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Introduction

0.1. In number theory, it is important to study L-functions and their special values. In this thesis, we
focus on central values of automorphic L-functions for GL(2). Such central values have been studied by
many mathematicians. As one of remarkable results, Waldspurger [48] gave a beautiful formula which
relates the central L-value associated with a cuspidal automorphic representation of GL(2) to period
integrals of cusp forms belonging the cuspidal representation along an elliptic torus of GL(2). Later,
Jacquet [16], [17] gave another proof of Waldspurger’s result introducing relative trace formulas. Inspired
by Jacquet’s result, Ramakrishnan and Rogawski [35] computed Jacquet’s relative trace formula explicitly.
In the case of holomorphic elliptic modular forms with a fixed weight and prime level, they gave an
asymptotic formula of an average of the product of central L-values and their twists by an odd quadratic
Dirichlet character, when the level goes to infinity. The detail is as follows. Let k > 4 be an even integer.
For a prime number N , let Snew

k (N) be the space of all elliptic cuspidal new forms of weight k and level N
(for Γ0(N)). The space Snew

k (N) has an orthogonal basis Fnew
k (N) consisting of normalized Hecke eigen

forms. For ϕ ∈ Snew
k (N), we denote by L(s, ϕ) the completed automorphic L-function for ϕ whose center

at a symmetry of a functional equation is 1/2. Let η be a quadratic Dirichlet character of conductor D
with η(−1) = −1. The Dirichlet L-series associated with η is denoted by Lfin(s, η). For a fixed prime
p - D, I+

p,η denotes the set of all primes N satisfying both gcd(p,N) = gcd(D,N) = 1 and η(N) = −1. We

define the p-th Fourier coefficient ap(ϕ) of ϕ by the Fourier expansion f(z) =
∑∞
n=1 n

(k−1)/2an(ϕ)e2πinz.
In this setting, Ramakrishnan and Rogawski proved the following theorem.

Theorem 0.1. [35, Theorem A] For any interval J ⊂ [−2, 2], we have

lim
N→∞
N∈I+

p,η

∑
ϕ∈Fnew

k (N),
ap(ϕ)∈J

L(1/2, ϕ)L(1/2, ϕ⊗ η)

||ϕ||2
= 2k−1 {(k/2− 1)!}2

π(k − 2)!
Lfin(1, η)µp,η(J),

where ||ϕ|| denotes the Petersson norm of ϕ and µp,η denotes the probability measure on [−2, 2] defined
by

µp,η(x) =


p− 1

(p1/2 + p−1/2 − x)2
µST(x) (η(p) = 1),

p+ 1

(p1/2 + p−1/2)2 − x2
µST(x) (η(p) = −1).

Here, µST(x) is the Sato-Tate measure (2π)−1
√

4− x2dx.

Feigon and Whitehouse [6] generalized their result to the case of holomorphic Hilbert modular forms,
imposing that the level is square-free and that a quadratic Hecke character concerned with twisted L-
values is non-trivial at all archimedean places, by using a refined Waldspurger’s formula [25] and the
relative trace formula given by [18]. For non-holomorphic Hilbert modular forms, Tsuzuki [47] gave an
analogous result for even Hilbert Maass forms by using automorphic Green functions on GL(2). Even in
his result, the condition that the squre-freeness of levels was not able to be removed from assumptions.

In this thesis, we generalize results [35], [6] and [47] to several directions, without the square-freeness
of level and the oddness condition on a quadratic Hecke character. Essential ingredients are automorphic
Green functions on GL(2), which were introduced by Tsuzuki and explicit relative trace formulas for
GL(2) resulting from automorphic Green functions. This thesis is based on [42], [43] and [44], which were
given during the author’s doctoral program. Here, [43] and [44] are joint works with Masao Tsuzuki.

To state our results in this thesis, we prepare some notation. Let F be a totally real algebraic number
field of finite degree and o its integer ring. The adele ring of F is denoted by A. Let DF be the absolute
value of the discriminant of F/Q. We denote by Σ∞ and Σfin the set of all infinite places and all finite
places of F , respectively. For each v ∈ ΣF = Σ∞ ∪Σfin, we denote by | · |v the modulas of the completion
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Fv of F at v and fix a uniformizer $v of the integer ring ov of Fv if v ∈ Σfin. Then, qv = |$v|−1
v is the

order of ov/$vov. For an ideal a of o, let S(a) denote the set of all v ∈ Σfin such that ordv(a) > 1. The
absolute norm of a is denoted by N(a).

Fix a real valued character η =
∏
v∈ΣF

ηv of F×\A× of conductor fη and fix a finite subset S of ΣF
such that S ∩ S(fη) = ∅. Then, η(t) ∈ {±1} for all t ∈ A×. Let I+

S,η (resp. I−S,η) be the set of all ideals n
of o satisfying the following three conditions:

(1) S(n) ∩ S(fη) = ∅ and S(n) ∩ S = ∅,
(2) ηv($v) = −1 for all v ∈ S(n),
(3) {

∏
v∈Σ∞

ηv(−1)}η̃(n) = +1 (resp. {
∏
v∈Σ∞

ηv(−1)}η̃(n) = −1).

Here we put η̃(n) =
∏
v∈Σfin

ηv($
ordv(n)
v ). The completed Hecke L-function for η is denoted by L(s, η).

Let π be an irreducible cuspidal automorphic representation of GL(2,A) with trivial central character.
We denote by L(s, π) the completed standard autumorphic L-function associated with π. The adjoint
L-function L(s, π,Ad) of π is the completed standard automorphic L-function of the adjoint lift of π,
which is a cuspidal automorphic representation of GL(3,A) (cf. [7]). Let fπ be the conductor of π and
Sπ the set of all finite places of F such that ordv fπ > 2. Then, LSπ (s, π,Ad) is defined as the product of
v-th Euler factors L(s, πv,Ad) over all v ∈ ΣF − Sπ.

Throughout this thesis, automorphic L-functions are normalized so that their functional equations have
1/2 as a center of symmetry, and we use the subscript “fin” to represent non-completed L-functions, such
as Lfin(s, η), Lfin(s, π). For any self-dual irreducible cuspidal automorphic representation π of GL(2,A),
the epsilon factor of π is denoted by ε(s, π), which has an explicit form ε(s, π) = ε(1/2, π){N(fπ)D2

F }1/2−s
with ε(1/2, π) ∈ {±1}. Then, the functional equation for L(s, π) is of the form L(s, π) = ε(s, π)L(1−s, π).

From Part 1 to Part 3, we consider asymptotic formulas of

1

N(n)

∑
π

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
α(νS(π))

with a quantity α(νS(π)), where π runs over irreducible cuspidal automorphic representatons of PGL(2,A)
with fπ = n, being imposed some conditions on its archimedean components.

0.2. Part 1 : Results for non-holomorphic even Hilbert Maass forms. In Part 1, we explain a
generalization of [47] to the case of arbitrary levels. Let K∞ be the standard maximal compact subgroup
of GL(2, F ⊗Q R). For an ideal n of o, let Πcus(n) denote the set of all irreducible cuspidal automorphic
representations of PGL(2,A) with fπ dividing n. We denote by Π∗cus(n) the set of all π ∈ Πcus(n) with
fπ = n. We assume that S ⊃ Σ∞ and that all archimedean components of η are trivial.

For an ideal n of o relatively prime to S and π = ⊗vπv ∈ Πcus(n), πv is isomorphic to a unitarizable

spherical principal series representation Iv(νv) = Ind
GL(2,Fv)
B(Fv) (| · |νv/2v � | · |−νv/2v ) of GL(2, Fv) for all v ∈ S,

where B is the Borel subgroup of GL(2) consisting of all upper triangular matrices. We can take νv
so that νv ∈ X0+

v , where X0+
v = iR>0 ∪ (0, 1) for v ∈ Σ∞ and X0+

v = i[0, 2π(log qv)
−1] ∪ {x + iy | x ∈

(0, 1), y ∈ {0, 2π(log qv)
−1} } for v ∈ Sfin = S ∩ Σfin, respectively. Such νv ∈ X0+

v is denoted by νv(π).
The spectral parameter νS(π) of π at S is defined as νS(π) = (νv(π))v∈S ∈ X0+

S =
∏
v∈S X

0+
v .

Set X0
v = X0+

v ∩ iR for any v ∈ S and X0
S =

∏
v∈S X

0
v. We define a positive Radon measure ληS on X0

S

by 4D
3/2
F L(1, η)

⊗
v∈S λ

ηv
v , and for each v ∈ S, the measure ληvv on X0

v is given by

dληvv (iy) =
L(1/2, Iv(iy))L(1/2, Iv(iy)⊗ ηv)

L(1, ηv)
×


1

4π
|Γ(iy/2)|−2dy (v ∈ Σ∞),

log qv
4π
|1− q−iyv |2dy (v ∈ Sfin).
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Then, we remark that for v ∈ Σfin,

dληvv (iyv) =


qv − 1

(q
1/2
v + q

−1/2
v − xv)2

dµST(xv) (ηv($v) = +1),

qv + 1

(q
1/2
v + q

−1/2
v )2 − x2

v

dµST(xv) (ηv($v) = −1)

by the variable change xv = q
iyv/2
v + q

−iyv/2
v . When F = Q and v = p < ∞, ληvv (iy) is exactly equal to

µp,η(x).
For any ideal n of o, put

ν(n) =
∏

v∈S2(n)

{1− (q2
v − qv)−1}

∏
v∈S(n)−(S1(n)∪S2(n))

(1− q−2
v ),

where S1(n) (resp. S2(n)) denotes the set of all v ∈ S(n) such that ordv(n) = 1 (resp. ordv(n) = 2).

Theorem 0.2. Suppose that η is non-trivial and that ηv(−1) = 1 for all v ∈ Σ∞. Let Λ be an infinite
subset of I+

S,η. For any f ∈ Cc(X0+
S ), we have

1

N(n)ν(n)

∑
π∈Π∗cus(n)

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
f(νS(π))→

∫
X0
S

f(s)dληS(s)

as N(n) → ∞ in n ∈ Λ. In particular, for any non-empty bounded Borel set J of X0+
S such that its

boundary is a null set with respect to ληS, the following formula holds:

lim
N(n)→∞

n∈Λ

1

N(n)ν(n)

∑
π∈Π∗cus(n),
νS(π)∈J

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
= 4D

3/2
F L(1, η)vol(J,⊗v∈Sdληvv ).

We remark that Theorem 0.2 is compatible with [47, Theorem 1.1] since ν(n) = 1 holds if n is square-
free. This asymptotic formula gives the following counterpart of [35, Corollary B].

Corollary 0.3. Let S and η be the same as in Theorem 0.2 and let {Jv}v∈S be a family of intervals
such that Jv is contained in [1/4,∞) for each v ∈ Σ∞ and in [−2, 2] for each v ∈ Sfin. Then, for any
sequence {nk}k∈N of I+

S,η such that limk→∞N(nk) = +∞, there exists k0 > 0 such that for any k > k0,

there exists π ∈ Π∗cus(nk) satisfying the following conditions:

(1) Both L(1/2, π) 6= 0 and L(1/2, π ⊗ η) 6= 0 hold.
(2) The spectral parameter νS(π) = (νv(π))v∈S of π satisfies (1− νv(π)2)/4 ∈ Jv for all v ∈ Σ∞ and

q
−νv(π)/2
v + q

νv(π)/2
v ∈ Jv for all v ∈ Sfin.

We remark that L(1/2, π)L(1/2, π ⊗ η) > 0 if L(1/2, π)L(1/2, π ⊗ η) 6= 0 by Guo’s result [10]. As for
equidistribution results for Hecke eigenvalues of Maass forms without weighting central L-values, there
is a work [21] by Knightly and Li when F = Q.

Let {vj}j∈N be the set of all places v ∈ Σfin − (S ∪ S(fη)) such that ηv($v) = −1 and let {pj}j∈N be
the set of all prime ideals of o corresponding to {vj}j∈N. Here are some examples of {nk}k∈N in Theorem
0.2 and Corollary 0.3:

(1) {n = p1 · · · p2n | n ∈ N},
(2) {n = p2n

1 | n ∈ N},
(3) {n = p2a

n | n ∈ N} for a fixed a ∈ N,
(4) {n = pan1 pbn2 | n ∈ N} for fixed odd integers a, b > 0.

The case (1) was treated by Tsuzuki [47, Theorem 1.1 and Corollary 1.2].
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Motohashi [30] studied the growth of the square mean of central values of automorphic L-functions
attached to Maass forms with full level via Kuznetsov’s trace formula. Tsuzuki [47, Theorem 1.3] con-
sidered a similar growth in the case where the level is square-free and the base field is totally real. We
can generalize [47, Theorem 1.3] to the case of arbitrary levels.

Theorem 0.4. Suppose S = Σ∞ and set dF = [F : Q]. Let n be an arbitrary ideal of o and η a real
valued character of F×\A× such that fη is relatively prime to n, η̃(n) = 1 and ηv(−1) = 1 for all v ∈ Σ∞.
Let J be a compact subset of

∏
v∈Σ∞

iR>0 with smooth boundary. Then, for any ε > 0, we have∑
π∈Πcus(n),
νΣ∞ (π)∈tJ

wηn(π)

[K0(fπ) : K0(n)]

L(1/2, π)L(1/2, π ⊗ η)

N(fπ)LSπ (1, π,Ad)

=
4D

3/2
F

(2π)dF
{1 + δ(n = o)} vol(J) tdF (dF Ress=1 L(s, η) log t+ Cη(F, n))

+O(tdF−1(log t)3) +O(tdF (1+4θ)+ε), t→∞,

where wηπ(n) is a constant explicitly defined in Lemma 3.6,

δ(n = o) =

{
1 (n = o),

0 (n 6= o),

the values Ress=1 L(s, η) and CTs=1L(s, η) denote the residue and the constant term of L(s, η) at s = 1,
respectively,

Cη(F, n) = CTs=1L(s, η) + Ress=1 L(s, η)

{
dF
2

(CEuler + 2 log 2− log π) + log(DFN(n)1/2)

}
,

the value CEuler is the Euler constant, and θ ∈ R is a constant such that

|Lfin(1/2 + it, χ)| � q(χ| · |itA )1/4+θ, t ∈ R

holds uniformly for any character χ of F×\A×. Here q(χ| · |itA ) is the analytic conductor of χ| · |itA (cf.
§1.3).

Moreover, we obtain the following result on subconvexity bounds depending on θ < 0.

Theorem 0.5. Let n be an arbitrary ideal of o and let θ be as in Theorem 0.4. Let J ⊂ X0+
S be a closed

cone such that J − {0} ⊂
∏
v∈Σ∞

iR>0. Then, for any ε > 0, we have

|Lfin(1/2, π)| �ε (1 + ||νΣ∞(π)||)dF /2+sup(2dF θ,−1/2)+ε

for π ∈ Πcus(n)J = {π ∈ Πcus(n) | νΣ∞(π) ∈ J}. Here the implied constant may depend on n and J , and
||ν|| = (

∑
v∈Σ∞

|νv|2)1/2 is the Euclidean norm of ν = (νv)v∈Σ∞ .

We remark that Theorem 0.5 was proved by Tsuzuki [47, Corollary 1.4] when n is square-free.
When F = Q and n = Z, there are works [13], [12] and [19], by which we have |Lfin(1/2, π)| �ε

(1 + ||νΣ∞(π)||)1/3+ε uniformly for π ∈ Πcus(Z). Recently, Michel and Venkatesh [27] gave subconvexity
bounds for automorphic L-functions for GL(1) and GL(2) in a more general case. Their result asserts
existence of a subconvexity estimate

|Lfin(1/2, π)| � (1 + ||νΣ∞(π)||)dF /2−2dF δN(n)1/4−δ, π ∈ Πcus(n)

with implicit δ > 0. Since θ can be taken so that θ < 0 by [27, Theorem 1.1], Theorem 0.5 gives an
explicit subconvex exponent in the Laplacian eigenvalue aspect. In particular, if dF > 1/4|θ|, then we
have explicitly a subconvex exponent dF /2− 1/2 + ε not depending on θ.
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To prove results for even Hilbert Maass forms, we generalize Tsuzuki’s method explained in [47, §1.3]
to the case of non square-free levels. In §2, the number of Hecke characters is estimated, which is used
in Lemma 10.3. In §3, we recall the notion of regularized (H, η)-periods P ηreg(ϕ) for automorphic forms
ϕ, which was introduced in [47]. Let H be the diagonal maximal torus of GL(2) and let Z be the center
of GL(2). Then, for a real valued Hecke character η, the (H, η)-period integral for cusp forms ϕ on
PGL(2,A) is originaly defined by

P η(ϕ) =

∫
ZAHF \HA

ϕ(h) η(det(h))dh =

∫
ZAHF \HA

ϕ(h) η(det(h))|det(h)|s−1/2
A dh

∣∣∣∣
s=1/2

.

Since the regularization procedure compensates the divergence arising from vol(F×\A×) =∞, the value
P ηreg(ϕ) makes sense even if ϕ is not cuspidal.

Further, in §3.2 and §3.5, we recall explicit formulas of reguralized (H, η)-periods of cusp forms,
Eisenstein series, and of the residues and the constant terms of Eisenstein series at ν = 1, which were
proved in a previous paper [41]. Although some constant terms of Eisenstein series do not have the
regularized (H, η)-periods, computation of the spectral side works. Adelic Green functions Ψ(z)(n|s; g)
defined in §6 are described by using Green functions on GL(2, Fv). These Green functions on local groups
are revised in §4 and §5.

In §7, we regularize the automorphic Poincaré series

Ψ(0)(n|s; g) =
∑

γ∈HF \GL(2,F )

Ψ(0)(n|s; γg), g ∈ GL(2,A)(0.1)

and the multidimensional contour integral of the Poincaré series

Ψ̂(0)(n|α; g) =

(
1

2πi

)#S ∫
X0
S

Ψ(0)(n|s; g)α(s)dµS(s), g ∈ GL(2,A)

with respect to a measure µS for special test functions α on the complex manifold XS =
∏
vΣ∞

C ×∏
v∈Sfin

C/4πi(log qv)
−1Z, in which spectral parameters range. The series (0.1) would link Green functions

with (H,1)-period integrals if we could ignore the divergence arizing from vol(F×\A×) = ∞. For this
reason, we study a regularization of the series (0.1) in the same way as the regularization of (H,1)-period
integrals. First, by using λ ∈ C and an even holomorphic function β(z) with rapid decay as |Im(z)| → ∞,
we define Ψβ,λ(n|s; g) with a parameter (β, λ) as

Ψβ,λ(n|s; g) =
1

2πi

∫ σ+i∞

σ−i∞
{Ψ(z)(n|s; g) + Ψ(−z)(n|s; g)} β(z)

z + λ
dz,

provided with σ � 1. This function is an object to be studied by the relation Ψβ,0(n|s; g) = Ψ(0)(n|s; g)β(0).
Next, for an even holomorphic function α on XS with rapid decay as |Im(z)| → ∞, set

Ψ̂β,λ(n|α; g) =

(
1

2πi

)#S ∫
Re(s)=c

Ψβ,λ(n|s; g)α(s)dµS(s), g ∈ GL(2,A),

where c ∈ RS is sufficiently large, and

Ψ̂β,λ(n|α; g) =
∑

γ∈HF \GL(2,F )

Ψ̂β,λ(n|α; γg), g ∈ GL(2,A).

The absolute convergence of the integral and series as above is guaranteed for Re(λ) � 1. Instead of

substituting λ = 0, we continue the function λ 7→ Ψ̂β,λ(n|α; g) meromorphically to a right half plane

Re(λ) > −ε for some ε > 0. In this case, we can define the automorphic Green function Ψ̂reg(n|α; g)

by the relation Ψ̂β,λ(n|α; g) = Ψ̂reg(n|α; g)β(0), where CTλ=0Ψ̂β,λ(n|α; g) is the constant term of the

Laurent expansion of Ψ̂β,λ(n|α; g) at λ = 0. The main tool, what we call an explicit relative trace
6



formula for even Hilbert Maass forms, is obtained by computing P ηreg(Ψ̂reg(n|α)) in different two ways.
In §8, we describe explicitly one side of the formula in terms of (H, η)-periods of automorphic forms. We
call this the spectral side. To complete the continuous part Iηeis(n|α) and the residual part Dη(n|α) in
the spectral side, hard calculation is executed in Lemmas 7.3, 7.4, 8.3 and 8.4. A generalized Siegel’s
theorem for Hecke L-functions is needed in Lemma 7.5 in order to prove the moderate growth condition of
Ψ̂reg(n|α). The phenomenon requiring hard calculation as above did not occur in the case of square-free

levels ([47]). As the other aspect, P ηreg(Ψ̂reg(n|α)) is decomposed into a sum over the double coset space
HF \GL(2, F )/HF in §9. We call this the geometric side. In §10, following Tsuzuki’s method developed
in [47], we estimate terms in the relative trace formula and deduce Theorems 0.2, 0.3, 0.4 and 0.5.

0.3. Part 2 : Results for holomorphic Hilbert modular forms. Part 2 is based on a joint work
[43] with Masao Tsuzuki. In Part 2, we study an analogous asymptotic formula to Theorem 0.2 in the
case where modular forms are holomorphic. The formula is a generalization of [35] and of [6], and is given
by the method developed in [47] and in Part 1. For a family l = (lv)v∈Σ∞ ∈ (2N)Σ∞ and an ideal n of o,
let Πcus(l, n) be the set of all irreducible cuspidal automorphic representations π of PGL(2,A) such that
its local component πv for each v ∈ Σ∞ is isomorphic to the discrete series representation of PGL(2,R)
of weight lv and fπ divides n. We denote by Π∗cus(l, n) the set of all π ∈ Πcus(l, n) with fπ = n. We assume
that S is a finite subset of Σfin.

In [6], it was indispensable to assume that n is square-free and that ηv(−1) = −1 for all v ∈ Σ∞.
By a relative trace formula developed in Part 2, we work with a more general sign condition on η than
[6] allowing the level n to be a general ideal not necessarily square-free. It is known that, for any
π ∈ Πcus(l, n), the spectral parameter νS(π) of π at S is contained in X0

S =
∏
v∈S i[0, 2π(log qv)

−1] (cf.
[1]). In this setting, we have the following asymptotic formula.

Theorem 0.6. Assume that l = (lv)v∈Σ∞ ∈ (2N)Σ∞ satisfies l = infv∈Σ∞ lv > 6. Let η be a quadratic
character of F×\A× and S a finite set of finite places relatively prime to fη. Then, for n ∈ I+

S,η and

for any even holomorphic function α(s) on the complex manifold XS =
∏
v∈S(C/ 4πi

log qv
Z), we have the

asymptotic formula

AL∗(n;α) = {
∏
v∈Σ∞

2π (lv − 2)!

{(lv/2− 1)!}2
} × 1

N(n)

∑
π∈Π∗cus(l,n)

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
α(νS(π))(0.2)

= 4D
3/2
F ν(n)Lfin(1, η)

∫
X0
S

α(s)(⊗v∈Sdληvv (sv)) +O(N(n)−1+ε).

for any ε > 0 with the implied constant independent of n. Here, the error term can be replaced with
O(N(n)−l/2+1+ε) when n varies in the set of square-free ideals.

Sarnak and Iwaniec [15] announced results on certain densities of holomorphic cusp forms whose
central L-values are non-zero when F = Q. Trotabas [46] also gave estimates of a density of holomorphic
Hilbert cusp forms whose central L-values are non-zero. For a density of Hecke eigenvalues, there are
equidistribution results for Hecke eigenvalues of holomorphic Hilbert modular forms without weighting
central L-values by Li [22] and by Knightly and Li [20]. In our setting, Theorem 0.6 provides us some
nonvanishing results of central L-values and the density of spectral parameters simultaneously as follows
(cf. [35, Corollary B] and [47, Corollary 1.2]).

Corollary 0.7. Assume that l = (lv)v∈Σ∞ ∈ (2N)Σ∞ satisfies infv∈Σ∞ lv > 6. Let η be a quadratic
character of F×\A× with conductor fη. Let S be a finite set of finte places relatively prime to fη and
{Jv}v∈S a collection of subintervals of [−2, 2]. Given a sequence of ideals {nk}k∈N in I+

S,η such that

limk→∞N(nk) = +∞, there exists k0 satisfying the following property: For any k > k0, there exists

π ∈ Π∗cus(l, nk) such that Lfin(1/2, π)Lfin(1/2, π ⊗ η) 6= 0 and q
−νv(π)/2
v + q

νv(π)/2
v ∈ Jv for all v ∈ S.
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The estimate of the form

|Lfin(1/2, π)| �ε {N(n)
∏
v∈Σ∞

l2v}1/4+ε, π ∈ Πcus(l, n)

for any ε > 0 is called the convexity bound. When F = Q, the bound |Lfin(1/2, π)| �ε l
1/3+ε for

π ∈ Πcus(l,Z), which breaks the trivial bound in the weight aspect, has long been known (cf. [33], [19]).
Recently, Michel and Venkatesh [27] gave a subconvexity bound for Lfin(1/2, π) in a more general setting.
By applying our relative trace formula for a general totally real field F , we give an explicit subconvex
exponent in the weight aspect for the L-function Lfin(s, π)Lfin(s, π⊗ η) with η an quadratic character of
F×\A× which is odd at all archimedean places.

Theorem 0.8. Assume that l = (lv)v∈Σ∞ ∈ (2N)Σ∞ satisfies infv∈Σ∞ lv > 6. Let n be an arbitrary ideal
of o and η a real valued character of F×\A× such that ηv(−1) = −1 for all v ∈ Σ∞. Suppose that the
conductor fη of η is relatively prime to n. Then, for any ε > 0,

|Lfin(1/2, π)Lfin(1/2, π ⊗ η)| �ε N(fη)3/4+εN(n)1+ε {
∏
v∈Σ∞

lv}7/8+ε

with the implied constant independent of l, n, η and π ∈ Πcus(l, n).

The function L(s, π)L(s, π⊗η) is the L-function associated with the quadratic base change lift of π for
E/F , where E is the quadratic extension of F corresponding to η by class field theory. Thus Theorem
0.8 also gives a subconvexity estimate of automorphic L-functions for ResE/F GL(2).

In the frame work of [6], the authors of [6] used the Jacquet-Langlands correspondence and the com-
pactness of an anisotropic inner form of GL(2) which is easier to treat period integrals than GL(2). Instead
of the Jacquet-Langlands correspondence, we consider the regularized period integral and holomorphic
automorphic Green functions in the same way as Part 1. Holomorphic Shintani functions on GL(2,R)

explained in §11 are used to construct adelic Green functions Ψ
(z)
l (n|s; g) on GL(2,A). By the same

procedure as in Part 1, the automorphic Green function Ψ̂l
reg(n|α; g) of weight l = (lv)v∈Σ∞ is defined in

§12 when infv∈Σ∞ lv > 4 is satisfied. The holomorphic condition deduces the cuspidality of Ψ̂l
reg(n|α).

Thus it is much easier to treat than automorphic Green functions given in Part 1. The geometric side
is calculated in §14 and §15 under the condition infv∈Σ∞ lv > 6. Here, although Ψ̂l

reg(n|α) is cuspidal,
the regularization of the period P η is indispensable since in the geometric side the idempotent term
CTλ=0Jηid(l;β, λ;α) = 0 compensates vol(F×\A×) = ∞ successfully (see Lemma 15.1). The condition
infv∈Σ∞ lv > 6 is needed in the estimation of the hyperbolic term in §14.1. Finally, we obtain an explicit
relative trace formula in §16. The formula is computable not only in the case where n is not necessarily
square-free but also in the case where ηv(−1) = 1 for some v ∈ Σ∞; the case η = 1 is also contained.
From §17 to §19, we consider a special test function α called Iwaniec’s amplifier as an application to
subconvexity estimates. In §17, we give an explicit formula of Jηhyp(l, n|α) as computable as possible. An

explicit formula of Jηu(l, n|α) is given in §18.

0.4. Part 3 : Results for holomorphic Hilbert modular forms : derivatives of L-series. Part
3 is based on a joint work [44] with Masao Tsuzuki. In Part 3, we give a refined asymptotic formula
of the previous result and its derivative version for L(1/2, π)L′(1/2, π ⊗ η) for special test functions.
As an application, by using Royer’s method in [37], we prove existence of π ∈ Π∗cus(l, n) such that
L(1/2, π)L(1/2, π⊗ η) 6= 0 or L(1/2, π)L′(1/2, π⊗ η) 6= 0, and the Hecke field of π has a sufficiently large
degree over Q. As in the previous subsection, we consider a finite subset S of places such that S ⊂ Σfin.

Let n be an ideal of o, l = (lv)v∈Σ∞ ∈ (2N)Σ∞ and η a quadratic character of F×\A× as in the
beginning of the introduction. Let a ⊂ o be an ideal relatively prime to fηn such that S(a) ⊂ S. In Part
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3, under the condition n ∈ I−S,η instead of I+
S,η, we investigate the asymptotic behavior of the following

average

ADL∗−(n;α) =
Cl

N(n)

∑
π∈Π∗cus(l,n)

ε(1/2,π⊗η)=−1

L(1/2, π)L′(1/2, π ⊗ η)

LSπ (1, π,Ad)
α(νS(π))(0.3)

with

Cl =
∏
v∈Σ∞

2π (lv − 2)!

{(lv/2− 1)!}2
.(0.4)

For n ∈ N, let Xn(x) be the Tchebyshev polynomial Xn(x) defined by the relation

Xn(x) = sin((n+ 1)θ)/sin θ for x = 2 cos θ(0.5)

and set

αa(ν) =
∏
v∈S

Xnv (q−νv/2v + qνv/2v ), ν = (νv)v∈S ∈ XS(0.6)

if a =
∏
v∈S p

nv
v , where pv is the prime ideal of o. For such a, define a±η =

∏
v∈S(a)
η̃(pv)=±1

pnvv , d1(a) =∏
v∈S(a)(nv + 1) and δ�(a) =

∏
v∈S(a) δ(nv ∈ 2N), where δ(P) for a condition P is 1 (resp. 0) if P is true

(resp. false). We have the following theorem for ADL∗−(n;αa) and for AL∗(n;αa).

Theorem 0.9. Suppose l = infv∈Σ∞ lv > 6. Set c = [F : Q]−1(l/2− 1). For any ε > 0, we have

AL∗(n;αa) = 4D
3/2
F Lfin(1, η) ν(n) N(a)−1/2δ�(a−η )d1(a+

η )(0.7)

+Oε,l,η
(

N(a)c+2+εN(n)− inf(c,1)+ε
)
, n ∈ I+

S,η,

ADL∗−(n;αa)(0.8)

= 4D
3/2
F Lfin(1, η) ν(n) N(a)−1/2d1(a+

η )

{
δ�(a−η )

(
log(

√
N(n)N(a)−1N(fη)DF )

+
∑

v∈S(n)−(S1(n)∪S2(n))

log qv
q2
v − 1

+
∑

v∈S2(n)

log qv
q2
v − qv − 1

+
L′

L
(1, η) + C(l)

)
+

∑
v∈S(a−η )

δ�(a−η p
−1
v ) log(q

nv+ 1
2

v )

+Oε,l,η
(

N(a)−1/2d1(a+
η )δ�(a−η )X(n) + N(a)c+2+εN(n)− inf(1,c)+ε

)
, n ∈ I−S,η,

where

C(l) =
∑
v∈Σ∞

(lv/2−1∑
k=1

1

k
− 1

2
log π − 1

2
CEuler − δ(ηv(−1) = −1) log 2

)
,

X(n) =
∑

u∈S(n)

log qu
qu

+
∑

u∈S(n)

log qu
(qu − 1)2

and CEuler is the Euler constant. The constants implicit in the O-symbols in both formulas are independent
of n and a.

9



For N ∈ N, let Jnew
0 (N) be the new part of the Jacobian variety of the modular curve X0(N) of

level N . Serre [39] showed that the largest dimension of Q-simple factors of Jnew
0 (N) tends to infinity

as N → ∞ (cf. [39, Theorem 7]). This result was refined in several ways by Royer [37]. He obtained a
quantitative version of Serre’s theorem giving a lower bound of the largest dimension of Q-simple factors
A of Jnew

0 (N) with or without rank conditions for the Model-Weil group of A. By the correspondence
between the Q-simple factors A of Jnew

0 (N) and the normalized Hecke eigen newforms f of level N and
weight two, and by invoking the progress toward the Birch and Swinnerton-Dyer conjecture, the lower
bound for the largest dimA is obtained from a lower bound of the maximal value of the absolute degree of
the Hecke field Q(f) = Q({n1/2an(f) | n ∈ N}) with or without conditions on ords=1/2 Lfin(s, f). Thus,
one of Royer’s results in [37] can be stated in the language of modular forms as follows.

Theorem 0.10. [37, Theorems 1.2 and 1.3] Let p be a prime. There exist constants Cp > 0 and Np > 0
satisfying the following properties:

(1) For any N > Np relatively prime to p, there exists a normalized Hecke eigen newform f of level
N and weight two satisfying the conditions:
(i) Lfin(1/2, f) 6= 0,

(ii) [Q(f) : Q] > Cp
√

log logN .
(2) For any N > Np relatively prime to p, there exists a normalized Hecke eigen newform f1 of level

N and weight two satisfying the conditions:
(i) The sign of the functional equation of Lfin(s, f1) is −1.

(ii) L′fin(1/2, f1) 6= 0.
(iii) [Q(f1) : Q] > Cp

√
log logN .

We obtain an analogue of this theorem for higher parallel weight Hilbert cusp forms by using Theo-
rem 0.9. For a cuspidal representation π ∈ Π∗cus(l, n), we denote by Q(π) the field of rationality of π (for
definition, see §25.1).

Theorem 0.11. Assume that l = (lv)v∈Σ∞ ∈ (2N)Σ∞ satisfies lv = k for all v ∈ Σ∞ with k > 6, and η
a quadratic character of F×\A×. Let S be a finite subset of Σfin − S(fη) and J = {Jv}v∈S a family of
closed subintervals of (−2, 2). Given a prime ideal q prime to S ∪S(fη), there exist constants Cq > 0 and
Nq,S,l,η,J > 0 satisfying the following property: For any ideal n ∈ I+

S∪S(q),η with N(n) > Nq,S,l,η,J, there

exists π ∈ Π∗cus(l, n) such that

(i) L(1/2, π) 6= 0 and L(1/2, π ⊗ η) 6= 0,

(ii) [Q(π) : Q] > Cq

√
log log N(n) and

(iii) q
−νv(π)/2
v + q

νv(π)/2
v ∈ Jv for all v ∈ S.

We should note that this can be regarded as a refinement of Corollary 0.7.
As for central derivatives, Trotabas [46] estimated a density of holomorphic Hilbert cusp forms whose

central derivatives of L-functions are non-zero. As a corollary of Theorem 0.9, we have a conditional
result.

Theorem 0.12. Let l = (lv)v∈Σ∞ and η be the same as in Theorem 0.11. Suppose that

d
ds |s=1/2(L(s, π)L(s, π ⊗ η)) > 0(0.9)

is satisfied for all π ∈ Π∗cus(l, n) and any integral ideal n such that n is prime to fη and {
∏
v∈Σ∞

ηv(−1)} η̃(n)

= −1. Let S be a finite subset of Σfin−S(fη) and J = {Jv}v∈S a family of closed subintervals of (−2, 2).
Given a prime ideal q prime to S ∪ S(fη) and a constant M > 1, there exist constants Cq > 0 and
Nq,S,l,η,J,M > 0 satisfying the following property: For any ideal n ∈ I−S∪S(q),η with N(n) > Nq,S,l,η,J,M

and
∑
v∈S(n)

log qv
qv
6M , there exists π ∈ Π∗cus(l, n) such that

(i) ε(1/2, π ⊗ η) = −1,
10



(ii) L(1/2, π) 6= 0 and L′(1/2, π ⊗ η) 6= 0,

(iii) [Q(π) : Q] > Cq

√
log log N(n) and

(iv) q
−νv(π)/2
v + q

νv(π)/2
v ∈ Jv for all v ∈ S.

We should note that the assumption (0.9) is a consequence of the generalized Riemann hypothesis
for the L-function L(s, π)L(s, π ⊗ η). Furthermore, there are some works [9], [51], [52], [53] and [50] in
the view point of arithmetic geometry of modular varieties via the Gross-Zagier formula for Hilbert cusp
forms. From these works, (0.9) holds in the parallel weight two case. As is seen from this, we can expect
that (0.9) holds in the higher weight case (cf. [51, Corollary 0.3.6]).

Theorem 0.11 (Theorem 0.12) yields a Hilbert cusp form of arbitrarily large level with arbitrarily large
degree of the Hecke field, such that the central value of the L-function and the central value (derivative)
of its prescribed quadratic twist are nonzero simultaneously. Although we can expect a counterpart of
the parallel weight two case, our method does not work as it is for such low weight cases. In order to
treat these interesting cases, the technique of Green’s functions as in [47] and in Part 1 may be useful.

Part 3 strongly depends on results of Part 2. We use the automorphic Green function Ψ̂l
reg(n|α; g)

constructed in Part 2 to consider a derivative version of the relative trace formula obtained in Part 2. By
the integral ∂P ηβ,λ(Ψ̂l

reg(n|α)), which regularizes

∂P η(ϕ) =

∫
ZAHF \HA

ϕ(h)η(det(h)) log |det(h)|Adh =
d

ds

∫
ZAHF \HA

ϕ(h)η(det(h))|det(h)|s−1/2
A dh

∣∣∣∣
s=1/2

for cusp forms ϕ on PGL(2,A) and a fixed quadratic Hecke character η, we obtain a derivative relative

trace formula (see Theorem 21.9). A spectral expansion and a geometric expansion of ∂P ηβ,λ(Ψ̂l
reg(n|α))

are given in §20 and §21, respectively. Some lemmas on the N -transform defined in Part 1 are prepared
in §22. In §23, we recall the relative trace formula explicated in Part 2. Then, the first formula (0.7) on
AL∗(n;αa) is established for the special test functions αa determined by ideals a with S = S(a). The
average ADL∗−(n;αa) is investigated in §24. In computation in §24, all terms except for ADL∗−(n;αa)
in the spectral side are included in the error term with the aid of the asymptotic formula of AL∗(n;αa)
given in §23. In §24, the second formula (0.8) in Theorem 0.9 is proved. Royer’s method in [37] is

generalized to our case in §25. The hyperbolic term Wη
hyp(l, n|α) and the unipotent term W̃η

u(l, n|α) are

explicitly described in §26. In §27, Theorem 27.1 on a estimate Θ(Λ) of a sum over a Z-lattice Λ is
prepared. The estimate given there is used to control the hyperbolic term Jηhyp(l, n|α) and the derivative

one Wη
hyp(l, n|α).
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1. Preliminaries

We prepare notation, which is used from Part 1 to Part 3.
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1.1. We write N for the set of positive integers and put N0 = N ∪ {0}. For sets A and B, the set
Map(A,B) denotes the set of mappings from A to B. For f, g ∈ Map(A,R>0) and a given data P , let
us denote by f(x) �P g(x), x ∈ A an inequality f(x) 6 C g(x) for all x ∈ A with some constant C > 0
depending on P . We write f(x) � g(x), x ∈ A if both f(x)� g(x), x ∈ A and g(x)� f(x), x ∈ A hold.
For a given condition P , δ(P ) ∈ {0, 1} is defined by δ(P ) = 1 (resp. δ(P ) = 0) if P is true (resp. false).
For a set X and its subset A, the characteristic function of A is denoted by chA.

For any z ∈ C× and α ∈ C, we define log z and zα by the formula

log z = log r + iθ, zα = exp(α log z)

with z = reiθ (r > 0, θ ∈ (−π, π]). For a complex function f(z) in z ∈ C and for σ ∈ R, the contour

integral
∫ σ+i∞
σ−i∞ f(z)dz along the vertical line Re(z) = σ is sometimes denoted by

∫
Lσ
f(z)dz. If f is a

meromorphic function on a domain D ⊂ C, we denote by Resz=a f(z) and by CTz=af(z) the residue and
the constant term of f(z) in the Laurent expansion at a ∈ D, respectively. We set ΓR(s) = π−s/2Γ(s/2)
and ΓC(s) = 2(2π)−sΓ(s).

1.2. Let F be a totally real algebraic number field with its degree dF and o its integer ring. Let A and
Afin be the adele ring and the finite adele ring of F , respectively. The symbols Σ∞ and Σfin denote the
set of all infinite places and the set of all finite places of F , respectively. For a place v ∈ ΣF = Σ∞ ∪Σfin,
let | · |v denote the normalized valuation of the completion Fv of F at v. For each v ∈ Σfin, let $v

be a uniformizer of Fv. Then, pv = $vov is a maximal ideal of the integer ring ov of Fv and we have
|$v|v = q−1

v , where qv is the cardinality of the residue field ov/pv. For an ideal a of o, let S(a) denote
the set of all v ∈ Σfin such that v divides a. For any k ∈ N, we write Sk(a) for the set of all v ∈ S(a)
with ordv(a) = k, where ordv(a) is the order of a at v. Let N(a) denote the absolute norm of a.

Let G be the algebraic group GL(2) with unit element e = 12. For any F -algebraic subgroup M of G,
we set MF = M(F ), Mv = M(Fv) (for v ∈ ΣF ), MA = M(A) and Mfin = M(Afin), respectively. The
diagonal maximal split torus of G is denoted by H. Then, the Borel subgroup B = HN of G consists
of all upper triangular matrices, where N is the subgroup of G consisting of all unipotent matrices. The
center of G is denoted by Z. We put Kv = GL(2, ov) for v ∈ Σfin and

K0(pnv ) =
{[

a b
c d

]
∈ Kv | c ≡ 0 (mod pnv )

}
for any n ∈ N0. For an ideal a of o, we put K0(a) =

∏
v∈Σfin

K0(aov), which is an open compact

subgroup of Kfin =
∏
v∈Σfin

Kv. For each v ∈ Σ∞, let Kv be the image of O(2,R) by the isomorphism

GL(2,R) ∼= Gv. Note that K0
v is isomorphic to the rotation group SO(2,R). Set K∞ =

∏
v∈Σ∞

Kv and
K = K∞Kfin.

For θ, r ∈ R, set

kθ =
[

cos θ − sin θ
sin θ cos θ

]
, ar =

[
cosh r sinh r
sinh r cosh r

]
.

They are elements of GL(2,R) and we have SO(2,R) = {kθ| θ ∈ R }.

1.3. Let AQ be the adele ring of Q and ψQ =
∏
p ψp the additive character of Q\AQ with archimedean

component ψ∞(x) = exp(2πix) for x ∈ R. Then, ψF = ψ ◦ trF/Q =
∏
v∈ΣF

ψFv is a non-trivial additive

character of F\A. Let DF/Q be the global different of F/Q and set dv = ordvDF/Q for any v ∈ Σfin. Put

DF = N(DF/Q) =
∏
v∈Σfin

qdvv . Then, DF coincides with the absolute value of the discriminant of F/Q.

The completed Dedekind zeta function is denoted by ζF (s), i.e., ζF (s) =
∏
v∈Σ∞

ΓR(s)
∏
v∈Σfin

(1−q−sv )−1.

For v ∈ ΣF , let dxv be the self-dual Haar measure of Fv with respect to ψFv . We set d×xv =
(1 − q−1

v )−1dxv/|xv|v for v ∈ Σfin and d×xv = d×xv/|xv|v for v ∈ Σ∞, respectively. Then, d×xv is a
Haar measure of F×v and the product measure d×x =

∏
v∈ΣF

d×xv gives a Haar measure on A×. For
each v ∈ ΣF , we take a Haar measure dkv on Kv such that total volume is one, and take a Haar measure
dgv on Gv in the following way. Let dhv (resp. dnv) denotes the Haar measure on Hv (resp. Nv) induced
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via the isomorphism Hv
∼= F×v × F×v (resp. Nv ∼= Fv). Then, dgv = dhvdnvdkv gives a Haar measure on

Gv via the Iwasawa decomposition gv = hvnvkv ∈ HvNvKv. We remark that the volume vol(Kv, dgv)

equals q
−3dv/2
v for any v ∈ Σfin. We denote the Haar measure

∏
v∈ΣF

dkv of K by dk. We fix a Haar
measure dg on GA by taking the product of Haar measures dgv on Gv over all v ∈ ΣF .

Let | · |A =
∏
v∈ΣF

| · |v be the idele norm of A× and set A1 = {x ∈ A× | |x|A = 1}. For y ∈ R>0, y

denotes the idele such that the v-th component of y satisfies y
v

= y1/dF (resp. y
v

= 1) for v ∈ Σ∞ (resp.

v ∈ Σfin). We take a Haar measure du on A1 which satisfies d×x = dud×y via x = uy ∈ A× with u ∈ A1

and y > 0.

For v ∈ Σfin and a quasi-character χv of F×v , p
f(χv)
v denotes the conductor of χv. We define the Gauss

sum associated with χv by

G(χv) =

∫
o×v

χv(u$
−dv−f(χv)
v )ψFv (u$−dv−f(χv)

v )d×u.

If χv is unramified, G(χv) equals χv($
−dv
v )q

−dv/2
v . If χv is ramified, then |G(χv)| equals q

−f(χv)/2−dv/2
v (1−

q−1
v )−1. For any quasi-character χ =

∏
v∈ΣF

χv of F×\A×, the conductor of χ is denoted by fχ. The

Gauss sum G(χ) associated with χ is defined by the product of G(χv) over all v ∈ Σfin. We set χ̃(a) =∏
v∈Σfin

χv($
ordv(a)
v ) for any ideal a of o. For v ∈ ΣF , we denote the trivial character of F×v by 1v, and

the trivial character of A× by 1. Throughout this thesis, any quasi-character χ of F×\A× is assumed to
satisfy χ(y) = 1 for all y ∈ R>0. Such a quasi-character is a character. For any v ∈ Σ∞ (resp. v ∈ Σfin)

and any character χv of F×v , let b(χv) denote bv ∈ R (resp. bv ∈ [0, 2π(log qv)
−1)) such that the restriction

of χv to R>0 (resp. $Z
v ) is of the form | · |ibvv . For any character χ of F×\A×, the analytic conductor q(χ)

of χ is defined to be

q(χ) =
{ ∏
v∈Σ∞

(3 + |b(χv)|)
}

N(fχ).

1.4. Let η be a real valued character of F×\A× with conductor fη. Such η is quadratic or trivial. For
any v ∈ Σ∞, there exists εv ∈ {0, 1} such that ηv(x) = (x/|x|v)εv . We call εv the sign of η at v, and set
ε(η) =

∑
v∈Σ∞

εv. Let I(fη) be the group of fractional ideals relatively prime to fη. Then we define a

character η̃ : I(fη) → {±1} by setting η̃(pv ∩ o) = ηv($v) for any v ∈ Σfin − S(fη). We define the adele

xη ∈ A by xη,v = 0 for v ∈ Σ∞ and xη,v = $
−f(ηv)
v for v ∈ Σfin, respectively. It determines the idele x∗η

such that all its archimedean components are equal to one and the projection of x∗η to Afin coincides with
that of xη.

1.5. Let ϕ be a smooth function on GA. The right translation of ϕ by g ∈ GA is denoted by R(g)ϕ,
i.e., [R(g)ϕ](h) = ϕ(hg). For any compactly supported smooth function f on the product

∏
v∈S Gv

for a finite subset S ⊂ ΣF , the right translation of ϕ by f is defined by the convolution R(f)ϕ(x) =∫∏
v∈S Gv

ϕ(xgS) f(gS) dgS for x ∈ GA with respect to the product measure dgS = ⊗v∈Sdgv. The derived

action of the universal enveloping algebra of the complexified Lie algebra g∞ of G∞ on smooth functions
on GA is also denoted by R.

Let W and W be the element 1
2

[
1 −i
−i −1

]
of sl2(C) and its complex conjugate, respectively. Let Ω

denote the Casimir element of GL(2,R) defined by

Ω =
1

2
{
[

0 −i
i 0

]2
+ 2WW + 2WW} =

1

2
{
[

0 −i
i 0

]2
+ 2

[
0 −i
i 0

]
+ 4WW}.

Then, Ω corresponds to the differential operator (−2)× (−y2)(∂2/∂x2 + ∂2/∂y2) on the Poincaré upper
half plane. For any v ∈ Σ∞, the elements of Lie(Gv)C corresponding to Ω, W and W are denoted by Ωv,
Wv and W v, respectively.
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1.6. Fix a relatively compact subset ωB of B1
A = {

[
a b
0 d

]
| a, d ∈ A1, b ∈ A } such that B1

A = BF ωB .

Let S1 = ωB {
[
t 0

0 t−1

]
| t > 0, t2 > c }K with some c > 0 be a Siegel domain such that GA = ZAGF S1.

Define y : GA → R>0 by setting y
([
a b
0 d

]
k
)

= |a/d|A for any
[
a b
0 d

]
∈ BA and k ∈ K.

1.7. In this subsection, we give a result on weighted equidistributions. The following assertion is needed
to prove non-vanishing results of L-values in Part 1, Part 2 and Part 3. It is a generalization of [39,
Proposition 1].

Proposition 1.1. Let X be a locally compact Hausdorff space and µ a positive Radon measure on X.
Let {µλ}λ∈Λ be a directed sequence of positive Radon measures on X such that µλ converges weakly to µ
on Cc(X). Suppose that A is a µ-measurable set of X satisfying

(1) Its boundary ∂A is µ-null,
(2) There exists a compact subset K of X containing A such that its boundary ∂K is µ-null.

Then, we have
lim
−→
λ∈Λ

µλ(A) = µ(A).

Proof. The restriction of µλ and µ to K gives Radon measures µλ|K and µ|K on K, respectively. By [3,
Chap. IV, §5, n◦12, Proposition 22], it is sufficient to prove limλ µλ|K(K) = µ|K(K) for any relatively
compact subset K of X such that ∂K is µ-null. The proof is given in the following way, which was
suggested by Tsuzuki.

Let K◦ and K̄ be the interior and closure of K, respectively. By µ(K̄) − µ(K◦) = µ(K̄ − K◦) =
µ(∂K) = 0, we have µ(K◦) = µ(K) = µ(K̄). Let ε > 0 be a positive number. By inner regularity of µ
(and Urysohn’s lemma), there exists fε ∈ Cc(X) such that 0 6 fε 6 chK◦ and µ(K◦)− ε/2 < µ(fε). In a
similar way, by outer regularity of µ, there exists gε ∈ Cc(X) such that chK̄ 6 gε and µ(gε) < µ(K̄)+ ε/2.

For ε, fε and gε, there exists λε ∈ Λ such that we have |µλ(fε)−µ(fε)| < ε/2 and |µλ(gε)−µ(gε)| < ε/2
for any λ > λε. Then, we obtain

µ(K) = µ(K◦) < µ(fε) + ε/2 < µλ(fε) + ε 6 µλ(K) + ε

and
µλ(K) 6 µλ(gε) < µ(gε) + ε/2 < µ(K̄) + ε = µ(K) + ε

for any λ > λε. This completes the proof. �
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Part 1. Relative trace formulas for even Hilbert Maass forms

2. Estimates of number of characters

Before introducing a relative trace formula, we prepare Lemma 2.1, which is used to estimate a con-
tinuous spectrum of the relative trace formula in Lemma 10.3.

Let n be an ideal of o. For an ideal c of o, let Ξ0(c) be the set of all characters χ of F×\A× such that
fχ = c and χv(−1) = 1 for all v ∈ Σ∞. We write Ξ(n) for

⋃
c2|n Ξ0(c). Let U+

F be the set of all totally

positive units of o and set

logU+
F = {(log uv)v∈Σ∞ | (uv)v∈Σ∞ ∈ U+

F }.

Then, logU+
F is a lattice of Z-rank dF − 1 in V , where V = {(xv)v∈Σ∞ ∈ RdF |

∑
v∈Σ∞

xv = 0}. Set

L0 = {(bv)v∈Σ∞ ∈ V |
∑
v∈Σ∞

bvlv ∈ Z for all (lv)v∈Σ∞ ∈ logU+
F }.

Then, L0 is also a Z-lattice in V . Let χ be a character of F×\A×. Since χ(y) = 1 for any y ∈ R>0,

we have
∑
v∈Σ∞

b(χv) = 0. Thus, if we denote by b(χ) the element (b(χv))v∈Σ∞ of RdF , then b(χ) ∈ L0

holds. Therefore the mapping χ 7→ b(χ) is a surjection from Ξ(n) onto L0 and the kernel Ξker(n) of this
mapping is a finite abelian group.

Lemma 2.1. Let X(n) be the order of Ξker(n). Then, for any ε > 0, the estimate

X(n)� N(n)1/2+ε

holds with the implied constant independent of n.

