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1. #2

1.1 HxLHW

T4y a7 —NERORNEERFEE T AEBIBEE () ) I, £OREN
PERBIC & 0 GRS ENL TV S8, Z< OicEf Sh, FHiZZ T TETW5,
—EOTuRF T RoEE Y TREERT AIBRD XYV BB, RA Y
A Karl Schilling A& ZEL Y, A F U A A Peter Bingham i= X W PG¥(bEh 2, Z o
EHALZEAT 66 EOEFERH V., FICHBRRHELZFHA4T 2/ VICRASh T,
FOEMEDOEN TS FCHA SN TE L, BiMEERICERI bOD, —HoitE
R LTWEDOT, HEEMRE LT 0 F v 713l & b Ul HEHES ) o8N & 7
BEEDEGRNoT, VA UREOHEREZZRET DI, —fEORNRIICAKTES
A XERTT, 7aF%A[EFH LT, 71 rOFHEanEHE Iy LT, HEEMEE
FUET D I EAREIN Y, —EEOHEEMREN BIC oW T, BRI Xk AR
HEMEMERE DR V. T T RMOFAIC X AR EIZ OV, BA% EOKEFE~D
JEH P AEOBHRO 7 4 AL BEIR Y, FARZC X B Vi O CHEARNRIIER R
ENT&k, LrL, —SHi—OBESIE I o S0EGAIKENEEL, BAKE S 12
THERMEANF—THORERIN L THWEED, I5ICT7 407 8®{¢ﬁn%®§ﬁ%%iﬁf
% To i, BEARRRBRCEIERAE /2 P I2 k- T L B 52 BT WERH D, —F.
—HI_JEDB AL, S TEEICHEAENED, TrATERIL TR LF—EIRE T
Wi E> T, 207k, fEFMOBBRIC T 4 2B Z LIk, BifoRLF—
DEFZHRB D ¥ SN Y —PHOEREC L BB CIE——REOBE LV k& A
Do ER YT, I YA UREOZREICKTET 4 EFELL T, 5% RN 54
BPREINTEN, 7 4 PO BEMRFRFHEIE RN TV, KERRIZLY 7400
RIBASLMO T AZERE(LT D LITLY, 74 R LICHST, 3~5%DHaEDEDY
ERHECE, EMEROMITAL 202 EREESAER, AFRILFOREFEE 2
T, 74 YR OBENL FEOWRSIZBR LD TH D, TOBE,. 74 OFE@EIL -
RES -WMONTAREOBRHBERIC OV THRNCRIT A ENEETH D, R
ROmEIE, ERAEICS T R ER, KEUKE COER, EMOLMT — & T
EICHEHAEREE AT, ExofoRRERICEL-Z D LT3,




1.2 AKX DORNE

AL, —BEOToRF I THOEE VY Y ITRERT AT YA LRED, TR
RENCAKET 1 CERITH VAT AICBWT, ROBEBIZSEHT S,

B1ETHE, AROERE BN, IRORNBICH>EB5S,

BE2ETIE., 71 OfFEEFFREEIZ VTR B,

BIETIE, IV UBERIEERCOE, RBMTTZ Rl 740450
2 T DWW TREER M IREOMATIZL D, 7 R A 2 Lok v #HEtER R &
DX S CELBNORNET S,

B 4AETIE, BEPRHERENNNS 7 0 o ~DORAARHET A FEORS, 7400
ROl I O (HT A E AR 2 KERBOERZ2ER~Z, T, VU iR O/T - 24
HEIZD &, Nagarajan bOFERERATHLIZ L&7RT, IROWT—EHCD Y7 -7 =
TEMERLT, BEHE - 7 0 VREEORIT ATV, BEfRAE CTORERERLBE L, £
ALY 7 b u=7OFRBEECERTDH, ESUE /7 b7 2HALT, ERETH
FIRRETEAR « 7 o« Y TBIRP B OGP &R T 5, Nagarajan bOFEON—R b2 HHEH
MOWERXEBEL, S5, 7 1 VEEOHDE X UEHIC > X iF 2170, 88 . &
BN ER T 5 AEREZRD D, AV MEMRM L VLCC (22T, Nagarajan b 0 hikE
I X DEMEAHETEEITO, 7 1 OHEESI RS RISV TREET S,

B 5 BETE, 74 OFHEBIRORDF LR, S5, TBORKEE 7  »OBRY
T A RE M & ORRE RHTFIEERET 5, Shh7 0 volEIC &, FEHEOR
#aErt,

FBOEIHSTHY, AR THOLNTRREEZZ LD 5,



2. 7 4 DFE & BT

TuTOERIZE > TEL S 0T %X, Fig. 2-1 O L3727 oG
WHERI L 2B 6 RICHIL, EAD7 £ VIZHAT D, ZOLE, EADZ 4 Vi3 ns
DEIFICBNT, FE7 T8 LB T 50T, Fig. 22 KAT X I—FD7 4
THTBARFB RGP T EMEDAEEL S > TAFL, 507 ¢ o+ 5k
RBBRFTICEMP>TTREDAEE B> TAKR L, BMOREFMIICSH R824
LU TUHROHEES RN LA D, FaXFoEEEHmA, MEFWE Y R CRiERICER Y 4
LEEIE. BRSO 7 4 VBRI ~BR T A VI LT EFEF y BT S
bl L, AEMOT 4 ATEOHET, THIF Yy N—2FT5b0LT 5,

Fig. 23 [ZEMMAZ 1 »OBEDT 4 VERIDFMTAE, MAAL 7 4 C L D#EHDE
&R, 74 BT A o LORANA FOFFIERFIZHEHRLTVAD, 7400
BRI S 7 DIIE, Fig. 2-3 128 W T, N OEHER RO EER B2 581 H 5,

DY AT ATHEDRUE~DEEL R T 5I101L, TROL 5 ZRBFERER SV |
O DEIAB AR DOERE 2D,

- T 4 v OREIORE

© T o FEIGRDORE

- T4 VRO T AORDT

NBLDEENLRDENTICT 4 VAT HIITDNWT, BEEENFTODER L B0
WREZAT 9 FBRE LTIL, AR H 223, ARRERD L ERMEREIEET 5 Hikizon
T, FERO—B—REDRIIKT 52 FIETH, BIELZECAAEERDY | DD O
LWHEEZRIERIZR G2, EREEROT—FE2HT LT, 7 1 OB EHR
5L LMETHB, |



3. 74 v OER~OEARE L RE
1 U
Table 3-1 [Z7 4 N ERT VA URDEREFRT, ~I VA U OEFESED I b,
22BN T4 FELRSTNEG, T4 o HERIYA UMD L 2ER/RABITT 4 2L
DOIBRESNTND, XT VA URIZT 4 U EFFTHOREEL T, EFAERERIC &
DIRAREWR L, 7« ORI, BiMERREOSHENDEORETHET 2 bo LT
BHe FOREFR., 74 v OPEPHERINEZOT, 2EOMICT 4 2R T, FhbORE
BRI G 7 4 OB E B LE P,

3.2 74 OBRHERAKEHRER

7 4 VEEMOFEE L7 5, 999DWT & > A1—A (Lpp=97.00m) LIHEE LMo+ A2 |
it (Lpp=106. 00m) OFMEFIHL T, 1 EEICE XTI VA U HERFRIT TAERBR AT
W, 74 rDOBRERE LI, Fig. 41 ICHRERR, BEEZ T, EO-HEE a5
B (22T 3400mm) ZHEECHRELE, 74 rORE X -k - BRI (NACA4415910)
WZOoWTHE, RREZERLZAE (v /0T 7 AL M OREEZZIITRELE, 74
YOFRIE., T4 VHIBOBIBAIZ | T4 DA ESIFTeRTEHED 30%TH
Do 4. 10 BRNIZ ATABROFRER ZRATNER, 7 4 o OEHEENER 7 + 72 1L LY
HF L MENTEY ., 71 OMRPHERTE T,

