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Abstract

When we design a control system for a real plant, it is necessary to guarantee the
stability of the closed-loop system for parameter uncertainties. In this thesis we tackle
robust control problems with respect to structured uncertainties, by treating both the

qualitative analysis and the quantitative synthesis problems.

We consider two kinds of systems with structured uncertainties. One is the interval
system which represents a set of all systems whose uncertain entries are located in
some pattern. Another is the system with norm bounded structured uncertainties of
one-block. Associated with these systems two notions of stability are treated here. One
is the so-called quadratic stability, as defined using the fixed Lyapunov function which
is invariant for uncertainties. The other is stability for interval systems, meaning that
all the roots of an interval system are in the strict left half of the complex plane.

First we focus on the structure of systems and analyze system properties. Control-
lability of systems is one of the most important system properties in control system
design and analysis of system dynamics. In control system design we may construct
a simpler robust controller by paying attention to system structure. Thus ané,lysis
of system properties focusing on structure of systems is meaningful. Hence, we first
focus only on the structure of systems and study qualitative analysis problems with
respect to robust stabilizability. Then the relations between various kinds of robust
stabilizability and controllability are investigated.

Next we treat a design problem of a servo system for systems with norm bounded
structured uncertainties of one-block, as a quantitative synthesis problem. The design
problem of servo systems, in which system outputs track step reference inputs, is one of
the most important problems in control system design. In the design of servo systems
it is required that the closed-loop system is stable and the outputs track step refer-
ence inputs under parameter variations. Furthermore good characteristics of output
responses, for example, small overshoot, short settling time etc., are often required as

design specifications. In order to achieve these design specifications, we need control
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system design methods by which output responses can be specified quite exactly. We
apply the solutions of quadratic stabilization problem already obtained to the design
problems of servo systems. The parameterization of feedback gains and positive defi-
nite solutions of the Riccati equations are well known in the inverse problem of linear
quadratic design problem. With this parameterization, we can construct the control
system in which decoupled desirable output responses can be achieved asymptotically
in the configuration of one degree of freedom. This design problem is considered first
for the state feedback case. However, state variables are not often available in a prac-
tical control system, so that this problem is considered for the observer-based output
feedback case. Finally robust stability conditions with respect to new design parame-
ters are derived and practical algorithms of robust servo systems are proposed as well

based on these conditions.
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Notation

Re z
Im z
C-
C°
foa
R"
c"
R™Xn
Ccmxn

(M)

M-
Range(M)
Ker(M)

MJ_

The set of real numbers.

The set of complex numbers.

The real part of z € C.

The imaginary part of z € C.

Open left half plane of the s plane, C~ = {s |Re s < 0}.
Imaginary axis of the s plane, C° = {5 |Re s = 0}.
Open right half plane of the s plane, C* = {s |Re s > 0}.
The set of real vectors of dimension n.

The set of complex vectors of dimension n.

The set of real m x n matrices.

The set of complex m X n matrices.

The maximum singular value of a matrix M.

Transpose of a matrix M .V

The complex conjugate transpose of a matrix M.

The range space of a matrix M.

The kernel space of a matrix M.

Annihilator of M, i.e., Range(M*) = Ker(M) and MM =
0 (when M is tall) or MM~ = 0 (when M is fat).



A|B
C|D
RH®*

1G(8)lo

Notations

M is symmetric positive definite.
M is symmetric positive semidefinite.

The n x n identity matrix. The subscript is omitted when n

can be determined form context.

The m x n entirely zero matrix. The subscript is omitted

when 71 can be determined form context.

convex hull of a set *

belong to

absolute value of a € C

determinant of M

The eigenvalue of a matrix M.

The maximum eigenvalue of a matrix M = M*.

The minimum eigenvalue of a matrix M = M*.

Euclidean norm of z in R" or C".

The spectral norm of a matrix or vector, i.e., 1/Amax(MTM)
Define.

A 0

0 VA

=D+ C(sI — A)'B.

The set of proper stable real rational transfer functions.

The Hy, norm of a transfer function G(s) € RH®, i.e., :=
sup 5(G(jw)) = sup &(G(s)).

weRR Res>0
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Chapter 1

Introduction

1.1 Motivation

A mathematical model is needed in order to apply a control theory to a real plant. For
this purpose, a complex model is constructed in order to describe the behavior of the
real plant quite exactly, and often becomes nonlinear or time varying, or has high orders
because the real plant in general is a complex dynamical system and its environments
change the plant characteristics. Hence, it is difficult to design a controller for the
complex model. Even if we can design a controller for the model, it becomes complex
and is difficult to implement. Therefore, it has to be simplified or its order has to
be reduced, and as a result the performance of the closed-loop system becomes worse
and sometimes unstable. For this reason, it is necessary to construct a simpler model
for design in order to make a reasonable controller. Then there always exists a gap
between the real plant to be controlled and the model for design. Hence, we need the
theory of control system design which guarantees stability and specified performance
of the closed-loop system under the gap, i.e., uncertainty. It is the theme of robust
control to establish such a theory.

This thesis tackles robust control problems stated above. In the robust control
design, at least robust stability as well as nominal stability has to be guaranteed. The
former implies that the closed-loop system remains stable under uncertainties and the
latter implies that the closed-loop system is stable for a nominal model. There are two
kinds of uncertainties, that is, unstructured uncertainty and structured uncertainty.
The cause of the former is not so clear, for example, unmodelled dynamics at high
frequencies, neglected dynamics due to lack of understanding of the physical processes,

the difference between frequency response test and a model for design, etc. The cause

1



2 Chapter 1. Introduction

of the latter is quite clear; for example, uncertainties of plant parameters in the plant
whose structure is known, a discrete set of plants etc. In this thesis robust control
problems with respect to structured uncertainties are treated through the qualitative

analysis problem among them followed by the quantitative synthesis one.

We consider these problems with two notions of stability for systems with struc-
tured uncertainties. One is called quadratic stability, which is defined using the fixed
Lyapunov function invariant for uncertainties. The other is called stability for interval
systems; this means that all the roots of the interval system, i.e., the system whose
uncertain entries are located in some pattern, are in the strict left half of the complex

plane.

When we focus on the structure of systems, some basic properties regarding con-
trollability, stability etc. can be clarified and focusing on it often makes analysis of
systems easy. Controllability of systems is one of the most important system prop-
erties in control system design and analysis of system dynamics. In control system
design we may construct a simpler robust controller by paying attention to the system
structure. Thus, analysis of system properties focusing only on the structure of sys-
tems is meaningful. Hence, we consider the structured system, i.e., the system which
consists of fixed zero entries, independently varying entries or sign-invariant varying
entries and sizes of varying entries are arbitrary. We first focus on the structure of
systems and study qualitative analysis problems with respect to robust stabilizability.
Then the relations between various kinds of robust stabilizability and controllability

are investigated.

Next we treat a design problem of a control system for an uncertain system, as a
quantitative synthesis problem. The objective of the design problem for servo systems,
one of the most important problems in control system design, is to make the outputs
track step reference inputs. In this design it is required that the closed-loop system
is stable and outputs track step reference inputs under parameter uncertainties. Fur-
thermore good characteristics of output responses, for example, small overshoot, short
settling time etc., are often required as design specifications. In order to achieve these
design specifications, control system design methods by which output responses are
specified quite exactly are needed. In view of this demand, we first focus on systems
with norm bounded structured uncertainties of one-block for which a quadratically sta-
bilizing control law is derived analytically and it can be parameterized by new design
parameters. The parameterization of feedback gains and positive definite solutions of

the Riccati equations are well known in the inverse problem of linear quadratic design
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problem. Then using this parameterization, we can construct the control system which
is able to achieve decoupled desirable responses asymptotically in the configuration
of one degree of freedom. Next the solutions of the quadratic stabilization problem
already obtained are applied to the design problems of servo systems in order to guar-
antee robust stability. This design problem is first considered for the state feedback
case, and then discussed also for the observer-based output feedback case since state
variables are not often available in practical control systems. Finally robust stability
conditions with respect to new design parameters are derived and then design algo-
rithms of robust servo systems are proposed based on these conditions. Using these
algorithms, both robust stability and output response specification can be achieved

almost independently in the configuration of one degree of freedom.
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1.2 Overview of the Previous and Related Research

As pointed in [Soro84] etc., if we do not take uncertainties into consideration in con-
trol system design, the resulting control system can be fragile under uncertainties.
Therefore, robust control theory is one of the most important research area in con-
trol engineering and a lot of researches about it have been done recently. In the
course of these researches, robust control problems have been attacked in several
framework. Especially, robust stabilization problem is tackled using interpolation the-
ory in [Kim84] etc., H,, control theory in [Doy89| etc., quadratic stability theory in
[Peter87a, Peter87b, Peter88], [Khar90], [Wei90], u theory in [Doy82] etc., L; con-
trol theory in [Vid86] etc., Kharitonov theorem in [Khari78]. Furthermore, robust
control problems focusing on systems structures [Wei90, Wei94], [Ame94b, Ame96a,
Ame97a),[Maye81],[Hu96, Hu97], [Jing96] are also considered.

Focusing on the structure of systems clarifies such basic properties as controllability,
stability etc. and it makes analysis of systems easy. Controllability of systems is one of
the most important system properties in connection with control system design as well
as analysis of system dynamics. In addition, in control system design we may construct
a simpler robust controller by paying attention to system structure. Hence, qualitative
analysis problems focusing on the structure of systems have been investigated so far
[Ttom81] for the structured system which consists of fixed zero entries, independently
varying entries or sign-invariant varying entries of arbitrary sizes. It is worth men-
tioning some of them. First, for a kind of the continuous-time structured system with
fixed zero entries and independently varying entries alone, Lin [Lin74] defined struc-
tural controllability, meaning that a system is controllable for almost all parameters of
system matrices. He then dérived a necessary and sufficient condition for structural
controllability using graph theory. For a discrete-time system structural controllability
was discussed in [Muro92]. Next, in [Maye79] Mayeda and Tanaka derived a necessary
and sufficient condition for another strong structural controllability, meaning that a
system is controllable as long as some independently varying entries do not become
zeros. Ishida et al. tackled the problem of sign stability and sign observability for the
system having three kinds of entries, such as, fixed zero entries, positive entries and
negative entries in [Ishi81]. In [Maye81] a necessary and sufficient condition that the
servo problem for structured systems has a solution was derived and a design algorithm
of a robust servo compensator for structured systems was proposed.

Next similar researches were developed on another kind of structured system, which

consists of fixed zero entries, sign-invariant varying entries and independently varying
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entries. There have been some important researches on quadratic stabilizability in
connection with this thesis. For example, Wei [Wei90] showed a necessary and sufficient
condition of quadratic stabilizability for a kind of a single input structured system in
terms of a geometric pattern with respect to the location of uncertain parameters,
which is called antisymmetric stepwise configuration. This result was then extended
for a slightly larger class of interval systems by Hu et al. [Hu96]. For the multi-input
case only a sufficient condition was obtained in [Wei89a] and those for a different class
of systems in [Dai96],[Hu97]. Furthermore, Su and Fu treated nonlinear systems and
derived a design method for a class of nonlinear uncertain systems with an up-triangular
structure in [Su98]. The antisymmetric stepwise configuration includes up-triangular

structure.

With regard to stabilizability, meaning that all the roots of a system belonging to
some pattern are in the strict left half of the complex plane under uncertainties, some
studies have been made. For example, based on the preliminary results in [Wei85,
Wei89b], a necessary and sufficient condition of stabilizability in the sense of making
the roots of a perturbed characteristic equation stable was obtained in [Wei92, Wei%4]
for a kind of a single input structured system, referred to as interval system. The
condition is given in terms of a geometric pattern as in [Wei94]. Jing et al. [Jing96]
extended slightly the class of single input stabilizable interval systems. For a multi-

input system a sufficient condition was derived in [Wei89c].

Stabilization problems for linear delay systems were considered and conditions for
delay-independent stabilization were derived in terms of a geometric pattern with re-
spect to the location of uncertain parameters as in the above researches. The con-
ditions were obtained in terms of a geometric pattern without uncertainties in the
system matrices except a coefficient matrix of time delay in [Ame83, Akaz87, Ame88].
In [Ame94a, Ame94b, Ame96a, Ame96b, Ame97a] robust stabilization problems for
linear delay system were considered and conditions in terms of a geometric pattern
were obtained. In [Ame97b|, those conditions obtained in [Wei90],|Ame96b] were ex-
plained by singular perturbation approach. These conditions for linear delay systems
are based on the idea of designing feedback such that the minus of the state matrix of

the closed-loop system becomes an M-matrix.

Furthermore, the conditions of adaptive stabilizability were also given in terms of
a geometric pattern with respect to the location of uncertain parameters in [Koko91],
[Kane91].

Robust stabilization problem for systems with arbitrarily large parameter varia-
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tions except the above structured systems has been considered using bound invariant
Lyapunov function in [Holl87],[Zhou88b]. Furthermore, in [Peter87a] Petersen consid-
ered a notion of completely stabilizability with an arbitrary degree of stability, which
implies that an uncertain system is quadratically stabilizable with an arbitrary degree
of stability for arbitrarily large parameter variations. He then derived a necessary and
sufficient condition for it and in addition considered the relation between the stability
and controllability invariance, which implies that a system is controllable for all un-
certainties. However, the complete clarification of the connection between these two
notions was not made. We consider, therefore, the relation between controllability
invariance and robust stabilizability for a class of structured systems in this thesis.

Quadratic stability theory treats stability of uncertain systems using a Lyapunov
function in the quadratic form with a positive definite matrix invariant for uncertain-
ties and provides effective design methods for systems with structured uncertainties.
In [Leit79] this theory was applied to an uncertain system in order to guarantee uni-
formly asymptotic stability of the closed-loop system and then quadratic stabilizability
was first defined in [Holl80]. Barmish derived a necessary and sufficient condition of
quadratic stabilizability condition for uncertain systems by a continuous state feedback
control mapping [Bar85]. In [Stein85] quadratic stabilization problem using output
feedback was considered for a system having uncertainties only in the input matrix
under matching condition. Schmittendorf constructed a quadratically stabilizing state
feedback control law under matching condition when there exist uncertainties both in
the state and input matrices [Schm87]. Next he derived a sufficient condition in the
state feedback case without matching condition when there exist uncertainties both
in the state and input matrices [Schm88]. Petersen derived a necessary and sufficient
condition of quadratic stabilizability using state feedback in the case [Peter87b| where
there exist uncertainties only in the state matrix and in the case [Peter88] that there
exist uncertainties only in the input matrix. In [Khar90] a necessary and sufficient
condition in the state feedback case was derived when there exist uncertainties both in
the state and input matrices. Asai et al. discussed the quadratic stabilization problem
for a descriptor system [Asai95]. In the observer-based output feedback case quadratic
stabilization problem was considered in [Bar86, Gali86, Holl86, Jabb97, Peter85]. In
[Osuk89] quadratic stabilization problem by output feedback was considered. Further-
more quadratic stabilization problem with disturbance attenuation was considered in
[Xie92, Xie96], etc.

One of the most important issue in control system design is the servo problem
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whose objective is to design a control system such that output responses track step
reference inputs, which is a quantitative synthesis problem. Furthermore it is essen-
tial to track output responses to step reference inputs under parameter variations
and hence numerous researches have been made recently. In [Davi76] desired track-
ing is guaranteed essentially for small parameter variations, whereas in [Schm86] it is
guaranteed for large parameter variations but under a strong assumption of match-
ing condition. In addition numerous researches have been made based on the above-
mentioned results concerning quadratic stability. Tsuchida and Suda considered robust
servo problem for systems with time invariant uncertainties by state feedback with-
out the assumption of matching condition and introduced tuning parameters into a
feedback control law [Tsuch91]. When the above-mentioned results of quadratic sta-
bilization problem are applied to robust servo systems, the relations between design
parameters and design specifications are not clarified. In order to overcome this dif-
ficulty, ILQ design method has been developed for systems with no uncertainties in
[Fujii87a, Fujii87b, Fujii87c, Fujii88, Shimo93, Kuroe96, Kuroe98]. Another ILQ de-
sign method was developed by a polynomial approach in [Sugi95]. In this thesis we
apply the parameterization of a feedback control law well known in the inverse prob-
lem of linear quadratic control problem to this robust servo problem and propose some
practical design algorithms in the cases of state feedback and observer-based output
feedback. These algorithms achieve asymptotic specification of desirable output re-
sponses. From a similar viewpoint to the one in this thesis, this servo problem was
considered in [Fujii93a],[Sugi97, Sugi98]. Using the same parameterization as the one in
this thesis, the regulator problem for systems with structured uncertainties was treated
in [Shimo98]. |

Furthermore, in [Hoz97] robust servo problem with H,, norm constraint was con-
sidered for system with time invariant uncertainties by output feedback. For sys-
tems with time varying uncertainties, robust servo problem was also considered in
[Itoh98],[Yama93, Yama94]. Other approach to robust servo system is to apply the re-
sults in [Chil96, Garc96a, Garc96b, Masu95, Sche97] with pole assignment constraints,

H,, norm constraints etc. to the augmented system including an integrator.
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1.3 Thesis Outline

In Chapter 2 we introduce some kinds of linear time invariant uncertain systems treated
in this thesis. Then features of those systems and comparison to other types of systems
are described. Moreover, the important notions treated in this thesis are introduced.
They are controllability invariance and some kinds of robust stabilizability which are
important from a system theoretic point of view.