Proof. For any ideal a of o, we set IF (a) =
∏
v∈Σ∞

R××
∏
v∈Σfin

(1+aov). Then, the ray class group CF (a)

modulo a is defined by CF (a) = F×\F×IF (a). For any fixed c satisfying c2|n, the group Ξ0(c) ∩ Ξker(n)
is equal to the set of all characters of F×\A× of finite order contained in Ξ0(c). Hence

#(Ξ0(c) ∩ Ξker(n)) 6 #(F×\A×/IF (c)) = hF#(CF (o)/CF (c)) 6 hFN(c) 6 hFN(n)1/2

holds, where hF is the class number of F . Noting
∑

c2|n 1 � N(n)ε for any ε > 0, we obtain the

assertion. �

3. Regularized periods of automorphic forms

In this section, we recall explicit formulas in [41] of the regularized periods of automorphic forms on
GA.

3.1. Zeta integrals of cusp forms. Let π be a K∞-spherical irreducible cuspidal automorphic repre-
sentation ofGA with trivial central character, where the representation space Vπ is realized in L2(ZAGF \GA).
For any quasi-character η of F×\A× and ϕ ∈ Vπ, we define the global zeta integral by

Z(s, η, ϕ) =

∫
F×\A×

ϕ ([ t 0
0 1 ]) η(t)|t|s−1/2

A d×t, s ∈ C.

The defining integral converges absolutely for any s ∈ C, and hence Z(s, η, ϕ) is an entire function in s.
We fix a family {πv}v∈ΣF consisting of irreducible admissible representations such that π ∼=

⊗
v∈ΣF

πv.

The conductor of π is denoted by fπ, which is the ideal of o defined by fπov = p
c(πv)
v for all v ∈ Σfin,

where p
c(πv)
v is the conductor of πv. Let n be an ideal of o which is divided by fπ.
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Let n be the maximal non-negative integer m such that Sm(nf−1
π ) 6= ∅. For ρ = (ρk)16k6n ∈ Λ0

π(n) =∏n
k=1 Map

(
Sk(nf−1

π ), {0, . . . , k}
)
, let ϕπ,ρ denote the cusp form in V

K∞K0(n)
π corresponding to⊗

v∈Σ∞

φ0,v ⊗
n⊗
k=1

⊗
v∈Sk(nf−1

π )

φρk(v),v ⊗
⊗

v∈Σfin−S(nf−1
π )

φ0,v

by the isomorphism Vπ ∼=
⊗

v∈ΣF
Vπv . Here, Vπv denotes the Whittaker model of πv with respect to

ψFv , φ0,v is the spherical vector in Vπv given in [41, §1.4] for v ∈ Σ∞, and the function φk,v is the
K0(nov)-invariant vector constructed in [41, §2 and §3] for v ∈ Σfin. Then, the finite set {ϕπ,ρ}ρ∈Λ0

π(n) is

an orthogonal basis of V
K∞K0(n)
π . Here Vπ ⊂ L2(ZAGF \GA) is equipped with the L2-inner product (cf.

[41, Proposition 17]).
We consider a character η of F×\A× satisfying η2 = 1,

v ∈ Σ∞ ⇒ ηv = 1v,
fη is relatively prime to n and η̃(n) = 1.

(3.1)

For such a character η and ϕ ∈ V K∞K0(n)
π , we define the modified global zeta integral by

Z∗(s, η, ϕ) = η(x∗η)Z
(
s, η, π(

[
1 xη
0 1

]
)ϕ
)
, s ∈ C.

Here xη (resp. x∗η) is the adele (resp. idele) determined by η (see §1.4).

3.2. Regularized periods of cusp forms. We recall a definition of regularized periods of automorphic
forms on GA defined in [47, §7]. Let B be the space of all holomorphic even functions β on C satisfying
that there exist A > 0 and B ∈ R such that

|β(σ + it)| � e−A(|t|+B)2

, σ ∈ [a, b], t ∈ R
holds for any interval [a, b] ⊂ R. We note that B as above is a proper subspace of B defined in [47, §6.1].
The growth condition of β is essentially used in Part 2.

For β ∈ B and λ ∈ C, we define a function β̂λ on R>0 by

β̂λ(t) =
1

2πi

∫
Lσ

β(z)

z + λ
tzdz, (σ > −Re(λ)),

where Lσ is as in the notation. The estimate |β̂λ(t)| � inf{tσ, t−Re(λ)}, t > 0 is given in [47, Lemma
7.1].

For β ∈ B, λ ∈ C, a character η of F×\A× satisfying (3.1) and a function ϕ : ZAGF \GA → C, we
consider

P ηβ,λ(ϕ) =

∫
F×\A×

{β̂λ(|t|A) + β̂λ(|t|−1
A )}ϕ

(
[ t 0
0 1 ]

[
1 xη
0 1

])
η(tx∗η)d×t.

Now we assume that for any β ∈ B, there exists a constant C ∈ R such that the integral P ηβ,λ(ϕ) converges

if Re(λ) > C and the function {z ∈ C | Re(z) > C} 3 λ 7→ P ηβ,λ(ϕ) is continued meromorphically

to a neighborhood of λ = 0. Then a constant P ηreg(ϕ) is called the regularized (H, η)-period of ϕ if

CTλ=0P
η
β,λ(ϕ) = P ηreg(ϕ)β(0) for all β ∈ B. Then the following was proved in [41].

Proposition 3.1. [41, Main Theorem A] For any ρ = (ρk)16k6n ∈ Λ0
π(n) and η satisfying (3.1), the

period P ηreg(ϕπ,ρ) can be defined and we have

P ηreg(ϕπ,ρ) = Z∗(1/2, η, ϕπ,ρ) = G(η){
n∏
k=1

∏
v∈Sk(nf−1

π )

Qπvρk(v),v(ηv, 1)}L(1/2, π ⊗ η),

where the constants Qπvρk(v),v(ηv, 1) are given as follows:
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• If c(πv) = 0 and (αv, α
−1
v ) is the Satake parameter of πv, then

Qπvk,v(ηv, 1) =


1 (k = 0),

ηv($v)−
αv + α−1

v

q
1/2
v + q

−1/2
v

(k = 1),

q−1
v ηv($v)

k−2(αvq
1/2
v ηv($v)− 1)(α−1

v q
1/2
v ηv($v)− 1) (k > 2).

• If c(πv) = 1, then πv is isomorphic to a special representation σ(χv| · |1/2v , χv| · |−1/2
v ) for some

unramified character χv of F×v and

Qπvk,v(ηv, 1) =

{
1 (k = 0),

ηv($v)
k−1(ηv($v)− q−1

v χv($v)
−1) (k > 1).

• If c(πv) > 2, then Qπvk,v(ηv, 1) = ηv($v)
k for any k ∈ N0.

3.3. Preliminaries for regularized periods of Eisenstein series. We fix a character χ =
∏
v∈ΣF

χv

of F×\A×. For ν ∈ C, we denote by I(χ| · |ν/2A ) the space of all smooth C-valued right K-finite functions
f on GA with the BA-equivariance

f
([
a b
0 d

]
g
)

= χ(a/d)|a/d|(ν+1)/2
A f(g)

for all
[
a b
0 d

]
∈ BA and g ∈ GA. If ν ∈ iR, then the space I(χ| · |ν/2A ) is unitarizable and a GA-invariant

hermitian inner product is given by

(f1|f2) =

∫
K

f1(k)f2(k)dk

for any f1, f2 ∈ I(χ| · |ν/2A ).

For ν ∈ C and f (ν) ∈ I(χ| · |ν/2A ), the family {f (ν)}ν∈C is called a flat section if the restriction of f (ν)

to K is independent of ν ∈ C. We define the Eisenstein series for f (ν) ∈ I(χ| · |ν/2A ) by

E(f (ν), g) =
∑

γ∈BF \GF

f (ν)(γg), g ∈ GA.

The defining series converges absolutely if Re(ν) > 1. If {f (ν)}ν∈C is a flat section, then E(f (ν), g) is
continued meromorphically to C as a function in ν. We remark that the function E(f (ν), g) is holomorphic
on iR. On the half plane Re(ν) > 0, E(f (ν), g) is holomorphic except for ν = 1, and ν = 1 is a pole of
E(f (ν), g) if and only if χ2 = 1.

Let n be an ideal of o. Throughout §3, we assume that a character χ of F×\A× is contained in Ξ(n).

3.4. Zeta integrals of Eisenstein series. We consider Eisenstein series for f ∈ I(χ| · |ν/2A ))K∞K0(n).
Let n be the maximal non-negative integer m such that Sm(nf−2

χ ) 6= ∅. For each v ∈ ΣF , the space

I(χv| · |ν/2v ) is defined in the same way as the global case. Set

Λχ(n) =

n∏
k=1

Map(Sk(nf−2
χ ), {0, . . . , k}).

For ρ = (ρk)16k6n ∈ Λχ(n), let f
(ν)
χ,ρ denote the vector in I(χ| · |ν/2A ) corresponding to⊗

v∈Σ∞

f
(ν)
0,χv
⊗

n⊗
k=1

⊗
v∈Sk(nf−2

χ )

f̃
(ν)
ρk(v),χv

⊗
⊗

v∈Σfin−S(nf−2
χ )

f̃
(ν)
0,χv
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by the isomorphism I(χ| · |ν/2A ) ∼=
⊗

v∈ΣF
I(χv| · |ν/2v ), where f

(ν)
0,χv

is the spherical vector in I(χv| · |ν/2v )

normalized so that f
(ν)
0,χv

(12) equals one for v ∈ Σ∞ and f̃
(ν)
k,χv

is the K0(nov)-invariant vector constructed

in [41, §7 and §8] for v ∈ Σfin. Then, for any ρ = (ρk)16k6n ∈ Λχ(n), the family {f (ν)
χ,ρ}ν∈C is a flat

section. Moreover, if ν ∈ iR, the finite set {f (ν)
χ,ρ}ρ∈Λχ(n) is an orthonormal basis of I(χ| · |ν/2A )K∞K0(n)

(cf. [41, Proposition 33]).

Let ρ ∈ Λχ(n) and set Eχ,ρ(ν, g) = E(f
(ν)
χ,ρ, g). The constant term of E(f

(ν)
χ,ρ, g) is defined by

E◦χ,ρ(ν, g) =

∫
F\A

Eχ,ρ (ν, [ 1 x
0 1 ] g) dx.

For k ∈ {1, . . . , n}, the sets Uk(ρ), Rk(ρ) and R0(ρ) are defined as follows:

Uk(ρ) =

n⋃
m=k

ρ−1
m (k)− S(fχ), Rk(ρ) =

n⋃
m=k

ρ−1
m (k) ∩ S(fχ),

R0(ρ) =

(
n⋃

m=0

ρ−1
m (0) ∩ S(fχ)

)⋃
(S(fχ)− S(nf−2

χ )).

Furthermore, for any k ∈ N0, set

Sk(ρ) =

{
R0(ρ) (k = 0),

Uk(ρ) ∪Rk(ρ) (k > 1),

R(ρ) =
⋃n
k=0Rk(ρ) and S(ρ) =

⋃n
k=0 Sk(ρ). Then, by [41, Proposition 34] we have

E◦χ,ρ(ν, g) = f (ν)
χ,ρ(g) +D

−1/2
F Aχ,ρ(ν)

L(ν, χ2)

L(1 + ν, χ2)
f

(−ν)
χ−1,ρ(g),

where

Aχ,ρ(ν) =N(fχ)−ν
n∏
k=0

∏
v∈Sk(ρ)

{
qdv/2v q−kνv

ε(1− ν, χ−2
v , ψFv )ε(1 + ν/2, χv, ψFv )

ε(1− ν/2, χ−1
v , ψFv )

L(1 + ν, χ2
v)

L(1− ν, χ−2
v )

}
.

We fix a character η of F×\A× satisfying (3.1). 3.1. For any v ∈ Σfin − S(fη) and k ∈ N0, let

Q
(ν)
k,χ(ηv, X) be the polynomial defined in [41, §9] as follows:

• For v ∈ Σfin − S(fχ), set

Q
(ν)
k,χv

(ηv, X)

:=



1 (k = 0),

ηv($v)X −
χv($v)q

−ν/2
v + χv($v)

−1q
ν/2
v

q
1/2
v + q

−1/2
v

(k = 1),

q−1
v ηv($v)

k−2Xk−2

×(χv($v)q
(1−ν)/2
v ηv($v)X − 1)(χv($v)

−1q
(1+ν)/2
v ηv($v)X − 1) (k > 2).

• For v ∈ S(fχ), set

Q
(ν)
k,χv

(ηv, X) := ηv($v)
kXk.

Then, we have the following.
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Proposition 3.2. [41, Proposition 35] We set E\χ,ρ(ν, g) = Eχ,ρ(ν, g) − E◦χ,ρ(ν, g). Then E\χ,ρ(ν,−) is
left BF -invariant and we have

Z∗(s, η, E\χ,ρ(ν,−)) =G(η)D
−ν/2
F N(fχ)1/2−νBηχ,ρ(s, ν)

L(s+ ν/2, χη)L(s− ν/2, χ−1η)

L(1 + ν, χ2)
,

where

Bηχ,ρ(s, ν) =D
s−1/2
F


n∏
k=0

∏
v∈Sk(ρ)

Q
(ν)
k,χv

(ηv, q
1/2−s
v )L(1 + ν, χ2

v)


×

∏
v∈U1(ρ)

(1 + q−1
v )q−ν/2v

n∏
k=2

∏
v∈Uk(ρ)

(
qv + 1

qv − 1

)1/2

q−kν/2v

×


n∏
k=0

∏
v∈Rk(ρ)

qdv/2−kν/2v (1− q−1
v )1/2G(χv)

 ∏
v∈Σfin−R(ρ)

χv($v)
dv .

3.5. Regularized periods of Eisenstein series. For any characters χ1 and χ2 of F×\A×, we put
δχ1,χ2

= δ(χ1 = χ2). The regularized period P ηreg(Eχ,ρ(ν,−)) was computed as follows in [41].

Proposition 3.3. [41, Main Theorem B] Assume ν ∈ iR. Then the integral P ηβ,λ(Eχ,ρ(ν,−)) converges

absolutely for any (β, λ) ∈ B ×C such that Re(λ) > 1. Moreover P ηreg(Eχ,ρ(ν,−)) can be defined, and we
have

P ηreg(Eχ,ρ(ν,−)) =G(η)D
−ν/2
F N(fχ)1/2−νBηχ,ρ(1/2, ν)

L((1 + ν)/2, χη)L((1− ν)/2, χ−1η)

L(1 + ν, χ2)
.

We define two functions eχ,ρ,−1 and eχ,ρ,0 on GA by the Laurent expansion

Eχ,ρ(ν, g) =
eχ,ρ,−1(g)

ν − 1
+ eχ,ρ,0(g) +O(ν − 1), (ν → 1).

We explain the regularized periods of eχ,ρ,−1 and that of eχ,ρ,0. Set RF = Ress=1 ζF (s) = vol(F×\A1).

Proposition 3.4. [41, Lemma 38 and Theorem 39] We have

eχ,ρ,−1(g) = δ
(
χ2 = 1, fχ = o, S(ρ) = ∅

) D−1/2
F RF
ζF (2)

χ(det g)

for any g ∈ GA. Moreover, for λ ∈ C such that Re(λ) > 0, we have

P ηβ,λ(eχ,ρ,−1) = δ (χ = η, fχ = o, S(ρ) = ∅)
2D
−1/2
F R2

F

ζF (2)

β(0)

λ

and P ηreg(eχ,ρ,−1) = 0.

For any character ξ of F×\A×, we define R(ξ), C0(ξ) and C1(ξ) by the Laurent expansion

L(s, ξ) =
R(ξ)

s− 1
+ C0(ξ) + C1(ξ)(s− 1) +O((s− 1)2), (s→ 1).

We note R(ξ) = δξ,1RF for any character ξ of F×\A×.

Proposition 3.5. [41, Theorem 40 and Corollary 41] Let η be a character of F×\A× satisfying (3.1).
The integral P ηβ,λ(eχ,ρ,0) converges absolutely for any (β, λ) ∈ B × C such that Re(λ) > 1. There exists
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an entire function f(λ) on C such that

P ηβ,λ(eχ,ρ,0) = δχ,ηRF f
(1)
χ,ρ(12)

{
1

λ− 1
+

1

λ+ 1

}
β(1)

+2δχ,ηRF
D
−1/2
F f

(1)
χ,ρ(12)

ζF (2)

{
RF

(
−ζ
′
F (2)

ζF (2)
Aχ,ρ(1) +A′χ,ρ(1)

)
+ C0(1)Aχ,ρ(1)

}
β(0)

λ

+f(λ)− G(η)D
−1/2
F RF δχ,η

{
−
B̃ηχ,ρ(1)

λ+ 1
+
B̃ηχ,ρ(−1)

λ− 1

}
β(1)

−
G(η)D

−1/2
F

ζF (2)
δχ,η

{
− (B̃ηχ,ρ)

′(0)R2
F

β(0)

λ
+ B̃ηχ,ρ(0)R2

F

β(0)

λ2

}
,

where B̃ηχ,ρ(z) = ε(−z, χ−1η)Bηχ,ρ(−z + 1/2, 1). Moreover we have

CTλ=0P
η
β,λ(eχ,ρ,0) =

G(η)D
−1/2
F N(fχ)−1/2

L(2, χ2)

{
− 1

2
δχ,ηB̃

η
χ,ρ(0)R2

Fβ
′′(0) + aηχ,ρ(0)β(0)

}
,

where

aηχ,ρ(0) = −1

2
δχ,η(B̃ηχ,ρ)

′′(0)R2
F − 2δχ,ηB̃

η
χ,ρ(0)RFC1(1) + B̃ηχ,ρ(0)C0(χη)2.

3.6. An orthonormal basis of V
K∞K0(n)
π . Let π be a cuspidal automorphic representation of GA such

that π ∈ Πcus(n). We put

Pη(π; K0(n)) =
∑

ϕ∈B(π;n)

Z∗(1/2,1, ϕ)Z∗(1/2, η, ϕ),

where B(π; n) is an orthonormal basis of V
K∞K0(n)
π . In this subsection, we examine Pη(π; K0(n)). Set

ϕnew
π = ϕπ,ρπ , where ρπ is a unique element of Λ0

π(fπ).

Lemma 3.6. The value Pη(π; K0(n)) is independent of the choice of B(π; n) and we have

Pη(π; K0(n)) = D
−1/2
F G(η)wηn(π)

L(1/2, π)L(1/2, π ⊗ η)

||ϕnew
π ||2

.

Here wηn(π) is an explicit non-negative constant defined as

wηn(π) =

n∏
k=1

∏
v∈Sk(nf−1

π )

r(πv, ηv, k) =
∏

v∈S(nf−1
π )

r(πv, ηv, ordv(nf
−1
π ))

where r(πv, ηv, k) is defined as follows:

• If c(πv) > 2, then r(πv, ηv, k) =

{
k + 1 (ηv($v) = 1),

2−1(1 + (−1)k) (ηv($v) = −1).

• If c(πv) = 1, then πv is isomorphic to σ(χv| · |1/2v , χv| · |−1/2
v ) for some unramified character χv

of F×v . Then

r(πv, ηv, k) =


1 +

1− χv($v)q
−1
v

1 + χv($v)q
−1
v

k (ηv($v) = 1),

2−1(1 + (−1)k) (ηv($v) = −1).
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• If c(πv) = 0 and (αv, α
−1
v ) is the Satake parameter of πv, then

r(πv, ηv, k) =


2

1 +Q(πv)
+

1−Q(πv)

1 +Q(πv)

qv + 1

qv − 1
(k − 1) (ηv($v) = 1),

qv + 1

qv − 1

1 + (−1)k

2
(ηv($v) = −1),

where Q(πv) = (αv + α−1
v )(q

1/2
v + q

−1/2
v )−1.

Moreover, G(η)−1Pη(π; K0(n)) is non-negative.

Proof. The first assertion is obvious. Thus we may take {||ϕπ,ρ||−1ϕπ,ρ}ρ∈Λ0
π(n) as B(π; n). By virtue of

Proposition 3.1, we have

Pη(π; K0(n)) =
∑

ρ∈Λ0
π(n)

1

||ϕπ,ρ||2
Z∗(1/2,1, ϕ)Z∗(1/2, η, ϕ)

=
∑

ρ∈Λ0
π(n)

n∏
k=1

∏
v∈Sk(nf−1

π )

{
Qπvρk(v),v(1v, 1)Qπvρk(v),v(ηv, 1)

τπv (ρk(v), ρk(v))

}
G(1)G(η)L(1/2, π)L(1/2, π ⊗ η)

||ϕnew
π ||2

.

Then, we obtain the second assertion by setting

wηn(π) =
∑

ρ∈Λ0
π(n)

n∏
k=1

∏
v∈Sk(nf−1

π )

{
Qπvρk(v),v(1v, 1)Qπvρk(v),v(ηv, 1)

τπv (ρk(v), ρk(v))

}
.

Here τπv (j, j) = ||φj,v||2v for j ∈ N, and || · ||v is the norm on Vπv defined by the Gv-invariant inner
product normalized so that ||φ0,v||v = 1. We remark that an explicit formula of τπv (j, j) was given in
[41, Corollaries 12, 16 and Lemma 3] (see (20.6)). By definition and a direct computation, we have

wηn(π) =

n∏
k=1

{ ∑
(jv)v∈{0,...,k}

Sk(nf
−1
π )

∏
v∈Sk(nf−1

π )

rv,jv

}
=

n∏
k=1

∏
v∈Sk(nf−1

π )

k∑
j=0

rv,j

and
∑k
j=0 rv,j = r(πv, ηv, k), where rv,j = Qπvj,v(1v, 1)Qπvj,v(ηv, 1)τπv (j, j)−1.

Then, one can check wηn(π) ∈ R>0 easily by noting |Q(πv)| < 1 when c(πv) = 0. The estimate
L(1/2, π)L(1/2, π ⊗ η) > 0 by [10] gives G(η)−1Pη(π; K0(n)) > 0. �

Since η2 = 1, we have η̃(n) = ±1. We consider only the case of η̃(n) = 1 because of the following
reason.

Lemma 3.7. Let π be a K∞-spherical irreducible cuspidal automorphic representation of GA with trivial
central character. Let η be a character of F×\A× such that η2 = 1 and fη is relatively prime to fπ.
Suppose that ηv(−1) = 1 for all v ∈ Σ∞. Then, L(1/2, π)L(1/2, π ⊗ η) = 0 unless η̃(fπ) = 1.

Proof. By the argument in the proof of [47, Lemma 2.3], it is enough to show ε(1/2, πv, ψFv )ε(1/2, πv ⊗
ηv, ψFv ) = ηv($

c(πv)
v ) for any v ∈

⋃
k>2 Sk(fπ). It follows immediately from fundamental properties of

ε-factors (cf. [38, 1.1]). We note that ηv is unramified if v ∈ S(fπ). �

3.7. Adjoint L-functions. Let π be a cuspidal automorphic representation of GA contained in Πcus(n).
To examine an explicit description of ||ϕnew

π ||2 in terms of the adjoint L-function of π, we compute the
Rankin-Selberg convolution of ϕnew

π and the K-spherical Eisenstein series

E1,ρ0
(ν, g) =

∑
γ∈BF \GF

y(γg)(ν+1)/2, g ∈ GA, Re(ν) > 1,
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where ρ0 denotes a unique element of Λ1(o). For any v ∈ ΣF , Zv(s) denotes the local Rankin-Selberg
integral ∫

Kv

∫
F×v

φ0,v ([ t 0
0 1 ] kv)φ0,v ([ t 0

0 1 ] kv)|tv|s−1
v d×tvdkv.

Lemma 3.8. Set Sπ = {v ∈ Σfin | ordv(fπ) > 2}. We have∫
ZAGF \GA

ϕnew
π (g)ϕnew

π (g)E1,ρ0
(2s− 1, g)dg

=[Kfin : K0(fπ)]−1N(fπ)sD
s−3/2
F ζF (2s)−1ζF (s)L(s, π,Ad)

∏
v∈Sπ

q
dv(3/2−s)
v q

c(πv)(1−s)
v Zv(s)

L(s, πv,Ad)

1 + q−1
v

1 + q−sv

for Re(s)� 1. Moreover, we have ||ϕnew
π ||2 = 2N(fπ)[Kfin : K0(fπ)]−1LSπ (1, π,Ad).

Proof. If v ∈ ΣF − Sπ, then Zv(s) is computed in [47, Lemma 2.14]. Hence, it suffices to examine Zv(s)

when v ∈ Sπ. By [Kv : K0(p
c(πv)
v )] = q

c(πv)
v (1 + q−1

v ), we obtain the first assertion.

We note Zv(1) = q
−dv/2
v for v ∈ Sπ. Then we obtain the second assertion by taking the residue at

s = 1 since Ress=1E1,ρ0(s, g) = D
−1/2
F RF ζF (2)−1 holds by Proposition 3.4. �

4. Green’s functions on GL(2,R)

In this section, we review the definition of Green functions on GL(2,R), which was introduced in [47,
§4]. For s, z ∈ C such that Re(s) > 2|Re(z)|, set

Ψ(z)(s; g)(4.1)

=|det g|(s+1)/2 −1

8
√
π

Γ((s+ 2z + 1)/4)Γ((s− 2z + 1)/4)

Γ(s/2 + 1)
(a2 + b2)−(s−2z+1)/4(c2 + d2)−(s+2z+1)/4

× 2F1

(
s+ 2z + 1

4
,
s− 2z + 1

4
;
s

2
+ 1;

(det g)2

(a2 + b2)(c2 + d2)

)
for any g = [ a bc d ] ∈ GL(2,R). We call this the Green function on GL(2,R).

Lemma 4.1. [47, §4] Set T = {[ t1 0
0 t2

] | t1, t2 ∈ R×}.
(1) For any [ t1 0

0 t2
] ∈ T and k ∈ O(2,R), we have

Ψ(z)(s; [ t1 0
0 t2

]gk) = |t1/t2|zΨ(z)(s; g), g ∈ GL(2,R).

(2) For any ar = [ cosh r sinh r
sinh r cosh r ] with r ∈ R, we have

Ψ(z)(s; ar) =
−1

8
√
π

Γ((s+ 2z + 1)/4)Γ((s− 2z + 1)/4)

Γ(s/2 + 1)
(cosh 2r)−(s+1)/2

× 2F1

(
s+ 2z + 1

4
,
s− 2z + 1

4
;
s

2
+ 1;

1

cosh2 2r

)
.

(3) The function Ψ(z)(s) is smooth on GL(2,R)−T O(2,R) and a Casimir eigenfunction with eigen-
value (s2 − 1)/2, i.e.,

[R(Ω)Ψ(z)(s)](ar) =
s2 − 1

2
Ψ(z)(s; ar), r ∈ R− {0}.

(4) We have

lim
r→+0

d

dr
Ψ(z)(s; ar)− lim

r→−0

d

dr
Ψ(z)(s; ar) = 1.

In particular, Ψ(z)(s) is continuous on GL(2,R) but not smooth on T O(2,R).
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Remark 4.2. Tsuzuki considered the differential equation in (3) under the conditions (1) and (4). He
solved it and gave an explicit formula (2), which suffices to obtain Lemma 4.1 by using the decomposition
GL(2,R) = T{ar | r ∈ R}SO(2,R) and the equivariance (1).

Proposition 4.3. [47, §4] Assume that s ∈ C and z ∈ C satisfy Re(s) > |2 Re(z)|+1. Let f : GL(2,R)→
C be a smooth function such that f

([
t1 0
0 t2

]
gk
)

= |t1/t2|−zv f(g) for all
[
t1 0
0 t2

]
∈ T , k ∈ O(2,R) and

g ∈ GL(2,R). Suppose
2∑

m=0

∣∣∣∣ dmdrm f(ar)

∣∣∣∣� (cosh 2r)|Re(z)|, r ∈ R.

Then the equality ∫
T\GL(2,R)

Ψ(z)(s, g)[R(Ω− (s2 − 1)/2)f ](g)dg = f(12)

holds with the integral being convergent absolutely.

5. Green’s functions on GL(2) over non-archimedean local fields

This section is a review of results in [47, §5]. We fix a place v ∈ Σfin. For z ∈ C, there exists a unique

function Φ
(z)
0,v : Gv → C such that

Φ
(z)
0,v(
[
t1 0
0 t2

]
[ 1 x
0 1 ] k) = |t1/t2|zv δ(x ∈ ov),

[
t1 0
0 t2

]
∈ Hv, [ 1 x

0 1 ] ∈ Nv, k ∈ Kv.(5.1)

Given z ∈ C and s ∈ C/4πi(log qv)
−1Z, we consider the following inhomogeneous equation

R
(
Tv − (q(1−s)/2

v + q(1+s)/2
v ) 1Kv

)
Ψ = Φ

(z)
0,v(5.2)

where Ψ : Gv → C satisfies the (Hv,Kv)-equivariance

Ψ
([
t1 0
0 t2

]
gk
)

= |t1/t2|zv Ψ(g),
[
t1 0
0 t2

]
∈ Hv, k ∈ Kv.(5.3)

Here Tv and 1Kv
are elements of the spherical Hecke algebra H(Gv,Kv) defined by

Tv =
1

vol(Kv; dg)
ch

Kv

[
$v 0
0 1

]
Kv
, 1Kv

=
1

vol(Kv; dg)
chKv

.

The function Tv is called the v-th Hecke operator.

Lemma 5.1. [47, Lemma 5.2] Suppose Re(s) > |2 Re(z) − 1|. Then, there exists a unique bounded

function Ψ
(z)
v (s;−) : Gv → C satisfying (5.2) and (5.3), whose values on Nv are given by

Ψ(z)
v (s; [ 1 x

0 1 ]) = −q−(s+1)/2
v (1− q−(s−2z+1)/2

v )−1(1− q−(s+2z+1)/2
v )−1 sup(1, |x|v)−(s−2z+1)/2, x ∈ Fv.

(5.4)

Proof. We note the decomposition Gv =
∐
m>0HvnmKv with nm =

[
1 $−mv
0 1

]
. Hence, the condition (5.3)

implies that a function Ψ satisfying (5.2) and (5.3) is determined by all values a(m) = Ψ(nm), m > 0.
By (5.2), we have a relation on a(m − 1), a(m) and a(m + 1). By solving the recurrence equation and
noting the boundedness of {a(m)}m>0, we determine {a(m)}m>0 uniquely. We can refer to [47, Lemmas
5.1 and 5.2] for details. �

The following lemma is used in the proof of Propositions 6.1 and 12.2.

Lemma 5.2. [47, Lemma 5.4] Let f : Gv → C be a smooth function such that f
([
t1 0
0 t2

]
gk
)

=

|t1/t2|−zv f(g) for any t1, t2 ∈ F×v and for any k ∈ Kv. Then, the equality∫
Hv\Gv

Ψ(z)
v (s; g) [R(Tv − (q(1+s)/2

v + q(1−s)/2
v ) 1Kv

)f ](g) dg = vol(Hv\HvKv) f(12)(5.5)

holds as long as the integral on the left-hand side converges absolutely.
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6. Even non-holomorphic adelic Green functions

We define the adelic Green function on GA associated with an arbitrary ideal n of o. This was
introduced in [47] in the case where n is square-free.

Assume that s ∈ C and z ∈ C satisfy Re(s) > 2|Re(z)|. For each v ∈ Σ∞, we denote by Ψ
(z)
v (s,−) the

Green function on Gv ∼= GL(2,R) defined in §4. For each v ∈ S(n), we set

Φ
(z)
n,v

([
t1 0
0 t2

]
[ 1 x
0 1 ] k

)
= |t1/t2|zvδ(x ∈ ov)δ(k ∈ K0(nov))

for any t1, t2 ∈ F×v , x ∈ Fv and k ∈ Kv and put Φ
(z)
0,v = Φ

(z)
n,v for v ∈ Σfin − S(n).

Fix a finite subset S of ΣF such that Σ∞ ⊂ S and set Sfin = S ∩ Σfin. Set XS =
∏
v∈Σ∞

C ×∏
v∈Sfin

(C/4πi(log qv)
−1Z) and q(s) = infv∈S(Re(sv) + 1)/4 for any s ∈ XS . For any s ∈ XS and z ∈ C

such that q(s) > |Re(z)|+ 1, the adelic Green function is defined by

Ψ(z)(n|s; g) =
∏
v∈Σ∞

Ψ(z)
v (sv; gv)

∏
v∈Sfin

Ψ(z)
v (sv; gv)

∏
v∈S(n)

Φ
(z)
n,v(gv)

∏
v/∈S∪S(n)

Φ
(z)
0,v(gv)

for any g = (gv)v∈ΣF ∈ GA. Note that the function Ψ(z)(n|s) on GA is right K∞K0(n)-invariant and
continuous on GA. Moreover, we have Ψ(z)

(
n|s;

[
t1 0
0 t2

]
g
)

= |t1/t2|zAΨ(z)(n|s; g) for all
[
t1 0
0 t2

]
∈ HA and

g ∈ GA.
To state a main property of adelic Green functions, we consider the integral

ϕH,(z)(g) =

∫
ZAHF \HA

ϕ(hg)χz(h)dh

for any ϕ ∈ C∞c (ZAGF \GA), where χz : HF \HA → C× is the quasi-character defined by

χz(
[
t1 0
0 t2

]
) = |t1/t2|zA

for any t1, t2 ∈ A×. The integral ϕH,(z)(g) converges absolutely and ϕH,(z)(hg) = χz(h)−1ϕH,(z)(g) holds
for any h ∈ HA (cf. [47, §6.2]).

Let Z(g∞) be the center of the universal enveloping algebra of the complexification of g∞. For s ∈ XS ,
the element ΩS(s) of the algebra Z(g∞)⊗ {

⊗
v∈Sfin

H(Gv,Kv)} is defined as

ΩS(s) =
⊗
v∈Σ∞

(
Ωv −

s2
v − 1

2

) ⊗
v∈Sfin

(
Tv − (q(1−sv)/2

v + q(1+sv)/2
v )1Kv

)
.

The following proposition is proved in the same way as [47, Lemma 6.3].

Proposition 6.1. Suppose q(s) > 2|Re(z)|+1. Then, for any ϕ ∈ C∞c (ZAGF \GA)K∞K0(n), the function
g 7→ Ψ(z)(n|s; g)ϕH,(z)(g) is integrable on HA\GA and we have∫

HA\GA

Ψ(z)(n|s, g)[R(ΩS(s))ϕH,(z)](g)dg = vol(Hfin\HfinK0(n))ϕH,(z)(12).

7. Spectral expansions of renormalized Green functions

The set XS =
∏
v∈Σ∞

C×
∏
v∈Sfin

(C/4πi(log qv)
−1Z) is considered as a complex manifold with respect

to a usual complex structure. Let AS be the space of holomorphic functions α(s) on XS such that for
any v ∈ S and s′ ∈ XS−{v}, the function sv 7→ α(s′, sv) is contained in B.

For c ∈ RS , we put LS(c) = {s ∈ XS | Re(s) = c}. A multidimensional contour integral of a
holomorphic function f(s) on XS along LS(c) is defined inductively as∫

LS(c)

f(s)dµS(s) =

∫
Lv(cv)

{∫
LS−{v}(c′)

f(s′, sv)dµS−{v}(s
′)

}
dµv(sv)

24



for c = (c′, cv) ∈ RS , where

dµv(s) =

sds (v ∈ Σ∞),
1

2
(log qv)(q

(1+s)/2
v − q(1−s)/2

v )ds (v ∈ Σfin)

and L(cv) stands for cv + iR and cv + C/4πi(log qv)
−1Z for v ∈ Σ∞ and v ∈ Σfin, respectively. Then, for

c ∈ RS and z ∈ C such that q(c) > |Re(z)|+ 1, the integral

Ψ̂(z)(n|α; g) =

(
1

2πi

)#S ∫
LS(c)

Ψ(z)(n|s; g)α(s)dµS(s)

is absolutely convergent and is independent of the choice of c, and the function z 7→ Ψ̂(z)(n|α; g) is entire.
Furthermore, for β ∈ B, λ ∈ C and g ∈ GA, we consider the integral

Ψ̂β,λ(n|α; g) =
1

2πi

∫
Lσ

β(z)

z + λ
{Ψ̂(z)(n|α; g) + Ψ̂(−z)(n|α; g)}dz

for σ ∈ R such that − inf(q(s)−1,Re(λ)) < σ < q(s)−1. The integral of the right-hand side is absolutely
convergent and is independent of the choice of σ. Moreover, for α ∈ AS , β ∈ B and λ ∈ C with Re(λ) > 0,

the Poincaré series of Ψ̂β,λ(n|α; g) is defined to be

Ψ̂β,λ(n|α; g) =
∑

γ∈HF \GF

Ψ̂β,λ(n|α; γg)

for g ∈ GA. In the same way as [47, Proposition 9.1], we obtain

(1) The series Ψ̂β,λ(n|α; g) is absolutely convergent locally uniformly in {Re(λ) > 0}×GA. Moreover,

the function λ 7→ Ψ̂β,λ(n|α; g) on Re(λ) > 0 is holomorphic and the function g 7→ Ψ̂β,λ(n|α; g)
on GA is continuous, left GF -invariant and right K∞K0(n)-invariant.

(2) For Re(λ) > 0, we have Ψ̂β,λ(n|α) ∈ Lm(ZAGF \GA) for any m > 0 such that m(1−Re(λ)) < 1.

Let us compute the spectral expansion of Ψ̂β,λ(n|α) explicitly. Recall spectral parameters at S of
automorphic forms (cf. [47, 9.1.3]). For a given automorphic form ϕ on GA, if there exists νϕ,S =
(νϕ,v)v∈S ∈ XS such that

R(Ωv)ϕ =
ν2
ϕ,v − 1

2
ϕ

and

R(Tv)ϕ = (q(1−νϕ,v)/2
v + q(1+νϕ,v)/2

v )ϕ

hold for all v ∈ Σ∞ and all v ∈ Sfin, respectively, then we call νϕ,S the spectral parameter at S of ϕ. Set

C(n, S) = (−1)#Svol(Hfin\HfinK0(n)) = (−1)#SD
−1/2
F [Kfin : K0(n)]−1.

By using Proposition 6.1 and the argument similar to [47, Lemma 9.4], we have the following.

Lemma 7.1. Assume Re(λ) > 1. Then, for any automorphic form ϕ on GA with spectral parameter
νϕ,S, we have

〈Ψ̂β,λ(n|α)|ϕ〉L2 = C(n, S)α(νϕ,S)P 1
β,λ(ϕ),

where 〈·|·〉L2 is the L2-inner product on L2(ZAGF \GA).

For any character χ of F×\A× and α ∈ AS , we define the function α̃χ on C by

α̃χ(ν) = α((ν + 2ib(χv))v∈S)

and write α̃(ν) for α̃1(ν).
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Fix an orthonormal basis Bcus(n) of
∑
π∈Πcus(n) V

K∞K0(n)
π and let Bres(n) be the orthonormal system

consisting of all functions ϕχ = vol(ZAGF \GA)−1/2 χ ◦ det on GA for any χ ∈ Ξ0(o) such that χ2 = 1.
We write Λ(n) for Λ1(n). Lemma 7.1 and the same method as [47, Lemma 9.6] give the following.

Lemma 7.2. Assume Re(λ) > 1. Then we have the expression

Ψ̂β,λ(n|α; g) =C(n, S)

{ ∑
ϕ∈Bcus(n)

α(νϕ,S)P 1
β,λ(ϕ)ϕ(g) +

∑
ϕ∈Bres(n)

α(νϕ,S)P 1
β,λ(ϕ)ϕ(g)

+
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)P 1

β,λ(Eχ,ρ(ν,−))Eχ,ρ(ν, g)dν

}
.

The series and integrals in the right-hand side converge absolutely and locally uniformly on ZAGF \GA.

Lemma 7.3. For any g ∈ GA, the function λ 7→ Ψ̂β,λ(n|α; g) on Re(λ) > 1 is continued to a meromorphic
function on Re(λ) > −1/2.

Proof. Let Ψcus(λ) = Ψcus(λ, α, g), Ψres(λ) = Ψres(λ, α, g) and Ψct(λ) = Ψct(λ, α, g) be the cuspidal part,

residual part and Eisenstein part divided by C(n, S) in the spectral expansion of Ψ̂β,λ(n|α; g) given in
Lemma 7.2, respectively.

First we examine Ψres(λ). For Re(λ) > 0, by applying Proposition 3.4, the function Ψres(λ) is written
as

Ψres(λ) =
∑

χ∈Ξ0(o),χ2=1

α(νϕχ,S)P 1
β,λ(ϕχ)ϕχ(g) = 2α̃(1)

RF
vol(ZAGF \GA)

β(0)

λ

and has a meromorphic continuation to C. From this, CTλ=0Ψres(λ) = 0 holds.
Next we examine Ψcus(λ). By the same computation as in the proof of [47, Lemma 9.8], the series

Ψcus(λ) converges absolutely and the estimate

|Ψcus(λ, α, g)| � y(g)−m, g ∈ S1

holds. Moreover, Ψcus(λ) is analytically continued to an entire function and we have

CTλ=0Ψcus(λ) =
∑

ϕ∈Bcus(n)

α(νϕ,S)P 1
reg(ϕ)ϕ(g).

Therefore, it is enough to examine Ψct(λ). Assume Re(λ) > 1 and ν ∈ iR. By the proof of [41,
Theorem 37], the integral P 1

λ,β(Eχ−1,ρ(−ν,−)) can be expressed as

P 1
λ,β(Eχ−1,ρ(−ν,−)) =Pχ−1(1, λ,−ν) +D

−1/2
F Aχ−1,ρ(−ν)

L(−ν, χ−2)

L(1− ν, χ−2)
Pχ(1, λ, ν)

+Q+
χ−1,ρ(1, λ,−ν) +Q−χ−1,ρ(1, λ,−ν),

where

Pχ±1(η, λ,±ν) = f
(±ν)
χ±1,ρ(12)δχ,ηRF

{
β((∓ν − 1)/2)

λ− (±ν + 1)/2
+

β((±ν + 1)/2)

λ+ (±ν + 1)/2

}
and

Q±χ−1,ρ(η, λ,−ν) =
1

2πi

∫
L±σ

Z∗(±z + 1/2, η, E\χ−1,ρ(−ν,−))
β(z)

λ+ z
dz.

We remark Eχ,ρ(ν,−) = Eχ−1,ρ(−ν,−). Furthermore, by the residue theorem, we have

P 1
λ,β(Eχ−1,ρ(−ν,−))

=Pχ−1(1, λ,−ν) +D
−1/2
F Aχ−1,ρ(−ν)

ζF (−ν)

ζF (1− ν)
Pχ(1, λ, ν) +Q0

χ−1,ρ(1, λ,−ν)
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−
{
β((−ν + 1)/2)

λ+ (−ν + 1)/2
Resz=(−ν+1)/2 +

β((ν + 1)/2)

λ+ (ν + 1)/2
Resz=(ν+1)/2

+
β((−ν − 1)/2)

λ+ (−ν − 1)/2
Resz=(−ν−1)/2 +

β((ν − 1)/2)

λ+ (ν − 1)/2
Resz=(ν−1)/2

}
f1χ−1,ρ(−z,−ν),

where we put

fηχ,ρ(z, ν) = Z∗(z + 1/2, η, E\χ,ρ(ν,−))

and

Q0
χ,ρ(η, λ, ν) =

1

2πi

∫
Lσ

{fηχ,ρ(z, ν) + fηχ,ρ(−z, ν)} β(z)

λ+ z
dz

for Re(λ) > −σ. Thus we express Ψct(λ) as the sum of the following four terms:

Φ1(λ) =
1

8πi

∑
ρ∈Λ(n)

f
(−ν)
1,ρ (12)

∫
iR
α̃(ν)β((ν − 1)/2)

{
1

λ− (−ν + 1)/2
+

1

λ+ (−ν + 1)/2

}
E1,ρ(ν, g)dν,

Φ2(λ) =
1

8πi

∑
ρ∈Λ(n)

f
(ν)
1,ρ (12)

∫
iR
α̃(ν)D

−1/2
F A1,ρ(−ν)

ζF (−ν)

ζF (1− ν)
β((ν + 1)/2)

×
{

1

λ− (ν + 1)/2
+

1

λ+ (ν + 1)/2

}
E1,ρ(ν, g)dν,

Φ3(λ) =
1

8πi

∑
χ∈Ξ(n)

∑
ρ∈Λχ(n)

∫
iR
α̃χ(ν)Q0

χ−1,ρ(1, λ,−ν)Eχ,ρ(ν, g)dν,

Φ4(λ) =−
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR

{
β((ν + 1)/2)

λ+ (ν + 1)/2
Resz=(ν+1)/2

+
β((−ν + 1)/2)

λ+ (−ν + 1)/2
Resz=(−ν+1)/2 +

β((ν − 1)/2)

λ+ (ν − 1)/2
Resz=(ν−1)/2

+
β((−ν − 1)/2)

λ+ (−ν − 1)/2
Resz=(−ν−1)/2

}
{f1χ−1,ρ(−z,−ν)}α̃χ(ν)Eχ,ρ(ν, g)dν.

By the functional equation

D
−1/2
F A1,ρ(−ν)

ζF (−ν)

ζF (1− ν)
E1,ρ(ν, g) = E1,ρ(−ν, g)

of the Eisenstein series, the following equalities hold:

Φ2(λ) =
1

8πi

∑
ρ∈Λ(n)

f
(ν)
1,ρ (12)

∫
iR
α̃(ν)D

−1/2
F A1,ρ(−ν)

ζF (−ν)

ζF (1− ν)
E1,ρ(ν, g)β((ν + 1)/2)

×
{

1

λ− (ν + 1)/2
+

1

λ+ (ν + 1)/2

}
dν

=
1

8πi

∑
ρ∈Λ(n)

f
(ν)
1,ρ (12)

∫
iR
α̃(ν)E1,ρ(ν, g)β((−ν + 1)/2)

{
1

λ− (−ν + 1)/2
+

1

λ+ (−ν + 1)/2

}
dν

=Φ1(λ).

Thus we have to consider only Φ1(λ), Φ3(λ) and Φ4(λ).
We take c > 1. Then Φ1(λ) is expressed as

Φ1(λ) =
1

8πi

∑
ρ∈Λ(n)

f
(−ν)
1,ρ (12)

∫
iR
α̃(ν)β((ν − 1)/2)

{
1

λ− (−ν + 1)/2
+

1

λ+ (−ν + 1)/2

}
E1,ρ(ν, g)dν
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=
1

8πi

∑
ρ∈Λ(n)

f
(−ν)
1,ρ (12)

∫
iR
α̃(ν)β((ν − 1)/2)

1

λ+ (−ν + 1)/2
E1,ρ(ν, g)dν

+
1

8πi

∑
ρ∈Λ(n)

f
(−ν)
1,ρ (12)

{∫
Lc

α̃(ν)β((ν − 1)/2)
1

λ− (−ν + 1)/2
E1,ρ(ν, g)dν

− 2πiα̃(1)β(0)
2

λ
e1,ρ,−1(g)

}
.

The first term is holomorphic on Re(λ) > −1/2, the second term is holomorphic on Re(λ) > (−c+ 1)/2
and the third term is holomorphic on C − {0}. Hence Φ1(λ) = Φ2(λ) has a meromorphic continuation
to Re(λ) > −1/2. Since Φ3(λ) is described as an absolutely convergent double integral, Φ3(λ) has an
analytic continuation to C. We note that the integral Q0

χ−1,ρ(1, λ,−ν) is absolutely convergent and is

entire as a function in λ. In order to examine Φ4(λ), we consider the following residues:

Resz=(ν+1)/2 f
1
χ−1,ρ(−z,−ν) = D

−1/2+ν/2
F N(fχ)1/2+νB1

χ−1,ρ(−ν/2,−ν)
L(−ν, χ−1)

L(1− ν, χ−2)
δχ,1D

1/2
F RF ,

Resz=(−ν+1)/2 f
1
χ−1,ρ(−z,−ν) = D

−1/2+ν/2
F N(fχ)1/2+νB1

χ−1,ρ(ν/2,−ν)
L(ν, χ−1)

L(1− ν, χ−2)
δχ,1D

1/2
F RF ,

Resz=(ν−1)/2 f
1
χ−1,ρ(−z,−ν) = D

−1/2+ν/2
F N(fχ)1/2+νB1

χ−1,ρ(1− ν/2,−ν)
L(1− ν, χ−1)

L(1− ν, χ−2)
(−δχ,1RF ),

Resz=(−ν−1)/2 f
1
χ−1,ρ(−z,−ν) = D

−1/2+ν/2
F N(fχ)1/2+νB1

χ−1,ρ(1 + ν/2,−ν)
L(1 + ν, χ)

L(1− ν, χ−2)
(−δχ,1RF ).

The functions Resz=(±ν±1)/2 f
1
χ−1,ρ(−z,−ν) are holomorphic on iR as functions in ν and vanish unless

χ = 1. Therefore, the integral∫
iR

{
β((ν + 1)/2)

λ+ (ν + 1)/2
Resz=(ν+1)/2 +

β((−ν + 1)/2)

λ+ (−ν + 1)/2
Resz=(−ν+1)/2

}
f1χ−1,ρ(−z,−ν)α̃χ(ν)Eχ,ρ(ν, g)dν

is holomorphic on Re(λ) > −1/2.
Consider the integral∫
iR

{
β((ν − 1)/2)

λ+ (ν − 1)/2
Resz=(ν−1)/2 +

β((−ν − 1)/2)

λ+ (−ν − 1)/2
Resz=(−ν−1)/2

}
f1χ−1,ρ(−z,−ν)α̃χ(ν)Eχ,ρ(ν, g)dν.

Set F+
ρ (ν) = Resz=(ν−1)/2 f

1
1,ρ(−z,−ν). We note that F+

ρ (ν) is entire. By taking c > 1, we obtain∫
iR

β((ν − 1)/2)

λ+ (ν − 1)/2
Resz=(ν−1)/2 f

1
1,ρ(−z,−ν)α̃(ν)E1,ρ(ν, g)dν

=

∫
Lc

β((ν − 1)/2)

λ+ (ν − 1)/2
F+
ρ (ν)α̃(ν)E1,ρ(ν, g)dν − 2πi

β(0)

λ
F+
ρ (1)α̃(1)e1,ρ,−1(g).

The first term of the right-hand side is holomorphic on Re(λ) > (−c + 1)/2 and the second term is
meromorphic on C. Set F−ρ (ν) = Resz=(−ν−1)/2 f

1
1,ρ(−z,−ν). By the relation B1

1,ρ(1 − ν/2,−ν) =

B1
1,ρ(1− ν/2, ν)A1,ρ(−ν), we have

F−ρ (−ν)D
−1/2
F A1,ρ(−ν)

ζF (−ν)

ζF (1− ν)
=B1

1,ρ(1− ν/2, ν)D
ν/2
F (−RF )D

−1/2
F A1,ρ(−ν) = F+

ρ (ν),
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and hence, we obtain∫
iR

β((−ν − 1)/2)

λ+ (−ν − 1)/2
F−ρ (ν)α̃(ν)E1,ρ(ν, g)dν =

∫
iR

β((ν − 1)/2)

λ+ (ν − 1)/2
F−ρ (−ν)α̃(ν)E1,ρ(−ν, g)dν

=

∫
iR

β((ν − 1)/2)

λ+ (ν − 1)/2
F−ρ (−ν)D

−1/2
F A1,ρ(−ν)

ζF (−ν)

ζF (1− ν)
α̃(ν)E1,ρ(ν, g)dν

=

∫
iR

β((ν − 1)/2)

λ+ (ν − 1)/2
F+
ρ (ν)α̃(ν)E1,ρ(ν, g)dν

=

∫
Lc

β((ν − 1)/2)

λ+ (ν − 1)/2
F+
ρ (ν)α̃(ν)E1,ρ(ν, g)dν − 2πi

β(0)

λ
F+
ρ (1)α̃(1)e1,ρ,−1(g).

Then, in the last line of the equalities above, the first term is holomorphic on Re(λ) > (−c + 1)/2 and
the second term is meromorphic on C. Hence Φ4(λ) has a meromorphic continuation to Re(λ) > −1/2.
This gives us a meromorphic continuation of Ψct(λ) to Re(λ) > −1/2. �

Lemma 7.4. We have

CTλ=0Ψ̂β,λ(n|α; g) =C(n, S)

{ ∑
ϕ∈Bcus(n)

α(νϕ,S)P 1
reg(ϕ)ϕ(g)

+
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)P 1

reg(Eχ−1,ρ(−ν,−))Eχ,ρ(ν, g)dν

+
∑

ρ∈Λ(n)

{f (0)
1,ρ(12) +D1(ρ)}

{
α̃′(1)e1,ρ,−1(g) + α̃(1)e1,ρ,0(g)}

}
β(0),

where we put Dη(ρ) = δ(∪nk=2Sk(ρ) = ∅)
∏
v∈S1(ρ){−ηv($v)q

−1/2
v } for η ∈ Ξ0(o).