3.3 5,999 DWT % > —A

Table 3-1 [Z/RTHRA ZHRICL T, 3. 2HioREREHEID, 74 VEABRESLE,

Fig. 3-1 IZAMODKEEBLTT, 74 vOREX R - ZEI FRREA L MEOF—
ZEBEWRE L, 74 VRIBGO®RIBAIL22.75° | 74V OASRVEE I eSER
D 30%E Liz, 74 OROATAEIL3. 28D A MEWO 7 « VY I ALEER
BEDT — 2 2BEC LT, EAEbIC, BEFMBLEAEIC4EL L, 740330
EREGEE LT, REBERE, ZORBMTT 4 VERIT TOARVIA ORERERFR L
BT D Z b 700 A OBl O ISR 2 EiE LT,

M ABLON O FRUERRIT, WK T EEE S TR T ER S iz, Fig 3-2
W ERUEIRORE R A R, T Ok A OB, 5 0%~6. 2%, Ei-gtiTE
D 10 7 A O T — Z 2T L C, WERBOmMERE L L THieE Lz, 7420
BHAGT, TEARA BO%HH JIIRFT 3. 1%, FHERI 60%HAIRF COMR B H -7,



3.4 5,999 DWT # >»74i—B

Table 3-1 (AT R7 VA Vil B & TOREIRTT 4 &I TR B OREGIE
TRfs 4 AR ICERE: L7z, BARORERLE % Fig. 3-3 12T, 74 rdOREX - BRizHW
Tk, AMEFRDOFETRE LT, 71 A OBIBMAIZ25° | 74 DR EEG
LT EED 30%E L, Fig. 34T B BLUW B O LEEEREERT 2, 74
ORHRE, MEES 145 /v FT, 28 TH B,

3.6 £&W

TAMERTIYA U ABIUB EFNLORBMTT £ v DOONTWV RV A BX
U B ISR LT, Bk ToM EREEFRA M, 70 02580005210 E D 3~4%D
HWHENRT v FRER SN, BE L7 0 vORE S - Bk - Y T AEIZ>WTIL,
RERR 7R PR E F BRI - TR b b O Tidde < | AEERBRLHIE T A2 0 L 2 Fats
VETHY, FAFRETIN O ORFRBEICH L TFEE1T o7,



4. 7 4 MFERT A U OHEEERR

4.1 (IL®IT

T A U ERT T A AR OHEEMREHERE X, TER—REAR & FRRIC, BRAGERRRR X v E
DYEREHEE 21T 5 OB EAR L 725, HEKERBR L 0, EMoBEHHETT 5> EElN R 7
B—FROL DI 0D, ET T 4 R LORETHRBOMERANEIT S, k7400
TAYBORIMETDT 4 o ~OREORIBAAEREL, A7 1 OBV T AE
ZEAESET, BRI FIAELZRD D, EORBICIERD - BMRBREZITV., EROE
JHEEZEAT 9., BERBRT — & 1 b ERMREE HET DB, I ED IR & & 2 TR .
FEirOHEE RDMERDOFE T, EMoll FRERT — 7 L OMIcHEEER bS5 n, =
DIEREZ I D L FEICIT DWW TR AD, ZOFETIRIETMEE B> = L&y,
FEIEPLOERARHEENMEIC /e D,  HARER COMRIR & EROBR 4 BHET 5 EZAF
Bl LT CPD I X 5B ADMET 21T 5, HAGER CoRIREHT — % 24T L ¢, #B
WHLOWEEEIZ DWW TS, FT 4 2 onT S ZE DB OHEEIEIC DN T
ST A, HAKERERE Table 41 12571 % A > MEREES. VLCC, 6, 000m® & 1 77—, 54BC
DFETE « RISV T ER L 7=,

4.2 PEFREHANE 7 4 v ~DFARA
T4 O AEERODERT —F LT B0, 74 VIR i o &
EWE LI, LY ERTERREL SABLRS LY h—B &, I OREL LT
A MERE SR, KB & L CIE VLCC 2504817 2 T & (i shi 4 52 U=,
B DR &1k Table 4-2, BE W Table4-3 ICFEED E B Y, FHFH 7. 7940, 7. 080m
ThH Y, KEEHAE CHBIET 72,

4.2.1 &AL NERSR O T
A MERMOEHR & Table 4212, R, BB L7 s VELE% Pig 4-1 1R
T BUREBICEBWC, FHIUATE AT, AP (Lo i, sHEEN I3 E S (7
— F# 0.22), 7o~ ZEEHTBAHEOEEEEE 12, 0rps & L7z, sHULEIZNZ Vo
REDOPL Fig 4-2 1R ETER L7z, “ANICRT 274 v OREORRT —& L+
ODTEDRBRIIT 4 e LTITolz, JED, HMEFHHL, ST khKv 1510 2 X o7z,
Fig. 4-3 [T OEAB] W Z27R73 2, W VD x —z E~OBE v & xfiie D224 A
ELAvT 4 v ~DFIARH FTHAD,
ARHIE R v, b, Vzo MRS L, PRz 2 EESS b, BEERDIE,

6



Fig. 4-4 Zfffi= > % —, Fig. 45 ICHES M Z7T (WP B FEATREICBIT 5 b D),

TaXTREERATE =R (2=20, 0, —20(m)) TOFRAA % Fig. 46 2554, 4
RIIRL L2 D DEEE y 2R T, 2=0 OBEE, ELDD 5O y 25 20 (mm) 550 THEAFA O
WHEA DD, 74 ~OFABOFEEL 5. 4 BiCiki~5,

4.2.2 VLCC OFEFEEHI

VLCC DEEH % Table 4312, #REMR, fEB XY 4 VEBE% Fig. 4-7 (7T, BER
RRIZI\W T, FHIALE I RERTIR, AP (LB O 2557, sHARE DX FHEE S (71— F¥ 0. 146) .
T EERHE BT O EEREL 8. 03rps & Lz, EHALSIZARY VA L REO AL
Fig 48 TR TR TEM LT,

SRR VL Px, Py, Ve, e E L, i & —, HERY L, BEASRS T, Fig. 4-9
(AN, Fig 4-10 (R #— &, EA Y MNEBIOBEA LR 258
DEEHRATE=” (z=20, 0, -20(mm)) TOWMARA F% Fig. 461777, BA L FER
ROEHE LR T 2=0 OB, Bulh5 OIRRE ¥ 23559 20 (mm) 10 CHRAM OBER H 5,

4.3 7 4 OEERY FiTA

74 IR AOEBEEERRET D ITETAERRIC LS FEAEANTH 5, AR
BOIRMAE COHMBRIC L VRO X 5 2RBRE21T 5. FR (3 2 20 o7 1 v
BT AELZBEEL, R ERAED D7 0 VBT BEE2EEE 2 CHEZ A — R
HCTEMABREZTY, 2HEEDERELELRD T ¢ VB 10 A B % RO (GE L) @
BOfHTAEE LCHRET D, RICEREOZ 4 CIROMTAEFBE L, A0 7 4
VRO AMITAEEZBREA CEMBRREITD, 2HEENENRLEL 2D 7 4 VIR T
AEZEHRAOZ VRO MTAEE UCHRET 5, &AL MERAG S VLCC AR T
D7 4 AT AR EDFIEE R T,

4.3.1 AV MERMRDO 7 4 > OE R A
ETERAOT 4 OB FITHAEZAE L U AR 7 ¢ OB 14T 4 FE % -8 i,
A, 0, 4L LTE4FHEEE TCEMABRET Y, AOWEEHINIRA L 257
—REDIZE OFHER ARG 7 — FEL0. 22 TEM L7722, AMRBROEHIZI 0SS0
FHEIE GO 7 — F400.21 & LVERTO ARRICHIET 52 7 n XS HEE TIT- 1,
AR D 7 v~ T W BB B CEAR A ML T 5 0 L. TOFHE L7226 L Rl &
DERIKFUETE & FRE SFC) & DN, 3IE SFC @ 10%LNIC 25 Lo ichit Lz, 74
PRIARIE B O ESHEEDE » O CTHETHET2 b0 &35, Fig 411128 T £
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R B e B e s - — e e 3

