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INTRODUCTION

0.1. In number theory, it is important to study L-functions and their special values. In this thesis, we
focus on central values of automorphic L-functions for GL(2). Such central values have been studied by
many mathematicians. As one of remarkable results, Waldspurger [48] gave a beautiful formula which
relates the central L-value associated with a cuspidal automorphic representation of GL(2) to period
integrals of cusp forms belonging the cuspidal representation along an elliptic torus of GL(2). Later,
Jacquet [16], [17] gave another proof of Waldspurger’s result introducing relative trace formulas. Inspired
by Jacquet’s result, Ramakrishnan and Rogawski [35] computed Jacquet’s relative trace formula explicitly.
In the case of holomorphic elliptic modular forms with a fixed weight and prime level, they gave an
asymptotic formula of an average of the product of central L-values and their twists by an odd quadratic
Dirichlet character, when the level goes to infinity. The detail is as follows. Let k& > 4 be an even integer.
For a prime number N, let Sp°%(N) be the space of all elliptic cuspidal new forms of weight k and level N
(for I'g(NN)). The space SV (V) has an orthogonal basis F}°%(N) consisting of normalized Hecke eigen
forms. For ¢ € Spe¥(N), we denote by L(s, ) the completed automorphic L-function for ¢ whose center
at a symmetry of a functional equation is 1/2. Let i be a quadratic Dirichlet character of conductor D
with n(—1) = —1. The Dirichlet L-series associated with n is denoted by Lgy,(s,n). For a fixed prime
pt D, I}, denotes the set of all primes N satisfying both ged(p, N) = ged(D, N) = 1 and n(N) = —1. We
define the p-th Fourier coefficient a, () of ¢ by the Fourier expansion f(z) = Y00 | nk=1/2q,,(p)e2™m2.
In this setting, Ramakrishnan and Rogawski proved the following theorem.

Theorem 0.1. [35, Theorem A] For any interval J C [—2,2], we have

. L2002 081 _ s (/2= 11
LY [ TR

(17 n)ﬂpm(J)a

N*)OO new
Nez}, »eFp (N),
ap(p)€J

where ||p|| denotes the Petersson norm of ¢ and p,, denotes the probability measure on [—2,2] defined
by

Sy Aer®) () = 1)

xTr) =
Ip,n () P41

(P12 1 p1/2)2 _ 42 pst(z)  (n(p) = -1).

Here, st (x) is the Sato-Tate measure (27)~'V/4 — 22dz.

Feigon and Whitehouse [6] generalized their result to the case of holomorphic Hilbert modular forms,
imposing that the level is square-free and that a quadratic Hecke character concerned with twisted L-
values is non-trivial at all archimedean places, by using a refined Waldspurger’s formula [25] and the
relative trace formula given by [18]. For non-holomorphic Hilbert modular forms, Tsuzuki [47] gave an
analogous result for even Hilbert Maass forms by using automorphic Green functions on GL(2). Even in
his result, the condition that the squre-freeness of levels was not able to be removed from assumptions.

In this thesis, we generalize results [35], [6] and [47] to several directions, without the square-freeness
of level and the oddness condition on a quadratic Hecke character. Essential ingredients are automorphic
Green functions on GL(2), which were introduced by Tsuzuki and explicit relative trace formulas for
GL(2) resulting from automorphic Green functions. This thesis is based on [42], [43] and [44], which were
given during the author’s doctoral program. Here, [43] and [44] are joint works with Masao Tsuzuki.

To state our results in this thesis, we prepare some notation. Let F' be a totally real algebraic number
field of finite degree and o its integer ring. The adele ring of F' is denoted by A. Let D be the absolute
value of the discriminant of F/Q. We denote by X, and Xg, the set of all infinite places and all finite
places of F', respectively. For each v € ¥p = X, UXg,, we denote by |- |, the modulas of the completion
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F, of F at v and fix a uniformizer w, of the integer ring o0, of F), if v € ¥g,. Then, ¢, = |w1,\;1 is the
order of 0, /w,0,. For an ideal a of o, let S(a) denote the set of all v € Xg, such that ord,(a) > 1. The
absolute norm of a is denoted by N(a).

Fix a real valued character 7 = [[,cx, 70 of F*\A* of conductor f, and fix a finite subset S of ¥r
such that SN S(f,) = 0. Then, n(t) € {£1} for all t € A*. Let I3, (resp. Iy, ) be the set of all ideals n
of o satisfying the following three conditions:

(1) Sm)NS(fy) =0 and S(n)NS =0,
(2) ny(w,) = —1for all v € S(n),
B3) {llues, m(=D}im) =41 (resp. {[[,ex, mo(=1)}0(n) = —1).

Here we put 7(n) = [[,cx,. o (wﬁrd“(")). The completed Hecke L-function for 7 is denoted by L(s, 7).

Let 7 be an irreducible cuspidal automorphic representation of GL(2, A) with trivial central character.
We denote by L(s,7) the completed standard autumorphic L-function associated with w. The adjoint
L-function L(s, 7, Ad) of 7 is the completed standard automorphic L-function of the adjoint lift of ,
which is a cuspidal automorphic representation of GL(3,A) (cf. [7]). Let f be the conductor of 7 and
S, the set of all finite places of F' such that ord, f, > 2. Then, L (s, 7, Ad) is defined as the product of
v-th Euler factors L(s, m,, Ad) over all v € g — S;.