Proof. In the proof of Lemma 7.3, we gave the constant terms of the cuspidal and residual parts at λ = 0.
Therefore, it is enough to evaluate the constant term of the Eisenstein part Ψct(λ) = 2Φ1(λ) + Φ3(λ) +
Φ4(λ). By the residue theorem, we have

CTλ=0Φ1(λ) =
1

8πi

∑
ρ∈Λ(n)

f
(−ν)
1,ρ (12)

∫
iR
α̃(ν)β((ν − 1)/2)

−1

(ν − 1)/2
E1,ρ(ν, g)dν

+
1

8πi

∑
ρ∈Λ(n)

f
(−ν)
1,ρ (12)

∫
Lc

α̃(ν)β((ν − 1)/2)
1

(ν − 1)/2
E1,ρ(ν, g)dν

=
1

8πi

∑
ρ∈Λ(n)

f
(−ν)
1,ρ (12)2πiResν=1{α̃(ν)β((ν − 1)/2)

1

(ν − 1)/2
E1,ρ(ν, g)}

=
1

2

∑
ρ∈Λ(n)

f
(−ν)
1,ρ (12){α̃′(1)e1,ρ,−1(g) + α̃(1)e1,ρ,0(g)}β(0)

and the integral Q0
χ−1,ρ(1, 0,−ν) is written as

Q0
χ−1,ρ(1, 0,−ν) =

1

2πi

∫
Lσ

{f1χ−1,ρ(z,−ν) + f1χ−1,ρ(−z,−ν)}β(z)

z
dz

= f1χ−1,ρ(0,−ν)β(0) + {Resz=(1+ν)/2 + Resz=(1−ν)/2 + Resz=(−1+ν)/2

+ Resz=(−1−ν)/2}
{
f1χ−1,ρ(z,−ν)

β(z)

z

}
.
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Thus the constant term of Φ3(λ) is evaluated as

CTλ=0Φ3(λ)

=
R−1
F

8πi

∑
χ∈Ξ(n)

∑
ρ∈Λχ(n)

∫
iR
α̃χ(ν)Q0

χ−1,ρ(1, 0,−ν)Eχ,ρ(ν, g)dν

=
R−1
F

8πi

∑
χ∈Ξ(n)

∑
ρ∈Λχ(n)

{∫
iR
α̃χ(ν)f1χ−1,ρ(0,−ν)Eχ,ρ(ν, g)dνβ(0) +

∫
iR
{Resz=(1+ν)/2

+ Resz=(1−ν)/2 + Resz=(−1+ν)/2 + Resz=(−1−ν)/2}
{
f1χ−1,ρ(z,−ν)

β(z)

z

}
α̃χ(ν)Eχ,ρ(ν, g)dν

}
.

We examine the constant term of Φ4(λ). By the expression of Φ4(λ) given in the proof of Lemma 7.3,
we have

CTλ=0Φ4(λ)

=−
R−1
F

8πi

∑
χ∈Ξ(n)

∑
ρ∈Λχ(n)

∫
iR

{
β((ν + 1)/2)

(ν + 1)/2
Resz=(ν+1)/2 +

β((−ν + 1)/2)

(−ν + 1)/2
Resz=(−ν+1)/2

}
f1χ−1,ρ(−z,−ν)

× α̃χ(ν)Eχ,ρ(ν, g)dν

− 2×
R−1
F

8πi

∑
ρ∈Λ(n)

{∫
Lc

β((ν − 1)/2)

(ν − 1)/2
F+
ρ (ν)α̃(ν)E1,ρ(ν, g)dν

}
.

Therefore we obtain

CTλ=0{Φ3(λ) + Φ4(λ)}

=
R−1
F

8πi

∑
χ∈Ξ(n)

∑
ρ∈Λχ(n)

{∫
iR
α̃χ(ν)f1χ−1,ρ(0,−ν)Eχ,ρ(ν, g)dνβ(0)

+

∫
iR
{Resz=(−1+ν)/2 + Resz=(−1−ν)/2}

{
f1χ−1,ρ(z,−ν)

β(z)

z

}
α̃χ(ν)Eχ,ρ(ν, g)dν

}
− 2×

R−1
F

8πi

∑
ρ∈Λ(n)

{∫
Lc

β((ν − 1)/2)

(ν − 1)/2
F+
ρ (ν)α̃(ν)E1,ρ(ν, g)dν

}
.

By noting the relation∫
iR
F+
ρ (ν)

β((ν − 1)/2)

(ν − 1)/2
α̃(ν)E1,ρ(ν, g)dν =

∫
iR
F−ρ (ν)

β((−ν − 1)/2)

(−ν − 1)/2
α̃(ν)E1,ρ(ν, g)dν,

we have

R−1
F

8πi

∑
ρ∈Λ(n)

∫
iR
{Resz=(−1+ν)/2 + Resz=(−1−ν)/2}

{
f11,ρ(z,−ν)

β(z)

z

}
α̃(ν)E1,ρ(ν, g)dν

− 2×
R−1
F

8πi

∑
ρ∈Λ(n)

∫
Lc

β((ν − 1)/2)

(ν − 1)/2
F+
ρ (ν)α̃(ν)E1,ρ(ν, g)dν

=
R−1
F

8πi

∑
ρ∈Λ(n)

∫
iR

{
F+
ρ (ν)

β((ν − 1)/2)

(ν − 1)/2
+ F−ρ (ν)

β((−ν − 1)/2)

(−ν − 1)/2

}
α̃(ν)E1,ρ(ν, g)dν

− 2×
R−1
F

8πi

∑
ρ∈Λ(n)

∫
Lc

β((ν − 1)/2)

(ν − 1)/2
F+
ρ (ν)α̃(ν)E1,ρ(ν, g)dν
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=2×
R−1
F

8πi

∑
ρ∈Λ(n)

∫
iR
F+
ρ (ν)

β((ν − 1)/2)

(ν − 1)/2
α̃(ν)E1,ρ(ν, g)dν

− 2×
R−1
F

8πi

∑
ρ∈Λ(n)

∫
Lc

β((ν − 1)/2)

(ν − 1)/2
F+
ρ (ν)α̃(ν)E1,ρ(ν, g)dν

=
R−1
F

4πi

∑
ρ∈Λ(n)

(−2πi) Resν=1

{
β((ν − 1)/2)

(ν − 1)/2
F+
ρ (ν)α̃(ν)E1,ρ(ν, g)

}
.

Here the residue is expressed as

Resν=1

{
β((ν − 1)/2)

(ν − 1)/2
F+
ρ (ν)α̃(ν)E1,ρ(ν, g)

}
= Resν=1

{
β((ν − 1)/2)

(ν − 1)/2
α̃(ν)E1,ρ(ν, g)D

−1/2+ν/2
F B1

1,ρ(1− ν/2,−ν)(−RF )

}
={2α̃′(1)e1,ρ,−1(g) + 2α̃(1)e1,ρ,0(g)}D1(ρ)(−RF )β(0).

We note D
(ν−1)/2
F Bηη,ρ(1 − ν/2,−ν) = η̃(DF/Q)Dη(ρ) for any η ∈ Ξ0(o) satisfying η2 = 1. Therefore we

obtain

R−1
F

8πi

∑
ρ∈Λ(n)

∫
iR
{Resz=(−1+ν)/2 + Resz=(−1−ν)/2}

{
f11,ρ(z,−ν)

β(z)

z

}
α̃(ν)E1,ρ(ν, g)dν

− 2×
R−1
F

8πi

∑
ρ∈Λ(n)

∫
Lc

β((ν − 1)/2)

(ν − 1)/2
F+
ρ (ν)α̃(ν)E1,ρ(ν, g)dν

=
R−1
F

4πi

∑
ρ∈Λ(n)

2πi{2α̃′(1)e1,ρ,−1(g) + 2α̃(1)e1,ρ,0(g)}D1(ρ)RFβ(0)

=
∑

ρ∈Λ(n)

D1(ρ){α̃′(1)e1,ρ,−1(g) + α̃(1)e1,ρ,0(g)}β(0),

and hence

CTλ=0Ψct(λ) =
R−1
F

8πi

∑
χ∈Ξ(n)

∑
ρ∈Λχ(n)

∫
iR
α̃χ(ν)f1χ−1,ρ(0,−ν)Eχ,ρ(ν, g)dνβ(0)

+
∑

ρ∈Λ(n)

{f (0)
1,ρ(12) +D1(ρ)}{α̃′(1)e1,ρ,−1(g) + α̃(1)e1,ρ,0(g)}β(0).

This gives the expression of CTλ=0Ψ̂β,λ(n|α; g). �

We define the regularized smoothed kernel Ψ̂reg(n|α; g) by the relation

CTλ=0Ψ̂β,λ(n|α; g) = Ψ̂reg(n|α; g)β(0), β ∈ B.

Lemma 7.5. The following estimates hold for any g ∈ S1 uniformly.

(1) For any m > 0, we have
∑
ϕ∈Bcus(n) |α(νϕ,S)P 1

reg(ϕ)ϕ(g)| �m y(g)−m.

(2) There exists N ∈ N such that we have the estimate∑
χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
|α̃χ(ν)P 1

reg(Eχ−1,ρ(−ν,−))Eχ,ρ(ν, g)||dν| �N y(g)N .

(3) For any ρ ∈ Λ(n), we have |e1,ρ,0(g)|+ |e1,ρ,−1(g)| � y(g).
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(4) For N as in (2), we have

|Ψ̂reg(n|α; g)| �N y(g)N .

Proof. There exists a positive constant C such that Lfin(s, χ) does not vanish for any non-quadratic
character χ of F×\A× if Re(s) > 1−C/ log{q(χ)(3 + |Im(s)|)} (cf. [14, Theorem 5.10]). Hence, by virtue
of the proof of [45, Theorem 3.11], the estimate

1

|Lfin(1, χ)|
� log q(χ)

holds uniformly for non-quadratic characters χ of F×\A×. Next we give a generalized Siegel’s theorem
for quadratic characters of F×\A×. By [28, Theorem 2.3.1], for any ε > 0, the estimate

|Lfin(1, χ)| � q(χ)−ε

holds uniformly for quadratic characters χ of F×\A×. Indeed, [28, Theorem 2.3.1] works for general
L-functions over F in the sense of [4].

As a consequence, we have the estimate

1

|Lfin(1 + ν, χ2)|
� q(χ2| · |νA)ε, ν ∈ iR

with the implied constant independent of χ ∈ Ξ(n) and n. Combining this with the argument of the proof
of [47, Lemma 9.9], we have the assertions. �

8. Periods of regularized automorphic smoothed kernels: the spectral side

By (4) in Lemma 7.5, the integral P ηβ,λ(Ψ̂reg(n|α)) converges absolutely for Re(λ) > N and is holo-

morphic on Re(λ) > N . The following is given in the same way as [47, Lemma 10.1].

Lemma 8.1. For Re(λ) > N , we have the expression

P ηβ,λ(Ψ̂reg(n|α)) = C(n, S){Pηcus(β, λ, α) + Pηeis(β, λ, α) + Pηres(β, λ, α)},

where

Pηcus(β, λ, α) =
∑

ϕ∈Bcus(n)

α(νϕ,S)P 1
reg(ϕ)P ηβ,λ(ϕ),

Pηeis(β, λ, α) =
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)P 1

reg(Eχ−1,ρ(−ν,−))P ηβ,λ(Eχ,ρ(ν,−))dν

and

Pηres(β, λ, α) =
∑

ρ∈Λ(n)

{f (0)
1,ρ(12) +D1(ρ)}(α̃′(1)P ηβ,λ(e1,ρ,−1) + α̃(1)P ηβ,λ(e1,ρ,0)).

Here the series converge absolutely and locally uniformly on Re(λ) > N .

By Propositions 3.4 and 3.5, we have the following.

Lemma 8.2. The function λ 7→ Pηres(β, λ, α) on Re(λ) > N is analytically continued to a meromorphic
function on C. Its constant term at λ = 0 is given by

CTλ=0Pηres(β, λ, α) =
∑

ρ∈Λ(n)

{f (0)
1,ρ(12) +D1(ρ)}α̃(1)

G(η)D
−1/2
F

ζF (2)

×
{
− 1

2
δη,1B̃

1
1,ρ(0)R2

Fβ
′′(0) + aη1,ρ(0)β(0)

}
.
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Here B̃ηχ,ρ(z) = ε(−z, χ−1η)Bηχ,ρ(−z + 1/2, 1) and

aη1,ρ(0) =− 1

2
(B̃1

1,ρ)
′′(0)δη,1R

2
F − 2B̃1

1,ρ(0)RFC1(1)δη,1 + B̃η1,ρ(0)C0(η)2.

Lemma 8.3. The function λ 7→ Pηeis(β, λ, α) on Re(λ) > N is analytically continued to a meromorphic
function on Re(λ) > −1/2.

Proof. By Proposition 3.2, we have

Z∗(s, η, E\χ,ρ(ν,−)) =G(η)D
−ν/2
F N(fχ)1/2−νBηχ,ρ(s, ν)

L(s+ ν/2, χη)L(s− ν/2, χ−1η)

L(1 + ν, χ2)
.

Set

Lηχ,ρ(ν) = D
ν/2
F N(fχ)1/2+νBηχ−1,ρ(1/2,−ν)

L((1 + ν)/2, χη)L((1− ν)/2, χ−1η)

L(1− ν, χ−2)

and recall the expression

P ηβ,λ(Eχ,ρ(ν,−)) =Pχ(η, λ, ν) +D
−1/2
F Aχ,ρ(ν)

L(ν, χ2)

L(1 + ν, χ2)
Pχ−1(η, λ,−ν) +Q+

χ,ρ(η, λ, ν) +Q−χ,ρ(η, λ, ν).

We remark

Pηeis(β, λ, α) =
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)G(1)L1

χ,ρ(ν)

{
Pχ(η, λ, ν)

+D
−1/2
F Aχ,ρ(ν)

L(ν, χ2)

L(1 + ν, χ2)
Pχ−1(η, λ,−ν) +Q0

χ,ρ(η, λ, ν)

−
∑

a=(±ν±1)/2

β(a)

λ+ a
Resz=a{fηχ,ρ(−z, ν)}

}
dν.

In order to examine Pηeis(β, λ, α), we decompose this into the following four terms:

Φ+
1 (λ) =

∑
χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)f (0)
χ,ρ(12)

× δχ,ηRF
{

1

λ− (ν + 1)/2
+

1

λ+ (ν + 1)/2

}
β((ν + 1)/2)dν,

Φ−1 (λ) =
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)D
−1/2
F Aχ,ρ(ν)

L(ν, χ2)

L(1 + ν, χ2)
f

(0)
χ−1,ρ(12)

× δχ,ηRF
{

1

λ− (−ν + 1)/2
+

1

λ+ (−ν + 1)/2

}
β((−ν + 1)/2)dν,

Φ2(λ) =
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)Q0
χ,ρ(η, λ, ν)dν,

Φ3(λ) =−
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)
∑

a=(±ν±1)/2

β(a)

λ+ a
Resz=a{fηχ,ρ(−z, ν)}dν.

When χ = η, then fη = o holds and by using the functional equations

L1
η,ρ(ν)D

−1/2
F Aη,ρ(ν)

ζF (ν)

ζF (1 + ν)
= L1

η,ρ(−ν)
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and B1
η,ρ(1/2, ν) = B1

η,ρ(1/2,−ν)Aη,ρ(ν), we obtain Φ+
1 (λ) = Φ−1 (λ). The term Φ+

1 (λ) is expressed as

Φ+
1 (λ) =

∑
χ∈Ξ(n)

∑
ρ∈Λχ(n)

{
R−1
F

8πi

∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)f (0)
χ,ρ(12)δχ,ηRF

1

λ+ (ν + 1)/2
β((ν + 1)/2)dν

+
R−1
F

8πi

∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)f (0)
χ,ρ(12)δχ,ηRF

1

λ− (ν + 1)/2
β((ν + 1)/2)dν

}
.

Then the first term in the summation is holomorphic on Re(λ) > −1/2. For any fixed σ > 1, the second
term in the summation is transformed into

R−1
F

8πi
D
−1/2
F

{∫
L−σ

α̃χ(ν)L1
χ,ρ(ν)f (0)

χ,ρ(12)δχ,ηRF
1

λ− (ν + 1)/2
β((ν + 1)/2)dν

+ δχ,η 2πiResν=−1

(
β((ν + 1)/2)

λ− (ν + 1)/2
α̃η(ν)L1

η,ρ(ν)

)
f (0)
χ,ρ(12)RF

}
.

The first term in the expression above is meromorphic on Re(λ) > (−σ + 1)/2. In order to prove the
meromorphicity of the second term in the expression above, we put

D
ν/2
F

L((1 + ν)/2, η)L((1− ν)/2, η)

ζF (1− ν)
=

Dη
−2

(ν + 1)2
+

Dη
−1

ν + 1
+Dη

0 +O((ν + 1)), (ν → −1),

B1
η,ρ(1/2,−ν) = pη0(ρ) + pη1(ρ)(ν + 1) + pη2(ρ)(ν + 1)2 +O((ν + 1)3), (ν → −1)

and
β((ν + 1)/2)

λ− (ν + 1)/2
α̃η(ν) = qη0 (λ) + qη1 (λ)(ν + 1) +O((ν + 1)2), (ν → −1).

Then these give the following expressions:

Resν=−1

{
β((ν + 1)/2)

λ− (ν + 1)/2
α̃η(ν)L1

η,ρ(ν)

}
= pη0(ρ)qη1 (λ)Dη

−2 + pη0(ρ)qη0 (λ)Dη
−1 + pη1(ρ)qη0 (λ)Dη

−2,

qη0 (λ) =
α̃η(1)β(0)

λ
, qη1 (λ) =

(
α̃′η(1)

λ
+
α̃η(1)

2λ2

)
β(0).

Therefore Φ+
1 (λ) = Φ−1 (λ) has a meromorphic continuation to Re(λ) > −1/2. Since Φ2(λ) is described

as an absolutely convergent double integral, Φ2(λ) is entire.
We examine Φ3(λ). This is written as

Φ3(λ) =−
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

{∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)
∑

a=(±ν+1)/2

β(a)

λ+ a
Resz=a f

η
χ,ρ(−z, ν)dν

+

∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)
∑

a=(±ν−1)/2

β(a)

λ+ a
Resz=a f

η
χ,ρ(−z, ν)dν

}
.

In the bracket of the right-hand side, the first term is holomorphic on Re(λ) > −1/2 and the part of
a = (−ν − 1)/2 in the second term is transposed into∫

iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)
β((−ν − 1)/2)

λ+ (−ν − 1)/2
Resz=(−ν−1)/2 f

η
χ,ρ(−z, ν)dν

=

∫
L−σ

α̃χ(ν)D
−1/2
F L1

χ,ρ(ν)
β((−ν − 1)/2)

λ+ (−ν − 1)/2
Resz=(−ν−1)/2 f

η
χ,ρ(−z, ν)dν

+ 2πi δχ,η Resν=−1(L1
η,ρ(ν))α̃η(1)D

−1/2
F

β(0)

λ
G(η)D

1/2
F Bηη,ρ(1/2,−1)(−RF )
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for any fixed σ > 1. We note Resν=−1 L
1
η,ρ(ν) = pη0(ρ)Dη

−1 + pη1(ρ)Dη
−2. Thus the part of a = (−ν − 1)/2

is meromorphic on Re(λ) > −1/2. Noting that the part of a = (ν − 1)/2 equals that of a = (−ν − 1)/2,
the function Φ3(λ) has a meromorphic continuation to Re(λ) > −1/2. This completes the proof. �

Lemma 8.4. We have

CTλ=0Pηeis(β, λ, α) + CTλ=0Pηres(β, λ, α)

=

{
G(η)D

−1/2
F R−1

F

∑
χ∈Ξ(n)

∑
ρ∈Λχ(n)

1

8πi

∫
iR
α̃χ(ν)L1

χ,ρ(ν)Lηχ−1,ρ(−ν)dν

+ δ(fη = o){Y η2 (n)α̃′′η(1) + Y η1 (n)α̃′η(1) + Y η0 (n)α̃η(1)}+ Y η−1(n)α̃(1)

}
β(0),

where we put

Y η2 (n) =
∑

ρ∈Λ(n)

D
−1/2
F {f (0)

η,ρ(12) +Dη(ρ)}1

2
pη0(ρ)Dη

−2,

Y η1 (n) =
∑

ρ∈Λ(n)

D
−1/2
F {f (0)

η,ρ(12) +Dη(ρ)}{Dη
−1p

η
0(ρ) +Dη

−2p
η
1(ρ)},

Y η0 (n) =
∑

ρ∈Λ(n)

D
−1/2
F {f (0)

η,ρ(12) +Dη(ρ)}{Dη
−2p

η
2(ρ) +Dη

−1p
η
1(ρ) +Dη

0p
η
0(ρ)}

and

Y η−1(n) =
∑

ρ∈Λ(n)

G(η)D
−1/2
F

ζF (2)
{f (0)

1,ρ(12) +D1(ρ)}aη1,ρ(0).

Proof. Let Φ+
1 , Φ2 and Φ3 be the functions defined in the proof of Lemma 8.3. Then, we obtain

CTλ=0Pηeis(β, λ, α) = CTλ=0(2Φ+
1 (λ) + Φ2(λ) + Φ3(λ)). A direct computation gives us

CTλ=0Φ+
1 (λ) =δ(fη = o)

∑
ρ∈Λ(n)

1

8πi

∫
iR
α̃η(ν)D

−1/2
F L1

η,ρ(ν)f (0)
η,ρ(12)

β(0)

(ν + 1)/2
dν

+ δ(fη = o)
∑

ρ∈Λ(n)

1

8πi

∫
L−σ

α̃η(ν)D
−1/2
F L1

η,ρ(ν)f (0)
η,ρ(12)

β(0)

−(ν + 1)/2
dν

and

CTλ=0Φ2(λ) =
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)Q0
χ,ρ(η, 0, ν)dν,

where

Q0
χ,ρ(η, 0, ν) = fηχ,ρ(0, ν)β(0) +

∑
a=(±ν±1)/2

Resz=a

{
fηχ,ρ(−z, ν)

β(z)

z

}
.

The constant term of Φ3(λ) at λ = 0 is evaluated as

CTλ=0Φ3(λ)

=−
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

{∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)
∑

a=(±ν+1)/2

β(a)

a
Resz=a f

η
χ,ρ(−z, ν)dν

}

− 2δ(fη = o)
∑

ρ∈Λ(n)

R−1
F

8πi

{∫
L−σ

α̃η(ν)D
−1/2
F L1

η,ρ(ν)
β((−ν − 1)/2)

(−ν − 1)/2
Resz=(−ν−1)/2 f

η
η,ρ(−z, ν)dν

}
.
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Hence, we obtain

CTλ=0Pηeis(β, λ, α)

= 2δ(fη = o)
∑

ρ∈Λ(n)

1

8πi
D
−1/2
F f (0)

η,ρ(12)

(∫
iR
−
∫
L−σ

)
α̃η(ν)L1

η,ρ(ν)
β((ν + 1)/2)

(ν + 1)/2
dν

+
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)fηχ,ρ(0, ν)β(0)dν

+ 2δ(fη = o)
∑

ρ∈Λ(n)

R−1
F

8πi

{(∫
iR
−
∫
L−σ

)
α̃η(ν)D

−1/2
F L1

η,ρ(ν)
β((−ν − 1)/2)

(−ν − 1)/2

× Resz=(−ν−1)/2 f
η
η,ρ(−z, ν)dν

}
= δ(fη = o)

∑
ρ∈Λ(n)

1

2
D
−1/2
F f (0)

η,ρ(12) Resν=−1

{
α̃η(ν)L1

η,ρ(ν)
β((ν + 1)/2)

(ν + 1)/2

}

+
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)D

−1/2
F L1

χ,ρ(ν)G(η)Lηχ−1,ρ(−ν)β(0)dν

+ δ(fη = o)
∑

ρ∈Λ(n)

R−1
F

2
Resν=−1

{
α̃η(ν)D

−1/2
F L1

η,ρ(ν)
β((−ν − 1)/2)

(−ν − 1)/2
Resz=(−ν−1)/2 f

η
η,ρ(−z, ν)

}
.

We remark

Resz=(−ν−1)/2 f
η
η,ρ(−z, ν) = G(η)(−RF )D

−ν/2
F Bηη,ρ(ν/2 + 1, ν) = −RF Dη(ρ)

and compute the residues as follows:

Resν=−1

{
α̃η(ν)L1

η,ρ(ν)
β((ν + 1)/2)

(ν + 1)/2

}
= −Resν=−1

{
α̃η(ν)L1

η,ρ(ν)
β((−ν − 1)/2)

(−ν − 1)/2

}
= α̃′′η(1)pη0(ρ)Dη

−2β(0) + 2α̃′η(1){pη0(ρ)Dη
−1 + pη1(ρ)Dη

−2}β(0)

+ α̃η(1)

{
Dη
−2

(
2pη2(ρ)β(0) +

1

4
pη0(ρ)β′′(0)

)
+ 2Dη

−1p
η
1(ρ)β(0) + 2Dη

0p
η
0(ρ)β(0)

}
.

One can check that the sum of all terms containing β′′(0) in CTλ=0Pηeis(β, λ, α) + CTλ=0Pηres(β, λ, α)
vanishes with the aid of Lemma 8.2. As a consequence, we obtain the assertion. �

Lemma 8.5. Suppose fη = o. For any ε > 0, we have the following estimates

|Y ηj (n)| � N(n)ε, j ∈ {−1, 0, 1, 2},

where the implied constant is independent of n.

Proof. The proof is given by describing Y ηj (n) for j ∈ {−1, 0, 1, 2} explicitly. Since η is unramified, we
have

f (0)
η,ρ(12) =

∏
v∈S1(ρ)

ηv($v)q
1/2
v

n∏
k=2

∏
v∈Sk(ρ)

(1− q−1
v )ηv($v)

k

(
qv + 1

qv − 1

)1/2

qk/2v

and

pη0(ρ) =η̃(DF/Q)
∏

v∈S1(ρ)

(1− ηv($v))
qv

qv − 1
q−1/2
v
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×
n∏
k=2

∏
v∈Sk(ρ)

{
(ηv($v)− 1)(ηv($v)qv − 1)

qv − q−1
v

(
qv + 1

qv − 1

)1/2

q−k/2v

}
.

Moreover, we obtain expressions

pη1(ρ) = η̃(DF/Q)
∑

w∈S(ρ)

{ ∏
v∈S(ρ)−{w}

Y ηv (−1)
}

(Y ηw )′(−1)

and

pη2(ρ) =
η̃(DF/Q)

2

∑
w∈S(ρ)

[ ∑
x∈S(ρ)−{w}

{ ∏
v∈S(ρ)−{w,x}

Y ηv (−1)

}
(Y ηw )′(−1)(Y ηx )′(−1)

+

{ ∏
v∈S(ρ)−{w}

Y ηv (−1)

}
(Y ηw )′′(−1)

]
,

where we set

Cv = δ(v ∈ S1(ρ)) + δ

(
v ∈

n∐
k=2

Sk(ρ)

)(
qv + 1

qv − 1

)1/2

and

Y ηv (ν) = Cv{qv + 1 + ηv($v)(q
(1+ν)/2
v + q(1−ν)/2

v )} q
kν/2
v

qv − qνv
.

Further we have

(Y ηv )′(−1) = Cv(log qkv )q−k/2v

−ηv($v)qv(qv − 1)2 + k(1 + ηv($v))qv(q
2
v − 1) + 2(1 + ηv($v))qv

2k(q2
v − 1)(qv − 1)

and

(Y ηv )′′(−1)

=Cv

[
ηv($v)(log qkv )2q−k/2v

(1 + qv)(qv − q−1
v ) + (1− qv){k(qv − q−1

v ) + 2q−1
v }

4k2(qv − q−1
v )2

+ (log qkv )2q−k/2v

ηv($v){k(q3
v − qv) + 2qv}

4k2(1 + qv)(1− q2
v)

+ (log qkv )2q−k/2v

(1 + ηv($v))qv
k2(q2

v − 1)3(qv − 1)

{(
k2

4
(q2
v − 1) + 1

)
(q2
v − 1)2 + (k(q2

v − 1) + 2)(q2
v − 1)

}]
.

Thus, by noting #Λ(n)� N(n)ε, we obtain the estimates of Y ηj (n) for j ∈ {0, 1, 2}.
Next let us examine Y η−1(n). We have the following expressions:

B̃η1,ρ(0) = ε(0, η)Bη1,ρ(1/2, 1),

Bη1,ρ(1/2, 1) =
∏

v∈S1(ρ)

(ηv($v)− 1)q
−1/2
v

(1− q−1
v )

×
n∏
k=2

∏
v∈Sk(ρ)

{
ηv($v)

k(ηv($v)− 1)(ηv($v)− q−1
v )

1− q−2
v

(
qv + 1

qv − 1

)1/2

q−k/2v

}
,

(B̃1
1,ρ)
′′(0) = ε′′(0,1)Bρ(0) + 2ε′(0,1)B′ρ(0) + ε(0,1)B′′ρ (0).
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Here we set Bρ(z) = B1
1,ρ(−z + 1/2, 1) = D−zF

∏
v∈S(ρ)Bv(z) and

Bv(z) =δ(v ∈ S1(ρ))(qzv − 1)
q
−1/2
v

1− q−1
v

+

n∑
k=2

δ(v ∈ Sk(ρ))(qkzv − q(k−1)z−1
v − q(k−1)z

v + q(k−2)z−1
v )

(
qv + 1

qv − 1

)1/2
q
−k/2
v

1− q−2
v

.

A direct computation gives us

B′ρ(0) = (logD−1
F )

∏
v∈S(ρ)

Bv(0) +
∑

w∈S(ρ)

{ ∏
v∈S(ρ)−{w}

Bv(0)
}
B′v(0),

B′′ρ (0) =(logD−1
F )2

∏
v∈S(ρ)

Bv(0) + 2(logD−1
F )

∑
w∈S(ρ)

{ ∏
v∈S(ρ)−{w}

Bv(0)
}
B′v(0)

+
∑

w∈S(ρ)

 ∑
x∈S(ρ)−{w}

{ ∏
v∈S(ρ)−{w,x}

Bv(0)
}
B′w(0)B′x(0) +

{ ∏
v∈S(ρ)−{w}

Bv(0)
}
B′′w(0)

 ,

B′v(0) = δ(v ∈ S1(ρ))(log qv)
q
−1/2
v

1− q−1
v

+

n∑
k=2

δ(v ∈ Sk(ρ))(log qv)

(
qv + 1

qv − 1

)1/2
q
−k/2
v

1 + q−1
v

and

B′′v (0) =δ(v ∈ S1(ρ))(log qv)
2 q
−1/2
v

1− q−1
v

+

n∑
k=2

δ(v ∈ Sk(ρ))(log qkv )2 2k − 1− (2k − 3)q−1
v

k2

(
qv + 1

qv − 1

)1/2
q
−k/2
v

1− q−2
v

.

This completes the proof of the estimate of Y η−1(n). �

With the aid of Lemmas 8.1 and 8.4, we obtain the expression of the spectral side of P ηreg(Ψ̂reg(n|α)).

Theorem 8.6. The value P ηreg(Ψ̂reg(n|α)) can be defined and we have

P ηreg(Ψ̂reg(n|α)) = C(n, S){Iηcus(n|α) + Iηeis(n|α) + Dη(n|α)}.

Here we put

Iηcus(n|α) =
∑

ϕ∈Bcus(n)

α(νϕ,S)P 1
reg(ϕ)P ηreg(ϕ),

Iηeis(n|α) =
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

R−1
F

8πi

∫
iR
α̃χ(ν)P 1

reg(Eχ−1,ρ(−ν,−))P ηreg(Eχ,ρ(ν,−))dν

and

Dη(n|α) = δ(fη = o){Y η2 (n)α̃′′η(1) + Y η1 (n)α̃′η(1) + Y η0 (n)α̃η(1)}+ Y η−1(n)α̃(1).
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9. Periods of regularized automorphic smoothed kernels: the geometric side

In this section, we describe the geometric expression of Ψ̂reg(n|α) and its regularized period P ηreg(Ψ̂reg(n|α)).

For δ ∈ GF , we put St(δ) = HF ∩ δ−1HF δ. By [47, Lemma 11.1], the following elements of GF form a
complete system of representatives of the double coset space HF \GF /HF :

e = [ 1 0
0 1 ], w0 =

[
0 −1
1 0

]
,

u = [ 1 1
0 1 ], u = [ 1 0

1 1 ], uw0 =
[

1 −1
1 0

]
, uw0 =

[
0 −1
1 −1

]
,

δb =
[

1+b−1 1
1 1

]
, b ∈ F× − {−1}.

Moreover, we have St(e) = St(w0) = HF and St(δ) = ZF for any δ ∈ {u, u, uw0, uw0} ∪ {δb|b ∈ F× −
{−1}}. We note

HF \GF =
∐

δ∈HF \GF /HF

HF \(HF δHF ) ∼=
∐

δ∈HF \GF /HF

St(δ)\HF .

Thus we obtain the following expression for Re(λ) > 0:

Ψ̂β,λ

(
n|α; [ t 0

0 1 ]
[

1 xη
0 1

])
=

∑
δ∈HF \GF /HF

∑
γ∈St(δ)\HF

Ψ̂β,λ

(
n|α; δγ [ t 0

0 1 ]
[

1 xη
0 1

])
.

Set
Jδ(β, λ, α; t) =

∑
γ∈St(δ)\HF

Ψ̂β,λ

(
n|α; δγ [ t 0

0 1 ]
[

1 xη
0 1

])
for any δ ∈ HF \GF /HF .

The following three lemmas are proved in similar fashions to [47, Lemma 11.2], [47, Lemma 11.3] and
[47, Lemma 11.21].

Lemma 9.1. Both functions λ 7→ Je(β, λ, α; t) and λ 7→ Jw0
(β, λ, α; t) are analytically continued to entire

functions. The values of these functions at λ = 0 are equal to Jid(α; t)β(0) and δ(n = o)Jid(α; t)β(0),
respectively, where

Jid(α; t) = δ(fη = o)

(
1

2πi

)#S ∫
LS(c)

Υ1
S(s)α(s)dµS(s)

with

Υ1
S(s) =

{ ∏
v∈Σ∞

−1

8

Γ((sv + 1)/4)2

Γ((sv + 3)/4)2

}{ ∏
v∈Sfin

(1− q−(sv+1)/2
v )−1(1− q(sv+1)/2

v )−1

}
.

We put
Ju(β, λ, α; t) = Ju(β, λ, α, t) + Juw0

(β, λ, α, t)

and
Jū(β, λ, α; t) = Juw0(β, λ, α, t) + Jū(β, λ, α, t).

Lemma 9.2. For ∗ ∈ {u, ū}, the function λ 7→ J∗(β, λ, α, t) is analytically continued to an entire function
and the value at λ = 0 is equal to J∗(α; t)β(0), where

Ju(α; t) =

(
1

2πi

)#S ∑
a∈F×

∫
LS(c)

{
Ψ(0)

(
n|s;

[
1 at−1

0 1

] [
1 xη
0 1

])
+ δ(n = o)Ψ(0)

(
n|s;

[
1 0

at−1 1

] [
1 0
−xη 1

]
w0

)}
α(s)dµS(s)

and

Jū(α; t) =

(
1

2πi

)#S ∑
a∈F×

∫
LS(c)

{
Ψ(0)

(
n|s; [ 1 0

at 1 ]
[

1 xη
0 1

])
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+ δ(n = o)Ψ(0)
(
n|s; [ 1 at

0 1 ]
[

1 0
−xη 1

]
w0

)}
α(s)dµS(s).

These series-integrals are absolutely convergent.

We put

Jhyp(β, λ, α; t) =
∑

b∈F×−{−1}

Jδb(β, λ, α; t) =
∑

b∈F×−{−1}

∑
a∈F×

Ψ̂β,λ

(
n|α; δb [ at 0

0 1 ]
[

1 xη
0 1

])
.

Lemma 9.3. The function Jhyp(β, λ, α; t) on Re(λ) > 1 is analytically continued to an entire function
and the value at λ = 0 is Jhyp(α; t)β(0), where

Jhyp(α; t) =
∑

b∈F×−{−1}

∑
a∈F×

Ψ̂(0)
(
n|α; δb [ at 0

0 1 ]
[

1 xη
0 1

])
.

The series converges absolutely and locally uniformly in t ∈ A×.

Lemmas 9.1, 9.2 and 9.3 give the geometric expression of Ψ̂reg

(
n|α; [ t 0

0 1 ]
[

1 xη
0 1

])
.

Proposition 9.4. Let n be an ideal of o and S a finite subset of ΣF satisfying Σ∞ ⊂ S and S∩S(n) = ∅.
Let η be a character satisfying (3.1). Then, for any α ∈ AS, we have

Ψ̂reg

(
n|α; [ t 0

0 1 ]
[

1 xη
0 1

])
=(1 + δ(n = o))Jid(α; t) + Ju(α; t) + Jū(α; t) + Jhyp(α; t), t ∈ A×.

Next let us compute P ηreg(Ψ̂reg(n|α)) explicitly. Define

Jη\ (β, λ;α) =

∫
F×\A×

J\(α; t){β̂λ(|t|A) + β̂λ(|t|−1
A )}η(tx∗η)d×t

for \ ∈ {id,u, ū,hyp} and

Υη
S(s) =

{ ∏
v∈Σ∞

−1

8

Γ((sv + 1)/4)2

Γ((sv + 3)/4)2

}{ ∏
v∈Sfin

(1− q(sv+1)/2
v )−1(1− ηv($v)q

−(sv+1)/2
v )−1

}
.

For any ideal a of o, we set

CηS,a(s) =C0(η) +R(η)

{
log(DFN(a)) +

dF
2

(CEuler + 2 log 2− log π)

+
∑
v∈Sfin

log qv

1− q(sv+1)/2
v

+
1

2

∑
v∈Σ∞

(
ψ

(
sv + 1

4

)
+ ψ

(
sv + 3

4

))}
,

where ψ(z) = Γ′(s)/Γ(s) is the digamma function and CEuler is the Euler constant. We note that if η 6= 1,
then CηS,a(s) is independent of the choice of a, and CηS,a(s) = C0(η) = L(1, η). Put

Kη(n|s) =
∑

b∈F×−{−1}

∫
A×

Ψ(0)
(
n|s; δb [ t 0

0 1 ]
[

1 xη
0 1

])
η(tx∗η)d×t.

The defining series-integral converges absolutely if we take c ∈ R such that Re(s) = c = (c)v∈S and

(c + 1)/4 > 1. By the expression of Ψ̂reg(n|α) in Proposition 9.4 and the same computation as in the

proof of [47, Theorem 12.1], we can express the geometric side of P ηreg(Ψ̂reg(n|α)) as follows.
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Theorem 9.5. For any \ ∈ {id,u, ū,hyp}, the integral Jη\ (β, λ;α) converges absolutely and locally uni-

formly in {λ ∈ C |Re(λ) > 1}. The function λ 7→ Jη\ (β, λ;α) is analytically continued to a meromorphic

function on {λ ∈ C |Re(λ) > −1}. Moreover, the constant term CTλ=0Jη\ (β, λ;α) is equal to Jη\ (n|α)β(0),
where

Jηid(n|α) = 0,

Jηu(n|α) = (1 + δ(n = o))D
1/2
F G(η)

∫
LS(c)

Υη
S(s)CηS,o(s)α(s)dµS(s),

Jηū(n|α) = (1 + δ(n = o))D
1/2
F G(η)

∫
LS(c)

Υη
S(s)CηS,n(s)α(s)dµS(s)

and

Jηhyp(n|α) =

(
1

2πi

)#S ∫
LS(c)

Kη(n|s)α(s)dµS(s).

In particular, we have
P ηreg(Ψ̂reg(n|α)) = Jηu(n|α) + Jηū(n|α) + Jηhyp(n|α).

10. Proofs of main theorems for even Hilbert Maass forms

Fix a character η of F×\A× so that η2 = 1 and ηv(−1) = 1 for all v ∈ Σ∞. Let S be a finite
subset of ΣF such that S ⊃ Σ∞ and Sfin ∩ S(fη) = ∅. Let J +

S,η be the set of all ideals n of o such that

S(n) ∩ (S ∪ S(fη)) = ∅ and η̃(n) = 1. By Theorems 8.6 and 9.5, we obtain the relative trace formula

C(n, S){Iηcus(n|α) + Iηeis(n|α) + Dη(n|α)} = Jηu(n|α) + Jηū(n|α) + Jηhyp(n|α)

for any α ∈ AS and n ∈ J +
S,η.

10.1. Estimates of error terms. The following estimate of Jηhyp(n|α) is given by the same argument

as in the proof of [47, Lemma 12.9].

Lemma 10.1. For any α ∈ AS and q > 0, we have |Jηhyp(n|α)| � N(n)−q with the implied constant

independent of n ∈ J +
S,η.

Lemma 10.2. For any ε > 0, we have

|Bηχ,ρ(1/2, ν)| � N(fχ)−1/2−εN(n)ε, ν ∈ iR, ρ ∈ Λχ(n), χ ∈ Ξ(n)

with the implied constant independent of n ∈ J +
S,η.

Proof. Assume ν ∈ iR. Then, the following estimate holds for any ε > 0:

|Bηχ,ρ(1/2, ν)|

=

n∏
k=0

∏
v∈Sk(ρ)

|Q(ν)
k,χv

(ηv, 1)||L(1 + ν, χ2
v)|

∏
v∈U1(ρ)

(1 + q−1
v )

×
n∏
k=2

∏
v∈Uk(ρ)

(
qv + 1

qv − 1

)1/2 n∏
k=0

∏
v∈Rk(ρ)

qdv/2v (1− q−1
v )1/2|G(χv)|

�
∏

v∈U1(ρ)

(1 + q−1
v )

(
1 +

2

q
1/2
v + q

−1/2
v

)
1

1− q−1
v

n∏
k=2

∏
v∈Uk(ρ)

(
qv + 1

qv − 1

)1/2

q−1
v (q1/2

v + 1)2 1

1− q−1
v

×
n∏
k=0

∏
v∈Rk(ρ)

qdv/2v (1− q−1
v )1/2 q

−f(χv)/2
v q

−dv/2
v

1− q−1
v

1

1− q−1
v

41



� N(fχ)−1/2+εN(nf−2
χ )ε.

This completes the proof. �

Note that [Kfin : K0(n)] = N(n)
∏
v∈S(n)(1 + q−1

v ) holds by an easy computation.

Lemma 10.3. For any α ∈ AS, there exists δ > 0 such that |C(n, S)Iηeis(n|α)| � N(n)−δ with the implied
constant independent of n ∈ J +

S,η.

Proof. We recall that for any ε > 0, the estimate |Lfin(1 + ν, χ2)|−1 � q(χ2| · |νA)ε, ν ∈ iR holds with the
implied constant independent of χ ∈ Ξ(n) and n. This was given in the proof of Lemma 7.5. Let θ be a
real number such that |Lfin(1/2 + it, χ)| � q(χ| · |itA )1/4+θ, t ∈ R uniformly for any χ ∈ Ξ(n) and n. We
can take such θ so that −1/4 < θ < 0 by [27, Theorem 1.1]. Thus, with the aid of Lemma 10.2 and∏

v∈Σ∞

∣∣∣∣L((1 + ν)/2, χv)L((1− ν)/2, χ−1
v )

L(1− ν, χ−2
v )

∣∣∣∣ � ∏
v∈Σ∞

(1 + ν + 2ib(χv))
−1/2,

which follows from Stirling’s formula, the explicit description of P ηreg(Eχ,ρ(ν,−)) in Proposition 3.3 gives
us the estimate

|P ηreg(Eχ,ρ(ν,−))| � N(fχ)1/2N(fχ)−1/2−εN(n)ε(N(fχ)1/4+θ)2N(fχ)ε
∏
v∈Σ∞

(1 + |ν + 2ib(χv)|)2θ+ε

= N(fχ)1/2+2θN(n)ε
∏
v∈Σ∞

(1 + |ν + 2ib(χv)|)2θ+ε

� N(n)1/4+θ+ε
∏
v∈Σ∞

(1 + |ν + 2ib(χv)|)2θ+ε

for any ε > 0, where the implied constant is independent of ν ∈ iR, χ ∈ Ξ(n) and n ∈ J +
S,η. With the aid

of Lemma 2.1, we have

|C(n, S)Iηeis(n|α)| � [Kfin : K0(n)]−1
∑

χ∈Ξ(n)

∑
ρ∈Λχ(n)

∫
iR
|P 1

reg(Eχ−1,ρ(−ν,−))||P ηreg(Eχ,ρ(ν,−))||α̃χ(ν)||dν|

� N(n)−1
∑

χ∈Ξ(n)

(∑
a|n

1

)∫
y∈R

N(n)1/2+2θ+2ε{
∏
v∈Σ∞

(1 + |y + 2b(χv)|)4θ+2ε}|α̃χ(iy)|dy

� N(n)−1/2+2θ+3ε
∑

χ∈Ξker(n)

∑
b∈L0

∫
y∈R
{
∏
v∈Σ∞

(1 + |y + 2bv|)4θ+2ε}|α((iy + 2ibv)v∈Σ∞)|dy

� N(n)2θ+4ε

∫
y∈RdF

(1 + ||y||2)4θ+2ε|α(iy)|dy.

Note
∑

a|n 1� N(n)ε. Since we can take ε > 0 so that 2θ + 4ε < 0, we obtain the assertion. �

Lemma 10.4. For any ε > 0 and α ∈ AS, we have |C(n, S)Dη(n|α)| � N(n)−1+ε with the implied
constant independent of n ∈ J +

S,η.

Proof. This follows immediately from Lemma 8.5. �

For n ∈ J +
S,η, we set

〈ληS(n), f〉 = 2D
1/2
F G(η)−1[Kfin : K0(n)]−1

∑
π∈Πcus(n)

Pη(π; K0(n))f(νS(π))
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for any f ∈ Cc(X0+
S ) or for any f = α ∈ AS . The defining series is convergent in the same way as [47,

Lemma 13.16]. Combining Lemmas 3.6, 3.8, 10.1, 10.3 and 10.4 with the argument in [47, Lemma 13.18],
we have the following.

Proposition 10.5. For a fixed α ∈ AS, there exists δ > 0 such that

〈ληS(n), α〉 =
∑

π∈Πcus(n)

[Kfin : K0(fπ)]

N(fπ)[Kfin : K0(n)]
wηn(π)

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
α(νS(π)) = 〈ληS , α〉+O(N(n)−δ)

as N(n)→∞ in n ∈ J +
S,η.

10.2. Schwartz spaces on X0+
S . The Schwartz space S(X0+

S ) was introduced in [47, §13.2]. However,
the definition is inaccuracy; indeed, the Weierstrass approximation theorem does not work in the proof

of [47, Lemma 13.17]. In this subsection, we introduce another Schwartz space S(X0+
S ). Set

X0+
v =

{
iR>0 ∪ (0, 1] (v ∈ Σ∞),

i[0, 2π(log qv)
−1] ∪ (0, 1] ∪ {(0, 1] + 2πi(log qv)

−1} (v ∈ Sfin)

and X0+
S =

∏
v∈S X

0+
v . We note

X0+
v
∼= R>0

by the homeomorphism s 7→ (1− s2)/4 if v ∈ Σ∞, and

X0+
v
∼= [−(q1/2

v + q−1/2
v ), q1/2

v + q−1/2
v ]

by the homeomorphism s 7→ q
−s/2
v + q

s/2
v if v ∈ Sfin.

Definition 10.6. We define S(X0+
Σ∞

) as the space of all functions f on X0+
Σ∞

such that f is of the form

ϕ((
1−s2v

4 )v∈Σ∞) for some ϕ ∈ S((R>0)Σ∞). Here S((R>0)Σ∞) is the Schwartz space in the usual sense.

We define the Schwartz space on X0+
S =

∏
v∈S X

0+
v , which is denoted by S(X0+

S ), as

S(X0+
S ) = S(X0+

Σ∞
)⊗ C(X0+

Sfin
) (algebraic tensor).

Both measures ληS(n) and ληS on X0+
S are naturally extended as linear functionals on S(X0+

S ) (cf. [47,
Lemmas 13.14 and 13.16]).

Lemma 10.7. We have the following.

(1) Let Afin denote the C-vector space of all functions on X0+
Sfin

generated by
∏
v∈S Qv(q

−sv/2
v + q

sv/2
v )

for any polynomials Qv[X] ∈ C[X], (v ∈ Sfin). Then, Afin is dense in C(X0+
Sfin

) with respect to
the topology by supremum norm.

(2) The symbol A∞ denotes the C-vector space of all functions on X0+
Σ∞

generated by the functions

X0+
Σ∞
3 s = (sv)v∈Σ∞ 7→

∏
v∈Σ∞

Qv(s
2
v) exp((s2

v − 1)/4)

for any polynomials Qv(X) ∈ C[X], (v ∈ Σ∞). Then, A∞ is dense in S(X0+
Σ∞

) with respect to
the Fréchet topology determined by the semi-norms

pm,n(f) = sup
s∈X0+

Σ∞

|∂nf(s)|(1 + ||s||2)m

for all m ∈ N0 and all n ∈ (N0)Σ∞ . Here ∂n denotes the higher order partial derivative∏
v∈Σ∞

∂nv/∂snvv for any multi-index n = (nv)v∈Σ∞ ∈ (N0)Σ∞ , and we put ||s|| =
∑
v∈Σ∞

|sv|2.
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Proof. To prove (1), we only have to use the Stone-Weierstrass theorem for the compact Hausdorff space

X0+
Sfin

. The assertion (2) follows from [36, Theorem V.13 (p.143)] and [5, Lemma 9.3]. �

10.3. Extraction of the new part. Let I+
S,η be the set defined in §0.1. Set

AL∗M(n; f) =
1

N(n)

∑
π∈Π∗cus(n)

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
f(νS(π))

for any n ∈ J +
S,η and any f ∈ Cc(X

0+
S ) (or f = α ∈ AS). The convergence of the defining series is

proved as follows. We note that L(1/2, π)L(1/2, π ⊗ η) > 0 by [10] and that G(η)−1Pη(π; K0(n)) > 0 by
Lemma 3.6. Furthermore, Lemma 3.6 gives us wηn(π) = 1 if π ∈ Πcus(n) satisfies fπ = n. Hence we have
|AL∗M(n; f)| 6 〈ληS(n), |f |〉. Here we note 〈ληS(n), |f |〉 <∞ (cf. [47, Lemma 13.16]).

We extract the new part AL∗M(n; f) from 〈ληS(n), f〉.

Theorem 10.8. There exists a sufficiently small δ > 0 such that

AL∗M(n;α) = ν(n)〈ληS , α〉+O(N(n)−δ)

holds for any α ∈ AS as N(n)→∞ in n ∈ I+
S,η. Moreover, for any f ∈ S(X0+

S ), we have

1

ν(n)
AL∗M(n; f)→ 〈ληS , f〉

as N(n)→∞ in n ∈ I+
S,η. The limit for any f ∈ S(X0+

S ) as above is valid for any f ∈ Cc(X0+
S ).

The proof of this theorem is given in §10.4. As a corollary, by Proposition 1.1, we have the following.

Corollary 10.9. For any bounded Borel measure J of X0+
S with boundary ληS-null, we have

1

ν(n)
AL∗M(n; chJ)→

∫
J

dληS

as N(n)→∞ in n ∈ I+
S,η.

10.3.1. The N -transform. We introduce N -transform, which will be used in Part 2 and Part 3.
For any ideal c and a place v ∈ Σfin, set

ωv(c) =

1 (v ∈ S(c)),
qv + 1

qv − 1
(v 6∈ S(c)).

For any pair of integral ideals m and b, define

ω(m, b) = δ(m ⊂ b)
∏

v∈S(b)

ωv(mb−1).

Given an ideal n, let n0 denote the largest square-free integral ideal dividing n; thus, there exists the
unique integral ideal n1 such that

n = n0n
2
1.

Let I be a set of integral ideals such that if n ∈ I, then all integral ideals m dividing n are elements of I.

Proposition 10.10. Let B(m) and A(m) be two arithmetic functions defined for ideals m ∈ I. Then,
the following two conditions are equivalent each other:

(i) For any n ∈ I,

B(n) =
∑
b|n1

ω(n, b2)A(nb−2).
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(ii) For any n ∈ I,

A(n) =
∑

I⊂S(n1)

(−1)#I{
∏

v∈I∩S1(n1)

ωv(n0)}B(n
∏
v∈I

p−2
v ).