In Chapter 3 we consider the relation between uncertainty structure and robust
stabilizability for interval systems. Interval system is a kind of structured systems and
consists of fixed zero entries, sign invariant entries and sign varying entries. In this
chapter a standard system of interval system is considered and has a special structure
necessary for robust stabilization. First, the results in [Wei90, Wei92, Wei94] are
introduced, in which conditions for robust stabilization are given in terms of a geometric
pattern with respect to the location of uncertain parameters. Next we derive the main
result which shows the equivalence between controllability invariance and stabilizability
for interval systems. Finally we show the proofs of the lemma and propositions which
play key roles in the proof of the main theorem.

Chapter 4 addresses robust servo problems for systems with norm bounded struc-
tured uncertainties of one-block. First, control objectives are stated and the augmented
system used in the design of servo systems for a step reference input is introduced. Next
the solutions of quadratic stabilization problem are introduced, some transformations
are applied to the system and then some preliminary results are derived. The above
transformations are necessary in order to apply the result on the parameterization of a
feedback control law to the robust servo problem. Then we introduce the result on the
parameterization which leads to the special structure of the closed-loop system; this
structure is important so as to achieve desirable output responses asymptotically. Next
we introduce a necessary and sufficient condition of quadratic stability and state main
results for design methods of robust servo éystems. The results for the case of state
feedback are stated when there exists uncertainties entering into the state matrix or
both into the state and input matrix. The results for the case of observer-based output
feedback are also stated. After stating main results, design algorithms are proposed
based on the main results in the above-mentioned cases. The proofs of the main results
are described and the effectiveness of the proposed design algorithms are explained by
design examples.

In Chapter 5 we summarize the conclusions and point out some future research

issues.
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Finally, some useful lemma is stated in Appendix A. In Appendix B the proof of
the preliminary result is shown and Appendix C discusses the derivation of the aug-
mented system for the design of servo systems. The calculation of the feedback gains
of ILQ design method is described in Appendix D. In Appendix E illustrative exam-
ples of generalized antisymmetric stepwise configurations as stabilizability condition of
interval systems and antisymmetric stepwise configurations as quadratic stabilizability

condition are listed.
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Chapter 2

Systems and Definitions

2.1 Systems

We introduce linear systems with time invariant structured uncertainties treated in

this thesis.

Remark 2.1 There are examples of time invariant uncertainties in the following.

One ezample of time invariant uncertainties is the uncertainty generated by the
differences among each characteristic of a group of a kind of plant. Each characteristic
of plants is usually distributed in a specified range, the range is determined by an upper
bound and a lower bound and the characteristic is fized for each plant. Therefore, the
above-mentioned uncertainty is time invariant.

The other is the uncertainty in the following. The characteristic of a plant changes
slowly as time passes. Therefore, the change is regarded as the other type of time

invariant unceratinties.

2.1.1 Interval Systems

We consider a single input time invariant interval system (or an interval system for
short) (A, b), which is a set of systems described by the state equation

z=Az+bu (2-1)

where z € R" is the state; u € R is the control; the entries of A and b are unknown
but bounded in given compact sets; i.e., A = {a;;} and @;; > a;; > a;; b = {b;}
and b; > b; > b;. Note that the entries of A,b vary independently. We will write
a;; = 0(b; = 0) and it is called a fixed zero entry if @;; = g;; = 0 (resp. b; =b; = 0).

11



12 Chapter 2. Systems and Definitions

The entry a;; or b; is called a sign-invariant entry if @;; x a;; > 0 or b; x b; > 0 and
a sign-varying entry if @;; X g;; <0 or b; xb; <O0.
An example of interval systems is shown below.

0 0 = 0
T={%x 0 @ |z+| x|u
* 0 0 0

0 : fixed zero entry, 6 : sign-invariant entry, * : sign-varying entry

Noting in Theorem 3.1 in [Wei90] and Theorem 2.6 in [Wei94] that a robustly
stabilizable system must have at least the same number of sign-invariant entries in the
system matrices as the system order, we restrict our attention to a class of interval

systems which is called a standard system as defined below.
Definition 2.1 [Wei92],[Wei94] Ann x (n+1) interval matriz M is called the asso-
ciated matrix of the interval system (A,b) if

M=[Ab] (2.2)
Purthermore an interval system (A, b) is standard if the associated matriz M = {m;;}
has the property that my, is a sign-invariant entry for each i, 1 <i < n.

Remark 2.2 In the definition of the interval system we focus on the location of struc-
tured uncertainties and do not restrict size of uncertainties. Therefore, we can inves-

tigate the relation between uncertainty structure and robust stabilizability.

The following is an example of standard systems.

I 0 0 =* T * 0 8 x =*
o | =10 x 60 o | +{ 0|, M=]10 % 0 0
Zi?3 0 = 0 I3 0 0 = 086

0 : fixed zero entry, 0 : sign-invariant entry, * : sign-varying entry

We can find it easily that m;;; (2 =1,...,3) are sign-invariant entries.

Remark 2.3 The result in Chapter 3 holds for the system whose states are permuted
because permutation guarantees independence of parameter variations.

Ii?g *x 0 0 T2 0

(i}l = 6 0 = I + * | U

.'is * 0 0 2:3_0
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Remark 2.4 At least n sign-invariant entries in a system are necessary in order to
stabilize the system robustly by [Wei90, Wei94]. Therefore, there are n sign-invariant
entries in a standard system. However, there may be more than n sign-invariant entries
in a practical system. Therefore, dealing with a system which has more than n sign-

invariant entries is left as a future research.

Remark 2.5 Theorem 3.1 in [Wei90] and Theorem 2.6 in [Wei94] do not show where
sign-invariant entries are located. In [Wei90, Wei94] a standard system is defined as
a kind of interval systems which meet the condition in Theorem 3.1 in [Wei90] and
Theorem 2.6 in [Wei94], and the location of sign-invariant entries in the system is
the same as that of 1 in the canonical form. In a standard system the directions of
the inputs from x5 to &, from z3 to o, ..., from z, to Z,—1, and from u to I, are
invariant, i.e., there erists at least one route where the directions of the inputs between
each states are invariant.

However, we have to consider the location and the number of sign-invariant entries
in order to make a class of standard systems large. The location of sign-invariant
entries in [Wei89¢c],[Dai96] and [Hu97] is different from that of 1 in the canonical
form in the multi-input case. In [Wei89] a quasi stable uncertain matriz was defined.
Therefore, it may be better that in the multi-input case the location of sign-tnvariant

entries in a system is similar to that of 1 in the canonical form.

2.1.2 Systems with norm bounded structured uncertainties

Consider a linear system with time invariant norm bounded structured uncertainty of

one-block described by

2(t) = [A+AdJa(t)+ B+ ABlu)
y(t) = Cz(t) (2:3)
AA = DFE,, AB = DFE,.

Here z(t) € R" is the state, u(t) € R™ is the control input and y(t) € R™ is the
output; A, B, and C are the nominal system matrices with rank B = m; D, E, and E;
are known real matrices characterizing the structure of the uncertainties. In addition,
F is a matrix of uncertain parameters with its maximum singular value bounded by
unity, i.e.,

FeF={F:|F|| <1} (2.4)
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Remark 2.6 There are two kinds of norm bounded structured uncertainties other than
the above-mentioned uncertainties as follows.

Parametric structured uncertainties :

AA(r) = ir,-A,-, sl <1

i=1
q
AB(S) = ZS,‘B,‘, IS,‘I S 1

i=1

Block structured uncertainties :

h
AA(T) = ZDaiAai(r)Eaia ”Aai” <1

=1

E
AB(s) = X;DMA,,,-(S)E,,,-, [Au]] <1
=
Here 7, 8 are vectors representing uncertainties.

These kinds of structured uncertainties have more degree of freedom in representing
uncertainties than one-block one in this thesis. However, only sufficient conditions
of robust stabilizability have‘ been obtained for the former systems in the analytical
ezpression, while necessary and sufficient conditions will be obtained for the system
treated in this thesis in the analytical expression. Therefore, we can parameterize the
feedback gain in the analytical expression for the system with one-block uncertainties

and propose practical design algorithms of constructing robust servo systems.

Remark 2.7 Here we state the treatment of nonlinear systems using the above type
of systems. In Fig. 2.1 the idea of the treatment is shown. When we treat nonlinear
systems in the framework of the systems with norm bounded structured uncertainties,
linear approzimate models at the operating points (i =1,...,n) in Fig. 2.1 have to be
derived and then the mathematical model (2.8) which includes the linear approzimate
models be constructed.

However, the effective range of this approach using constant linear feedback in this

thesis is probably narrower than that of the approaches using nonlinear feedback.

2.2 Systems Properties

In this section an important notion of controllability invariance with respect to quali-

tative system property is introduced as follows.
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nonlinear system

operating range

Figure 2.1: Treatment of a nonlinear system

Definition 2.2 Consider an interval system (A,b) and assume that the associated
matriz M is a standard system. Then the interval system (A,b) is said to be control-
lability invariant if the pair (A,b) is controllable in a usual sense for any fired value

of uncertain parameters, that is,
rank[A—sI b]=n (2.5)
for every s € C and every a;; € [a;, @;), b; € [b;, bi)-

Remark 2.8 The notion of “controllability invariance” defined above, which is essen-
tially the same as that defined in [Peter87a], is a natural extension of the familiar

“controllability” in the linear system theory.

Remark 2.9 In a decentralized control system a fixed mode is defined as a pole which
cannot be moved for any feedback control. The necessary and sufficient condition for
pole-assignability of a system by a decentralized control is that there ezists no fizxed

mode. A controllability invariant interval system has no fired mode with respect to
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state feedback control for each uncertainty and therefore the system may be stabilizable
by some decentralized control. Then the problem of stabilization by a decentralized state
feedback conirol is equivalen to the problem of stabilization of multi-input system.

The condition the a system is controllable and observable is a necessary condi-
tion and not a sufficient condition for pole-assignability of a system by a decentralized
control. However, controllability invariance and observability invariance are stronger
condition than controllability and observability. Therefore, the system which is con-
trollability invariant and observability invariant is pole-assignable by a decentralized

control. It is left as a future study.

An example of controllability invariant interval systems is given as follows.

0 6 0 b
= 0 (1593 02 x4+ 0 uw=Az + bu
0 0 O 03

0; (i =1,2,3) : sign-invariant entries, as,b; : sign-varying entries
The equation (2.5) can be replaced with the following equation.
rank [ b Ab --- A™ b ] =n
This condition is equivalent to the following condition.
det[b Ab --- A" | #0

Therefore, we investigate this condition (n = 3) in order to show that the above system

is controllability invariant.

by 0 610,05
det[ 5 Ab A% |=| 0 6285 ambss | =—6:16363#0
6, 0 0

The above system is controllability invariant from this equation.
Thus the condition of controllability invariance can be checked by symbolic com-

putation.

Remark 2.10 In the system theory stabilizability is important together with controlla-
bility. Therefore, the notion of stabilizability invariance seems to be important together
with controllability invariance. Here the notion of stabilizability invariance is defined

in the following.
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Definition 2.3 Consider an interval system (A,b) and assume that the associated
matrizc M is a standard system. Then the interval system (A, b) is said to be stabiliz-
ability invariant if the pair (A,b) is stabilizable in a usual sense for any fized value

of uncertain parameters, that is,
rank[A—sI b]=n (2.6)
for every s € {C* U C"} and every a;; € [a;;,@ij), b € [b;, bi].

For example, we consider the following system.

) 6, 0O 0
= z+ U
0 0, 0
6, 6, : sign-invariant entries

When 6, and 0, are minus, this system is stabilizability invariant. However, this system
is not a standard system and does not become a standard system even by permutation
of states. Hence, the above system is not in a class of systems which are dealt with in
this thesis. However, this system is robustly stabilizable clearly.

According to this discussion, we would better treat a wider class of systems than
standard systems by changing the position of sign-invariant entries and discuss the

relations between robust stabilizability, controllability invariance etc.

2.3 Notions of Robust Stabilizability

Several notions of stabilizability for uncertain systems treated in this paper are defined
in this subsection. First quadratic stability is defined in the following.

Definition 2.4 [Bar85] The unforced system (2.3) with u =0 is said to be quadrat-
ically stable if there exists an n x n real symmetric matriz P > 0 and a constant
a > 0 such that for any admissible uncertainty F, the Lyapunov function V(z) = z¥ Pz
satisfies

L(z) ==V = 22T P[A+ DFE,]z < —a|z|]? (2.7)

for all pairs (z,t) € R" X R.
Remark 2.11 “Quadratic stability” is a kind of stability for an uncertain system, to
which usual Lyapunov stability for a deterministic system is extended for an uncertain

system. When F = 0, quadratic stability in Definition 2.4 means Lyapunov stability

for a deterministic system.
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Next we introduce one of the notion of robust stabilizability, that is, quadratic sta-
bilizability. It is defined for both systems with norm bounded structured uncertainties

and interval systems.

Definition 2.5 [Holl80],[Bar85] The system (2.3) is said to be quadratically stabi-
lizable via linear control if there ezists a linear static state feedback controlu = — Kz
with K € R™", P > 0 and a > 0 such that the following condition holds : for any

admissible uncertainty F,
L(z) =2zTP[(A+ DFE,) — (B+ DFE)K] z < —al|z|* (2.8)

Jor all pairs (z,t) € R X R. where L(z) is the Lyapunov derivative for the quadratic

Lyapunov function V(z) = zT Pz along the trajectories of the closed-loop system.

Definition 2.6 [Holl80],[Bar85] An interval system (A, b) is said to be quadratically
stabilizable via linear control if there exists a linear static state feedback control
u = —kz with kT € R*, P > 0 and a > 0 such that the following condition holds : for
all (A,b)

L(z) =27 [ATP + PA] r — 227 Pbkz < —o|z|f? (2.9)

where L(z) is the Lyapunov derivative for the quadratic Lyapunov function V(z) =

2T Pz along the trajectories of the closed-loop system.

Here stabilizability of interval systems is defined.

Definition 2.7 [ Wei92],[ Wei94] An interval system (A,b) is said to be stabilizable
if there exists a linear static state feedback control law u = —kz with kT € R™ such

that the characteristic polynomial of the closed-loop system
f(s) =det (sI — A+ bk) (2.10)

is a Hurwitz invariant polynomial; i.e., all the roots of the uncertain polynomial f(s)

are in the strict left half of the complez plane.

Remark 2.12 The stabilizability of interval systems is an extended notion of stabi-
lizability for a deterministic system which means that all the roots of the closed-loop
system are in the strict left half of the complex plane. The notion of stabilizability
in Definition 2.7 is often called Hurwitz stabilizability.



Chapter 2. Systems and Definitions 19

2.4 Summary

In this chapter we introduce some kinds of linear time invariant uncertain systems
treated in this thesis. Then features of those systems are described and comparison
to other types of systems are pointed out. Moreover, the important notions treated in
this thesis are introduced. They are controllability invariance and some kinds of robust

stabilizability which are important from a system theoretic point of view.
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Chapter 3

Uncertainty Structure
and Robust Stabilizability

3.1 Introduction

In recent years, the robust stabilization problem has attracted a considerable amount
of interest in the field of robust control. Various kinds of necessary and sufficient
conditions have been derived so far for the existence of robustly stabilizing controllers.
One example is a condition given in terms of the Pick matrix using interpolation theory
[Kim84]. Another is a type of condition given in terms of the solutions to Riccati
equations both in H,, control problem [Doy89] and in quadratic stabilization problem
(see [Khar90] and the references therein).

For a certain class of linear interval systems, conditions for robust stabilization are
given in terms of a geometric pattern with respect to the location of uncertain parame-
ters both in the quadratic stabilization problem [Wei90] and in the robust stabilization
problem [Wei92, Wei94]. In the former the pattern is called entisymmetric stepwise
configuration and in the latter generalized antisymmetric stepwise configuration. These
conditions are easy to check, but not necessarily easy to understand from a system
theoretic point of view. In particular, the connection of these conditions with more
familiar notions in the linear system theory, for instance, controllability and other no-
tions, are not so clear. Along this line in [Peter87a] Petersen defined the notion of
controllability invariance in that a linear uncertain system is controllability invariant
if it is controllable in usual sense for each fixed value of uncertain parameters and dis-
cussed its connection with complete quadratic stabilizability with an arbitrary degree

of stability. However, he did not succeed in making a complete clarification of the

21
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connection between these two notions.