WRDT7 1+ > OROFITAEEZ 4 BCEE L EE, ARAO7 4 OB SHTAEE 0
ERREE 2D, WICEERO7 ¢ O FHFAEE 0 BT L TERADZ ¢ DR b
fHTAEL 0, 4, 8, 4 EILEX CEMBREZITV, EREMO 7 1 > DI £H1T F
EEIBENKEERD, 74 VMV MTABELEMKSE, AROEL LT, DB
B - BMEABREERT S LTS,

4.3.2 VLCC D7 4 > ORLEIR Y T A

A MEAROGE SRR, ERMOT o AEESEL L, AAlOT 4% -8
B, 4B, 0B, 4L UTFHEHE CAMBERETo7/, Fig. 4-1210BWT, Ao
AESEICHEE L&, AlRNI-4ERRE L 25, WICHERMNE -4 Bic UTERMA
DAEZEZ TEMBBREIT, RIS ENRE L 0D, 74V RAEERE8E, A
a4 L LT, DEOEGAR - BMERE2EE L, 74 VB TAIZ43. 1 0F
AV MEAROBE L BRLN, MEMRSMOER—BERERFERLEEZ NS,

4.4 Y > TREMEAROBEY - FHHES
U TR R Lo E DHEENERR I W TR, BETRRER TR, WA I (NACA Wt
) ZRFOEBAEIC S, HRERS D LV IOIMERE < BHEREIIR VWA, EAERECS
BHEBENDELND ZEBE N, VU TR ER U0 FRER H 5 i3 EkiT
ERR T, BEAEE IR Lo iiaotRe b REmE S EERER L 0 HEE U S ikRE AR
DEITEHEDZ LFENLEEDhDZEbE, ZORBRER L Y OHE & EMERERERF
DFFMiDZEIT, BRI ED < FAMERRHEFE FiED, kDO FIETIIMENH 5 L EE
L7, T7abbiBkOFIETIR, HERERERE-HEE —2DbD L LTH > TWDH A,
Nagarajan & ODREE PICESWTHRE L REIIABEEL ., Zh 2 a8 - EinoHEL2EE LT
THIRETHBEVI bOTH S,
TEskiE T oM E RO F R
Cr=(0+K)YC+ G+ AC, wrrree (4-1)
ZIT ¢ = 2EHiRK
Cr = EEEIKHUREK
K = TEARE AR
Gy = ISR IRBURE
A G, = EEBRIRITIC KT A HUEEIE
—J5. #FHHE (BAT. Nagarajan HDFELFESR) (THEE AL BIRICIRV &5 DT
Cr= U+ B)Coy+ Oyt AGy + (L+ K Cop -vvvvvveens (4-2)
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Cr = SRR
Gy = RRTRD ERIRHUR L
K, = MEORREERK

Cry = HRIRDIEBHEHUREL
A Gy = RO EEEIRGUIC R 2 LIS

Crp = REDEEIPRI

= fEDOIR BRI

T Nagarajan H D FEODRIEEAT D 7o, 6,000 FEZ B — (7Y A b EMNE) %
ST TARTUARIESL - BB AT o7z, Table 4-4 [THMFER Y DBEB %, Fig. 4-13 12§
BCE 2T, Fig. 4-14 (CTHEFERBRERE =T, ABIIA L et omRiE o L -,

(CREZR LOWRRRIE, MR EREE RIS VR S o DF —& & LTEM L7, Fig. 4-15

WCPESREE L Nagarajan b O FIEC L 2 ERERFEE T, BRELBEERZGRE.
Nagarajan & D FEIC LA EFEMGEEASE TSV, KICHMESES Fig. 4-16 1277,
PEFRARETREE 1 — w2, (13T ZhEE L) X Nagarajan & DFE & ERETED S22 A8,
HES AR EFRIE 1 —t 1X Nagarajan & O HFIERTEREEZR 10% LA > T3, i
Nagarajan HDHFEDRHZATHATHD, ETEAAEB S EROHETHZ L,
Fig., 4-17T ICHEEREAR AR E 7T, Nagarajan &HDFIEIZ L5 b OBREHREL D 6%
BABLE, Fig 417 I EREGHREEFTAL TH D, ZOfEHRIE Nagarajan & D
FHEIZX26DE L EHLTHY, Nagarajan DOFERZYTHB LWL S, 1R
Fig. 4-58 JO® Fig. 461 OEIENMBIL, Nagarajan HOFEZAWTEATLEZ LD
ThH 5D,

4.5 FAEHEA A% (CFD) i & 2 Fitk /1 ot
4.5.1 IFUdI

REDIRFIRCEIE N, 7« v O 17 SO PEE 2 BT 5 FB L L ORiERR
PTONSH, TICET 2 BACMMCIER D5, - OMBELHET 5 FRE LTI
A S (CFD) 7835 0 | BIRITIERO 32 ¥ — 212 X B KHD D REHE L TE Ao
P, BSETIE Y 20— 2D CFD 2SR T X BRI L Ao o TR -, AEI X CFD %
WTERERR M, 7 4 VR ORRITIC & @mT A 1P,

4.5.2CFD Y 7 by =T
Aam L CHEM L7 CFD X, —fXfEM 7 b7 =7 Solid Works Flow Simulation”'V T
S, —HEHYZ N =T EFERLFEOEZETALTROEBY THD,
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CREENRBICY T r =T EBRETE B,

*CAD v AT L EDMASHERERIZITE S,

s VR a b URERDPERB TR LD,

- Y7 MU =T REMTH S,

- AT OEFARUSOREEN, PCREOTCY 7 Fy = TRERTE 5,

IOVTZ U =TS OEER, KEBXUHITHE CEASh A YW, Y7L

VT DOERKIFTEXRA =7 AOFRAEM ZLZHY ., B - ELOMER#< 2
EBTED, LA/ NZEDPHHBEEBRD EMIVTEIR L 238, OV 7 b7
[FEE UTELIRMEE R Z L ICERZEVCHEE S TWD, ELEREE TR 5 120,
77— NEEOFTETR b~ AFBRABRERERLTWS, BEFEINANS, U
b@sd - ETABEAIRL TN,

4,5.3 FHEEFTN

4. 6.6 TIRADFRADEIFEANE CO 54BC DEEERBRORIBIZHIE LT, —Rkii e 7o
FICL D IERE =T M EETET AL LIe, a2 EiEIC L5 ERGEEET 579,
AT —=FICTREMZ 2, Fig. 4-18 1R T X I —BIEICMNA <, 8L RO 7 rF
(K DI, BlERiE SO ARG ERFROEED 30 TH 5, MEHix (4-6) iz &k
0, EHRRIIEAERERIF O 660rpm (11rps) (2% L C 100rpm TR, 7 m2F Y5 m0HE
Eid, Ze_Z®oFmic0.15n/s & LT, BENR oI R%EE2ELDDOF 2—=
& LI,