Throughout this thesis, automorphic L-functions are normalized so that their functional equations have
1/2 as a center of symmetry, and we use the subscript “fin” to represent non-completed L-functions, such
as Lgn(s,n), Lan(s, 7). For any self-dual irreducible cuspidal automorphic representation 7 of GL(2, A),
the epsilon factor of 7 is denoted by ¢(s, 7), which has an explicit form e(s, 7) = €(1/2, 7){N(f,) D% }/?~*
with €(1/2, ) € {£1}. Then, the functional equation for L(s, ) is of the form L(s,7) = (s, m)L(1—s, ).

From Part 1 to Part 3, we consider asymptotic formulas of

1 L(1/2,7)L(1/2, 7
)Z ( /LSW)(lj(W’/Ad)(gn)a(VS(ﬂ-))

with a quantity a(vg(m)), where 7 runs over irreducible cuspidal automorphic representatons of PGL(2, A)
with f, = n, being imposed some conditions on its archimedean components.

0.2. Part 1 : Results for non-holomorphic even Hilbert Maass forms. In Part 1, we explain a
generalization of [47] to the case of arbitrary levels. Let K, be the standard maximal compact subgroup
of GL(2, F ®g R). For an ideal n of o, let II.,s(n) denote the set of all irreducible cuspidal automorphic
representations of PGL(2, A) with f, dividing n. We denote by II .(n) the set of all 7 € Il us(n) with
f= = n. We assume that S D ¥, and that all archimedean components of n are trivial.

For an ideal n of o relatively prime to S and 7 = ®,m, € Il.us(n), m, is isomorphic to a unitarizable

spherical principal series representation I,,(v,) = Indg%g’)F“)ﬂ . |Z“/2 X|- |;””/2) of GL(2, Fy,) forallv € S,

where B is the Borel subgroup of GL(2) consisting of all upper triangular matrices. We can take v,
so that v, € X9*, where X9" = iR>q U (0,1) for v € Yo and X9 = i[0,27(logq,) U {z +iy | = €
(0,1), y € {0,2r(log q,) "t} } for v € Sy = S N Xgn, respectively. Such v, € X207 is denoted by v, ().
The spectral parameter vg(r) of 7 at S is defined as vg(m) = (1,(7))yes € X5" = [Toes X0T.

Set X9 = X0* MR for any v € S and X% =[], .5 X9. We define a positive Radon measure A% on X%
by 4D?I}/2L(1, 17) ®,es AP, and for each v € S, the measure A7* on X9 is given by

1o,
_ L(/2. 1, (i) L(1/2, 1 (iy) @ n0) = Ty/2) dy (v € Tao),
L(1,m,) logiqv

47

dAy (iy)
[1— q;iy|2dy (v € Stin)-



Then, we remark that for v € g,
Qv — ]-
1/2 —1/2
AN (iy,) = (@ + 2 )’

qv +1 B
(q11}/2 N q;1/2)2 e dpsr (o) (10 (w0) = —1)

d,U*ST(xv) (nv(wv) = +1)7

by the variable change =, = qf,y”/ gt qv Wo/2 \When F = Q and v = p < oo, A\ (iy) is exactly equal to
fip,n (2)-
For any ideal n of o, put
vim) = J[ 0-(¢—a)™"} I1 1-q,%),
vES2(n) veS(n)—(S1(n)US2(n))
where S7(n) (resp. Sa(n)) denotes the set of all v € S(n) such that ord,(n) =1 (resp. ord,(n) = 2).

Theorem 0.2. Suppose that n is non-trivial and that n,(—1) = 1 for all v € Y. Let A be an infinite
subset ofI;r’n, For any f € Cc(ff(;r), we have

1 L(1/2,m)L(1/2, 7 ®@n)
N(n)v(n) Z

P s = [ feag ()
mell* . (n) S

cus

as N(n) — oo inn € A. In particular, for any non-empty bounded Borel set J of %OS+ such that its
boundary is a null set with respect to X%, the following formula holds:

. 1 L(1/2,m)L(1/2, 7 ®n) 3/2

1 TR =4DY"L(1 1(J, QuesdA]?).
N(nl)IE)oo N(n)v(n) Z L5~(1,7,Ad) 7 L(1,n)vol(J, ®pesdAy")

neA T (n),

vs(m)ed

We remark that Theorem 0.2 is compatible with [47, Theorem 1.1] since v(n) = 1 holds if n is square-
free. This asymptotic formula gives the following counterpart of [35, Corollary B].

Corollary 0.3. Let S and n be the same as in Theorem 0.2 and let {J,}ves be a family of intervals
such that J, is contained in [1/4,00) for each v € Lo and in [—2,2] for each v € Sa,. Then, for any
sequence {ng tren of I;'n such that limg_, o N(ng) = 400, there exists kg > 0 such that for any k > ko,

there exists m € 11X (ng) satisfying the following conditions:

(1) Both L(1/2,7) # 0 and L(1/2,7 ®@n) # 0 hold.
(2) The spectral parameter vg(m) = (v,(7))ves of m satisfies (1 — v, (m)?)/4 € J, for all v € X and
q;yv(w)ﬂ + q«’fv(ﬂ)/Q € J, for allv € Sgy,.