The purpose of this chapter is to investigate the robust stabilization problem for
interval systems along the direction in [Peter87a]. Based on the results in [Wei90],
[Wei92] and|Wei94], we restrict attention to uncertain systems having a specific struc-
ture which is described in greater detail in Section 2.1.1. It is called standard system.
Along this line we show, with the help of the results in [Wei90, Wei92, Wei94], that
the notion of controllability invariance plays an important role in this problem. We
establish that controllability invariance is necessary and sufficient for robust stabiliz-
ability, and is necessary but not sufficient for quadratic stabilizability. Thus, the main
contribution of this chapter is to give an intuitively appealing interpretation for the
condition for robust stabilizability given in [Wei92, Wei94].

3.2 Preliminary Results

In this chapter we consider standard system among a single input time invariant interval
system defined in Section 2.1.1. The system is a set of systems described by the state

equation and rewritten in the following for convenience.

where z € R" is the state; u € R is the control; the entries of A and b are unknown
but bounded in given compact sets; i.e., A = {a;;} and @; > ay; > ay; b = {b;}
and b; > b; > b;. Note that the entries of A,b vary independently. We will write

a;;j = 0(b; = 0) and they are called fixed zero entries if @; = g;; = 0 (resp.
b; = b; = 0). The entry a;; or b; is called a sign-invariant entry if @;; x a;; > 0 or
b; X b; > 0 and a sign-varying entry if @; x a;; <0 or b; X b; < 0.

In this chapter we treat the standard system. Hence, the associated matrix M =
{mi;} = [ A B ] has the property that m;.,; is a sign-invariant entry for each 7, 1 <
1 <n-—1.

In this section we first state the definition of the notation mentioned in Section 3.1,

which is given in terms of a geometric pattern.

Definition 3.1 [Wei92],[Wei94] An n X (n + 1) matric P = {p;;} is said to be a
pattern matrix if every entry p;; of the matriz is either 0 or 1. Let X denote the set
of all standard systems (A,b) as in Definition 2.1. For a given pattern matriz P, we
define ¥, as a subset of ¥ determined by the following rule: A standard interval system
(A,b) € I, if pi;j = 0 implies m;; = 0 for any %, 3.
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According to the above definition, in order to check if an interval system (A,b) € %,
we only need to check if it is a standard system and in addition m;; = 0 when p;; = 0.

Definition 3.2 [Wei92],[Wei94] An nx(n+1) pattern matric P = {p;;} is said to have
a generalized antisymmetric stepwise configuration if the following conditions
hold:

1. pgra=1foralli=1,2,--- n.
2. Ifp>h+2andprp, =1, thenpyy =0 forallu>v, u<p—1andv < h.

3. det(PT) = p1op23 - * * Pun+1, where P is the right submatriz of P defined by

D12 P13 Pintl
L B (51)
| Pn2 Pn3 °°° Dnnitl 1

The following are all examples of the third order system whose pattern matrix has

GAS configuration.

0 : fixed zero entry, 6 : sign-invariant entry, * : sign-varying entry

[ann 6, 0 0 0 6, as by
A= |ay ap 6 |,b=[0}|, A=|0 0 6, |,b=| b,
| @3 az2 ags 05 0 0 0 | | 05
[0 6, a3 | by 0 6 a3 ] [0 ]
A= 100 6 |,b=]0}|, A=] 0 0 6, |,b=]0
| 0 0 a3 | 63 as as2 Q33 | | 63 |
[0 6, 0] b
A = | 0 axp 6 |,b.=| 0
0 0 0 5

Next we show by confirming three conditions in Definition 3.2 that the pattern matrix
of (A.,b,) has GAS configuration.

0 p2 0 pua 0101

P=10 pp p3s 0 |=]01 10
0 0 O . pay 0001
= pz=psn=pu=1
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2.
p14=1a h=]., p=4
= Pw=0 u2v, u<p—-1=3, v<h=1
= pu=pa=p=20
3.
Pz 0 pug
P" = | pn p3 O
0 0 p3

det P" = piapaspas + P22 - 0(pas) - pra + O(p32) - O(p2s) - O(p13)
~P14P23 - 0(p32) — 0(P13) - P22 - P34 — P12 - 0(p33) - 0(p24) = P12P23P34
The entry corresponding to fixed zero entry is written in () in order to show

which entry each fixed zero entry corresponds to. The relation p3s = p33 = 0 has
to hold in order to satisfy det P™ = p1op23pss.

The following lemma shows a necessary condition for controllability invariance and
will be used later for proving one of the two key propositions, that is, Proposition 3.1,

(see Section 3.4 for its proof).

Lemma 3.1 If every interval system (A,b) in X, is controllability invariant, then the

following conditions hold;
1. Ifbp £0, then a;; =0(: > §,1 < j <k, 1 <i<n) and app+1 =0.
2 Ifv>u+2anday,, 0, thena;; =06 > 5,1 <j<u, 1<i<v-—1)and
Qy—1u+1 = 0.

The following are two key propositions for deriving one of the main results, that is,
Theorem 3.1.

Proposition 3.1 Let P be a given pattern matriz. Every interval system (A,b) in X,
is controllability invariant if and only if the matriz P has a generalized antisymmeltric

stepwise configuration.
The proof of this proposition is given in Section 3.4.

Proposition 3.2 [Wei92],[Wei9}] Let P be a given pattern matriz. Every interval
system (A,b) in I, is stabilizable if and only if the matriz P has a generalized anti-

symmetric stepwise configuration.
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3.3 Main Result

This first main result stated below is a direct consequence of Propositions 3.1 and 3.2.

Theorem 3.1 Every interval system (A,b) in X, is stabilizable if and only if every

system (A,b) in 3, is controllability invariant.

Remark 3.1 This result has the following interpretation. Suppose a standard interval
system is controllability invariant, then for each fized values of the uncertain parame-
ters, there exists a stabilizing feedback control law which may depend on the uncertain
parameter. However, the theorem guarantees that the feedback control law can be cho-
sen to be independent of the uncertain parameters, in other words, it depends only on
the upper and lower bounds of the uncertain parameters. Conversely, if every standard

interval system in X, is robustly stabilizable, then controllability invariance must hold.

Remark 3.2 For a deterministic system, controllability is not necessary but suffi-
cient condition for stabilizability. However, in Theorem 3.1 controllability invariance
is equivalent to stabilizability. The reason why the equivalence holds is probably that
the relation between these properties is considered for any large parameter variations.
Hence, there ezists the gap between the results for a deterministic system and an un-

certain system.

For this sense of robust stabilizability, we can easily obtain a corresponding result to
Theorem 3.1, by noting that quadratic stabilizability implies robust stabilizability.

Corollary 3.1 FEvery interval system (A,b) in ¥, is quadratically stabilizable only if

every system (A,b) in L, is controllability invariant.

Remark 3.3 We can create an example showing that the converse statement is not
always true. For example, it is easy to show that the following interval system (A, b) is
controllability invariant, but not quadratically stabilizable according to the main result
of [Weid0].

Example
Here we consider the system with the system matrices

0 1 0 b
A=10 a3 1|, b=10 (32)
0 0 O 1
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where as; and b; are sign-varying entries.
This system is controllability invariant, but not always quadratically stabilizable

for 155 and bl.

Proof of Example

* First, we introduce a fact for quadratic stabilizability.

Fact 3.1 [Bar85] A certain system (38.2) is quadratically stabilizable if and only if there

ezists an n X n positive definite matriz S such that
T (AS + SAT)z < 0 (3.3)

for allz € N with £ # 0 and all A where N := {:v € R": Ker(d?), i.e., bTz =0 for
some b € conv{b}}.

In order to show that an interval system (3.2) is not quadratically stabilizable, we
claim by the example that there does not exist a matrix S as in Fact 3.1. Suppose that
the system (3.2) is quadratically stabilizable. Then there exists S > 0 as in Fact 3.1

described below.
1 So 83

S:=1] 8 84 83

83 85 Sg

The vector 7 :=[1 0 —b]7 belongs to N. Then the following relation must hold.

1
[1 0 —5: ] (AS+8AT)| 0 | =2(s2—s5b1) <O (3.4)
—b

When the bound of |b,| is greater than 1, the following condition holds.
|$2| > lSsl (35)
The vector B := [l 1z, 0] where z, is arbitrary real number belongs to IN. Then

1
[1 2, 0](45+547)| o (3.6)
0
= (@284 + 85)T2 + (@2282 + 83 + 84)T2 + 82 < 0 (3.7)
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Since this relation holds in the system (3.2), it follows that
(a2252 + s3 + 54)2 — 452(ass + s5) < 0. (3.8)
When ag, takes the value 795 and —r9, respectively, we obtain
85985 > 212,82 + 2(83 + 84)% > 22,52
When the value of 2, is more than 1, it follows that
|s2] < |ss]

which contradicts (3.5). Hence, there does not exist S as in Fact 3.1 for the system.
This completes the proof.

Remark 3.4 Illustrative examples are taken in Appendiz E.1 with respect to a gen-
eralized antisymmetric stepwise configuration as stabilizability of interval systems and

an antisymmetric stepwise configuration as quadratic stabilizability.

3.4 Proofs of Preliminary Results

3.4.1 P_roof of Lemma 3.1

Below we denote sign-invariant entries by 6; or 0.

Suppose that the following system X is controllability invariant.

o 6 - - 0 0
Ghp
Ya : A= ay . . b:=| b (3.9)
On—1
o - - . 0 | 6, |

Then by Definition 2.2 we can assume that the rank condition (2.5) holds for the case
where §; =1(: = 1,---,n), and A and b contain only two sign-varying entries, b and
Gy, OT Qpp and @y, which vary sufficiently largely. Define the matrix

N:=[A—sI b] (3.10)

and denote Ny as the (n — k+ 1) X (n — k + 1) down-right submatrix of N.
For the former part we suppose that ap, = 0, by # 0. Then clearly by (3.9)
rank[A — sI] = n — 1 for s taking the eigenvalues of A and hence N, is of full rank, or,
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det N, # 0. We also note that the characteristic polynomial of A for the system X is
described by
(_S)n—u+u—1{(_s)u—u+l + auv} =0 (3.11)

for u > v. Below we find conditions for the following two cases such that det Ny # 0
for all the roots s of the equation (3.11), or all eigenvalues of A. '

Case 1: k = 1, meaning that b, is a sign-varying entry :

Furthermore, we separate the case depending on the location of ay,.
1) The case with v = 1, meaning that there exists a sign-varying entry in the first

column of A : For the matrix

1 b
-5 - O 0
N1 = (312)
0
e -5 1 |
we have
det Ny = 1+ by(—s)" . (3.13)
Substituting the eigenvalues of A into s in (3.13) yields
detN;=1 (s=0) (3.14)

det N; =1+4b, {(—1)“+1a.,1}2"7‘1 (-1)"1

(s = {I(=1)*au]). (3.15)

The latter equation implies that for a,; # 0 and b, # 0, there exists a,; and b; such
that det N; = 0. Hence if b; #0, then ay; =0(u=1,:--,n).

2) The case with v > 1, meaning that there does not exist a sign-varying entry in
the first column of A : Define

] b ]
—8 O 0
N:=| 0 - - . (3.16)
oy 0
| 0 0 —s 1 |
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then the following equation is derived.

det Ny = 1+ (—=1)""1py(—s)"vto—2 {(—s)"””+1 + a,,,,}

(u#mnorv#2)
det Ny = 1+ (1)1 {(=5)"" + @uo }
(u=mnand v =2).

For s = 0, we have
det N; =1 (u#norv#2)

det Ny = 1+ (—1)"*"'bjayy (v = n and v = 2).

For s = *~*%/(—1)*~"+2q,,, we obtain

det N; =1 (u#norv#2)

det N, =1 (v =n and v = 2).

29

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Equation (3.20) implies that if b; Z 0, then an2 = 0, where an; is the lower left hand

corner of N;. Combining 1) and 2) as above, we see that this lemma is valid for k = 1.

Case 2 : k > 1, meaning that b is a sign-varying entry : Define

[ k-1 k n ]
1 0 0
—8 . . O 0

0 1 k-1
N]_I= 0
1 be k

Qo - —S 0

i 0 0 -s n |

then we get
det N1 = det Nk.

1) When Nj does not contain a,,, i.e., v < k, we have

det N = 1+ bi(—s)"*.

(3.23)

(3.24)

(3.25)
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Since A has nonzero eigenvalues, by Z 0 implies a,, =0 (v =1,---, k) by (3.25).

2) When Nj, contains ay,, that is, v > k, it becomes

2
i

(3.26)

Like in Case 1, we can show that by # 0 implies that the lower left hand corner of N;
must be zero, or a1 = 0.
For the latter part we consider the case of apy, # 0 and by = 0 as described below:

- - - .

o 1- - 0 0
. . anp - .
A= ayy - b= - (3.27)
1
0 - - - 0] 1]

First we show that this case can be reduced to the case of a, = 0 and b Z 0 as treated

in the former part. For proving this, we need the next claim, which is easy to verify.

Claim 3.1 An interval system (A,b) is controllability invariant if and only if an in-

terval system (A™1,b") defined below is controllability invariant.

A+:=[A bJ,b”':=[0] (3.28)
0 0 1 .

Considering the case of 4 < v, u < p—1, and define (App, bpp) as follows.

0 6 0
0O Qhyp
Thp  Anpi=| - . bnp = . (3.29)
Qg 0,,_2 0
o - - - 0 | | Op1 |

By noting the similarity of (3.27) and (3.28), and successive use of claim 3.1 we
see that controllability invariance of the system (3.27) is equivalent to controllability
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invariance of the system (3.29), which belongs to the class of systems as treated in the
former case (i.e., app = 0, by # 0). We, therefore, conclude from the discussion for the
former part that that if ap, % 0, then a,, =0foralll1 <u<p-1,1<v < hand

ap—1h+1 = 0. This completes the proof of Lemma.
3.4.2 Proof of Proposition 3.1

(Necessity)

Suppose that a standard system described below is controllability invariant.

an 0 a3 - a, b
azy - 6 - - [
A= . c . Qpegp |, b= . (3.30)
bn1 b1
| Qn1 *c Qun | 0, |

This implies the two conditions of Lemma 3.1, which include Condition 2 of Definition
3.2 as a subset. It thus remains to show Condition 3 of Definition 3.2 under the
assumption, that is,

rank[ A—sI b]=n (3.31)

for every s € C and every a;;, b; € R. Taking s = 0 in (3.31) yields
rank[ A b]=n (3.32)

for any a;;, b;. By considering the case where the first column of A take a value of 0,

we see i i
6y a3 - Qin b
axp 0,
det| ' | =detM #£0 (3.33)
: ° Qy_2n
bn—l
| @2 - ¢ : Or, J

for any a;j, b;. Expanding M with respect to the first column of M yields

det M = 0,A(6,) + az2A(az2) + - -+ + GnaA(anz) # 0 (3.34)



32 Chapter 3. Uncertainty Structure and Robust Stabilizability

where A(x) is the cofactor of . All terms of the above equation except for the first
term contain uncertain entries, a;;, varying independently, hence these terms must be
equal to 0. Repeating the same discussion for the remaining first term leads to the

following equation.
det M = 6,6, -- -9, (3.35)

Therefore, the conditions of Definition 3.2 hold for the system (A,b), namely this
system has a generalized antisymmetric stepwise configuration.
(Sufficiency)

Suppose that M has a generalized antisymmetric stepwise configuration. Then by
Condition 2 of Definition 3.2 the matrix

N=[A-sI b] (3.36)

has the form :
——s 6 * *x - . ... * * * 0 . . 0-
0 —s 8 « * 0 0
0 —s 6 * % - . * * 0 0
0 0 x—s 8 00 O 0 0 0 0

6 0
N =

0 * *x—s 0 0 0
0 0 * *— 8 0 0 0
*x  x * * *— 8 7] 0
* % * % *x— 8 0
* 0
* % * * * * * * %x—§ 0_
(3.37)

@ : asign-invariant entry, * : a sign-varying entry
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Let the (h,p) entry of N be the lowest and rightest sign-varying entry in the upper
part of sign-invariant entries (we set & = 0 if there is no sign-varying entry in the upper
part of sign-invariant entries). In the sequel, we prove that N has a full rank both for
s = 0 and for s # 0, by taking Condition 3 of Definition 3.2 into consideration and by

elementary transformation respectively.

1) The case with s =0
Taking s = 0 in (3.37) yields

h h+1 p—1 p p+1
0 * * * * 0 - - 0
0 * * 0 0
0 0 @ * 0 0 h
0 0 = 686000 0 o0 O 0 h+1
0 0
N =
0 = *x 6 0 0
00 * * 6 0 0 p-1
* % * * * 0 0 »p
* % * * * 0
* 0
|k * x * * * x x x 0 |
(3.38)

Eliminating the first column of N above yields the right matrix M of the associated
matrix M, whose determinant is equal to the product of all diagonal elements 66--- 6
by Condition 3 of Definition 3.2. So N has a full rank.