Proof. We show that (i) implies (ii). By substituting (i), the right-hand side of (ii) becomes∑
I⊂S(n1)

(−1)#I{
∏

v∈I∩S1(n1)

ωv(n0)} {
∑

b|n1
∏
v∈I p

−1
v

ω(n
∏
v∈I

p−2
v , b2)A(nb−2

∏
v∈I

p−2
v )}

=
∑
b1|n1

{ ∑
I⊂S(n1b

−1
1 )

(−1)#Iω

(
n
∏
v∈I

p−2
v , n2

1b
−2
1

∏
v∈I

p−2
v

) ∏
v∈I∩S1(n1)∩S(n1b

−1
1 )

ωv(n0)

}
A(n0b

2
1)

Here to have the equality, we made the substitution b1 = n1b
−1
∏
v∈I p

−1
v . If b1 = n1, the term inside

the bracket is 1 obviously; otherwise it equals∑
I⊂S(n1b

−1
1 )

(−1)#I
∏

v∈S(n1b
−1
1

∏
v∈I p

−1
v )−S(n0b2

1)

qv + 1

qv − 1

∏
v∈I∩S(n1b

−1
1 )∩S1(n1)−S(n0)

qv + 1

qv − 1

=
∑

I⊂S(n1b
−1
1 )

(−1)#I
∏

v∈[(I−S1(n1b
−1
1 ))∪(S(n1b

−1
1 )−I)]−S(n0b2

1)

qv + 1

qv − 1

∏
v∈I∩S1(n1b

−1
1 )−S(n0b2

1)

qv + 1

qv − 1

=
∑

I⊂S(n1b
−1
1 )

(−1)#I
∏

v∈(S(n1b
−1
1 )−I)−S(n0b2

1)

qv + 1

qv − 1

∏
v∈I−S(n0b2

1)

qv + 1

qv − 1

=
∏

v∈S(n1b
−1
1 )

(ωv(n0b
2
1)− ωv(n0b

2
1)),

which is zero by S(n1b
−1
1 ) 6= ∅. We can prove that (ii) implies (i) in a similar fashion. �

Set ι(m) = [Kfin : K0(m)] =
∏
v∈S(m)(1 + qv)q

ordv(m)−1
v for any ideal m of o.

Definition 10.11. For an arithmetic function B : I → C, we define its N -transform N [B] : I → C by
the formula

N [B](n) =
∑

I⊂S(n1)

(−1)#I{
∏

v∈I∩S1(n1)

ωv(n0)}
ι(n
∏
v∈I p

−2
v )

ι(n)
B(n

∏
v∈I

p−2
v ).

Lemma 10.12. For t ∈ C, let Nt be the arithmetic function n 7→ N(n)t on I. For any ideal n, we have

N [Nt](n) = N(n)t {
∏

v∈S(n1)−S2(n)

(1− q−2(1+t)
v )} {

∏
v∈S2(n)

(1− (1− q−1
v )−1 q−2(1+t)

v )}.

In particular, N [1] is equal to

ν(n) = {
∏

v∈S(n1)−S2(n)

(1− q−2
v )} {

∏
v∈S2(n)

(1− (q2
v − qv)−1)}.

Proof. For any subset I ⊂ S(n), we have

ι(n
∏
v∈I p

−2
v )

ι(n)
=
∏
v∈I

q−2
v

∏
v∈I∩S2(n)

(1 + q−1
v )−1.
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Therefore, we obtain∑
I⊂S(n1)

(−1)#I{
∏

v∈I∩S1(n1)

ωv(n0)}
ι(n
∏
v∈I p

−2
v )

ι(n)
N(n

∏
v∈I

p−2
v )t

= N(n)t
∑

I⊂S(n1)

(−1)#I{
∏

v∈I∩S2(n)

qv + 1

qv − 1
}

∏
v∈I∩S2(n)

(1 + q−1
v )−1{

∏
v∈I

q−2(1+t)
v }

= N(n)t
∑

I⊂S(n1)

(−1)#I
∏

v∈I∩S2(n)

(1− q−1
v )−1{

∏
v∈I

q−2t
v }

= N(n)t{
∏

v∈S(n1)−S2(n)

(1− q−2(1+t)
v )} {

∏
v∈S2(n)

(1− (1− q−1
v )−1 q−2(1+t)

v )}.

�

For any arithmetic function B : I → C, we define another function N+[B] by setting

N+[B](n) =
∑

I⊂S(n1)

{
∏

v∈I∩S1(n1)

ωv(n0)}
ι(n
∏
v∈I p

−2
v )

ι(n)
B(n

∏
v∈I

p−2
v )

for n = n0n
2
1 ∈ I. In a similar way to Lemma 10.12, we have

N+[Nt] = N(n)t {
∏

v∈S(n1)−S2(n)

(1 + q−2(t+1)
v )} {

∏
v∈S2(n)

(1 + (1− q−1
v )−1q−2(t+1)

v )}(10.1)

for any t ∈ R.

Lemma 10.13. Let c > 0. For any sufficiently small ε > 0, we have

N+[N−c+ε](n)�ε N(n)− inf(c,1)+3ε, n ∈ I.

Proof. From N(n)−c+ε 6 N(n)− inf(c,1)+ε, we have N+[N−c+ε](n) 6 N+[N− inf(c,1)+ε](n) obviously. Let
us set t = − inf(c, 1) + ε and examine the right-hand side of the formula (10.1). We note that t + 1 =
1− inf(c, 1) + ε > ε > 0. The set P (ε) = {v ∈ Σfin| 1− q−1

v < q−εv } is a finite set. For v ∈ S2(n)− P (ε),

we have (1− q−1
v )−1 6 qεv and q

−2(t+1)
v 6 q−2ε

v ; by these, the factor 1 + (1− q−1
v )q

−2(t+1)
v is bounded by

1 + q−εv . For v ∈ S(n1)− S2(n) or v ∈ S2(n) ∩ P (ε), we simply apply q
−2(t+1)
v 6 q−2ε

v . Thus,

N+[Nt](n) 6 N(n)t{
∏

v∈S(n1)−S2(n)

(1 + q−2ε
v )} {

∏
v∈P (ε)

(1 + (1− q−1
v )−1q−2ε

v )} {
∏

v∈S2(n)−P (ε)

(1 + q−εv )}.
(10.2)

In the right-hand side, the second factor is independent of n. The first and the last factors combined are
estimated as

{
∏

v∈S(n1)−S2(n)

(1 + q−2ε
v )} {

∏
v∈S2(n)−P (ε)

(1 + q−εv )} 6 {
∏

v∈S(n)

(1 + q−εv )}2

�ε {
∏

v∈S(n)

qεv}2 6 N(n)2ε.

Hence there exists a constant C(ε) > 0 dependent of ε such that (10.2) is less than C(ε) N(n)− inf(c,1)+3ε

for any n ∈ I. �
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10.3.2. The totally inert case over n. Let JS,η be the set of all ideals n relatively prime to S ∪ S(fη).
Let IS,η be the monoid of ideals generated by prime ideals pv ∩ o such that v ∈ Σfin − S ∪ S(fη) and
η̃(pv ∩ o) = −1. Note that IS,η is a submonoid of JS,η and that IS,η = I+

S,η ∪ I
−
S,η (cf. §0.1). We

relate AL∗M(n;α) to the N -transforms of arithmetic functions 〈ληS(·), α〉 on IS,η. We remark that an ideal
n ∈ IS,η satisfies the condition

ηv($v) = −1, v ∈ S(n).

This means that the quadratic extension of F corresponding to η is inert over all places dividing n.

Lemma 10.14. Let n ∈ IS,η. Then, for any π ∈ Πcus(n), we have wηn(π) = 0 unless nf−1
π = b2 for some

integral ideal b, in which case

wηn(π) = ω(n, nf−1
π ).

Proof. Let v ∈ S(nf−1
π ) and set kv = ordv(nf

−1
π ). From Lemma 3.6,

r(πv, ηv, kv) =
1 + (−1)kv

2
×

1 (c(πv) > 1),
qv + 1

qv − 1
(c(πv) = 0).

Thus r(πv, ηv, kv) = 0 unless kv = ordv(nf
−1
π ) is even.

�

For any fixed α ∈ AS and n ∈ IS,η, set

AL∗M(n;α) =
1

N(n)

∑
π∈Π∗cus(n)

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
α(νS(π)).

Lemma 10.15. For any n ∈ IS,η,

〈ληS(n), α〉 =
∑
b

ω(n, b2)
ι(nb−2)

ι(n)
AL∗M(nb−2;α),

where b runs through all the integral ideals such that n ⊂ b2.

Proof. This follows immediately from Lemma 10.14. �

Lemma 10.16. For any n ∈ IS,η,

AL∗M(n;α) = N [〈ληS(·), α〉](n).

Proof. By Lemma 10.15, we obtain the formula by applying Proposition 10.10 withB(m) = ι(m) 〈ληS(m), α〉
and A(m) = ι(m) AL∗M(m;α) both defined for m ∈ IS,η. �

10.4. Proof of Theorem 0.2. We prove Theorem 10.8, from which Theorem 0.2 follows immediately.
For a fixed α ∈ AS , by Proposition 10.5 and Lemmas 10.12, 10.13 and 10.16, we have

AL∗M(n;α) =N [〈ληS(·), α〉](n) = N [1](n)× 〈ληS , α〉+O(N+[N−δ+ε](n))

=ν(n)〈ληS , α〉+O(N−δ+3ε(n)).

for n ∈ I+
S,η with sufficiently small δ > 0 and ε > 0. Hence, we obtain the first assertion of Theorem 10.8.

With the aid of the proof of [47, Theorem 13.17] and the first assertion of Theorem 10.8, for any

f ∈ S(X0+
S ) we have

1

ν(n)
AL∗M(n; f)→ 〈ληS , f〉
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as N(n)→∞ in n ∈ I+
S,η. Indeed, by Lemma 10.7, for any f ∈ S(X0+

S ), any ε > 0 and any m ∈ N, there

exists a function α on X0+
S of the form

α(s) =

N∑
j=1

∏
v∈Σ∞

Qv,j(s
2
v) exp((s2

v − 1)/4)
∏
v∈Sfin

Qv,j(q
−sv/2
v + qsv/2v ), s ∈ X0+

S

for N ∈ N and a family of polynomials Qv,j(X) ∈ C[X], (v ∈ S, 1 6 j 6 N) such that

sup
s∈X0+

S

|f(s)− α(s)|(1 + ||s||2)m < ε.

We regard naturally α as a function on XS ; then α is an element of AS . From this, the argument in the
proof of [47, Lemma 13.17] is valid by using AL∗M(n;−) in place of ληS(n). As a consequence, we obtain
the second assertion of Theorem 10.8.

The assertion for f ∈ S(X0+
S ) deduces to that for f ∈ Cc(X

0+
S ) in the following way. It suffices to

prove the assertion for f ∈ Cc(X0+
S ).

Take any f ∈ Cc(X0+
S ) and any ε > 0. Fix a locally compact bounded open subset U of X0+

S such that

supp(f) ⊂ U . We may suppose U = U∞×Ufin for some U∞ ⊂ X0+
∞ and Ufin ⊂ X0+

Sfin
, where both U∞ and

Ufin are locally compact bounded open subsets. Then, we have f |U ∈ Cc(U). Let C∞c (U∞) be the space

of all compactly supported functions h on U∞ such that h(s) = ϕ((
1−s2v

4 )v∈Σ∞) for some C∞-function

ϕ on the set {x = (xv)v∈Σ∞ ∈ (R>0)Σ∞ | (
√

1− 4xv)v∈Σ∞ ∈ U∞}. By the Stone-Weierstrass theorem,
C∞c (U∞)⊗C(Ufin) is dense in Cc(U) with respect to the topology by supremum norm. Thus there exists
gε ∈ C∞c (U∞)⊗ C(Ufin) satisfying

sup
s∈U
|f(s)− gε(s)| < ε.

By the extension by zero, the function gε is naturally extended as an element of C∞c (X0+
Σ∞

) ⊗ C(X0+
Sfin

),

which is also denoted by gε. Then, we have gε ∈ S(X0+
S ).

From this and the second assertion of Theorem 10.8, there exists M > 0 such that for any n ∈ I+
S,η

with N(n) > M , we have

|ν(n)−1AL∗M(n; gε)− 〈ληS , gε〉| < ε.

In the same way as [47, Lemmas 13.14 and 13.16], we have the estimates

|ν(n)−1AL∗M(n; f − gε)| < C sup
s∈U

(1 + ||s||2)m ε

and

|〈ληS , f − gε〉| < C sup
s∈U

(1 + ||s||2)m ε,

where C > 0 and m ∈ N are independent of n ∈ I+
S,η, the function f and ε > 0. As a consequence, for

any n ∈ I+
S,η with N(n) > M , we obtain

|ν(n)−1AL∗M(n; f)− 〈ληS , f〉| 6 |ν(n)−1AL∗M(n; f − gε)|+ |ν(n)−1AL∗M(n; gε)− 〈ληS , gε〉|+ |〈λ
η
S , gε − f〉|

< {1 + 2C sup
s∈U

(1 + ||s||2)m} ε.

This completes the proof of the third assertion of Theorem 10.8. �

10.5. Proof of Theorem 0.3. We may assume that Jv for each v ∈ Σ∞ is bounded. Let J be the set of

all (νv)v∈S ∈ X0
S such that (1− ν2

v)/4 ∈ Jv for all v ∈ Σ∞ and q
−νv/2
v + q

νv/2
v ∈ Jv for all v ∈ Sfin. Then,

J is a bounded Borel set of X0+
S whose boundary is ληS-null. Hence Theorem 0.3 follows from Corollary

10.9. �
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10.6. Remarks on Theorems 0.4 and 0.5. Both theorems 0.4 and 0.5 are proved in the same way as
[47, Theorem 1.3, Corollary 1.4] since we can generalize [47, Theorem 14.1] to the case of arbitrary levels

by using the relative trace formula explained in §10. We remark that |LSπfin (1, π,Ad)| � |Lfin(1, π,Ad)| �
(1 + ||νΣ∞(π)||)ε is due to [23]. Although [29] is refered to in [47], the Rankin-Selberg condition (A5) in
[29] is valid only for general L-functions over Q.
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Part 2. Relative trace formulas for holomorphic Hilbert modular forms

11. Holomorphic Shintani functions on GL(2,R)

11.1. Discrete series of PGL(2,R). For n ∈ Z, let τn be the character of SO(2,R) defined by

τn (kθ) = einθ, θ ∈ R.

Let l > 2 be an even integer. Recall that there correspond discrete series representations D+
l and

D−l of SL(2,R) such that D±l |SO(2,R) is a direct sum of characters τn for all n ∈ ±(l + 2N0). We
have a unitary representation Dl of GL(2,R) such that (a) Dl has the trivial central character and
(b) Dl|SL(2,R) = D+

l ⊕ D−l . We call Dl the discrete series representation of PGL(2,R) of minimal
SO(2,R)-type l.

11.2. Shintani functions. Let f(τ) be a cusp form on the upper half plane satisfying the modularity
condition f((aτ + b)/(cτ + d)) = (cτ + d)l f(τ) for any matrix

[
a b
c d

]
in a fixed congruence subgroup Γ of

PSL(2,Z). Then it is lifted to a left Γ-invariant function f̃ on the group GL(2,R) by setting

f̃(g) = (det g)l/2(ci+ d)−l f
(
ai+b
ci+d

)
× δ(det g > 0), g =

[
a b
c d

]
∈ GL(2,R).

Let f̃c be the complex conjugate of f̃ . Then, f̃c satisfies the conditions

f̃c(gkθ) = τl(kθ) f̃c(g), (∀kθ ∈ SO(2,R)), [R(W )f̃c](g) = 0.

Since Ad(kθ)W = e−2iθW in any (gl2(R),O(2,R))-module (π, V ), we have π(W )V [τl] ⊂ V [τl−2], where

V [τl] = {v ∈ V |π(kθ)v = eilθ v (∀kθ ∈ SO(2,R)) }.

Let V be the (gl2(R),O(2,R))-submodule of the regular representation L2(Γ\GL(2,R)) generated by f̃c.

Then the condition above, or equivalently f̃c ∈ V [τl] and R(W )f̃c = 0, tells us that inside the module

V (which is a finite sum of discrete series Dl) the vector f̃c is extremal. For z ∈ C, let χz be the
quasi-character of the diagonal split torus T defined by χz

([
t1 0
0 t2

])
= |t1/t2|z. The integral

φ(g) =

∫
Γ∩T\T

f̃c(hg)χ−z(h) dh, g ∈ GL(2,R),

often called the (T, χz)-period integral of f̃c, satisfies the following two conditions:

• φ
([
t1 0
0 t2

]
g kθ

)
= |t1/t2|z τl(kθ)φ(g) for all

[
t1 0
0 t2

]
∈ T and θ ∈ R,

• R(W )φ = 0.

A function satisfying these conditions is called a holomorphic Shintani function of weight l. The next
proposition tells that these conditions determine the function φ(g) uniquely up to a constant multiple.

Proposition 11.1. [11, Proposition 5.3] Let z ∈ C. For each even integer l > 2, there exists a unique
C-valued C∞-function Ψ(z)(l;−) on GL(2,R) with the properties:

(S-i) It satisfies the equivariance condition

Ψ(z)
(
l;
[
t1 0
0 t2

]
g kθ

)
= |t1/t2|z τl(kθ) Ψ(z)(l; g) for all

[
t1 0
0 t2

]
∈ T and θ ∈ R.

(S-ii) It satisfies the differential equation

R(W ) Ψ(z)(l;−) = 0.

(S-iii) Ψ(z)(l; 12) = 1.

We have the explicit formula

Ψ(z)(l; ar) = 2−l/2 (−y)(2z−l)/4 (1− y)l/2 with y =

(
e2r − i
e2r + i

)2

.
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We remark that all values Ψ(z)(l; ar), r ∈ R characterize the function Ψ(z)(l;−) by (S-i) and the
decomposition GL(2,R) = T {ar|r ∈ R} SO(2,R) (cf. [11, Lemma 3.1]).

Lemma 11.2. Let Ψ(z)(l;−) be as in Proposition 11.1. Then,

Ψ(z) (l; [ 1 x
0 1 ]) = (1 + ix)z−l/2, x ∈ R.

Proof. By a direct computation, [ 1 x
0 1 ] =

[
t 0
0 t−1

]
ar kθ with

t = (1 + x2)1/4, cosh 2r = (1 + x2)1/2, sinh 2r = x,

eiθ =
(
√

1 + x2 + 1)1/2

√
2 (1 + x2)1/4

(
1− ix√

1 + x2 + 1

)
,

and y = x−i
x+i , 1− y = 2i

x+i . Using these, we have the desired formula by a direct computation. �

Lemma 11.3. We have the estimate

|Ψ(z)
(
l;
[
t1 0
0 t2

]
ark
)
| 6 2−l/2 |t1/t2|Re(z)eπ|Im(z)|/2(cosh 2r)−l/2

for any t1, t2 ∈ R×, r ∈ R and k ∈ SO(2,R).

Proof. Set y =
(
e2r−i
e2r+i

)2

. Then,

y =

(
tanh 2r − i

cosh 2r

)2

= 1− 2

cosh2 2r
− 2i tanh 2r

cosh 2r
.

Hence, by a direct computation, we have |1 − y| = (cosh 2r)−1. Furthermore, by |y| = 1, we have
|(−y)(2z−l)/4| 6 eπ|Im(z)|/2. This completes the proof. �

11.3. An inner product formula of Shintani functions. For an even integer l > 2 and z ∈ C, let
us consider the integral

Cl(z) =

∫ ∞
1

{(
−
(
u− i
u+ i

)2
)z

+

(
−
(
u+ i

u− i

)2
)z}

(1 + u2)1−l ul−2 du.

Lemma 11.4. The integral Cl(z) converges absolutely. It has the following properties.

(i) The function z 7→ Cl(z) is entire and satisfies the functional equation

Cl(−z) = Cl(z).

(ii) The value at z = 0 is given by

Cl(0) = 2−1Γ((l − 1)/2)2Γ(l − 1)
−1

= 23−2lπΓ(l − 1)Γ(l/2)−2.

(iii) The estimate
|Cl(z)| 6 Cl(0) exp(π|Im(z)|), z ∈ C

holds.

Proof. By the variable change v−1 = 1 + u2, we have

Cl(0) = 2

∫ ∞
1

(1 + u2)1−lul−2 du = 2−1

∫ 1

0

(1− v)(l−3)/2v(l−3)/2 dv = 2−1Γ((l − 1)/2)2Γ(l − 1)
−1

as desired in (ii). Remark that the second equality in (ii) is obtained by the duplication formula. Since
w = −((u − i)/(u + i))2 satisfies |w| = 1, by definition, we have wz = exp(iθz) with θ ∈ (−π, π]. Thus,
|wz| = exp(−Im(z) θ) 6 exp(π|Imz|), by which (iii) is immediate. From definition, we have the relation
w−z = (w−1)z, which shows the functional equation in (i). �

The inner product of Shintani functions Ψ(z)(l;−) and Ψ(−z̄)(l;−) is given as follows.
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Proposition 11.5. We have∫
T\GL(2,R)

Ψ(z)(l; g) Ψ(−z̄)(l; g) dg = 2l−1 Cl(z).

Proof. Set f(g) = Ψ(z)(l; g) Ψ(−z̄)(l; g). We have∫
T\GL(2,R)

f(g) dg = 2

∫
R
f(ar) cosh 2r dr

by the formula [47, (3.3)]. From Proposition 11.1,

f(ar) = 2−l (−y)−l/2+z (1− y)l with y =

(
e2r − i
e2r + i

)2

.

By this, we compute

2

∫ +∞

0

f(ar) cosh 2r dr = 21−l
∫ ∞

0

(−y)−l/2+z (1− y)l cosh 2r dr

= 2l−1

∫ ∞
1

{
−
(
u− i
u+ i

)2
}z

(1 + u2)1−l ul−2 du,

setting u = e2r. In the same way, we have

2

∫ 0

−∞
f(ar) cosh 2r dr = 2l−1

∫ ∞
1

{
−
(
u+ i

u− i

)2
}z

(1 + u2)1−l ul−2 du.

�

11.4. Orbital integrals of Shintani functions. Set w0 = kπ/2 =
[

0 −1
1 0

]
.

Lemma 11.6. If 0 < Re(z) < l/2, then, for ε, ε′ ∈ {0, 1}, we have∫
R×

Ψ(0)
(
l; [ 1 x

0 1 ]wε
′

0

)
|x|zsgnε(x)d×x = 2ilε

′
Γ(z)Γ(l/2− z)Γ(l/2)

−1
iε cos

(
π
2 (z + ε)

)
,∫

R×
Ψ(0)

(
l; [ 1 0

x 1 ]wε
′

0

)
|x|zsgnε(x)d×x = 2ilε

′
Γ(z)Γ(l/2− z)Γ(l/2)

−1
(−i)ε cos

(
π
2 (z + ε)

)
.

Proof. Let Jl,ε(z) denote the first integral with ε′ = 0. From Lemma 11.2, we have Jl,ε(z) = J+
l (z) +

(−1)εJ−l (z) with

J±l (z) =

∫ ∞
0

(1± ix)−l/2 xz d×x.

By the formula [8, 3.194.3], we have

J±l (z) = (±i)−zB(z, l/2− z) = (±i)−zΓ(z)Γ(l/2− z)Γ(l/2)
−1

(l/2 > Re(z) > 0).

Hence,

Jl,ε(z) = Γ(z)Γ(l/2− z)Γ(l/2)
−1{i−z + (−1)ε(−i)−z}.

Since i−z + (−1)ε(−i)−z = 2iε cos(π(z + ε)/2), we are done. We have the Iwasawa decomposition

[ 1 0
t 1 ] = =

[
1√

1+t2
0

0
√

1+t2

]
[ 1 t
0 1 ] kθ with eiθ =

1 + it√
1 + t2

.
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Hence, by Lemma 11.2, we obtain

Ψ(z) (l; [ 1 0
t 1 ]) =

(
1

1 + t2

)z
×
(

1 + it√
1 + t2

)l
× (1 + it)z−l/2 = (1− it)−z−l/2

Using this formula, in the same way as above, we can prove the second formula with ε′ = 0. The remaining
two formulas follow immediately from the proved ones by the relation Ψ(0)(l; gw0) = il Ψ(0)(l; g). �

12. Holomorphic automorphic Green functions

Let S ⊂ Σfin be a finite subset. Put

XS =
∏
v∈S

(
C/4πi(log qv)

−1Z
)
,

which we regard as a complex manifold in the obvious way. Note that for any c ∈ RS , the slice LS(c) =
{s ∈ XS |Re(s) = c} is a compact set homeomorphic to the torus (S1)S .

Given s ∈ XS , z ∈ C, an ideal n ⊂ o such that S(n) ∩ S = ∅, and a family l = (lv)v∈Σ∞ ∈ (2Z>2)Σ∞ ,

the adelic Green function Ψ
(z)
l (n|s,−) is defined by

Ψ
(z)
l (n|s; g) :=

∏
v∈Σ∞

Ψ(z)
v (lv; gv)

∏
v∈S

Ψ(z)
v (sv; gv)

∏
v∈S(n)

Φ
(z)
n,v(gv)

∏
v∈Σfin−(S∪S(n))

Φ
(z)
0,v(gv)

for any g = (gv)v∈ΣF ∈ GA, where Ψ
(z)
v (lv;−) for v ∈ Σ∞ is the holomorphic Shintani function on

Gv ∼= GL(2,R) defined in Proposition 11.1, Ψ
(z)
v (s;−) for v ∈ S is the Green function recalled in §5, and

for any v ∈ Σfin, we set

Φ
(z)
n,v

([
t1 0
0 t2

]
[ 1 x
0 1 ] k

)
= |t1/t2|zvδ(x ∈ ov)δ(k ∈ K0(nov)), t1, t2 ∈ F×v , x ∈ Fv, k ∈ Kv.

We remark that Φ
(z)
n,v = Φ

(z)
0,v if v ∈ Σfin − S(n). The adelic Green function Ψ

(z)
l (n|s;−) is a smooth

function on GA having the equivariance property

Ψ
(z)
l (n|s;hgk∞kfin) = {

∏
v∈Σ∞

τlv (kv)}χz(h)Ψ
(z)
l (n|s, g), g ∈ GA

for any h ∈ HA, k∞ = (kv)v∈Σ∞ ∈ K0
∞ and kfin ∈ K0(n) =

∏
v∈Σfin

K0(nov), where χz : HF \HA → C×
is the quasi-character defined by

χz
([
t1 0
0 t2

])
= |t1/t2|zA, t1, t2 ∈ A×.

To state the most important property of the adelic Green functions, we introduce the (H,χz)-period
integral of ϕ ∈ C∞c (ZAGF \GA) by setting

ϕH,(z)(g) =

∫
ZAHF \HA

ϕ(hg)χz(h)dh.

The integral ϕH,(z)(g) converges absolutely and satisfies ϕH,(z)(hg) = χz(h)−1ϕH,(z)(g) for any h ∈ HA.
Let C∞c (ZAGF \GA)[τl] be the space of ϕ ∈ C∞c (ZAGF \GA) such that

ϕ(gk∞) = {
∏
v∈Σ∞

τlv (kv)}ϕ(g) for any k∞ = (kv)v∈Σ∞ ∈ K0
∞ and g ∈ GA.

Lemma 12.1. Suppose ϕ ∈ C∞c (ZAGF \GA)[τl] and R(W v)ϕ = 0 for all v ∈ Σ∞. Then we have

ϕH,(z)(gfing∞) = {
∏
v∈Σ∞

Ψ
(−z̄)
v (lv; gv)}ϕH,(z)(gfin)

for g∞ = (gv)v∈Σ∞ ∈ G∞ and gfin ∈ Gfin.
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Proof. Let gfin ∈ Gfin. For any v ∈ Σ∞, we can easily verify

ϕH,(z)
(
gfin

[
t1 0
0 t2

]
g∞k

)
= |t1/t2|−zv τlv (k)−1ϕH,(z)(gfing∞), t1, t2 ∈ F×v , k ∈ K0

v, g∞ ∈ G∞.

Moreover we have R(Wv) (ϕH,(z)) = 0 by the equality R(Wv) (ϕH,(z)) = (R(W̄v)ϕ)H,(z). Thus the
uniqueness of Shintani functions (Proposition 11.1) yields a constant C such that

ϕH,(z)(gfing∞) = C
∏
v∈Σ∞

Ψ
(−z̄)
v (lv; gv) for all g∞ ∈ G∞.

By setting g∞ = 12, we have C = ϕH,(z)(gfin){
∏
v∈Σ∞

Ψ
(−z̄)
v (lv; 12)}−1 = ϕH,(z)(gfin). This completes

the proof. �

For s ∈ XS , we consider the element

TS(s) =
⊗
v∈S
{Tv − (q(1−sv)/2

v + q(1+sv)/2
v ) 1Kv

}

of the Hecke algebra
⊗

v∈SH(Gv,Kv). We also set

q(s) = inf{(Re(sv) + 1)/4 | v ∈ S }.

Proposition 12.2. Let l = (lv)v∈Σ∞ be a family of even positive integers, and suppose q(s) > 2|Re(z)|+
1. For ϕ ∈ C∞c (ZAGF \GA)[τl]

K0(n) such that R(W v)ϕ = 0 for all v ∈ Σ∞, the function g 7→
Ψ

(z)
l (n|s; g)ϕH,(z)(g) is integrable on HA\GA. Moreover, we have∫

HA\GA

Ψ
(z)
l (n|s; g)[R(TS(s))ϕH,(z)](g)dg = {

∏
v∈Σ∞

2lv−1Clv (z)}vol(Hfin\HfinK0(n))ϕH,(z)(12).

Proof. We follow the argument in the proof of [47, Lemma 6.3]. By Lemma 12.1, the integral in the
left-hand side is∫

HA\GA

{
∏
v∈Σ∞

Ψ(z)
v (lv; gv)Ψ

(−z)
v (lv; gv)}{

∏
v∈S

Ψ(z)
v (sv; gv)

∏
v∈S(n)

Φ
(z)
n,v(gv)

∏
v∈Σfin−(S∪S(n))

Φ
(z)
0,v(gv)}

× [R(TS(s))ϕH,(z)](gfin) dg.

Hence, by Proposition 11.5 and Lemma 5.2, we obtain the assertion. �

12.1. Automorphic smoothed kernels. Set l = infv∈Σ∞ lv for a family l = (lv)v∈Σ∞ ∈ (2N)Σ∞ .

In this subsection, we introduce the automorphic renormalized smoothed kernel function Ψ̂l
β,λ(n|α; g)

depending on a complex parameter λ and study its properties when l > 4 and 1/2 < Re(λ) < l/2− 1. It
is defined by the Poincaré series (12.1).

Let B denote the space of all the entire functions β(z) on C satisfying β(z) = β(−z) and that there
exist A > 0 and B ∈ R such that the estimate

|β(σ + it)| � e−A(|t|+B)2

, σ ∈ [a, b], t ∈ R

holds for any interval [a, b] ⊂ R. We have ClB ⊂ B by Lemma 11.4 (iii).
We define the renormalized Green function by

Ψl
β,λ(n|s; g) =

1

2πi

∫
Lσ

β(z)

z + λ
{Ψ(z)

l (n|s; g) + Ψ
(−z)
l (n|s; g)}dz

for σ ∈ R such that − inf(q(s)− 1,Re(λ)) < σ < q(s)− 1. The defining integral is absolutely convergent
and independent of σ as above. The normalization is meaningful to link Green functions and regularized
periods in Lemma 12.4.
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For any (β, λ, s) ∈ B × C × XS such that Re(λ) > 0 and q(s) > 1, we consider the average of the
renormalized Green function Ψl

β,λ(n|s; g) over the GF -orbits:

Ψl
β,λ(n|s; g) =

∑
γ∈HF \GF

Ψl
β,λ(n|s; γg), g ∈ GA.

Lemma 12.3. Suppose l > 4.

(1) The series Ψl
β,λ(n|s; g) converges absolutely and locally uniformly in (λ, s, g) ∈ {Re(λ) > 0} ×

{q(s) > 1}×GA. For a fixed (λ, s) in this region, Ψl
β,λ(n|s; g) is a continuous function in g ∈ GA,

which is left ZAGF -invariant and right K0(n)-invariant, and satisfies

Ψl
β,λ(n|s; gkv) = τlv (kv)Ψ

l
β,λ(n|s; g)

for all v ∈ Σ∞ and kv ∈ K0
v.

(2) Let (λ, s) be an element of C×XS such that 2 Re(λ) > 1, q(s) > 2 Re(λ)+1 and l/2 > Re(λ)+1.
Then, for any σ ∈ (1/2,Re(λ)), we have the estimate

|Ψl
β,λ(n|s; g)| � y(g)1−σ, g ∈ S1.

Proof. The same proof as in [47, Proposition 8.1] goes through with a minor modification; Lemma 11.3
is used in the course. The outline is as follows. For p > 0 and q > 1, set

Ξl,p,q,S([ t1 0
0 t2

](arv )v∈Σ∞([ 1 xv
0 1 ])v∈Σfin

k) = inf{|t1/t2|pA, |t1/t2|
−p
A }

∏
v∈Σ∞

(cosh 2rv)
−l/2

×
∏
v∈S

sup(1, |xv|v)−q
∏

v∈Σfin−S
δ(xv ∈ ov)

for t1, t2 ∈ A×, (rv)v∈Σ∞ ∈ RΣ∞ and (xv)v∈Σfin
∈ Afin, and set

Ξl,p,q,S(g) =
∑

γ∈HF \GF

Ξl,p,q,S(γg), g ∈ GA.

Since l/2 > 1, the series Ξl,p,q,S(g) is locally uniformly convergent in GA. Moreover, if 1 + 2q < p and
1 + p < l/2, we have

Ξl,p,q,S(g)� y(g)1−p, g ∈ S1.

Indeed, it is enough to replace q in the archimedean factors of Ξp,q,S used in [47, Lemma 3.5] with l/2.

We also note that the condition 1 + p < l/2 is needed to guarantee
∫
R cosh (2rv)

p−l/2+1drv <∞. In this

setting, Ξl,σ,q(s),S with 0 < σ < inf(Re(λ), q(s)− 1) gives a majorant of Ψl
β,λ(n|s) in the same way as [47,

Lemma 6.7]. Thus Ξl,σ,q(s),S is also a mojorant of Ψl
β,λ(n|s). �

For a fixed (λ, s) such that 2 Re(λ) > 1, q(s) > 2 Re(λ)+1 and l/2 > Re(λ)+1, the function Ψl
β,λ(n|s)

defines a distribution on ZAGF \GA by

〈Ψl
β,λ(n|s), ϕ〉 =

∫
ZAGF \GA

Ψl
β,λ(n|s; g)ϕ(g)dg, ϕ ∈ C∞c (ZAGF \GA)K0(n).

We remark that the absolute convergence of the integral is valid for any rapidly decreasing function ϕ by
Lemma 12.3 (2).
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12.2. Regularized periods. (For details, see [47, §7] and [41].) We recall the regularization of period
integrals along H explained in §3.2. Although such a regularization is not needed in the spectral side of
our relative trace formula since (12.1) is cuspidal, the regularization as below plays a role in the geometric
side in §15.

For a real valued character η of F×\A×, let xη and x∗η be as in §1.4. A continuous function ϕ on
ZAGF \GA is said to have the regularized (H, η)-period P ηreg(ϕ) ∈ C if, for any β ∈ B, the integral

P ηβ,λ(ϕ) =

∫
F×\A×

ϕ
(
[ t 0
0 1 ]

[
1 xη
0 1

])
η(tx∗η) {β̂λ(|t|A) + β̂λ(|t|−1

A )} d×t

converges absolutely when Re(λ) � 1 and is continued meromorphically in a neighborhood of λ = 0
with the constant term CTλ=0P

η
β,λ(ϕ) = P ηreg(ϕ)β(0) in its Laurent expansion at λ = 0. We note that if

ϕ ∈ C∞(ZAGF \GA) is rapidly decreasing on S1, then by [47, Lemma 7.3], the regularized period Preg(ϕ)
coincides with the (H,1)-period.

Lemma 12.4. Assume l > 4. Let (λ, s) be an element of C×XS such that 2 Re(λ) > 1, q(s) > 2 Re(λ)+1
and l/2 > Re(λ) + 1. Then, for any rapidly decreasing function ϕ ∈ C∞(ZAGF \GA)[τl]

K0(n) such that
R(W v)ϕ = 0 for all v ∈ Σ∞, we have

〈Ψl
β,λ(n|s), R(TS(s))ϕ〉 = {

∏
v∈Σ∞

2lv−1}vol(Hfin\HfinK0(n))P 1
βCl,λ

(ϕ),

where Cl(z) =
∏
v∈Σ∞

Clv (z).

Proof. The proof is given in the same way as [47, Lemma 8.2] with the aid of Lemma 11.3 and Proposition
12.2. We note that P 1

βCl,λ
(ϕ) is well-defined because βCl belongs to B. �

Assume l > 4. Given a holomorphic function α(s) on XS such that α(εs) = α(s) for all ε ∈ {±1}S , we
define the renormalized smoothed kernel

Ψ̂l
β,λ(n|α; g) =

(
1

2πi

)#S ∫
LS(c)

Ψl
β,λ(n|s; g)α(s)dµS(s)

for Re(λ) > 0 and c ∈ RS such that q(c) > sup(Re(λ) + 1, 2), where
∫
LS(c)

f(s) dµS(s) means the

multidimensional contour integral along the slice LS(c) oriented naturally, which is as in the beginning
of §7, with respect to the form dµS(s) =

∏
v∈S dµv(sv) with

dµv(sv) = 2−1 log qv (q(1+s)/2
v − q(1−s)/2

v ) dsv.

For Re(λ) > 0, let us consider the Poincaré series

Ψ̂l
β,λ(n|α; g) =

∑
γ∈HF \GF

Ψ̂l
β,λ(n|α; γg), g ∈ GA.(12.1)

In the same way as [47], we analyze this series and obtain the following.

Lemma 12.5. (1) The series Ψ̂l
β,λ(n|α; g) converges absolutely and locally uniformly in (λ, g) ∈

{Re(λ) > 0} × GA. The function g 7→ Ψ̂l
β,λ(n|α; g) is continuous on GA, left ZAGF -invariant,

and right K0(n)-invariant; moreover it satisfies

Ψ̂l
β,λ(n|α; gkv) = τlv (kv)Ψ̂

l
β,λ(n|α; g)(12.2)

for all v ∈ Σ∞ and kv ∈ K0
v.

(2) For Re(λ) > 0, the function Ψ̂l
β,λ(n|α; g) belongs to Lm(ZAGF \GA) for any m > 0 such that

m(1− Re(λ)) < 1.
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Proof. The argument in the proof of [47, Proposition 9.1] works with a minor modification; We use Ξl,p,q,S
and Ξl,p,q,S given in the proof of Lemma 12.3. �

Proposition 12.6. For 1/2 < Re(λ) < l/2− 1, the function Ψ̂l
β,λ(n|α; g) is cuspidal.

Proof. From Proposition 11.1 and Lemma 12.5, we have the equations

R(W v) Ψ̂l
β,λ(n|α; g) = 0, g ∈ GA,(12.3)

R(Ωv)Ψ̂
l
β,λ(n|α; g) = 2−1(l2v − 2lv)Ψ̂

l
β,λ(n|α; g), g ∈ GA(12.4)

for all v ∈ Σ∞. Hence, by (12.4), there exists f ∈ C∞c (GA) such that Ψ̂l
β,λ(n|α) ∗ f = Ψ̂l

β,λ(n|α) by [2,

Theorem 2.14]. By Lemma 12.5 (2), Ψ̂l
β,λ(n|α; g) belongs to L2(ZAGF \GA)K0(n). Thus, for any X ∈ g∞,

the derivative R(X)Ψ̂l
β,λ(n|α) = Ψ̂l

β,λ(n|α) ∗ R(−X)f also belongs to L2(ZAGF \GA)K0(n). Let V be

the (g∞,K∞)-submodule of L2(ZAGF \GA)K0(n) generated by Ψ̂l
β,λ(n|α). From (12.2) and (12.3), V is

decomposed into a finite sum of the discrete series representation �v∈Σ∞Dlv of PGL(2, F ⊗QR) of weight
(lv)v∈Σ∞ . By Wallach’s criterion [49, Theorem 4.3], the space V is contained in the cuspidal part of
L2(ZAGF \GA). �

By Proposition 12.6, for 1/2 < Re(λ) < l/2− 1, the function Ψ̂l
β,λ(n|α; g) has the spectral expansion

Ψ̂l
β,λ(n|α; g) =

∑
π∈Πcus(l,n)

∑
ϕ∈B(π;l,n)

〈Ψ̂l
β,λ(n|α)|ϕ〉L2ϕ(g).(12.5)

Here 〈·|·〉L2 is the L2-inner product on L2(ZAGF \GA) and B(π; l, n) is an orthonormal basis of Vπ[τl]
K0(n).

From the finite dimensionality of

{ϕ ∈ L2(ZAGF \GA)[τl]
K0(n) | R(W v)ϕ = 0 (∀v ∈ Σ∞)},

the sum in (12.5) is finite and the equality holds pointwisely for all g.

13. Spectral expansions

From this section until §18, we fix a family l = (lv)v∈Σ∞ ∈ (2N)Σ∞ , an ideal n ⊂ o, a character η of
F×\A× such that η2 = 1 whose conductor fη is relatively prime to n, and a finite subset S ⊂ Σfin−S(nfη).

Using the spectral expansion (12.5), we show that Ψ̂l
β,λ(n|α; g) has an entire extension to the whole λ-

plane. As the value at λ = 0 of the entire extension, we define the regularized kernel Ψl
reg(n|α; g) and

obtain its spectral expression. The upshot of this section is Proposition 13.6, which gives the period
integral of the regularized kernel.

13.1. Extremal Whittaker vectors of discrete series. For v ∈ Σ∞, let πv be the discrete series
representation of PGL(2,R) of minimal K0

v-type lv > 2. Let Vπv denote the Whittaker model of πv
with respect to the character ψFv (see §1.3). It is known that Vπv [τlv ] contains a unique vector φlv0,v
characterized by the formula

φlv0,v
([
y 0
0 1

])
= 2|y|lv/2v e2πyδ(y < 0)(13.1)

for any y ∈ R×. We remark that φlv0,v is extremal, i.e., πv(W )φlv0,v = 0, and Vπv [τlv ] = Cφlv0,v. The local

standard L-factor of πv is given by L(s, πv) = ΓC(s + (lv − 1)/2), and the local epsilon factor of πv is
given as ε(s, πv ⊗ sgnm, ψFv ) = ilv for m ∈ {0, 1}.
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13.2. Construction of a basis. Let (π, Vπ) be an irreducible cuspidal automorphic representation of
GA with trivial central character such that Vπ ⊂ L2(ZAGF \GA). We fix a family {(πv, Vπv )}v∈ΣF of
unitarizable irreducible admissible representations of Gv with Vπv being contained in the ψFv -Whittaker
functions on Gv such that π ∼=

⊗
v∈ΣF

πv. Given an ideal n of o and l = (lv)v∈Σ∞ ∈ (2N)Σ∞ , let

Πcus(l, n) denote the set of all those cuspidal representations π such that πv ∼= Dlv for any v ∈ Σ∞ and
the conductor fπ of π divides n.

For a fixed π ∈ Πcus(l, n), we write Λπ(n) for Λ0
π(n) =

∏n
k=1 Map(Sk(nf−1

π ), {0, . . . , k}), where n is the
maximal non-negative integer m such that Sm(nf−1

π ) 6= ∅. By the same procedure as in §3.1, corresponding
to each ρ = (ρk)nk=1 ∈ Λπ(n), we have a cusp form ϕl,π,ρ ∈ Vπ[τl]

K0(n) as the image of the decomposable
tensor ⊗

v∈Σ∞

φlv0,v ⊗
n⊗
k=1

⊗
v∈Sk(nf−1

π )

φρk(v),v ⊗
⊗

v∈Σfin−S(nf−1
π )

φ0,v

by the isomorphism Vπ ∼=
⊗

v∈ΣF
Vπv , where for each v ∈ Σfin, the system {φk,v} is the basis of V

K0(nov)
πv

constructed in [41]. In this way, we have an orthogonal basis {ϕl,π,ρ | ρ ∈ Λπ(n)} of the finite dimensional

space Vπ[τl]
K0(n) equipped with the L2-inner product on ZAGF \GA (cf. [41, Propdosition 17]). The

vector ϕl,π,ρ0
with ρ0(v) = 0 for all v ∈ Σfin is denoted by ϕnew

l,π .

We note that if ϕ ∈ C∞(ZAGF \GA) is rapidly decreasing on S1, then by [47, Lemma 7.3], the period
P ηreg(ϕ) coincides with the global zeta integral Z∗(1/2, η, ϕ) =

∫
F×\A× ϕ

(
[ t 0
0 1 ]

[
1 xη
0 1

])
η(tx∗η) d×t, which

is absolutely convergent. The following proposition is obtained by computing the global zeta integral;
the proof is a minor modification of that of [41, Main Theorem A].

Proposition 13.1. For any ρ ∈ Λπ(n), ϕl,π,ρ has the regularized (H, η)-period given by

P ηreg(ϕl,π,ρ) = Z∗(1/2, η, ϕl,π,ρ) = (−1)ε(η)G(η){
∏

v∈S(nf−1
π )

Qπvρ(v),v(ηv, 1)}L(1/2, π ⊗ η).

Here we set ρ(v) = ρk(v) for each v ∈ Sk(nf−1
π ) and Qπvρ(v),v(ηv, 1) is the constant given in Proposition

3.1 (cf. [41, Main Theorem A]).

Remark: Here we note that, throughout [41], it is assumed that ηv(−1) = 1 for all v ∈ Σ∞, and hence
(−1)ε(η) does not appear in [41, Main Theorem A].

Set

Pη(π; l, n) =
∑

ϕ∈B(π;l,n)

P 1
reg(ϕ)P ηreg(ϕ),

where B(π; l, n) is an orthonormal basis of Vπ[τl]
K0(n).

Lemma 13.2. The sum Pη(π; l, n) is independent of the choice of B(π; l, n). We have

Pη(π; l, n) = D
−1/2
F (−1)ε(η)G(η)wηn(π)

L(1/2, π)L(1/2, π ⊗ η)

‖ϕnew
l,π ‖2

,

and that the value (−1)−ε(η)G(η)−1Pη(π; l, n) is non-negative. Here wηn(π) is the explicit non-negative
constant given in Lemma 3.6. In particular, if η satisfies ηv($v) = −1 for all v ∈ S(n), then wηn(π) = 0
unless nf−1

π is a square of integral ideal.

Proof. With the aid of Proposition 13.1, we obtain the assertion in the same way as Lemma 3.6. The
non-negativity of (−1)−ε(η)G(η)−1Pη(π; l, n) follows from wηn(π) > 0 combined with the non-negativity of
L(1/2, π)L(1/2, π ⊗ η) proved in [18]. �

The sign of the functional equation of the L-function L(s, π)L(s, π ⊗ η) is given as follows.
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Lemma 13.3. We have ε(1/2, π)ε(1/2, π⊗ η) = (−1)ε(η)η̃(fπ). In particular, L(1/2, π)L(1/2, π⊗ η) = 0
unless (−1)ε(η)η̃(fπ) = 1.

Proof. Since lv is even for all v ∈ Σ∞, by virtue of Lemma 3.7, we have

ε(1/2, π)ε(1/2, π⊗η) =
∏
v∈Σ∞

i2lv
∏

v∈S(fη)

ηv(−1)
∏

v∈S(fπ)

ηv($
c(πv)
v ) = {

∏
v∈Σfin

ηv(−1)}η̃(fπ) = (−1)ε(η)η̃(fπ).

By the functional equation, we are done. �

13.3. Adjoint L-functions : holomorphic case. Let E(ν, g) = E1,ρ0
(ν, g) =

∑
γ∈BF \GF y(γg)(ν+1)/2

for Re(ν) > 1 be the K-spherical Eisenstein series on GA (see §3.7).

Lemma 13.4. For any π ∈ Πcus(l, n),∫
ZAGF \GA

ϕnew
l,π (g)ϕnew

l,π (g)E(2s− 1, g)dg(13.2)

={
∏
v∈Σ∞

21−lv}
N(fπ)sD

s−3/2
F

[Kfin : K0(fπ)]

ζF (s)L(s, π,Ad)

ζF (2s)

∏
v∈Sπ

q
dv(3/2−s)
v Zv(s)

q
c(πv)(s−1)
v L(s, πv,Ad)

1 + q−1
v

1 + q−sv

for Re(s) � 0 and ‖ϕnew
l,π ‖2 = 2{

∏
v∈Σ∞

21−lv}N(fπ)[Kfin : K0(fπ)]−1LSπ (1, π,Ad). Here we set Sπ :=

{v ∈ Σfin| ordv(fπ) > 2} and Zv(s) :=
∫
Kv

∫
F×v

φ0,v ([ t 0
0 1 ]k)φ0,v ([ t 0

0 1 ]k)|t|s−1
v d×tdk for v ∈ Σfin.

Proof. By the standard procedure, we see that the left-hand side of (13.2) is a product of the integrals

Zv(s) over all v ∈ ΣF , where Zv(s) for each v ∈ Σ∞ is defined for φlv0,v in the same way as the non-

archimedean case. If v ∈ Σ∞, using (13.1), we easily have Zv(s) = 21−lvΓR(s)ΓR(2s)
−1
L(s, πv,Ad).

Together with the computations at finite places (cf. [47, Lemma 2.14 and Corollary 2.15] and Lemma
3.8) , this completes the proof. �

Remark : Nelson, Pitale and Saha [32] also considered the integrals Zv(s) and gave explicit formulas of
Zv(s). However, as already remarked in [32, 1.3], it seems difficult to give a simple formula of Zv(s) for
v ∈ Sπ.

13.3.1. Spectral parameters. Let π ∈ Πcus(l, n). For any v ∈ Σfin − S(fπ), the v-th component πv of π is
isomorphic to the Kv-spherical principal series representation

Iv(νv) = IndGvBv (| · |νv/2v � | · |−νv/2v )

where νv belongs to i[0, 2π(log qv)
−1] ∪ {x + iy | x ∈ (0, 1), y ∈ {0, 2π(log qv)

−1}}. The point νS(π) =
(νv)v∈S of XS is called the spectral parameter of π at S.

13.4. The spectral side. We can describe the coefficients of Ψ̂l
β,λ(n|α) in the L2-expansion (12.5) in

terms of (H,1)-period integrals and the spectral parameters of representations in Πcus(l, n).

Lemma 13.5. Let π ∈ Πcus(l, n) and νS(π) = (νv(π))v∈S the spectral parameter of π at S. Then, for
any ϕ ∈ Vπ[τl]

K0(n) and for 1/2 < Re(λ) < l/2− 1, we have

〈Ψ̂l
β,λ(n|α)|ϕ〉L2 = (−1)#S{

∏
v∈Σ∞

2lv−1}D−1/2
F [Kfin : K0(n)]−1α(νS(π))P 1

βCl,λ
(ϕ).

Proof. In the same way as [47, Lemma 9.2] with the aid of the majorant Ξl,Re(λ)−ε,q(c),S for any suffi-
ciently small ε > 0 (Note: in the proof of [47, Lemma 9.2], the majorant of the integral (9.3) should be
ΞRe(λ)−ε,q(c),Sfin

), we have

〈Ψ̂l
β,λ(n|α)|ϕ〉L2 =

(
1

2πi

)#S ∫
LS(c)

〈Ψl
β,λ(n|s), ϕ̄〉α(s)dµS(s)
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for any rapidly decreasing function ϕ ∈ C∞(ZAGF \GA)[τl]
K0(n), where q(c) is sufficiently large. Con-

trary to [47, Lemma 9.2], the condition Re(λ) > 1 is not needed. Indeed, in the proof of [47, Lemma
9.2], the estimate |ϕ(g)| � ||g||1+ε

A is replaced with |ϕ(g)| � ||g||−mA for any m > 0, and moreover,∫∞
1
y−Re(λ)+1+2εd×y is replaced with

∫∞
1
y−Re(λ)−m+εd×y (Note: in the proof of [47, Lemma 9.2],∫∞

1
y−Re(λ)+1d×y should be

∫∞
1
y−Re(λ)+1+2εd×y). Thus, 〈Ψ̂l

β,λ(n|α)|ϕ〉L2 is equal to(
1

2πi

)#S ∫
LS(c)

〈Ψl
β,λ(n|s), R(TS(s))ϕ̄〉

× {
∏
v∈S

(q(1+o)/2
v + q(1−νv(π))/2

v − q(1+sv)/2
v − q(1−sv)/2

v )}−1α(s)dµS(s).