We remark that L(1/2,7)L(1/2,7®n) > 0if L(1/2,7)L(1/2,7 ®n) # 0 by Guo’s result [10]. As for
equidistribution results for Hecke eigenvalues of Maass forms without weighting central L-values, there
is a work [21] by Knightly and Li when F = Q.

Let {v;}jen be the set of all places v € Xg, — (S U S(fy)) such that n,(w,) = —1 and let {p;};en be
the set of all prime ideals of o corresponding to {v;,};en. Here are some examples of {ny}ren in Theorem
0.2 and Corollary 0.3:

(1) {":Pl"'P2n ‘ nEN},
(2) {n=p7" | n €N},
(3) {n=1p2® | n € N} for a fixed a € N,
(4) {n=p¢"p" | n € N} for fixed odd integers a,b > 0.
The case (1) was treated by Tsuzuki [47, Theorem 1.1 and Corollary 1.2].
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Motohashi [30] studied the growth of the square mean of central values of automorphic L-functions
attached to Maass forms with full level via Kuznetsov’s trace formula. Tsuzuki [47, Theorem 1.3] con-
sidered a similar growth in the case where the level is square-free and the base field is totally real. We
can generalize [47, Theorem 1.3] to the case of arbitrary levels.

Theorem 0.4. Suppose S = X and set dp = [F : Q). Let n be an arbitrary ideal of o and n a real
valued character of F*\A* such that f, is relatively prime to n, f(n) =1 and n,(—=1) =1 for allv € Y.
Let J be a compact subset of Hvezm iR~ with smooth boundary. Then, for any € > 0, we have

wy () L(1/2,7)L(1/2, 7 ®@n)
Ko(fr) : Ko(n)] N(fr)L5 (1,7, Ad)

mE€cus(n),
VS (7!') etJ

3/2

_ 4p¥
(2m)dr
+ Ot logt)?) + Ot IF+40Fe) ¢ oo,

where w(n) is a constant explicitly defined in Lemma 3.6,

(5(11:0):{1 (n=0),

{1+8(n=0)}vol(J)t% (dp Ress—; L(s,n)logt + C"(F,n))

0 (n#o),

the values Ress—1 L(s,n) and CTs=1L(s,n) denote the residue and the constant term of L(s,n) at s =1,
respectively,

d
C"(F,n) = CT,=1 L(s,7) + Res,=1 L(s, n){j(chler +2log2 — log) + log(DpN(n)"/ 2)},

the value Cguler 1S the Euler constant, and 0 € R is a constant such that
|Lan(1/2 + it, )| < a(x| - )47, teR

holds uniformly for any character x of F*\A*. Here q(x| - |¥¥) is the analytic conductor of x| - |i¥ (cf.
§1.3).

Moreover, we obtain the following result on subconvexity bounds depending on 6 < 0.

Theorem 0.5. Let n be an arbitrary ideal of o and let 6 be as in Theorem 0.4. Let J C f{%"’ be a closed

cone such that J — {0} C [[,cx_ iR>o. Then, for any e >0, we have

|Lan(1/2,m)] e (1+ [, (m)|[) /2 FoupEded. =172 ke

for m € Ueys(n) g = {m € Ueus(n) | vs__ (7)) € J}. Here the implied constant may depend on n and J, and
vl = pes., lvs|?)/? is the Buclidean norm of v = (V4)ves.. -

We remark that Theorem 0.5 was proved by Tsuzuki [47, Corollary 1.4] when n is square-free.
When F = Q and n = Z, there are works [13], [12] and [19], by which we have |Lgn(1/2,7)| <.
(1 + ||vs (0)|[)1/3F€ uniformly for m € Teus(Z). Recently, Michel and Venkatesh [27] gave subconvexity
bounds for automorphic L-functions for GL(1) and GL(2) in a more general case. Their result asserts
existence of a subconvexity estimate

|Lan(1/2,m)] < (14 |lps (m)[[)#/2724N(@) V470, 7 € Tleus(n)

with implicit § > 0. Since 6 can be taken so that § < 0 by [27, Theorem 1.1], Theorem 0.5 gives an
explicit subconvex exponent in the Laplacian eigenvalue aspect. In particular, if dp > 1/4/|6|, then we
have explicitly a subconvex exponent dr/2 — 1/2 + € not depending on 6.
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To prove results for even Hilbert Maass forms, we generalize Tsuzuki’s method explained in [47, §1.3]
to the case of non square-free levels. In §2, the number of Hecke characters is estimated, which is used
in Lemma 10.3. In §3, we recall the notion of regularized (H,n)-periods P, () for automorphic forms
¢, which was introduced in [47]. Let H be the diagonal maximal torus of GL(2) and let Z be the center
of GL(2). Then, for a real valued Hecke character n, the (H,n)-period integral for cusp forms ¢ on

PGL(2, A) is originaly defined by

P'(p) = / () n(det(h))dh = p(h) n(det(h))| det ()|~ *dh
ZyHr\Hp ZyHp\Ha s=1/2
Since the regularization procedure compensates the divergence arising from vol(F*\A*) = oo, the value
Pl, () makes sense even if ¢ is not cuspidal.

