanical means. However his model has 3  concentric rotating parts, making 

the whole system very large and more costly and difficult to manufacture . More 

importantly, this is unnecessary since the author thinks that only two rotating parts is 

required. Furthermore, so that the gear ratio of his model could be controllable , due to 

the operating principle of his particular model,  he had to sacrifice his output to input 

torque ratio. The model in Fig. 1.17 only has a torque ratio of 1.3 : 1. The author thinks 

that this is far too low for a gear.  

The aim of this research is to develop a magnetic gear that can solve the problems of 

conventional wind power generator systems. The magnetic gear must: 

1. Have a continuously variable gear ratio 

2. Have 100% non-contact mechanism i.e. no mechanical gears, slip rings etc.  

3. Have a relatively high torque ratio 

By developing such a magnetic gear, the author hopes to improve wind powe red 

generator systems so that they are maintenance free and immune to overloading , and 

that the generator always operates  at its most efficient speed. Through this, the 

author hopes that wind power generation will become a more popular choice for electric 

power companies and that this research will help in the reduction of the world’s 

reliance on fossil fuels. 
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1.6 Thesis Outline 

This thesis is divided into 5 chapters. The 1st Chapter covers the history of magnetic 

gears and the aim of this research. Next, since this whole research was conducted 

using FEM analysis, the 2nd Chapter is dedicated to this topic. In Chapter 3, two 

magnetic gears that have continuously variable gear ratios are proposed and their 

characteristics are investigated. In Chapter 4, the power equations of these gears are 

derived and their efficiencies are determined. In Chapter 5, the main points of this 

thesis are summarized. Finally, two topics that are connected to the topic of this 

research: the Vernier motor and a magnetic gear using induced currents, are 

extensively investigated in the appendix.  
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 FEM Analysis for Determining Chapter 2

Model Characteristics 

2.1 Introduction 

The work in this chapter is based on (1).  

A well–established method for determining the characteristics of electromagnetic 

devices was to create the equivalent circuit model. However this method is not 

accurate since the flux flow of the electric machine is only approximated. Furthermore, 

since this method only calculates the average torque value over one elect rical period, it 

is impossible to evaluate fluctuations in the torque. Therefore, in this research, Finite 

Element Method (FEM) is used to solve Maxwell ’s equations of electromagnetism, to 

accurately evaluate the torque characteristics of an electromagneti c device.  

This chapter explains the method for determining the torque characteristics of an 

electric machine using FEM. First, from Maxwell ’s equations, the basic magnetic field 

equations of the A–method and –method is derived. Then, as an example of 

calculation using Galerkin’s method, the calculation method using tetrahedral 

elements by the A–method is described. Then, CG and ICCG methods that are used for 

solving linear simultaneous equations, the Newton–Raphson method when considering 

the nonlinearity of materials, and the Maxwell Stress Tensor and Nodal Force Methods 

for calculating the electromagnetic force will be described.  

Section 2.3 explains how the magnetic field analysis is coupled to the equation  of 

motion and how the equation is solved. Section 2.4 describes the method for correcting 

the mesh partitions when the rotor of the electromagnetic device is rotating.  
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2.2 Magnetic Field Analysis 

2.2.1 Derivation of the Fundamental Equations 

All electromagnetic phenomena can be explained by the following 4 equations, also 

known as Maxwell’s equations 

rot𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡
 (2.1) 

rot𝑬 = −
𝜕𝑩

𝜕𝑡
 (2.2) 

div𝑩 = 0 (2.3) 

div𝑫 = 𝜌 (2.4) 

where H is the magnetic field intensity, J is the current density, Dis the flux density, 

E is the electrical field intensity, B is the flux density， is the electrical charge density. 

Also, the relationships between B and H, D and E, J and E in a certain medium can be 

described by the following equations  

HB μ          (2.5) 

ED ε          (2.6) 

EJ σ          (2.7) 

where  is the magnetic permeability，  is the permittivity，  is the electrical 

conductivity of that medium．  

 Next, when div rotA=0 is substituted into equation (2.3)，equation (2.8) is obtained，

where A is defined as the magnetic vector potential.   

AB rot          (2.8) 

Also, flux density B is a function of the magnetic field intensity H and can be expressed 

in equation (2.9)．  

HHB
ν

μ
1

         (2.9) 

where  is the reluctivity of the magnetic material.  

 By applying Stoke’s theorem to Ampere’s circuital law, Ampere’s circuital law in its 
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differential form is obtained, and is shown in equation (2.10)  

rot𝑯 = 𝑱0 (2.10) 

where J0 is the density of the current flowing into the area. 

 Substituting equations (2.8) and (2.9) into equation (2.10) yields equation (2.11), 

which is the fundamental equation for static magnetic field analysis.  

rot(𝜈rot𝑨) = 𝑱0 (2.11) 

 The magnetic flux density in the permanent magnet B, magnetic field intensity H, 

and the magnetization of the permanent magnet M can be expressed using equation 

(2.12).  

)(
1

MBHMHB 
μ

μ       (2.12) 

 Substituting equation (2.12) into equation (2.10) yields equation (2.13). 

rot𝑯 = rot
1

𝜇
(𝑩 −𝑴) = 𝑱0 (2.13) 

Substituting equation (2.8) into equation (2.13) yields equation (2.14), which is the 

fundamental equation inside of the permanent magnet.  

rot(𝜈rot𝑨) = 𝑱0 + νrot𝑴 (2.14) 

where ν is the magnetic reluctivity of vacuum and rotM is defined as Jm , which is 

the equivalent magnetization current density.   

 From the above, for cases where eddy currents are not generated, equation (2.14) 

holds true for areas inside the permanent magnet of the electromagnetic device, whilst 

equation (2.11) is used for all the other areas. The magnetic vector potential A is 

solved for as an unknown quantity, and this method is called the A –method.   

2.2.2 Discretization Using Galerkin’s Method  

To solve the linear magnetic vector potential equation shown in equation (2.14), the 

analysis area has to be divided into many small discrete areas  (discretization) called 

“elements”, and the potential distribution of each element is approximated as simple 

functions. Calculations of each small area are  done throughout the whole analysis area, 
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and this analysis method is called the Finite Element Method. One method for deriving 

discretized equations in FEM is to use Galerkin’s method.  

 If we let the differential equation of the magnetic vector potential A be f(A) = 0, then 

    mνf JJAA  0rotrot        (2.15) 

Then, let the approximate solution of this equation be A'. Substituting this into 

equation (2.15) does not equal zero ( f(A'), = 0) but instead yields a residual R, as shown 

in equation (2.16). 

  RA' f         (2.16) 

The integration of the residual over the whole area should be zero. The method of 

using the weight function N i  that approximates the magnetic vector potential , for 

making the weighted integral value for the residual R over the whole analysis area 

zero is called Galerkin’s method. The residual’s equation is shown in equation (2.17).  

0d)(  V ii VfG AN        (2.17) 

The weight function N i   in equation (2.17) is called the interpolation function. 

Next, the interpolation function for when the analysis area has been divided into 1 st  

order tetrahedral elements is determined. First, we shall consider a 1 st  order 

tetrahedral nodal element as shown in Fig. 2.1(a). Each 1 st  order tetrahedral nodal 

element contains 4 nodes and on each node there are the magnetic ve ctor potentials Ax，

Ay，Az. In the field of electromagnetism, the flux density B’s normal component and the 

magnetic field H’s tangent component are continuous at the boundary plane of 

dissimilar ferromagnetic materials. However, for 1 st  order tetrahedral nodal elements, 

all of A’s components becomes continuous at the nodes of the boundary plane of 

dissimilar materials. As a result even B’s tangent component becomes continuous, 

making this physically incorrect .  
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(a) Nodal element    (b) Edge element 

Fig. 2.1  Definition of unknown variables.  

Therefore, instead of using 1 st order tetrahedral nodal elements, 1 st  order tetrahedral  

edge elements, as shown in Fig. 2.1(b), are used.  The vector component of the vector 

potential A projected onto edge k is integrated along edge k, and these integrals are 

the unknowns Ak (k=1，2，3，4，5，6). 

 
k

k dA sA         （2.18) 

where s is a vector along the particular edge. Here, the interpolation function Nk of 

edge k is determined as follows. 

 
 










m
k

km

km
d

0

1
sN        (2.19) 

From equation (2.19)，we can see that when Nk is integrated along edge k we get 1, and 

when it is integrated along the other edges we get 0. Here, the interpolation function 

that links node i and node j together is defined as follows.  

𝑵𝑘 =
1

36𝑉2
{(𝑏𝑖 + 𝑐𝑖𝑥 + 𝑑𝑖𝑦 + 𝑒𝑖𝑧)(𝒊𝑐𝑗 + 𝒋𝑑𝑗 + 𝒌𝑒𝑗) − (𝑏𝑗 + 𝑐𝑗𝑥 + 𝑑𝑗𝑦 + 𝑒𝑗𝑧)(𝒊𝑐𝑖 + 𝒋𝑑𝑖 + 𝒌𝑒𝑖)} (2.20) 

        mjjmnjnnjmnmmnj
i

i zyzyxzyzyxzyzyxb  1    (2.21) 

        mjnjnmnmj
i

i zzyzzyzzyc  1      (2.22) 
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        mjnjnmnmj
i

i xxzxxzxxzd  1      (2.23) 

        mjnjnmnmj
i

i yyxyyxyyxe  1      (2.24) 

 44332211
6

1
cxcxcxcxV        (2.25) 

where i, j, k are unit vectors in the x, y, z direction respectively, and i, j, k, m are 

subscripts. When i is 2, j=3, m=4, n=1. Here, the magnetic vector potential A of the 

tetrahedral element becomes as follows. 






6

1k

kk ANA         (2.26) 

Now since the interpolation function Nk has been determined， it is now possible to 

conduct calculations using Galerkin ’s method. 

 Let us consider a field that contains a permanent magnet. Equation (2.17) can be 

expressed as (2.27). 