2)The case with s # 0
By shifting the first A columns of N to the right by one column and at the same time

moving the (h 4 1)-th column to the first column, we obtain
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i h h+1 p-1 P p+1 i
-8 8 = * . - B * * * 0 . . 0
0 -—-s 8 * * 0 0
*
/] 0 —8 * * . . * * 0 0 h
*—s8 0 0 6 0 0 0 0 0 0 0 h+1
N= *—s8 8 0
* 0 0 *—8 8 0 0
* 0 0 0 *—8 '] 0 0 p-1
* * *—3 ] 0 §4
*— 8 0
0
* * * * * * * * *x—3 @
) (3.39)

It is then easy to see that the determinant of (n x n) right submatrix is equal to a

nonzero value 6" x (—s)*. By 1) and 2) as above, it follows
rank[ A—s] b]=n (3.40)

for every s € C and every a;5,b; € R. Hence (A, b) is controllability invariant. This

completes the proof.

3.5 Robust Stabilizability Conditions

with respect to Uncertainty Structure

In this chapter we have treated a special kind of structured systems called interval
systems and derived the relation between system properties in terms of a geometric
pattern with respect to the location of uncertain parameters. Several results are also
given in terms of a geometric pattern except those introduced in the previous sections.
In this section we discuss the relation between system properties and a geometric
pattern based on those results.

A stabilizability condition for interval systems is given by the generalized antisym-
metric stepwise configuration [Wei92, Wei94] and a quadratic stabilizability condition
by the antisymmetric stepwise configuration [Wei90]. The former configuration includes
the latter configuration.

In [Koko91] the geometric pattern condition called pure feedback form was obtained

as a sufficient condition and the condition called extended matching condition struc-
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ture was obtained as a sufficient condition in [Kane91] for adaptive stabilizability. In
[Naha95] the relations between these conditions and conditions by Wei were discussed.
The antisymmetric stepwise configuration includes pure feedback form which includes

extended matching condition structure. Therefore, the following corollary holds.

Corollary 3.2 If the pattern matriz P is in the pure feedback form or extended match-

ing condition structure, every interval system (A,b) in X, is controllability invariant.

Stabilization problems for linear delay systems were considered and conditions of
delay-independent stabilization for the system were derived in terms of a geomet-
ric pattern with respect to the location of uncertain parameters as in the above re-
searches. The sufficient conditions were obtained in terms of a geometric pattern with
no uncertainties in the system matrices except a coefficient matrix of time delay in
[Ame83, Akaz87, Ame88]. In [Ame94a, Ame94b, Ame96a, Amed6b, Ame97a] robust
stabilization problems for linear delay systems were considered and sufficient conditions
in terms of a geometric pattern were obtained. In [Ame97b], conditions obtained in
[Wei90],[ Ame96b] were explained by singular perturbation approach. These conditions
for linear delay systems are based on the idea to make minus of the state matrix of
the closed-loop system M-matrix. A class of systems satisfying the condition obtained
by Wei is larger than one satisfying the conditions in terms of a geometric pattern by
Amemiya, etc.

The relation of the above-mentioned conditions is shown in Appendix E.2.

3.6 Summary

Theorem 3.1 and Corollary 3.1 lead to the fact that as far as a certain class of interval
systems is concerned, the notion of controllability invariance defined here is necessary
and sufficient for stabilizability of the interval systems and is necessary but not suffi-
cient for quadratic stabilizability. By this fact we have connected robust stabilizability
with a natural extension of the familiar notion of controllability in the linear system
theory. Thus, we have found that this notion plays an important role in this robust
stabilization problem. The future research is to clarify the meaning of controllabil-
ity invariance defined here in the context of robust stabilization problem and also to
investigate its connection with other notions of controllability, for example, the feed-
back controllability as defined in [Peter90]. Furthermore we make comparisons between
classes of systems satisfying the robust stabilizability condition in terms of a geometric

pattern.
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Chapter 4

Design of Servo Systems

with Structured Uncertainties

4.1 Introduction

In this chapter we tackle the design problem of servo systems for systems with time in-
variant structured uncertainties. In [Davi76] desired tracking is guaranteed essentially
for small parameter variations, whereas in [Schm86] it is guaranteed for large parameter
variations but under a strong assumption of a matching condition, meaning that uncer-
tainties are included in the range space of the input matrix, i.e., AA € Range(B) and
AB € Range(B). Recently numerous researches have been made concerning quadratic
stability, and various design methods for quadratically stabilizing controllers have been
proposed in a similar form as in the LQ design [Peter87b, Peter88],[Khar90]. Tsuchida
et al. [Tsuch91] considered a robust servo problem for systems with time invariant
structured uncertainties by state feedback with no assumption of the matching con-
dition and introduced tuning parameters into a feedback control law. Although these
methods can be applied directly to the robust servo problem, the resulting design
method involves inherent practical difficulties in the choice of design parameters sim-
ilar to those well known in LQ design. In order to overcome this difficulty, we apply
the parameterization of a feedback control law well known in the inverse problem of
a linear quadratic control problem to this problem and propose some practical design
algorithms in the cases of state feedback and observer-based output feedback in this
chapter. From the same viewpoint as the one in this chapter, this problem was con-
sidered in [Fujii93a),[Sugi97, Sugi98] and a different parameterization was used in the
state feedback case but not in the observer-based feedback case in [Sugi97, Sugi98].

37
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Several researches have been done recently in the output feedback case. For exam-
ple, [Gali86, Bar86, Peter85] dealt with the observer-based output feedback case, and
[Hoz97, Chil96, Masu95, Yama94] in other types. To be more specific, in [Gali86, Bar86]
a quadratic stabilizability condition was derived in terms of the observer gain for a given
state feedback control achieving robust tracking. In [Peter85] quadratic stabilizabil-
ity conditions were established for a state feedback gain as well as an observer gain.
However, the relation between weighting matrices in the Riccati equations and the re-
sulting closed-loop responses is not so clear. In [Yama93, Yama94] a design method of
two degree of freedom control systems achieving robustness of responses was proposed.
However, they treated only the single input case and the resulting system turned out
to be complicated. In [Hoz97] they provided Hy norm conditions based on linear
matrix inequalities (LMI). Other approach to robust servo system is to apply those re-
sults in [Chil96, Garc96a, Garc96b, Masu95, Sche97] using the linear matrix inequality
with pole assignment constraints, H,, norm constraints etc. to the augmented system
including an integrator.

The advantages of our design method over the above-mentioned ones are as follows.
With our proposed method we can provide a guideline of choosing state feedback
gains as well as observer gains unlike the methods proposed in [Gali86, Bar86]. Next
we can achieve desired responses more explicitly using a new parameterization of a
quadratically stabilizing control law unlike [Peter85]. Then unlike [Yama93, Yama94]
we adopt one degree of freedom configuration, which nevertheless achieves desirable
responses as well as robust stability.

Furthermore, in [Hoz97],[Chil96, Garc96a, Garc96b, Masu95, Sche97), etc. the LMI
based methods of an H,, control problem into which the quadratically stabilizing servo
problem can be transformed were proposed; this methods provide a necessary and
sufficient condition for the existence of a controller, whereas our proposed method
is more conservative. However, with our method, we can construct a one degree of
freedom control system in which decoupled desirable output responses can be achieved
asymptotically. Such output responses would be difficult to achieve by the LMI based
method with pole assignment constraints and in addition the resulting controllers tend

to have higher orders.
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4.2 Systems

In this chapter we consider the system with time invariant norm bounded structured
uncertainties introduced in Chapter 2, which is rewritten in the following for conve-

nience.

z(t) = [A + AA]z(t) + [B + ABJu(t) |
y(t) = Cz(2) (2.3)
AA=DFE,, AB=DFE,

Here z(t) € R" is the state, u(f) € R™ is the control input and y(t) € R™ is the
output; A, B, and C are the nominal system matrices with rank B = m; D, E, and E;
are known real matrices characterizing the structure of the uncertainties. In addition,
F is a matrix of uncertain parameters with its maximum singular value bounded by
unity, i.e.,

FeF={F:|F||<1} (2.4)

For this uncertain system (2.3) we consider a design problem of robust servo systems

tracking a step reference input r(t) such that

1) the closed-loop system is quadratically stable under the parameter uncertainty
described above (robust stability),

2) its output y(f) approaches r(t) asymptotically as ¢ — oo for all allowable F
(robust tracking),

by use of state feedback or observer-based output feedback controllers.
To solve this servo problem, we first consider a familiar augmented system used in

a design problem of servo systems for a step reference input 7(t):

. [ A+ DFE, 0 B+ DFE,
Ee = fe + u
i C 0 0
= [A¢ + DFEylé. + [B; + D:FEp]u
y = [C o0]&, (4.1)

where

A5=[3 g],Bg=[§],DE=[IOD:|,Ea§=[Ea 0].

This augmented system is derived in Appendix C.



40 Chapter 4. Design of Servo Systems with Structured Uncertainties

Remark 4.1 When the augmented system is constructed, it is assumed that there exist
constant steady states as t — oo, i.e. the outputs arrive at the step reference inputs.
For systems with time invariant uncertainties, there exist the constant steady states.
However, there does not always exist the constant steady states for systems with time
varying uncertainties. Therefore, the approach using this augmented system in this
chapter is effective only for systems with time invariant uncertainties and not for sys-
tems with time varying uncertainties. The robust servo problems for systems with time
varying uncertainties were treated in [Yama93, Yama94],[Itoh98].

Here we make the following assumption as is usual in this type of servo problems.

A B
det[c ) ] £0 (4.2)

Then the above servo problem can be reduced to the design problem of quadratically
stabilizing controllers for the augmented system (4.1). We can construct a desired

robust servo system by the following state feedback plus integral control:
t
u(t) = —Krpz(t) + Kr /0 (r(r) — y(r))dr (4.3)
or by the following type of an observer-based output feedback control:

&) = (4~ LOM() + Ly() + Bu(t) (44)
ult) = —Ke€(t)+K; [ (r(r) - y(r))dr. (45)

Figs. 4.1 and 4.2 show the configurations of control systems with these controls.
Here we describe a quadratic stabilization problem (QSP) for the system (4.1) as

follows.

Definition 4.1 (QSP) Determine first whether the system (4.1) is quadratically sta-

bilizable or not, and if so, construct a quadratically stabilizing control (QSC).

In this chapter we consider this problem and its inverse problem, and derive design

algorithms for constructing quadratically stabilizing control laws.

Remark 4.2 In this chapter we treat systems in which uncertainties enter into the
input matriz and those in which uncertainties enter into both the state and input ma-
trices. However, systems with uncertainties in the output matriz are not dealt with
because there exists only a sufficient condition for quadratic stabilizability for the sys-

tems [Osuk89] and the result based on the condition becomes conservative.
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P
2N

x = (A+DFE, )x x b
- +B+DFEpu

nl—

X

Kp je—!

Figure 4.1: Configuration of Control System 1 (State feedback)

r 1= u |x = (A+DFEp)x x y
S K HB+DFEpu | 1S

'

KF lat— oObserver |e——

Figure 4.2: Configuration of Control System 1 (Observer-based output feedback)

4.3 Preliminaries
In this section the results of quadratic stabilization problems are introduced and some

preliminary lemmas are shown.

4.3.1 The case in which uncertainties enter

into the state matrix

The solution to QSP in the case that only AA exists is stated below.

Fact 4.1 [Peter87b] The system (4.1) is quadratically stabilizable via state feedback if
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and only if there exists ¢ > 0 such that the Riccati equation
A{P+ PA{ + P[D:Df — BeR'B|P+ E;Es: +Q =0 (4.6)

with R = eRy, Q = €Qq has a real symmetric solution P > 0. In addition, a QSC is
given by
u=—R'B]P¢, (4.7

Then this system can be transformed by & = I'z, to

ze = (A¢+ DcFEg)x.+ Beu (4.8)
y = Ceze
where
A B '
I= detT' #0 4.9
[ c 0} ( #0) (4.9)
A B
A, = ,B. = 0 ,C.=[C 0] (4.10)
0 0 | I
D.=TI"! ﬁ],Ee,,:[Ea o]|r. (4.11)

Then the above servo problem can be reduced to a design problem of quadratically
stabilizing controllers for the augmented system (4.8). According to the design theory

of servo systems, if this stabilizing controller is given in the form of state feedback:
u=— eze . (4-12)
a desired robust servo system can be constructed by state feedback control (4.3).

Lemma 4.1 The system (4.1) is quadratically stabilizable via state feedback if and only
if there exists € > 0 such that the Riccati equation

ATP, + P.AT + P[D.DT — B.R'BT|P + ELE., +TTQT =0 (4.13)

with R = eRy, Q = €Q, has a real symmetric solution P > 0. In addition, a QSC is
given by

’U. = - exe (4- 14)
K. = RBTP,

It is called “a central QSC” like a central solution of Hy, control for convenience.
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We then state below some preliminary results.

Fact 4.2 [Fujii91] A feedback control v = —K,z, is a central quadratically stabilizing
control for the system (4.8) if and only if there exist R > 0 and P, > 0 that satisfy the

following relations:

RKe = BgPe 7 (4.15)
1 1 T
P, (EBeKe—Ae) + (EBeKe—Ae) P,
- P.D.DTP.-EZE. >0. (4.16)

The proof of this fact is shown in Appendix B. Furthermore we get the following result
using Schur complement in Lemma A.1 in Appendix A.

Lemma 4.2 The Riccati inequality (4.16) is equivalent to the following linear matriz

inequality.
PY,+ VTP, - ETE., P.D,
>0
DTP, I '
(4.17)
¥, = -;—BeKe — A, (4.18)

4.3.2 The case in which uncertainties enter

into the state and input matrix

The solution to QSP in the case that AA and AB exist is stated below.

Fact 4.3 [Khar90] The system (4.1) is gquadratically stabilizable via state feedback if
and only if there exist € > 0 and QQ > O such that the Riccati equation

[A¢ — B¢EE] Eq]"P + P[A; — BiEE] Es] + P[D¢Df — B;R™'B;|P
+EL{I - EZE[}Ese + Q=0 (4.19)

has a real symmetric solution P > 0. In addition, a QSC is given by
u=—(R'Bf P + EE] Eg)t. (4.20)
where R and = are defined by

o1
R=WJ*Vi + —éz%l/?f Y E=WJYT (4.21)
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based on the singular value decomposition of Ey:

By =[Uh Ug][g g”g} (4.22)

Remark 4.3 In [Khar90] Q in (4.19) is set to el. However, necessity and sufficiency
in Fact 4.3 hold also in case of Q.

Now we need two transformations in order to apply a new parameterization of QSC
derived in Fact 4.5.
In view of Fact 4.3, we transform the system (4.1) first by a feedback transformation

u=v—EELE.,¢, (4.23)
into
i - Ap+ DFU,UYE, 0 : B+ DFE; . (4.24)
C 0 0
y = [C 0 ]Ee
where

Ap = A— BEETE,

and then by a coordinate transformation £, = I'rz. into

e = (Ae+ D FE. )z + (Be + D FEy)v

Yy = Ceze (425)
where
_ A B -
'r = detT’ 0 4.26
P ¢ o (detTr # 0) (4.26)
[ Ar B ] D
AeF = - OF 0 - ,DeF =F1_5—‘1 l: 0 } | (4'27)
Eewy = |UUFE, 0]Tr

As a result of these transformations, the QSP for the system (4.1) can be reduced to
that for the system (4.25), namely, we obtain the following lemma directly from Fact
4.3.
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Lemma 4.3 The system (4.1) is quadratically stabilizable if and only if there ezist
€ > 0 and Q > 0 such that the Riccati equation

P, Acp+ AL Po—P.(Dep D —B. R Bl )P+ EL (- EyZET ) Eeap+T Qs = 0 (4.28)
has a real symmetric solution P, > 0. Furthermore a QSC is given by

v = —K.,z, (4.29)
K. = RBTP,

where R and E are defined by (4.21). This control law is called “a central QSC” like a

central solution of Hy, control for convenience.

The term of EET E,; is deleted by the former feedback transformation and the matrix
By =[B 07 is transformed to the matrix B, = [0 ]7 by the latter transformation.
We are, therefore, now ready to apply Fact 4.5 to this QSC because we get B, and K,
in the form of (4.10) and (4.29) by the above transformations.

Fact 4.4 [Fujii91] A feedback control v = —K.z. is a ceniral quadratically stabilizing
control for the system (4.25) if and only if there exist R > 0 of the form (4.21) and
P, > 0 that satisfy the following relations:

RK, = BTP, (4.30)
1 1 T
P.(5B.K. - Ax) + (3BK.-Axr) P
' — P.DegD%P, — (UFEeas)T(UT Eegs) > 0. (4.31)

Furthermore we get the following result using Schur complement in Lemma A.1 in
Appendix A.

Lemma 4.4 The Riccati inequality (4.31) is equivalent to the following linear matriz

inequality.
Pe‘I’eF + ‘I’fFPe - (UgEeab)T(UgEeab) PeDeF >0
DZT.P, I
(4.32)
U.p = 1B.K.— Az (4.33)

2
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4.3.3 Parameterization of a Control Law

In order to parameterize a QSC we consider the following two types of inverse quadratic

stabilization problems.