4.5.4 A EER

a. BIERE

BRIV EWEEREROB TIIEN CTH AP, ftRER CROOEEL DS, H
B DEBERE~DEEE S WA R A0, BEH 0.15, 0.20, 0.25 D 34— Rz o%
S L7, REWTHEIE. 74 v 27— 8EBRVT, B PR EES PO LT
WChD, Fig. 445 (BE1, 2, 3) AT LT, 74 v iraT—/LEiOf R IEMIE
HTIEWR S T 72010, METLBICTEATE Lz, Fig. 4-46 \CEEH 288 RS oM
R @DKiéﬁﬁﬁmiﬁﬁkﬁﬁﬂm*ﬁL1w7oFg.&%ﬁﬁﬂmmmoy
Y—ZXEOMEEOHKL L THL, HBITEERN 0.20 TOEMERELFLE LT, &
AR L7cds, ERE, CFDHEME L<A>TWbHE W25, EREYn CoBIMREE
Fig., 4-19 148, e FEERROFE T, HHEF e Ty, EBRIE L CFD FHHEE
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HE{EG2TnBH L2, BHENINSVWOT, EEROEE A Y o TIA OIS
by,

b. B D

Fig. 4-20 \ZR 3 4 EORERARIT & | fERROMEIHEE~OREEHRFI Lz, #E1
IRHEC, #E9, 12, 13 3B TH S, HE9 I MIOKRICBAShTWAET, N
RO AN EN, 812 1 TREATOBNERETIIANT, NllofiRszRkE LA
LOTHD, FEISITREI NORRBEEMELRELIC Lo TEZLDOTH S, Fig 54
AT EIITHEIRE U TIIRE 1 L HE 9 IZIER— O EPIEEZ R L, £72 CFD & E&BO—
i kv, it 12 OfIERERE 1 B LU K0 ETRE L., it 13 OMERAEREIC K
&<, R & Ui/ N Tk 9, LR T UNKEUR CIIE 1 AT 208 X,

c. 7 A DR

T4 OfGIRE LTI Fig. 422 107§ 3@ERE Lic. Thid” 4 VAR OER A%
EZT-bDTHD, Fig. 423178370, Wb 7 1 Ui LI TEFREITE - T
W5, Fig. 4-24, Fig. 4-25, Fig. 4-261CCFD RHEIC X BEAST., HESHEFT,
T4 O LmE THERDEAZIM 4 DPRBEETHY ., FEL LTERAR/NE 2T
B

d. EAFR G L ST

Fig. 4-27 D X 512 2 DO DA 2 B4 AHEDETHANADEHMEE— FRTH#ETH
%, Fig. 4-281T1%, EfEAlOREAZ—EL LT, GREORAEZEZ HED, HEHO
BB LTS, WTRLBHERMIOIEANRE0° OLENRFRIEN LTS, EANKS
{IRDITHEVN CFD & EREDTEBEN K E S 2o TV HH, ZHECD T alb—va D
ETNTIEIRELRFHEEEME S EHERILENERICER TE RN E2RLTWS, L
RE IRREA TOIEMEMIIHRE TE TWRVA, AEREOMERZREFTTHICiEATES
EERD,

e. PUERTEM
HEA T v dafE, FEORERIMEPOINCFEITICZRD L5 ICBbns, 7Y A Ui
Tik, BEGLE LHRRIRN OGRS Fig. 42901951, HHAEE L > THAY 2 Lk
DHHIED B, EEROHEEIS IR /NS 25 TFREERH S, Fig. 4-30 12t 1, FE5IZ
2NT, HEAEZEZTGGOBIAEERL TV, #6400 OBAICHEE L THEA 3°
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TIIME 1| TIESEBR{E TH0. 8%, CFD T-8%, #f5 TITEBRE T-0.8%, CFD T-14% & 72 - T\
BN, 20 ~3 PEPLE/ADE RS TREME L HEER TE A48, MR D L EFAAICIT., B
KIETCOREPNLELEZ S,

4.5.5 £r®

—HXEM CFD ¥ 7 ~ U =7 ZEH LT, B - 7 ¢ VRHEORT 21T - 7o, BT
DREFBRAE R L BE U, AROBEER/MEATIR, BEALEY 7 0 =7 Thefie o ¢
CEEERIRETE 2 Z L dbhiodr, BEORES~OEEIIFERE LR UREIZT CFD
THETE D2 &, BHE CHARERRCT 1 VBREBES ZENTE L L, EAkE
DB ORHBEDLRICL DB OENORT, HAZuORELIEORLRICHO>NWTE
RN T T o

4.6 FEHEHL
4.6.1 FLBHIC
LA DRERDPD, N7V A RROBTERER N b A OHEENRE L L EfgicHET 5729

DR, BATKETORBRTIZ, &2 MEfRE VLCC o2&, EHRERE X OB fiaiBrE
i EREERAE T a7 EREOMAE DY TR O EZ 6, 000n® & » H— & 54BC
WCOWTER LTS, AMABRCEAE T nT LEORAGDECORBR TR
BEHLOMITICE LT, fE~OMAEEICE L T S0 B2 ZEBTALERD 5,
EIMBEHORBOBE, HEREZBE LERAEEZRELIENH 5, EHRETERTEL
TR OBEIEHRE E O Z2 58, Z0LEHOESZEZEETRIIZL2 N, T
T OIELE, HESOEBIIOWTERL, IEHOMTZITo LT 5, &
PP B9 5 TR D EEEAR ST TTTC 1957 OXEHEH T 5,

4.6.2 mEoORE
T uALT R LOEEORRFE (BHERER) v, B0 07 H 0 OBAOHERE
How, & FARE C, 25T LT, D.W. Taylor DF —# 19 RAfERERF —H ~N— R LV ¥
A THERT.
W= 0.53 €, — 0,013  cecvreecaeninaenai, (4-3)
WH/W(:- = 1.58 €, = 0.07 =vevves R PR (4-4)
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RO 7, & LT, <7 V1 AEDOEAIE 4.2 BOMRT— & 7 b BT, i~
DI AHEILFIHE (1-w) x vy L DK 10%END T, JE~OFANEE v 1L 4-5)RT
®IoLLts,

vy = 11 x (1-m) X vy, creeereeerannanans (4-5)

4.6.3 FuXF iz ks
B TR AT IE AL & IR RIS ORI 7 0 R F 12 L 2 I0E L e~ DK FHA A
DEBTHD, FE~OMAAITEr TR, BDE2AEEZL-> THICHIZSS, 5.4.5HE
BEIZLT 3 THALTWD LRET S &, HAAE ORI HATIERTIORMNIL,
NACA4415 D7 —# 9 (Fig. 4-52) L0 20%E A5, KEMAAIC L AEINS A= LA
T OEHTRABREFREIESUT T Bt 1/2 |AVIMEFEE T, VICC D7 4 L L OfEIcxt
LTI Ofi% Fig. 43110 T, TRAFICEAMHEICET RS LT, kB
FERELTWS 1,
M = 1+1. 2a
a=1/2 (\\//1 8/ KT = 1) eeeneenes (4-6)
ZIZT K= a7 IR
J = 7uT OuiEREk
Fig. 4-31 IZ:N{U-6) IC X 2EbFR L, KU X7 TORFEERLE LTH
HENZbDTHY, 7eXF@RFAMETHE, R —EDEL RS, —HERME»OH
ELICbDIE, 74— FEOEMCONKE L RoTWAN, 7 — FE T (4-6) K
WCEDEEIEERUEE 2> TS, Fig 4-3110 4-6)RUT X AED L840 A KR LT
HDHN, ERETA-6) RNESYOEFIE > THY, 7 uF Tk ANEREL (-6
WCESRDEET RIAATERITE, IEEEBHEOHET, LEFLHERLTWE b0 LES
75,

4.6.4 HERHURE L ERERE

RS MEHTIZ0E S Schoenherr OSEARBEEIRFIREZFIH LC, BREEL LT, b

BT —hT7 7y 7 F—REALCRDODTND, MOBEESLREBICLTRDEINGZFEL

PR EEEIRIUOR R T ITTC 1957 A M) . BEFED—2 L LT, Hoerner O, ¥

C/2C, = 1+ 2 t/e + 60 (£/Q)2 ~onrrervnnns (4-7)

T2IZU G USRS O FIREEERRE o BE o BIE

FERAL, Y RROBADOETEREAEA L, Fig. 4-32 12 NACA2400 U — X 9

NACA4400 2 U —A 9 Hoerner & 3R CEEAME COMHRIFERERE (4. 6.6 H) (23T,
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t/c = 0.15 TOEHMEE 1.0 & L TEEFREE 7o v Lz, Hoerner RAKIZ L, EREE