   
V

k
V

k
V

kk VνVVνG drotddrotrot MNJNAN 0    (2.27) 

Substituting the first term on the right side of equation (2.27) with the following 

vector formula div(a×b) = b∙rot a – a∙rot b, gives equation (2.28). 

   
V

k
V

k
V

k VνVνVν drotdrotrotdrotrot NANAAN    (2.28) 

Then, if we apply Gauss’ divergence theorem to the second term of  the right side of 

equation (2.28), we obtain 

  
S

k
V

k SνVν drotdrot nNANA      (2.29) 

And applying the vector formula a∙(b×c) = b∙(c×a) = c∙(a×b) to equation (2.29) yields 

    
S

k
S

k SνSν drotdrot NAnnNA      (2.30) 

Looking at the right side of equation (2.30), since n× rotA = n×B = n×H, when the 

magnetic field intensity H is perpendicular to the boundary plane (natural boundaries), 

n×H = 0 (outer product). And when the magnetic field intensity H is parallel to the 
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boundary plane (fixed boundaries), the magnetic vector potential at the plane becomes 

a known value, and thus it is no longer necessary to create equations using Galerkin’s 

method, and we can just substitute it with 0. Also, since there is no forced current, J0 = 

0. Therefore, equation (2.27) can be expressed as follows  

𝐺𝑘 = ∫∫∫ 𝜈rot𝑨
𝑉

∙ rot𝑵𝑘d𝑉 −∫∫∫ 𝜈0𝑵𝑘
𝑉

∙ rot𝑴d𝑉 (2.31) 

Here, if we let the interpolation function Nk become the interpolation function of edge 

k, which connects node 1 with node 2, Nk can be expanded into equation (2.32). 

𝑵𝑘 =
1

36𝑉2
{(𝑏𝑖 + 𝑐𝑖𝑥 + 𝑑𝑖𝑦 + 𝑒𝑖𝑧)(𝒊𝑐𝑗 + 𝒋𝑑𝑗 + 𝒌𝑒𝑗) − (𝑏𝑗 + 𝑐𝑗𝑥 + 𝑑𝑗𝑦 + 𝑒𝑗𝑧)(𝒊𝑐𝑖 + 𝒋𝑑𝑖 + 𝒌𝑒𝑖)} 

          =
1

36𝑉2
{
(𝑏𝑘1 + 𝑐𝑘1𝑥 + 𝑑𝑘1𝑦 + 𝑒𝑘1𝑧)(𝒊𝑐𝑘2 + 𝒋𝑑𝑘2 + 𝒌𝑒𝑘2)

−(𝑏𝑘2 + 𝑐𝑘2𝑥 + 𝑑𝑘2𝑦 + 𝑒𝑘2𝑧)(𝒊𝑐𝑘1 + 𝒋𝑑𝑘1 + 𝒌𝑒𝑘1)
} 

(2.32) 

Then, expanding and reorganizing equation (2.32) according to i， j，k yields 

 
   

    

    

 12212
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18

1
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1

rot
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V
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
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
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



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


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
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


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NN
N

k

  (2.33) 

   1221218

1
rot kkkkyk cece

V
N       (2.34) 

   1221218

1
rot kkkkzk dcdc

V
N       (2.35) 

Substituting equation (2.26) into the first term of the right side of equation (2.31) 

gives 

 

 
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1
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1

NN
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    (2.36) 
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Then, rewriting the vector parts of equation (2.36) into x, y, z components gives 

  
  

  

VA

cddccddc

ecceecce

deeddeed

V

VAν

u
V

u
uuuukkkkz

uuuukkkky

uuuukkkkx

V
u

uuk

d
18

1

drotrot

6

1
21212121

21212121
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2
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NN

   (2.37) 

Here， if we apply equation (2.38) to equation (2.37), and integrate the whole analysis 

area, the first term of the right side of equation (2.31) becomes equation (2.39). 

VV
V

 d         (2.38) 
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 Next, applying the vector formula div(a×b) = b∙rot a – a∙rot b and Gauss’ divergence 

theorem to the second term of the right side of equation (2.31) gives equation (2.40). 

  VSVν k
VS

k
V

k drotddrot NMnNMMN       (2.40) 

Applying the vector formula a∙(b×c) = b∙(c×a) = c∙(a×b) to the first term of the right 

side of equation (2.40) gives 

    
S

k
S

k SS dd NMnnNM       (2.41) 

When the magnetization M is perpendicular with the boundary plane S, it is parallel to 

n, and n×M becomes 0 (natural boundary). In other words,  with regards to A, by 

making equation (2.41) become 0, M becomes perpendicular to the boundary plane S, 

and setting it as 0 ensures that no contradiction occurs. Therefore equation (2.41) 

becomes 0, and only the second term of equation (2.40) remains. 

       VV
V

zkzykyxkxk
V

drotrotrotdrot   NMNMNMNM    (2.42) 

Using equation (2.38), integrating equation (2.42) over the whole analysis area 

yields equation (2.43). 
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Then if we substitute equations (2.39) and (2.43) into equation (2.31) 
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Arranging equation (2.44) into its matrix form gives us equation (2.45) 
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Here, n is the number of edges when the whole analysis area has been discretized, 

and matrix H is a n×n symmetric matrix. Equation (2.45) is an nth order linear 

equation of Ak, and so the number of unknowns is also n, and therefore is solvable. In 

electromagnetic analysis, we take advantage of the symmetric property of the matrix H 

and use an iterative method such as the CG method (conjugate gradient method) or the 

ICCG method (incomplete Cholesky conjugate gradient method) to solve the matrix.  

 The CG method shall be described. Equation (2.45) is written as [H]{A}={K}. First, 

let the initial solution of {A} be {A0}, and define the search direction vector {P0} as 

equation (2.46). 

        000 AHKrP         (2.46) 

 At iteration number r+1, let the solution be {Ar+1} as is shown in equation (2.47). 

     rrrr PAA 1        (2.47) 

Here, 

   

    r
t

r

r
t

r
r

PHP

RP
         (2.48) 

      rrrr PHRR 1        (2.49) 

     rrrr PRP   11        (2.50) 
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Here, when equation (2.52) reaches a value below the permissible value, {A i} is the 

solution for {A}. 

         KAAHAA ii
t

ii 
2

1
       (2.52) 

On the other hand, in the ICCG method, incomplete Cholesky decomposition is 

conducted, and the approximate inverse matrix , [H*]-1, of [H] in [H]{A}={K}is 

determined. Multiplying both sides by [H*]−1,we obtain 

        KHAHH
1*1* 

        (2.53) 

Then, equation (2.53) is defined as follows 

           }
~

{]
~

[
1*1* KKHAHAHH 


     (2.54) 

Iterative calculations using the CG method conducted on equation (2.54) is called the 

ICCG method. Although with this method it becomes necessary to first calculate the 

approximate inverse matrix, the iterative calculations converge faster.  

2.2.3 Non-Linearity of the Material  

The non-linearity of the direct current magnetizing characteristics of ferromagnetic 

materials is solved using iterative calculation methods and one such method is called 

the Newton-Raphson Method. In this method, each element is initially given a rough 

magnetic permeability value and the magnetic permeabil ity is calculated using FEM. 

Then, from the obtained results after one calculation, the magnetic permeability is 

revised, and the calculation is performed again. This is repeated until the value 

converges.  

Let the estimated solution of f(x,y) = 0，g(x,y) = 0 at the uth iteration be x (u)，y (u) 

respectively. If we apply the Taylor expansion to f(x,y) and g(x,y) respectively, the 

following equations are obtained.  
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Terms with exponentials of 2 and above in equation (2.55) and equation (2.56) are 

ignored, and x = x (u) + x (u)，y = y(u) + y (u) is the true solution. Therefore f(x (u) + x (u), 

y(u) + y(u)) = 0，g(x (u) + x (u), y (u) + y (u)) = 0，and the left side of equations (2.55) and 

(2.56) become 0. Then, if we let f(x (u) + y (u)) and g(x (u) + y (u)) from equations (2.55) and 

(2.56) be f (u) and g (u) respectively, and rewrite them in the matrix form whilst ignoring 

2nd degree polynomials and above, we obtain 
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x (u)，y(u) is obtained by solving (2.57). And, from the following equations 

)()()1( uuu xxx          (2.58) 

)()()1( uuu yyy          (2.59) 

the u+1th approximate solution is obtained.  

 In Galerkin’s method, the residual equation Gk = 0 is solved and the magnetic vector 

potential is obtained. In other words f(x,y) = 0 is equivalent to Gk = 0. Therefore 

rewriting equation (2.57) gives us 

















































































































n

k

n

k

n

nn

m

k

n

G

G

G

A

A

A

A

G

A

G

A

G

A

G

A

G


















11

1

1

1

1







     (2.60) 

If we let Ak，Gk be the value for the uth iteration, then from equation (2.61), 

)()()1( u
k

u
k

u
k AAA 

        (2.61) 

the approximate solution Ak(u+1) of the magnetic vector potential of the edge k obtained 

at the u+1th iteration is acquired. Here, when the absolute value of Ak goes below the 
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specified value, the analysis is judged to have converged.  

2.2.4 Electromagnetic Force Calculation Method  

 Maxwell ’s Stress method and the Nodal Force method are 2 common ways for 

determining the electromagnetic force. Maxwell ’s Stress method is a method of using 

the Maxwell stress tensor that was obtained from the flux density of a closed surface S, 

to determine the total Maxwell stress applied to said closed surface S.  The 

electromagnetic force here is shown in equation (2.62). 

 
S

dSnTF         (2.62) 

where n is the normal unit vector of S and T  is Maxwell stress tensor, which is 

shown in equation (2.63). 
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The accuracy of the analysis is greatly influenced by the selection of the closed 

surface S. Since the flux changes drastically at the boundary of a magnetic body and 

air, the closed surface S is set at a place  that is far enough from any ferromagnetic 

bodies, which does not experience drastic changes in flux. 

Torque T is calculated using equation (2.64). 

ST
S

d  rnTt         (2.64) 

where t is the rotational direction unit vector, and r is the normal vector of the closed 

area whose torque we would like to calculate (|r| expresses the distance from the 

rotation axis).  