Definition 4.2 Given a linear state feedback conirol v(t) = —Koz.(t) (or u(t) =
—K,z.(t)) for the system (4.25), find conditions such that it is a central QSC.

Definition 4.3 Given a linear state feedback conirol v(t) = —K,.z.(t) (or u(t) =
—K,z.(t)) for the system (4.25), find conditions such that it is a QSC.

Later on we use the solution of the former to give a parameterization of feedback
control laws including central QSCs. The solution of the latter will then be used
to find conditions on the associated design parameters for a possible central QSC so
parameterized to be really a QSC. The reason we adopt such a two stage design method
is that a complete parameterization of all the QSCs has not been derived so far. The

solution of the former problem is given as follows.

Fact 4.5 [Fujii87a] Let B, be given by (4.10), and K, by (4.14) and (4.29) for some
R>0and P, >0. Then

1. K, can be expressed as
K. =VTITVIK 1] (4.34)

for some nonsingular matriz V. € R™™, some positive diagonal matriz ¥ =
diag{o;} € R™™, and some real matric K € R™ ™.

2. The matrices R and P, in ({.14) and (4.29) are ezpressed by

P, = (VK,)TAX}(VK.) + block-diag(Y, 0) (4.35)
R = VTAV (4.36)
Jor the matriz V in (4.34), some positive definite diagonal matriz A € R™™
and some positive definite matrizY € R**". A and X are commutative, i.e., AX
= JA.
Remark 4.4 This parameterization can be applied to the feedback gain K, = —R™'BTP,
0
where B, = [t R > 0, P. > 0. Therefore, this parameterization can be applied

to the design problems in which there exists the feedback gain in the above form, for

ezample, decentralized control problem etc.
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Based on this result, Kr, Ky in (4.3) and (4.5) is given for some K%, K? by

[ Kr Ki] = V'SV[ K} K?|+EETEq
= VISV[K I|TF +EE Eq
= K Jp'+EE] E,. (4.37)

The observer-based output feedback control (4.4) and (4.5) is then realized as in Fig.
4.4 which is the servo system of our concern here. The solution of the latter problem

is given as follows.

r | x = (A+DFE 3 )x y
K +B+DFEpu ||
|
gt —
ElEa| |[x |
______ -5,
ffp—— e

Figure 4.3: Configuration of Control System 2 (State feedback)

x = (A+DFE )X " y
+B+DFEp)u

E| observer [

Figure 4.4: Configuration of Control System 2 (Observer-based output feedback)
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Fact 4.6 [Khar90] A feedback control v(t) = —K.z.(t) is a QSC for the system (4.25)
if and only if K. satisfies the following conditions.

1.
&, .= A, — B.K, is stable. (4.38)

IGe()lle < 1, (4.39)

where

Ge(s) := (B, — ByK,)(sI — ®,)7'D,.

u
Rt

[ x = (A+DFEg)x +Bu

K+K{DFE,

Figure 4.5: Equivalent Control System (State FB, AA)

% = (Ap+DFU,USEy )x
+(B+DFEb)v

KODFE;,
K+KCDFU, UyEq

Figure 4.6: Equivalent Control System (State FB, AA, AB)

Now we state the effectiveness of this parameterization given in Fact 4.5. The
structure of the closed-loop system using this parameterization was investigated in
[Fujii93a, Fujii94]. According to the investigation, each system in Figs. 4.3 and 4.4
approaches each system in Figs. 4.8, 4.9 and 4.10 aéymptotically as {o;} increase
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x = (A+DFE, )x
— (BEE[E,
+DFU, UTE, )&
Vi +(B+DFEp)v
E=LCx
H®;~BEELE J&+Bv

K—Kgq>o+EE'f)Ea

|| JR—— \
Kp®oEELE, 1<

Figure 4.7: Equivalent Control System (Observer-based output FB, AA, AB)

L]0 u,f
I x = (A+DFE,)x +Bu

K+KODFE,

Figure 4.8: Asymptotic Control System (State FB, AA)

[Fujii93a, Fujii94], where K and K are determined uniquely from (4.34) and (4.37) as

follows.

K = K\Ar+ KjC (4.40)
K = (CAg'B)'CA (4.41)
K} = —(CA#B)™! (4.42)
where
Ag = Ap — BK.

The system in Figs. 4.8, 4.9 and 4.10 has no unknown parameters other than K. Hence,

we can specify a desirable transfer function of the nominal system (F = 0) from r to
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T = (Ap+DFURULE, )

+(B+DFEb)v

KRDFE},

K+KODFU,UE, [«—

Figure 4.9: Asymptotic Control System (State FB, AA, AB)

y by proper choice of K alone.
In this way the above-mentioned system structure enables us to avoid difficulties in

choosing design parameters similar to those well known in the usual LQ design.

Remark 4.5 Figs. 4.5, 4.6, 4.8 and 4.9 are depicted in the case that both AA and
AB ezxist. However, when only AA ezists, we set Ey, = 0 and Uy = I and then those
figures hold in the case that only AA exists.

When there do not exist uncertainties in the systems, the transfer characteristics
from r toy in Figs. 4.8, 4.9 and 4.10 are equivalent each other in spite of the existence

of an observer.

4.4 Main Results
— State Feedback _Case

In this section we show main results which are needed in order to propose design

algorithms of robust servo systems in the case of a state feedback.

4.4.1 The case in which uncertainties enter

into the state matrix

Here we treat the case in which uncertainties enter into the state matrix, i.e., F, # 0,
Ep = 0. To design a desired robust tracking controller, we first derive a parameter-
ization of QSC from the Inverse LQ viewpoint, and then obtain conditions on the

associated parameters for the state feedback control so parameterized to be a QSC,
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x = (A+DFE,)x
[ v — (BEEJE,+DFU, U E,)&

I +(B+DFEp)v
£=LCx +(®gBEELE )E+Bv

K-Kp@o+EELE,,

Figure 4.10: Asymptotic Control System (Observer-based output FB, AA, AB)

which leads finally to a desired design algorithm for QSC. The key idea of our design
method of QSC is to parameterize a QSC law K, in the form of (4.34) based on Lemma
4.1 and Fact 4.5, and then determine the associated parameter matrices V, K, and ¥
based on Lemma 4.1 and Facts 4.5 and 4.6, in such a way that the K, obtained is a
QSC law. By Lemma 4.1 there is no restriction on the structure of R as in (4.36), and
hence by 2. of Fact 4.5 we can choose any nonsingular matrix V. For simplifying the
design procedure, we set V = I in what follows.

We then show necessary and sufficient conditions for QSC of the state feedback
control (4.3), and the observer-based output feedback control (4.4) and (4.5) associ-
ated with the parameterized gain K., which lead to determination of the remaining

parameter matrices K and X.

Theorem 4.1 [Fujii91] Let V = I in (4.84). Then the state feedback control (4.3)
associated with K, given by (4.84) is a central QSC law for some X for (2.3) if and
only if K satisfies the following conditions.

Ak is stable. (4.43)

1Ga(8)llo < 1 (4-44)
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where

Gu(s) = E,(sI—Ax)™'(I-BB™)D (4.45)
B~ = (CAZ'B)'CAZ. (4.46)

Furthermore the matriz G.(s) has the following asymptotic property:

Ge(s) — G,.(s) (4.47)
as {o;} increase.
The proof of this theorem is shown in Section 4.7.

Remark 4.6 The condition (4.44) is interpreted as a small gain condition for the
asymptoic system in Fig. 4.8 because the system in Fig. 4.8 is equivalent to the system
in Fig. 4.11 by noting that K& = B~. Moreover, Fig. 4.11 can be redrawn as Fig. 4.12,
from which Fig. 4.12, G4(s) is derived directly.

+ T F [~
0
KD| | 2
—_ x=Ax+Dw+Bu
r 0 ) X y
K

Figure 4.11: Small gain condition 1 for asymptotic system (State FB, AA)

4.4.2 The case in which uncertainties enter

both into the state and input matrices

In this subsection we treat the case in which uncertainties enter into the state and
input matrix, i.e., E, # 0, Ey # 0. The key idea of our design method of QSC is to
parameterize a QSC law K, in the form of (4.34) based on Lemma 4.3 and Fact 4.5,

and then determine the associated parameter matrices V, K, and ¥ based on Lemma
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) F |-
. :
x=Agx+(I-BB)Dw

O 1 C

+BKyr | x y

r z=E x

Figure 4.12: Small gain condition 2 for asymptotic system (State FB, AA4)

4.3 and Facts 4.5 and 4.6. in such a way that the K, so parameterized is a QSC law
for the system (4.25). Note by Lemma 4.3 that the R as in (4.36) is restricted in the
form of (4.21), or equivalently, by

2o ||V
R=|WV V
[ 1 2 ] [ 0 €l V2T
and hence by 2 of Fact 4.5 we can determine V' as
T
v=[u n»]. (4.48)

We then show necessary and sufficient conditions for QSC of the state feedback
control (4.3) associated with the parameterized gain K., which lead to determination

of the remaining parameter matrices K and X.

Theorem 4.2 [Fujii92b] Set V as in (4.48). Then the state feedback (4.3) associated
with K, given by (4.34) is a central QSC law for some ¥ only if K satisfies the following

conditions.

1
Ax is stable. (4.49)

U5 Gas)]_ <1 (4.50)
Furthermore the matriz G¢(s) has the following asymptotic property:

G.(8) = UULG,(s) — Gi(s) (4.51)
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where
Gb(S) = Eb[K(SI — AK)_I(I - B.B_) + B—]D (452)

as {o;} increase.

The proof of this theorem is shown in Section 4.7.

Remark 4.7 The condition ||[U2U] G,(s) — Go(s)|leo < 1 is interpreted as a small
gain condition for the asymptoic system in Fig. 4.9 because the system in Fig. 4.9 is

equivalent to the system in Fig. 4.13.

F

& w z

Op )

KF x=AFx+Dw+Bv X y
r —
—1 K0 () 2=UyU3E,x+Epy Cr—
- \'s

K E

Figure 4.13: Small gain condition 1 for asymptotic system (State FB, AA, AB)

F =
w 0 Z
~|x=A x+(-BB")Dw+BK{r
0
_ [=(U,UJE,~EgOX-EgKeDw| 1Y
— +EbK?r T

Figure 4.14: Small gain condition 2 for asymptotic system (State FB, AA, AB)

The system in Fig. 4.18 becomes that in Fig. 4.1}. From Fig. .14, UsULG,(s) -
Gy(3) is derived directly.
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4.5 Main Results
— Observer-based Output Feedback Case

In this section we show main results which are needed in order to propose a design

algorithm of robust servo systems in the case of an observer-based output feedback.

4.5.1 The case in which uncertainties enter

into the state matrix

In this subsection we treat the case in which uncertainties enter only into the state

matrix, i.e., E; # 0, Ep = 0.

Theorem 4.3 The closed-loop system (2.3),(4.4) and (4.5) is quadratically stable if

and only if the two following conditions are satisfied.

1.
0
o, .
®, = [ —Kp } is stable. (4.53)
0 P,
2.
Goeal(s)lloo < 1 (4.54)

where

e L oo [ ]

®, A-LC.

As {0;} increases, Goea(s) approaches Goeq(s) defined below.

Goea(8) = Go(s) + Gea(s) (4.55)
where
Gea(s) := Eo(sI — Ag) 'BsKp(sI — ®,)7'D.

If ||Goea(8)|loo < 1, the closed-loop system is quadratically stable for sufficiently large
{o:}.

This result is derived directly from Theorem 4.4.
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4.5.2 The case in which uncertainties enter

both into the state and input matrix

In this subsection we treat the case in which uncertainties enter both into the state
and input matrices, i.e., E, # 0, Ey # 0. As we discussed in the section 4.4.2, by 2 of

Fact 4.5 we can determine V as
T
V=[% %]
where V;, V; are given by (4.22), i.e., singular value decomposition of Ej.

Theorem 4.4 The closed-loop system (2.3),(4.4) and (4.5) is quadratically stable if

and only if the following two conditions are satisfied.

1.
0
. .
@, = { —Kgp } is stable. (4.56)
0 ®,
2.
IGee(s)ll o < 1 (4.57)

Gae(S) = [ Ee — EbKe —EbKF ] (SI - q)oe)—l l: —l—); }

As {0;} increases, G,o(s) approaches Goe(s) defined below.

Goe(8) = UoUTG4(5) — G(s) + Ge(s) (4.58)
where

Ges) = |By+ (UaUF Ea — BK)(sI — Ax) ™ B
xsKp(sI — ®,)7'D. (4.59)

If |Goe(s)|loo < 1, the closed-loop system is quadratically stable for sufficiently large
{o:}.
The proof of this theorem is shown in Section 4.7.

Remark 4.8 Here G (s) is proven to be strictly proper. First, note that the direct
transmission part of G(s) is EyK3D. Next expanding G.(s) yields
Ge(s) = EysKa(sI-®,)'D
+(UUL'E, — ByK)(sI — Ag) " 'BsK%(sI — ®,)"'D
= Ga(s) + Ge(s)
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Clearly G»(s) is strictly proper. Furthermore, calculating G (s) yields
Gal(s) = By {KYD + K3®,(sI — 8,)' D} .

Hence, the direct transmission part of G¢(s) is EyK%D. From (4.41) and (4.46), K}
= B~ = (CAZ'B)™! CAR'. Therefore, Goc(s) turns out to be strictly proper. We can
also prove as in Theorem 2 of [Fujii94] that ||Goe(5)||lso approaches ||G,e(s)|oo in the
sense that ||Goe(s) — Goe(5)|lo — 0 as {o;} increases.

Remark 4.9 The condition |[U2UL G,(s) — Gy(s) + Ge(s)|loo < 1 is interpreted as a
small gain condition for the asymptoic system in Fig. 4.10 because the system in Fig.
4.10 is equivalent to the system in Fig. 4.15. Moreover, Fig. 4.15 can be redrawn as
Fig. 4.16.

F
w z
——»| x=Ax—BEE{EaE+Dw+Bv
'_ — X y
r , | ELCx+(@5BEELE,E+BY Cl—w
1Ky z=Bx—U UL B, E+Ev
K— K@ +ZE{E,
- g
KO0, EEE, [+

Figure 4.15: Small gain condition 1 for asymptotic system (Observer-based output FB,
AA, AB)

Nezt it is shown that G,e(s) in 4.58 is equivalent to G,,(s) in Fig. 4.16. Here we

have

UxU3 Ga(s) — Gi(s) — Ge(s)
= (UUTE, — EK)(sI — Ak)™'D + EyKp®,(sI — ®,)7'D
(ULUTE, — EyK)(sI — Ax) *BKa®,(sI — ®,)'D.



58 Chapter 4. Design of Servo Systems with Structured Uncertainties

x=(Agc+BKQ®0)x—BK Do +Dw-+BKr

E=(LC —BK+BK%<I>O—BEE§E X
HI-BKD®,E+BKr

— | z=(U Ul B~ EyK+EpRI® o)

~Eng<I>o§+EbK?r x 7

Figure 4.16: Small gain condition 2 for asymptotic system (Observer-based output FB,
AA, AB) '

From Fig. 4.16, G,y(s) : the transfer function from w to z (r = 0) is derived as

follows.

Ax + BK$9, ~BK%, |D
G.u(s)= | LC — BK + BK%®, — BEETE, (I —BK2)®,| 0
UULE, — EK + EK3®, ~EK3®, |0

This state space representation can be transformed by the coordinate transformation

_ I 0 T z . ; .
T = = into the following representation.
-I I 3 E—=z

Ax ~BKY®, | D
G.u(s) = 0 ®, -D
UUFEs — B K —EKJ®,| 0

This representation is easily proven to be equivalent to UsUT Go(s) — Go(s) — Ge(s)-
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4.6 Design Algorithms

4.6.1 State feedback case

This result leads to the following basic design algorithm of QSC.
Design algorithm 1 (AA exists)

Stepl SetV =1
Step 2 Determine K so as to satisfy the condition (4.44).

Step 3 Choose 07 ~ oy, large enough so as to satisfy the condition (4.39) for the
control law K, with K specified above.

Step 4 With the parameter matrices V,K, and ¥ obtained above, the QSC law K,
can be obtained by (4.34), from which the desired gain matrices Kr,K; in
(4.3) of the servo system can be obtained by

[Kr K =X%[K IITT. (4.60)

Remark 4.10 In practical conirol system design a decoupling property of closed-loop
systems as well as specifying output responses are often required as design specifications.
One of the effective methods of choosing K in Step 2 so as to meet the above two
specifications is ILQ design method [Fujii87a], [Fujii87], [Fujii93a], [Fujii88]. The
features of the method are introduced in the next subsection and the calculation method
of K 1is introduced in Appendiz D.