Further, in §3.2 and §3.5, we recall explicit formulas of reguralized (H,n)-periods of cusp forms,
Eisenstein series, and of the residues and the constant terms of Eisenstein series at v = 1, which were
proved in a previous paper [41]. Although some constant terms of Eisenstein series do not have the
regularized (H,n)-periods, computation of the spectral side works. Adelic Green functions ¥*)(n|s; g)
defined in §6 are described by using Green functions on GL(2, F,,). These Green functions on local groups
are revised in §4 and §5.

In §7, we regularize the automorphic Poincaré series

(0.1) O@ls;g)= > ¥Onfs;yg), g€ GL(2,4)
~EHF\GL(2,F)

and the multidimensional contour integral of the Poincaré series
. 1
¥nlasg)  (

#5
) [ ¥Owks st geGLeA)
213, xg
with respect to a measure pug for special test functions o« on the complex manifold Xg = Hvzw C x
[T.es,, C/4mi(logq,) 'Z, in which spectral parameters range. The series (0.1) would link Green functions
with (H,1)-period integrals if we could ignore the divergence arizing from vol(F*\A*) = co. For this
reason, we study a regularization of the series (0.1) in the same way as the regularization of (H, 1)-period
integrals. First, by using A € C and an even holomorphic function §(z) with rapid decay as [Im(z)| — oo,
we define Ug 5 (n|s; g) with a parameter (8, \) as
oo 5(2)

1 . —z
Woalnfsio) = 5 [ (0O ulsig) + ¥ nfsig)) Pk,

provided with o >> 1. This function is an object to be studied by the relation ¥ o(n|s; g) = ¥ (n|s; g)3(0).
Next, for an even holomorphic function a on Xg with rapid decay as [Im(z)| — oo, set

1

#S
Vs a(nfasg) = <2m> /R o Vs a(n]s; g)a(s)dps(s), g € GL(2,A),

where ¢ € RY is sufficiently large, and
Toamlosg) = > Uga(e;vg), g€ GLE2A).
~EHF\GL(2,F)
The absolute convergence of the integral and series as above is guaranteed for Re(A) > 1. Instead of
substituting A = 0, we continue the function A — \ilg, A(n|a; g) meromorphically to a right half plane
Re(\) > —e for some € > 0. In this case, we can define the automorphic Green function W, (n|a;g)
by the relation Wg 5 (n]o; g) = W,ee(n|a; g)B(0), where CTy—oW s 5 (n|a; g) is the constant term of the

Laurent expansion of g y(n|a;g) at A = 0. The main tool, what we call an explicit relative trace
6



formaula for even Hilbert Maass forms, is obtained by computing P,eg(\Ilreg(n|o¢)) in different two ways.
In §8, we describe explicitly one side of the formula in terms of (H,n)-periods of automorphic forms. We
call this the spectral side. To complete the continuous part I', (n|a) and the residual part D”(n|a) in
the spectral side, hard calculation is executed in Lemmas 7.3, 7.4, 8.3 and 8.4. A generalized Siegel’s
theorem for Hecke L-functions is needed in Lemma 7.5 in order to prove the moderate growth condition of
\ilreg (nJar). The phenomenon requiring hard calculation as above did not occur in the case of square-free
levels ([47]). As the other aspect, Preg(\Ierg(n|a)) is decomposed into a sum over the double coset space

Hp\GL(2,F)/Hp in §9. We call this the geometric side. In §10, following Tsuzuki’s method developed
in [47], we estimate terms in the relative trace formula and deduce Theorems 0.2, 0.3, 0.4 and 0.5.

0.3. Part 2 : Results for holomorphic Hilbert modular forms. Part 2 is based on a joint work
[43] with Masao Tsuzuki. In Part 2, we study an analogous asymptotic formula to Theorem 0.2 in the
case where modular forms are holomorphic. The formula is a generalization of [35] and of [6], and is given
by the method developed in [47] and in Part 1. For a family I = (,)yex.. € (2N)¥= and an ideal n of o,
let IIeus(l,n) be the set of all irreducible cuspidal automorphic representations m of PGL(2, A) such that
its local component 7, for each v € ¥, is isomorphic to the discrete series representation of PGL(2, R)
of weight [, and f, divides n. We denote by IT} . (I, n) the set of all 7 € IIys(l, n) with f, = n. We assume
that S is a finite subset of Xg,.