On the other hand, the Nodal Force method is a method where the total force acting 

on the whole of the magnetic body is calculated by adding up the individual forces that 

act on each node inside the said magnetic body. Unlike Maxwell ’s stress method, it is 

not important how a closed surface S is selected. Furthermore, the electromagnetic 
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force inside the magnetic body can also be calculated.  

 First, the Maxwell Stress tensor is expressed in equation (2.65) 
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Here, if tetrahedral elements are used, the total electromagnetic force acting on node 

i is calculated. If tetrahedral nodal elements are used, since the interpolation equation 

N i is given in equation (2.66), using equation (2.38) yields the total electromagnetic 

force, which is expressed in equations (2.67), (2.68) and (2.69).  
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where the V i in equations (2.67), (2.68) and (2.69) is the sum of the all the elements 

including node i. 

Torque is calculated using equation (2.70)  

 

n

i

iiirT ft         (2.70) 

where r i is the distance of node i from the rotation axis, and t i is the unit tangent 

vector. 
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2.3 Equation of Motion 

The rotating bodies in this research follow the equation of motion shown in equation 

(2.71) 

fr TT
dt

d
J 

2

2
        (2.71) 

where J is the moment of inertia,  is the rotation angle of the rotating body, Tr is the 

torque, and T f is the friction torque. If we take the approximate backward difference 

of equation (2.71), the angular acceleration t  of the rotating body at time t can be 

expressed in equation (2.72). 

J

TT t
f

t
rt


         (2.72) 

If the rotating body is assumed to accelerate uniformly, and its rotation angle is t  

within an infinitesimally small time frame of t, then body rotation angle t can be 

expressed as follows 

∆𝜃𝑡 = 𝜔𝑡∆𝑡 +
𝛼𝑡∆𝑡2

2
 (2.73) 

where 𝜔𝑡 is the angular velocity of the rotating body at time t. At the next time 

interval t + t, the rotation angle t+t  and angular velocity 𝜔𝑡+∆𝑡 of the rotating body 

can be respectively expressed in equations (2.74) and (2.75). 

𝜃𝑡+∆𝑡 = 𝜃𝑡 + ∆𝜃𝑡 (2.74 

𝜔𝑡+∆𝑡 = 𝜔𝑡 + 𝛼𝑡∆𝑡 (2.75 

where 𝜃𝑡 is the rotation angle at time t. Therefore from equations (2.72) ~ (2.75), if 

the rotation angle of the rotating body is calculated at intervals of t, the rotation 

angle of the body can be obtained.  
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2.4 Mesh Modification 

When a rotating body rotates next to a stationary body, as in the Surface Permanent 

Magnet (SPM) magnetic harmonic gear, it is necessary to generate a slide mesh in 

between the 2 bodies.  

When generating a slide mesh, at least 3 mesh layers will be generated in between in 

the rotating and stationary bodies, as shown in Fig. 2.2. During rotation, the air 

region’s mesh layer that is in contact with the rotating body will also rotate. However,  

if the rotation angle and the number of elements in the circumferential direction do not 

match each other as shown in Fig. 2.3(a), an error will occur then the calculation 

cannot continue. So that such mesh nonconformity does not occur, the nodes on the 

slide face will automatically move so that they are in union. A slide mesh is very useful 

because it is virtually unnecessary to regenerate the mesh after each analysis step, 

and thus shortening the analysis time.  

 

Fig. 2.2  Slide mesh.  

High-speed

rotor

Stator

SPM-type magnetic harmonic gear
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(a)     (b) 

Fig. 2.3  (a) unmatched mesh, (b) modified mesh.  
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 Magnetic Gears with Chapter 3

Continuously Variable Gear Ratios 

3.1 Introduction 

Chapter 1 has already discussed the existing magnetic gears that can ach ieve a 

variable gear ratio and their respective drawbacks. The gear ratio of the magnetic gear 

by Daif  (1) was discrete, Shah’s model (2) used chain reduction gears, and the size of 

Wang’s model (3) was too large. In this chapter, two compact models that can achieve a 

continuously variable gear ratio without needing any mechanical gears are proposed, 

their principle of operations explained  and their various characteristics discussed.  The 

first model is called the Continuously Variable Gear Ratio Magnetic Gear  (CVGR-MG) 

and the second model is called the Continuously Variable Gear Ratio Vernier Magnetic 

Gear (CVGR-VMG). 

3.2 Continuously Variable Gear Ratio Magnetic Gear 

3.2.1 Introduction 

The Continuously Variable Gear Ratio Magnetic Gear (CVGR-MG) is shown in Fig. 

3.1(a). It consists of 3 parts: a high speed rotor (HSR)  on the inside, a low speed rotor 

(LSR) in the middle, and a stator on the outside where concentrated windings have 

been wound and are connected to a 3 phase AC power supply. The coils are labeled in 

blue from 1 to 39 and Fig. 3.1(b) shows the circuit diagram.  
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(a)   3 separate parts: HSR, LSR and Stator 

 

(b)   Circuit diagram 

Fig. 3.1   Continuously Variable Gear Ratio Magnetic Gear (CVGR-MG). 

3.2.2 Principle of Operation 

The principle of operation of the CVGR-MG is quite similar to that of Shah’s and 

Wang’s model. However the CVGR-MG does not require a Control Rotor, making it 

more compact. 

First, consider the case whereby only the HSR and LSR exist as shown in Fig. 3.2 , 

and that they are static. Like in section 1.2, the MMF of the HSR is given as  

𝐹(𝜃) = ∑
𝐴

(2ℎ − 1)
sin{(2ℎ − 1)𝑁ℎ𝜃}
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ℎ=1

 (3.1) 
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where 𝑁ℎ is the number of magnetic pole-pairs. Next, the permeance of the LSR is 

given as 

𝑃(𝜃) = 𝑃0 +∑
𝐵

(2𝑙 − 1)
sin{(2𝑙 − 1)𝑁𝑙𝜃}

∞

𝑙=1

 (3.2) 

where 𝑁𝑙 is the number of steel pieces. Multiplying them together gives us the flux 

distribution outside of the LSR which is  

𝜙(𝜃) = ∑
𝐴𝑃0

(2ℎ − 1)
sin(𝐷1𝜃)

∞

ℎ=1

+∑∑𝐷0

∞

𝑙=1

 [cos(𝐷2 − 𝐷1) 𝜃 − cos(𝐷2 + 𝐷1) 𝜃].

∞

ℎ=1

 (3.3) 

The variables 𝐷0, 𝐷1, and 𝐷2 were used to simplify calculations. Their definitions are 

shown in equations (3.4), (3.5) and (3.6) respectively. 

𝐷0 =
𝐴𝐵

2(2ℎ − 1)(2𝑙 − 1)
 (3.4) 

𝐷1 = (2ℎ − 1)𝑁ℎ (3.5) 

𝐷2 = (2𝑙 − 1)𝑁𝑙 (3.6) 

 

Fig. 3.2   HSR and LSR only of the CVGR-MG. 

Again, we can observe the fundamental component, and 2 harmonic components in 

the flux distribution. In Shah’s and Wang’s model, either of these 2 harmonic 

components was coupled with a Control Rotor, which was  then rotated to achieve a 

variable gear ratio.  

However, in the CVGR-MG, either of these harmonic components is coupled directly 

to a rotating magnetic field produced by the coils that are connected to a 3 phase AC   

supply. This rotating magnetic field basically performs the same role as that of the 

Control Rotor. Its duty is to adjust the gear ratio of the magnetic gear.   For this to 

happen, the magnetic field produced by the coils must have the same harmonic order 
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as that of the harmonic component being coupled to. Mathematically, the following 

condition must be satisfied 

𝐷2 ∓ 𝐷1 = (2𝑐 − 1)
𝑁 

3
 (3.7) 

where 𝑁  is the number of coils, and c is a positive integer. 

Next, the full model including the coils is considered. Assume at time t, the HSR rotates 𝜔ℎ𝑡 

radians, the LSR rotates 𝜔𝑙𝑡 radians, and the frequency of the coils is f Hz. The MMF distribution 

of the HSR, the permeance distribution of the LSR, the resulting flux distribution, and the flux 

distribution from the coils are shown respectively in the next four equations. The flux equation of 

the stator shown in equation (3.11) has been simplified to a sine wave equation. Strictly speaking, 

this is not correct since it also contains harmonics. However due to the high order of the harmonics, 

they do not influence the CVGR-MG in a significant way and thus can be ignored. 

𝐹(𝜃) = ∑
𝐴

(2ℎ − 1)
sin{(2ℎ − 1)𝑁ℎ(𝜃 − 𝜔ℎ𝑡)} .

∞

ℎ=1

 (3.8) 

𝑃(𝜃) = 𝑃0 +∑
𝐵

(2𝑙 − 1)
sin{(2𝑙 − 1)𝑁𝑙(𝜃 − 𝜔𝑙𝑡)}

∞

𝑙=1

 (3.9) 

𝜙(𝜃)

= ∑
𝐴𝑃0

(2ℎ − 1)
sin𝐷1(𝜃 − 𝜔ℎ𝑡)

∞

ℎ=1

+∑∑𝐷0

∞

𝑙=1
[
 
 
 cos(𝐷2 −𝐷1) (𝜃 −

𝐷2𝜔𝑙𝑡 − 𝐷1𝜔ℎ𝑡

𝐷2 −𝐷1
)

− cos(𝐷2 +𝐷1) (𝜃 −
𝐷2𝜔𝑙𝑡 + 𝐷1𝜔ℎ𝑡

𝐷2 +𝐷1
)
]
 
 
 ∞

ℎ=1

 
(3.10) 

𝜙𝑠(𝜃) = sin(2𝑐 − 1)
𝑁 

3
(𝜃 −

3𝑓𝑡

(2𝑐 − 1)𝑁 
) (3.11) 

Since the harmonic component from the combination of the HSR and LSR, and the 

flux from the stator are coupled together, their rotation angles at time t are also the 

same, and thus the following equation holds true 

3𝑓𝑡

(2𝑐 − 1)𝑁 
=

𝐷2𝜔𝑙𝑡 ± 𝐷1𝜔ℎ𝑡

𝐷2 ± 𝐷1
. (3.12) 
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Differentiating both sides with respect to time yields equation (3.13). 