DV IO T—4 L& UTREFAEEBEOMEN 2Nk LT, ARX0EFEGEEEER,
Co/2C, = 1.373 - 4.189 t/c + 26.043 (£/0)% ++e-- (4-8)

Fig. 4-33 ICBEMAEERT, ERR{EL EIE ITTC 1957 K& O IR IETIT 9

4.6.5 BFANE TOREOE

BRAUKIE COBEARL JUAMAROBRIC, OB EZFHIL, fERGHEE o RKHS
—& L L, T TERRREORIEILI A MNE (70 72 LOREE) & Ve (7
AR LBROT7 50 OWHE) TRHAIL7z, Fig. 434k A v NERIROBEG DER
fE%, Fig. 4-35(T{EIE ITTC 1957 & DA RTH, FHE 7 — FETR 274 ThHD,
—J7 VLCC DIFET7 4 72 L COEBRER Fig. 4-3612, 7 4 A= TOERES Fig.
4-37 1z, {EIE ITIC 1957 & D% Fig. 438 [TR$, SHEIN— FETT 4 72 LD
A, EBRELEE ITTC 1957 & DT 1.1, 74 X TR 1.4 ThHD, Fig. 4391
HETZIR oD Helgt & 747208, VLCC W AR OB IS L Tt ek eh B oicet L, A > ME
AT VA VR ORBIRE L TR, ZOBERELR-TVWD, EVLCICE
WC, ZA4VHEDELABT 4 R LDOBAED 1O ICHRTEFRXVDIE, 74 A
FEOWFOA Tl SRR OHETHORELE2 N5,

AT EHIBREFOREIEHT T 273, VLCC AREUCB W T HMIEEREE (742 L, 74
fH& OmE) ICHEEREZFEL. EREE Fig. 440 B IO Fig 44112, £-iEH S
& FIRRICEERA & ELE ITTC 1957 X (WOEIGAEE ) L D% Fig 4421071, &
PIRBRERICHE A, E1E ITTC 1957 :L L OIEAE TR E VDL, F2Fi2 X 5N (4-6)
MTHRT, PLREWVWEE LS, HBEAEMMEREEZE S & 2 iIBERBRR—2 20D
T, ZZCHEHANMRBROT—# 5L L 15,

4.6.6 [EIHKM TOREOEST

BATE A 54, 000 BNV X5 U T RRIBICEM LA BEERBO—RE LT, FEELL

DIEIEF I~ DR, 7 4 VIO 7 4 A~ DB R D18, AT 13 0

NI A AEEFRADFE AR EREAT o7z, Fig. 4-43 (ThE - 7’0 _Z O~HE - BLE,

Fig. 4-44 \ZEBIRI, Fig. 4-45 12fE - 7 1 DR, Table 4-5 Tk - Y u S5 EH

Y. EABEE A Table 46 1T~ T, ZOEBRO 5 LEAKE TOMETRR

DWW TETIZE~ S,

74 Ve LOFE=TEE (¢/c = 0.15, 0.20, 0.25)I2o%, VLCC DBA L EEOF LTl

BEHUZOWCERT 2 L7, SEBRIY, 7 u_XT[EEsE 1rps, K 0. 8n/s. 7 2T {EEh A
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VX J=0.45 THEMi L7z, Fig. 4-46 IChEIREIE 7T, FRICIE 4. 5 8iciR <7~ CFD ik %
REFNBELHRE L THD, MEEEGA-6)X, U U IEEE (4-8) K% VLCC DS L Rk
\CEEA U, ABERHUARE S Fig. 4-47 107”3, 1EIE TTTC 1957 K& DL 1.6 {5 TH Y | VLCC
DEEOR L 4RFLVDPLRESBo>TND, L.6FE L AFOERZHEETOEICTIIE,
(1.6/1.4) "0.5=1.07 THY, 4.6.3 EH TR LI IIEERE (4-6) O EEEE0H + 8% ik
EoTWDLEEETS,

4.6.7 (2%

PRIGRER D & AL OVEREHERE 2 IEFEICAT 9 7o DITREIR IO MEENEE CH 0 |, Bk
BRI A B CRHlll L 7o iEiEiT — # 3% | OB EBTHAHROKME, Fo
NI L DNMEEE, WEERELZTMELC, ZhoD0BEFEE L) 2T, ITIC 1957
BRI RS U RIERHEERE /7. 2EICSDAOEERRE VR VA
VRET, ZORRIIEMIEREEICHERICAATH S L EET S,

4.7 7 14 DiEH
T4 ELRET 4 ATTORERT —F L0, 740 VHOBELE 7 4 LV ELODEBEGDE
W7 4 BEOEE LTRED, VLCC O RHAME COBEGIABMOMEEZ Fig. 4-48 1TR
9o P&S OFEMEICH LT, 7 VHEHURE () 2k d L Fig 4-49 BB LD,
Copin = R W2 98 F B misvs (4-9)
ZITC Cppy b 74 VIEHREK
Ry 7 4 UL ()
o KOEE (N s*/n)
Seit 74 v OEE M) (74 >0 bR, FEOARH
Vo EE (w/s)
PR w % 0.49 & U T RUEREE Vo 1ok LC
Vo= = m)* ¥y & LT, {
Fig. 4-49 T /= 0.13 - 0. 16 D C,DOFHIfEIX, NACA 4415 DT —# 9 (Fig. 4-52) T
A =13 O C,LEFE—FH LT3,

4.8 7 4 HES)

ZITIET7 4 v OBREERFT DL E L, 54BC &5 RIS EFARE CTHEM L7 3B R
ERITFITT 52 L1075, Fig. 450 iIC7 4 AHE=E L 7 ¢ VELEOBYIZ R,
FIZIE, CFD IZ X HHEEFEL R L Th D, 71 FEnFhofticB T, 0
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ERD7 4 L (rudder 1) DIEFHZSIWEICABTEEZ 2T bDR 7 ¢ o DEhHE
(#7)) THYV, Fig. 451 77, ZHOWTNOT 4 VLEBREDLNAED, 74
CHiGOBIEAE R L LELORROEVEREZ 52 TCWS, 2L, 74 VETER~D
MAEERZBAToOFER LI REVDLL EEETS,

7 o DFEAI NACA4ALS TH Y | FARE, MAAENEENE, 71 OHIRKE
Do TAVDANCFRMEIZ LV RAEE, MAAEIIRZ50T, MAEE, HAH
B AN HFROFEHREE LTS, AP INTNBEOT, FAEELHTAS
ExfEToi L iisd, R4EFRE LUEBRFORMF, 707 [EEEE 11rps, FiE
0.8m/s, 7R~FEE /= 0.45, K= 0.203 ROV 0 _RFICLAIMEZEL LT (4-6)R
EXDERY LV ROLT 0 T LD IEFEE R 0. 8m/s ICF U C AEE & L,
A a®— AL, NACA 4415 @ (., ¢, (Fig. 4-62) 2HEAL #£H (L), Hi5D) 5k,

T = Lsina - Deosa -++- (4-10)
TATA MDD ZRDE, Fig. 453 XV T = 0. 18N) lCHY T 5 FA M LIRS
(4-6) D% ZERIL, 1L.7° THY, KFTRbRVWEHHTTELRITREV AL S
ADMAATHY , WHRHAATHS LEE, FROT 1 I OWETIEDNED RS
DEEZBND, |