In [6], it was indispensable to assume that n is square-free and that 7,(—1) = —1 for all v € 3
By a relative trace formula developed in Part 2, we work with a more general sign condition on 7 than
[6] allowing the level n to be a general ideal not necessarily square-free. It is known that, for any
7 € Heus(l, 1), the spectral parameter vg(m) of 7 at S is contained in X% = [],c4[0, 27 (log g,) '] (cf.
[1]). In this setting, we have the following asymptotic formula.

tus(
cus

Theorem 0.6. Assume that | = (I,)vex., € (2N)*¥= satisfies | = inf,ex__l, = 6. Let n be a quadratic
character of F*\A* and S a finite set of finite places relatively prime to f,. Then, for n € I;m and

for any even holomorphic function a(s) on the complex manifold Xs = [],c4(C/ 1;1;; Z), we have the

asymptotic formula

. L(1/2,7)L(1/2, 7
(0.2) AL*(n;a) = { H i l /2 )}2} N Z ( /LS‘")(]_,(’]T,/Ad)@n)a(VS(ﬂ-))
VED oo melly,  (I,n)

=ADY 0 Lan (L) [ al9)(@uesdNE (3,) + O () 7+).

for any € > 0 with the implied constant independent of n. Here, the error term can be replaced with
O(N(n)~L/2+1+€) when n varies in the set of square-free ideals.

Sarnak and Iwaniec [15] announced results on certain densities of holomorphic cusp forms whose
central L-values are non-zero when F' = Q. Trotabas [46] also gave estimates of a density of holomorphic
Hilbert cusp forms whose central L-values are non-zero. For a density of Hecke eigenvalues, there are
equidistribution results for Hecke eigenvalues of holomorphic Hilbert modular forms without weighting
central L-values by Li [22] and by Knightly and Li [20]. In our setting, Theorem 0.6 provides us some
nonvanishing results of central L-values and the density of spectral parameters simultaneously as follows
(cf. [35, Corollary B] and [47, Corollary 1.2]).

Corollary 0.7. Assume that | = (I,)yes.. € (2N)¥~ satisfies inf,ex I, > 6. Let n be a quadratic
character of F*\A* with conductor f,. Let S be a finite set of finte places relatively prime to f, and
{Jv}ves a collection of subintervals of [—2,2]. Given a sequence of ideals {n;}ren in I;'_-,n such that
limg 00 N(ng) = 400, there exists ko satisfying the following property: For any k > ko, there exists
m € I (1,ng) such that Len(1/2,7) Len(1/2,7 @ 1) # 0 and gy "™/ 4 ¢2*™/2 € 1, for allv € S.
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The estimate of the form

|Len(1/2,7)| <c {N(n) H 12)1/AFe 7 € Meys(l,n)
VEY oo

for any € > 0 is called the convexity bound. When F = Q, the bound |Lg,(1/2,7)| <, 1'/3*€ for
7 € Ileys(1, Z), which breaks the trivial bound in the weight aspect, has long been known (cf. [33], [19]).
Recently, Michel and Venkatesh [27] gave a subconvexity bound for La,(1/2,7) in a more general setting.
By applying our relative trace formula for a general totally real field F', we give an explicit subconvex
exponent in the weight aspect for the L-function Ly, (s, 7) Lan (s, m ® ) with 7 an quadratic character of
F>*\A* which is odd at all archimedean places.

Theorem 0.8. Assume that | = (I,)pex,. € (2N)*= satisfies inf,ex_ 1, > 6. Let n be an arbitrary ideal
of o and n a real valued character of F*\A* such that n,(—1) = —1 for all v € Y. Suppose that the
conductor f, of n is relatively prime to n. Then, for any e > 0,

|Len(1/2,7) Len (1/2, 7 @ )| < N()¥ T N@) e { [ 1375
VEX oo

with the implied constant independent of I, n, n and 7 € cus(l, n).

The function L(s,7)L(s, 7®mn) is the L-function associated with the quadratic base change lift of 7 for
E/F, where E is the quadratic extension of F' corresponding to 7 by class field theory. Thus Theorem
0.8 also gives a subconvexity estimate of automorphic L-functions for Resg/r GL(2).

In the frame work of [6], the authors of [6] used the Jacquet-Langlands correspondence and the com-
pactness of an anisotropic inner form of GL(2) which is easier to treat period integrals than GL(2). Instead
of the Jacquet-Langlands correspondence, we consider the regularized period integral and holomorphic
automorphic Green functions in the same way as Part 1. Holomorphic Shintani functions on GL(2,R)
explained in §11 are used to construct adelic Green functions \I/l(z)(n|sgg) on GL(2,A). By the same

procedure as in Part 1, the automorphic Green function W (n]ay; g) of weight I = (I,)yex., is defined in

reg
§12 when inf,ex I, > 4 is satisfied. The holomorphic condition deduces the cuspidality of \Ilreg(n|a).
Thus it is much easier to treat than automorphic Green functions given in Part 1. The geometric side
is calculated in §14 and §15 under the condition inf,ex_ I, > 6. Here, although \Ilreg( n|a) is cuspidal,
the regularization of the period P" is indispensable since in the geometric side the idempotent term
CT=oJ4(I; 8, X; ) = 0 compensates vol(F*\A*) = oo successfully (see Lemma 15.1). The condition
inf,ex_ I, > 6 is needed in the estimation of the hyperbolic term in §14.1. Finally, we obtain an explicit
relative trace formula in §16. The formula is computable not only in the case where n is not necessarily
square-free but also in the case where 7,(—1) = 1 for some v € ¥,; the case n = 1 is also contained.
From §17 to §19, we consider a special test function « called Iwaniec’s amplifier as an application to
subconvexity estimates. In §17, we give an explicit formula of Jﬂyp(l ,nja) as computable as possible. An
explicit formula of J7(l, n|) is given in §18. '