Here we use q
(1+νv(π))/2
v + q

(1−νv(π))/2
v ∈ R. By Lemma 12.4, 〈Ψl

β,λ(n|s), R(TS(s))ϕ̄〉 is independent of

s, and hence [47, Lemma 9.5] works. We also note vol(Hfin\HfinK0(n)) = D
−1/2
F [Kfin : K0(n)] (cf. [47,

Lemma 8.3]). As a result, we obtain the desired formula. �

By this lemma and (12.5), we have

Ψ̂l
β,λ(n|α; g) =(−1)#S{

∏
v∈Σ∞

2lv−1}D−1/2
F [Kfin : K0(n)]−1

×
∑

π∈Πcus(l,n)

∑
ϕ∈B(π;l,n)

α(νS(π))P 1
βCl,λ

(ϕ)ϕ(g), g ∈ GA.

The integral P 1
βCl,λ

(ϕ) is continued to an entire function in λ for any cusp form ϕ by [47, Lemma 7.3]. As a

finite linear combination of such, the function Ψ̂l
β,λ(n|α; g) has a holomorphic analytic continuation to the

whole λ-plane. Since CTλ=0P
η
βCl,λ

(ϕ̄) = Cl(0)P ηreg(ϕ̄)β(0), we can define the regularized automorphic

smoothed kernel Ψ̂l
reg(n|α; g) by the relation

CTλ=0Ψ̂
l
β,λ(n|α; g) = Ψ̂l

reg(n|α; g)β(0)

for any β ∈ B. Indeed, we have the expression

Ψ̂l
reg(n|α; g) =

(−1)#S{
∏
v∈Σ∞

2lv−1}Cl(0)D
−1/2
F

[Kfin : K0(n)]

∑
π∈Πcus(l,n)

∑
ϕ∈B(π;l,n)

α(νS(π))P 1
reg(ϕ)ϕ(g),

which is valid pointwisely with the summation being finite. From this, the regularized (H, η)-period

P ηreg(Ψ̂l
reg(n|α)) is explicitly described as follows.

Proposition 13.6. Suppose l > 4. The function Ψ̂l
reg(n|α) has the regularized (H, η)-period given by

P ηreg(Ψ̂l
reg(n|α)) =(−1)#S{

∏
v∈Σ∞

2π
Γ(lv − 1)

Γ(lv/2)2
}D−1

F [Kfin : K0(n)]−1 × (−1)ε(η)G(η)

×
∑

π∈Πcus(l,n)

wηn(π)
L(1/2, π)L(1/2, π ⊗ η)

2N(fπ)[Kfin : K0(fπ)]−1LSπ (1, π,Ad)
α(νS(π)).

Proof. By cuspidality of ϕ ∈ B(π; l, n), P ηreg(ϕ) becomes the usual absolutely convergent integral∫
F×\A×

ϕ
(
[ t 0
0 1 ]

[
1 xη
0 1

])
η(tx∗η) d×t.
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Thus, by term wise integration, we have

P ηreg(Ψ̂l
reg(n|α)) =(−1)#S{

∏
v∈Σ∞

2lv−1}Cl(0)D
−1/2
F [Kfin : K0(n)]−1

×
∑

π∈Πcus(l,n)

∑
ϕ∈B(π;l,n)

P 1
reg(ϕ)P ηreg(ϕ)α(νS(π)).

Then we obtain the assertion by Lemma 11.4 (ii), Proposition 13.1, Lemmas 13.2 and 13.4. �

14. Geometric expansions

Suppose l = infv∈Σ∞ lv > 4. In this section and the next, we compute the quantity P ηreg(Ψ̂l
reg(n|α)) by

using the series expression (12.1) (cf. §9). The firt step is to break the sum in (12.1) over HF \GF to a sum
of subseries according to double cosets HF δHF . For δ ∈ GF , we put St(δ) := HF ∩ δ−1HF δ. Then, the
following elements of GF form a complete set of representatives of the double coset space HF \GF /HF :

e = [ 1 0
0 1 ], w0 = [ 0 −1

1 0 ],

u = [ 1 1
0 1 ], u = [ 1 0

1 1 ], uw0 = [ 1 −1
1 0 ], uw0 = [ 0 −1

1 −1 ],

δb = [ 1+b−1 1
1 1

], b ∈ F× − {−1}.
Moreover, we have St(e) = St(w0) = HF and St(δ) = ZF for any δ ∈ {u, u, uw0, uw0} ∪ {δb|b ∈ F× −
{−1}}. (See [35, Lemma 1] and [47, Lemma 11.1]). Thus we obtain the following expression for Re(λ) > 0:

Ψ̂l
β,λ

(
n|α; [ t 0

0 1 ][ 1 xη
0 1

]
)

=
∑
δ

J lδ(β, λ, α; t),

where δ runs through the double coset representatives listed above and, for each such δ, J lδ(β, λ, α; t) is

the sum of Ψ̂l
β,λ

(
n|α; δγ[ t 0

0 1 ][ 1 xη
0 1

]
)

for γ ∈ St(δ)\HF .

Lemma 14.1. The function λ 7→ J le(β, λ, α; t) and λ 7→ J lw0
(β, λ, α; t) are entire on C. Moreover their

values at λ = 0 are J lid(α; t)β(0) and il̃δ(n = o)J lid(α; t)β(0), respectively, where

J lid(α; t) = δ(fη = o)

(
1

2πi

)#S ∫
LS(c)

Υ1
S(s)α(s)dµS(s)

with l̃ =
∑
v∈Σ∞

lv and

Υ1
S(s) =

∏
v∈S

(1− q−(sv+1)/2
v )−1(1− q(sv+1)/2

v )−1.

Proof. Since Ψ
(0)
v (lv; 12) = 1 for all v ∈ Σ∞, the assertion is proved in the same way as [47, Lemma

11.2]. �

We put

J lu(β, λ, α; t) = J lu(β, λ, α, t) + J luw0
(β, λ, α, t)

and

J lū(β, λ, α; t) = J luw0
(β, λ, α, t) + J lū(β, λ, α, t).

Lemma 14.2. For ∗ ∈ {u, ū}, the function λ 7→ J l∗(β, λ, α; t) on Re(λ) > 0 has a holomorphic continu-
ation to C whose value at λ = 0 is equal to J l∗(α; t)β(0), where

J lu(α; t) =

(
1

2πi

)#S ∑
a∈F×

∫
LS(c)

{
Ψ

(0)
l

(
n|s; [ 1 at−1

0 1
][ 1 xη

0 1
]
)

+ Ψ
(0)
l

(
n|s; [ 1 0

at−1 1
][ 1 0
−xη 1 ]w0

)}
α(s)dµS(s)
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and

J lū(α; t) =

(
1

2πi

)#S ∑
a∈F×

∫
LS(c)

{
Ψ

(0)
l

(
n|s; [ 1 0

at 1 ][ 1 xη
0 1

]
)

+ Ψ
(0)
l

(
n|s; [ 1 at

0 1 ][ 1 0
−xη 1 ]w0

)}
α(s)dµS(s).

Proof. We follow the proof of [47, Lemma 11.3]. Take σ > 0 such that l/2 > σ + 1. Let us examine

J lu(β, λ, α; t). First we consider the sum of the functions Ψ̂l
β,λ

(
n|α;u[ t 0

0 1 ][ a
−1 0
0 1

][ 1 xη
0 1

]
)

over all a ∈ F×.
We have

Ψ̂l
β,λ

(
n|α;u[ t 0

0 1 ][ a
−1 0
0 1

][ 1 xη
0 1

]
)

=

(
1

2πi

)#S ∫
LS(c)

{
1

2πi

∫
Lσ

β(z)

z + λ
{|t|zAΨ(z)

(
n|s; [ 1 at−1

0 1
][ 1 xη

0 1
]
)

+ |t|−zA Ψ(−z)(n|s; [ 1 at−1

0 1
][ 1 xη

0 1
])}dz

}
α(s)dµS(s).

Here c is taken so that q(c) is sufficiently large. There exists an ideal a of F such that the estimate∣∣∣Ψ(±z)
l

(
n|s; [ 1 at−1

0 1
][ 1 xη

0 1
]
)∣∣∣� f(a), a ∈ F×, (s, z) ∈ LS(c)× Lσ

holds, where

f(a) =
∏
v∈Σ∞

|1 + iavt
−1
v |σ−lv/2v

∏
v∈S

sup(1, |avt−1
v |v)−(2q(c)−σ)

∏
Σfin−S

δ(av ∈ aov), a ∈ A.

Thus to establish the absolute convergence of the sum of Ψ̂l
β,λ

(
n|α;u[ t 0

0 1 ][ a
−1 0
0 1

][ 1 xη
0 1

]
)

over a ∈ F×,

it is enough to show
∑
a∈F× f(a) < +∞. The convergence of the latter sum in turn follows from the

convergence of the integral
∫
A f(a)da, which is a product of the archimedean integrals for all v ∈ Σ∞

convergent when lv/2− σ > 1 and the non-archimedean ones convergent for sufficiently large q(c).

The sum of the functions Ψ̂l
β,λ

(
n|α; ūw0[ t 0

0 1 ][ a
−1 0
0 1

][ 1 xη
0 1

]
)

over a ∈ F× is analyzed similarly. By the
estimate ∣∣∣Ψ(±z)

l

(
n|s; [ 1 0

at−1 1
][ 1 0
−xη 1 ]w0

)∣∣∣� f(a), a ∈ F×, (s, z) ∈ LS(c)× Lσ,

the problem is reduced to the convergence of the same series
∑
a∈F× f(a) as above. Hence the assertion

on J lu(β, λ, α; t) is obtained. The integral J lū(β, λ, α; t) is examined in the same way. This completes the
proof. �

14.1. Hyperbolic terms. We consider the convergence of

J lhyp(β, λ, α; t) =
∑

b∈F×−{−1}

J lδb(β, λ, α; t).

Let v ∈ Σ∞. For t ∈ F×v , b ∈ F×v − {−1} and σ, ρ ∈ R, set

f (σ)(lv; t, b) = {(b+ 1)2t2 + b2}σ/2−lv/4(1 + t−2)−σ/2−lv/4|t|−2σ
v

and

Mv(σ, ρ, lv; b) = |b+ 1|−(σ−ρ)−
v |b|lv/4−σ/2v ×

∫
F×v

f (σ)(lv; t, b)|t|σ+ρ
v d×t,

where q− = inf(0, q) for q ∈ R.

Lemma 14.3. Let v ∈ Σ∞ and let lv > 2 be an even integer. Then, for any σ ∈ R we have∣∣∣Ψ(z)
v

(
lv; [ 1+b−1 1

1 1
][ t 0

0 1 ]
)∣∣∣ 6 |b|−σv |t|σveπ|Im(z)|/2f (σ)

v (lv; t, b), t ∈ F×v , b ∈ F×v − {−1}, z ∈ Lσ.

Proof. By writing the Iwasawa decomposition [ 1+b−1 1
1 1

][ t 0
0 1 ] =

[
r 0
0 r−1

]
[ 1 x
0 1 ]k explicitly, we have |1+ix| =

(1 + t−2)1/2((b+ 1)2t2 + b2)1/2. Then the assertion follows from Proposition 11.1 and Lemma 11.2. �
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Lemma 14.4. Let v ∈ Σ∞ and lv ∈ 2Z>2. Let σ, ρ ∈ R. Then the estimate

Mv(σ, ρ, lv; b)� |b+ 1|−lv/4+σ/2−(σ−ρ)−
v , b ∈ F×v − {−1}(14.1)

holds if lv/4 > |ρ| − σ/2 and lv/4 > σ/2. Moreover, for ε > 0 and c ∈ R, the function |b(b +

1)|εv |b|
−lv/4+(c+1)/4
v Mv(σ, ρ, lv; b) in b ∈ Fv is locally bounded if∣∣|ρ| − σ∣∣+ (σ − ρ)− < ε/3 < 1, lv/4 > σ/2− (σ − ρ)− + 1, (c+ 1)/4 > σ/2− (σ − ρ)−.(14.2)

Proof. The assertion is proved in a similar way to [47, Lemma 11.14]. By b2 + t2(b+ 1)2 > 2|b| |b+ 1| |t|
and σ/2− lv/4 < 0, we estimate

Mv(σ, ρ, lv; b)�|b+ 1|−(σ−ρ)− |b|lv/4−σ/2 ×
∫ ∞

0

{|b||b+ 1||t|}σ/2−lv/4(1 + t−2)−σ/2−lv/4|t|−σ+ρd×t

=|b+ 1|−lv/4+σ/2−(σ−ρ)−
∫ ∞

0

|t|ρ+lv/4+σ/2(1 + t2)−σ/2−lv/4d×t.

The integral converges absolutely if lv/4 > |ρ| − σ/2. In the same way as in the proof of [47, Lemma
11.14], we have

|b(b+ 1)|ε |b|−lv/4+(c+1)/4Mv(σ, ρ, lv; b)

�|b+ 1|σ−|ρ|−(σ−ρ)−+ε/3|b|(c+1)/4+σ/2−|ρ|+ε/3 |b(b+ 1)|ε/3m(r; b(b+ 1)),

where r = lv + 2σ − 4|ρ| − 4ε/3 and m(r; b(b + 1)) =
∫∞

0
[(1 + t−2)(b2 + t2(b + 1)2}]−r/4 d×t. By [47,

Lemma 15.5], the function |b(b + 1)|εm(r; b(b + 1)) (with r > 0) is locally bounded on Fv. From this,
|b(b+ 1)|ε|b|−lv/4+(c+1)/4Mv(σ, ρ, lv; b) is also locally bounded on Fv if

σ − |ρ| − (σ − ρ)− + ε/3 > 0, r = lv + 2σ − 4|ρ| − 4ε/3 > 0, (c+ 1)/4 + σ/2− |ρ|+ ε/3 > 0.

This condition is satisfied by (14.2). Thus, under (14.2), the estimate (14.1) is extendable to Fv; from
this, the last assertion is obvious. �

Let c = (cv)v∈S ∈ RS , l = (lv)v∈Σ∞ ∈ (2Z>2)Σ∞ , t ∈ A×, b ∈ F× −{−1} and σ, ρ ∈ R. For v ∈ S, we
put

f (σ)
v (cv; tv, b) = inf(1, |tv|−2

v )σ

{
sup(1, |tv|−1

v |b|v)−(cv+1)/2+σ (|tv|v 6 1),

sup(1, |tv|v|b+ 1|v)−(cv+1)/2+σ (|tv|v > 1),

Mv(σ, ρ, c; b) = sup(1, |b+ 1|v)−(c+1)/4+σ/2+|σ−ρ|,

and for v ∈ Σfin − S, we put

f (σ)
v (tv, b) = inf(1, |tv|−2)σ δ(b ∈ p−f(ηv)

v , q−2f(ηv)
v |b|v 6 |tv|v 6 |b+ 1|−1

v ).

Then, define

N(n|σ, l, c; t, b) =|t|σA
∏
v∈Σ∞

f (σ)
v (lv; tv, b)

∏
v∈S

f (σ)
v (cv; tv, b)

×
∏

v∈S(n)

δ(tv ∈ nov)f
(σ)
v (tv, b)

∏
v∈Σfin−(S∪S(n))

f (σ)
v (tv, b),

M(n|σ, ρ, l, c; b) =
∏
v∈Σ∞

|b|−lv/4+σ/2
v Mv(σ, ρ, lv; b)

∏
v∈S
|b|−(cv+1)/4+σ/2
v Mv(σ, ρ; cv, b)

×
∏

v∈Σfin

sup(1, |b|σ+ρ
v )

∏
v∈Σfin−S

δ(b ∈ f−1
η nov)
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and Mε(n|σ, ρ, l, c; b) = {
∏
v∈Σ∞

|b(b + 1)|εv}M(n|σ, ρ, l, c; b) for ε > 0. By closely following [47, §11.4],
we have the following series of lemmas.

Lemma 14.5. If q(c) > |σ|+ 1, then we have∣∣∣Ψ(z)
l

(
n|s; δb[ t 0

0 1 ][ 1 xη
0 1

]
)∣∣∣� N(n|σ, l, c; t, b)edFπ|Im(z)|/2, (z, s) ∈ Lσ × LS(c), b ∈ F× − {−1}, t ∈ A×

with the implied constant is independent of n.

Proof. This follows from Lemma 14.3, [47, Corollary 11.6, Lemma 11.10] and [47, Corollary 11.7], which
can be generalized to the case of arbitrary ideals n; in the assertion of [47, Corollary 11.7], the factor
δ(t ∈ pv) is replaced with δ(t ∈ nov). �

Lemma 14.6. If q(c) > |σ|+ |ρ|+ 1, l/4 > sup(σ/2, |ρ| − σ/2) and σ 6= ±ρ, then we have∫
A×

N(n|σ, l, c; t, b)|t|ρAd
×t�ε Mε(n|σ, ρ, l, c; b)N(n)ε, b ∈ F× − {−1}

for any ε > 0, with the implied constant independent of the ideal n.

Proof. We can apply the same argument in [47, Lemma 11.16] by using lι in place of cι + 1 for all
ι ∈ Σ∞. �

Lemma 14.7. Let U be a compact subset of A×. If q(c) > |σ| + |ρ| + 1, l/4 > sup(σ/2, |ρ| − σ/2) and
σ 6= ±ρ, then we have∑

t∈F×
N(n|σ, l, c; t, b)�ε Mε(n|σ, ρ, l, c; b) N(n)ε, b ∈ F×, t ∈ U

for any ε > 0, with the implied constant independent of the ideal n.

Proof. This follows from Lemma 14.6 and the argument in [47, Corollary 11.17]. �

Lemma 14.8. If σ + ρ > −1, σ 6= ±ρ, (c + 1)/4 > 5|σ|/2 + 2|ρ| + 1, l/4 > |σ| + |ρ| + 1 and l/2 >
(c+ 1)/4 + 3|σ|/2 + |ρ|+ 1 hold, then, we have the estimate∑

b∈F×−{−1}

Mε(n|σ, ρ, l, c; b)� N(n)−(c+1)/4+σ/2+|σ+ρ|

for some ε > 0 such that
∣∣|ρ| − σ∣∣+ (σ − ρ)− < ε/3 < 1 and l/2 > (c+ 1)/4 + 3|σ|/2 + |ρ|+ 1 + 2ε, with

the implied constant independent of n. Here c = (cv)v∈S with cv = c (∀v ∈ S).

Proof. We give a proof in a similar way to [47, Lemma 11.19], replacing cι + 1 with lι for all ι ∈ Σ∞.
Under the assumption on l, σ, ρ, c in this lemma, the series∑

b∈o(S)−{−1}

{
∏
v∈Σ∞

|b|−lv/4+(c+1)/4
v Mv(σ, ρ, lv; b)}{

∏
v∈S

sup(1, |b|σ+ρ
v )Mv(σ, ρ, cv; b)} |N(b(b+ 1))|ε,

which is denoted by AS(σ, ρ, l, c), converges for some ε > 0 such that
∣∣|ρ| − σ∣∣+ (σ − ρ)− < ε/3 < 1 and

l/2 > (c + 1)/4 + 3|σ|/2 + |ρ| + 1 + 2ε. Here o(S) denotes the S-integer ring of F . Indeed, this follows
from Lemma 14.4 and [47, Lemma 11.18]. By noting the Artin product formula |b|A = 1 for b ∈ F×, we
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have ∑
b∈F×−{−1}

Mε(n|σ, ρ, l, c; b)

=
∑

b∈f−1
η no(S)−{0,−1}

{
∏

v∈Σfin

sup(1, |b|σ+ρ
v )}{

∏
v∈S
|b|−(c+1)/4+σ/2
v Mv(σ, ρ, c; b)}

× {
∏
v∈Σ∞

|b|−lv/4+σ/2Mv(σ, ρ, lv; b)}|N(b(b+ 1))|ε

=
∑

b∈f−1
η no(S)/o(S)×

b 6=0,−1

{
∏

v∈Σfin−S
sup(1, |b|σ+ρ

v )|b|(c+1)/4−σ/2
v }

×
∑

u∈o(S)×

{
∏
v∈Σ∞

|ub|−lv/4+(c+1)/4Mv(σ, ρ, lv;ub)}{
∏
v∈S

sup(1, |ub|σ+ρ
v )Mv(σ, ρ, c;ub)}

× |N(ub(ub+ 1))|ε

�
∑

b∈f−1
η no(S)/o(S)×

b 6=0,−1

{
∏

v∈Σfin−S
sup(1, |b|σ+ρ

v )|b|(c+1)/4−σ/2
v } ×AS(σ, ρ, l, c).

We note that the series in the last as above is majorized by N(n)−(c+1)/4+σ/2+|σ+ρ| as in the proof of [47,
Lemma 11.19]. �

Lemma 14.9. Let l = (lv)v∈Σ∞ ∈ (2Z>2)Σ∞ and c, σ ∈ R. Assume the following conditions:

• l > 6,
• σ > −1,
• (c+ 1)/4 > 9|σ|/2 + 1,
• l/2 > (c+ 1)/4 + 5|σ|/2 + 1.

Then, for any compact subset U of A×, the series∑
b∈F×−{−1}

∑
a∈F×

∣∣∣Ψ(z)
l

(
n|s; δb[ at 0

0 1 ][ 1 xη
0 1

]
)∣∣∣

converges uniformly in (t, z, s) ∈ U×Lσ×LS(c), and there exists ε > 0 such that, for any ρ ∈ R satisfying
0 < ||ρ| − σ| < ε and σ + ρ > −1, the integral∑

b∈F×−{−1}

∫
t∈A×

∣∣∣Ψ(z)
l

(
n|s; δb[ t 0

0 1 ][ 1 xη
0 1

]
)∣∣∣ |t|ρAd×t

converges uniformly in (z, s) ∈ Lσ × LS(c).

Proof. By assumption, we can take ρ ∈ R such that (c + 1)/4 > 5|σ|/2 + 2|ρ| + 1, σ + ρ > −1, l/4 >
|σ| + |ρ| + 1 and l/2 > (c + 1)/4 + 3|σ|/2 + |ρ| + 1 (we can take ρ = 0 if σ > −1 and σ 6= 0). Thus
the assertion follows from Lemmas 14.5, 14.6, 14.7, and 14.8. We remark that the assumption l > 6 is
indispensable in our estimation of hyperbolic terms as above. Indeed, the third and the fourth inequalities
in Lemma 14.9 imply l/2 > 7|σ|+ 2, and hence l > 4. �

Lemma 14.10. Suppose l > 6. The function J lhyp(β, λ, α; t) on Re(λ) > 1 has a holomorphic continua-

tion to C whose value at λ = 0 equals J lhyp(α; t)β(0), where

J lhyp(α; t) =
∑

b∈F×−{−1}

∑
a∈F×

Ψ̂
(0)
l

(
n|α; δb[ at 0

0 1 ][ 1 xη
0 1

]
)
,
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where we put

Ψ̂
(z)
l (n|α; g) =

(
1

2πi

)#S ∫
LS(c)

Ψ
(z)
l (n|s; g)α(s)dµS(s)

for c ∈ RS such that q(c) > |Re(z)|+1 (cf. §7). The series converges absolutely and uniformly in t ∈ A×.

Proof. This follows from Lemma 14.9 in the same way as [47, Lemma 11.21]. �

From Lemmas 14.1, 14.2 and 14.10, we have

Ψ̂l
reg

(
n|α; [ t 0

0 1 ][ 1 xη
0 1

]
)

= (1 + il̃δ(n = o))J lid(α; t) + J lu(α; t) + J lū(α; t) + J lhyp(α; t)(14.3)

for any t ∈ A×.

15. Geometric side

Suppose l = infv∈Σ∞ lv > 6. We fix a holomorphic function α(s) on XS such that α(εs) = α(s) for any
ε ∈ {±1}S . Let β ∈ B as before. For \ ∈ {id,u, ū,hyp}, we set

Jη\ (l;β, λ;α) =

∫
F×\A×

J l\(α; t){β̂λ(|t|A) + β̂λ(|t|−1
A )}η(tx∗η)d×t.

In this section, we shall show that this integral converges absolutely when Re(λ) � 1 and has a mero-
morphic continuation to a neighborhood of λ = 0; at the same time, we determine the constant term in
its Laurent expansion at λ = 0. As a result, by the identity

P ηβ,λ(Ψ̂l
reg(n|α)) = Jηid(l;β, λ;α) + il̃δ(n = o)Jηid(l;β, λ;α) + Jηu(l;β, λ;α) + Jηū(l;β, λ;α) + Jηhyp(l;β, λ;α)

obtained from (14.3), we have another expression of P ηreg(Ψ̂l
reg(n|α)) already computed in Proposition 13.6

by means of the spectral expansion.
For the term Jηid(l;β, λ;α), we have the following lemma, which is proved in the same way as [47,

Lemma 11.2].

Lemma 15.1. For Re(λ) > 0, the integral Jηid(l;β, λ;α) converges absolutely and we have

Jηid(l;β, λ;α) = δη,1vol(F×\A1)

(
1

2πi

)#S ∫
LS(c)

Υ1
S(s)α(s)dµS(s)

2β(0)

λ
.

Moreover, the function Jηid(l;β, λ;α) in λ has a meromorphic continuation to C with CTλ=0Jηid(l;β, λ;α) =
0.

Let us examine the terms Jηu(l;β, λ;α) and Jηū(l;β, λ;α). Assume that q(Re(s)) > Re(λ) > σ and
1 < σ < l/2 and set

U±0,η(λ; s) =
1

2πi

∫
L∓σ

β(z)

z + λ

∫
A×

Ψ
(0)
l

(
n|s; [ 1 t−1

0 1
][ 1 xη

0 1
]
)
η(tx∗η)|t|±zA d×tdz,

U±1,η(λ; s) =
1

2πi

∫
L∓σ

β(z)

z + λ

∫
A×

Ψ
(0)
l

(
n|s; [ 1 0

t−1 1
][ 1 0
−xη 1 ]w0

)
η(tx∗η)|t|±zA d×tdz

and

Υη
S(z; s) =

∏
v∈S

(1− ηv($v)q
−(z+(sv+1)/2)
v )−1(1− q(sv+1)/2

v )−1,

Υη
S,l(z; s) =D

−1/2
F {#(o/fη)×}−1{

∏
v∈Σ∞

2Γ(−z)Γ(lv/2 + z)

ΓR(−z + εv)Γ(lv/2)
iεv cos

(π
2

(−z + εv)
)
}Υη

S(z; s).

Here εv ∈ {0, 1} is the sign of ηv for v ∈ Σ∞ (see §1.4).
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Lemma 15.2. The double integrals U±0,η and U±1,η converge absolutely and

U±0,η(λ; s) =
1

2πi

∫
L∓σ

β(z)

z + λ
N(fη)∓zL(∓z, η)(−1)ε(η)Υη

S,l(±z; s)dz,

U±1,η(λ; s) =
1

2πi

∫
L∓σ

β(z)

z + λ
N(fη)∓zN(n)±z η̃(n)δ(n = o)L(∓z, η)il̃Υη

S,l(±z; s)dz,

where l̃ =
∑
v∈Σ∞

lv and ε(η) =
∑
v∈Σ∞

εv.

Proof. This is proved in the same way as [47, Lemma 12.3]; to compute the archimedean integral, we use
Lemma 11.6. �

By 1 < σ < l/2, the possible poles of the integrand of U+
0,η(λ; s) in the region −σ < Re(z) < σ are

z = 0,−1. In fact, we observe that the integrand is holomorphic at z = −1. We shift the contour L−σ to
Lσ; by the residue theorem,

U+
0,η(λ; s) =

1

2πi

∫
Lσ

β(z)

z + λ
N(fη)−zL(−z, η)(−1)ε(η)Υη

S,l(z; s)dz − β(0)

λ
δη,1RF (−1)ε(η)Υ1

S(s),

where δη,1 = δ(η = 1) and RF = Ress=1 ζF (s). In a similar manner,

U+
1,η(λ; s) =

1

2πi

∫
Lσ

β(z)

z + λ
N(fη)−z L(−z, η) δ(n = o) il̃ Υη

S,l(z; s)dz − β(0)

λ
δη,1RF δ(n = o) il̃ Υ1

S(s).

Define C0(η) and R(η) by

L(s, η) = R(η)(s− 1)−1 + C0(η) +O(s− 1), (s→ 1).

We remark that RF = R(η) if η is trivial.

Lemma 15.3. The function λ 7→ Jηu(l;β, λ;α) on Re(λ) > 1 has a meromorphic continuation to the
region Re(λ) > −l/2. The constant term of Jηu(l;β, λ;α) at λ = 0 equals Jηu(l, n|α)β(0). Here we put

Jηu(l, n|α) = (−1)ε(η)G(η)D
1/2
F (1 + (−1)ε(η)η̃(n)il̃δ(n = o))

(
1

2πi

)#S ∫
LS(c)

Υη
S(s)CηS,u(s)α(s)dµS(s)

with

CηS,u(s) = πε(η)C0(η) +R(η)

{
− dF

2
(CEuler + log π) +

∑
v∈Σ∞

lv/2−1∑
k=1

1

k
+
∑
v∈S

log qv

1− q(sv+1)/2
v

+ logDF

}
.

In particular, we have CηS,u(s) = Lfin(1, η) if η is non-trivial.

Proof. By definition,

Jηu(l;β, λ;α) =

(
1

2πi

)#S ∫
LS(c)

(U+
0,η(λ; s) + U−0,η(λ; s) + U+

1,η(λ; s) + U−1,η(λ; s))α(s)dµS(s).

From Lemma 15.2 and the computation after it,

Jηu(l;β, λ;α)

=

(
1

2πi

)#S ∫
LS(c)

1

2πi

∫
Lσ

β(z)

z + λ
((−1)ε(η) + il̃δ(n = o)){N(fη)−zL(−z, η)Υη

S,l(z; s)

+ N(fη)zL(z, η)Υη
S,l(−z; s)}dzα(s)dµS(s)− (−1)ε(η) + il̃δ(n = o)

2
Jηid(l;β, λ;α),
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with 1 < σ < l/2 and Re(λ) > −σ. Since σ is arbitrary, this gives a meromorphic continuation of
Jηu(l;β, λ;α) to Re(λ) > −l/2. By the above expression,

CTλ=0Jηu(l;β, λ;α)

=

(
1

2πi

)#S ∫
LS(c)

1

2πi

∫
Lσ

β(z)

z
((−1)ε(η) + il̃δ(n = o)){N(fη)−zL(−z, η)Υη

S,l(z; s)

+ N(fη)zL(z, η)Υη
S,l(−z; s)}dzα(s)dµS(s)

=((−1)ε(η) + il̃δ(n = o))
1

2πi

∫
Lσ

β(z)

z
{fu(z) + fu(−z)}dz

=((−1)ε(η) + il̃δ(n = o)) Resz=0

(
β(z)

z
fu(z)

)
= ((−1)ε(η) + il̃δ(n = o))β(0)CTz=0fu(z).

Here we put fu(z) = N(fη)−zL(−z, η)Υη
S,l(z; s). By setting Υ̃η

S,l(z; s) = D
1/2
F {#(o/fη)×}Υη

S,l(z; s), the
constant term is computed as follows:

CTz=0fu(z) =
d

dz
N(fη)−zzL(−z, η)Υη

S,l(z; s)

∣∣∣∣
z=0

=
d

dz

{
N(fη)−z × ziε(η)D

1/2
F N(fη)−1/2{#(o/fη)×}G(η)D

1/2+z
F N(fη)1/2+zL(z + 1, η)

×D−1/2
F {#(o/fη)×}−1Υ̃η

S,l(z; s)

}∣∣∣∣
z=0

=iε(η)G(η)D
1/2
F × d

dz

{
Dz
F zL(z + 1, η)× Υ̃η

S,l(z; s)

}∣∣∣∣
z=0

=G(η)D
1/2
F πε(η)Υ̃η

S(s)

{
(logDF )R(η) + C0(η) +R(η)

d
dz Υ̃1

S,l(z; s)|z=0

Υ̃1
S,l(0; s)

}
.

Here ε(η) =
∑
v∈Σ∞

εv. We note that Υ̃η
S,l(0; s) = (−iπ)ε(η)Υη

S(0; s) holds by

2Γ(−z)Γ(lv/2 + z)

ΓR(−z + εv)Γ(lv/2)
iεv cos

(π
2

(−z + εv)
) ∣∣∣∣

z=0

= (−iπ)εv

for v ∈ Σ∞. The logarithmic derivative of Υ̃1
S,l(z; s) at z = 0 is computed as∑

v∈Σ∞

d

dz
log

{
2Γ(−z)Γ(lv/2 + z)

ΓR(−z)Γ(lv/2)
cos
(πz

2

)}∣∣∣∣
z=0

+
∑
v∈S

d

dz
log(1− q−(z+(sv+1)/2)

v )−1(1− q(sv+1)/2
v )−1

∣∣∣∣
z=0

=
∑
v∈Σ∞

{
ψ(lv/2)− 1

2
log π +

(
1

2
ψ

(
−z
2

)
− ψ(−z)

)∣∣∣∣
z=0

}
+
∑
v∈S

log qv

1− q(sv+1)/2
v

.

By the formulas

ψ(lv/2) = −CEuler +

lv/2−1∑
k=1

1

k
,

(
1

2
ψ

(
−z
2

)
− ψ(−z)

)∣∣∣∣
z=0

=
1

2
CEuler,

we are done. �
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Assume that q(Re(s)) > Re(λ) > σ and 1 < σ < l/2. Analyzing the integrals

1

2πi

∫
L±σ

∫
A×

Ψ
(0)
l

(
n|s; [ 1 0

t 1 ][ 1 xη
0 1

]
)
η(tx∗η)|t|±zA d×tdz,

1

2πi

∫
L±σ

∫
A×

Ψ
(0)
l

(
n|s; [ 1 t

0 1 ][ 1 0
−xη 1 ]w0

)
η(tx∗η)|t|±zA d×tdz

in the same way as U±ε,η(λ; s), we obtain the following lemma.

Lemma 15.4. The function λ 7→ Jηū(l;β, λ;α) on Re(λ) > 1 has a meromorphic continuation to the
region Re(λ) > −l/2. The constant term of Jηū(l;β, λ;α) at λ = 0 equals Jηū(l, n|α)β(0). Here we put

Jηū(l, n|α) = (−1)ε(η)G(η)D
1/2
F ((−1)ε(η)η̃(n) + il̃δ(n = o))

(
1

2πi

)#S ∫
LS(c)

Υη
S(s)CηS,ū(s)α(s)dµS(s)

with

CηS,ū(s) =CηS,u(s) +R(η) log N(n).

Let us consider the term Jηhyp(l;β, λ;α), which is, by definition, equal to∫
A×

∑
b∈F×−{−1}

Ψ̂
(0)
l

(
n|α; δb [ t 0

0 1 ]
[

1 xη
0 1

])
{β̂λ(|t|A) + β̂λ(|t|−1

A )} η(tx∗η) d×t.

Lemma 15.5. Suppose l > 6. The integral Jηhyp(l;β, λ;α) converges absolutely and has an analytic

continuation to the region Re(λ) > −ε for some ε > 0. Moreover, we have CTλ=0Jηhyp(l;β, λ;α) =

Jηhyp(l, n|α)β(0). Here Jηhyp(l, n|α) is defined by

Jηhyp(l, n|α) =

(
1

2πi

)#S ∫
LS(c)

KηS(l, n|s)α(s) dµS(s)

with

KηS(l, n|s) =
∑

b∈F×−{−1}

∫
A×

Ψ
(0)
l

(
n|s; δb [ t 0

0 1 ]
[

1 xη
0 1

])
η(tx∗η) d×t.

Proof. We take c ∈ R such that l/2 − 1 > (c + 1)/4. Then, from Lemma 14.9, there exists ε > 0 such
that, for 0 < |ρ| < ε the integral∫

LS(c)

|α(s)||dµS(s)|
∫
Lρ

|β(z)|
|z + λ|

∑
b∈F×−{−1}

∫
A×

∣∣Ψ(0)
l

(
n|s; δb[ t 0

0 1 ][ 1 xη
0 1

]
) ∣∣{|t|ρA + |t|−ρA } d

×t|dz|,(15.1)

which is majorized by∫
LS(c)

|α(s)||dµS(s)|
∫
Lρ

|β(z)|edFπ|Im(z)|/2

|z + λ|
|dz|

∑
b∈F×−{−1}

{Mε(n|0, ρ, l, c; b) +Mε(n|0,−ρ, l, c; b)},

is convergent. By |t|ρA + |t|−ρA > 2 (t ∈ A×), the integral (15.1) is finite even for ρ = 0. Hence, we obtain
an analytic continuation of the function

Jηhyp(l;β, λ;α)

=

(
1

2πi

)#S ∫
LS(c)

{
1

2πi

∫
Lρ

β(z)

z + λ

( ∑
b∈F×−{−1}

∫
A×

Ψ
(0)
l

(
n|s; δb[ t 0

0 1 ][ 1 xη
0 1

]
)

× (|t|zA + |t|−zA ) η(tx∗η) d×t

)
dz

}
α(s)dµS(s)
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in the variable λ to the region Re(λ) > −ε. �

16. The relative trace formula for holomorphic Hilbert modular forms

Let n be an integral ideal of F , l = (lv)v∈Σ∞ ∈ (2N)Σ∞ a family such that lv > 6 for all v ∈ Σ∞, and
η a real valued character of F×\A× unramified at all v ∈ S(n). Let fη denote the conductor of η. We

assume (−1)ε(η)η̃(n) = 1, where ε(η) =
∑
v∈Σ∞

εv is the sum of εv ∈ {0, 1} such that ηv = sgnεv for any

v ∈ Σ∞ (see §1.4). Put l̃ =
∑
v∈Σ∞

lv. Let S be a finite subset of Σfin disjoint from S(n) ∪ S(fη). For

v ∈ S, let Av be the space of all holomorphic functions αv(sv) in sv ∈ C satisfying αv(sv) = αv(−sv) and
αv(sv + 4πi

log qv
) = αv(sv). We denote by AS the space of all holomorphic functions α on CS such that for

each v0 ∈ S, the function sv0 7→ α(sv0 , s
′) is contained in Av0 for all s′ ∈ CS−{v0}.

Theorem 16.1. For any function α ∈ AS, we have the identity

C(l, n, S)
∑

π∈Πcus(l,n)

Iηcus(π; l, n)α(νS(π)) = J̃ηu(l, n|α) + Jηhyp(l, n|α)(16.1)

Here νS(π) = {νv(π)}v∈S is the spectral parameter of π at S (see §13.3.1),

C(l, n, S) = (−1)#S{
∏
v∈Σ∞

2π Γ(lv − 1)

Γ(lv/2)2
}
D−1
F

2
[Kfin : K0(n)]−1,

Iηcus(π; l, n) = (−1)ε(η)G(η) wηn(π)
L(1/2, π)L(1/2, π ⊗ η)

N(fπ) [Kfin : K0(fπ)]−1 LSπ (1, π; Ad)

with wηn(π) given in Lemma 3.6, and

J̃ηu(l, n|α) = 2(−1)ε(η)G(η)D
1/2
F (1 + il̃δ(n = o))

(
1

2πi

)#S ∫
LS(c)

UηS(l, n|s)α(s)dµS(s),

Jηhyp(l, n|α) =

(
1

2πi

)#S ∫
LS(c)

KηS(l, n|s)α(s) dµS(s)

with

UηS(l, n|s) =
∏
v∈S

(1− ηv($v)q
−(sv+1)/2
v )−1(1− q(sv+1)/2

v )−1

{
Cη
F (l, n) +R(η)

∑
v∈S

log qv

1− q(sv+1)/2
v

}
,

KηS(l, n|s) =
∑

b∈F×−{−1}

∫
A×

Ψ
(0)
l

(
n| s; δb [ t 0

0 1 ]
[

1 xη
0 1

])
η(tx∗η) d×t

and

Cη
F (l, n) = πε(η)C0(η) +R(η)

{
− dF

2
(CEuler + log π) + log(DFN(n)1/2) +

∑
v∈Σ∞

lv/2−1∑
k=1

1

k

}
.

We remark Cη
F (l, n) = Lfin(1, η) if η is non-trivial.

Proof. From Lemmas 15.1, 15.3, 15.4 and 15.5, P ηreg(Ψ̂l
reg(n|α)) is given by the right-hand side of (16.1);

the left-hand side is provided by Proposition 13.6. �

We restrict our attention to the test functions of the form α(s) =
∏
v∈S α

(mv)
v (sv) with

α(m)
v (sv) = qmsv/2v + q−msv/2v , v ∈ S, m ∈ N0.(16.2)

As is well known, these functions form a C-basis of the image of the spherical Hecke algebra H(Gv,Kv) by
the spherical Fourier transform. Thus, by restricting our consideration to these functions, no generality
is lost practically. The following two theorems are proved in §17 and §18.
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Theorem 16.2. For α = ⊗v∈Sαv, we have

Jηhyp(l, n|α) =
∑

b∈F×−{−1}

{
∏
v∈S

Jηvv (b;αv)}{
∏
v∈Σ∞

Jηvv (lv; b)} {
∏

v∈Σfin−S
Jηvv (b)}.

Here Jηvv (b;αv) is given by Lemma 17.2, Jηvv (b) is given by Lemmas 17.4, 17.5 and 17.9, and Jηvv (lv; b)
is given by Lemma 17.15.

Theorem 16.3. For α = ⊗v∈Sαv, we have

J̃ηu(l, n|α) = 2(−1)ε(η)G(η)D
1/2
F (1 + il̃δ(n = o))

×

Cη
F (l, n)

∏
v∈S

Uηvv (αv) +R(η)
∑
v∈S

U ′v(αv)
∏

w∈S−{v}

Uηww (αw)

 .

Here Uηvv (αv) and U ′v(αv) are explicitly given in Proposition 18.1.

16.1. Proofs of Theorems 0.6 and 0.7. By the same procedure as in the proof of Theorems 0.2, with
the aid of N -transform (cf. §10.4), the estimation is reduced to that for the similar average over Πcus(l, n)

(in place of Π∗cus(l, n)). Since J̃ηu(l, n|α) is evaluated by [47, Lemma 13.15], from Theorem 16.1, it suffices
to show that Jηhyp(l, n|α) = Oε(N(n)−l/2+1+ε) for any sufficiently small ε > 0, where l = infv∈Σ∞ lv. This
follows from the proof of Lemma 15.5 and Lemmas 14.7 and 14.8 by taking c ∈ R and ρ 6= 0 such that
l/2− 1 > (c+ 1)/4 > (c+ 1)/4− |ρ| > l/2− 1− ε > 1 and |ρ| is sufficiently small. By Lemma 10.13 with
c = l/2− 1, the exponent of the error term is − inf(c, 1) + ε = −1 + ε. �

Next we prove Theorem 0.7. Theorem 0.6 is also valid for any function

α(s) =
∏
v∈S

Pv(q
−sv/2
v + qsv/2v ),

where Pv(X) ∈ C[X] for each v ∈ S. Therefore, with the aid of the Stone-Weierstrass theorem, we have

{
∏
v∈Σ∞

2π (lv − 2)!

{(lv/2− 1)!}2
} × 1

N(n)ν(n)

∑
π∈Π∗cus(l,n)

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
f( (q−νv(π)/2

v + qνv(π)/2
v )v∈S )

−→ 4D
3/2
F Lfin(1, η)

∫
[−2,2]S

f(x)dµS,η(x)

for any continuous function f ∈ C([−2, 2]S) as N(n) → ∞ in n ∈ I+
S,η. Here we set dµS,η(x) =

⊗v∈S dµv,ηv (xv) and

dµv,ηv (xv) =


qv − 1

(q
1/2
v + q

−1/2
v − xv)2

dµST(xv) (ηv($v) = +1),

qv + 1

(q
1/2
v + q

−1/2
v )2 − x2

v

dµST(xv) (ηv($v) = −1).

Hence, by applying Proposition 1.1, we obtain Theorem 0.7. �

Remark : Suppose η is totally odd, i.e., ηv(−1) = −1 for all v ∈ Σ∞. If the level n is sufficiently large
compared with N(fη) and the degree of α, the hyperbolic term Jηhyp(l, n|α) vanishes completely and the

asymptotic formula in Theorem 0.6 is an exact formula without the remainder term O(N(n)−1+ε); this
kind of phenomenon, called the stability, was already observed in [26], [6] and [31].
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17. Explicit formula of the hyperbolic term

In this section, we compute Jηhyp(l, n|α) further for particular test functions α = ⊗v∈Sαv. By changing
the order of integrals, we have

Jηhyp(l, n|α) =
∑

b∈F×−{−1}

{
∏
v∈S

Jηvv (b;αv)} {
∏
v∈Σ∞

Jηvv (lv; b)} {
∏

v∈Σfin−S
Jηvv (b)},

where

Jηvv (b;αv) =
1

2πi

∫
Lv(c)

{∫
F×v

Ψ(0)
v (sv; δb [ t 0

0 1 ]) ηv(t) d
×t

}
αv(sv) dµv(sv)

for v ∈ S with Ψv(sv;−) being the Green function on Gv (Lemma 5.1),

Jηvv (b) =

∫
F×v

Φ
(0)
v,n

(
δb [ t 0

0 1 ]
[

1 $−f(ηv)
v

0 1

])
ηv(t$

−f(ηv)
v ) d×t, if v ∈ Σfin − S,

Jηvv (lv; b) =

∫
R×

Ψ(0)
v (lv; δb [ t 0

0 1 ]) ηv(t) d
×t, if v ∈ Σ∞

with Ψ
(0)
v (lv;−) being the Shintani function (Proposition 11.1).

17.1. An evaluation of non-archimedean integrals (for unramified ηv). In this paragraph, we

explicitly compute the integrals Jηvv (b;α
(m)
v ) at v ∈ S and the integrals Jηvv (b) at v ∈ Σfin − S ∪ S(fη).

Lemma 17.1. Let v ∈ S. Let α
(m)
v (sv) = q

msv/2
v + q

−msv/2
v with m ∈ N0. Set

Φ̂vm(gv) =
1

2πi

∫
Lv(c)

Ψ(0)
v (sv; gv)α

(m)
v (sv) dµv(sv).

If m > 0, then, for any x ∈ Fv such that sup(|x|v, 1) = qlv with l ∈ N0, we have

Φ̂vm ([ 1 x
0 1 ]) =


0 (l > m+ 1),

−q−m/2v (l = m),

(m− l − 1)q
1−m/2
v − (m− l + 1)q

−m/2
v (0 6 l < m).

If m = 0, then for any x ∈ Fv such that sup(|x|v, 1) = qlv with l ∈ N0, we have

Φ̂v0 ([ 1 x
0 1 ]) = −2 δ(l = 0)

Proof. From Lemma 5.1 and the formula dµv(s) = 2−1 log qv (q
(1+s)/2
v − q(1−s)/2

v ) ds, we have

Φ̂vm([ 1 x
0 1 ]) =

1

2πi

∫
Lv(c)

q−(s+1)l/2
v (1− q−(s+1)/2

v )−1(1− q(s+1)/2
v )−1

× (q−ms/2v + qms/2v ) 2−1 log qv (q(1+s)/2
v − q(1−s)/2

v ) ds,

where Lv(c) is the contour c+ i [− 2π
log qv

, 2π
log qv

]. By the variable change z = q
s/2
v , this becomes

q
(1−l)/2
v

2πi

∮
|z|=R

z−l(1− q−1/2
v z−1)−1(1− q1/2

v z)−1(zm + z−m) (z − z−1)
dz

z

with R = q
c/2
v (> 1). Thus, by the residue theorem, we have the equality

Φ̂vm([ 1 x
0 1 ]) = q(1−l)/2

v

(
Res

z=q
−1/2
v

φ(z) + Resz=0φ(z)
)

(17.1)

72



with φ(z) = (1−z2)(zm+z−m)

(1−q1/2
v z)2

q1/2
v

z1+l . By a direct computation, we have

Res
z=q

−1/2
v

φ(z) =− q(1+l)/2
v

(
{(m+ l + 1)(1− q−1

v ) + 2q−1
v }qm/2v(17.2)

+ {(−m+ l + 1)(1− q−1
v ) + 2q−1

v }q−m/2v

)
,

Resz=0φ(z) = δ(l > m+ 1) {(l −m+ 1)q(l−m+1)/2
v − (l −m− 1)q(l−m−1)/2

v }(17.3)

+ δ(l > 1−m) {(l +m+ 1)q(l+m+1)/2
v − (l +m− 1)q(l+m−1)/2

v }

+ {δ(m = l) + δ(m = −l)} q1/2
v .

From (17.1), (17.2) and (17.3), we obtain the desired formula easily. �

Lemma 17.2. Let v ∈ S. Let α
(m)
v (sv) = q

msv/2
v + q

−msv/2
v with m ∈ N0. Then, for any b ∈ F×v −{−1},

Jηvv (b;α(m)
v ) = I+

v (m; b) + ηv($v)I
+
v (m; $−1

v (b+ 1))

with

I+
v (m; b) = vol(o×v ) 2δ(m=0)

(
−q−m/2v δηvm (b)

+

m−1∑
l=sup(0,−ordv(b))

{(m− l − 1)q1−m/2
v − (m− l + 1)q−m/2v }δηvl (b)

)
,

where for n ∈ N0,

δηvn (b) = δ(|b|v 6 qnv ) ηv($
n
v )

{
(ordv(b) + 1)δ(n=0) (ηv($v) = 1),

(2−1(ηv(b) + 1))δ(n=0) (ηv($v) = −1).

Proof. Let m > 0. By definition, Jηvv (b;αv) = I+
v (m; b) + I−v (m; b) with I+

v (m; b) and I−v (m; b) being

the integrals of Φ̂vm (δb [ t 0
0 1 ]) ηv(t) with respect to the measure d×t over |t|v 6 1 and over |t|v > 1,

respectively. From [47, Lemma 11.4],

δb [ t 0
0 1 ] ∈ Hv [ 1 x

0 1 ] Kv with |x|v =

{
|t|−1
v |b|v (|t|v 6 1),

|t|v|b+ 1|v (|t|v > 1).
(17.4)

Hence, by Lemma 17.1, I+
v (m; b) becomes the sum of the integral∫

|t|v61

sup(1,|t|−1
v |b|v)=qmv

(−q−m/2v ) ηv(t) d
×t(17.5)

and
m−1∑
l=0

∫
|t|v61

sup(1,|t|−1
v |b|v)=qlv

{(m− l − 1)q1−m/2
v − (m− l + 1)q−m/2v } ηv(t) d×t.(17.6)

The condition |t|v 6 1, sup(1, |t|−1
v |b|v) = qlv is equivalent to |b|v 6 qlv, |t|v = q−lv |b|v if l > 0 and to

|b| 6 |t| 6 1 if l = 0. Hence, (17.5) is equal to −q−m/2v vol(o×v ) δηvm (b), and (17.6) is equal to the following
expression

vol(o×v )

m−1∑
l=sup(0,−ordv(b))

{(m− l − 1)q1−m/2
v − (m− l + 1)q−m/2v } δηvl (b).
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This completes the evaluation of the integral I+
v (m; b). In the same way as above, the other integral

I−v (m; b) is calculated in a similar form; from the resulting expression, I−v (m; b) = ηv($v)I
+
v (m;$−1

v (b+
1)) is observed. This settles our consideration when m > 0. The other case m = 0 is similar. �

From Lemma 17.2, we have a useful estimate for the function Jv(b, αv) in b.

Lemma 17.3. Let α
(m)
v (sv) = q

msv/2
v + q

−msv/2
v with m ∈ N0. If m > 0, then

|Jηvv (b, α(m)
v )| � (m+ 1)2{δ(|b|v 6 qm−1

v ) q1−m/2
v + δ(|b|v = qmv ) q−m/2v }, b ∈ F×v − {−1}

with the implied constant independent of v and m. If m = 0, then,

Jηvv (b, α(0)
v ) = −2vol(o×v ) Ληvv (b),

where Ληvv is a function on F×v − {−1} defined by

Ληvv (b) = δ(b ∈ ov)δ
ηv
0 (b(b+ 1))(17.7)

Proof. To infer the estimate from Lemma 17.2 in the case when m > 0, it suffices to note that I+
m($−1

v (b+

1)) = 0 if |b|v > qmv , or equivalently if |$−1
v (b + 1)|v > qm+1

v . The formula of Jv(b, α
(0)
v ) is obtained by

noting the relation Ληvv (b) = δηv0 (b) + ηv($v) δ
ηv
0 ($−1

v (b+ 1)). �

Lemma 17.4. Let v ∈ Σfin − S ∪ S(nfη). Then

Jηvv (b) = vol(o×v ) Ληvv (b)

with Ληvv (b) being defined by (17.7).

Proof. This is proved in the same way as the case m = 0 in Lemma 17.3. �

Lemma 17.5. Let v ∈ S(n)− S(fη). If ηv($v) = 1, then

Jηvv (b) = vol(o×v ) δ(b ∈ nov) {ordv(b)− ordv(n) + 1}.