Remark 4.11 In this design method we use the parameterization of the feedback gains
in the form of K, = V1TV [ K I ] In this design algorithm K is selected as a de-
coupling gain in order to achieve a decoupling property as a design specification. This
results in making a class of gains small and there may not be sometimes quadratically
stabilizing gains even if a system is quadratically stabilizable. Therefore, this design
algorithm yields a more conservative result than the design methods based on linear
matriz inequalities or H,, conirol problems with respect to the existence of a quadrat-
ically stabilizing controller. However, this design algorithm can construct a control
system in which decoupling characteristics and desirable output responses are achieved

more easily that the latter design methods.

Design algorithm 2 (AA and AB exist)
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Stepl SetV=[, V.

Step 2  First, obtain a matrix K satisfying (4.49) by a pole assignment method.
Then check whether it satisfies the condition ||G.(s)[lcc < 1 or not (see
Theorem 4.2). If it satisfies this condition, proceed to Step 3; otherwise
check whether it satisfies the condition (4.50). If it satisfies this condition,
then proceed to Step 3; otherwise obtain a different K similarly and repeat
this step.

Step 3 First, choose some positive values of 07 ~ o, and then check whether the
resulting control law K, given by (4.34) satisfies the conditions (4.49) and
(4.50). If it satisfies this condition, then proceed to Step 4; otherwise choose
different {o;} again and repeat this step.

Step 4 With the parameter matrices V,K, and ¥ obtained above, the QSC law K,
can be obtained by (4.34), from which the desired gain matrices K and K7
in (4.5) of the servo system can be obtained by (4.37).

Remark 4.12 Like Remark 4.10, one of the effective methods of choosing K in Step
2 so as to meet the specification is ILQ) design method. The features of the method
is initroduced in the next subsection and the calculation method of K is introduced in
Appendiz D.

4.6.2 Observer-based output feedback case
The Guideline of Choosing K

In this section we consider the guideline of choosing design parameters in observer-
based output feedback case and propose a new design algorithm based on the Theorem
44.

In this section we propose a guideline of choosing K. For this‘purpose, we first
clarify the structure of a closed-loop system using new design parameters. The closed-
loop system of Fig. 4.4 can be transformed into a system of Figs. 4.5 and 4.6. When
design parameters {o;} increases, the resulting closed-loop system is known to approach
the asymptotic system as shown in Figs. 4.8 and 4.9 [Fujii93a}, [Fujii94], whose transfer
function from r to y can be specified by suitable choice of K. In view of this observation
we first have to choose K in order to make this asymptotic system stable, that is,
Ap — BK stable. In addition we want to choose K which achieve desirable closed-loop

responses.
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One of practical design methods of such a feedback gain K would be ILQ design
method [Fujii87a), [Fujii87b], [Fujii93a), [Fujii88]. This design method for servo systems
tracking a step reference input has been derived from the viewpoint of inverse LQ
problem on the basis of a parameterization of the form (4.34) of LQ gains, and has

several attractive features as shown below from the practical viewpoint.

1. The primary design computation is the determination of K in (4.34) by the
pole assignment method, which is obviously much simpler than solving Riccati

equations in the usual LQ design.

2. The decoupled step output response can be specified by suitable choice of specified

poles {s;} for the pole assignment method above.

3. The design parameters {o;} as in (4.34) can be used as the tradeoff parameters
between the magnitude of control inputs and the tracking property of output

responses.

4. The resulting feedback matrices can be expressed explicitly in terms of the system

matrices and the design parameters selected.

In Theorem 4.4 no concrete guideline of choosing K is given except making Ar — BK
stable. However, a decoupling property of the closed-loop system is often required in
practice as a design specification in multivariable feedback control. In this respect ILQ
design method is more effective than other design methods for a feedback gain K.

The Guideline of Choosing L

The following upper bound of ||G,.(s)|| can be obtained by using triangular inequality.
[Goe(8)lloo < U205 Ga(s) — Go(8)loo + [|Ge()lloo (4.61)
The first term of the right-hand side in (4.61) is related only to a feedback gain K and

not to an observer gain L. An observer gain L is included only in the second term
of the right-hand side in (461) Hence, an observer gain L is determined in order to
make ||G.(s)||c small. Furthermore from the inequality a feedback gain K should be
determined so as to not only achieve desirable responses but also make [|G4(5)—Gs(5) |l
small. 7

One design method for L is to determine L by pole assignment method or to reduce
the minimization of a norm with respect to a part of ||G.(s)||c to solvability of dual
LMIs as shown in the following remark. The former method needs a little computation

and the latter method much computation.
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Remark 4.13 The minimization of ||sK%(sI — ®,) 1 D||, a latter part of ||Gc(S)|lco,
over L is reduced to dual LMIs. It, however, is difficult to solve.

The following relation with respect to ||Gc(s)||o holds using triangular inequality.

IGe(s)lloo = ||[Bo + (UeUF Ba — EsK)(sI — Ax)™B] sKj(sI — ®,) "D |
< ||Bs + (UUy Ba — ByK)(sI — Ax) 7 Bllool|sKE(sI — 26) "' Do

A latter part of a right-hand side in this equation is related only to an observer gain

L. We, therefore, consider a minimization of ||Ger(s)||co by L.
Gur(s) := sK%(sI — ®,)"'D = K%D + K%(A— LC){sI - (A— LC)} ' D
A generalized plant for the minimization of ||Ger(s)|| by L is obtained as follows.

1
T = Az+u+;Dw
y = Cz
z = KF".Ax+K2~u+%K2.Dw

u = —Ly
Applying Theorem 2 in [Iwasa94] to this Hy, control problem, we find that this problem

has a solution if and only if the following linear matriz inequalities, as called dual LMI,
have a solution P = Q™! > 0.

[ kY 1] AP+ PAT + 5DDT PATKYT+ 5DDTKYT | | -Kp 7T -
’ KR AP + :,%K%DDT %K%DDTKg, T_J T
(4.62)
[ ™) o]

[ @a+4TQ+ ATKYTREA LQD+ATKITKRD) | [ (€M7 ] _
1(DTQ+ DTKYTK34)  LDTKLTKLD -1 0
&  (CTY(PA+ATP + ATKLTKSA) (CF)- T <0 (4.63)

However, this condition is not convex with respect to P. Therefore, it is difficult to
solve and hence [Twasa95] suggested an effective method to solve it. However, solving
it needs much computation and hence reducing the minimization of an upper bound
|Ge(8)|loo to dual LMIs is not so practical.



Chapter 4. Design of Servo Systems with Structured Uncertainties 63
Design Algorithm

According to the guidelines shown in the previous subsections we suggest the following

design algorithm of robust servo systems achieving desirable responses.

Design algorithm (Observer-based output feedback)
Step1 SetV=[1; W

Step 2 Determine K such that Ar — BK is stable and desirable responses are
achieved, for example, using ILQ design method. Determine L such that
A — LC is stable. Then check whether ||G,.(s)|lc < 1 is satisfied or not
(Theorem 4.4). If this condition is satisfied, go to Step 3. Otherwise repeat
this step after choosing different K and L.

Step 3  First, choose positive {o;} and check whether ||G,e(s)|lo < 1 is satisfied or
not for the resulting K. If this condition is satisfied, go to Step 4. Otherwise
repeat this step after choosing different {o;}. If ||Goe(S)|loc = 1 even after
this choice, go to Step 2 and choose different K and L.

Step 4 Using V, K and ¥ obtained in the above step, K, is obtained from (4.34),
Ky and K; by (4.37).

Remark 4.14 The condition ||Goe(s)||co < 1 s only a sufficient condition for quadratic
stability by Theorem 4.6. This sufficient condition is not far from a necessary condi-
tion because it is necessary to increase ¥ to some extent in order to achieve desirable
responses [Fujii93a], [Fujii88].

Remark 4.15 As indicated in Remark 4.11, selecting K as a decoupling gain give a
conservative result with respect to the ezxistence of a quadratically stabilizing controller.
In the observer-based output feedback case the design method for L in Remark 4.13
give a conservative result because ||G.r|l s a part of an upper bound for ||Golloo
which is a sufficient condition for quadratic stability. Therefore, the formulation of the
minimization of ||Goelloo into matriz inequalities with respect to L is needed in order to

diminish the conservativeness.
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4.7 Proofs of Theorems

4.7.1 Proof of Theorem 4.1

State feedback case (AA exists)
We note by Fact 4.2 and Lemma 4.2 that the control (4.3) is a central quadratically
stabilizing control of for the system (4.8) if and only if there exists a P, > 0 in the
form of (4.35) that satisfies (4.17). Hence we show below that the existence of such a
P, implies the two conditions in Theorem 4.1. First, we substitute (4.35) into (4.17)

and make the following equivalent transformation.

7 0| [ Pt WP~ ELEa PD. |[T 0]
0 I DTP, I 0 I

This inequality can be rewritten as

[ X H,+ H'X, — (E.T,)T(E.T.) X.D., ] 0

DTP, I
(4.64)
where
T 0
T. = 4.65
o] (465
| T7YT 0 ]
X, = TPPT. = (4.66)
0 XA |
0 [ T-1BV-1
H = T,'9.T,= 0 . - S (4.67)
2% | -VGS VFBV™!

— YA

D. = T,'D,=| " |D (4.68)
Zn
Z. I
Y= ()t (4.69)
Zn 0
and T, S and G are those matrices satisfying the following relations.
TST™' = Ar—BK = Ag, detT #0

G = —KT (4.70)

Furthermore (4.64) can be transformed equivalently as follows.

(4.64) < X H.+ HI'XT - (E.T.)"(E.T.)
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— — Ly, L
_(XeDe)(XeDe)T = [ " 12 :l >0

LT, Ly

L
>0 (4.71)
Lzz — L:szﬁ L12 >0

Ly = —-TTYTS — (TTYTS) — (E,TS)*(E.TS)

—(T*YTZy D)(TTYTZy, D) (4.72)
~TTYBV ! 4+ (3AVGS)T - (E,TS)T(E,BV™Y)

~(TTYT Z1,D)(2AZx D)T (4.73)

Ly

T
Loy = (%EAE _ Z‘AVFBV‘I) + (-%m): - zAVFBv-l)
—(E,BV™YT(E,BV™Y) — (£AZ3 D)(SAZa, D)F (4.74)

In the following we show that the inequality L;; > 0 implies (4.43) and (4.44) in
Theorem 4.1. We first note that L,; > 0 is equivalent to

Y(TST™) + (TST)TY + {E,(TST")}*
x{E.(TST 1)} + Y(TZ1.D)(TZ;D)*Y <0

which can be rewritten by (4.70) as
YAk + ALY + (E,Ax)T(E.Ak) + Y (T Z11:D)(T 21, D)TY < 0 (4.75)
or equivalently
YxAx + ALYk + ETE, + Y (AxTZ1. D) (AxT Z1. D) Yx < 0 (4.76)
Y == (A)TY AR (4.77)
By Bounded Real Lemma, i.e., Lemma A.2 in Appendix A, the inequality (4.75) is

equivalent to

Ak is stable (4.78)
|Ea(sI — Ax) Y AT Z11 Do < 1. (4.79)

To derive (4.44) from (4.79), we premultiply (4.69) by the following term.

[T o]=[1 o]N"'T (4.80)

I 0
N o= [_K I} (4.81)



66 Chapter 4. Design of Servo Systems with Structured Uncertainties

Then we have
I
TZu=[1 0](N)™ [ 0 J = Ag' + A B(—CAE'B)'CAR. (4.82)

Substituting this equation into the transfer function of (4.79) yields

EG(SI - AK)_IAKTZHD
= E,(sI — Ax)™{I — B(CAZ'B)'CAZ"}D. (4.83)

Hence, from (4.78) and (4.79) we obtain

Ak is stable (4.84)
|Ea(sI — Ag)™}(I — BB™)D|| < 1. (4.85)

Next we prove the sufficiency. In (4.36) R > 0 has no constraint and therefore let
A =% Then Ly — LL, L7} L12 > 0 can be written as follows.

Lys — LLL7 Ly, > 0
o (%mz _ EAVFBV'l) + (%EAZ - zAVFBV—l)T
~(EoBV Y (E,BV™) — (SAZs D)(EAZy D)T
—{-TTYBV™ + (SAVGS)" — (E,TS)"(E.BV ™)
~(TTYTZuD)(EAZu DY} LitLiz > 0
o (%2 - VFBV‘I) + (%2 - VFBV‘1>T
~(E.BV )T (E,BV™) — (ZyD)(Ze1D)T — LT, L11L15 > 0
& £>VFBV '+ (VFBV Y + (E,BV Y (E,BV)
+(Za D)(Zay D)F + L L0y L1 > 0 (4.86)
We can find that there always exists ¥ satisfying (4.86) i.e., sufficiently large ¥ satisfies
(4.86). Therefore, if K satisfies (4.43) and (4.44), K, become a central quadratically

stabilizing control law.
Next we show the asymptoic property (4.47). First, TgF is defined as follows.

Tex =1+ BK(sI — A)™!
Then it is straightforward to derive the following relations.
TexB = B|[I+K(sI — A)"B] (4.87)
sI-A = Tgi(sl — Ag) (4.88)
(I-BB )Tgxg = I—- BB~ (4.89)
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Using (4.8) and (4.34), G.(s) becomes

ABI[ I o][si-4ax _B -
c ol|l-F1 sk sI+V-ISV

A4 B] D
X

c 0 0
(sI— A)Ax (sI — A)B+ BV-1SV
C(SI - AK) -CB

Ge(s)

- [5 o]

= E[Ax B]

Substituting (4.88) into this equation yields

G.(s)

-1
- E [ A B ] (SI - AK)AK (SI - AK)B +TBKBV—12V
el oK C(sI — Ax) —~CB

wolle)

-1
BV-! TexD
- Ea(sI—AK)“lHl{H+ TB"OV ](2-1)-1[0 V]} B(’)‘
= E,(sl — Ax)'H,
-1
-1 Tex BV
X{H_I_HA[TBKBV (2_1+[0 Ve BKO ])
x[o V]H-l} TgxD (4.90)
where
. | (sI — Ax)Ax (sI — Ax)B
| C(sI - Ax) —CB
Hy = [(s]-Ax)Ax (s]~Ax)B ]
g1 .- [ Xu Xu
| X1 Xo2

Approaching ¥ to oo and using (4.87), G.(s) in (4.90) approaches G,(s) as follows.

Ge(s)
— E',,(SI—AK)_1
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I I
X {HIH“I [ . ] - H,H™ [ . ] TBKBV‘I(VX21TBKBV“1)‘1VX21} TexD

= Eu(sI — Ag)™ {I - Tpx B(XnTpx B) ™ X2 } Tpx D
Bo(sI — Ag)™ [I = B(Xz1B) ™ X1 | Tox D
= Geals)

From the above definition of X5;, Xs,, the following equation is derived.

Xn = —XpC(sI — Ax)|(sI — Ax)Ax]™
= —XzchI_(l

Substituting this equation into Ge,(s) and using (4.89), we have

Gea(s) = Eo(sI— Ax)™' [I — B(CAZ'B)'CAR'| Tex D
= E,(sI - Ag)™*(I-BB™)D. (4.91)

4.7.2 Proof of Theorem 4.2
State feedback case (AA and AB exist)

We note by Fact 4.4 and Lemma 4.4 that the control (4.3) is a central quadratically
stabilizing control of for the system (4.25) only if there exists a P, > 0 in the form
of (4.35) that satisfies (4.32). Hence we show below that the existence of such a P,
implies the two conditions in Theorem 4.2.

This proof of conditions (4.49) and (4.50) is done by replacing E,, in the proof of
the previous subsection. by U,UF E..

Next we prove the asymptotic property (4.51). First, G.(s) is represented as follows.

Ge(s) = Gea(s) — Ges(s)
Gea(5) = Eew(sI — @) D,
Gea(s) = EpK.(sI — <I>e)f1De

The asymptotic property Ge,(s) — UsUFG,(s) is proven like that in Theorem 4.1.
Here we prove the asymptotic property Gey(s) — Gp(s). From the definition of Ge(s),

Gev(s) becomes as follows.

Geb(s)

I 0 I 0
= EK,
-K I -K I

sI—-A —-B
V-IXVK sI+ V™IV
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-1
sI - A+ BK -B I o
sI+ VXV -K I

]
RPN

SI—AK -B

= BV~ lzv[o I

-1

= E,,V—lzv[o I]
~KAx sI—KB+V-isV
-1 _ —
X [AK (I B_B B )]D (4.92)

Here W;;, (3,5 = 1,2) are defind as follows.

-1
W]_]_ W12 L sl —AK —B
Way Wap | —KAx sIkB+V-oV

Wi = [(s - KB+V™'SV)~ (~KAg)(sI — Ax)(~B)| "
= [(sI - KB)— KAg(sI — Ax) B+ VsV

Wa = —Was(—KAg)(sI — Ag)™!
= Waxn(KAk)(sI — Ag)™!

Substituting these equations into Ge(s) yields

Gal(s) = By [Gr(a)V 'S WV +1]7 [ KAx(sI - Ax)™ I]
y [ AZ*(I - BB") ] D
B

GF(S) = (SI - KB) - KAK(SI - AK)_IB.

where

As ¥ approaches oo, the following asymptoitc property is derived.