0.4. Part 3 : Results for holomorphic Hilbert modular forms : derivatives of L-series. Part
3 is based on a joint work [44] with Masao Tsuzuki. In Part 3, we give a refined asymptotic formula
of the previous result and its derivative version for L(1/2,7)L'(1/2,m ® ) for special test functions.
As an application, by using Royer’s method in [37], we prove existence of m € II¥  (I,n) such that
L(1/2,m)L(1/2,m®n) #0or L(1/2,7)L'(1/2,7 ®n) # 0, and the Hecke field of 7 has a sufficiently large
degree over Q. As in the previous subsection, we consider a finite subset S of places such that S C Xg,,.

Let n be an ideal of 0, I = (I,)vex.. € (2N)¥< and 5 a quadratic character of F*\A* as in the
beginning of the introduction. Let a C o be an ideal relatively prime to f,n such that S(a) C S. In Part
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3, under the condition n € Zg, instead of I;m’ we investigate the asymptotic behavior of the following
average

e L2, L(1/2,7 1)
(0.3) ADL® (n;0) = ) > 5 (L A a(vs(m))
melll (I,n)
e(1/2,7®n)=—1
with
27 (I, — 2)!
01 - 1II L
e {(1,/2—1)12? /2 -
For n € N, let X,,(z) be the Tchebyshev polynomial X,,(z) defined by the relation
(0.5) Xn(z) =sin((n+ 1)0)/sinf for x = 2cosf
and set
(0'6) aa(y) = H Xnu (qv_uv/Q + qu/Z)a V= (Vv)ves S xS

veS

if a = [],cqby, where p, is the prime ideal of 0. For such a, define a =11 1,65((1) plvy di(a) =

7(pv)=
[Toes(a (o +1) and 6o(a) =[], cg(a) (v € 2N), where §(P) for a condition P is 1 (resp. 0) if P is true

(resp. false). We have the following theorem for ADL” (n; ry) and for AL*(n; o).

Theorem 0.9. Suppose | = infyex 1, > 6. Set c=[F:Q|"'(l/2—1). For any € > 0, we have
(0.7) AL (n;aq) = 4D3/2 Len(1,7) v(n) N(a) ™25 (ay )da (a;))
+ Oty (N@F N () e s) | neTy
(0.8) ADL” (n; aq)
= 4D}/ Lo (1.0) ) N(0) s 0) {30y (o NN NG D)
log q, log qu L
+ Z 2g + Z 2g7+7(17n)+¢(l)
qy — 1 9y — Qv — 1 L
veS(n)—(S1(n)US2(n)) vESs(n)
+ 3 bnleypy ) log(dl )

vES(ay )

+ Ot (N(a)*ﬂdl(a;)(sg(a;) X(n) + N(a)c”*eN(n)’i“f(l’c)“) , nelg,,

where
B2 1
e= 3 (X §- 507~ 50— dlml-1) = 1) log2).
VEX oo k=1
log gu log q,,
Xw= D>, ==+ > =5
u€S(n) “ ueS(n) ¢

and Cguyler 15 the Fuler constant. The constants implicit in the O-symbols in both formulas are independent
of n and a.
9



For N € N, let JJ*¥(N) be the new part of the Jacobian variety of the modular curve Xy(N) of
level N. Serre [39] showed that the largest dimension of Q-simple factors of JJV(N) tends to infinity
as N — oo (cf. [39, Theorem 7]). This result was refined in several ways by Royer [37]. He obtained a
quantitative version of Serre’s theorem giving a lower bound of the largest dimension of QQ-simple factors
A of J§¥(N) with or without rank conditions for the Model-Weil group of A. By the correspondence
between the Q-simple factors A of J§¥(N) and the normalized Hecke eigen newforms f of level N and
weight two, and by invoking the progress toward the Birch and Swinnerton-Dyer conjecture, the lower
bound for the largest dim A is obtained from a lower bound of the maximal value of the absolute degree of
the Hecke field Q(f) = Q({n'/%a,,(f) | n € N}) with or without conditions on ord,_; /2 Lgn(s, f). Thus,
one of Royer’s results in [37] can be stated in the language of modular forms as follows.

Theorem 0.10. [37, Theorems 1.2 and 1.3] Let p be a prime. There exist constants Cp, > 0 and N, > 0
satisfying the following properties:
(1) For any N > N, relatively prime to p, there exists a normalized Hecke eigen newform f of level
N and weight two satisfying the conditions:
(i) Lan(1/2, f) 0,
(i) [Q(f): Q] > C, ViogTog V.
(2) For any N > N, relatively prime to p, there exists a normalized Hecke eigen newform fi of level
N and weight two satisfying the conditions:
(i) The sign of the functional equation of Lan(s, f1) is —1.
(i) L (1/2, f1) £ 0.
(i) [Q(f1) : Q) > C, VIogTog .