If ηv($v) = −1, then

Jηvv (b) = vol(o×v ) δ(b ∈ nov) 2−1(ηv(b) + (−1)ordv(n)).

Proof. This is proved in the same way as Lemma 17.4. We only have to remark that the assertion in the
last sentence of [47, Lemma 11.4] is relevant here. �

17.2. An evaluation of non-archimedean integrals (for ramified ηv). We shall calculate the
integral Jηvv (b) at finitely many places v ∈ S(fη). In what follows in this paragraph, we fix v ∈ S(fη) and
set f = f(ηv); thus f is a positive integer. For l ∈ Z, consider the following subsets of F×v depending on
b ∈ F×v − {−1}.

Dl(b) = {t ∈ F×v | |t|v = q−lv , |1 + t$−fv |v |b+ t$−fv (b+ 1)|v 6 q−lv }, (l ∈ Z− {f}),

Df (b) = {t ∈ F×v | − t ∈ $f
v (o×v − Uv(f)), |1 + t$−fv |v |b+ t$−fv (b+ 1)|v 6 q−fv },

where Uv(m) = 1 + pmv for any positive integer m.

Lemma 17.6. Let l > f . Then, Dl(b) = ∅ unless l = f − ordv(b+ 1) + ordv(b), in which case, we have
ordv(b) > 0, ordv(b+ 1) = 0 and∫

t∈Dl(b)
ηv(t) d

×t = ηv

(
$f
v

−b
b+ 1

)
(1− q−1

v )−1 q−f−dv/2v .
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Proof. By the variable change t = $l
vt
′, we have∫

t∈Dl(b)
ηv(t) d

×t = ηv($
l
v)

∫
t′∈D′

ηv(t
′) d×t′

with D′ = {t′ ∈ o×v | |1 + t′$l−f
v |v |b+ t′$l−f

v (b+ 1)|v 6 q−lv }. Let t′ ∈ o×v . Then, the condition

|1 + t′$l−f
v |v |b+ t′$l−f

v (b+ 1)|v 6 q−lv
is equivalent to

t′ ∈ $f−l
v

−b
b+1 (1 +$l

vb
−1ov).(17.8)

If |$l
vb
−1|v > 1, then 1 +$l

vb
−1ov = $l

vb
−1ov. Hence, from (17.8),

1 = |t′|v 6
∣∣∣$f−l

v
−b
b+1 ·$

l
vb
−1
∣∣∣
v

=
∣∣∣ $fvb+1

∣∣∣
v
,

and b+ 1 ∈ pfv follows. Since f > 0, we obtain |b|v = 1, which, combined with |$l
vb
−1|v > 1, implies the

inequality |$l
v|v > 1 contradicting to l > f > 0.

If |$l
vb
−1|v = 1, then b ∈ $l

vo
×
v ; thus, |b + 1|v = 1 by l > f > 0. Hence, from (17.8), we have the

inequality

1 = |t′|v 6
∣∣∣$f−l

v
−b
b+1

∣∣∣
v

= |$f
v |v = q−fv ,

which is impossible due to f > 0. From the considerations so far, we have the inequality |$l
vb
−1|v < 1,

which yields 1 +$l
vb
−1ov ⊂ o×v . Hence, from (17.8), we have the second equality of

1 = |t′|v =
∣∣∣$f−l

v
−b
b+1

∣∣∣
v
,

which implies l = f − ordv(b+ 1) + ordv(b). From this and l > f , we have ordv(b+ 1) < ordv(b), which
holds if and only if ordv(b) > 0 and ordv(b+ 1) = 0.

If we set t′ = $f−l
v

−b
b+1r, then (17.8) becomes r ∈ 1 +$l

vb
−1ov = 1 +$f

vov; thus∫
t∈Dl(b)

ηv(t) d
×t = ηv($

l
v) ηv

(
$f−l
v

−b
b+1

)∫
r∈1+$fvov

ηv(r) d
×r

= ηv

(
$f
v
−b
b+1

)
q−f−dv/2v (1− q−1

v )−1.

�

Lemma 17.7. Let l < f . Then, Dl(b) = ∅ unless l = f − ordv(b+ 1) + ordv(b), in which case, we have
ordv(b+ 1) > 0, ordv(b) = 0 and∫

t∈Dl(b)
ηv(t) d

×t = ηv

(
$f
v

−b
b+ 1

)
(1− q−1

v )−1q−f−dv/2v .

Proof. This is proved in the same way as the previous lemma. �

Lemma 17.8. The set Df (b) is empty unless ordv(b) = ordv(b+ 1) 6 0, in which case∫
t∈Df (b)

ηv(t) d
×t = δ

(
b

b+ 1
∈ o×v

)
ηv

(
$f
v

−b
b+ 1

)
(1− q−1

v )−1 q−f+ordv(b)−dv/2
v .

Proof. By t = −$f
v t
′, the set Df (b) is mapped bijectively onto the set of t′ such that

t′ ∈ o×v − Uv(f),(17.9)

|1− t′|v |b− t′(b+ 1)|v 6 q−fv .(17.10)
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We shall show that (17.9) and (17.10) are equivalent to the following conditions:

t′ ∈ b
b+1 (1 +$f

v b
−1ov),(17.11)

b
b+1 ∈ o×v , b 6∈ pv.(17.12)

Noting that, under the condition (17.12), the sets Uv(1) and b
b+1 (1 +$f

v b
−1ov) are disjoint, we see easily

that (17.11) and (17.12) imply (17.9) and (17.10). To have the converse, we first observe that (17.9) is
equivalent to t′ ∈ o×v and |t′ − 1|v > q−fv . Hence by (17.10),

|b− t′(b+ 1)|v 6 q−fv |t′ − 1|−1
v < 1,

or equivalently

b− t′(b+ 1) ∈ pv.(17.13)

If b ∈ pv, then b + 1 ∈ o×v . From these and (17.13), t′ ∈ b
b+1 + pv = pv; this contradicts t′ ∈ o×v . Thus

b 6∈ pv is obtained. From (17.13), we have t′ b+1
b ∈ 1 + pv ⊂ o×v . Since t′ ∈ o×v by (17.9), b

b+1 ∈ o×v is

obtained. From (17.13),

t′ ∈ b
b+1 + 1

b+1pv = b
b+1 (1 + b−1pv).

Since b−1 ∈ ov, we have t′ ∈ b
b+1 Uv(1), which yields t′ ∈ o×v − Uv(1) because b

b+1Uv(1) ∩ Uv(1) = ∅.
Thus |t′ − 1|v = 1. Combining this with (17.10), we obtain (17.11). This settles the desired converse
implication.

Consequently, we have∫
t∈Df (b)

ηv(t) d
×t = ηv(−$f

v )

∫
ηv(t

′) d×t′

= δ
(

b
b+1 ∈ o×v , b 6∈ pv

)
ηv(−$f

v ) ηv

(
b
b+1

)∫
r∈1+$fv b−1ov

ηv(r) d
×r

= δ
(

b
b+1 ∈ o×v

)
ηv

(
$f
v
−b
b+1

)
δ(b ∈ o×v ) q−f+ordv(b)−dv/2

v (1− q−1
v )−1.

�

Lemma 17.9. Let ηv be a character of F×v of order 2 and of conductor f > 0. Then, for b ∈ F×v −{−1},
we have

Jηvv (b) = δ(b ∈ p−fv )
{
ηv(−1) + (δ(b ∈ ov) + δ(b /∈ ov)q

ordv(b)
v )ηv(−b(b+ 1))} q−f−dv/2v (1− q−1

v )−1.

Proof. From [47, Lemmas 11.4 and 11.5],

Jηvv (b) = δ(b ∈ p−fv )(Jηvv,1(b) + Jηvv,2(b))

with

Jηvv,1(b) =

∫
−t∈$fv Uv(f)
|t|v|b+1|v61

ηv(−1) d×t, Jηvv,2(b) =

∫
−t∈F×v −$

f
v Uv(f)

|1+t$−fv |v |b+t$
−f
v (b+1)|v6|t|v

ηv(t$
−f
v ) d×t.

If b ∈ p−fv , then t ∈ −$f
v Uv(f) implies |b+ 1|v 6 qfv = |t|−1

v ; thus,

Jηvv,1(b) = ηv(−1) vol(−$f
vUv(f); d×t) = ηv(−1)vol(Uv(f); d×t) = ηv(−1) q−f−dv/2v (1− q−1

v )−1.

The integral domain of Jηvv,2(b) is a disjoint union of the sets Dl(b) (l ∈ Z). From Lemmas 17.6, 17.7 and
17.8, we have

Jηvv,2(b) = (δ(b ∈ ov) + δ(b /∈ ov)q
ordv(b)
v )ηv

(
−b
b+1

)
q−f−dv/2v (1− q−1

v )−1.

�
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Lemma 17.10. Let η be a character of F×\A× with conductor fη such that η2 = 1. There exists a
constant C > 1 independent of η such that

|Jηvv (b)| 6 C δ(|b|v 6 qf(ηv)
v ) q−f(ηv)

v

for any v ∈ S(fη) and for any b ∈ F×v − {−1}.

Proof. This is obvious from the previous lemma. Indeed, C = 4 is sufficient. �

Corollary 17.11. For any ε > 0, we have

|
∏

v∈S(fη)

Jηvv (b)| �ε {
∏

v∈S(fη)

δ(b ∈ p−f(ηv)
v )}N(fη)−1+ε, b ∈ F× − {−1}

with the implied constant independent of η and b ∈ F× − {−1}.

Proof. Given ε > 0, let P (ε) be the set of v ∈ Σfin such that qv 6 C1/ε, where C > 0 is the constant in
the previous lemma. Then, from the lemma,

|Jηvv (b)| 6 C δ(|b|v 6 qf(ηv)
v ) q−f(ηv)+ε

v if v ∈ S(fη) ∩ P (ε)

and

|Jηvv (b)| 6 δ(|b|v 6 qf(ηv)
v ) q−f(ηv)+ε

v if v ∈ S(fη)− P (ε).

Taking the product of these inequalities, we have

|
∏

v∈S(fη)

Jηvv (b)| = {
∏

v∈S(fη)∩P (ε)

|Jηvv (b)|} {
∏

v∈S(fη)−P (ε)

|Jηvv (b)|}

6 C#(S(fη)∩P (ε)) {
∏

v∈S(fη)

δ(b ∈ p−f(ηv)
v )}N(fη)−1+ε

�

17.3. An evaluation of archimedean integrals. In this subsection, we evaluate the integral

Jη(l; b) =

∫
R×

Ψ(0) (l; δb [ t 0
0 1 ]) η(t) d×t, b ∈ R× − {−1}(17.14)

explicitly, where η : R× → {±1} is a character, and Ψ(0)(l;−) is the holomorphic Shintani function of
weight l (> 4).

Lemma 17.12. We have

Jη(l; b) =

∫
R×

(1− it)−l/2(1 + b+ t−1bi)−l/2 η(t) d×t, b ∈ R× − {−1}.

Proof. From Lemma 11.2,

Ψ(0) (l; δb [ t 0
0 1 ]) = eilθ (1 + ix)−l/2 if δb [ t 0

0 1 ] ∈ T [ 1 x
0 1 ] kθ.

A direct computation yields eiθ = 1+it√
t2+1

and x = bt−1 + t(b+ 1). Thus,

Jη(l; b) =

∫
R×

(
1+it√
t2+1

)l
{1 + i(bt−1 + t(b+ 1))}−l/2 η(t) d×t

=

∫
R×

(1− it)−l/2(1 + b+ t−1bi)−l/2 η(t) d×t.

�
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Lemma 17.13. Define

J+(l; b) = il/2 (1 + b)−l/2
∫ ∞

0

(t+ i)−l/2
(
t+ bi

b+1

)−l/2
tl/2−1 dt.

Then

J1(l; b) = J+(l; b) + J+(l; b), J sgn(l; b) = J+(l; b)− J+(l; b).

Proof. By dividing the integral Jη(l; b) to two parts according to t > 0 and t < 0, we obtain the assertions
immediately. �

Lemma 17.14. Suppose b(b+ 1) > 0. Then

J+(l; b) = (1 + b)−l/2
∫ 1

0

ul/2−1(1− u)l/2−1
(
−1
b+1u+ 1

)−l/2
du

= (1 + b)−l/2 Γ(l/2)2Γ(l)
−1

2F1

(
l/2, l/2; l; (b+ 1)−1

)
= 2Ql/2−1(2b+ 1),

where Qn(x) is the Legendre function of the 2nd kind.

Proof. If we set f(z) = il/2(1 + b)−l/2 (z + i)−l/2{z + bi/(b+ 1)}−l/2zl/2−1, then f(z) is a meromorphic
function on C with poles only at z = −i and −bi

1+b , both of which are in the lower half plane Im(z) < 0.

For R > 0, let QR denote the rectangle 0 6 Im(z) 6 R, 0 6 Re(z) 6 R. Regarding ∂QR as a contour
with counterclockwise orientation, by Cauchy’s theorem, we have

∫
∂QR

f(z) dz = 0. From this,

J+(l; b) =

∫ i∞

0i

f(z) dz − lim
R→∞

∫
∂QR−[0,R]∪i[0,R]

f(z) dz =

∫ i∞

0i

f(z) dz

= (1 + b)−l/2
∫ +∞

0

(t+ 1)−l/2
(
t+ b

b+1

)−l/2
tl/2−1 dt.

By the variable change t+ 1 = u−1, this becomes

(1 + b)−l/2
∫ 1

0

ul/2−1(1− u)l/2−1
(
−1
b+1u+ 1

)−l/2
du.

By using the integral representation of 2F1(a, b; c, z) in [24, p.54] here, we obtain

J+(l; b) = (1 + b)−l/2 Γ(l/2)2Γ(l)
−1

2F1

(
l/2, l/2; l; (b+ 1)−1

)
.

If we further apply the formula

2−n(2n+ 1)!(n!)−2Qn(x) = (1 + x)−(n+1)
2F1

(
n+ 1, n+ 1; 2n+ 2; 2

x+1

)
([24, p.233]) with n = l/2− 1 and x = 2b+ 1, then J+(l; b) = 2Ql/2−1(2b+ 1) as desired. �

Lemma 17.15. (1) If b(b+ 1) > 0, then

J1(l; b) = (1 + b)−l/2 2 Γ(l/2)2Γ(l)
−1

2F1

(
l/2, l/2; l; (b+ 1)−1

)
, J sgn(l; b) = 0.

(2) If b(b+ 1) < 0, then

J1(l; b) = 2 log

∣∣∣∣b+ 1

b

∣∣∣∣ Pl/2−1(2b+ 1)−
[l/4]∑
m=1

8(l − 4m+ 1)

(2m− 1)(l − 2m)
Pl/2−2m(2b+ 1),(17.15)

J sgn(l; b) = 2πi Pl/2−1(2b+ 1),(17.16)

where Pn(z) denotes the Legendre polynomial of degree n.
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Proof. First suppose b ∈ R and b(b + 1) > 0. Then from the previous lemma, J+(l; b) is a real number.
Thus, J1(l; b) = 2J+(l; b) and J sgn(l; b) = 0 by Lemma 17.13.

From J+(l; b) = 2Ql/2−1(2b+ 1), applying the formula in [24, p.234], we obtain

J+(l; b) = log

(
b+ 1

b

)
Pl/2−1(2b+ 1)−

[l/4]∑
m=1

4(l − 4m+ 1)

(2m− 1)(l − 2m)
Pl/2−2m(2b+ 1)(17.17)

for b ∈ R such that b(b + 1) > 0. From the defining formula of J+(l; b), the function b 7→ J+(l; b) on
R× − {−1} has a holomorphic continuation to the whole complex b-plane away from the set D = {b ∈
C| bi

b+1 ∈ (−∞, 0)} ∪ {0,−1}, which is the upper half of the circle centered at −1/2 of radius 1/2 with

the edge points included. Thus, if we choose the branch of log( 1+b
b ) on the domain C − D so that it

is real for b > 0, then the formula (17.17) remains valid on C − D by analytic continuation. If b ∈ R
satisfies b(b+ 1) < 0, then b is contained in C−D. Hence, by taking the sum of (17.17) and its complex
conjugate, we obtain the formula for J1(l; b). As for J sgn(l; b), we have

J sgn(l; b) = J+(l; b)− J+(l; b) = { log( b+1
b )− log( b+1

b ) }Pl/2−1(2b+ 1) = 2πiPl/2−1(2b+ 1).

�

18. Explicit formula of the unipotent term

Let v ∈ S. The aim of this section is to evaluate the integrals

Uηvv (αv) =
1

2πi

∫
Lv(c)

(1− ηv($v)q
−(s+1)/2
v )−1(1− q(s+1)/2

v )−1 αv(s) dµv(s),(18.1)

U ′v(αv) =
log qv
2πi

∫
Lv(c)

(1− q(s+1)/2
v )−2(1− q−(s+1)/2

v )−1 αv(s) dµv(s).(18.2)

for the test functions given by (16.2).

Proposition 18.1. Let αv(s) = q
ms/2
v + q

−ms/2
v with m ∈ N0. We have

Uηvv (αv) =

{
δ(m > 0) q

1−m/2
v {(m− 1)− (m+ 1) q−1

v } − 2 δ(m = 0) (ηv($v) = 1),

δ(m ∈ 2N) q
1−m/2
v (1− q−1

v )− 2 δ(m = 0) (ηv($v) = −1),

U ′v(αv) = −2−1(log qv) q
1−m/2
v δ(m > 0) {(m− 1)(m− 2)−m(m+ 1) q−1

v }.

Proof. We give an indication of proof when ηv($v) = −1; the remaining cases are similar. By a variable
change,

Uηvv (αv) =
1

2πi

∮
|z|=qc/2

v

(1 + q−1/2
v z−1)−1(1− q1/2

v z)−1(zm + z−m)q1/2
v (z − z−1)

dz

z

={Res
z=q

−1/2
v

+ Res
z=−q−1/2

v
+ Resz=0}φ(z),

where φ(z) = (z2−1)(zm+z−m)
1−qvz2

qv
z . By evaluating the residues, we are done. �

19. Subconvexity estimates in the weight aspect

In this section we prove Theorem 0.8 by using the relative trace formula (Theorem 16.1); we take a
particular test function απS ∈ AS depending on a fixed cuspidal representation π with varying S. To have
a good controle of the term Jηhyp(l, n|απS) explicating the dependence on S, our formula of local orbital

integrals (Lemma 17.3) is indispensable. In this section, θ ∈ [0, 1] denotes a real number such that the
spectral radius of the Satake parameter Av(π) of π ∈ Πcus(l, n) at v ∈ Σfin − S(fπ) is no greater than

q
θ/2
v for any v ∈ Σfin − S(fπ). Since the Ramanujan conjecture for the holomrphic Hilbert cusp forms is
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known ([1]), we can actually take θ = 0; however, we let θ unspecified until the very end to be able to
keep track of the dependence on the Ramanujan exponent θ in various estimations.

In this section, we abuse the symbol pv to denote the global ideal pv ∩ o.
.

19.1. An auxiliary estimate of semilocal terms. Let S be a finite set of finite places v such that
ηv($v) = −1. For a decomposable function αS(s) =

∏
v∈S αv(sv) in AS , we set

JS(b;αS) =
∏
v∈S

Jv(b;αv), b ∈ F× − {−1},

where we simply write Jv(b;αv) in place of Jηvv (b;αv). Extending this linearly, we have a linear functional
αS 7→ JS(b;αS) on the space AS . Given π ∈ Πcus(l, n), set

λv(π) = trAv(π), v ∈ Σfin − S(fπ)

with Av(π) ∈ GL2(C) the Satake parameter of πv. Then, we define a function in AS depending on the
automorphic representation π as follows:

απS(s) =

(∑
v∈S
{λv(π) (zv + z−1

v )− (z2
v + z−2

v + 1)}
)2

,

where zv = q
sv/2
v for each v ∈ S. We need an estimate of JS(b; απS) with varying b. For an integral ideal

a such that S(a) ⊂ S, let us define a function DS(a;−) on F× − {−1} by

DS(a; b) = {
∏

w∈S−S(a)

Λw(b)} {
∏

v∈S(a)

δ(|b|v 6 qordv(a)
v )},

where Λw(b) = δ(b ∈ ow)(ordw(b(b+ 1)) + 1).

Proposition 19.1. Set P = {(v1, v2) ∈ S2| v1 6= v2 }. We have the estimate

|JS(b;απS)| �
∑
v∈S

{
DS(o; b) q(θ+1)/2

v +DS(pv; b) q
θ
v

+DS(p2
v; b) q

θ−1
v +DS(p3

v; b) q
−1
v +DS(p4

v; b) q
−2
v

}
+

∑
(v1,v2)∈P

{
DS(o; b) q(θ+1)/2

v1
q(θ+1)/2
v2

+DS(pv1
; b) q(θ+1)/2

v2
+DS(pv1

pv2
; b)

+DS(p2
v1
pv2

; b)q−1
v1

+DS(p2
v1

; b) q−1
v1
q(θ+1)/2
v2

+DS(p2
v1
p2
v2

; b)q−1
v1
q−1
v2

}
for b ∈ F× − {−1}, where the implied constant is absolute.

Proof. Set Zv = λv(π) (zv + z−1
v )− (z2

v + z−2
v + 1) for any v ∈ S. By expanding the square, we have

απS(s) =
∑
v∈S

Z2
v +

∑
(v1,v2)∈P

Zv1
Zv2

,
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which, together with Lemma 17.3, gives us

JS(b;απS) =
∑
v∈S
{

∏
w∈S−{v}

Jw(b; 1)} Jv(b;Z2
v ) +

∑
(v1,v2)∈P

{
∏

w∈S−{v1,v2}

Jw(b; 1)} Jv1(b;Zv1) Jv2(b;Zv2)

(19.1)

=
∑
v∈S
{

∏
w∈S−{v}

−2vol(o×w) Λw(b)} Jv(b;Z2
v )

+
∑

(v1,v2)∈P

{
∏

w∈S−{v1,v2}

−2vol(o×w) Λw(b)} Jv1(b;Zv1) Jv2(b;Zv2).

Let us estimate the integral Jv(b;Z
2
v ). By expanding the square,

Z2
v = λv(π)2 (z2

v + z−2
v + 2) + (z4

v + z−4
v + 2) + 2(z2

v + z−2
v ) + 1− 2λv(π)(z3

v + z−3
v )− 4λv(π)(zv + z−1

v )

= λv(π)2(α(2)
v + α(0)

v ) + α(4)
v + 2α(2)

v +
3

2
α(0)
v − 2λv(π)α(3)

v − 4λv(π)α(1)
v .

By this expression and by the estimates in Lemma 17.3, we obtain

|Jv(b;Z2
v )|vol(o×v )−1(19.2)

� δ(|b|v 6 1) {|λv(π)|q1/2
v + Λv(b)(1 + |λv(π)|2)}+ δ(|b|v 6 qv) {|λv(π)|q−1/2

v + 1 + |λv(π)|2}

+ δ(|b|v 6 q2
v) {|λv(π)|q−1/2

v + q−1
v + |λv(π)|2q−1

v }+ δ(|b|v 6 q3
v) {|λv(π)|q−3/2

v + q−1
v }

+ δ(|b|v 6 q4
v) q−2

v

� δ(|b|v 6 1) {q(θ+1)/2
v + Λv(b) q

θ
v}

+ δ(|b|v 6 qv) qθv + δ(|b|v 6 q2
v) qθ−1

v + δ(|b|v 6 q3
v) q−1

v + δ(|b|v 6 q4
v) q−2

v ,

where to show the second inequality we use the estimate |λv(π)| 6 2q
θ/2
v as well as the inequalities

−1 6 (θ − 1)/2 6 θ 6 (θ + 1)/2, (θ − 3)/2 6 −1. For Jv(b;Zv), directly from Lemma 17.3, we have

|Jv(b;Zv)| vol(o×v )−1 � δ(|b|v 6 1) {q(θ+1)/2
v + Λv(b)}+ δ(|b|v 6 qv) + δ(|b|v 6 q2

v) q−1
v .(19.3)

From (19.1), (19.2) and (19.3), we have the desired estimate immediately. �

19.2. A basic majorant for the hyperbolic term (odd case). For b ∈ F× − {−1}, viewing b as a
real number, say bv, by the mapping F ↪→ Fv ∼= R for each v ∈ Σ∞, we define

m∞(l; b) =
∏
v∈Σ∞

|J sgn(lv; bv)|,

where J sgn(lv; bv) is the integral (17.14). For relatively prime integral ideals n and a and for l = (lv)v∈Σ∞ ∈
(2Z>2)Σ∞ , we set

I(l, n, a) :=
∑

b∈no(S)−{0,−1}

{
∏

v∈Σfin−S
Λv(b)}DS(a; b)m∞(l; b),

where S is a finite set of places such that S(a) ⊂ S ⊂ Σfin − S(n), and o(S) is the S-integer ring. As will
be seen below, this is independent of the choice of such S.

Lemma 19.2. Let a and n be relatively prime ideals. Then, for any ε > 0, the estimate

I(l, n, a)�ε {
∏
v∈Σ∞

lv}−1/2 N(a)5/4+ε

holds with the implied constant depending on ε while independent of the data (l, n, a).

If a is trivial, the following vanishing holds.
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Lemma 19.3. For any n and l, we have I(l, n, o) = 0.

19.3. Proofs of Lemmas 19.2 and 19.3. Set

τS(a)(b) =
∏

v∈Σfin−S(a)

Λv(b)
∏

v∈S(a)

δ(|b|v 6 qordv(a)
v ).

Then we have

I(l, n, a) =
∑

b∈na−1−{0,−1}

τS(a)(b)m∞(l; b).(19.4)

Lemma 19.4. For any ε > 0, we have

τS(a)(b)�ε (N(a)2 |N(b(b+ 1))|)ε, b ∈ a−1 − {0,−1}
with the implied constant independent of b.

Proof. Let b ∈ a−1 − {0}. Then (b(b + 1))a2 = b
∏r
j=1 p

ej
j , where ej are positive integers, pj are prime

ideals of o relatively prime to a, and b is an ideal of o dividing a. For each j, there exist a prime number

pj and an integer dj ∈ N such that N(pj) = p
dj
j . By taking norms, we have

N(a)2 |N(b(b+ 1))| = N(b)

r∏
j=1

N(pj)
ej = N(b)

r∏
j=1

p
djej
j .

Hence

d(N(a)2|N(b(b+ 1))|) = d(N(b))

r∏
j=1

(ejdj + 1) >
r∏
j=1

(ej + 1) = τS(a)(b),

where, for a natural number m, d(m) denotes the number of positive divisors of m. Invoking the well
known bound d(m)�ε m

ε, we obtain the desired estimate. �

From Lemmas 19.4 and 17.15,

I(l, n, a)�ε N(a)2ε
∑

b∈na−1∩Q∞

|N(b(b+ 1))|ε
∏
v∈Σ∞

|2π Plv/2−1(2bv + 1)|,

where Q∞ denotes the cube (−1, 0)Σ∞ in
∏
v∈Σ∞

R. Invoking the inequality |Pn(x)| 6 (1−x2)−1/2 n−1/2

for |x| < 1, n ∈ N ([24, p.237]), we have

I(l, n, a)�ε π
dF N(a)2ε

∑
b∈na−1∩Q∞

|N(b(b+ 1))|−1/4+ε
∏
v∈Σ∞

(lv/2− 1)−1/2.(19.5)

To estimate the sum
∑
b∈na−1∩Q∞ |N(b(b+ 1))|−1/4+ε, we need several lemmas.

Lemma 19.5. For a positive integer c, let ν(c) be the number of integral ideals c such that N(c) = c.
Then, for any ε > 0, ν(c)�ε c

ε with the implied constant independent of c.

Proof. Suppose c is a prime power pt. Then an ideal c such that N(c) = pt must be a power of a prime
ideal p lying above p. The number of choices for such p is at most dF = [F : Q]. If c = pe, then N(c) = pt

is equivalent to pme = pt, where N(p) = pm. Hence e = t
m 6 t 6 t log2 p 6 log2 p

t. From this, we have
the inequality ν(pt) 6 dF log2 p

t. Given ε > 0, let x(ε) > 1 be a number such that dF log2 x 6 x
ε for any

x > x(ε). Let Q(ε) be the set of prime powers pt such that pt 6 x(ε). Noting that Q(ε) is a finite set, we
set C(ε) =

∏
q∈Q(ε) ν(q), which is a constant depending only on ε. Let c′ (resp. c′′) be the product of the

prime powers ptii such that ptii ∈ Q(ε) (resp. ptii 6∈ Q(ε)) in the prime factorization c =
∏
i p
ti
i of c. Since

ν is multiplicative, we have

ν(c) = ν(c′) ν(c′′) 6
∏

q∈Q(ε)

ν(q)
∏

i; pi|c′′
dF log2 p

ti
i 6 C(ε)

∏
i; pi|c′′

ptiεi 6 C(ε) (
∏
i

ptii )ε 6 C(ε) cε.
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This completes the proof. �

Lemma 19.6. Let C = {Cv}v∈Σ∞ be a family of positive real numbers. For any ε > 0, we have

#{u ∈ o×| |uv| < Cv (∀ v ∈ Σ∞) } �ε

( ∏
v∈Σ∞

Cv

)ε
with the implied constant independent of C.

Proof. For simplicity, we set d = dF . By the Dirichlet unit theorem, there exist fundamental units
εj (1 6 j 6 d− 1) such that any γ ∈ o× is written uniquely in the form γ = ±εn1

1 · · · ε
nd−1

d−1 with integers
nj ∈ Z. By this, the inequality |γv| < Cv is written as

d−1∑
j=1

nj log |(εj)v| < logCv, (v ∈ Σ∞).(19.6)

Let U(C) be the set of u ∈ o× such that |uv| < Cv for all v ∈ Σ∞. Thus, the number #U(C) is
bounded from above by the number of integer points (nj) ∈ Zd−1 lying on the Euclidean domain D(C)
in Rd−1 defined by the system of linear inequalities (19.6). Fix an enumeration Σ∞ = {v1, . . . , vd} and
let Ei = (log |(εj)vi |)16j6d−1 ∈ Rd−1 for 1 6 i 6 d. First d − 1 vectors Ei (1 6 i 6 d − 1) form a basis

of Rd−1; let E∗j (1 6 j 6 d − 1) be its dual basis. From the relation |N(εj)| = 1, we have
∑d
i=1Ei = 0.

Hence, if we write a general point y ∈ Rd−1 by y =
∑d−1
i=1 (logCvi − yi)E∗i , then y ∈ D(C) if and only if

yi > 0 (1 6 i 6 d− 1),

d−1∑
i=1

yi <

d∑
j=1

logCvj .

The volume of this region in the y-space with respect to the Euclidean measure is 1
rF (d−1)! (

∑d
j=1 logCvj )

d,

where rF is the regulator of F . Thus vol(D(C))� (log
∏
v Cv)

d �ε (
∏
v Cv)

ε, and we are done. �

Lemma 19.7. Let a be an integral ideal and c a positive integer. For any ε, ε′ > 0,

#{b ∈ a−1 ∩Q∞|N((b)a) = c } �ε,ε′ c
ε′−ε N(a)ε

with the implied constant independent of a and c.

Proof. Let c be an integral ideal such that N(c) = c. From Lemma 19.5, the number of such c is bounded

by cε
′

for any ε′ > 0. If ca−1 is a principal ideal, say (ξ), then, using Lemma 19.6, we have

#{b ∈ a−1 ∩Q∞| c = (b)a } = #{u ∈ o×| |uv| < |ξv|−1 (∀ v ∈ Σ∞) }

�ε (
∏
v∈Σ∞

|ξv|−1)ε = (|N(ξ)|−1)ε = (c−1 N(a))ε.

�

19.3.1. The completion of the proof of Lemma 19.2. From (19.5), we have

I(l, n, a)�ε N(a)2ε {
∏
v∈Σ∞

lv}−1/2
∑

b∈a−1∩Q∞

|N(b(b+ 1))|−1/4+ε(19.7)

with the implied constant independent of (l, n, a). Setting N((b)a) = c, we rewrite the last summation in
the following way.∑

b∈a−1∩Q∞

|N(b(b+ 1))|−1/4+ε = N(a)1/4−ε
∞∑
c=1

c−1/4+ε
∑

b∈a−1∩Q∞
|N((b)a)|=c

|N(b+ 1)|−1/4+ε.
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The range of c is reduced to 1 6 c 6 N(a) by the condition b ∈ Q∞. Since (0) 6= (b + 1)a ⊂ o,
we have N((b + 1)a) > 1, by which the last summation in b is trivially bounded by N(a)1/4−ε #{b ∈
a−1 ∩ Q∞| |N((b)a)| = c } for any ε ∈ (0, 1/4). Combining these considerations and by Lemma 19.7, we
obtain the bound∑

b∈a−1∩Q∞

|N(b(b+ 1))|−1/4+ε �ε,δ,δ′ N(a)1/2−2ε

N(a)∑
c=1

c−1/4+εcδ
′−δ N(a)δ

�ε,δ,δ′ N(a)1/2−2εN(a)δ ×N(a)3/4+ε+δ′−δ log N(a)(19.8)

= N(a)5/4−ε+δ′ log N(a)(19.9)

for any sufficiently small δ, δ′ > 0. Consequently, we have the desired estimate from (19.7) and (19.9). �

19.3.2. Proof of Lemma 19.3. Suppose b ∈ n ∩ Q∞. The integrality of b yields N(b) ∈ Z. From the
condition b ∈ Q∞, we have 0 < |bv| < 1 for all v ∈ Σ∞, from which 0 < |N(b)| < 1 is obtained. Thus, if
a = o, then the summation in the right-hand side of (19.5) is empty. This completes the proof. �

19.4. An estimate of the hyperbolic term. Given a quadratic character η of F×\A× with conductor
fη and an integral ideal n, for a large number K > 2, let S = Sn,η

K = {v ∈ Σfin−S(nfη)| ηv($v) = −1, K 6
qv 6 2K }, and consider the test function απS(s) depending on a cuspidal representation π ∈ Πcus(l, n).

Lemma 19.8. There exists a constant C > 1 independent of n and η such that C−1K(logK)−1 < #S <
C K(logK)−1 for all K > 2.

Proof. This follows from an analogue of Dirichlet’s theorem on arithmetic progression for number fields.
�

For S = Sn,η
K and for a given π ∈ Πcus(l, n), let απS(s) be the function defined in §19.1.

Proposition 19.9. For any ε > 0, we have

|Jηhyp(l, n|απS)| �ε {
∏
v∈Σ∞

lv}−1/2 N(fη)1/4+εK5+ε

with the implied constant independent of l, n, π, η and K.

Proof. Set P = {(v1, v2) ∈ S2| v1 6= v2 }. From Lemmas 17.4 and 17.5, we have the bound

|Jηhyp(l, n|απS)| �
∑

b∈F×−{−1}

|JS(b;απS)| {
∏

v∈Σfin−S∪S(fη)

Λv(b)} {
∏

v∈S(fη)

|Jηvv (b)|}m∞(l; b).

Combining this with Corollary 17.11 and Proposition 19.1, we have that this is majorized by the N(fη)−1+ε

times the following expression.

{
∑
v∈S

q(θ+1)/2
v } I(l, n, fη) +

∑
v∈S

qθv I(l, n, pvfη) +
∑
v∈S

qθ−1
v I(l, n, p2

vfη)

+
∑
v∈S

q−1
v I(l, n, p3

vfη) +
∑
v∈S

q−2
v I(l, n, p4

vfη)

+ {
∑

(v1,v2)∈P

q(θ+1)/2
v1

q(θ+1)/2
v2

} I(l, n, fη)(19.10)

+
∑

(v1,v2)∈P

q(θ+1)/2
v1

I(l, n, pv2
fη) +

∑
(v1,v2)∈P

I(l, n, pv1
pv2

fη)(19.11)

+
∑

(v1,v2)∈P

q−1
v1

I(l, n, p2
v1
pv2

fη) +
∑

(v1,v2)∈P

q−1
v1
q(θ+1)/2
v2

I(l, n, p2
v1
fη)
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+
∑

(v1,v2)∈P

q−1
v1
q−1
v2

I(l, n, p2
v1
p2
v2
fη).

Invoking the bound ]S � K obtained from Lemma 19.8 and applying Lemma 19.2 or Lemma 19.3, we
estimate each term occurring above. Thus, after a power saving, we obtain
|Jηhyp(l, n|απS)| �ε N(fη)−1+ε ϕ(l,K) with ϕ(l,K) being

N(fη)5/4+ε L−1/2 (K(θ+3)/2 +Kθ+9/4+ε +Kθ+5/2+2ε +K15/4+3ε +K4+4ε +K3+θ +K(2θ+15)/4+ε

+K9/2+2ε +K19/4+3ε +K(θ+8)/2+2ε +K5+4ε),

where L =
∏
v∈Σ∞

lv. Since θ ∈ [0, 1], this is bounded by N(fη)1/4+2ε L−1/2K5+4ε. �

19.5. An estimate of the unipotent term. Set S = Sn,η
K with K > 2.

Proposition 19.10. Let π ∈ Πcus(l, n). For any ε > 0, we have

|J̃ηu(l, n|απS)| �ε |G(η)|N(fη)εK1+θ,

with the implied constant independent of l, n, π, η and K.

Proof. We use the same notation as in the proof of Proposition 19.9. By substituting the expression
απS(s) =

∑
v∈S Z

2
v +

∑
(v1,v2)∈P Zv1

Zv2
, we obtain

|G(η)−1 J̃ηu(l, n|απS)|

�|Cη
F (l, n)|

(∑
v∈S
{

∏
w∈S−{v}

|Uηww (1)|} |Uηvv (Z2
v )|+

∑
(v1,v2)∈P

{
∏

w∈S−{v1,v2}

|Uηww (1)|} |Uηv1v1 (Zv1)||Uηv2v2 (Zv2)|
)

�Lfin(1, η)

(∑
v∈S
|Uηvv (Z2

v )|+
∑

(v1,v2)∈P

|Uηv1v1 (Zv1)||Uηv2v2 (Zv2)|
)
,

where to simplify the terms, we use Uw(1) = −1 from Proposition 18.1. As in the proof of Proposition 19.1,
using Proposition 18.1, we compute each term and estimate it as follows.

Uηvv (Z2
v ) = λv(π)2 {Uηvv (α(2)

v ) + Uηvv (α(0)
v )}+ Uηvv (α(4)

v ) + 2Uηvv (α(2)
v ) +

3

2
Uηvv (α(0)

v )

= λv(π)2{(1− q−1
v )− 2}+ q−1

v (1− q−1
v ) + 2(1− q−1

v )− 3.

By |λv(π)| � q
θ/2
v with θ ∈ [0, 1], from this,

|Uηvv (Z2
v )| � qθv(1 + q−1

v ) + q−2
v + q−1

v + 1� qθv .

In a similar way,

Uηvv (Zv) = q−1
v .

Applying these, we continue the estimate of |J̃ηu(l, n|απS)| as follows.

Lfin(1, η)
(∑
v∈S

qθv +
∑

(v1,v2)∈P

q−1
v q−1

v

)
�N(fη)ε {K/ logK ×Kθ + (K/ logK)2K−2} � N(fη)εKθ+1.

We remark that Lfin(1, η)�ε N(fη)ε (cf. [4, Theorem 2]). This completes the proof. �
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19.6. A subconvexity bound (odd case). Let n be an ideal of o. For a family of positive even
integers l = (lv)v∈Σ∞ , let Π∗cus(l, n) denote the set of all cuspidal automorphic representations π ∼=

⊗
v πv

of PGL2(A) such that fπ = n and such that πv is isomorphic to the discrete series representation Dlv of
minimal K0

v-type lv for each v ∈ Σ∞.

Theorem 19.11. Let η be a quadratic character of F×\A× with conductor fη such that ηv(−1) = −1 for
all v ∈ Σ∞. Let n be an integral ideal relatively prime to fη. Assume that lv > 6 for all v ∈ Σ∞. Then,
for any ε > 0 we have

|Lfin(1/2, π)Lfin(1/2, π ⊗ η)| �ε (N(nfη)KL)ε N(n) (LKθ−1 + N(fη)3/4L1/2K3),

where L =
∏
v∈Σ∞

lv and with the implied constant independent of l, n, η, K > 2 and π ∈ Π∗cus(l, n).

Proof. Let π ∈ Π∗cus(l, n) and let S = Sn,η
K . By applying Theorem 16.1 for the test function απS(s), we

have

|C(l, n, S)| |
∑

π′∈Πcus(l,n)

Iηcus(π
′; l, n)απS(νS(π′))| 6 |J̃ηu(l, n|απS)|+ |Jηhyp(l, n|απS)|.

with C(l, n, S) = (−1)#S2−1D−1
F [Kfin : K0(n)]−1

∏
v∈Σ∞

2πΓ(lv − 1)/Γ(lv/2)2. From Proposition 13.6

and the non-negativity of Iηcus(π
′; l, n)/(−1)ε(η)G(η) by Lemma 13.2, the left-hand side becomes

|C(l, n, S)| |G(η)|
∑

π′∈Πcus(l,n)

[Kfin : K0(fπ′)]

N(fπ′)
wηn(π′)

L(1/2, π′)L(1/2, π′ ⊗ η)

LSπ (1, π′,Ad)
απS(νS(π′)),

which is greater than the summand corresponding to π by the non-negativity again. Let us examine the
π-term closely. First, from the explicit formula, wηn(π) = 1 for fπ = n. Let Av(π) = diag(zv, z

−1
v ) be the

Satake parameter of our π. Then, using Lemma 19.8, we obtain

απS(νS(π)) =

(∑
v∈S
{(zv + z−1

v )2 − (z2
v + z−2

v + 1)}
)2

= (#S)2 �ε K
2−ε.

Separating the gamma factors from the L-functions, we have

|C(l, n, S)| L∞(1/2, π)L∞(1/2, π ⊗ η)

L∞(1, π; Ad)
�[Kfin : K0(n)]−1

∏
v∈Σ∞

2π Γ(lv − 1)

Γ(lv/2)2
×

∏
v∈Σ∞

ΓC(lv/2)2

ΓC(lv)

�[Kfin : K0(n)]−1
∏
v∈Σ∞

(lv − 1)−1,

where all the implied constants are only dependent on F . The remaining factors in the π-term are easily
seen to be bounded from below by a constant independent of (l, n, π, η). Combining the considerations
so far, we obtain the estimate

|G(η)|K2−ε N(n)−1 L−1 Lfin(1/2, π)Lfin(1/2, π ⊗ η)

LSπfin (1, π,Ad)
�ε |J̃ηu(l, n|απS)|+ |Jηhyp(l, n|απS)|.(19.12)

From Propositions 19.9 and 19.10, the right-hand side is estimated by

�ε |G(η)|N(fη)εK1+θ + N(fη)1/4+ε L−1/2K5+ε.

To complete the proof, we invoke the bound LSπfin (1, π,Ad) �ε (N(n)L)ε which is known to hold for a

general class of L-series (cf. [4, Theorem 2]). We remark that |G(η)| = D
−1/2
F N(fη)−1/2

∏
v∈S(fη)(1 −

q−1
v )−1 > D−1/2

F N(fη)−1/2. �
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Theorem 19.12. Let η be a quadratic character of F×\A× such that ηv(−1) = −1 for all v ∈ Σ∞. Let
n be an integral ideal relatively prime to fη. Assume that lv > 6 for all v ∈ Σ∞. Then, for any ε > 0,

|Lfin(1/2, π)Lfin(1/2, π ⊗ η)| �ε N(fη)3/4+ε N(n)1+ε {
∏
v∈Σ∞

lv}(7−θ)/(8−2θ)+ε

with the implied constant independent of l, n, η and π ∈ Π∗cus(l, n).

Proof. We apply the estimate in Theorem 19.11 with taking K so that LKθ−1 � L1/2K3, or equivalently
K � L1/(8−2θ). Then, we obtain the desired estimate. �

If θ ∈ [0, 1), the estimate in Theorem 19.12 breaks the convex bound Lfin(1/2, π)Lfin(1/2, π ⊗ η) �ε

{C(π)C(π⊗ η)}1/4+ε � (
∏
v∈Σ∞

lv)
1+ε in the weight aspect with a fixed level n and a fixed character η.

To have Theorem 0.8, we only have to invoke the Ramanujan bound θ = 0 (cf. [1]) in Theorem 19.12.

87



Part 3. Relative trace formulas for holomorphic Hilbert modular forms : derivatives of
L-series

In this part, we establish an explicit relative trace formula for GL(2), which encodes central derivatives
of automorphic L-functions. Thoroughout this part, assume that l ∈ (2N)Σ∞ satisfies l = infv∈Σ∞ lv > 6
and that η is a quadratic character of F×\A×. Let n be an ideal of o relatively prime to fη. We consider a

finite subset S of Σfin relatively prime to nfη and the automorphic Green function Ψ̂l
reg(n|α; g) associated

with l, n and S. We abuse the symbol pv to represent the prime ideal pv ∩ o.
In §0.4, we fix S and consider ideals a =

∏
v∈S(a) p

nv
v such that S(a) ⊂ S. From now on, we treat only

the case S(a) = S. Although v /∈ S(a) holds for places v such that nv = 0, the case S = S(a) is sufficient
to be considered by substituting 0 for some nv formally.

20. Spectral average of derivatives of L-series : the spectral side

Let B be the space of functions defined in §3.2. Given β ∈ B, t > 0 and λ ∈ C, we set

β
(1)
λ (t) =

1

2πi

∫
Lσ

β(z)

(z + λ)2
tzdz,

where Lσ = {z ∈ C | Re(z) = σ}. The defining integral is independent of the choice of σ > −Re(λ). By
the residue theorem,

CTλ=0{β(1)
λ (t)− β(1)

λ (t−1)} = β(0) log t.(20.1)

In the same way as [47, Lemma 7.1], we have the estimate

|β(1)
λ (t)| �σ inf{tσ, t−Re(λ)} log t, t > 0, σ > −Re(λ).(20.2)

Definition 20.1. For a cusp form ϕ on PGL(2,A), set

∂P ηβ,λ(ϕ) =

∫
F×\A×

ϕ
(
[ t 0
0 1 ]

[
1 xη
0 1

])
η(tx∗η){β(1)

λ (|t|A)− β(1)
λ (|t|−1

A )} d×t, Re(λ)� 1.

By (20.2), the integral ∂P ηβ,λ(ϕ) is absolutely convergent for λ ∈ C and the function λ 7→ ∂P ηβ,λ(ϕ) is

entire on C. Therefore, (20.1) gives us the formula

CTλ=0∂P
η
β,λ(ϕ) =

∫
F×\A×

ϕ
(
[ t 0
0 1 ]

[
1 xη
0 1

])
η(tx∗η) log |t|Ad×t β(0) =

d

ds
Z∗(s, η, ϕ)

∣∣∣∣
s=1/2

β(0).

Here Z∗(s, η, ϕ) is the modified global zeta integral considered in §3.1 (cf. [47, 2.6.2] and [41, §4]).

20.1. For j ∈ N0, a place v ∈ Σfin, an irreducible admissible representation πv of PGL(2, Fv) and for a
character ηv of F×v such that η2

v = 1, we define a polynomial of X by setting Qπvj,v(ηv, X) =

1 (j = 0),

ηv($v)X −Q(πv) (c(πv) = 0, j = 1),

ηv($v)
j−1Xj−1(ηv($v)X − q−1

v χv($v)
−1) (c(πv) = 1, j > 1),

q−1
v ηv($v)

j−2Xj−2(avq
1/2
v ηv($v)X − 1)(a−1

v q
1/2
v ηv($v)X − 1) (c(πv) = 0, j > 2),

ηv($v)
jXj (c(πv) > 2, j > 1),

(20.3)

(cf. [41, Corollary 19]), where

Q(πv) = (av + a−1
v )/(q1/2

v + q−1/2
v ) with a±v the Satake parameter of πv if c(πv) = 0,
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and χv is the unramified character of F×v such that πv ∼= σ(χv| |1/2v , χv| |−1/2
v ) if c(πv) = 1. For π ∈

Πcus(l, n), we set

Qπ,η,ρ(s) =
∏

v∈S(nf−1
π )

Qπvρ(v),v(ηv, q
1/2−s
v ), ρ ∈ Λπ(n),

where Λπ(n) denotes the set
∏n
k=1 Map(Sk(nf−1

π ), {0, . . . k}) with n = maxv∈S(nf−1
π ) ordv(nf

−1
π ) and we

set ρ(v) = ρk(v) for each v ∈ Sk(nf−1
π ). We recall here an explicit formula of the modified zeta integral

Z∗(s, η, ϕl,π,ρ) for the basis {ϕl,π,ρ} of Vπ[τl]
K0(n) ([41, Proposition 20] and Proposition 13.1):

Z∗(s, η, ϕl,π,ρ) = D
s−1/2
F (−1)ε(η)G(η)Qπ,η,ρ(s)L(s, π ⊗ η)(20.4)

for any π ∈ Πcus(l, n) and ρ ∈ Λπ(n).

20.2. Let π ∈ Πcus(l, n) and ρ ∈ Λπ(n). For a complex parameter z, we set

wηn(π; z) =
∑

ρ∈Λπ(n)

∏
v∈S(nf−1

π )

Qπvρ(v),v(1, 1)Qπvρ(v),v(ηv, q
1/2−z
v )/τπv (ρ(v), ρ(v))(20.5)

=
∏

v∈S(nf−1
π )

r(z)(πv, ηv)

with

r(z)(πv, ηv) =

ordv(nf−1
π )∑

j=0

Qπvj,v(1, 1)Qπvj,v(ηv, q
1/2−z
v )/τπv (j, j)

Here Qπvj,v(ηv, X) is the polynomial defined by (20.3), and τπv (j, j) is given by [41, Corollary 12, Corollary

16 and Lemma 3] as

τπv (j, j) =


1 (j = 0 or c(πv) > 2),

1−Q(πv)
2 (c(πv) = 0, j = 1),

1− q−2
v (c(πv) = 1, j > 1),

(1−Q(πv)
2)(1− q−2

v ) (c(πv) = 0, j > 2).

(20.6)

Here is the explicit determination of r(z)(πv, ηv).

Lemma 20.2. Let v ∈ S(nf−1
π ) and set kv = ordv(nf

−1
π ) and X = q

1/2−z
v . Suppose ηv($v) = −1. Then

we have

r(z)(πv, ηv) =


1−X

1+Q(πv) +
(1+avq

1/2
v X)(1+a−1

v q1/2
v X)

(qv−1)(1+Q(πv))
1−(−X)kv−1

1+X (c(πv) = 0),

1− X+q−1
v χv($v)

1+q−1
v χv($v)

1−(−1)kvXkv

1+X (c(πv) = 1),

1+(−1)kvXkv+1

1+X (c(πv) > 2).

Suppose ηv($v) = 1. Then we have

r(z)(πv, ηv) =


1+X

1+Q(πv) +
(1−avq1/2

v X)(1−a−1
v q1/2

v X)
(qv−1)(1+Q(πv)) (

∑kv
j=2X

j−2) (c(πv) = 0),

1 +
X−q−1

v χv($v)

1+q−1
v χv($v)

(
∑kv
j=1X

j) (c(πv) = 1),∑kv
j=0X

j (c(πv) > 2).

Proof. From (20.3) and (20.6), we obtain the result by a direct computation. �
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We abbreviate r(1/2)(πv, ηv) to r(πv, ηv). Define

wηn(π) = wηn(π; 1/2), ∂wηn(π) =

(
d

dz

)
z=1/2

wηn(π; z).

Note that the first quantity wηn(π) is the same one as in Lemma 3.6 and Lemma 13.2. From Lemma 20.2,
the second quantity ∂wηn(π) is also evaluated explicitly.

Corollary 20.3. Set ∂r(πv, ηv) = −1
log qv

(
d
dz

)
z=1/2

r(z)(πv, ηv). When ηv($v) = −1,

∂r(πv, ηv) =


−1

1+Q(πv) +
1 + (−1)kv

2
2qv+(qv+1)Q(πv)
(qv−1)(1+Q(πv)) + (−1)kv (2kv−3)−1

4
qv+1
qv−1 (c(πv) = 0),

− 1−(−1)kv

2

1

1 + q−1
v χv($v)

+ 1+(−1)kv (2kv−1)
4 (c(πv) = 1),

(−1)kv (2kv+1)−1
4 (c(πv) > 2).

When ηv($v) = 1,

∂r(πv, ηv) =


1

1+Q(πv) + (kv − 1) 2qv−(qv+1)Q(πv)
(qv−1)(1+Q(πv)) + (kv−2)(kv−1)

2
(qv+1)(1−Q(πv))
(qv−1)(1+Q(πv)) (c(πv) = 0),

kv
1+q−1

v χv($v)
+

1−q−1
v χv($v)

1+q−1
v χv($v)

kv(kv+1)
2 (c(πv) = 1),

kv(kv+1)
2 (c(πv) > 2).