1.9 HEH~DT 4 DFE

T4 U EMITBAIHEDEAN. 7 4 R LIS T E YT b3 052 Rat L,
ERAECOERT, fE1 L ZRICHIRA 23.5 DT ¢ a2 3 OFEREH D s
# Fig. 4-54(@FT, ERKMAIOKENITT + A, 74 X2 L CIRERIC T, ARG
T4 OE Y RETREV, SEOBRBENERIIE L ZFNICHI LRAL T 2 v 21T
TZHE 10 D w Fig. 454 (0) 0§, ZOBEEERA, FRAIE b7 1 O FR,
BNED LANS W, 17 4 VOIRBRAR S SHORIC X | &L,

Fig. 454 () {975, KE 2 &AE 3 1 3ERLA, AREAIE BITIER CC, #8 4 a0 2 -
HE3 LB TREL, ARANGTICHE2 - 483 L0BET/ASY,  DELS T4 i
BEORERIZ, 74 v OENMES LITIER—EEZ TLU,

4.10 EfIGHHEE

74 ORI AEAERR TRS, 5 - BAERE I LI/ MR o RFEE LT
D A2 MEMHRE L UORAEBRORETH S VLCC IZ2&, EMEBNHETZITV, FhHick
BT 4 Y OFHRICONTIRAD,
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ETEAL MERMMTH DD, Fig. 4-55 ICEMRBEREZRT., RBRII7 4 o Lok
FECHME Lz, Mafs&fExIEICEY S, Fig 4-56 ICERETAEE R, Rk
BHHDGHHFEE LIS, Fr &7z - T Nagarajan 60O HEEIC X A& EEHIEE A EF
B, WICHMBBRTHAD, 7400 R LBEG 74 0B TOAMERD b 8
% Fig. 457\t FHEREEESG An = 0.21 {28V T, HEDRAMREGEE -t 127 1 v
123 2. 4% BLTEY, 74 OMRERL TS, HIEREIEE 1w b7 1 528 1. 5%
BOWA, ZHE 74 v OFECIVRNBEZ LD 5N TF oI HAREN DT 52
ECEDbDEBFZEND, HEESFDFEN 7, 0.3% T4 BB VWE, 74 LB
MARPERLTVWEIHDLEBERIND, FROBEICL Y 2HEEDR 2137 4 A8
3.4% BN TW5, ERROFLES EHP). WET) BHR)%HE L T, Fig. 45812577, F
/7 13. 4kts T, 7 4 OB S8 3. 1% 720,

WNTVLCC THHA, ETHIEBRAIT ), Fig. 45907 4L, 74 H Y O
RETRT, MED AL TIIEL, 740720 TH=0.204, Z4HVTE=0.291 T
FET7 450 OEFARDR, BRABRERE LT, 74 VELEROT 4 U&7 Y
A RED BMEROLE A Fig. 4-60 (T3, FHENEEXIIGD Fn=0. 146 I2 BT, HEAM
DMREARIE 1-¢ 137 1 A8 2.3% BALTRY, 74 0B ERL WD, GRS
B lwb 7508 1L.9% B, HEESRDEL 2,5 0.3% 74 UNBERW, Z0EBAEE
A LI OB G LR TH D, SHEDE 7137 1 VAR LY BTV S, EOF
BB (BHP), WG (BHP)%H#eE LT, Fig. 4611007 T, HHEEBEH (%D —v—y
ZETe) T, 74 453 0. 15kts B <, E70i#) 16, dkts CTik, 7 4 VOB 3. 4% 4>
Ry,

4.11 F&®

T g AT ERT YA RO EFANERER D b B RIS 0T, PR RS
o7 4 o ~DRAAENET D HFEETR L, 71 OBER 0 742k 5 kiR
BOEF 2R, TV TR EROMBR] - ERRRIC-o & | Nagarajan & OFERH
RAThsd I L emE Ui, MR CTOMMR L IR OBREMATAERFRL LT
CFD T & Bt ) DfREt 21T o 7o, REIRBIOHEERZBE L, 7 ¢ > BIKOHEA B J UM
WOE T 2T, B - EEEOER T s RERE RS, AL MERRE VLCC
({EDWNT, Nagarajan & DFIRIC L2 FMEIHEE LTV, 7 1 > OBRN 3h~4%d 5 =
Exa Lz,
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5. 7. riREtoEst
5.1 74 VYR DNRT A—4 —

NIV REDT 4 VDRI ERE LT, T4 DANES, 74 v OEEFR, 7
A YOBWYMITE - AERIC7 ¢ VOBERSH D, ZhbiconWT, HEFEEOF L
HEITI,

74 OFEBRIE Fig. 5-10) iR T LI, FORTA—F—ThHHEMHDOEY
& Gy « BEREOELR G . ANVEIIES,, %iBA «TRES, SATHIRSET T
—RANCRE VT I BFEEHAZWL TOTI WV E VbR TV AR, 5.3 Hilok~<5 X 5ic
ERT A YRREERICEWVICTHE LN W IFIEAH L0 T, FRICkVESLAS,
— ORI ORI, Fig. 5-1(QWART L2, TN ENDORERE 105 EREEL, 7r
NIORNEZREEEDDIE—F (VT LAV 2VT—R) ZT3EIC. FEIENL ST
DI, ap+ (0.02~0.05) = a TW_ED, 1L g, (0.02~0.05), a DEfrITA— k
NTHD,

7 o OEEE (Figs) 43R TREan s,
4= Spx (Gt Cop)/2 xk  ooee (5-1)
RE k1% 0.65~0.76 THEE, 74 v DORESICEVED-TL 3,

5.2 7L VDANRVES

TAYDANRRSTTaTER O TEDERD, EENLERREOT v
WIBWT, (T DARCRES) [/ (FTuTHED) 2B T7 4Ot hEsHEIC
L ORDT, Fig. 5-2 1T 8 /D% 0.227~0.303 ICE X 2B OAHERE (= Spx (Gt
Cp )/2) EEDEME (AFFEED DRI OFEBE RV b 0) OREUER &5
. H#EHOFHEIT 48 2HEFUL, T u T REEHL 1lrps, HHE 0. 8n/s, 7125 {EH)
o J=0.45, K=0.203 TIToz, a7k 500k (4-6)X. 7 4 o higdk, HiH
FEIIFig. 482 TR THOEMERLE, BE#ELLTDS, /D,%0.242L 1L, ZDEE
D7 4 ~DEFRAMIL, Fig. 4-52 [Z779 NACA Fpik & i MR 4 U B4 LERD 13°
BLOZN LD AEIWI0° D2 0FEERHLE, S, /D& EFRAL ok OBZITSFO
£ 2ITRD e, Fig. 5-3 ITHERTE T OAKFT R OFAAELO—BRARH 22T T 323,
ANCBNOELEERTLEZONDMNEEL 7 4 VERNODEIETEL, 0N
ANVES SCERTTL Ut (AT Lo s SR & R 5, SEIT 5 4 i
W) ZED, SAKE 2D ERMT LOBIHOEERZ T o ST A BEI L. §
NOBELRELRDDT, Fig. 53 OFAASHOBANS, Fig. 54 D% T 5 &
HEE LT,
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Fig. 55T Sp/Dp & ~—R|Z thrust/D,/ vV 2R T D HRAA 13° BLO10° iz S,./D,
MREVIEL thrust/D, Y P IRKEV, —FARCRSITELE 7 £ BMERTERNC AU
TH LA EBLETHD, Pig 56 K7 U_RTEEL SOEERFIN, SOHRE
DYWHEL LTEEILL 5,

5.3 7 4 OFmEIK - #IEA

5.3.1 #%iBALEH

BIBANDH D LENIHMDT 58, TORESSIR DR 5THHS, ZZTRUTFOL
INTHRET L7,

[ ATEEERORE 3 TEIC D&, [EEAEICBIT A2ERELZEIM VLV OF—2 5 H
L7 VDO BEEOREEER L. 74200, @, @ (Fig. 4-45) O®%BAIL
FNENATE, 23.5F, 0 ETH S, Fig. 5-7 ICHEHDEGEAE COEBRMEROGHEE
DB E, FEANEDEGE 10 LTHKRLE, EBRELSEUMAPEIGEELE
fEERIEA 20 BLLETIER—H[A%ETR L CRY, Fig 57D —T 2B L HEATEL
HHILWRTED, HiBfA 20 BLUTTHmEED—BIL L 2V, BB L 13RS
FE3E (Z5 3CRRIE SDT003 1Y) . 25 T EICK LT, MhICEIBAZ 50 TV aE N
LD bDEBEbh b,