3𝑓

(2𝑐 − 1)𝑁 
=

𝐷2𝜔𝑙 ± 𝐷1𝜔ℎ

𝐷2 ± 𝐷1
 (3.13) 

Equation (3.13) links the HSR rotation speed, frequency of the 3 phase AC supply 

and the LSR rotation speed. Furthermore this equation is linear and clearly proves 

that the output speed is continuously variable.  

3.2.3 Static Torque Analysis 

An FEM analysis was conducted to determine the maximum transmission torque of 

this magnetic gear. This step is required so that in the dynamic analysis in the next 

section, a suitable load value can be determined.  The LSR was locked, and the HSR 

was rotated. The U phase coils were supplied with a 1 A direct current and the V and W 

phase coils were supplied with a －0.5 A direct current. The model parameters are 

shown in Table 3.1 and the analysis results are shown in Fig. 3.3. From Fig. 3.3, the 

maximum transmission torque of the LSR is 35.4 Nm. 

Table 3.1 Model parameters 

Model Diameter 170 mm 

Model Thickness 100 mm 

Magnetization 1.2 T 

Air Gap 1 mm 

Current Amplitude 1 A 

Coil Turns 600 turns/coil  
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Fig. 3.3   Static torque characteristic of the CVGR-MG. 

3.2.4 Continuously Variable Gear Ratio 

Next, FEM analyses to confirm that the gear ratio is continuously variable were 

conducted. The HSR was rotated at a fixed speed (60 rpm), a load slightly lower than 

then maximum transmission torque was applied to the LSR (30 Nm), and the frequency 

of the 1A 3 phase AC current supply was varied between -30 and 30 Hz. The positive 

frequency value indicates that the magnetic field from the coils is rotating 

counter-clockwise, and a negative frequency value indicates that it is rotating 

clockwise. 

 

Fig. 3.4   Computed results and theory show a good agreement with each other. 
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Fig. 3.4 shows the LSR rotation speeds that were derived from the FEM analysis 

results and also compares it to the theoretical rotation speed  which was derived by 

substituting the relevant model parameters and analysis conditions into equation 

(3.13). We can clearly see that the FEM analysis results agree with equation (3.13), 

and that a continuously variable output speed can be obtained by varying the 

frequency of the 3 phase AC supply.    

Fig 3.5 shows some of the transmission torques of the FEM analyses . From Fig. 3.5, 

large torque ripples at -30 Hz can be seen, which was also seen with the other 

frequencies. However at f = -4 Hz the torque ripple is very small. This is due to the rotors not 

rotating.  

 

(a)   f = −30 Hz 

 

(b)   f = −4 Hz 

Fig. 3.5   Transmission torque waveforms  
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Fig. 3.6 summarizes the mean transmission torques. From Fig. 3.14, we can clearly 

see that the transmission torque is not affected by the frequency of the coils and the 

torque ratio of the LSR to the HSR is constant at 4.25. The torque ratio will always 

remain the same, as it is determined by the number of magnet pole pairs and steel pole 

pieces. 

The transmission torque at −4 Hz is smaller than that at other frequency values. 

This is due to the fact that the LSR does not rotate at −4 Hz, and therefore the torque 

ripple is smaller. Even still, the torque ratio remains constant at 4.25.  

 

Fig. 3.6 Mean transmission torque 

3.3 Continuously Variable Gear Ratio Vernier Magnetic 

Gear 

3.3.1 Introduction 

Chapter 3.3 discusses the other model that can achieve a continuously variable gear 

ratio: The Continuously Variable Gear Ratio Vernier Magnetic Gear (CVGR -VMG). The 

motivation behind this model is to reduce the number of coils that are required.  The 

proposed model is illustrated in Fig. 3.7. It is basically a combination of the CVGR-MG 

and the Vernier motor, with the stator of the CVGR-MG having been replaced by that of 
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the Vernier motor. The Vernier motor is covered extensively in the appendix and the 

reading of that chapter is strongly recommended before continuing. The CVGR-VMG 

consists of 3 parts: a HSR, a LSR and a stator. The stator is fitted with concentrated 

windings. The blue numbers in Fig. 3.7(a) indicates the number of the coil that it 

corresponds to in the circuit diagram in Fig. 3.7(b). The coils are connected to a 

3-phase AC source. Also, like the Vernier motor, there are auxiliary teeth in the stator.  

The parameters of the model are detailed in Table 3.2. 

 

 

(a)   CVGR-VMG 

 

(b)   Circuit diagram 

Fig. 3.7   Continuously variable gear ratio Vernier magnetic gear.  
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Table 3.2   Model parameters.  

Model Diameter  208 mm 

Model Thickness  100 mm 

Magnetization  1.2 T 

Air Gap  1 mm 

Coil Turns  600 

3.3.2 Operating Principle 

The CVGR-VGM works by combining the operating principles of the CVGR-MG and 

the Vernier motor. To explain the operating principle, the flux density distributions of 

the following 2 cases are considered (see Fig. 3.8): 

1. The CVGR-VGM with only the rotors 

2. The CVGR-VGM with only the stator (coils supplied with 1A current) 

 

(a) Only the rotors                      (b) Only the stator  

Fig. 3.8   Two cases considered.  

First, when only the rotors exist, the flux density distribution in the air gap can be 

expressed mathematically using equation (3.10), which was detailed in the chapter 

explaining the operating principle of the CVGR-MG. For the CVGR-VGM rotors shown 

in Fig. 3.8(a), which has 5 PM pole-pairs and 29 steel pieces, the flux distribution and 

its FFT analysis results are shown in Fig. 3.9. The 4th component, which is the 

fundamental component, and the 24 th and 34th components, which are the harmonic 

components can be seen. 
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(a) Flux density distribution                   (b) FFT analysis  

Fig. 3.9   Flux distribution of the rotors only.  

 

(a) Flux density distribution                   (b) FFT analysis  

Fig. 3.10   Flux distribution of the stator only (1A current input).  

Next, the flux distribution of the stator only (with 1A current input) is considered. 

The flux distribution of the stator can be mathematically expressed using equation 

(A1.6), from the chapter detailing the operating principle of the Vernier motor  in the 

appendix. The stator of the Vernier motor detailed in equation (A1.6) did not have any 

auxiliary teeth, and thus in that equation, 𝑁𝑎 corresponded to the number of stator 

teeth. However since the stator of CVGR-VGM does have auxiliary teeth, 𝑁𝑎  from 

now on shall correspond to the number of auxiliary teeth. For the CVGR-VGM stator 

shown in Fig. 3.8(a), which has 9 coils and 27 auxiliary teeth, the flux distribution and 

its FFT analysis results are shown in Fig. 3.10. Here we can see the same flux 

distribution and FFT analysis results as that of the Vernier motor, with the 
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fundamental and harmonic flux components overlapping each other (please refer to Fig. 

A1.6 and Table A1.1 in the appendix). 

For the CVGR-VGM operate, a flux component from the rotors and the stator, must 

have the same harmonic order. Mathematically speaking, the following equations must 

be satisfied. 

𝐸𝑖 = (2ℎ − 1)𝑁ℎ ± (2𝑙 − 1)𝑁𝑙     (𝑖 = 1,2) (3.14) 

𝐸3 ± 𝐸𝑖 = (2ℎ − 1)𝑁ℎ ± (2𝑙 − 1)𝑁𝑙     (𝑖 = 1,2) (3.15) 

There are two constraints written above, but they are actually the same thing. 

Equation (3.14) says that the fundamental component of the stator must be coupled to 

the harmonic component of the rotors , whilst equation (3.15) says that the harmonic 

component of the stator must be coupled to the harmonic component of the rotors.  

However, as is clearly illustrated in Table A1.1 in the appendix, in the stator, the 

harmonic components overlap with the fundamental components. Therefore coupling 

the rotors’ harmonic flux component with the stator ’s fundamental component is the 

same thing as coupling the rotor ’s harmonic flux harmonic component with the stator ’s 

harmonic component, and thus equations (3.14) and (3.15) are the same thing. 

When a flux component from the rotors and the stator are coupled together, those 

flux components will rotate together, and the following equations will be satisfied. 

𝐸2𝜔𝑙𝑡 ± 𝐸1𝜔ℎ𝑡

𝐸2 ± 𝐸1
= ±

2𝜋𝑓𝑡

𝐸𝑖
     (𝑖 = 1,2) (3.16) 

𝐸2𝜔𝑙𝑡 ± 𝐸1𝜔ℎ𝑡

𝐸2 ± 𝐸1
= ±

2𝜋𝑓𝑡

(𝐸3 ± 𝐸𝑖)
     (𝑖 = 1,2) (3.17) 

Differentiating both sides with respect to t gives the following equations 

𝐸2𝜔𝑙 ± 𝐸1𝜔ℎ

𝐸2 ± 𝐸1
= ±

2𝜋𝑓

𝐸𝑖
     (𝑖 = 1,2) (3.18) 

𝐸2𝜔𝑙 ± 𝐸1𝜔ℎ

𝐸2 ± 𝐸1
= ±

2𝜋𝑓

(𝐸3 ± 𝐸𝑖)
     (𝑖 = 1,2) (3.19) 
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Equations (3.18) and (3.19) link the rotation speeds of the HSR, LSR and the 

frequency of the input current.  