Ges(s) = Ey |[K(sI — Ax)™'(I - BB™) + B7|D

4.7.3 Proof of Theorem 4.4
Observer-based output feedback case (AA and AB exist)

First, a composite system which consists of the augmented system (4.25) and the
observer (4.4) and (4.5) is transformed by the feedback transformation u = v—EBf E.¢
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and we get the following system.

A 0 —BEETE,
foa = C 0 0 + |0 |F[E, 0 ~UUTE, | { %os
LC 0 A-LC - BEETE, 0
B D
+ 0 + 0 FEb v
B 0
v = [0 K Kpe |%on (4.93)
where

Kpe = K — EEJ E,.
The above equations are defined as
Zoa = (Ave + DoeF Eog)Zoa + (Boe + Doe FER)U, v = —K T oq-
Then the closed-loop system becomes as follows.
Foa = (Aoe — BoeKoe)Tos + DoeF(Eoa — EpKoe)Toa (4.94)

According to Fact 4.6, a necessary and sufficient condition for quadratic stability in
the system (4.94) is that the following two conditions hold.

1. (Ape — BoeKoe) is stable.
2. |Goe(8)]loo < 1
Goe(8) = (Bos — EsKoe) {5I — (Ace — BoeKoe)} " Doe

This system is transformed by the following two coordinate transformation.

(1 00 T
Toga = |0 10 w (4.95)
T 0T||¢-2
T -AF B 0
w | =]C 00 [ v ] (4.96)
-z 0 0 I §-z

Then Ge(s) results in the following.

-1 [ BKF ] -
@ D,
Goe(s) = [ Ee - EbKe _EbKF ] sl — 0 [ D :| (497)
0 ®,
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Furthermore G,.(s) is expanded and arranged as follows.

Goe(s) = | E.— E.K. —EKr |
(sI —®,)! —(sI— @)1 [ BS{F ] (sI —®,)7! [ D, ]
-D

0 (sI — ®,)7!
= (B, — EpK.)(sI — ®.)"'D,

BK
+(Ee - EbKe)(sI — <I>e)‘1I“1 [ 0 F ] (SI — @o)_lD
+EbKF(SI - @0)_11) (498)

Here, GZ,(s) and GE,(s) are defined as

GE(s) = E.(sI-&,)™ I [g }

I
GE(s) = EK.(sI—®,)"'T! [o } :

Then the definitions lead to
Goe(s) = (GE —GE)D+GE BKp(sI—®,) ' D+(—GEB+Ey) Kp(sI—®,) ' D. (4.99)

: F
Here, we consider G,,(s).

GE(s) = [UzU;;"E,,O][fg ﬁ] [_IK 2]

[sT-4x  -B T4 Bl 1

—sK sI+V-zmV c 0 0
(sI — Ax)Ax (s — Ag)B + BV-1SV
C(SI - AK) —CB

[i]

= U,UYE,[Ak B] [

Using the relation sI — Ap = Tgx(sI — Ak), the above equation becomes

GE(s) = UUJE,[Ax B]
-1
N (SI - AK)AK (SI - AK)B -+ TBKBV_IEV
C(SI — AK) -CB

o]

X
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= U,UTE,(sI — Ax)™‘H,

—1 -1
-1
= UUj Eu(sI — Ax) ™" H; {H*l _ gt [ TBKfV | ]
| TexBV-1 1\ I
X (2—1 +[0V]H™ BKO ]) 0V] H‘l} [ ; -
where

[ (sI — Ax)Ax (sI — Ax)B
H = ’ H = I_A A I—A B
~ [ Xu Xu

Hl = ,T :::I+BK I_A _1.
| X21 X22 ] BK (8 F)

Furthermore we compute this equation and get

GE(s) = UUTE,(sI — Ag)™?
{I-TexBV(S7 + VXu Tk BV ™)'V X5 } Tx. (4.100)

Postmultiplying D by (4.100) yields

GE(8)D = UUIE,(sI — Ag)™!
x {I — Tgx BV (57! + VX Tpx BV ')V X } Tox D.

As {o;} approaches co, we get the following equation using the relation TpxB =
B[l + K(sI — Ax)™'B].

GL(s)D — UpUJ Eo(sI — Ax)™ {I — Tox B(XeyTsxB) ™ Xo1 } Toxc D
= UU] Eo(sI — Ag)™ {I — B(X1B) ™ Xp1 } Tpx D

Furthermore X9, = —Xzzc’A;{l holds from the definition of X5; and X5. Using this

relation, we have
GE(s)D — UUT E,(sI — Ax)™*(I — BB™)D. (4.101)
We compute the second term of (4.99) using (4.100).

G¥ (s) BV 'SV KY(sI — ®,)'D
= U2U2TE,,(SI — 14}()_1
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x {I = TggBV (™ + VXuT5x BV ) VX }
xTgxg BV 'SVKa(sI — ®,)'D
= ULUTE,(sI — Ax) TsxB
x {1 = V(=7 + VXnTpx BV ™)'V Xy Tpx B}
xVIZVKYL(sI — ®,)"'D
= UUTE,(sI — Ag) ' TexB(V'S7V + X0, Tpx B) ' Ko(sI — ®,)'D

Here, as Gg(s) := I + K(sI — Ap) B is defined, X5; B = s7! is substituted into the

above equation and {o;} approaches oo, the above equation approaches

GEBVXVKY(sI - ®,)'D
— UpUTEo(sI — Ax) 'BGr(s7Gr) 1 K%(sI — ®,)7'D
= sU,UT E,(sI — Ag) 'BKa(sI — ®,)7'D. (4.102)

Next we consider G5(s).

GE(s) = EuK.(sI— &) 'T! [ ; ]

-1
I - -B 1
_ BK Of[ 1 o] sI-4r -1
—-K I K I V-IZVK sI+ VXV 0
-1
] — A —-B
- E,,V"IEV[() I] 8 K
—sK sI+V™ XV

L AE D [
sl — Ag -B ] [A;{I(I—BB-) }

= EBVIsv]o I
’ | ][ ~KAx sI-KB+V-'SV B-

The following definition is given.
-1

Wn W12 o sI —AK —-B
Wy We | | —KAx sI—KB+V-ZV

W, and Wo, become

-1

W = [(sI - KB)— KAx(sI - Ax)'B+V'EV|" = [Gr(s) + V'EV]
W21 = sz(KAK)(SI — AK)_I.
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Using these equations, G%(s) is computed as follows.

Gh(s) = EVZV(Gr(s)+V'ZV)?!

x [ KAx(sI - Ag)™ 1 | [ AX (IB__BB_) }
= EVSV(Gr(s) + VEV) " {KAk(sI — Ax) A - BB™) + B~}
= Ey(GrV 'SV + 1) {K(sI — Ax)'(I- BB") + B} (4.103)

From this equation we have
GH(s)D = Ey(GeV sV + 1) {K(sI - Ax)™ (I~ BB")+ B~} D
= B [Gr(V'EV + G| {K(sI - Ax)™(I~BB")+B"}D.

As {o;} approaches oo, the following equation is derived.

GE(s)D — Ey{K(sI — Ax)™(I-BB~)+ B~} D (4.104)
Furthermore computing (—GE B + E;) Kr(sI — ®,) 1D based on (4.103) yields

(-GEB + Ey)Kp(sI —&,)7'D

= {-E(GrV 'SV + ) + B} VT'EVK}(s] - @,)'D

= Ey(GrV XV +GF)'SKY(sI — ®,)'D

= EB(VI'ZW +GF) Ka(sI - 9,)7'D.
As {o;} approaches oo, we have

(—GEB + Ep)Kp(sI — ®,)'D — EyGpK3(sI — ®,) ' D. (4.105)

From (4.101),(4.102),(4.104) and (4.105), G,.(s) approaches Go(s) as {o:} approaches
00.
Goe(s) — URUTE,(sI — Ax)™*(I - BB™)D
+E[K(sI — Ax)™*(I - BB™)+B™|D
+[Ey + (UUFE, — EsK)(sI — Ag) ' B]sK%(sI — ®,)'D
= Gouel(s) (4.106)

4.8 Design Examples

In this section we take some design examples to show the effectiveness of the proposed

design algorithms in this chapter.
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4.8.1 State feedback case (AA exists)

Here we deal with a design example of a movable mirror inside of of a Fourier Transform
Infrared (FTIR) spectrometer [Fujii91],[Sakai90].

0 10 0 0 0
—600 —5 01 0 0
4= | % 0 . B= (4.107)
0 0 —500 10 0
| 0o 0o o o 50
¢c=[1000],
[0
p=|", B.=[0o0 08 0
0
0

E, =0

The above D, F, and E; denote that the (2, 3) entry of A matrix varies within a range
of & 30 % for a nominal value. Now we consider a design specification that an output
response for a step reference input settles in a range of + 1 % for the reference value
under parameter variations by ¢ = 60[ms]. This system has no zero and its relative

degrczale is 4. Therefore, we can set a desired transfer characteristics from r to y to
(1+Ts)t
Stepl SetV =1I.

Step 2 In this step K is determined using ILQ design method by specifying its
design parameters s;. From the above specification of settling time 7" have
to be set to less than 5[ms]. ||Gs(s)|c is plotted for T in Fig. 4.17. From
this Figure we choose T' = 4[ms] in order to make ||G4(s)|0o small.

Step 3  ||Ge(s)||o is depicted for o7 in Fig. 4.18. Nominal stability is guaranteed for
more than oy, = 1367 and ||Ge(S)||ec < 1 holds for ¢ > oy In order to
get good robust stability and achieve desirable responses, o is set to 4000.

From the plot of ||G.(s)||c depicted in Fig. 4.18, [|G.(s)|| takes the values of
0.8662, 0.4655, 0.4580 for o3 = o5 = 500, 4000, 10* respectively. These values
confirm the asymptotic property as stated in Theorem 4.1, i.e. ||Ge(3)|lcc —
|Ge(5)]|oo = 0.4534.
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Step 4 From the above steps Kr and K are determined using (4.37) as follows.

Ky = [4.5224.108 2.9122-107 3.9600 - 103 8.0000-101]
K; = 3.1250-10%

Simulation result of step responses for T' = 4[msec], 0 = 4000 > Oy is drawn in Fig.
4.19. When we choose T' = 26[msec] for which ||Ge(s)|lcc = 1.108 > 1 (||Ga(8)|lcc =
1.143) holds, unstable step responses generate for maximum parameter variation in
Fig. 4.20. This result shows that [|G.(s)||e is useful to measure degree of robustness

for the closed-loop system.

15

norm of Ga,

o -
10° 10

Figure 4.17: ||G4(8)||oo for time constant T

In the above example the proposed method has several practical features as follows.
Robustness of output responses is guaranteed under parameter variations and we can

get degree of robustness quantitatively by [|G4(8)||eo for K and ||Ge(s)]|c for X.

4.8.2 State feedback case (AB exists)

A = , C=[-11] (4.108)
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15

norm of Ge
-

0.5

0 : T H I H P rrd
10? 10° . 10* 10°
sigma

Figure 4.18: ||Ge(s)||oo for o

1.2 T T T T T T T T

08

0.6

04

0.2
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i i i
0 001 002 003 004 t?sgsq 006 007 008 009 01

Figure 4.19: Step responses (T' = 4 [msec]) F = —1:0, F =0:—, F = 1:+
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35 T T T T T T T T T
.
25
H P e +
2 1t -
+ i+ +
P+ +
15 * :
EN + + 1 +
H : :oooo -Ooooéuuéuévuuv
oéoooO‘?°°°36°°°°? + 5
0097 : :
T ; + g +
e + :
Pt :
+ iy : i+
o o
; 4+
0 0.1 0.2 03 0.4 05 06 07 0.8 09 1

Figure 4.20: Step responses (T = 26 [msec]) FF = —1l:i0, F = 0:—, F = L:+

We consider a numerical example in [Soro84] in order to show the difficulty of designing
robust controllers under uncertainty particularly in the input matrix.
The system has the following feature. The transfer function of this system is
-1
Gs)=C(sI-A)'B= ————.
() ( ) (s+1)(s+2)

The input matrix including the parameter variation is defined as follows.
1+
B.= [ X 6], ~02<€e<02

Then the transfer function of the peturbed system Ga(s)is

—(es +2e+1)

Ga(s) =C(sI — A)'B. = GIDGL2)

When € < 0, Ga(s) has an unstable zero, that is, it becomes non-minimum phase

system.

Stepl SetV=1.

Step 2 In this step K is determixl1ed using ILQ design method by specifying its
design parameters s; = ~5 IGs(8)||o is plotted for T in Fig. 4.21. From
this Figure we choose T = 8]s] (]|Gs(8)||cc = 1.2193) in order to be able to
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choose o; which make ||G¢(s)||cc more than 1. We thus set desirable tracking

characteristics of the nominal system to ———.
4 (1+ 8s)?

Step 3  From the plot of ||G.(s)||cc depicted in Fig. 4.22, ||G(s)]|c takes the values
of 0.68219, 1.1300, 1.2096 for o = 10,100,103 respectively. These values
confirm the asymptotic property as stated in Theorem 4.2, i.e., ||Ge(s)|loo —
|Gp(3)||oo = 1.2193.

Step 4 Using V and K obtained above, Kr and K are calculated from (4.37).

K =[ -7.5000-10"" 1.7500 |, Kj=—1.5625-10"2

In Figs. 4.23 and 4.24 each simulation result for o = 10, 100 is depicted. From Fig. 4.24
the closed-loop system turns out to become unstable under uncertainty. In the previous
example ||G4(8)|lo < 1is a necessary and sufficient condition. Therefore, the resulting
closed-loop system becomes robustly stable as o increases when ||G,4(s)|lo < 1, and
high gain leads to robust stabilization when the system is quadratically stabilizable.
In this example ||Gs(s)|lo < 1 is a sufficient condition. Hence there may exist o which
makes the resulting closed-loop system robustly stable when ||Gj(s)||c > 1. However,
high gain does not lead to robust stabilization when the system is quadratically sta-
bilizable. Thus this example shows the difficulty of designing robust controllers under

uncertainty particularly in the input matrix.

4.8.3 State feedback case (AA and AB exist)

In. this section we consider a design example of an engine test bed[Kawara90] for the

system (4.25) in which coefficient matrices are given as follows.

0 0 0
A = 0 —2.500 0 , (4.109)
| 5000 —50.00 —0.1725

[ 02490 0 001
e-foo].

B = 0 0.01000
010
|0 0
0 1 0 0 0.2279
D = 0 0 aEa= ’ 2
00 0

10
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15

05

10" 10° 10° 102
Tsec]

Figure 4.21: ||Gp(3)||co for time constant T

15

0.5
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Figure 4.22: ||G(s)|| for o
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000000000000
(=]

o o © ofld

Figure 4.24: Step responses (T = 8 [sec]) 0 =100, F = —1:0, F = 00—, F = 1:+
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Step 3

Step 4
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B - 0 0
| 0.001550 0

0 1]
10]

SetVz[

In this step K is determined using ILQ design method by specifying its
design parameters s; and s;. First, [|[U2UF Go(3) — Gp(8)]|oo for 81 = 82 is
depicted in Fig. 4.25, from which and a desirable response specification s; =
s2 = —20 yielding ||[U2UF G,(s) — Gs(s)||co = 0.00799 are chosen as specified

poles. We thus set desirable tracking characteristics of the nominal system
400 20 }

to diag {(s 202" s +20

From Fig. 4.26, the larger o is, the robuster the resulting system is. o = 60 is

chosen as tuning parameters from step responses in Fig. 4.27. From the plot
of ||Ge(s)|| o depicted in Fig. 4.26, ||G.(s)||c takes the values of 0.0593, 0.011,
0.00799 for o; = o3 = 20,100, 10° respectively. These values confirm the
asymptotic property as stated in Theorem 4.2, i.e. ||Ge(5)|lc = |Ge(8)]loo
= 0.00799.

Using V' and K obtained above, Kz and K| are calculated from (4.37).

o 2.0080 - 107! 0 1.5995 - 1071
KF =
0 5.0000 0
0 1.6064 4.0161
KI =
0 1.0000 - 102

4.8.4 Observer-based output feedback case (AA and AB exist)

In this section we consider the same design example of an engine test bed[Kawara90)

for the system (4.25) as that in the previous subsection.