We obtain an analogue of this theorem for higher parallel weight Hilbert cusp forms by using Theo-
rem 0.9. For a cuspidal representation 7 € IT¥ (I, n), we denote by Q(7) the field of rationality of 7 (for
definition, see §25.1).

Theorem 0.11. Assume that | = (I,)yes.. € (2N)¥= satisfies I, = k for all v € X, with k > 6, and n
a quadratic character of F*\A*. Let S be a finite subset of Xg, — S(fy) and J = {Jy}ves a family of
closed subintervals of (—=2,2). Given a prime ideal q prime to SUS(f,), there exist constants Cq > 0 and
Ng,s.1.n,3 > 0 satisfying the following property: For any ideal n € I.;:US(q),n with N(n) > Ny g1.,,3, there
exists m € 1% (I,n) such that
(i) L(1/2,7) #0 and L(1/2,7 @ n) #0,
(ii) [Q(7) : Q] = C4 /loglogN(n) and
(i) qo ™2 4 g2 e g, for allv € S.
We should note that this can be regarded as a refinement of Corollary 0.7.
As for central derivatives, Trotabas [46] estimated a density of holomorphic Hilbert cusp forms whose

central derivatives of L-functions are non-zero. As a corollary of Theorem 0.9, we have a conditional
result.

Theorem 0.12. Let | = (I,)yexn,, and n be the same as in Theorem 0.11. Suppose that
(0.9) Els=1/2(L(s,m) L(s,m @ 1)) = 0

is satisfied for all w € 113, (I, n) and any integral ideal n such thatnw is prime to f; and {][,cx_ 70(—1)}7i(n)
= —1. Let S be a finite subset of Xan — S(fy) and I = {J,}ves a family of closed subintervals of (—2,2).
Gwen a prime ideal q prime to S U S(f,) and a constant M > 1, there exist constants Cq > 0 and
Ny,s,1.n,3,.m > 0 satisfying the following property: For any ideal n € Lg, with N(n) > Ny g1.n.3,M

uS(a).m
and Y-, es(n) loqu“ < M, there exists m € 117 (I, 1) such that
(i) e(1/2,m@n) = -1,
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(ii) L(1/2,7) #0 and L'(1/2,7 ®@n) # 0,
(ili) [Q(m) : Q] = Cqy +/loglog N(n) and

(iv) qqu“(ﬂ)ﬂ + qff“(ﬂ)m € J, forallves.

We should note that the assumption (0.9) is a consequence of the generalized Riemann hypothesis
for the L-function L(s,7)L(s,m ® ). Furthermore, there are some works [9], [51], [52], [563] and [50] in
the view point of arithmetic geometry of modular varieties via the Gross-Zagier formula for Hilbert cusp
forms. From these works, (0.9) holds in the parallel weight two case. As is seen from this, we can expect
that (0.9) holds in the higher weight case (cf. [51, Corollary 0.3.6]).

Theorem 0.11 (Theorem 0.12) yields a Hilbert cusp form of arbitrarily large level with arbitrarily large
degree of the Hecke field, such that the central value of the L-function and the central value (derivative)
of its prescribed quadratic twist are nonzero simultaneously. Although we can expect a counterpart of
the parallel weight two case, our method does not work as it is for such low weight cases. In order to
treat these interesting cases, the technique of Green’s functions as in [47] and in Part 1 may be useful.

Part 3 strongly depends on results of Part 2. We use the automorphic Green function @ﬁcg(n\a; g)

constructed in Part 2 to consider a derivative version of the relative trace formula obtained in Part 2. By
the integral 9P , (1, (n|a)), which regularizes

reg

d o
IP" () = / (h)n(det(h)) log | det (1) sdh = - / p(hyn(det(h))| det(h) [~ dh
ZyHp\H, S JZyHp\H, s=1/2

for cusp forms ¢ on PGL(2,A) and a fixed quadratic Hecke character 7, we obtain a derivative relative
trace formula (see Theorem 21.9). A spectral expansion and a geometric expansion of 0P /\(\ilﬁeg(lﬂa))
are given in §20 and §21, respectively. Some lemmas on the A-transform defined in Part 1 are prepared
in §22. In §23, we recall the relative trace formula explicated in Part 2. Then, the first formula (0.7) on
AL*(n; aq) is established for the special test functions o, determined by ideals a with S = S(a). The
average ADL” (n;ay) is investigated in §24. In computation in §24, all terms except for ADL* (n; aq)
in the spectral side are included in the error term with the aid of the asymptotic formula of AL*(n;ay)
given in §23. In §24, the second formula (0.8) in Theorem 0.9 is proved. Royer’s method in [37] is
generalized to our case in §25. The hyperbolic term Wy (I,n|a) and the unipotent term W1 (1, n|a) are
explicitly described in §26. In §27, Theorem 27.1 on a estimate O(A) of a sum over a Z-lattice A is
prepared. The estimate given there is used to control the hyperbolic term Jﬁyp(l ,n|a) and the derivative

one W _(I,n|a).

hyp
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1. PRELIMINARIES

We prepare notation, which is used from Part 1 to Part 3.
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1.1. We write N for the set of positive integers and put Ny = N U {0}. For sets A and B, the set
Map(A, B) denotes the set of mappings from A to B. For f,g € Map(A4,R>o) and a given data P, let
us denote by f(z) <p g(z),z € A an inequality f(x) < Cg(x) for all z € A with some constant C' > 0
depending on P. We write f(z) < g(z),z € A if both f(z) < g(z),z € A and g(z) < f(z),xz € A hold.
For a given condition P, §(P) € {0,1} is defined by §(P) = 1 (resp. 6(P) = 0) if P is true (resp. false).
For a set X and its subset A, the characteristic function of A is denoted by chy.