In this thesis, the proposed model shown in Fig. 3.7 has 5 pole-pair PMs in the HSR, 

29 steel pieces in the LSR, 9 coils and 27 auxiliary teeth in the stator. The model was 

designed so that the 24 th flux components from the rotors and stator would couple 

together. Therefore, ℎ = 𝑙 =  = 1, 𝑝 = 3. Substituting these parameters into equation 

(3.18) gives 

(2 ∙ 1 − 1) × 29 × 𝜔𝑙 − (2 ∙ 1 − 1) × 5 × 𝜔ℎ

(2 ∙ 1 − 1)29 − (2 ∙ 1 − 1)5
= −

2𝜋𝑓

(3 ∙ 3 − 2)9
3

 (3.20) 

On the other hand, substituting the same parameters into equation (3.19) gives 

(2 ∙ 1 − 1) × 29 × 𝜔𝑙 − (2 ∙ 1 − 1) × 5 × 𝜔ℎ

(2 ∙ 1 − 1)29 − (2 ∙ 1 − 1)5
= −

2𝜋𝑓

(2 ∙ 1 − 1)27 −
(3 ∙ 3 − 2)9

3

 (3.21) 

Rearranging equations (3.20) or (3.21) both gives the final equation shown here in 

equation (3.22). This again proves that equations (3.14) and (3.15) are the same thing. 

Also, it can clearly be seen that equation (3.22) is a linear equation and therefore a 

continuously variable gear ratio can be obtained.  

29𝜔𝑙 − 5𝜔ℎ = −2𝜋𝑓 (3.22) 

3.3.3 Static Torque Analysis 

An FEM analysis was conducted to determine the maximum transmission  torque of 

this magnetic gear. Again, this step is required so that in the dynamic analysis in the 

next section, a suitable load value can be determined. The LSR was locked, and the 

HSR was rotated. The U phase coils were supplied with a 1 A direct current  and the V 

and W phase coils were supplied with a －0.5 A direct current. The model parameters 

are shown in Table 3.3 and the analysis results are shown in Fig. 3.11. From Fig. 3.11, 

the maximum transmission torque of the LSR is 10.6 Nm.  
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Table 3.3 Model parameters. 

Model Diameter 208 mm 

Model Thickness 100 mm 

Magnetization 1.2 T 

Air Gap 1 mm 

Current Amplitude 1 A 

Coil Turns 600 turns/coil  

 

 

Fig. 3.11   Static torque characteristics  of the CVGR-VGM. 

 

 

Fig. 3.12   Maximum torque of the CVGR-VGM with respect to input current . 
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Next, the analysis was repeated but with different input currents. The analysis 

results are summarized in Fig. 3.12. From Fig. 3.12, we can see that the maximum 

torque is proportional to the input current and the relationship is linear up until 4 Nm. 

After that, the increase of the maximum torque slows down and the graph seems to 

flatten out. This is due to magnetic saturation in the stator occurring at the higher 

input currents, such as can be seen in  the contour graph in Fig. 3.13.  

 

 

(a) 1.5 A                                          (b) 5 A 

Fig. 3.13   Flux density contour view of the CVGR-VGM. 

3.3.4 Continuously Variable Gear Ratio 

Next, the HSR was rotated at a fixed speed (60 rpm), a slightly lower than the 

maximum transmission torque was applied to the LSR (8 Nm), and the frequency of the 

1 A, 3 phase AC supply was varied  from -30 to 30 Hz. Fig. 3.14 shows the FEM analysis 

results and also compares it to the theoretical rotation speed shown in equation (3.2 2), 

and Fig. 3.15 shows some of the transmission torque waveforms from the conducted 

analyses. The ripples at f = 5 Hz  is lower than at f = -30 Hz because at 5 Hz, the LSR is 

not rotating. Even though torque ripples can be clearly seen in the transmission torque 

graphs, this does not affect the overall operat ion of the CVGR-VMG. This is because 

from Fig. 3.14, the analysis results exactly match that of the theoretical value. 

2.1 [T]

0
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Therefore it can be concluded that even when using a real model where torque ripples 

and cogging torques have to also be considered, the CVMG-VGR has a continuously 

variable gear ratio.  

 

Fig. 3.14   Calculated results and theory show a good agreement with each other. 
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(b) f = 5 Hz 

Fig. 3.15   Transmission torque waveforms 

Fig 3.16 summarizes the mean transmission torques. From Fig. 3.16, we can again 

see that the transmission torque is not affected by the frequency of the coils and that 

the torque ratio of the LSR to the HSR is constant at 5.8. As was already stated before, 

the torque ratio will always remain the same, as it is determined by the number of 

magnet pole pairs and steel pole pieces.  

 

 Fig. 3.16   Mean transmission torques   
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3.3.5 Effects of the Auxiliary Teeth 

This section discusses the effects of the auxiliary teeth on the CVGR-VMG. As is 

stated in section 1.3 in the appendix, the auxiliary teeth is thought to increase the 

transmission torque and also decrease the cogging torque. To confirm this, the torque 

characteristics of the 3 models shown in Fig. 3.17 were analyzed. Their primary model 

parameters are shown in Table 3.4. A 1A DC current was input into the coils, the LSR 

was fixed and the HSR was rotated.  The analysis results are shown in Fig. 3.18. For 

easy comparison, the transmission torques are grouped according to the model parts: 

HSR, LSR and Stator. Also, due to the large cogging torque in the transmission torque 

waveforms, FFT analyses were performed. The 1st  component of the FFT analysis is the 

transmission torque component, whilst the 2nd component onwards are the cogging 

torque components. 

 

(a) Auxiliary teeth model        (b) Wide teeth model       (c) Even teeth model  

Fig. 3.17   Analysis models.  

Table 3.4   Important parameters of the magnetic gears . 

Outer Diameter 204 mm 

Stack Length 100 mm 

HSR Magnet Pole Pairs 5 

LSR Steel Pieces 29 

No. of Coils 9 

Coil Turns per Pole 600 
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(a) HSR 

    

(b) LSR 

 

(c) Stator 

Fig. 3.18   Transmission torques. 
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From Fig. 3.18, it can be seen that the Auxiliary Teeth model gives the largest 

transmission torque and also the smallest cogging torque, whilst the Even Teeth model 

has the smallest transmission torque and largest cogging torque. As is explained in 

section 1.3 of the appendix, this is due to the auxiliary teeth strengthening the 

transmission torque and reducing the cogging torque coefficient.  

3.4 Comparison between CVGR-MG and CVGR-VMG 

This chapter discusses the advantages and disadvantages of the CVGR-MG and 

CVGR-VMG. The author wanted to know the answer to a s imple question: if all 

parameters are equal, which would be better? What are the advantages or 

disadvantages of the CVGR-MG and CVGR-VMG? 

The keyword of course is “if all parameters are equal”. Currently, the model and 

analysis parameters of the CVGR-MG and CVGR-VMG are slightly different. For 

example, the diameter of the CVGR-MG is 170mm as compared to 204mm of the 

CVGR-VMG. Also, there are 39 coils  in the CVGR-MG whilst the CVGR-VMG has only 

9.  

Since the most important characteristic of any magnetic gear is it s torque 

characteristic, a static torque analysis was performed on both the CVGR -MG and 

CVGR-VMG. The CVGR-MG was remodeled so that the model parameters became the 

same as the CVGR-VMG. Also the input current of the CVGR-MG was adjusted so that 

its coil’s MMF would also be the same as the CVGR-VMG. The magnetic gears used in 

the analysis are shown in Fig. 3.19 and the model and analysis parameters are 

summarized in Table 3.5. The analysis results are shown in Fig. 3.20. 
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(a)   CVGR-VMG                        (b)   CVGR-MG 

Fig. 3.19   Remodeled magnetic gears. 

 

Table 3.5   Main model and analysis parameters  

 CVGR-VMG CVGR-MG 

Outer Diameter 204 mm 204 mm 

Stack Length 100 mm 100 mm 

HSR Magnet Pole Pairs 5 5 

LSR Steel Pieces 29 29 

No. of Coils 9 72 

Auxiliary Teeth 3 per coil －  

Current Amplitude 1 A 0.125 A 

Coil Turns per Pole 600 600 

From Fig. 3.20 it is very clear that the CVGR-VMG has a higher (roughly 50% more) 

maximum transmission torque than the CVGR-MG. This is due to the effect of  the 

auxiliary teeth that is detailed in section 1.3 of the appendix. 

However, it is also clear that the waveforms of the CVGR-VMG are quite distorted, 

especially the HSR. It is thought that the main reason for the distortion is due to the 

interaction between the 5 PMs in the HSR and the fundamental component of the coils 

(3 pole-pair). 
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Fig. 3.20    Static torque comparison of the CVGR-MG and the CVGR-VMG. 

 

To confirm the source of the distortion, a torque ripple and cogging torque analysis 

was conducted. The HSR and LSR were rotated 435 and 75 degrees respectively, and 

the coils were applied with a 1A DC current. The analysis results are shown in Fig. 

3.21. On the right of Fig. 3.21 are the amplitudes of HSR torque ripples, which were 

obtained through FFT analysis  of the HSR waveform.  

The 18th, 36th and 72nd components respectively exist due to the interaction between 

the 3rd, 6th and 12th flux components of the coils and the 5 PM pole-pairs in the HSR 

(please refer to Figs. 3.9 and 3.10). The 18th torque ripple component is especially large 

since the 3rd coil flux component is very large.  

The 54th torque ripple component is due to the interaction between the 14 th 

harmonic of the rotors and the 5 pole-pair PMs of the HSR. The 290 th cogging torque 

component is due to the interaction between the 5 pole-pair PMs in the HSR and 29 

steel pieces in the LSR. 
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(a) Torque waveforms                 (b) FFT results of the HSR  

Fig. 3.21    Torque ripple and cogging torque analysis results.  

In conclusion, although the CVGR-VMG has a higher maximum transmission torque, 

its waveforms are slightly distorted meaning its operation would not be smooth. 

However, trying to reduce torque ripple and cogging torque is not a new research topic. 