20.3. Depending on a function α ∈ AS , we have constructed a cusp form denoted by Ψ̂l
reg(n|α) in §13.4.

Recall that it has the expression

Ψ̂l
reg(n|α; g) =

(−1)#S{
∏
v∈Σ∞

2lv−1}Cl(0)D
−1/2
F

[Kfin : K0(n)]

∑
π∈Πcus(l,n)

∑
ρ∈Λπ(n)

α(νS(π))
Z∗(1/2,1, ϕl,π,ρ)

‖ϕl,π,ρ‖2
ϕl,π,ρ(g).

(20.7)

Proposition 20.4. We have

CTλ=0∂P
η
β,λ(Ψ̂l

reg(n|α)) =(−1)#S{
∏
v∈Σ∞

2lv−1}Cl(0)D−1
F [Kfin : K0(n)]−1(−1)ε(η)G(η)

×
[ ∑
π∈Πcus(l,n)

(logDF )wηn(π)
L(1/2, π)L(1/2, π ⊗ η)

‖ϕnew
l,π ‖2

α(νS(π))

+
∑

π∈Πcus(l,n)

∂wηn(π)
L(1/2, π)L(1/2, π ⊗ η)

‖ϕnew
l,π ‖2

α(νS(π))

+
∑

π∈Πcus(l,n)

wηn(π)
L(1/2, π)L′(1/2, π ⊗ η)

‖ϕnew
l,π ‖2

α(νS(π))

]
β(0).

Proof. Since the spectral expansion (20.7) is a finite sum, we have

CTλ=0∂P
η
β,λ(Ψ̂l

reg(n|α)) =(−1)#S
∏

2lv−1Cl(0)D
−1/2
F [Kfin : K0(n)]−1

×
∑

π∈Πcus(l,n)

∑
ρ∈Λπ(n)

α(νS(π))
Z∗(1/2,1, ϕl,π,ρ)

‖ϕl,π,ρ‖2
d

ds
Z∗(s, η, ϕl,π,ρ)

∣∣∣∣
s=1/2

β(0).

By virtue of Proposition 13.1 and (20.4), we have∑
ρ∈Λπ(n)

Z∗(1/2,1, ϕl,π,ρ)

‖ϕl,π,ρ‖2
d

ds
Z∗(s, η, ϕl,π,ρ)

∣∣∣∣
s=1/2
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=
∑

ρ∈Λπ(n)

1

‖ϕl,π,ρ‖2
D
−1/2
F Qπ,1,ρ(1/2)L(1/2, π)(logDF )G(η)Qπ,η,ρ(1/2)L(1/2, π ⊗ η)

+
∑

ρ∈Λπ(n)

1

‖ϕl,π,ρ‖2
D
−1/2
F Qπ,1,ρ(1/2)L(1/2, π)G(η)(Qπ,η,ρ)

′(1/2)L(1/2, π ⊗ η)

+
∑

ρ∈Λπ(n)

1

‖ϕl,π,ρ‖2
D
−1/2
F Qπ,1,ρ(1/2)L(1/2, π)G(η)Qπ,η,ρ(1/2)L′(1/2, π ⊗ η)

=(logDF )D
−1/2
F G(η)wηn(π)

L(1/2, π)L(1/2, π ⊗ η)

‖ϕnew
l,π ‖2

+

 ∑
ρ∈Λπ(n)

 ∏
v∈S(nf−1

π )

Qπvρ(v),v(1v, 1)

τπv (ρ(v), ρ(v))

 (Qπ,η,ρ)
′(1/2)

D
−1/2
F G(η)

L(1/2, π)L(1/2, π ⊗ η)

‖ϕnew
l,π ‖2

+D
−1/2
F G(η)wηn(π)

L(1/2, π)L′(1/2, π ⊗ η)

‖ϕnew
l,π ‖2

.

By the definition (20.5) of wηn(π, z), we have

∂wηn(π) =
∑

ρ∈Λπ(n)

 ∏
v∈S(nf−1

π )

Qπvρ(v),v(1, 1)

τπv (ρ(v), ρ(v))

 (Qπ,η,ρ)
′(1/2).

Thus we are done. �

21. Spectral average of derivatives of L-series: the geometric side

Recall that the function Ψ̂l
reg(n|α) has another expansion coming from the double coset spaceHF \GF /HF

in §14:

Ψ̂l
reg

(
n|α; [ t 0

0 1 ][ 1 xη
0 1

]
)

= (1 + il̃δ(n = o))J lid(α; t) + J lu(α; t) + J lū(α; t) + J lhyp(α; t), t ∈ A×,(21.1)

where the terms in the right-hand side are defined in Lemmas 14.1, 14.2 and 14.10. For \ ∈ {id,u, ū,hyp},
we consider the “orbital integrals”

Wη
\ (β, λ;α) =

∫
F×\A×

J l\(α; t){β(1)
λ (|t|A)− β(1)

λ (|t|−1
A )}η(tx∗η)d×t

for α ∈ AS , β ∈ B and λ ∈ C such that Re(λ) > 1. We shall show that these integrals converge absolutely
individually when Re(λ) > 1 and admit an analytic continuation in a neighborhood of λ = 0.

Lemma 21.1. Let λ and w be complex numbers such that Re(w) < Re(λ). Let ξ be a character of
F×\A×. Then, we have∫

F×\A×
β

(1)
λ (|t|A)ξ(t)|t|wAd×t = δξ,1vol(F×\A1)

β(−w)

(λ− w)2
.

Proof. The proof is given in the same way as [47, Lemma 7.6]. �

Lemma 21.2. For Re(λ) > 0, the integral Wη
id(β, λ;α) converges absolutely and Wη

id(β, λ;α) = 0.

Proof. This follows immediately from Lemma 21.1, since Jid(α; t) is independent of the variable t (cf.
Lemma 14.1). �
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Assume that q(Re(s)) > Re(λ) > σ and 1 < σ < l/2. Set

V ±0,η(λ; s) =
1

2πi

∫
L∓σ

β(z)

(z + λ)2

∫
A×

Ψ
(0)
l

(
n|s; [ 1 t−1

0 1
][ 1 xη

0 1
]
)
η(tx∗η)|t|±zA d×tdz,

V ±1,η(λ; s) =
1

2πi

∫
L∓σ

β(z)

(z + λ)2

∫
A×

Ψ
(0)
l

(
n|s; [ 1 0

t−1 1
][ 1 0
−xη 1 ]w0

)
η(tx∗η)|t|±zA d×tdz

and

Υη
S(z; s) =

∏
v∈S

(1− ηv($v)q
−(z+(sv+1)/2)
v )−1(1− q(sv+1)/2

v )−1,

Υη
S,l(z; s) =D

−1/2
F {#(o/fη)×}−1{

∏
v∈Σ∞

2Γ(−z)Γ(lv/2 + z)

ΓR(−z + εv)Γ(lv/2)
iεv cos

(π
2

(−z + εv)
)
}Υη

S(z; s).

Lemma 21.3. The double integrals V ±j,η(λ; s) converge absolutely and

V ±0,η(λ; s) =
1

2πi

∫
Lσ

β(z)

(z + λ)2
N(fη)∓zL(∓z, η)(−1)ε(η)Υη

S,l(±z; s)dz

and

V ±1,η(λ; s) =
1

2πi

∫
Lσ

β(z)

(z + λ)2
N(fη)∓zN(n)±z η̃(n)δ(n = o)L(∓z, η)il̃Υη

S,l(±z; s)dz.

Proof. As in Lemma 15.2, we exchange the order of integrals and compute the t-integrals first. Since
η 6= 1, the integrands in the remaining contour integrals in z are holomorphic on |Re(z)| < σ; thus we
can shift the contour L−σ to Lσ for V +

0,η and V +
1,η. �

Lemma 21.4. The integral Wη
u(β, λ;α) has an analytic continuation to the region Re(λ) > −l/2 as a

function in λ. The constant term of Wη
u(β, λ;α) at λ = 0 equals Wη

u(l, n|α)β(0) with

Wη
u(l, n|α) = (−1)ε(η)G(η)D

1/2
F (1 + (−1)ε(η)η̃(n)il̃δ(n = o))

(
1

2πi

)#S ∫
LS(c)

Wη
S(l, n|s)α(s)dµS(s),

where Υη
S(s) = Υη

S(0; s) and

Wη
S(s) =πε(η)Υη

S(s)L(1, η)

{
logDF +

L′(1, η)

L(1, η)

+
∑
v∈Σ∞

lv/2−1∑
k=1

1

k
− 1

2
log π − 1

2
CEuler − δεv,1 log 2

+
∑
v∈S

log qv

1− ηv($v)q
(sv+1)/2
v

}
.

Proof. From Lemma 14.2, we have the expression

Wη
u(β, λ;α) =

(
1

2πi

)#S ∫
LS(c)

{V +
0,η(λ; s)− V −0,η(λ; s) + V +

1,η(λ; s)− V −1,η(λ; s)}α(s)dµS(s).

By Lemma 21.3, the right-hand side becomes

((−1)ε(η) + il̃δ(n = o))

(
1

2πi

)#S ∫
LS(c)

1

2πi

∫
Lσ

β(z)

(z + λ)2
{N(fη)−zL(−z, η)Υη

S,l(z; s)

−N(fη)zL(z, η)Υη
S,l(−z; s)}dzα(s)dµS(s),
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which is holomorphic on Re(λ) > −σ. Since 1 < σ < l/2 is arbitrary, this gives an analytic continuation
of Wη

u(β, λ;α) to the region Re(λ) > −l/2 and yields the equality

CTλ=0Wη
u(β, λ;α)

=

(
1

2πi

)#S ∫
LS(c)

(
1

2πi

∫
Lσ

β(z)

z2
{fu(z)− fu(−z)}dz

)
α(s)dµS(s)

=((−1)ε(η) + il̃δ(n = o)) Resz=0

(
β(z)

z2
fu(z)

)
=((−1)ε(η) + il̃δ(n = o))

{
CTz=0

fu(z)

z
β(0) +

1

2
Resz=0 fu(z)β′′(0)

}
,

where fu(z) = N(fη)−zL(−z, η)Υη
S,l(z; s). Since η is non-trivial, by the functional equation

L(s, η) = iε(η)D1−s
F N(fη)−s #((o/fη)×)G(η)L(1− s, η),

fu(z) is holomorphic at z = 0. Thus,

CTz=0
fu(z)

z
= lim
z→0

fu(z)− fu(0)

z
=− (log N(fη))L(0, η)Υη

S,l(0; s)− L′(0, η)Υη
S,l(0; s) + L(0, η)(Υη

S,l)
′(0; s)

=iε(η)G(η)D
1/2
F Υ̃η

S,l(0; s){−L(1, η) log N(fη) + L(1, η) log(DFN(fη)) + L′(1, η) + L(1, η)
d

dz
log Υ̃S,l(z; s)|z=0}

=G(η)D
1/2
F πε(η)Υη

S(s){L(1, η) logDF + L′(1, η) + L(1, η)
d

dz
log Υ̃S,l(z; s)|z=0},

where Υ̃η
S,l(z; s) = D

1/2
F #((o/fη)×)Υη

S,l(z; s). Furthermore,

d

dz
log Υ̃S,l(z; s)|z=0 =

∑
v∈Σ∞

(
ψ(lv/2)− 1

2
log π +

1

2
ψ

(
−z + εv

2

)
− ψ(−z) +

π

2
tan

π

2
(−z + εv)

)∣∣∣∣
z=0

+
∑
v∈S

log qv

1− ηv($v)q
(sv+1)/2
v

.

Here, by ψ(1) = −CEuler, ψ(1/2) = −CEuler − 2 log 2 and d
dt (t cot t) |t=0 = 0, we have

1

2
ψ

(
−z + εv

2

)
− ψ(−z) +

π

2
tan

π

2
(−z + εv)

∣∣∣∣
z=0

=


1

2
CEuler (εv = 0),

1

2
ψ

(
1

2

)
− ψ(1) =

1

2
CEuler − log 2 (εv = 1).

�

Assume that q(Re(s)) > Re(λ) > σ and 1 < σ < l/2. Set

Ṽ ±1,η(λ; s) =
1

2πi

∫
L±σ

β(z)

(z + λ)2

∫
A×

Ψ
(0)
l

(
n|s; [ 1 0

t 1 ][ 1 xη
0 1

]
)
η(tx∗η)|t|±zA d×tdz,

Ṽ ±0,η(λ; s) =
1

2πi

∫
L±σ

β(z)

(z + λ)2

∫
A×

Ψ
(0)
l

(
n|s; [ 1 t

0 1 ][ 1 0
−xη 1 ]w0

)
η(tx∗η)|t|±zA d×tdz.

In the same way as Lemma 21.3, we obtain the following.
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Lemma 21.5. The double integrals Ṽ ±j,η(λ; s) converge absolutely and

Ṽ ±1,η(λ; s) =
1

2πi

∫
Lσ

β(z)

(z + λ)2
N(fη)∓zN(n)∓z η̃(n)L(±z, η)Υη

S,l(∓z; s)dz,

Ṽ ±0,η(λ; s) =
1

2πi

∫
Lσ

β(z)

(z + λ)2
N(fη)∓zδ(n = o)L(±z, η)(−1)ε(η)il̃Υη

S,l(∓z; s)dz.

Lemma 21.6. The integral Wη
ū(β, λ;α) converges absolutely on Re(λ) > 1 and has an analytic continu-

ation to the region Re(λ) > −l/2 as a function in λ. The constant term of Wη
ū(β, λ;α) at λ = 0 equals

Wη
ū(l, n|α)β(0) with

Wη
ū(l, n|α) = (−1)ε(η)G(η)D

1/2
F ((−1)ε(η)η̃(n) + il̃δ(n = o))

(
1

2πi

)#S ∫
LS(c)

Wη
S,ū(l, n|s)α(s)dµS(s),

where
Wη
S,ū(l, n|s) = −πε(η)Υη

S(s)L(1, η) log(N(n)N(fη)2)−Wη
S,u(l, n|s).

Proof. From Lemma 14.2, we have the expression

Wη
ū(β, λ;α) =

(
1

2πi

)#S ∫
LS(c)

{Ṽ +
0,η(λ; s)− Ṽ −0,η(λ; s) + Ṽ +

1,η(λ; s)− Ṽ −1,η(λ; s)}α(s)dµS(s).

By Lemma 21.5, the right-hand side becomes

(η̃(n) + (−1)ε(η)il̃δ(n = o))

(
1

2πi

)#S ∫
LS(c)

1

2πi

∫
Lσ

β(z)

(z + λ)2
× {N(fη)−zN(n)−zL(z, η)Υη

S,l(−z; s)

−N(fη)zN(n)zL(−z, η)Υη
S,l(z; s)}dzα(s)dµS(s).

As before, this gives an analytic continuation of Wη
ū(β, λ;α) to the region Re(λ) > −l/2. We set fū(z) =

−N(fη)2zN(n)zfu(z). Then,

CTλ=0Wη
ū(β, λ;α)

=(η̃(n) + (−1)ε(η)il̃δ(n = o))
{

CTz=0
fū(z)

z
β(0) +

1

2
Resz=0 fū(z)β′′(0)

}
.

Since η is supposed to be non-trivial, fū(z) is holomorphic at z = 0 and

CTz=0
fū(z)

z
=f ′ū(0) = − log(N(n)N(f2η))fu(0)− f ′u(0)

=G(η)D
1/2
F {−π

ε(η)Υη
S(s)L(1, η) log(N(n)N(f2η))−Wη

S,u(l, n|s)}.
�

Lemma 21.7. The integral Wη
hyp(β, λ;α) converges absolutely on Re(λ) > 1 and has an analytic con-

tinuation to the region Re(λ) > −ε for some ε > 0. The constant term of Wη
hyp(β, λ;α) at λ = 0 equals

Wη
hyp(l, n|α)β(0). Here

Wη
hyp(l, n|α) =

(
1

2πi

)#S ∫
LS(c)

Lη(l, n|s)α(s)dµS(s)

with

Lη(l, n|s) =
∑

b∈F−{0,−1}

∫
A×

Ψ
(0)
l (n|s, δb [ t 0

0 1 ]
[

1 xη
0 1

]
)η(tx∗η) log |t|Ad×t.

Proof. The absolute convergence and analytic continuation of Wη
hyp(β, λ;α) are given in the same way

as Lemma 15.5. We obtain the last assertion with the aid of (20.1). �
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From the analysis so far, (21.1) yields the formula:

∂P ηβ,λ(Ψ̂l
reg(n|α)) = Wη

u(β, λ;α) + Wη
ū(β, λ;α) + Wη

hyp(β, λ;α)(21.2)

which is valid on a half plane Re(λ) > −ε containing λ = 0.

21.1. The derivative relative trace formula. For any ideal m of o, set

ι(m) = [Kfin : K0(m)] =
∏

v∈S(m)

(1 + qv)q
ordv(m)−1
v .

Let JS,η be the monoid of ideals generated by prime ideals pv for all v ∈ Σfin − S ∪ S(fη). We shall
introduce several functionals in α ∈ AS depending on an ideal m ∈ JS,η:

ALw(m;α) = Cl
∑

π∈Πcus(l,m)

wηm(π) ι(fπ)

N(fπ)ι(m)

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
α(νS(π)),(21.3)

AL∂w(m;α) = Cl
∑

π∈Πcus(l,m)

∂wηm(π) ι(fπ)

N(fπ) ι(m)

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
α(νS(π)),(21.4)

ADLw±(m;α) = Cl
∑

π∈Πcus(l,m)
ε(1/2,π⊗η)=±1

wηm(π) ι(fπ)

N(fπ) ι(m)

L(1/2, π)L′(1/2, π ⊗ η)

LSπ (1, π,Ad)
α(νS(π)),(21.5)

where Cl is the same as (0.4). The derivative of L-functions in ADLw+ is eliminated by the functional
equation.

Proposition 21.8. We have

ADLw+(m;α) = Cl
∑

π∈Πcus(l,m)

log{N(fπf
2
η)D2

F }−1/2 w
η
m(π) ι(fπ)

N(fπ) ι(m)

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
α(νS(π)).

Proof. By the functional equation,

L′(1/2, π ⊗ η) =
ε′(1/2, π ⊗ η)

2
L(1/2, π ⊗ η)

if ε(1/2, π⊗η) = 1. An explicit form of the ε-factor is given by ε(s, π⊗η) = ε(1/2, π⊗η){N(fπ⊗η)D2
F }1/2−s =

ε(1/2, π ⊗ η){N(fπ)N(fη)2D2
F }1/2−s. Hence we obtain the assertion immediately. �

The following is the main consequence of this section.

Theorem 21.9. For any ideal n ∈ JS,η and for any α ∈ AS,

2−1(−1)#S+ε(η)G(η)D−1
F {ADLw−(n;α) + ADLw+(n;α) + (logDF )ALw(n;α) + AL∂w(n;α)}(21.6)

=W̃η
u(l, n|α) + Wη

hyp(l, n|α).

Here

W̃η
u(l, n|α) = (1− (−1)ε(η)η̃(n))(−1)ε(η)G(η)D

1/2
F {1 + (−1)ε(η)η̃(n)il̃δ(n = o)}(21.7)

×
(

1

2πi

)#S ∫
LS(c)

W̃η
S(l, n|s)α(s)dµS(s)
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with dµS(s) =
∏
v∈S 2−1 log qv(q

(1+sv)/2
v − q(1−sv)/2

v ) dsv and LS(c) being the multidimensional contour∏
v∈S{sv ∈ C | Re(sv) = cv} directed usually,

W̃η
S(l, n|s) =πε(η)Υη

S(s)L(1, η)

{
log(

√
N(n)DFN(fη)) +

L′(1, η)

L(1, η)
+ C(l) +

∑
v∈S

log qv

1− ηv($v)q
(sv+1)/2
v

}
,

(21.8)

Υη
S(s) =

∏
v∈S

(1− ηv($v)q
−(1+sv)/2
v )−1(1− q(1+sv)/2

v )−1,

C(l) =
∑
v∈Σ∞

lv/2−1∑
k=1

1

k
− 1

2
log π − 1

2
CEuler − δεv,1 log 2

 .

Proof. From Proposition 20.4 together with Lemma 13.4,

CTλ=0∂P
η
β,λ(Ψ̂l

reg(n|α))

= 2−1(−1)#S+ε(η)G(η)D−1
F {ADLw−(n;α) + ADLw+(n;α) + (logDF )ALw(n;α) + AL∂w(n;α)}.

On the other hand, from the formula (21.2), the same CTλ=0∂P
η
β,λ(Ψ̂l

reg(n|α)) is computed by Lem-
mas 21.4, 21.6 and 21.7. �

22. Extraction of the new part : the totally inert case

Let IS,η be the monoid of ideals generated by prime ideals pv such that v ∈ Σfin − S ∪ S(fη) and
η̃(pv) = −1. Note that IS,η is a submonoid of JS,η defined in §21.1.

In this section, we use the N -transform defined in §10.3.1 and separate the new part, i.e., the contri-
bution of those π with fπ = n, from the total average ADLw−(n;α) under the condition n ∈ IS,η.

Given an ideal n, let n0 denote the largest square-free integral ideal dividing n; thus, there exists the
unique integral ideal n1 such that

n = n0n
2
1.

Let I be a set of integral ideals such that if n ∈ I, then all integral ideals m dividing n are elements of I.
The following is a corollary of Lemma 10.12; we take the derivative at t = 0 of the formula in Lemma 10.12.

Corollary 22.1. The N -transform of the arithmetic function log N(n) on I is given by

N [log N](n) =
∏

v∈S(n1)−S2(n)

(1− q−2
v )

∏
v∈S2(n)

(1− (q2
v − qv)−1)

×

log N(n) +
∑

v∈S(n1)−S2(n)

2 log qv
q2
v − 1

+
∑

v∈S2(n)

2 log qv
q2
v − qv − 1

 .

22.1. The totally inert case over n : holomorphic case. Fixing a test function α ∈ AS for a
while, we study the arithmetic functions AL∗(−;α) : IS,η → C and ADL∗−(−;α) : IS,η → C defined by
the formulas (0.2) and (0.3), respectively. We relate these functions to the N -transforms of arithmetic
functions ALw(−;α), ADLw±(−;α) on IS,η, where IS,η is the set of ideals defined in §10.3.2.

As is seen in §10.3.2, we remark that an ideal n ∈ IS,η satisfies the condition

ηv($v) = −1, v ∈ S(n).

We recall ω(m, b) (cf. §10.3.1). For any ideal c and a place v ∈ Σfin, set

ωv(c) =

1 (v ∈ S(c)),
qv + 1

qv − 1
(v 6∈ S(c)).
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For any pair of integral ideals m and b, define

ω(m, b) = δ(m ⊂ b)
∏

v∈S(b)

ωv(mb−1).

Lemma 22.2. Let n ∈ IS,η. For any π ∈ Πcus(l, n), we have the following.

(i) If nf−1
π = b2 with an integral ideal b, then

∂wηn(π) = ω(n, nf−1
π )

∑
v∈S(b)

(− log qv) ordv(b).

(ii) If nf−1
π = b2pu with an integral ideal b and a place u ∈ S(n), then

∂wηn(π) = ω(n, nf−1
π ) (log qu)


ordu(b) +

qu − 1

(1 + auq
1/2
u )(1 + a−1

u q
1/2
u )

(c(πu) = 0),

ordu(b) +
1

1 + q−1
u χu($u)

(c(πu) = 1),

ordu(b) + 1 (c(πu) > 2).

Except the above two cases (i) and (ii), we have ∂wηn(π) = 0.

Lemma 22.3. For any n ∈ IS,η,

ALw(n;α) =
∑
b

ω(n, b2)
ι(nb−2)

ι(n)
AL∗(nb−2;α),

ADLw−(n;α) =
∑
b

ω(n, b2)
ι(nb−2)

ι(n)
ADL∗−(nb−2;α),

ADLw+(n;α) =
∑
b

ω(n, b2)
ι(nb−2)

ι(n)
log(N(nb−2)−1/2 N(fη)−1D−1

F ) AL∗(nb−2;α),

where b runs through all the integral ideals such that n ⊂ b2.

Proof. This follows immediately from Lemma 10.14, which is valid for π ∈ Πcus(l, n). To have the last
formula, we also need Proposition 21.8. �

Lemma 22.4. For any n ∈ IS,η,

AL∗(n;α) = N [ALw(−;α)](n),

ADL∗−(n;α) = N [ADLw−(−;α)](n),

− log(
√

N(n)N(fη)DF ) AL∗(n;α) = N [ADLw+(−;α)](n).

Proof. In the same way as Lemma 10.15, we obtain the first formula by applying Proposition 10.10 with
B(m) = ι(m) ALw(m;α) and A(m) = ι(m) AL∗(m;α) both defined for m ∈ IS,η. The remaining two
formulas are proved in the same way. �

The formula (21.6) in Theorem 21.9 can be applied to an arbitrary ideal m ∈ IS,η. In the right-hand

side of the formula, we have two terms W̃η
u(l,m|α) and Wη

hyp(l,m|α), which we regard as arithmetic

functions in m for a while and consider their N -transforms N [W̃η
u(l,−|α)] and N [Wη

hyp(l,−|α)].

Proposition 22.5. For any n ∈ IS,η, we have the identity among linear functionals in α ∈ AS:

ADL∗−(n;α) = 2(−1)#S+ε(η) G(η)−1DF {N [W̃η
u(l,−|α)](n) +N [Wη

hyp(l,−|α)](n)}(22.1)

+ log(N(n)1/2N(fη)) AL∗(n;α)−N [AL∂w(−;α)](n).
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Proof. We take the N -transform of both sides of the formula (21.6) regarding it as an identity among
arithmetic functions on IS,η. Then apply Lemma 22.4. �

23. An error term estimate for averaged L-values

In this section we prove the first asymptotic formula (0.7) of Theorem 0.9. Recall the sets I±S,η, to

which n should belong. We note that, by the sign of the functional equation, L(1/2, π)L(1/2, π⊗η) = 0 if
π ∈ Π∗cus(l, n) unless n ∈ I+

S,η. Thus we restrict ourselves to those levels n belonging to I+
S,η, for otherwise

AL∗(n;α) = 0.
We have the following asymptotic result, whose proof is given in the next subsection.

Proposition 23.1. Suppose l = infv∈Σ∞ lv > 6. For any ideal m ∈ I+
S(a),η, we have

ALw(m;αa) = 4D
3/2
F Lfin(1, η) N(a)−1/2δ�(a−η )d1(a+

η ) +Oε,l,η(N(a)c+2+εN(m)−c+ε)

for any ideal a prime to fη, where c = d−1
F (l/2− 1).

From this, we can deduce the asymptotic formula for the primitive part AL∗(n;αa) stated in Theo-
rem 0.9. Indeed, we apply the first formula of Lemma 22.4 substituting the expression of ALw given in
Proposition 23.1. The main and the error terms are computed by Lemmas 10.12 and 10.13, respectively.
This completes the proof of the asymptotic formula (0.7). �

23.1. Proof of Proposition 23.1. For any place v ∈ Σfin, we define a function Λv : Fv − {0,−1} → Z
by setting

Λv(b) = δ(b ∈ ov){ordv(b(b+ 1)) + 1}.

For an integral ideal b, we set

τS(b)(b) = {
∏

v∈Σfin−S(b)

Λv(b)}
∏

v∈S(b)

δ(b ∈ b−1ov), b ∈ F − {0,−1}.

For an even integer k (> 4) and a real valued character ε of R×, let Jε(k; b) (b ∈ R − {0,−1}) be the
integral studied in §17.3; they are evaluated explicitly in Lemma 17.15 as

J1(k; b) =

{
(1 + b)−k/2 2Γ(k/2)2

Γ(k) 2F1(k/2, k/2; k; (b+ 1)−1) (b(b+ 1) > 0),

2 log |(b+ 1)/b|Pk/2−1(2b+ 1)−
∑[k/4]
m=1

8(k−4m+1)
(2m−1)(k−2m) Pk/2−2m(2b+ 1) (b(b+ 1) < 0),

J sgn(k; b) =

{
0 (b(b+ 1) > 0),

2πi Pk/2−1(2b+ 1) (b(b+ 1) < 0),

where Pn(x) is the Legendre polynomial of degree n.

Lemma 23.2. Let k be an even integer greater than 2 and ηv a real valued character of R×. Then, for
any ε > 0, we have the estimate

|b(b+ 1)|ε |Jηv (k; b)| �ε,k (1 + |b|)−k/2+2ε, b ∈ R− {0,−1}

with the implied constant depending on k and ε.

Proof. For J sgn(k; b), the estimate is obvious. As for J1(k; b), we only have to note that the estimate

2F1(k/2, k/2; k; (b+ 1)−1) = O(| log b|) for small b > 0 ([24, p.49]) and the functional equation J1(k; b) =
(−1)k/2J1(k;−b− 1) for b < −1. The functional equation is proved by the transformation formula of the
hypergeometric function 2F1(a, b; c; z) = (1 − z)−a2F1(a, c − b; c; z

z−1 ) ([24, p.47]). Indeed, the formula

gives the identity J1(k; b) = 2Γ(k/2)2Γ(k)−1b−k/22F1(k/2, k/2; k;−b−1) = (−1)k/2J1(k;−b− 1). �
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Given relatively prime integral ideals n and b and for ε > 0, we set

Iηε (l, n, b) =
∑

b∈nb−1−{0,−1}

τS(b)(b)2 |N(b(b+ 1))|ε
∏
v∈Σ∞

|Jηv (lv; b)|.

Proposition 23.3. Suppose l > 6. Let b and n be relatively prime ideals. For any sufficiently small
ε > 0 and any ε′ > 0, we have

Iηε (l, n, b)�ε,ε′,l N(b)1+c+ε′ N(n)−c+2ε+ε′

with the implied constant independent of b and n.

Proof. By Lemma 19.4 and Lemma 23.2, we have

Iηε (l, n, b)�ε,ε′,l N(b)4ε′
∑

b∈nb−1−{0}

∏
v∈Σ∞

(1 + |bv|)−lv/2+2ε+4ε′ = N(b)4ε′Θ(nb−1)

for any ε > 0 and any ε′ > 0, where we regard the fractional ideal nb−1 as a Z-lattice in the Euclidean
space F∞ = F ⊗Q R and Θ(Λ) is constructed for {lv − 4ε− 8ε′}v∈Σ∞ in place of l (see §27). If ε > 0 and
ε′ > 0 are small enough, then we can apply the theory in §27 to this Θ(Λ). The desired estimate follows if
we apply Theorem 27.1 with Λ = nb−1 and Λ0 = b−1 noting D(nb−1) = N(n)N(b)−1, D(b−1) = N(b)−1

and r(b−1) 6 r(o). �

Proposition 23.4. Suppose l > 6. Given integral ideals n and a =
∏
v∈S(a) p

nv
v relatively prime to each

other, for any ε > 0, we have

|Jηhyp(l, n|αa)| �ε,l,η N(a)c+2+εN(n)−c+ε

with the implied constant independent of a and n.

Proof. Let v ∈ S(a) and n ∈ N0. By (0.5),

αpnv
(ν) =

zn+1 − z−(n+1)

z − z−1
=

[n/2]∑
m=0

α(n−2m)
v (ν)− δ(n ∈ 2N0)(23.1)

with α
(m)
v (ν) = zm + z−m, z = q

ν/2
v . By Lemma 17.3, we have

|Jηvv (b, α(m)
v )| �(1 +m)2δ(|b|v 6 qmv )qδ(m>0)−m/2

v {1 + Λv(b)}, b ∈ F× − {−1}

with the implied constant independent of m ∈ N0 and v. Hence if n > 0,

|Jηvv (b, αpnv
)| � δ(|b|v 6 qnv ){

n∑
m=0

(1 +m)2q1−m/2
v }{1 + Λv(b)}

6 δ(|b|v 6 qnv )qv

( ∞∑
m=0

(1 +m)22−m/2

)
{1 + Λv(b)}.

Thus we have a constant C independent of v ∈ S(a) and n ∈ N0 such that

|Jηvv (b, αpnv
)| 6 C qδ(n>0)

v δ(|b|v 6 qnv ) {1 + Λv(b)}, b ∈ F× − {0,−1}.(23.2)
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Combining (23.2) with Proposition 23.3 and Lemmas 17.4, 17.5 and Corollary 17.11, we obtain

|Jηhyp(l, n|αa)| 6C#S(a) {
∏

v∈S(a)

qδ(nv>0)
v }

∑
I⊂S(a)

∑
b∈n(

∏
v∈I p

nv
v )−1f−1

η

τS(
∏
v∈I p

nv
v )(b)

∏
v∈Σ∞

|Jηvv (lv; b)|

6C#S(a) N(a)
∑

I⊂S(a)

I0(l, n, fη
∏
v∈I

pnvv )

�ε,l C
#S(a) N(a)

∑
I⊂S(a)

N(fη
∏
v∈I

pnvv )1+c+εN(n)−c+ε

�ε,l,η C
#S(a)N(a)× 2#S(a)N(a)1+c+εN(n)−c+ε.

By the estimate (2C)#S(a) �ε,η N(a)ε, we are done. �

Lemma 23.5. Set Υηv
v (s) = (1− ηv($v)q

−(1+s)/2
v )−1(1− q(1+s)/2

v )−1. For n ∈ N0,

1

2πi

∫ σ+2πi(log qv)−1

σ−2πi(log qv)−1

Υηv
v (s)αpnv

(s) dµv(s) = −q−n/2v

{
δ(n ∈ 2N0) (ηv($v) = −1),

n+ 1 (ηv($v) = +1),

log qv
2πi

∫ σ+2πi(log qv)−1

σ−2πi(log qv)−1

Υηv
v (s)αpnv

(s)

1− ηv($v)q
(s+1)/2
v

dµv(s) = q−n/2v (log qv)

{
(−1)n

[
n+1

2

]
(ηv($v) = −1),

n(n+1)
2 (ηv($v) = +1).

Proof. The second integral is Ũηvv (αpnv
) defined by (26.11). Then we have the second formula using (23.1)

and Lemma 26.13 by a direct computation. The first formula is confirmed in the same way by using
Proposition 18.1. �

To show Proposition 23.1, we apply Theorem 16.1 taking S = S(a). From the first formula of
Lemma 23.5,

J̃ηu(l, n|αa) =2(−1)ε(η)G(η)D
1/2
F (1 + δ(n = o))Lfin(1, η)

× (−1)#S(a)
∏

v∈S(a−η )

q−nv/2v δ(nv ∈ 2N0)
∏

v∈S(a+
η )

q−nv/2v (nv + 1)

=2(−1)ε(η)G(η)D
1/2
F (1 + δ(n = o))Lfin(1, η)× (−1)#S(a)N(a)−1/2δ�(a−η )d1(a+

η ).

We use Proposition 23.4 to estimate Jηhyp(l, n|αa), which yields the error term. This completes the proof
of Proposition 23.1. �

24. An error term estimate for averaged derivative of L-values

Let I+
S,η and I−S,η be the same as in §0.1 and let a =

∏
v∈S(a) p

nv
v be an integral ideal. In this section

we prove the asymptotic formula of ADL∗−(n;αa) for n ∈ I−S(a),η stated in Theorem 0.9. We remark that

ADL∗−(n;αa) = 0 if n ∈ I+
S(a),η. Indeed, for such n, ε(1/2, π)ε(1/2, π ⊗ η) = +1 for all π ∈ Π∗cus(l, n),

which means ε(1/2, π) = −1 and hence L(1/2, π) = 0 for all π occurring in the sum ADL∗−(n;αa).
Starting from the formula (22.1) with α specialized to αa, we examine the four terms in the right-hand

side separately as follows.

(i) We compute the term N [W̃η
u(l,−|αa)](n) explicitly by using Lemma 26.13, Lemma 10.12 and

Corollary 22.1, which yields the main term of the formula (modulo a part of the error term); see
§24.1 for detail.

(ii) We prove

N [Wη
hyp(l,−|αa)](n) = Oε,l,η(N(a)c+2+εN(n)− inf(1,c)+ε)

by using the explicit formula of local terms given in §26; see §24.2 for detail.
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(iii) Since n ∈ I−S(a),η, the term AL∗(n;αa) vanishes by the reason of the sign of the functional

equations.
(iv) We prove

N [AL∂w(−;αa)](n) = Oε,l,η
(

N(a)−1/2+εX(n) + N(a)c+2N(n)− inf(1,c)+ε
)
.

This part is most subtle and the term X(n) arises from this stage; see §24.3 for detail.

Combining these considerations, we obtain the second formula in Theorem 0.9 immediately.

24.1. Computation of N [W̃η
u(l,−|αa)](n). Let us describe the procedure (i). We take α to be the

function αa. Set S = S(a). From (21.7), we have that N [W̃η
u(l,−|αa)](n) is the sum of the following two

integrals:

2(−1)ε(η)G(η)D
1/2
F

(
1

2πi

)#S ∫
LS(c)

N [W̃η
S(l,−|s)](n)αa(s) dµS(s),(24.1)

2(−1)ε(η)G(η)D
1/2
F

(
1

2πi

)#S ∫
LS(c)

N [D W̃η
S(l,−|s)](n)αa(s)dµS(s),(24.2)

where W̃η
S(l,−|s) is the quantity (21.8) viewed as an arithmetic function in n and D is an arithmetic

function given by D(n) = (−1)ε(η)η̃(n)δ(n = o)il̃. By the formula (21.8),

N [W̃η
S(l,−|s)](n) = πε(η)Υη

S(s)L(1, η)

{
2−1N [log N](n)

+

(
log(DFN(fη)) +

L′(1, η)

L(1, η)
+ C(l) +

∑
v∈S

log qv

1− ηv($v)q
(sv+1)/2
v

)
N [1](n)

}
.

By Lemma 10.12 and Corollary 22.1, we have formulas of N [log N](n) and of N [1](n); substituting these,
and by using Lemma 23.5, we complete the evaluation of the integral (24.1).

The evaluation of the integral (24.2) is similar; instead of N [log N] and N [1], we need N [D log N] and
N [D], which are much easier. Indeed, in the expression

N [D log N](n) = (−1)ε(η)il̃
∑

I⊂S(n1)

(−1)#I{
∏

v∈I∩S1(n1)

ωv(n0)}
ι(n
∏
v∈I p

−2
v )

ι(n)

× η̃(n
∏
v∈I

p−2
v ) δ(n

∏
v∈I

p−2
v = o) log N(n

∏
v∈I

p−2
v )

for n = n0n
2
1 with square-free ideal n0, the sum survives only if n =

∏
v∈S(n) p

2
v and I = S(n). A similar

remark is applied to N [D](n). Hence,

N [D log N](n) = δ(S(n) = S2(n)){
∏

v∈S(n)

qv + 1

qv − 1
} (−1)ε(η)il̃

(−1)#S(n)

ι(n)
log N(o) = 0,

N [D](n) = δ(S(n) = S2(n)){
∏

v∈S(n)

qv + 1

qv − 1
} (−1)ε(η)il̃

(−1)#S(n)

ι(n)
.

Since ι(n)−1 = O(N(n)−1), the integral (24.2) amounts at most to N(n)−1+εN(a)−1/2+ε.
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24.2. Estimation of the term N [Wη
hyp(l,−|αa)](n). Let us describe the procedure (ii). We need the

following estimate, which we prove in §26.4.

Proposition 24.1. For any small ε > 0,

|Wη
hyp(l, n|αa)| �ε,l,η N(a)c+2+εN(n)−c+ε, n ∈ I−S(a),η,

where the implied constant is independent of the ideal a.

From this proposition and Lemma 10.13,

|N [Wη
hyp(l,−|αa)](n)| 6 N+[|Wη

hyp(l,−|αa)|](n)�ε,l,η N(a)c+2+εN+[N−c+ε](n)�ε N(a)c+2+ε N(n)− inf(c,1)+3ε.

24.3. Estimation of the term N [AL∂w(−;αa)](n). Let us describe the procedure (iv).

Lemma 24.2. Let α ∈ AS. Then for any n ∈ I−S(a),η, we have the inequality

|AL∂w(n;α)| 6
∑
(b,u)

D(n; b, u)
ι(nb−2p−1

u )

ι(n)
|AL∗(nb−2p−1

u ;α)|,

where (b, u) runs through all the pairs of an integral ideal b and a place u such that n ⊂ b2pu. For such
(b, u), we set

D(n; b, u) = ω(n, b2pu) (log qu)

(
ordu(b) +

q
1/2
u + 1

q
1/2
u − 1

)
.

Proof. By Lemma 22.2, the π-summand of AL∂w(n;α) vanishes unless the conductor fπ satisfies either
(i) nf−1

π = b2 with some n ⊂ b, or (ii) nf−1
π = b2pu with some n ⊂ b and u ∈ S(n). In the case (i), the

π-summand vanishes. Indeed, fπ belongs to I−S(a),η and thus L(1/2, π)L(1/2, π⊗η) = 0 by the functional

equation. In the second case (ii), by the Ramanujan bound |av| = 1 by [1] and the obvious relation
|χv($v)| = 1, we have

|∂wηn(π)| 6 ω(n, b2pu) (log qu)


ordu(b) + qu−1

(1−q1/2
u )2

(c(πu) = 0),

ordu(b) + 1
1−q−1

u
(c(πu) = 1),

ordu(b) + 1 (c(πu) > 2)

6 ω(n, b2pu) (log qu)

(
q

1/2
u + 1

q
1/2
u − 1

+ ordv(b)

)
= D(n; b, u).

Here, we use 1
1−q−1

u
< qu−1

(1−q1/2
u )2

=
q1/2
u +1

q
1/2
u −1

to have the second inequality. �

Lemma 24.3. For any small ε ∈ (0, 1), we have∑
(b,u)

N(b2pu)ε
ι(nb−2p−1

u )

ι(n)
N(nb−2p−1

u )− inf(c,1)+ε �ε N(n)− inf(c,1)+2ε,(24.3)

∑
(b,u)

N(b)ε
(
qu + 1

qu − 1

)2

(log qu)
ι(nb−2p−1

u )

ι(n)
�ε X(n),(24.4)

where (b, u) runs through the same range as in Lemma 24.2.
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Proof. A direct computation gives us the first estimate. Let us show the second estimate. By the
inequality ι(nb−2p−1

u )/ι(n) 6 N(b−2p−1
u ),∑

(b,u)

N(b)ε
(
qu + 1

qu − 1

)2

(log qu)
ι(nb−2p−1

u )

ι(n)
6
∑
(b,u)

N(b)−2+ε

(
qu + 1

qu − 1

)2
log qu
qu

6 {
∑
b⊂o

N(b)−2+ε} {
∑

u∈S(n)

(
qu + 1

qu − 1

)2
log qu
qu
}

= ζF,fin(2− ε) {
∑

u∈S(n)

log qu
qu

+
∑

u∈S(n)

4 log qu
(qu − 1)2

}.

Since ζF,fin(2− ε) is convergent, we are done. �

Proposition 24.4. For any sufficiently small ε > 0,

|AL∂w(n;αa)| �ε,l,η N(a)−1/2d1(a+
η )δ�(a−η )X(n) + N(a)c+2+εN(n)− inf(c,1)+ε, n ∈ I−S(a),η.

Proof. Let ε > 0. From x+1
x−1 �ε x

ε for x > 2, we have

ω(n, b2pu) 6

 ∏
v∈S(b)

qv + 1

qv − 1

 qu + 1

qu − 1
�ε N(b)ε

qu + 1

qu − 1

with the implied constant independent of n and (b, u). By this,

D(n; b, u)�ε N(b)ε(log qu)

(
qu + 1

qu − 1

)2

�ε N(b2pu)ε

with the implied constant independent of n and (b, u). Using these estimates, we have the desired bound
by (0.7) and Lemmas 24.2 and 24.3. �

Proposition 24.5. For any sufficiently small ε > 0,

∣∣∣N [AL∂w(−;αa)](n)
∣∣∣�ε,l,η N(a)−1/2d1(a+

η )δ�(a−η )X(n) + N(a)c+2+ε N(n)− inf(1,c)+ε, n ∈ I−S(a),η.

(24.5)

Proof. From Proposition 24.4, we have

|N [AL∂w(−;αa)](n)| �ε N(a)−1/2d1(a+
η )δ�(a−η )N+[X](n) + N(a)c+2+εN+[N− inf(1,c)+ε](n)

for all n ∈ I−S(a),η. Since X(m) 6 X(n) if n ⊂ m ⊂ o, we have

N+[X](n) 6 X(n)N+[1](n)

= X(n) {
∏

v∈S(n1)−S2(n)

(1 + q−2
v )} {

∏
v∈S2(n)

(1 + (1− q−1
v )−1q−2

v )}

6 X(n){
∏

v∈Σfin

(1 + q−2
v )} {

∏
v∈Σfin

(1 + (1− q−1
v )−1q−2

v )} � X(n)

since the Euler products occurring are convergent.

From the proof of Lemma 10.13, we have N+[N− inf(c,1)+ε](n) �ε N(n)− inf(c,1)+3ε. Consequently, for
any sufficiently small ε ∈ (0, 1), we obtain the estimate

|N [AL∂w(−;αa)](n)| �ε N(a)−1/2d1(a+
η )δ�(a−η )X(n) + N(a)c+2+εN(n)− inf(1,c)+3ε

with the implied constant independent of n and a. Since ε is arbitrary, we are done. �
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25. An estimation of number of cusp forms

Recall that we set c = d−1
F (l/2 − 1). For each ideal a ⊂ o, we fix a set Ja consisting of ideals prime

to fηa. We suppose that a family {Ja}a satisfies Ja ⊂ Ja′ for any a ⊂ a′. Moreover, we suppose that
there exists a family of real numbers {ωn(π)|π ∈ Π∗cus(l, n)} for each n ∈ Ja which satisfies the following
estimate for any ε > 0:

∣∣∣∣∣∣
∑

π∈Π∗cus(l,n)

ωn(π)
∏

v∈S(a)

Xnv (λv(π))−
∏

v∈S(a)

µv,ηv (Xnv )

∣∣∣∣∣∣�ε,l,η
N(a)−1/2+ε

log N(n)
+ N(a)c+2+εN(n)− inf(c,1)+ε,

(25.1)

with the implied constant independent of a and n ∈ Ja. Moreover we impose the non-negativity condition:

ωn(π) > 0 for all π ∈ Π∗cus(l, n) and n ∈ Ja.(25.2)

Let q be a prime ideal relatively prime to fη. In what follows, we abuse the symbol q to denote the
corresponding place vq of F ; for example, we write νq(π), λq(π) in place of νvq(π), λvq(π), etc. Let
S = {v1, . . . , vr} be a finite subset of Σfin − S(fηq) and set aS =

∏
v∈S pv. Let J = {Jj}rj=1 be a family

of closed subintervals of (−2, 2). For each Jj , we choose an open interval J ′j such that J ′j ⊂ J◦j and

C∞-function χj : R→ [0,∞) with the following properties:

• χj(x) 6= 0 for all x ∈ J ′j .
• supp(χj) ⊂ Jj .
•
∫ 2

−2
χj(x)dµv,ηv (x) = 1, where

dµv,ηv (x) =


qv − 1

(q
1/2
v + q

−1/2
v − x)2

dµST(x) (ηv($v) = +1),

qv + 1

(q
1/2
v + q

−1/2
v )2 − x2

dµST(x) (ηv($v) = −1).

Here dµST(x) = (2π)−1
√

4− x2dx. Fixing such a family of functions {χj}, we set

Ωn(π) = ωn(π)

r∏
j=1

χj(λvj (π)), π ∈ Π∗cus(l, n), n ∈ JqaS .

Lemma 25.1. For any sufficiently small ε > 0, there exists Nε,S,l > 0 such that

∣∣∣∣∣∣
∑

π∈Π∗cus(l,n)

Ωn(π)Xn(λq(π))− µq,ηq(Xn)

∣∣∣∣∣∣�ε,l,η,S,J
n+ 1

(log N(n))3
+

N(qn)−1/2+ε

log N(n)
+ N(qn)2+c+εN(n)− inf(c,1)+ε

(25.3)

for n ∈ N0 and n ∈ JqaS with N(n) > Nε,S,l. Here the implied constant is independent of n and n.
Moreover,

Ωn(π) > 0 for all π ∈ Π∗cus(l, n) and n ∈ JqaS .(25.4)

Proof. Given an integer M > 1, define χMj (x) =
∑M
n=0 χ̂j(n)Xn(x) for x ∈ [−2, 2] with χ̂j(n) =∫ 2

−2
χj(x)Xn(x)dµST(x) and set

χ(x) =

r∏
j=1

χj(xj), χM (x) =

r∏
j=1

χMj (xj)
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for x = (xj)16j6r in the product space [−2, 2]r. Let n ∈ JqaS . By the triangle inequality, the left-hand
side of (25.3) is no greater than the sum of the following three terms :∣∣∣∣ ∑

π∈Π∗cus(l,n)

ωn(π)Xn(λq(π)){χ(λS(π))− χM (λS(π))}
∣∣∣∣,(25.5)

∣∣∣∣ ∑
π∈Π∗cus(l,n)

ωn(π)Xn(λq(π))χM (λS(π))− µq,ηq(Xn)µS,η(χM )

∣∣∣∣,(25.6)

|{µS,η(χM )− µS,η(χ)}µq,ηq(Xn)|,(25.7)

where λS(π) = (λv(π))v∈S and µS,η = ⊗v∈S µv,ηv . Note µS,η(χ) = 1. We shall estimate these quantities.
Since |χ̂j(n)| �χj n

−5 for any n > 0 by integration by parts and by max[−2,2] |Xn| � n+ 1, we have

|χMj (x)| 6
∑
n6M

|χ̂j(n)| |Xn(x)| �χj

∑
n6M

n−4 6 ζ(4)

and

max
x∈[−2,2]

|χj(x)− χMj (x)| 6
∑
n>M

|χ̂j(n)| max
[−2,2]

|Xn| �χj

∑
n>M

n−4 �M−3.

By these,

max
[−2,2]r

|χ(x)− χM (x)| 6 max
[−2,2]r

( r∑
j=1

|
j−1∏
h=1

χMh (xh)| |χj(xj)− χMj (xj)|
)
�S,χ M

−3.(25.8)

From (25.1) for a = o, noting n ∈ JqaS ⊂ Jo, we have the estimate |
∑
π∈Π∗cus(l,n) ωn(π) − 1| �ε,l,η

(log N(n))−1 + N(n)− inf(c,1)+ε. Hence (25.5) is majorized by

{max
[−2,2]

|Xn|} { max
x∈[−2,2]r

|χ(x)− χM (x)|}
∑

π∈Π∗cus(l,n)

ωn(π)�ε,l,η,S,χ (n+ 1)M−3(1 + N(n)− inf(c,1)+ε).

By (25.8), the quantity (25.7) is majorized by µq,ηq(Xn)M−3, which amounts at most to (n+1)M−3. Let

us estimate (25.6). By expanding the product, χM (x) is expressed as a sum of the terms
∏r
j=1 χ̂j(nj)×∏r

j=1Xnj (xj) over all n = (nj)
M
j=1 ∈ {0, . . . ,M}r. Hence by using (25.1), we can majorize (25.6) from

above by

∑
n∈{0,...,M}r

∣∣∣∣∣∣
∑

π∈Π∗cus(l,n)

ωn(π)Xn(λq(π))

r∏
j=1

Xnj (λvj (π))− µq,ηq(Xn)µS,η(

r∏
j=1

Xnj )

∣∣∣∣∣∣
�ε,l,η,S,χ

N(aMS qn)−1/2+ε

log N(n)
+ N(aMS qn)2+c+εN(n)− inf(c,1)+ε.

Combining the estimations made so far, we have that the left-hand side of (25.3) is majorized by

(n+ 1)M−3(1 + N(n)− inf(c,1)+ε) +
N(aMS qn)−1/2+ε

log N(n)
+ N(aMS qn)2+c+εN(n)− inf(c,1)+ε.(25.9)

Now take

M =

[
ε

2 + c+ ε

log N(n)

log N(aS)

]
.
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Then N(aS)M(2+c+ε) 6 N(n)ε, and also N(aS)M(−1/2+ε) 6 1 evidently. By these, (25.9) is majorized by

(n+ 1)(log N(n))−3 log N(aS)3(1 + N(n)− inf(c,1)+ε) +
N(qn)−1/2+ε

log N(n)
+ N(qn)2+c+εN(n)− inf(c,1)+2ε

�ε,S (n+ 1)(log N(n))−3 +
N(qn)−1/2+ε

log N(n)
+ N(qn)2+c+εN(n)− inf(c,1)+2ε.