Step 1

Step 2

Set V =

01
10|

In this step K is determined using ILQ design method by specifying its
design parameters s; and s,. First, ||U2ULG.(s) — Go(3)]|eo for 51 = 52 is
depicted in Fig. 4.28, from which and a desirable response specification s, =
82 = —20 yielding ||[U2UT G4(s) — Gs(8)||eo = 0.00799 are chosen as specified
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Figure 4.25: ||[U,UF G,(s) — Gi(s)]|o for specified poles
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Figure 4.26: ||G.(s)]|co for specified poles
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12 T T T T T T T T T

Figure 4.27: Step responses(solid(F = 1,0; = 20),+(F = 1,0; = 60) ,o(desired))

Step 3

Step 4

poles. We thus set desirable tracking characteristics of the nominal system

400 20
to di . o 1 in Fig. 4.29, fr
o diag {(s 207 51 20} Next ||G.(s)|l is plotted in Fig. 4.29, from

which we choose observer poles as, for example, —20 for which [|G¢(s)|lec =
0.03783. In Fig. 4.30 [|Goe(s)]|oo is drawn with ||Goe(s)[|oo = 0.03945 for s; =
s2 = —20. In Fig. 4.31 the plots of both sides of (4.61) is shown for various
values of {s;}, and we can see that the evaluation by triangular inequality

we used here is not so conservative.

From the plot of ||Goe(s)|lco depicted in Fig. 4.32, ||Goe(s)]|co takes the val-
ues of 0.10487, 0.044707, 0.039723 for o3 = o2 = 20, 60, 1000 respectively.
These values confirm the asymptotic property as stated in Theorem 4.4, i.e.
Goe(8)lloo = Goe(5)lloo = 0.03945.

Using V and K obtained above, Kr and K; are the same gains in Section
4.8.3 calculated from (4.37).

Finally we show in Fig. 4.33 some simulation results of step responses.
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Figure 4.28: ||[U3UT G4(s) — Gu(s)||o for specified poles
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Figure 4.29: ||G.(s)|lco for observer poles
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Figure 4.31: 0 : [|U2U7 Ga(8) — Go(5) oo+ | Ge(5)lloos + ¢ [[U2U7 Ga(s) —Gia(8)+Ge(8)lleo
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Figure 4.33: Step response (solid(F = 1, 0; = 20), + (F = 1, 0; = 60), o (desired))
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4.9 Summary

We have treated here a design problem of servo systems which achieve robust tracking
of step reference inputs under uncertainties entering only in the state matrix of linear
time invariant systems. Then the case where uncertainties enter into both the state
and input matrices is considered by a similar approach. However, there exists the
essential difference between these two cases in that for the latter case a high gain
robust controller can be always designed, whenever a robust controller exists, but not
for the former case as treated here. This may indicate the difficulty of designing robust
tracking controllers under parameter variations particularly in the input matrix. Next
we have developed a design method of observer-based robust tracking controllers for
structured uncertainties. In this chapter we have proposed some design algorithms
in which desirable responses and robust stability are both achieved by proper choice
of design parameters to some extent independently. Finally the effectiveness of the

proposed design methods are verified via design examples.



Chapter 5
Concluding Remarks

In this thesis we have first investigated the qualitative analysis problem related to
robust control, where we discussed the relation between controllability invariance and
several kinds of robust stabilizability, and then considered the quantitative synthesis
problem related to robust control when we proposed the practical design methods of

robust servo systems are proposed.

In this thesis by providing Theorem 3.1 and Corollary 3.1 we clarified the fact that
as far as a certain class of interval systems is concerned, the notion of controllability
invariance defined here is necessary and sufficient for stabilizability of the interval
systems and is necessary but not sufficient for quadratic stabilizability. By this fact we
have connected robust stabilizability with a natural extension of the familiar notion of
controllability in the linear system theory. Thus, we have found that this notion plays

an important role in this robust stabilization problem.

As far as a quantitative problem, we have first treated a design problem of servo
systems which achieve robust tracking of step reference inputs under parameter varia-
tions entering only in the state matrix of linear time invariant systems. By a similar
approach we then consider the case where uncertainties enter into both the state and
input matrices is considered . However, there exists an essential difference between
these two cases in that for the latter case a high gain robust controller can be always
designed, whenever a robust controller exists, but not for the former case as treated
here. This may indicate the difficulty of designing robust tracking controllers under
parameter variations particularly existing in the input matrix. Next we have developed
a design method of observer-based robust tracking controllers for structured uncertain-
ties, and proposed a design algorithm in which desirable responses and robust stability

are both achieved by proper choice of design parameters independently to some ex-
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tent. Finally the effectiveness of the proposed design methods are shown via design
examples.
Aside from the results reported above, there are several issues for future researches

along the line of the research presented in this thesis which is stated in the following.

e The future research is to clarify the meaning of controllability invariance defined
here in the context of the robust stabilization problem and also to investigate
its connection with other notions of controllability, for example, the feedback
controllability as defined in [Peter90].

o This thesis deals with a class of interval systems which have sign-invariant entries
as super-diagonal entries in the state matrix, i.e., standard system. From this
restriction, the class is not wide and there exists the stabilizable interval system
as indicated in Remark 2.10. Therefore, the class have to be extended by locating
sign-invariant entries other than in super-diagonal entries of the state matrix or

increasing sign-invariant entries.

e There does not exist an algorithm by which we can judge whether an interval
system can be transformed to a standard system or not. Furthermore, if it can
be transformed to a standard system, we have to be able to transform it to
a standard system. Therefore, an algorithm to achieve the judgment and the
transformation stated above is needed. Moreover, deriving the algorithm results

in clarifying a class of standard system.

e The condition the a system is controllable and observable is a necessary con-
dition and not a sufficient condition for pole-assignability of a system by a de-
centralized control. However, controllability invariance and observability invari-
ance are stronger condition than controllability and observability. Therefore,
the system which is controllability invariant and observability invariant may be

pole-assignable by a decentralized control. It is left as a future study.

e Wei et al. derived the robust stabilizability conditions in terms of a geomet-
ric pattern with respect to the location of uncertain parameters [Wei90, Hu96,
Wei89a, Dai96, Hu97, Wei92, Wei%4, Jing96, Wei89c|. They are based on the
Lyapunov function with a constant positive definite matrix or 'making roots of
the characteristic polynomial of the closed loop system stable. The other re-
sults given in terms of a geometric pattern are based on making the state ma-
trix of the closed loop system stable by state or output feedback in [Akaz87,
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Ame83, Ame88, Ame94a, Ame94b, Ame96a, Ame97a] and adaptive control in
[Naha95],[Koko91},[Kane91][Leit79]. These approaches give robust stability con-
ditions in terms of a geometric pattern. However, the relations between these
approaches have not been clarified. Hence, it is important to clarify them.

e In this thesis we have tackled the design problem of constructing a feedback
control law analytically for uncertain systems using the parameterization of feed-
back gains. Recently numerical approaches for control system design using linear
matrix inequality have been developed and applied to solve a control problem
achieving multiple objectives. Therefore, by using such numerical approaches
together with the parameterization of the solutions of the Riccati equations, we

may obtained more practical design methods for multiple objectives.

o The result of obtained here on the design of robust servo systems using observer-
based output feedback provides only a sufficient condition since the result is
based on the previous result for the state feedback case. Hence, we would better
consider the problem based on the result for the output feedback case in order
to overcome the inherent difficulty due to the fact that the separation theorem

as in linear quadratic gaussian control problem does not hold.
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Appendix A
Preliminary Lemmas

Lemma A.1 (Schur Complement) p.255 in [Skel97]
The following three conditions are egquivalent:

A A
;,1 21so
Ajp Ax

Agg >0, Au — A12A;21A:1r2 >0

A >0, Ay — A"1P2A1_11A12 >0

Lemma A.2 (Bounded Real Lemma)[Zhou88a]

: AlB
Given a system G(s) = [F{—D{' , the following statements are equivalent:

1. A is a stability matriz and v > ||C(sI — A)™'B + D||so-

(A1)

(A-2)

(A.3)

2. ¥2I — DTD > 0 and there ezists a positive definite symmetric matriz P > O such

that

ATP + PA+ (PB+CTDY(*I - D*D)Y'Y(BTP+ DTC)+CTC < 0.
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Proof of Fact

B.1 Proof of Fact 4.2
(Necessity)

If u = —K_.z. is a central quadratically stabilizing control law, there exists P, > and

R > 0 such that the following equations holds

K. = R'BJP. (B.1)
P.A.+ATP. — P.B.R'BIP.+ P.D.DIP.+ ELE.,+T"QT=0 (B.2)

from Lemma 4.1. Premultiplying P.B, and post-multiplying BT P, by (B.1) yields
P.B.R'BTP, = ——%PeBeKe - %KT BTP,. (B.3)
Substituting this relation into (B.2), we have
—PA, - ATP, + %PeBeKe + %K;-"BZPC
- P.D.DTP.—ETE.,=Q>0.
From this inequality the following inequality is derived.
1 1 T
P, (§BeKe - Ae) + (EBeKe - Ae) P,
- P.D.DTP,— ETE.,>0
(Sufficiency)

Suppose that there exists R > 0 and P. > 0 which satisfy (4.15) and (4.16). Substi-
tuting (4.15) into (4.16) and defining ) > 0 in the following, we find that there exists
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R > 0 and P, > 0 such that

~-Q = P.A.+ATP, - P.B.R'BTP,
+P.D.DTP, + ELE,,.

The proof is complete.



Appendix C
Augmented System

The augmented system (4.1) is derived in this Appendix. In order to construct the
control system in Fig. 4.2, we consider the augmented system in Fig. C.1.

augmented system

; ————— m r- T T T T T T T~ N

-W| lul- |
| Zogl L it o X = (A+DFE)x [ X l A
| s T K4 || +®DFEu| [ l
- L __J_ __ |
| : X —: l
: ' Kp o ]
| L == __ __ _ 1
L e e ____ _

Figure C.1: Augmented system

In this Appendix we consider the system with norm bounded structured uncertain-

ties introduced in Chapter 2, which is rewritten in the following for convenience.

z(t) = [A+ AA]z(t) +[B + ABJu(t) (C.1)
y(t) = C=z(t) (C.2)

AA=DFE,, AB=DFE,
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From Fig. C.1, the equation with respect to w is given as follows.
w=y—r=Cz—r (C.3)

From (C.1),(C.3), the state space representation of the augmented system in Fig. C.1

is written in the following.

-

The following relation holds in steady state because uncertainties are time invariant.

[2]=[A+gm g}

where Z, % are the limiting state and input as ¢ — co. Arranging this equation yields

[0]=[A+DFEGO][:T_¢]+ B+DFE»]Q_‘+[0]T_ (C6)
0 C 0 w 0 I

where @ is the limiting state as ¢ — co. From (C.4) and (C.6), we have

0
+[ I}T (C.4)

A+ DFE, o] [z]+[B+DFE,,
C 0

w

: } (C5)

U

-z A+ DFE, -z B+ DFE,
i z—Z | _ + E, 0 z—F + 3 (u— ) C.7)
dt | w—1w C 0 w—10 0
. T—Z .
Defining &, = [ ~ } , the above equation becomes
w— 1w
. A+DFE;, 0 B+ DFE,
e = e + uUu—1u C.8
3 [ c 0 ] 3 [ 0 ] (u — ) (C.8)
Then a state feedback control law is given by
v—8=—Kp(z-z) - Ki(w—w) (C.9)

Noting that 4 = —KpZ — K;w holds with respect to the limiting states and inputs
yields
Uu= —pr - KI'w (C].O)

Thus it turns out that we can derive the same feedback gains Kr, K; even if & =
r—I

_ } and u — % is replaced with & = [ ’ ] and u. Therefore, we consider the
w— W w

augmented system (4.1) in Chapter 4.



Appendix D

Calculation of Gains of ILQ Design
Method

Here K2 and K? are determined as the ILQ principal gains for the system S indicated
by the broken line in Fig.4.3 so that the closed loop output responses approach a
specified responses as {o0;} increases, i.e., ¥ — oo. Note that the definition in (4.37)

yields
(k) K |=[K I]T" (D.1)
Denote the i-th row of C by ¢; (1 < ¢ < m) and define the following indices d;, d and

matrix M:

d; = min{ k |c;A%B # 0}

= min{ k |cA*B#0} (1<i<m) | (D.2)

d=dy+dy+---+dn (D3)
C]_A?'B ClAdlB

M= : = : (D.4)
cn A% B cnA* B

and make the following assumption.

Assumption D.1 The nominal system (2.3) is minimum phase with det M # 0.

Remark D.1 ILQ design method was eziended and can be applied to non-mintmum
phase [Shimo93]. However, the calculation only for minimum phase systems is in-

troduced for simplicity because systems treated in design examples of this thesis are

minimum phase.
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Let K; be a set of integers with d; + 1 elements such that
{}r =K, UK;U---UKp (D.5)

and define two polynomials for each Kj;,

$i(s) = II[{(s—sk) 1<i<m (D.6)
bils) = {hi(s)—Q)}/s 1<i<m ®.7)

where {s;,k € K;}%, are those stable poles specified freely in the pole assignment and
the remaining poles should be specified by all the system zeros. With these assumption
and definitions, we can state the analytical expression of the ILQ principal gains K&

and K9 as well as the pole assignment gain K as follows.

K = M'N (D.8)
K. = M™'N,, KY=M"'M, (D.9)
where
[ c141(Ap) ]
N = :
| Cmém(AF) |
[ avi(AF) c11(A)
Ny := : = : (D.10)
| em¥m(Ar) | em¥Pm(A)

M, = diag{¢1 (0)1 R ¢m(0)}

This expression yields the following result on which the second features of ILQ design
method is based.

Theorem D.1 Under the assumption, the step response of the nominal closed loop
system shown in Fig. 4.3 approaches that of a system with the transfer function G4(s)
as {0} — oo, where

Gu(s) = ding { S} (D1)

Furthermore, this property also holds even if we use the observer-based output feedback
(4-4),(4.5) instead of the state feedback (4.3).

This result suggests us to use {sx, k£ € K;} in (D.6) as design parameters for specifying
the i-th output response, and {ox} in (4.34) as those tradeoff parameters mentioned

earlier of an ILQ servo system shown in Fig. 4.3.
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Supplement of Illustrative

Examples

E.1 Antisymmetric stepwise cbnﬁguration and gen-

eralized antisymmetric stepwise configuration

All 4-dimensional generalized antisymmetric stepwise configurations are shown as 1)
and 2).

1) Systems which have a generalized antisymmetric stepwise configuration but do not
have an antisymmetric stepwise configuration, i.e., are stabilizable but not quadrati-
cally stabilizable.

0 6 0 ay] [ 0 ] (0 6, 0 © by
0 ) 0 0 0 6, 0 0
A= a3 U3 b= , A= axn U2 b=
0 0 0 03 0 0 Q3> 4asz3 03 0
| @41 Q42 Q43 Q44 | | 04 | L0 O 0 0| 04 |
[ O 01 a3 0 ] [ b1 ] [ 0 91 0 a14 1 i b]_ ]
0 0 6 O 0 0 0 0
A= 2 b= ’ A= ax 0: b=
0 a3 az O3 0 0 0 0 6
_0 0 Qa3 0_ _04_ _0 0 0 Q44 | _94_
[0 6, a1z a1 [ by |
A= |00 G 01 b
0 0 Qs3 03 0
00 0 O A
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As shown above, all the controllability invariant systems must have a part of zero en-

tries according to Lemma 3.1.

2) Systems which have a generalized antisymmetric stepwise configuration and a an-

tisymmetric stepwise configuration.

ail 01 0 0 0 0 91 a3 0 0
A= ag1 a92 02 0 , b= 0 ’ A= 0 0 02 0 , b= 0
a3 a3z azz O3 0 as a3z azz O 0
Q41 Q42 Q43 Qg4 04 Qg1 Q42 Q43 O4q 04
0 6 a3 a1s 0 6 aiz aus b
0 0 @6 0 6. 0 0
A= 2 b= 0 . A= 00 6 b=
0 0 Q33 03 0 00 aszs 03
G41 Q42 Q43 Q44 04 0 0 ags au 04
[0 61 a;3 ay by [0 6, a3 aw by |
0 0 @6 0 0 @
A= 2 Qo b= A= 0 2 G b= b2
0 0 0 65 0 0 0 6, 0
| 0 0 Q43 Q44 04 | 0 0 0 Q44 04 ]
0 6, a3 aus by
_ 0 0 02 Qao4 b _ b2
00 0 6| bs
0 0 O 0 A

These are all 4-dimensional systems that are both stabilizable and quadratically stabi-
lizable.

E.2 Robust stabilizability conditions in terms of ge-

ometric pattern

In Chapter 4 some robust stabilizability conditions in terms of geometric pattern are in-
troduced, for example, antisymmetric stepwise configuration(ASC) [Wei90}, generalized
antisymmetric stepwise configuration(GAS) [Wei92, Wei94], pure feedback form(PFF)
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[Koko91], extended matching condition structure(EMC) [Kane91], Delay-independent
stabilizability condition(DIS) [Ame96a]. Here we make comparison between them via

examples.

ASC, GAS, PFF, DIS

00033

ASC, GAS

a2 az 1

azi

0 a3 as;

ASC, GAS

azz Qa33

, DIS

by

not ASC, GAS

0 1 O 0
Q21 QG229 1 ’ b= 0

az a3z a3 1

ASC, GAS, PFF, EMC, DIS

0 1 a3 0
A= 0 o0 1 [|:b=]0
| 031 632 G33 | | 1]
ASC, GAS
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