This topic in conventional motors has widely been researched (5) -(12). Common methods 

include:  

1. Skewing the PMs or the LSR 

2. Controlling the input current 

3. Using uneven stator teeth width 

4. Adding tiny protrusions to the face of the stator teeth facing the air gap  

3.5 Summary 

This chapter proposed two magnetic gears: the CVGR-MG and the CVGR-VMG. The 

CVGR-VMG is a combination of the CVGR-MG and the Vernier motor. Both their 

rotation and torque characteristics were determined and from FEM analysis, it was 

shown that the gear ratios of both models were continuously variable and the ratio 

between the LSR torque and HSR torque was constant, irrespective of the frequency of 

the coil currents. 
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Also, it was determined that when the input MMF was the same for both models, the 

CMVGR-VMG had a higher output torque,  and when both models had the same gear 

ratio, the CVGR-VMG has smaller torque ripples and cogging torque.  
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 Power and Efficiency Chapter 4

In this section, the power equation and efficiency of the CVGR-MG and CVGR-VMG 

will be discussed. Although all analyses will use the CVGR-VMG model, it should be 

made clear that everything applies to the CVGR-MG as well. 

4.1 Power Equation 

The CVGR-VMG is a type of gear, and thus like all gears, mechanical power is input 

into it and at the same time mechanical power is also obtained from it. Mechanical 

power is a product of the rotor torque and angular velocity as shown by the next 

equation 

𝑃𝑚𝑒 ℎ = 𝜏 × 𝜔. (4.1) 

For conventional mechanical gears, if mechanical losses are ignored, the input and 

mechanical power will equal the output mechanical power.  

𝜏𝑖𝑛𝜔𝑖𝑛 = 𝜏𝑜𝑢𝑡𝜔𝑜𝑢𝑡 (4.2) 

For step-up gears, which are often used with generators, a low-speed high-torque 

input is converted into a high-speed low-torque output. On the other hand, for 

step-down gears, which are often used with vehicles, a high-speed low-torque input is 

converted into a low-speed high-torque output. However, as was already stated, if 

mechanical losses are ignored the input and output mechanical power will be the same.  

However in the power equation of the CVGR-VGM (and also CVGR-MG), the input 

electrical power, which creates a controllable rotating magnetic field, must also be 

considered, as well as the copper loss, which can be considered to be a type of output 

that cannot be ignored. Therefore equation (4.2) cannot be used to describe the 

CVGR-VMG.  
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Fig. 4.1 illustrates the input and output power relationship of the CVGR-VGM and 

equation (4.3) expresses it mathematically. It should be noted that since only FEM 

analyses are conducted, as opposed to conducting experiments on a prototype,  it is not 

necessary to consider mechanical, hysteresis and eddy current losses. 

𝜏𝑖𝑛𝜔𝑖𝑛 + 3𝑉𝐼 cos𝜃 = 𝜏𝑜𝑢𝑡𝜔𝑜𝑢𝑡 + 3𝐼2𝑅 (4.3) 

 

Fig. 4.1   Input / Output power diagram.  

Equation (4.3) has two “3”s in front of the electrical input and copper loss terms. 

This is because the CVGR-VGM uses 3-phase power. V and I are the RMS values of the 

input voltage and current of a single phase, and R is the total resistance of  that phase. 

θ is the phase angle of the power triangle of a single phase, as shown in Fig. 4.2. 

 

Fig. 4.2   Power triangle (U-phase). 

To confirm that the proposed power equation in (4.3) is correct, FEM analysis  where 

the input and output powers are recorded and compared at different input voltage 

frequencies should be conducted. The conventional way to do this would be  to do a 

dynamic analysis where a voltage is applied to the coils, a load is applied to the output 

rotor and the input rotor is rotated. However doing this takes a long time due to the 

need for the FEM analysis software to solve the motion of equation at every time step. 
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Therefore a pseudo-dynamic analysis was conducted instead.   

In a pseudo-dynamic analysis, no motion of equations are used, therefore shortening 

the analysis time. A voltage is input into the coils and the input and output rotors are 

rotated at precalculated rotation speeds. For a given input voltage frequency, the 

output rotation speed can be easily obtained from equation (3.22) if the input voltage 

frequency is fixed. To simulate the load on the output rotor, an initial rotational 

displacement angle, called the “load angle”, was applied. Normally, when a load is 

applied to a rotor, the rotor will experience a rotational displacement that corresponds 

to the value of the load. The load angle, in electrical degrees, indicates how much of 

the maximum transmission torque is being simulated, with 90 degrees being the 

maximum transmission torque and 0 degrees being no transmission. The load angle in 

this analysis was approximately 70 electrical degrees.  

It was quite difficult to obtain accurate results due to noise and an alytical errors. 

Therefore, instead of just one, two sets of analyses were conducted and their results 

are compared. The model and analysis parameters are shown in Table 4.1. The analysis 

results are shown in Fig. 4.3.  

Table 4.1   Model and analysis parameters 

 Analysis A Analysis B 

Model Diameter 208 mm 

Model Thickness 100 mm 

Magnetization 1.2 T 

Air Gap 1 mm 

Coil Turns 100 80 

Coil Resistance (1 coil)  2.5Ω 6.8Ω 

Input Rotor (LSR) speed 20 rpm 

Output Rotor (HSR) speed -244 ~ 296 rpm -124 ~ 296 rpm 

Voltage Amplitude 20 V 

Input Voltage Frequency -30 ~ 15 Hz -20 ~ 15 Hz 
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(a) Analysis A 

 

(b) Analysis B 

Fig. 4.3   Input and output power comparison . 

From Fig. 4.3, for Analysis A, we can see that the input and output powers more or 

less match each other. Some errors can be seen but this is thought to be due to 

analytical errors. For Analysis B, errors are much more pronounced, especially at -10 

Hz. At -10 Hz, a sudden drop in both the input and output powers can be seen. This is 

due to the currents suddenly dropping at that frequency. This phenomenon can be seen 

in the total copper loss graph, in Fig. 4.4.  
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Fig. 4.4   Total copper losses of Analyses A and  B. 

4.2 Efficiency 

  Next, the efficiency of the CVGR-VMG will be discussed. The efficiency of the 

CVGR-VMG is defined as follows.  

𝜂 =
𝜏𝑜𝑢𝑡𝜔𝑜𝑢𝑡

𝜏𝑖𝑛𝜔𝑖𝑛 + 3𝑉𝐼 cos𝜃
× 100% (4.4) 

From equation (4.4), it is clear that if all the other parameters do not change, and 

only the output speed (which is dependent on the input voltage frequency)  increases, 

the efficiency will  increase. Of course, this will not happen since as the speed of the 

rotors increase, the back EMF in the coils (which will be detailed later on) will also 

increase, decreasing the current and also the transmission torques.  Therefore this 

problem is complex since there are more than one variable influencing the efficiency.  

However, the author hypothesizes that the rotation speed will play the dominant 

role in determining the efficiency of the device. This is because as the output speed 

increases, the current and torque will decrease due to the back EMF, making the 

denominator of equation (4.4) small. Therefore the output speed should be the most 

important factor in determining the efficiency.  
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(a) Effect of voltage frequency on output mechanical power.  

 

(b) Effect of voltage frequency on efficiency.  

Fig. 4.5   Effect of voltage frequency on output mechanical power and efficiency. 

Using the analysis data from the previous section, Fig. 4.5 shows how the output 

mechanical powers and efficiencies of the device changes with the input voltage 

frequency. At first glance, both graphs look very similar. Therefore only by this 

information alone, we can already gather that the output mechanical power, and more 

specifically, the output speed is the dominant factor in determining the efficiency of 

the device. 

 The analysis results of Analysis B clearly agrees with the author ’s hypothesis that 
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increase the output speed and also the efficiency.  

On the other hand, many errors, especially at -20, 10, and 15 Hz, where the values 

suddenly drop, can be seen in the results of Analysis A. The reason for this is thought 

to be due to a combination of analytical errors and the high torque ripple, which made 

it difficult to accurately determine the torque at low levels since at this time the 

torque ripples become dominant. This problem can be seen in the torque transmission 

graphs that are shown in Fig. 4.6.  

 

(a) f = -20 Hz 

 

(b) f = 10 Hz 
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(a) f = 15 Hz 

Fig. 4.6   High torque ripples are dominant at these input voltage frequencies.  

Furthermore, at high frequencies, the phase angle (angle between the voltage and 

the current in the power triangle), becomes large, as shown in F ig. 4.7. This makes it 

hard to accurately determine the efficiency since at these input voltage frequencies, a 

small change in the phase angle causes a large change in the cosine value of the phase 

angle, which is what is used to determine the efficiency. 

 

 

Fig. 4.7   Phase angle of the CVGR-VMG. 
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However, one cannot just simply keep increasing the input voltage frequency to 

improve the efficiency. The reason is that at high HSR rotation speeds, the back EMF 

can become larger than the input voltage, meaning that the CVGR-VGM is no longer 

operating as a magnetic gear, but as a generator. This phenomenon can be seen in F ig. 

4.8, which shows the maximum electrical potential in the electrical circuit . (The input 

voltage amplitude was 20 V for both sets of analyses ). 

 

Fig. 4.8   Maximum electrical potential in the circuit (U -phase). 

From 4.8, the magnetic gear operating domain for the Analysis A model (100 turns / 

coil) is between -15 Hz and 0 Hz. On the other hand, the magnetic gear operating 

domain for the Analysis B model (80 turns / coil) is between -20 Hz and 0 Hz. Analysis 

B was only conducted until -20 Hz, so there is a possibility that the magnetic  gear 

operation domain is actually even larger. The reason the Analysis B model has a larger 

operating domain is because it has fewer coil turns; hence a smaller back EMF is 

generated when the HSR rotates.  

4.3 Summary 

In this chapter the power equation for the CVGR-MG and CVGR-VMG were derived. 

It was hypothesized that the efficiency of the machine is proportional to the rotation 

speed of the HSR and this was proven true. Therefore  from this, we can gather that 
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these two magnetic gears would be especially suitable for high speed rotation 

applications. 
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 Thesis Summary Chapter 5

This thesis extensively studied magnetic gears with continuously variable gear 

ratios. 

Chapter 1 started off with the history magnetic gears before moving on to describing 

the fundamentals of flux harmonics, how it is created and its essential role in the 

creation of magnetic gears. Other magnetic gears with variable gear ratio s in scientific 

literature were briefly described, along with their disadvantages. Then, the research 

aim which was to develop a magnetic gear with a continuously variable gear ratio , 

which is a 100% non-contact device and has a relatively high torque ratio,  was stated 

and the thesis outline was described.  