5.3.2 74 VB BRORE S

TAVRMORE G BIRORE G, OEMBIZBEN, 710 v ERCEERE2 5,
Fig. 58 IZ/RTATEED 7 4 VIRICoE, CED THENEZHEE Lz, Fig. 59 IcfEHE%
RT B, Copf Cp®EIE, 0.2~0.3 Bl THDZ LM d, Fig 5-101T57T k5,
Crn DRENR Cp & DI Co/ GO, 0. 55 CINEUAR) ~0. 86 CKAYAR) . %7~ Fig. 5-11Ic7T k
I IHENR & e T EHE 0,05 G/D,1 0. 52 (RAR) ~0. 82N TH B,

5.2 BiDFIRERIND . 7 4 VIEKREWIZEDRRHHD T, CpbBAMEICE T, Gy
I% G/ Cg=0.2~0. 3 DR THRONIZ LW EBZ B,

5.3.3 T4 UT ALY MhOBE
RIS BT A2 MEQEES ~ORBIIME » CHH Y OERRNHEH, 22
Tih, MEOREZEM LT, 74 v OMH~DT 20 NS L +5, Fig, 5-12 07
FTEIC, T4 v OERECHT AT AT MhAd 22 LT, MAOR 2.41{1.3-1/2 1))
BWT, A=1 OFHCZOEN 1.0 1225 X ) Ik ET ALy MBS LT3,
k(2) = 1.25{1.3-1/(24)} =---v--- (5-2)
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5.4 7 4 OB FHFALE & R FH A E

7 A YR AT ORMRAB L, eSS L OB SV, eI L AEE s EE L
T, 74 CHGSRERTG & —ET 20 &R L35,

74 OB T AR, KERBRICE B FERERNTHS, ZHhICHOWTIT4 3ET
e, REHICHET 4 Y EaRITOIMBOFELIEREL T, 74 VIO FIARKEMEE O
MED7=0RD X 9 2TEE R 2,

5.4. 1 TSR & B0 IR
4. 2 ik eE R L B IELE LT VLCC ORESIY Fig. 4-6 128\ T, il y O b
HHEZE L > TRAADRERMEZIRD 2 FEEHET Uiz, yORFEE 7 1 OB TR
WERLEIERZELL, ROLICERELE, 74 D8N, 74 0ARRVHRICDE
STEELTWDRE, BT « o OBEORIRE IR 'Y 12>, Fig. 5-13 DX 5245
Moz LT EBET D EZonfik (6-3) XTERENB,

/S + (/G2 = 1 wrevrrrreeenennnns (5-3)

L, Gpi3RIRE (=0) TOH/NFEETHD, IHICT7 4 VOBRFERICHIEG LT
ERNOHEImIChIZ > Tafize (54) X TEET S,

&, = 150 = L0 = GGyl X 8] ¢ vosnsrumvzs: (5-4)
Tk, IMEEIRIK, G CuldFig 5-1 ®EBY | TRENT 4 L ORIEE, BVEO
R TH D,
Cm ZEEEDHELE TGN TERLEINS,
Cm=d {1 - (x/8)E} %8 X{ 1.0~ (1.0~ (/¢

(f
[

ﬂﬂh

3

% L) o vwen = e o (5-5)
TAVOBNETIE L7 4 RS SIEHLOEAETRIE, x=0~ S5 TRSLT
A= CoXSX{m/d - (1 = Cof Cpd /3} -+ v+ (5-6)
TR S ThinoTO ADOYEEESE A/S, TRT L
A/ Sp= CpX{m/d - (1= G/ CR/3}eevvvoenres (5-7)

(G5 RTRINLELEEHER, G- TREINDHMEICE L L 2588 x /S, DEZ B
o EOBHTRLER L Ui, © 0 Bas E oS EE s AR COB AR ¢,

5.4.2 Rt L 7 4 VIV (1T A EDO R

T A 2 MERGR LUV VLCC @ BT LB A MR A RD, 4 i Fig. 4-6 |[ZEE
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LT Fig. 5-14iZ7¢, Fig. 514 ICBWTEMNT EOB I MEERICHHE L-AEE:
Fidr, z=0 TOfE% Table 5-1 17757, Table 5-1 (TiE, AKIERERTEET ¢ VEY (i
DREESFEH L TV 5, Fig. 5-16 WHAALE Y 4 VRO M ARKEME R LE,
Fig. 5-15 [TidE A > MEWNG L OV VLCC O T A fcEMEIC iz T, fiA ToHEE
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Table 3-1 Record of vectwin ship with fin

GROSS

SPEED | ENGINE | YEAR
No TYPE OF SHIP cLASS | TONNAGE | pur(0) |ipp @] (kt) (kW) BUILT
A TANKER NK 3, 570 5,999 | 97.0 15.6] 4,200 | 2001
B TANKER NK 3,597 | 5,999 | 98.0 15.3] 3,880 | 2001
C TANKER NK 3,773 | 5,999 [ 98.0 15.3] 3,880 | 2001
D TANKER NK 3,870 | 5,999 [ 97.5 15.0| 3,310 | 2001
E CEMENT CARRIER NK — 7,500 | 108.0 12.0] 3,880 | 2001
F TANKER NK 3,780 | 4,999 | 99.2 15.0 3,880 | 2002
G TANKER NK 3,600 | 4,999 [ 98.0 14.5| 3,310 | 2002
H RO/RO NK 1,332 | 2,400 | 85.0 17.3] 3.882 | 2003
I COAL CARRIER NK | 15,000 | 12,000 |134.0 14.5| 5,250 | 2003
T TANKER NK 3,790 3,78 | 99.2 15.0] 3,880 | 2005
K TANKER NK 3, 790 3,785 | 99.2 15.0] 3,880 | 2006
L TANKER NK 3,790 | 3,785 | 99.2 15.0| 3,880 | 2007
M TANKER NK 3,530 | 3,773 | 98.0 14.5| 3,310 | 2007
N COAL CARRIER NK 7,200 | 4,500 | 105.0 14.5| 3,880 | 2008
0 COAL CARRIER NK 7,200 | 4,500 | 105.0 14.5| 3,880 | 2008
P FLY ASH CARRIER NK 4,526 | 4,500 | 99.8 14.0| 3,240 | 2008
Q TANKER NK 3,550 | 4,999 | 99.0 14.5| 3,310 | 2007
R TANKER NK 3,599 | 4,999 | 99.2 14.0] 3,310 | 2009
s FLY ASH CARRIER NK 4,630 | 4,750 | 99.8 14.2] 3,240 | 2010
T COAL CARRIER NK | 18,600 | 15,000 | 146.0 14.0] 5180 | 2012
U TANKER NK 5800 | 8,480 | 108.6 12.5| 3,310 | 2013
y CEMENT CARRIER NK 6,700 | 9,000 [106.0 13.6] 4,000 | 2013
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Table 4-1

List of model tests

Cement | VLCC | 5000 | 5ype
anker
Osaka
. Osaka U_niversilty
Basin JIM ASMB itteseity Clr;ﬁgmg
Channel
Date 2000. 12 2001. 8 2006. 9 2011.4
Resistance With normal single rudder O
With Schilling without fin O @) O
With Schilling with fin O O
Resistance of rudder (w/o fin) O O O (Cir. . Channel) O
(with fin) O
Self With normal single rudder O
propulsion |With Schilling without fin O O
With Schilling with fin b e S e O
With Schilling with fin @) O
Resistance of rudder(w/o fin) O O (Cir. I, Chaune1)
(with fin) O O
Optimum fin angle P:8 S:0]lP:0 S:0
Wake survey O O
Lpp (ship) (m) 106 316 99. 2 194
Model scale |LZpp (model) (m) 7.79 7.08 3.52
Scale 1/13.6 1/44. 6 1/28.2 1/40
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Table 4-2 Particulars of ship and model of cement carrier