�

Lemma 25.2. Let I ⊂ [−2, 2] be an open interval disjoint from the set {λq(π)|π ∈ Π∗cus(l, n), Ωn(π) 6= 0}.
Then for any small ε > 0, there exists a constant Nε,l,η,S,q > 0 such that for any ideal n ∈ JqaS with
N(n) > Nε,l,η,S,q,

µq,ηq(I)�ε,l,η,S,J N(q)ε (log N(n))−1+ε

holds with the implied constant independent of I, n and q.

Proof. The proof of [37, Proposition 5.1 and Lemma 5.2] goes through as it is with a small modification.
We reproduce the argument for convenience.

Let ∆ > 0 be a parameter to be specified below and K a closed subinterval of I such that

(i) µq,ηq(I −K) 6 ∆.

Depending on ∆ and K, we choose a C∞-function f on R such that

(ii) supp(f) ⊂ Ī,
(iii) f(x) = 1 if x ∈ K and 0 6 f(x) 6 1 for x ∈ R,
(iv) |f (k)(x)| �k ∆−k for k ∈ N0.

Since I does not contain the relevant λq(π)’s, from (ii) we have Ωn(π)f(λq(π)) = 0 for all π ∈ Π∗cus(l, n).
Using this, from (i) and (iii), we have the inequalities

µq,ηq(I) 6 µq,ηq(K) + ∆ 6
∫ 2

−2

f dµq,ηq + ∆

6

∣∣∣∣ ∑
π∈Π∗cus(l,n)

Ωn(π) f(λq(π))−
∫ 2

−2

f dµq,ηq

∣∣∣∣+ ∆.(25.10)

If we set fM (x) =
∑M
n=0 f̂(n)Xn(x), then the first term of (25.10) is bounded by the sum of the following

three terms ( ∑
π∈Π∗cus(l,n)

|Ωn(π)|
)
· max

[−2,2]
|f − fM |,(25.11)

∫ 2

−2

max
[−2,2]

|f − fM | dµq,ηq ,(25.12) ∣∣∣∣ ∑
π∈Π∗cus(l,n)

Ωn(π) fM (λq(π))−
∫ 2

−2

fM dµq,ηq

∣∣∣∣.(25.13)

We remark that by the non-negativity of Ωn(π), the absolute value in (25.11) can be deleted. Then by

the estimate |f̂(n)| �k n
−k∆−k which follows from (iv) by integration by parts, and by max[−2,2] |Xn| �

n+ 1, we have

max
[−2,2]

|f − fM | 6
∑
n>M

|f̂(n)| max
[−2,2]

|Xn| �k

∑
n>M

n−k∆−kn�M2−k∆−k
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with k > 3. From (25.3) applied with n = 0, noting µq,ηq(X0) = 1, we have the estimate |
∑
π∈Π∗cus(l,n) Ωn(π)−

1| �ε,l,η,S,J (log N(n))−1 + N(n)− inf(c,1)+ε. Hence the sum of (25.11) and (25.12) is majorized by

∆−kM2−k (1 + (log N(n))−1 + N(n)− inf(c,1)+ε)� ∆−kM2−k

with the implied constant independent of ∆, M , q and n. By (25.3) and by |f̂(n)| � 1, the term (25.13)
is majorazed by

M∑
n=0

|f̂(n)|

∣∣∣∣∣∣
∑

π∈Π∗cus(l,n)

Ωn(π)Xn(λq(π))− µq,ηq(Xn)

∣∣∣∣∣∣
�ε,l,η,S,J

M∑
n=0

(
n+ 1

(log N(n))3
+

N(qn)−1/2+ε

log N(n)
+ N(qn)2+c+ε N(n)− inf(c,1)+ε

)
�ε

M2

(log N(n))3
+

1

log N(n)
+ N(q)c

′M N(n)− inf(c,1)+ε,

where c′ = 2 + c+ ε. Putting all relevant estimations together, we obtain

µq,ηq(I)�k,ε,l,η,S,J ∆ + ∆−kM2−k +
1

log N(n)
+

M2

(log N(n))3
+ N(q)c

′MN(n)− inf(c,1)+ε

with the implied constant independent of I, ∆, M , q and n. By setting M =
[

inf(c,1)
2c′

log N(n)
log N(q)

]
, this yields

the estimate

µq,ηq(I)�k,ε,l,η,S,J ∆ + ∆−k(log N(q))k−2(log N(n))2−k + (log N(n))−1 + N(n)− inf(c,1)/2+ε.

Let ε > 0 and we let ∆ vary so that it satisfies ∆−k(log N(n))2−k �k (log N(n))−1+ε, or equivalently

∆ �k (log N(n))−1+(3−ε)/k.

By taking k = [3/ε] + 1, we have (log N(n))−1+ε/2 �ε ∆�ε (log N(n))−1+ε. Hence,

µq,ηq(I)�ε,l,η,S,J (log N(n))−1+ε + (log N(n))−1+ε(log N(q))k−2 + (log N(n))−1 + N(n)− inf(c,1)/2+ε

�ε N(q)ε (log N(n))−1+ε.

This completes the proof. �

Lemma 25.3. Given ε > 0, there exists a positive number Nε,l,η,S,q,J such that for any ideal n ∈ JqaS
with N(n) > Nε,l,η,S,q,J, the inequality

#{λq(π)|π ∈ Π∗cus(l, n), Ωn(π) 6= 0 } > N(q)−ε(log N(n))1−ε

holds.

Proof. It follows immediately in the same way as [37, Lemma 5.3]. �

25.1. Let Γ = Aut(C/Q). We let the group Γ act on the set (2N)Σ∞ by the rule σl = (lσ−1◦v)v∈Σ∞ for
l = (lv)v∈Σ∞ and σ ∈ Γ, regarding Σ∞ = Hom(F,C). Let Q(l) be the fixed field of StabΓ(l), which is a
finite extension of Q. From [40] (see [34] also), the Satake parameter Av(π) belongs to GL(2, Q̄) for any
v ∈ Σfin−S(n) and the set Πcus(l, n) has a natural action of the Galois group Gal(Q̄/Q(l)) in such a way
that (σπ)v ∼= πσ−1◦v for all v ∈ Σ∞ and

q1/2
v Av(

σπ) = σ(q1/2
v Av(π)) for all v ∈ Σfin − S(n).(25.14)

The field of rationality of π ∈ Πcus(l, n), to be denoted by Q(π), is defined as the fixed field of the group

{σ ∈ Gal(Q̄/Q(l)) | σπ = π }.
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From (25.14), by the strong multiplicity one theorem for GL(2), we have

Q(π) = Q(l)({q1/2
v λv(π)| v ∈ Σfin − S(n)}).

Proposition 25.4. Suppose that l is a parallel weight, i.e., there exists k ∈ 2N such that lv = k for
all v ∈ Σ∞. Let S be a finite subset of Σfin − S(fη) and J = {Jv}v∈S a family of closed subintervals of
(−2, 2). Given a sufficiently small ε > 0 and a prime ideal q prime to S ∪ S(fη), there exists a positive
integer Nε,l,η,S,q,J such that for any n ∈ JqaS with N(n) > Nε,l,η,S,q,J, there exists π ∈ Π∗cus(l, n) such
that ωn(π) 6= 0, λv(π) ∈ Jv for all v ∈ S, and

[Q(π) : Q] >

√√√√max

{
(1− ε) log log N(n)

log(16
√

N(q))
− 2ε, 0

}
.

Proof. By choosing C∞-functions {χv} as above, we construct the weight function Ωn(π). We follow
the proof of [37, Proposition 7.3]. Let d(n,Ω) denote the maximal degree of algebraic numbers λq(π)
(π ∈ Π∗cus(l, n), Ωn(π) 6= 0). Then,

d(n,Ω) 6 max{ [Q(π) : Q] |π ∈ Π∗cus(l, n), Ωn(π) 6= 0 }
6 max{ [Q(π) : Q] |π ∈ Π∗cus(l, n), ωn(π) 6= 0, λv(π) ∈ Jv (∀v ∈ S) }.

Let E(M,d) denote the set of algebraic integers which, together with its conjugates, have the abso-
lute values at most M and the absolute degrees at most d. From the parallel weight assumption, the
Heck eigenvalues N(q)1/2λq(π) are known to be algebraic integers (cf. [40, Proposition 2.2]). Since

σ(N(q)1/2λq(π)) = N(q)1/2λq(σπ) from (25.14), by the Ramanujan bound by [1], we have N(q)1/2λq(π) ∈
E(2N(q)1/2, d(n,Ω)). Then the cardinality of the set {N(q)1/2λq(π)|π ∈ Π∗cus(l, n), Ωn,η(π) 6= 0 } is

bounded from above by #E(2N(q)1/2, d(n,Ω)), which in turn is no greater than (16N(q)1/2)d(n,Ω)2

by [37,
Lemma 6.2]. Combining this with the lower bound provided by Lemma 25.3, we have

N(q)−ε(log N(n))1−ε 6 (16N(q)1/2)d(n,Ω)2

.

By taking logarithms, we are done. �

Remark : The parallel weight assumption can be removed if the integrality of the Hecke eigenvalues

q
1/2
v λv(π) for all v ∈ Σfin − S(fπ) is known in a broader generality.

25.2. Proof of Theorem 0.11. Theorem 0.9 means the numbers

ωn(π) =
Cl

4D
3/2
F Lfin(1, η)ν(n)

1

N(n)

L(1/2, π)L(1/2, π ⊗ η)

LSπ (1, π,Ad)
, π ∈ Π∗cus(l, n), n ∈ I+

S∪S(q),η

satisfy our first assumption (25.1). The second assumption (25.2) follows from [18]. Thus Theorem 0.11
is a corollary of Proposition 25.4 with this particular {ωn(π)}. �

25.3. Proof of Theorem 0.12. For any M > 1, let I−S∪S(q),η[M ] be the set of n ∈ I−S∪S(q),η such that∑
v∈S(n)

log qv
qv
6M . Theorem 0.9 means

ωn(π) =
Cl

4D
3/2
F Lfin(1, η) ν(n) log

√
N(n)

1

N(n)

L(1/2, π)L′(1/2, π ⊗ η)

LSπ (1, π,Ad)
, π ∈ Π∗cus(l, n), n ∈ I−S∪S(q),η[M ]

satisfy our first assumption (25.1). By our non-negativity assumption (0.9), the second assumption (25.2)
is also available. Thus Theorem 0.12 follows from Proposition 25.4. �

Remark : In the parallel weight two case (i.e., lv = 2 for all v ∈ Σ∞) with totally imaginary condition
on η, the assumption (0.9) follows from [53, Theorem 6.1] due to the non-negativity of the Neron-Tate
height pairing. Similar results may be expected in the parallel higher weight case (cf. [51]).
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26. Computations of local terms

Let α = ⊗v∈Sαv be a decomposable element of AS . We examine the term Wη
hyp(l, n|α) appearing in

the formula (21.6), which is given in Lemma 21.7. Recall that the function Ψ̂
(0)
l (n|α, g) in adele points

g = {gv} is a product of functions Ψv(gv) on local groups GL(2, Fv) such that Ψv(gv) = Ψ
(0)
v (lv; gv) for

v ∈ Σ∞,

Ψv(gv) =
1

2πi

∫
Lv(c)

Ψ(0)
v (sv; gv)α(sv)dµv(sv)

for v ∈ S, and Ψv(gv) = Φ
(0)
n,v(gv) for v ∈ Σfin − S (see §12). From Lemma 21.7, by exchanging the order

of integrals, we have the first equality of the formula

Wη
hyp(l, n|α) =

∑
b∈F−{0,−1}

∫
A×

Ψ̂
(0)
l (n|α, δb [ t 0

0 1 ]
[

1 xη
0 1

]
)η(tx∗η) log |t|Ad×t(26.1)

=
∑

b∈F−{0,−1}

∑
w∈ΣF

{
∏

v∈ΣF−{w}

Jv(b)}Ww(b),

where

Jv(b) =

∫
F×v

Ψv(δb
[
tv 0
0 1

] [
1 xη,v
0 1

]
)ηv(tvx

∗
η,v)d

×tv,

Ww(b) = W ηw
w (b) =

∫
F×w

Ψw(δb
[
tw 0
0 1

] [
1 xη,w
0 1

]
)ηw(twx

∗
η,w) log |tw|wd×tw

for b ∈ Fv − {0,−1}. The second equality of (26.1) is justified by
∑
b

∑
w{
∏
v 6=w |Jv(b)|}|Ww(b)| < ∞,

which results from the analysis to be made in §26.4. The integrals Jv(b) are studied and their explicit
evaluations are obtained in §17. In what follows, we examine the integral Ww(b) separating cases w ∈ S,
w ∈ Σfin − S and w ∈ Σ∞.

26.1. Orbital integrals for hyperbolic terms : S-part. Let v ∈ S. Then the integral Wv(b) depends
on the test function αv ∈ Av and the character ηv of F×v . We write W ηv

v (b;αv) in place of Wv(b) in this
subsection. We have

W ηv
v (b, αv) =

1

2πi

∫
Lv(c)

{
∫
F×v

Ψ(0)
v (sv; δb [ t 0

0 1 ])ηv(t) log |t|vd×t}αv(sv)dµv(sv).

Lemma 26.1. Let v ∈ S. Let α
(m)
v (sv) = q

msv/2
v + q

−msv/2
v with m ∈ N0. Then, for any m ∈ N and any

b ∈ Fv − {0,−1},

W ηv
v (b;α(m)

v ) = Ĩ+
v (m; b) + ηv($v){(log qv)I

+
v (m; $−1

v (b+ 1))− Ĩ+
v (m;$−1

v (b+ 1))}
with I+

v (m;−) defined in Lemma 17.2 and

Ĩ+
v (m; b) = vol(o×v )(log qv) 2δ(m=0)

(
−q−m/2v δ̃ηvm (b)

+

m−1∑
l=sup(0,1−ordv(b))

{(m− l − 1)q1−m/2
v − (m− l + 1)q−m/2v }δ̃ηvl (b)

)
,

where we set
δ̃ηvn (b) = δ(|b|v < qnv ) ηv($

n
v )ηv(b)(−n− ordv(b))

for n ∈ N and

δ̃ηv0 (b) = δ(|b|v < 1)

{
−2−1 ordv(b)(ordv(b) + 1) (ηv($v) = 1),

4−1(ηv(b)− 1) + 2−1 ordv(b)ηv(b) (ηv($v) = −1).
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When m = 0,

W ηv
v (b;α(0)

v ) = −2 vol(o×v )(log qv)(δ̃
ηv
0 (b) + ηv($v)δ

ηv
0 ($−1

v (b+ 1))− ηv($v)δ̃
ηv
0 ($−1

v (b+ 1))

with δηv0 defined in Lemma 17.2.

Proof. This is proved in a similar way to Lemma 17.2. We decompose the integral into the sum

Wv(b;α
(m)
v ) = Ĩ+

v (m; b)+Ĩ−v (m; b), where Ĩ+
v (m; b) =

∫
t∈F×v ,|t|61

Φ̂vm(δb [ t 0
0 1 ])ηv(t) log |t|vd×t with Φ̂vm(gv)

the integral computed in Lemma 17.1. We consider the case m > 0. By Lemma 17.1,

Ĩ+
v (m; b) =

∫
|t|61,sup(1,|t|−1

v |b|v)=qmv

(−q−m/2v )ηv(t) log |t|vd×t

+

m−1∑
l=0

∫
|t|61,sup(1,|t|−1

v |b|v)=qlv

{(m− l − 1)q1−m/2
v − (m− l + 1)q−m/2v }ηv(t) log |t|vd×t.

We have the following three equalities:

• If l = 0 and ηv($v) = 1,∫
|t|61,sup(1,|t|−1

v |b|v)=qlv

ηv(t) log |t|vd×t = δ(|b|v < 1)vol(o×v ) log qv
− ordv(b)(ordv(b) + 1)

2
.

• If l = 0 and ηv($v) = −1,∫
|t|61,sup(1,|t|−1

v |b|v)=qlv

ηv(t) log |t|vd×t = δ(|b|v < 1)vol(o×v ) log qv(
ηv(b)− 1

4
+

ordv(b)ηv(b)

2
).

• If l > 0,∫
|t|61,sup(1,|t|−1

v |b|v)=qlv

ηv(t) log |t|vd×t = δ(|b| < qlv)

∫
|t|v=q−lv |b|v

ηv(t) log |t|vd×t

= −δ(|b|v 6 qlv)vol(o×v )(log qv)ηv($
l
vb)(l + ordv(b)).

Furthermore, Ĩ−v (m; b) is transformed into

Ĩ−v (m; b) =

∫
|t|v>1

Φ̂vm(δb [ t 0
0 1 ])ηv(t) log |t|vd×t

=

∫
|y|v<1

Φ̂vm(δb

[
$−1
v y−1 0

0 1

]
)ηv($

−1
v y−1) log |$−1

v y−1|vd×t

=ηv($
−1
v )

∫
|y|v61

Φ̂vm(δb

[
$−1
v y−1 0

0 1

]
)ηv(y)(log qv − log |y|v)d×y

=ηv($v){(log qv)I
+
v (m;$−1

v (b+ 1))− Ĩ+
v (m;$−1

v (b+ 1))}.
From the results above, we have the lemma for m > 0. The case m = 0 is similar. �

Lemma 26.2. For m ∈ N,

|W ηv
v (b;α(m)

v )| � (log qv)δ(|b|v 6 qm−1
v )q1−m/2

v m(2m+ ordv(b(b+ 1)))2, b ∈ F×v − {−1}.
When m = 0,

|W ηv
v (b;α(0)

v )| � (log qv)δ(|b|v 6 1)(ordv(b(b+ 1)) + 1)2, b ∈ F×v − {−1}.
Here the implied constants independent of v, m and b. Moreover, for n ∈ N0,

|W ηv
v (b;αpnv

)| � (log qv)qvδ(|b|v 6 qnv )(ordv(b(b+ 1)) + 2n+ 1)2, b ∈ F×v − {−1}
with the implied constant independent of v, n and b.
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Proof. Noting (23.1), by the first and second estimates in the lemma, the last estimate is given in the
same way as in the proof of Proposition 23.4. We only prove the first estimate. Suppose m > 1. By
Lemma 17.2, I+

v (m,$−1
v (b+ 1)) is estimated as

|I+
v (m,$−1

v (b+ 1))| � δ(|b|v 6 qm−1
v )(m+ 1)2q1−m/2

v .

Next we examine Ĩ+
v (m; b). From the definition of δ̃ηvm (in Lemma 26.1), we have |δ̃ηv0 (b)| 6 δ(|b|v <

1)2−1(ordv(b) + 1)2. By using this,

m−1∑
l=sup(0,1−ordv(b))

(m− l − 1)q1−m/2
v |δ̃ηvl (b)|

6δ(m > 1, |b|v 6 qm−2
v )q1−m/2

v {
m−1∑
l=1

(m− l − 1)|δ̃ηvl (b)|+ (m− 1)|δ̃ηv0 (b)|}

6δ(m > 1, |b|v 6 qm−2
v )q1−m/2

v {
m−1∑
l=1

(m− l − 1)(l + ordv(b)) + (m− 1)|δ̃ηv0 (b)|}

=δ(m > 1, |b|v 6 qm−2
v )q1−m/2

v (m− 1){6−1(m− 2)m+ 2−1(m− 2) ordv(b) + |δ̃ηv0 (b)|}

�δ(m > 2, |b|v 6 qm−2
v )q1−m/2

v m(m2 +m ordv(b) + (ordv(b) + 1)2)

�δ(m > 2, |b|v 6 qm−2
v )q1−m/2

v m(m+ ordv(b))
2.

Similarly,

m−1∑
l=sup(0,1−ordv(b))

(m− l + 1)q−m/2v |δ̃ηvl (b)| � δ(m > 1, |b|v 6 qm−2
v )q−m/2v m(m+ ordv(b) + 1)2.

Hence, we obtain

|Ĩ+
v (m; b)| � (log qv)δ(|b|v 6 qm−1

v )q1−m/2
v m(m+ ordv(b))

2, m ∈ N, b ∈ F×v − {−1}.

Furthermore,

|Ĩ+
v (m;$−1

v (b+ 1))|

�(log qv)δ(|b+ 1|v 6 qm−1
v )q1−m/2

v m(m+ ordv(b+ 1))2, m ∈ N, b ∈ F×v − {−1}.

As a consequence, we have the lemma. �

26.2. Orbital integrals for hyperbolic terms : (Σfin − S)-part. Let v ∈ Σfin − S. There are three
cases to be considered: v ∈ Σfin − S(nfη), v ∈ S(n) and v ∈ S(fη).

Lemma 26.3. Let v ∈ Σfin − (S ∪ S(nfη)). For b ∈ F×v − {−1}, we have

W ηv
v (b) =

∫
F×v

Φ
(0)
v,0(δb[ t 0

0 1 ])ηv(t) log |t|v d×t = vol(o×v )(log qv)Λ̃
ηv
v (b),

where

Λ̃ηvv (b) = δ(|b|v 6 1)


δ̃ηv0 (b) (|b|v < 1),

−δ̃ηv0 (b+ 1) (|b+ 1|v < 1),

0 (|b|v = |b+ 1|v = 1).

In particular, |W ηv
v (b)| � (log qv)δ(|b(b+ 1)|v < 1)(ordv(b(b+ 1)) + 1)2, b ∈ F×v − {−1}.
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Proof. It follows immediately from the following computation:∫
F×v

Φ
(0)
v,0(δb[ t 0

0 1 ])ηv(t) log |t|v d×t =

∫
|b|v6|t|v<1

ηv(t) log |t|vd×t+

∫
|b+1|−1

v >|t|v>1

ηv(t) log |t|vd×t

=vol(o×v ) (log qv) {δ̃ηv0 (b)− δ̃ηv0 (b+ 1)}.

�

Lemma 26.4. Let v ∈ S(n). If ηv($v) = 1, we have

W ηv
v (b) =

∫
F×v

Φ
(0)
v,n(δb[ t 0

0 1 ])ηv(t) log |t|v d×t

=vol(o×v )(− log qv)δ(b ∈ nov) 2−1(ordv(b) + ordv(n))(ordv(b)− ordv(n) + 1).

If ηv($v) = −1, then

W ηv
v (b)

=vol(o×v )(− log qv)δ(b ∈ nov)[2
−1{ordv(n)ηv($

ordv(n)
v ) + ordv(b)ηv(b)}+ 4−1{ηv(b)− ηv($ordv(n)

v )}].

In particular,

|W ηv
v (b)| 6 δ(b ∈ nov)(log qv)(ordv(b) + ordv(n) + 1)2, b ∈ F×v − {−1}.

Proof. It follows immediately from the following computation:∫
F×v

Φ
(0)
v,n(δb[ t 0

0 1 ])ηv(t) log |t|v d×t =

∫
|b|v6|t|v<1

δ(t ∈ nov)ηv(t) log |t|vd×t

=δ(b ∈ nov)

ordv(b)∑
n=ordv(n)

∫
o×v

ηv($
n
v u) log |$n

v u|vd×u = δ(b ∈ nov)vol(o×v )(− log qv)

ordv(b)∑
n=ordv(n)

ηv($
n
v )n.

�

Lemma 26.5. Let v ∈ S(fη) and put f = f(ηv) ∈ N. For b ∈ F×v − {−1},

W ηv
v (b) =δ(b ∈ p−fv )ηv(−1)(1− q−1

v )−1q−f−dv/2v (log qv)× [−f+

ηv(b(b+ 1)){δ(b ∈ pv)(−f − ordv(b)) + δ(b ∈ o×v )(−f + ordv(b+ 1)) + δ(b /∈ ov)(−f)qordv(b)
v }].

In particular,

|W ηv
v (b)| 6 6(log qv)q

−f
v δ(|b|v 6 qfv ){f + δ(|b|v 6 1) ordv(b(b+ 1))}, b ∈ F×v − {−1}.

Proof. We have the expression W ηv
v (b) = δ(b ∈ p−fv )(W ηv

v,1(b) +W ηv
v,2(b)) with

W ηv
v,1(b) =

∫
−t∈$fvUv(f)
|t|v||b+1|v61

ηv(t$
−f
v ) log |t|vd×t = ηv(−1)(−f log qv)q

−f−dv/2
v (1− q−1

v )−1

and

W ηv
v,2(b) =

∫
−t∈F×v −$

f
vUv(f)

|1+t$−fv |v|b+t$
−f
v (b+1)|v6|t|v

ηv(t$
−f
v ) log |t|vd×t.
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The integration domain of W ηv
v,2(b) is a disjoint union of the sets Dl(b) (l ∈ Z) defined in §17.2. By

Lemmas 17.6, 17.7 and 17.8, we obtain

W ηv
v,2(b) =

∑
l∈Z

(−l log qv)

∫
Dl(b)

ηv(t$
−f
v )d×t

=δ(|b|v < 1 = |b+ 1|v){(−f + ordv(b+ 1)− ordv(b)) log qv}ηv
(
−b
b+ 1

)
(1− q−1

v )−1q−f−dv/2v

+ δ(|b|v = |b+ 1v| > 1)(−f log qv)ηv

(
−b
b+ 1

)
(1− q−1

v )−1q−f+ordv(b)−dv/2
v

+ δ(|b+ 1|v < 1 = |b|v){(−f + ordv(b+ 1)− ordv(b)) log qv}ηv
(
−b
b+ 1

)
(1− q−1

v )−1q−f−dv/2v

=ηv

(
−b
b+ 1

)
(1− q−1

v )−1q−f−dv/2v (log qv){δ(|b|v < 1 = |b+ 1|v)(−f − ordv(b))

+ δ(|b|v = |b+ 1|v > 1)(−f)qordv(b)
v + δ(|b+ 1|v < 1 = |b|v)(−f + ordv(b+ 1))}

=ηv

(
−b
b+ 1

)
(1− q−1

v )−1q−f−dv/2v (log qv){δ(b ∈ pv)(−f − ordv(b))

+ δ(b ∈ o×v )(−f + ordv(b+ 1)) + δ(b /∈ ov)(−f)qordv(b)
v }.

This completes the proof. �

26.3. Orbital integrals for hyperbolic terms : Σ∞-part. Let v ∈ Σ∞ and fix an identification
Fv ∼= R. In this paragraph, we abbreviate lv to l omitting the subscript v. Let ε : R× → {±1} be a
character; thus ε is the sign character or the trivial one. From the proof of Lemma 17.12, we have

W ε
v (b) =

∫
R×

(
1 + it√
t2 + 1

)l
{1 + i(bt−1 + t(b+ 1))}−l/2ε(t) log |t|vd×t

=

∫
R×

(1− it)−l/2(1 + b+ t−1bi)−l/2ε(t) log |t|vd×t

= W+(b) + ε(−1)W+(b),

where we set

W+(b) = il/2(1 + b)−l/2
∫ ∞

0

(t+ i)−l/2
(
t+

bi

b+ 1

)−l/2
tl/2−1 log t dt.

Here is an explicit formula of W+(b).

Lemma 26.6. Suppose l > 4. Then, for b ∈ R× − {−1}, we have

W+(b) = −πi J+(l; b)−A(b)− i B(b),
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where

A(b) =

l/2−1∑
k=0

(
l/2+k−1

k

)(
l/2−1
k

){
bk

2 (log | bb+1 |)
2 − θ(b)2

2 bk − 9π2

8 (−1)k+l/2(b+ 1)k
}

+

l/2−1∑
k=0

(
l/2+k−1

k

) l/2−k−1∑
j=1

(
l/2−1
k+j

) (−1)j

j

(
j−1∑
m=1

1
m{b

k + (−1)k+l/2(b+ 1)k} − bk log | bb+1 |

)
,

B(b) =

l/2−1∑
k=0

(
l/2+k−1

k

)(
l/2−1
k

)
bk log | bb+1 | θ(b)

−
l/2−1∑
k=0

(
l/2+k−1

k

) l/2−k−1∑
j=1

(
l/2−1
k+j

) (−1)j

j {
3π
2 (−1)k+l/2(b+ 1)k + bkθ(b)},

θ(b) = π/2 if b(b + 1) < 0, θ(b) = 3π/2 if b(b + 1) > 0 and J+(l; b) is the function defined in Lemma
17.13.

Proof. For b ∈ R× − {−1}, put g(z) = il/2(1 + b)−l/2(z + i)−l/2
(
z + bi

b+1

)−l/2
zl/2−1(log z)2, where

log z = log |z|+ i arg(z) with arg(z) ∈ [0, 2π). Then, g(z) is holomorphic on C− (R>0 ∪ {−i, −bib+1}). We

note −bib+1 ∈ iR− {0,−i}. By Cauchy’s integral theorem, we have

2πi{Resz=−i + Resz=−bib+1
}g(z) =

∫ R

ε

g(t)dt+

∮
|z|=R

g(z)dz −
∫ R

ε

g(te2πi)−
∮
|z|=ε

g(z)dz

withR sufficiently large and ε > 0 sufficiently small. By limR→∞
∮
|z|=R g(z)dz = 0, limε→+0

∮
|z|=ε g(z)dz =

0 and (log t+ 2πi)2 = (log t)2 + 4πi log t− 4π2, we also have

2πi{Resz=−i + Resz=−bib+1
}g(z) = −4πiW+(b) + 4π2J+(l; b).

Hence, we obtain

W+(b) = −1

2
{Resz=−i + Resz=−bib+1

}g(z)− πi J+(l; b).

Furthermore, a direct computation gives us

Resz=−i g(z) =

l/2−1∑
k=0

(
l/2+k−1

k

)
(−1)k+l/2(b+ 1)k

×
{(

l/2−1
k

)−9π2

4 + 2

l/2−k−1∑
j=1

(
l/2−1
k+j

) (−1)j

j

( j−1∑
m=1

1
m −

3π
2 i

)}
and

Resz= ib
b+1

g(z) =

l/2−1∑
k=0

(
l/2+k−1

k

)
bk ×

{(
l/2−1
k

) (
log | bb+1 |+ θ(b)i

)2

+ 2

l/2−k−1∑
j=1

(
l/2−1
k+j

) (−1)j

j

( j−1∑
m=1

1
m − log | bb+1 | − θ(b)i

)}
.

This completes the proof. �
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Lemma 26.7. Suppose l > 4. For any ε > 0, we have

|b(b+ 1)|ε |W ε
v (b)| �ε,l (1 + |b|)−l/2+2ε, b ∈ R− {0,−1}.

Proof. From Lemmas 23.2 and 26.6, for any ε > 0, |b(b+1)|ε|W+(b)| is locally bounded around the points
b = 0,−1. For b away from the set {0,−1}, we have

|W+(b)| 6 |2b(b+ 1)|−l/4
∫ ∞

0

tl/4(t2 + 1)−l/4| log t|dtt

by t2(b+ 1)2 + b2 > 2|t||b(b+ 1)|. Since l > 4, the last integral is convergent; hence the above inequality
gives us |b(b+ 1)|ε|W+(b)| �ε,l (1 + |b|)−l/2+2ε for large |b|. �

26.4. Proof of Proposition 24.1. We start from the formula (26.1) taking α to be αa defined by (0.6).
If we set

W(T ) =
∑

b∈F−{0,−1}

∑
w∈T
{

∏
v∈ΣF−{w}

Jv(b)}Ww(b)(26.2)

for any subset T ⊂ ΣF , then (26.1) can be written in the form

Wη
hyp(l, n|αa) = W(Σ∞) + W(S(a)) + W(S(n)) + W(S(fη)) + W(Σfin − S(nafη)).

We shall estimate each term in the right-hand side of this equality explicating the dependence on n and
a =

∏
v∈S(a) p

nv
v . Set c = (l/2 − 1)/dF . For convenience, we collect here all the estimates used below

(other than these, we also need Lemma 26.7). Let w1 ∈ S(a), w2 ∈ S(n), w3 ∈ S(fη), w4 ∈ Σfin − S(afη),
and w5 ∈ Σ∞. Let ε > 0 be a small number. Then,

|Jw1(b)| � δ(b ∈ a−1ow1) qw1{1 + Λw1(b)}, |Jw2(b)| 6 δ(b ∈ now2) Λw2(b),(26.3)

|Jw3
(b)| � δ(b ∈ f−1

η ow3
), |Jw4

(b)| 6 δ(b ∈ ow4
) Λw4

(b),(26.4)

|b(b+ 1)|εw5
|Jw5

(b)| �ε,lw5
(1 + |b|w5

)−lw5/2+2ε(26.5)

(note the difference of � and 6 ), and

|Ww1(b)| � (log qw1) qw1 δ(b ∈ a−1ow1){2nw1 + ordw1(b(b+ 1)) + 1}2,(26.6)

|Ww2
(b)| � (log qw2

) δ(b ∈ now2
) {ordw2

(b) + ordw2
(n) + 1}2,(26.7)

|Ww3(b)| � (log qw3) δ(b ∈ f−1
η ow3) {2f(ηw3) + ordw3(b(b+ 1)) + 1},(26.8)

|Ww4
(b)| � (log qw4

) δ(|b(b+ 1)|w4
< 1) Λw4

(b)2(26.9)

for b ∈ F×, where all the constants implied by the Vinogradov symbol are independent of the ideals n,
a and the places wi (1 6 i 6 5). Indeed, the second estimate in (26.3) and the both estimates of (26.4)
follow from Lemmas 17.4, 17.5 and Corollary 17.11 immediately. The estimate (26.5) is from Lemma 23.2.
The first estimate in (26.3) is obtained in the proof of Proposition 23.4. The estimate (26.6) follows from
Lemma 26.2, (26.7) is from Lemma 26.4, (26.8) is from Lemma 26.5, and (26.9) is from Lemma 26.3.

In the remaining part of this section, all the constants implied by Vinogradov symbol are independent
of n and a (but may depend on l, η and a given small number ε > 0).

Lemma 26.8. We have

|W(Σ∞)| �ε,l,η N(a)c+2+ε N(n)−c+ε.

Proof. Similarly to the proof of Proposition 23.4, by Lemma 26.7, we have

|W(Σ∞)| �ε,l,η C
#S(a)N(a)

∑
I⊂S(a)

Iη0(l, n, fη
∏
v∈I

pnvv ).

Then, the desired estimate is given by Proposition 23.3. �
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Lemma 26.9. We have

|W(S(a))| �ε,l,η N(a)c+2+ε N(n)−c+ε.

Proof. By the estimates recalled above, the range of b in the summation (26.2) with T = S(a) can be
restricted to na−1f−1

η − {0,−1}. If b ∈ na−1f−1
η , then b(b + 1)a2f2η is an ideal of o. From this, noting

that η is unramified over S(a), we have the equality ordw(b(b + 1)a2f2η) = 2nw + ordw(b(b + 1)) for any
w ∈ S(a). By taking summation over w ∈ S(a),∑
w∈S(a)

{2nw + ordw(b(b+ 1)) + 1} log qw 6 log N
(
b(b+ 1)a2f2η

)
+ log N(a)�ε,η |N(b(b+ 1))|ε/2N(a)ε.

Using this, from (26.6), (26.3) and (26.4), we obtain

|W(S(a))| �
∑

b∈nf−1
η a−1−{0,−1}

∑
w1∈S(a)

{
∏

v∈ΣF−{w1}

|Jv(b)|} (log qw1
) qw1

{ordw1
(b(b+ 1)) + 2nw1

+ 1}2

�ε,η C
#S(a) N(a)1+2ε

∑
b∈nf−1

η a−1−{0,−1}

|N(b(b+ 1))|ε
∏
v∈Σ∞

|Jv(b)|
∏

v∈Σfin−S(afη)

Λv(b)
∏

v∈S(a)

{1 + Λv(b)}

6C#S(a)N(a)2ε+1
∑

I⊂S(a)

Iηε (l, n, fη
∏
v∈I

pnvv ),

where C is the implied constant in the first estimate of (26.3) and (26.6). Noting C#S(a) �ε N(a)ε, we
obtain the assertion by Proposition 23.3. �

Lemma 26.10. We have

|W(S(n))| �ε,l,η N(a)c+2+ε N(n)−c+ε.

Proof. From the estimates recalled above,

|W(S(n))|

�ε,ηC
#S(a)N(a)

∑
b∈nf−1

η a−1−{0,−1}

∏
v∈Σ∞

|Jv(b)|
∏

v∈Σfin−S(anfη)

Λv(b)
∏

v∈S(a)

{1 + Λv(b)}
∑

w2∈S(n)

|Ww2
(b)|,

where C is the implied constant in the first estimate of (26.3). By (26.7),∑
w2∈S(n)

|Ww(b)| �
∑

w2∈S(n)

(log qw2
)(ordw2

(n) + ordw2
(b) + 1)2

�
∑

w2∈S(n)

ordw2
(n)2(log qw2

) +
∑

w2∈S(n)

(log qw2
)Λw2

(b)2 �ε N(n)ε
∏

v∈S(n)

Λv(b)
2

for b ∈ nf−1
η a−1. From this, we obtain

|W(S(n))| �ε,ηC
#S(a)N(a)N(n)ε

∑
b∈nf−1

η a−1−{0,−1}

∏
v∈Σ∞

|Jv(b)|
∏

v∈Σfin−S(afη)

Λv(b)
2
∏

v∈S(a)

{1 + Λv(b)}

=C#S(a)N(a)N(n)ε
∑

I⊂S(a)

Iη0(l, n, fη
∏
v∈I

pnvv ).

Then, the desired estimate is given by Proposition 23.3. �

Lemma 26.11. We have

|W(S(fη))| �ε,l,η N(a)c+2+ε N(n)−c+ε.

116



Proof. By the same argument as in the proof of Lemma 26.9, we have∑
w∈S(fη)

{2f(ηw) + ordw(b(b+ 1)) + 1} log qw 6 log N
(
b(b+ 1)a2f2η

)
+ log N(fη)

�ε,η |N(b(b+ 1))|εN(a)2ε

for b ∈ na−1f−1
η . From the estimates recalled as above, we obtain

|W(S(fη))| 6
∑

b∈nf−1
η a−1−{0,−1}

∑
w3∈S(fη)

{
∏

v∈ΣF−{w3}

|Jv(b)|} (log qw3
){2f(ηw3

) + ordw3
(b(b+ 1)) + 1}

�ε,l,η C
#S(a)N(a)

∑
b∈nf−1

η a−1−{0,−1}

|N(b(b+ 1))|εN(a)2ε
∏
v∈Σ∞

|Jv(b)|
∏

v∈Σfin−S(afη)

Λv(b)
∏

v∈S(a)

{1 + Λv(b)}

�ε,l,ηC
#S(a)N(a)1+2ε

∑
I⊂S(a)

Iηε (l, n, fη
∏
v∈I

pnvv ).

Then, the desired estimate is given by Proposition 23.3. �

Lemma 26.12. We have

|W(Σfin − S(anfη))| �ε,l,η N(a)c+2+ε N(n)−c+ε.

Proof. In the summation on the left-hand side of (26.2) with T = Σfin − S(anfη), the range of (b, w) is
restricted to b ∈ nf−1

η a−1 and w ∈ S(b(b+ 1)o ∩ o) ∩ T , due to the estimates recalled above. Thus,

|W(Σfin − S(anfη))|

6
∑

b∈nf−1
η a−1−{0,−1}

∑
w∈S(b(b+1)o∩o)−S(anfη)

{
∏

v∈ΣF−{w4}

|Jv(b)|} |Ww4
(b)|

�ε,η C
#S(a)N(a)

∑
b∈nf−1

η a−1−{0,−1}

∏
v∈Σ∞

|Jv(b)|
∏

v∈S(a)

{1 + Λv(b)}

×
∑

w4∈S(b(b+1)o∩o)−S(anfη)

{
∏

v∈Σfin−S(afη)
v 6=w4

Λv(b)} (log qw4
)Λw4

(b)2

�ε,η C
#S(a)N(a)

∑
b∈nf−1

η a−1−{0,−1}

∏
v∈Σ∞

|Jv(b)|
∏

v∈S(a)

{1 + Λv(b)}

× {
∑

w4∈S(b(b+1)o∩o)−S(anfη)

log qw4
}

∏
v∈Σfin−S(afη)

Λv(b)
2

�ε,η C
#S(a)N(a)

∑
b∈nf−1

η a−1−{0,−1}

∏
v∈Σ∞

|Jv(b)|
∏

v∈S(a)

{1 + Λv(b)}

×
∏

v∈Σfin−S(afη)

Λv(b)
2 ×N(a)2ε|N(b(b+ 1))|ε

=C#S(a)N(a)1+2ε
∑

I⊂S(a)

Iηε (l, n, fη
∏
v∈I

pnvv ).

Here we note ∑
w4∈S(b(b+1)o∩o)−S(anfη)

log qw4
�ε,η N(a)2ε|N(b(b+ 1))|ε, b ∈ nf−1

η a−1 − {0,−1}.
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Indeed, if b ∈ nf−1
η a−1, we have b(b+ 1)f2ηa

2 ⊂ o and S(b(b+ 1)o∩ o)−S(anfη) ⊂ S(b(b+ 1)f2ηa
2). Hence,∑

w4∈S(b(b+1)o∩o)−S(anfη)

log qw4
6

∑
w4∈S(b(b+1)f2ηa

2)

log qw4
6 log N(b(b+ 1)f2ηa

2)

�ε |N(b(b+ 1))N(fη)2N(a)2|ε, b ∈ nf−1
η a−1 − {0,−1}.

Therefore, the assertion follows from Proposition 23.3 and from C#S(a) �ε N(a)ε. �

As a consequence, Proposition 24.1 follows from Lemmas 26.8, 26.9, 26.10, 26.11 and 26.12. �

26.5. Unipotent terms. We compute the local terms for W̃η
u(l, n|α) at a place v ∈ S. For αv ∈ Av, set

Uηvv (αv) =
1

2πi

∫ σ+2πi(log qv)−1

σ−2πi(log qv)−1

1

(1− ηv($v)q
−(s+1)/2
v )(1− q(s+1)/2

v )
αv(s) dµv(s),(26.10)

Ũηvv (αv) =
1

2πi

∫ σ+2πi(log qv)−1

σ−2πi(log qv)−1

ηv($v) log qv

(1− ηv($v)q
−(s+1)/2
v )2(1− q−(s+1)/2

v ) qs+1
v

αv(s) dµv(s)(26.11)

with dµv(s) = 2−1 log qv (q
(1+s)/2
v − q

(1−s)/2
v )ds and σ > 0. The integral Uηvv is already computed in

Proposition 18.1. In the same way, we have the following lemma easily.

Lemma 26.13. For any m ∈ N0, we have

Ũηvv (α(m)
v ) = −δ(m > 0) q−m/2v (log qv)

{{
qv−1

2 m(−1)m − 3qv+1
4 (−1)m + 1−qv

4

}
(ηv($v) = −1),{

(m−1)(m−2)
2 qv − m(m+1)

2

}
(ηv($v) = +1).

27. An estimation of a certain lattice sum

Let d > 1 be an integer. We fix l = (lj)16j6d ∈ Rd such that ld > . . . > l1 > 4, and consider a positive
function f(x) on Rd defined by

f(x) =

d∏
j=1

(1 + |xj |)−lj/2, x = (xj)16j6d ∈ Rd.

Given a Z-lattice Λ ⊂ Rd (of full rank), we define

Θ(Λ) =
∑

b∈Λ−{0}

f(b).

Viewing this as a function in Λ, we need to compare its asymptotic size with a certain power of D(Λ),
the Euclidean volume of a fundamental domain of Rd/Λ. To state the main result of this section, we
need another quantity r(Λ) given by

r(Λ) =
1

2
min

b∈Λ−{0}
‖b‖.

Theorem 27.1. Let F be a totally real number field of degree d. Let Λ0 and Λ be fractional ideals such
that Λ ⊂ Λ0; we regard them as Z-lattices in Rd by the embedding F → RHom(F,R) ∼= Rd. Then,

Θ(Λ)� {1 + r(Λ0)}dld/2D(Λ0)−1D(Λ)(1−l1/2)/d

with the implied constant independent of Λ and Λ0.

The proof is given at the last part of the next subsection after several lemmas.
118



27.1. Proof of Theorem 27.1. Let dµ(ω) denote the Euclidean measure on the sphere Sd−1 = {x =

(xj)16j6d ∈ Rd |
∑d
j=1 x

2
j = 1}.

Lemma 27.2. For any λ = (λj) ∈ Cd such that Re(λj) < 1, we have

I(λ) =

∫
Sd−1

d∏
j=1

|ωj |−λj dµ(ω) = 2Γ

 d∑
j=1

1−λj
2

−1
d∏
j=1

Γ
(

1−λj
2

)
.

Proof. The formula is obtained by computing the integral

∫
Rd

exp(−ε‖x‖2)

d∏
j=1

|xj |−λj dx(27.1)

in two different ways, where ε > 0 and Re(λj) < 1 for the absolute convergence of the integral. By
expressing (27.1) as an iterating integral, we compute it as

d∏
j=1

∫
R
e−εx

2
j |xj |−λjdxj =

d∏
j=1

ε(λj−1)/2Γ
(

1−λj
2

)
= ε(

∑d
j=1 λj−d)/2

d∏
j=1

Γ
(

1−λj
2

)
on one hand. On the other hand, by the polar decomposition, (27.1) becomes

∫ ∞
0

∫
Sd−1

e−ερ
2

d∏
j=1

|ρωj |−λj ρd−1 dρ dµ(ω)

=

∫
Sd−1

d∏
j=1

|ωj |−λj dµ(ω)

 (∫ ∞
0

e−ερ
2

ρ−
∑d
j=1 λj+d−1 dρ

)

= I(λ) 2−1ε(
∑d
j=1 λj−d)/2 Γ

 d∑
j=1

1−λj
2

 .

�

Lemma 27.3. For t = (tj)16j6d ∈ [1,∞)d, set

ϕ(t1, . . . , td) =

∫
Sd−1

f(t1ω1, . . . , tdωd) dµ(ω).

For t > 1, let t denote the diagonal element (tj) defined by tj = t (1 6 j 6 d). Then,

ϕ(t) = O(t1−d−l1/2), t ∈ [1,∞).

Proof. For λ = (λj) ∈ Cd such that 0 < Re(λj) < 1, we compute the multiple Mellin transform

ϕ̃(λ) =

∫ ∞
0

· · ·
∫ ∞

0

ϕ(t1, . . . , td)

d∏
j=1

tλj
dtj
tj
.
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By Lemma 27.2, we compute this in the following manner.

ϕ̃(λ) =

∫
Sd−1

{
d∏
j=1

∫ ∞
0

(1 + tj |ωj |)−lj/2t
λj−1
j dtj} dµ(ω)

=

∫
Sd−1

{
d∏
j=1

|ωj |−λj
∫ ∞

0

(1 + tj)
−lj/2t

λj−1
j dtj} dµ(ω)

=

∫
Sd−1

d∏
j=1

|ωj |−λj dµ(ω)

  d∏
j=1

∫ ∞
0

(1 + tj)
−lj/2t

λj−1
j dtj


= I(λ) {

d∏
j=1

Γ(lj/2)−1 Γ(lj/2− λj) Γ(λj)}

= 2Γ

 d∑
j=1

1−λj
2

−1

{
d∏
j=1

Γ(lj/2)−1 Γ((1− λj)/2) Γ(lj/2− λj) Γ(λj)}.

By Stirling’s formula, this is bounded by a constant multiple of P (Imλ) exp(−π
∑d
j=1 |Im(λj)|) with

some polynomial P (x1, . . . , xd) which can be taken uniformly with Re(λ) varied compactly. Thus, by a
successive application of the Mellin inversion formula, we obtain

ϕ(t) =

(
1

2πi

)d ∫
(σ1)

. . .

∫
(σd)

2 {
d∏
j=1

Γ
(

1−λj
2

)
Γ
(
lj
2 − λj

)
Γ(λj)

Γ(lj/2)
} t−

∑d
j=1 λj

Γ
(∑d

j=1
1−λj

2

) d∏
j=1

dλj ,

where the contour (σj) = {Re(λ) = σj} should be contained in the band 0 < Re(λj) < 1. We shift the
contours (σj) in some order far to the right. The residues arise when the moving contour (σj) passes the
points in (1 + 2Z>0) ∪ (lj/2 + Z>0). Among those residues, the one with the smallest possible power of
t−1 comes from the pole at λ1 = l1/2, λj = 1 (2 6 j 6 d) if l2 > l1, which we assume for simplicity in the
rest of the proof of this lemma. (When l2 = l1, there are several terms giving the same power in t−1.)
The residue term is O(t−(d−1+l2/2)), by which the contribution from the remaining terms are majorized.
This completes the proof. �

Lemma 27.4. (1)

f(x+ y) > f(x) f(y), x, y ∈ Rd(27.2)

(2)

vol(Sd−1) (1 + ρ)−dld/2 6
∫
Sd−1

f(ρω) dµ(ω)� (1 + ρ)1−d−l1/2, ρ > 0,

with the implied constant depending on l and d.

Proof. (1) is immediate from the inequality 1 + |xj + yj | 6 (1 + |xj |)(1 + |yj |). As for (2), we first note

the inequality 0 6 |ωj | 6 1 for ω ∈ Sd−1. Using this, we have
∏d
j=1(1 + |ρωj |) 6 (1 + ρ)d. By this,

f(ρω) >
{ d∏
j=1

(1 + |ρωj |)
}−ld/2 > (1 + ρ)−dld/2.

Taking the integral in ω, we have the estimate from below as desired. The upper bound is provided by
Lemma 27.3. �
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We compare Θ(Λ) with the integral of f(x) on the ball BΛ = {x ∈ Rd| ‖x‖ < r(Λ) }. For convenience,
we set I(D) =

∫
D
f(x) dx for any Borel set D in Rd.

Lemma 27.5. Let Λ0 and Λ be Z-lattices such that Λ ⊂ Λ0. Then, we have the inequality

Θ(Λ) 6 I(BΛ0)−1 I(Rd −BΛ)

Proof. The inequality (27.2) gives us

I(BΛ) Θ(Λ) 6
∑

b∈Λ−{0}

∫
BΛ

f(b+ x) dx.

Since Λ ⊂ Λ0, we have BΛ0
⊂ BΛ, from which I(BΛ0

) 6 I(BΛ) is obtained by the non-negativity of f(x).
Since (BΛ + BΛ) ∩ Λ = {0}, the translated sets BΛ + b (b ∈ Λ − {0}) are mutually disjoint. From this
remark, ∑

b∈Λ−{0}

∫
BΛ

f(b+ x) dx 6
∫
Rd−BΛ

f(x) dx = I(Rd −BΛ).

Putting altogether, we are done. �

Lemma 27.6. Let Λ be a Z-lattice.

I(BΛ) > vol(Sd−1) (1 + r(Λ))−dld/2 r(Λ)d/d,

I(Rd −BΛ)� r(Λ)1−l1/2

with the implied constant independent of Λ.

Proof. By Lemma 27.4 (2),

I(BΛ) =

∫ r(Λ)

0

∫
Sd−1

f(ρω) dω ρd−1 dρ

> vol(Sd−1)

∫ r(Λ)

0

(1 + ρ)−dld/2 ρd−1 dρ

> vol(Sd−1)(1 + r(Λ))−dld/2
∫ r(Λ)

0

ρd−1 dρ = vol(Sd−1)(1 + r(Λ))−dld/2 r(Λ)d/d.

In a similar way,

I(Rd −BΛ) =

∫ ∞
r(Λ)

∫
Sd−1

f(ρω) dω ρd−1 dρ

�
∫ ∞
r(Λ)

(1 + ρ)1−d−l1/2 ρd−1 dρ 6
∫ ∞
r(Λ)

ρ−l1/2 dρ = (l1/2− 1)−1r(Λ)1−l1/2.

�

Lemma 27.7. Let F be a totally real number field of degree d. There exist positive constants Cd and C ′d
such that Cd r(Λ)d 6 D(Λ) 6 C ′d r(Λ)d for any fractional ideal Λ.

Proof. The first inequality follows from Minkowski’s convex body theorem. The second inequality is
proved as follows. For any b ∈ Λ − {0}, there exists an ideal a ⊂ o such that (b) = aΛ, and hence
|N(b)| = N(Λ)N(a) > N(Λ). Thus, by the arithmetic-geometric mean inequality,

D(Λ)1/d = N(Λ)1/d 6 {
d∏
j=1

|bj |2}1/(2d) 6
{ d∑
j=1

|bj |2/d
}1/2

= d−1/2‖b‖

Hence, D(Λ)1/d 6 2d−1/2r(Λ). This shows D(Λ) 6 C ′d r(Λ)d with C ′d = (2d−1/2)d. �
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Theorem 27.1 follows from Lemmas 27.5, 27.6 and 27.7 immediately. �

References

[1] D. Blasius, Hilbert modular forms and the Ramanujan conjecture, Noncommutative Geometry and Number Theory,

Aspects Math. E37, Vieweg, Wiesbaden, 35–56, 2006.

[2] A. Borel, Automorphic forms on SL2(R), Cambridge Tracts in Mathematics, 130 Cambridge University Press, 1997.
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