Chapter 2 moved on to the topic of FEM analysis. This is because all anal yses done 

in this thesis was conducted with FEM analysis. This chapter covered the governing 

equations of a magnetic field, Galerkin ’s method for discretization, the non-linearity of 

the material, how electromagnetic force is calculated and how everything comes 

together in the equation of motion.  

In Chapter 3, two magnetic gears with continuously variable gear ratios: the 

CVGR-MG and CVGR-VMG were proposed. Compared to the other models in literature, 

the CVGR-MG is a 100% non-contact system and it only has 2 rotating parts, making it 

compact and easier to manufacture. Furthermore its torque ripple and cogging torque 

characteristics are relatively good. Therefore relatively quiet operation without 

requiring any complicated control is possible.  

In the next section, the CVGR-VMG, which is a combination of the CVGR-MG and 

the Vernier motor, was proposed. The advantage of the CVGR-VMG is that it does not 

require many coils and is therefore easy to manufacture. Also, it is much easier to 

obtain a higher torque ratio when compared to the CVGR-MG. However, due to the 
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increased number of harmonics in the air gap, the torque ripple of the CVGR -VMG is 

larger than that of the CVGR-MG. 

Then, In Chapter 4, the power equation of both the CVGR-MG and CVGR-VMG was 

proposed and verified through FEM analysis. Then the efficiency of the machines was 

investigated. It was discovered that the faster the HSR rotates, the higher the 

efficiency becomes. Therefore the CVGR-MG and CVGR-VMG would be ideal for use in 

high speed applications. However there was a limit to the rotation speed of the HSR. If 

it goes too fast, the back EMF will exceed the input voltage. This means that the 

machine now is no longer a magnetic gear but a generator. Therefore it is necessary 

that one checks the rotation speed limit of the designed machine first. The easiest way 

to widen the operation range would be to lower the number of coil turns so that the 

back-EMF would not be so high. 

In the appendices, two other topics that were connected with the main research 

target were also investigated. The first topic, the Vernier motor, which is a type of 

low-speed high-torque synchronous motor, was introduced. It was shown that the 

Vernier motor can sometimes output a higher torque than normal synchronous motors.  

Then, the possibility of the CVGR-MG and CVGR-VMG operating using induced 

currents were discussed. In such a configuration where the stator coil terminals are 

joined together, the output torque is proportional to the rotation speed of the HSR. 

This means that for high speed applications where a variable gear ratio is not required, 

the CVGR-MG and CVGR-VMG would be good candidates.  
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Appendix 1 Vernier Motor 

1.1  Introduction 

C.H. Lee (1) was the first person to propose the Vernier motor in scientific literature. 

His proposed model is shown in Fig. A1.1. From his paper:  

“It runs at a slow speed as if it  were geared down from the speed of the rotating field 

set up by the stator.” 

“As the rotor speed steps down from the speed of the rotating field, the motor torque 

steps up. A Vernier motor, therefore, works as an electric gearing. This kind of motor is 

attractive in applications which require low speed and high torque, and where 

mechanical gearing is undesirable.  Since the Vernier motor is a synchronous machine, 

useful torque is developed only when it operates at synchronous  speed.”  

 

Fig. A1.1   Vernier motor by Lee (stator windings not shown in illustration).  

The Vernier motor looks like a normal synchronous motor, except that the number of 

salient poles in the rotor is large. It operates using flux harmonics and its operating 

principle is very similar to the magnetic gear.  

Stator

Rotor
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1.2    Operating Principle 

The Vernier motor shown in Fig. A1.2(a) will be used for explaining the operating 

principle. The rotor is fitted with 6 permanent magnet pole pairs and the stator has 9 

slots. The slots are fitted with concentrated windings that are connected to a 3 -phase 

AC supply. The numbers in blue in Fig. A1.2(a) indicate the number of the coil that it 

corresponds to in the circuit diagram shown in Fig. A1.2(b).  

 

(a) Vernier motor                     (b) Circuit diagram  

Fig. A1.2   Vernier motor.  

 

Fig. A1.3   Vernier motor with only stator present  
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First, the case where only the stator is present, as shown in Fig. A1.3, is considered. 

At time t, the MMF distribution in the air gap is  

𝐹(𝜃)𝑠 = ∑
𝐴

3𝑝 − 2
sin 𝐸1 (𝜃 +

1

𝑁 (3𝑝 − 2)
(
𝜋

2
− 6𝜋𝑓𝑡))

∞

𝑝=1

 

+∑
𝐴

3𝑞 − 1
sin𝐸2 (𝜃 −

1

𝑁 (3𝑞 − 1)
(
𝜋

2
− 6𝜋𝑓𝑡)) .

∞

𝑞=1

 

(A1.1) 

There are two fundamental components in the MMF distribution due to 

concentrated windings being connected to a 3 phase AC supply. 𝐸1 and 𝐸2 were used 

to simplify equation (A1.1) and their definitions are shown in equations (A1.2) and 

(A1.3) respectively. The MMF distribution shown in equation (A1.1)  is graphed in Fig. 

A1.4(a) and its FFT analysis results are shown in Fig. A1.4(b). From the FFT analysis 

results, we can indeed see that the MMF is composed of two fundamental components 

that are repeated over and over again.  

𝐸1 =
(3𝑝 − 2)𝑁 

3
 (A1.2) 

𝐸2 =
(3𝑞 − 1)𝑁 

3
. (A1.3) 

 

(a) MMF distribution                     (b) FFT analysis results  

Fig. A1.4   MMF in the air gap.  

 Next, the permeance distribution of the teeth is  

𝑃(𝜃)𝑠 = 𝑃0 +∑
𝐵

(2 − 1)
sin𝐸3𝜃

∞

𝑎=1

 (A1.4) 

MMF

θ

A

−
1

2
A

3

6

12
15

21 24 30 33



- 81 - 

 

where 𝐸3 is  

𝐸3 = (2 − 1)𝑁𝑎 (A1.5) 

and 𝑁𝑎 is the number of stator teeth. The permeance distribution shown in equation 

(A1.4) for the 9 slot Vernier motor shown in Fig. A1.3, is graphed in Fig. A1.5.  

 

Fig. A1.5   Permeance in the air gap.  

Multiplying equations (A1.1) with (A1.4) yields equation (A1.6), which is the flux 

distribution. 
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(A1.6) 

From equation (A1.6), we can see that in addition to the two fundamental 

components from the MMF distribution in equation (A1.1), just like with magnetic 

gears, new harmonic components can be seen. Equation (A1.6) is graphed in Fig. 

A1.6(a) and its FFT analysis results are shown in Fig. A1.6(b).  

Permeance

θ

2𝐵 + 𝑃0

𝑃0
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(a) Flux distribution                       (b) FFT analysis results  

Fig. A1.6   Flux in the air gap.  

However, from Fig. A1.6(b), we can only see the same components as the MMF in 

Fig. A1.4(b) and no new components have appeared. Apart from the slightly different 

sizes of each component, Figs. A1.6(b) and A1.4(b) are the same. This is due to the new 

harmonic components overlapping with the original fundamental  components since 

they have the exact same order. Table A1.1 illustrates this point by showing the 

possible order of the fundamental and harmonic components. Table A1.1 clearly shows 

the harmonic components overlapping with the fundamental components. 

 

Table A1.1 Possible spatial harmonic number of the various stator flux components  

Fundamental Component 1 3, 12, 21, 30, 39, 48, … 

Fundamental Component 2 6, 1A1, 24, 33, 42, 51, … 

Harmonic Component 1 6, 15, 24, … 

Harmonic Component 2 30, 39, 48, … 

Harmonic Component 3 3, 12, 21, … 

Harmonic Component 4 33, 42, 51, … 

Then, just like magnetic gears, a flux component is chosen and a rotor with 

permanent magnets that have the same number of pole pairs as the harmonic order of 

the chosen harmonic is installed, and the rotor will rotate together with the chosen 

component at a much lower speed than the frequency of the 3 phase AC. As can be seen 

in Fig. A1.2, the 6 th component was chosen and thus, 6 PM pole-pairs were installed in 
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the rotor. However, unlike the magnetic gear, the rotor is coupled to not just the 

harmonic component, but also the fundamental component as well due to overlapping 

components. Therefore the rotor of the Vernier motor is being rotated by the 6 th 

fundamental component and the 6 th harmonic component as well.  

All in all, the Vernier motor is very similar to the magnetic gear. Table A1.2 and Fig. 

A1.7 illustrates how parts of the Vernier motor corresponds to that of the magnetic 

gear. 

Table. A1.2   Comparison between the Vernier motor and the magnetic gear.  

Vernier Motor Magnetic Gear 

Coils connected to a 3 phase AC supply  Rotating HSR 

Stator teeth Steel pieces 

Rotor LSR 

 

(a) Vernier motor                               (b) Magnetic gear  

Fig. A1.7   Comparison between the Vernier motor and the magnetic gear.  

1.3  Auxiliary Teeth 

Apart from the large number of salient rotor poles, the first Vernier motor in 

scientific literature by Lee looked exactly like any other synchronous motor. It was 

only in later models (2) - (8) that the emergence of “flux modulating poles” or “auxiliary 

teeth” could be seen. Fig. A1.8 illustrates these auxiliary teeth using the Vernier motor 

by J. Li (8). 

Coils HSR

Steel 
pieces

Stator 
teeth

LSRRotor
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The auxiliary teeth have two purposes: 

1. Reduce cogging torque 

2. Increase output torque 

Cogging torque is reduced due to the auxiliary teeth increasing the number of poles 

facing the air gap. As a result , the cogging torque coefficient, which is determined by 

inverse of the least common multiple (LCM) of the number of permanent magnet pairs 

and stator teeth, will decrease, also decreasing the size of the cogging torque. 