Ship Model
Ship
Lpp (m) 106. 00 7.794
Breadth (m) 17. 80 1. 309
Depth (m) 10. 00 =
draft (m) 6. 95 0.511
Propeller
No. of blade 4 5
Type FPP FPP
Diameter (m) 3.40 0. 250
Pitch ratio 0. 669 0. 669
Expanded area ratio 0. 625 0. 535
Rudder
No 2 2
Type Schilling Schilling
Height (m) 3.55 0. 261
Breadth (m) 2. 72 0. 200
Lateral area (n) (for one rudder) 9. 66 0. 0522

35



Table 4-3 Particulars of ship and model of VLCC

Ship Model
Ship
Lpp (m) 316. 00 7. 080
Breadth (m) 60. 00 1.344
Depth (m) 29. 70 =
draft (m) 19. 25 0.431
Propeller
No. of blade 4 4
Type FPP FPP
Diameter (m) 9. 60 0.215
Pitch ratio 0.672 0. 700
Expanded area ratio 0. 430 0. 400
Rudder
No 2 2
Type Schilling Schilling
Height (m) 8. 50 0. 459
Breadth (m) 5.00(6. 00/4. 00) | 0. 112(0. 134/0. 090)
Lateral area (m2) (for one rudder) 42. 50 0. 400
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Table 4-4 Particulars of ship and model of 6,000m3 tanker

Ship Model
Ship
Lpp (m) 99. 20 5.520
Breadth (m) 16. 00 0.570
Depth (m) 8. 10 -
draft (m) 6. 20 0. 220
Propeller
No. of blade 5 5
Type FPP FFPP
Diameter (m) 3. 40 0.121
Pitch ratio 0. 777 0. 667
Expanded area ratio 0. 750 0. 650
Rudder
No 2 &
Type Schilling Schilling
Height (m) 3. 80 0.135
Breadth (m) 2. 80 0.099
Lateral area (mZ) (for one rudder) 10. 64 0.0134
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Table 4-5 Particulars of ship and model of 54BC

Ship Model
Ship
Lpp () 194. 00 7. 080
Breadth (m) 32. 26 1. 344
Depth (m) 29. 70 -
draft (m) 19. 25 0.431
Propeller
No. of blade 4 4
Type FPP EPP
Diameter (m) 6. 60 0.215
Pitch ratio 0. 553 0. 700
Expanded area ratio 0. 367 0. 400
Rudder
No 2 2
Type Schilling Schilling
Height (m) 7.80 0. 285
Breadth (m) 4.105(4. 75/3. 46) | 0.150(0. 173/0. 126)
Lateral area (mz) (for one rudder) 32.02 0.0426
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Table 4-6 List of model test at the circulating water channel

Diameter of model propeller : 160mm

velocity : 0. 8m/s
number of revolution : llrps
Advance coeficient] : 0.45

Rudder No. i: 2 3 4 5 6 7 8 9 10 11 12 13
eight of ruddg 162.5 162.5 162.5 162. 5 162. 5 162. 5 162. 5 162.5 162.5 162.5 162.5 162. 5 162. 5
eadth of rudd 104 104 104 104 104 104 104 104 104 104 104 104 104
o reio L 015 | 020 | 025 015 | 015 | 015 | 015 [015 | 015 | 015 [ 015 | 015 | 015
Symmetry
(max.
Rudder form |Symmetry|Symmetry|Symmetry|Symmetry|Symmetry|Symmetry|Symmetry| thickness Asy‘mmetry@ Asymmotry Asymg)ctry
location
forword)
Form of fin = - = @ @ ) = & - @ -~ = -
End plate - - - - B - with - - = with =
Rudder angle
P S
¢ 0 Q o @] o O 9] 0] o o o (@) (0] o
3 -3 O [®) @) o O o o O [®] o O @) o
6 —6 o ) O @] o o 0] o O o o O O
S -9 [®) [6) o @] @] &) [@] o O O O O [©]
12 —12 O [} o O O @] @] o] @) o o O o]
15 =16 o O O O O C o O ®) o o O o
=3 3 O C O (@) o o @) O (®] O o
-6 G [6) o) o O (@] o o @) O 6] @)
-9 9 e} o) [®) O @] Q o o @) [®) (@)
=13 12 O o O (@] @] @) @] o o o O
-15 15 [®) C o @) O 0] @] 0] 0] o O
5 0 ) 8] (@) 0] O 9] o o @]
5 20 o) o] (®] O o (@] [®) [®) (@)
5 35 @] o @] O [®) @] o ©) @]
5 50 (@] o 0] O o @] o 9} @)
5 75 o 8] Q O [®) [®] (0] o (@]
P S
15 0 o o o @] ®) @] 0} &) o
15 20 Q o o [©) ) 8] o o O
15 35 @] o @] O o] @] (0] o] (@]
15 50 o ] @] [®) o 6] O 8] o
15 75 O O ] (0] o o @) o O
25 0 0 o o [®] o O ] o O
25 20 @] @] (@) (@] o] O (0] o (@)
25 35 o @] @] (@] o O (®) 8] o
25 50 O O o (0] o o [®) o] O
25 5 @] o o O &) (@] 9] 8] (0]
0 -5 @] @) @] O o @] [®) o) o
—20 =5 o O O @] o o o 8] @]
-35 -5 O 6] O 0] o o 0] o] O
=} —h (@] 6] o O o (@] o O O
=7h -5 (@) o o O o O o o O
0 —15 o O (@] o o o O O @)
—20 | -15 O [®) (@) @] (@) ] o O O
-36 | —-15 (6] O O O O O o O [©)
-50 | -15 (@) o (6] O O O (@] 0] O
—i5 | 15 O [®) @) @} O O @] o 0]
0 =25 O O o O o O O O] O
—20 | —25 (@) O 6] O @] O o O O
~-35 | -25 o o (0] [6) @] O (@] O O
—50 | 25 o O (0] o O O @] o o
75 | 25 ] o) @) o o o ] @] O
=75 75 0] o @) (@] o O o O O

39




Table 5-1 Inflow angle
Ship name Cement carrier VLCC
Inflow Port {(deg.) -24.7 -21. 4
angle Starboard (deg.) 23.8 21.7
Optimum Port (deg.) 8.0 8.0
fin Starboard (deg.) 0 -4, 0
angle
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Fig. 4-8 Measuring points of wake of VLCC
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Disk {diameter corresponds with the propeller diameter)

Three additional data

* Velocity in x-direction considering propeller operation
* Rotational speed

Fig. 4-18 CFD model
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Lift coefficient (¢

Cr=L/00.5%x 0 x5 x v2)
where S = surface area of rudder (both side)
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Fig. 4-19 Lift coefficient of symmetric
type rudders of 54BC
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Fig. 4-21 Resistance coefficient of symmetric and
asymmetric rudders of 54BC
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Fig. 4-22 Rudder with fin of 54BC
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Fig. 4-27 Differentially angling the two rudders
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Fig. 4-28 Lift coefficient for differential

angle cases of 54BC
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Fig. 4-34 Resistance of rudder at
resistance test of cement carrier

4.0 | | |
Resistance test/Medified ITTC 1957
=
3.0 s
1
&
2. 68 L
Note:Mean value of (P) and (S) to
be taken as resistance test data.
2.0
0.19 0. 20 0.21 0.22 0.23

Fn
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Fig. 4-38 Comparison of resistance
coefficient of rudder of VLCC
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Fig. 4-44 Arragement of the test at circulating
water channel of 54BC
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