Expression (A1.7) expresses this mathematically  

𝐾 𝑜𝑔 =
1

𝐿𝐶𝑀(𝑃𝑀, 𝑇𝑒𝑒𝑡ℎ)
. (A1.7) 

If the Vernier motor in Fig. A1.8 did not have any auxiliary teeth, there would be 9 

stator teeth facing the air gap. The cogging torque coefficient would be  

𝐾 𝑜𝑔 =
1

𝐿𝐶𝑀(𝑃𝑀, 𝑇𝑒𝑒𝑡ℎ)
=

1

𝐿𝐶𝑀(24 , 9)
= 0.0138.  

On the other hand, with the auxiliary teeth, there are now 27 teeth facing the air 

gap. Thus the cogging torque coefficient then becomes  

𝐾 𝑜𝑔 =
1

𝐿𝐶𝑀(𝑃𝑀,𝑇𝑒𝑒𝑡ℎ)
=

1

𝐿𝐶𝑀(24,27)
= 0.0046  

which is 3 times smaller.  

 

Fig. A1.8   Vernier motor with auxiliary teeth by J. Li
(8 )

.  

 



- 85 - 

 

The second purpose of these auxiliary teeth is to increase the torque by 

strengthening the chosen harmonic component. 

A simple FEM analysis was conducted to confirm these cogging torque reduction and 

output torque increase properties. The two models shown in Fig. A1.9 were used. The 

rotor was fixed and a 1A 3 phase current was input and the torque was recorde d. The 

analysis condition and model parameters are shown in Table A1.3, and the results are 

shown in Fig. A1.10. 

 

Table A1.3   Model parameters and analysis conditions.  

Diameter 90 mm 

No. of PM 24 pairs 

No. of coils 9 

Input current 3-phase 1 A 

No. of winding turns 600 / coil 

 

(a) Without auxiliary teeth          (b) With auxiliary teeth  

Fig. A1.9   Analysis of auxiliary teeth (1/3 model).  
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Fig. A1.10   FEM analysis results investigating effects of auxiliary teeth  

From Fig. A1.10, it is clear that the  torque has increased. However, cogging torque 

reduction could not be observed in this analysis. This is due to the cogging torque 

coefficient being already quite low to begin with.  

1.4  Choosing the Strongest Flux Component  

As mentioned in the previous section, in the Vernier motor, a flux component is 

chosen, and it is coupled to a rotor with the same number of PM pole -pairs. However, 

the author was curious as to whether one could predict, just by looking at the strength 

of each flux component, which component should be utilized to obtain the model with 

the strongest output torque.  

This was done by first only looking at the stator of the Vernier motor and applying a 

1A current to the coils, and then analyzing the flux distribution at 0.5mm outside the 

auxiliary teeth, at the place indicated by the dotted blue line in Fig. A1.11. The 

analysis results and the FFT analysis of the graph are both shown in Fig. A1.12.  
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Fig. A1.11   Flux distribution analysis at 0.5mm outside the auxiliary teeth (1/3 model).  

 

(a) Flux density distribution                  (b) FFT analysis  

Fig. A1.12   Flux density distribution and FFT analysis results (1/3 model).  

From Fig. A1.12(b), we can see that the 4 th component is the strongest. Therefore it 

would make sense if a model with 4 PM pole pairs gave the strongest torque. To 

confirm this hypothesis, the transmission torque of models that utilize the 1 st, 2nd, 4th, 

5th, 7th, 8th and 10th components were created and analyzed by FEM analaysis. Fig. 

A1.13 shows some of the models that were analyzed. Only 1/3 of each model was 

analyzed due to the symmetry.  

The analysis results are shown in Fig. A1.14. From Fig. A1.14, we can see that the 

strongest flux component did not necessarily produce the strongest output torque. Up 

until the 5 th component model, the strength of the output torques seemed to correspond 

to the srength of the chosen flux component. However, for the 7 th and 8th component 

models, the output torque increased in spite of a decrease in the strength of the flux 

component. Therefore from this, we can conclude that the amplitude of the chosen flux 

component is not the only thing that decides the output torque.  

Also, it is interesting that when the 1 st  component is chosen, that is, when this 
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Vernier motor was set up as a synchronous motor, the output torque was low. Therefore 

we can gather that the Vernier motor can output a larger torque than synchronous 

motors. 

 

(a) 1
s t

 component                 (b) 2
nd

 component               (c) 10
t h

 component 

Fig. A1.13   Some of the analysis models (1/3 model).  

 

Fig. A1.14   Comparison of output torque and flux density.  
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Appendix 2 Induction Magnetic Gear 

2.1  Introduction 

In section 4.2, it was shown that when the HSR of the CVGR-MG or CVGR-VMG was 

rotated too fast, the back-EMF became larger than the input torque, meaning that the 

coils were generating their own current. It was from this that the author came up with 

the idea of using induced currents as an alternative to a 3 -phase power supply to power 

the CVGR-MG or CVGR-VMG. The disadvantage would be that since there is no active 

electrical power source to control the coil currents, the gear ratio of the magnetic gear 

can no longer be actively controlled. On the other hand, the output torque of this 

magnetic gear is directly related to the rotation speed of the HSR. This means that at 

high speed rotations, this magnetic gear would also have a high transmission torque 

density. Furthermore, if compared to the magnetic gear proposed by Atallah, it only 

requires magnets on the HSR, meaning that only half the number of PMs is required, 

saving PM material.  

Although both the CVGR-MG and CVGR-VMG works using the induced current 

configuration, in this chapter only the CVGR-MG will be used. 

2.2  Operating Principle 

The same CVGR-MG shown in Fig. 3.1(a) will be used in this chapter. However, the 

coils are no longer connected to a 3-phase AC supply. Instead, the coil terminals are 

connected to each other. Fig. A2.1 shows the new circuit diagram.  
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Fig. A2.1   Circuit diagram (U-phase). 

When the HSR rotates, current is induced in the coils. These coils then create their 

own rotating magnetic field. The number of magnetic pole -pairs in this field is exactly 

the same as it was when a 3-phase power supply was applied. Therefore the operating 

condition as a magnetic gear is satisfied.  

2.3  Operating Characteristics 

In this chapter, the operating characteristics such as the transmission torque and 

efficiency will be discussed.  

To determine the transmission torque characteristics, dynamic analysis using FEM 

was conducted. The HSR is the input rotor and rotated at 60 rpm, and a load is applied 

and increased steadily from 0 Nm to 15 Nm to the LSR, which is the output rotor. The 

analysis conditions are summarized in Table A2.1.  

Table A2.1   Analysis conditions.  

Input rotor (HSR) speed 60 rpm 

Output rotor (LSR) load 0, 1, 2, 3, 4, 5, 8, 10, 12, 15 Nm 

Fig. A2.2 shows the rotation angle of the output rotor. The operation is not smooth 

due to heavy fluctuations in the transmission torque. Also, it can be seen that when a 

load of 10 Nm onwards was applied to the output rotor, it stopped rotating. Fig. A2.3 

summarizes Fig. A2.1 as a curve showing the N-T characteristics of the magnetic gear. 

We can see that the analysis results roughly fit a parabolic curve, which is quite 

common in some conventional induction motors.  

Coil 1 Coil 4 Coil 34 Coil 37

・・・

・・・



- 92 - 

 

 

Fig. A2.2   Output rotation speed at different loads.  

 

Fig. A2.3   N-T curve. 

Some of the transmission torque graphs are shown in Fig. A1.18. The torque 

fluctuations are very evident here. Also, when the load was 10 Nm, the LSR could not 

rotate any more, as is evident by how the torque waveform shown in Fig. A1.18(c) is 

qualitatively different from (a)  and (b): the waveforms in the graph are not straight 

lines, and instead resemble sine waves.  
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(a)   Load 0 Nm 

 

(b)   Load 8 Nm 

 

(c)   Load 10 Nm 

Fig. A2.4   Transmission torque at different loads  
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Fig. A2.5 summarizes the transmission torque graphs, and shows how the mean 

torques changes linearly according to the load torque. The results for 10, 12, and 15 

Nm are omitted from this graph. From Fig. A2.5, we can see that at 60 rpm rotation 

speed input, the output rotor can carry a load of 8 Nm. For this model, this calculates 

to a transmission torque density of 4.4 kNm/m 3. 

 

Fig. A2.5   Mean transmission torque.  

The torque ratio, which is the ratio between the LSR and HSR, is shown in Fig. A2.6. 

The torque ratio is always 4.25, which is the value it would  be if a 3-phase AC supply 

was actively applied to the coils.  

 

Fig. A2.6   Torque ratio (LSR / HSR).  
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Next, the efficiency is discussed. Iron and mechanical losses are ignored. Only 

copper loss is considered. The efficiency is calculated by the following formula.  

η =
𝜏𝑜𝑢𝑡𝜔𝑜𝑢𝑡

𝜏𝑖𝑛𝜔𝑖𝑛
× 100% (A2.1) 

The efficiency curve with respect to load is shown in Fig. A2.7. It is quite high, at 

about 90% at low loads. The analysis results also more or less fit  a parabolic curve, 

which is again similar to  some types of conventional induction motors.  

 

Fig. A2.7   Efficiency.  

2.4  Summary 

In this chapter, the possibility of the CVGR-MG using induced currents was 

explored. The rotating PMs on the HSR excited the coils in the stator, inducing 

currents in them. It was discovered that the CVGR-MG could function like a normal 

magnetic gear and the efficiency is high. The down side is that since no electric power 

is being actively applied to the coils, the gear ratio can no longer be controlled. If the 

load and input rotor speed is fixed, then the gear ratio will also be fixed.  

However, for this type magnetic gear, the faster the HSR rotates, the larger the 

currents will be induced in the coils, which of results in larger transmission torques. 

In the analyses shown, when the HSR was only rotated at 60 rpm, it had a 
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transmission torque density of 4 .4 kNm/m3. Therefore, for applications where the HSR 

is rotated at high speeds, this induction magnetic gear would be a good choice since it 

can have a high transmission torque density, but at the same time, only require half 

the number of permanent magnets of the magnetic gear proposed in scientific 

literature by Atallah. 
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