For any z € C* and « € C, we define log z and z* by the formula

log z = logr + 46, z% = exp(alog z)

with z = re (r > 0,0 € (—m,]). For a complex function f(z) in z € C and for o € R, the contour
integral f;:f: f(z)dz along the vertical line Re(z) = o is sometimes denoted by [, f(z)dz. If f is a
meromorphic function on a domain D C C, we denote by Res,—, f(z) and by CT,_, f(z) the residue and

the constant term of f(z) in the Laurent expansion at a € D, respectively. We set Tr(s) = 75/2T(s/2)
and I'c(s) = 2(27)~°T'(s).

1.2. Let F be a totally real algebraic number field with its degree dr and o its integer ring. Let A and
Agy, be the adele ring and the finite adele ring of F', respectively. The symbols ¥, and Xg, denote the
set of all infinite places and the set of all finite places of F', respectively. For a place v € ¥ p = Yo U Xgq,
let | - |, denote the normalized valuation of the completion F, of F at v. For each v € Xg,, let w,
be a uniformizer of F,. Then, p, = w,0, is a maximal ideal of the integer ring o, of F, and we have
|@olw = q; 1, where g, is the cardinality of the residue field o,/p,. For an ideal a of o, let S(a) denote
the set of all v € Xg, such that v divides a. For any k € N, we write Si(a) for the set of all v € S(a)
with ord,(a) = k, where ord,(a) is the order of a at v. Let N(a) denote the absolute norm of a.

Let G be the algebraic group GL(2) with unit element e = 15. For any F-algebraic subgroup M of G,
we set Mp = M(F), M, = M(F,) (for v € £p), My = M(A) and Ma, = M(Agy), respectively. The
diagonal maximal split torus of G is denoted by H. Then, the Borel subgroup B = HN of G consists
of all upper triangular matrices, where N is the subgroup of G consisting of all unipotent matrices. The
center of G is denoted by Z. We put K,, = GL(2,0,) for v € 3g, and

Ko(py) = {[*}] € Ky | c=0 (mod p})}

for any n € No. For an ideal a of o, we put Ko(a) = [[,c5, Ko(ao,), which is an open compact
subgroup of Kg, = Hvezﬁn K,. For each v € ¥, let K, be the image of O(2,R) by the isomorphism
GL(2,R) = G,,. Note that K9 is isomorphic to the rotation group SO(2,R). Set Ko, =[] K, and
K = K. Kg,.

For 6, r € R, set

VEY oo

__ [cos@ —sinb — [coshr sinhr
kg - [sinG cos 6 ] ’ ar = [sinhr Coshr]

They are elements of GL(2,R) and we have SO(2,R) = {kg|0 € R }.

1.3. Let Ag be the adele ring of Q and g = Hp ¥, the additive character of Q\Ag with archimedean
component o, (z) = exp(27ix) for x € R. Then, Yp = o trp)g = [[,ex, ¥F, is a non-trivial additive
character of F\A. Let D /g be the global different of F/Q and set d,, = ord, D/ for any v € Lg,. Put
Dr =N®r/q) = [l,esx,, q%. Then, D coincides with the absolute value of the discriminant of F/Q.
The completed Dedekind zeta function is denoted by Cr(s), i-e., (r(s) = [[,ex_ Tr(S) [Tyex,, (1—¢,°) 7"

For v € Xp, let dz, be the self-dual Haar measure of F, with respect to ¢¥p,. We set d*z, =
(1 — gy Y tday/|zy|y for v € By and d*z, = d* 2, /|2y|, for v € Lo, respectively. Then, d*z, is a
Haar measure of F) and the product measure d*z = [[, oy, d* 7, gives a Haar measure on A*. For
each v € X, we take a Haar measure dk, on K, such that total volume is one, and take a Haar measure
dg, on G, in the following way. Let dh, (resp. dn,) denotes the Haar measure on H, (resp. N,) induced
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via the isomorphism H, = F,* x F* (resp. N, = F,). Then, dg, = dh,dn,dk, gives a Haar measure on
G, via the Iwasawa decomposition g, = hynyk, € H,N,K,. We remark that the volume vol(K,,dg,)
equals qv_3d”/2 for any v € ¥g,. We denote the Haar measure [[, .y, dky of K by dk. We fix a Haar
measure dg on G by taking the product of Haar measures dg, on G, over all v € Y.

Let |- |a = [I,ex, | - [o be the idele norm of A* and set A' = {z € A* | |z|y = 1}. For y € Rso, y
denotes the idele such that the v-th component of y satisfies y = y'/F (resp. y, =1) for v € ¥ (resp.
v € Ygn). We take a Haar measure du on A which satisfies d*x = dud*y via z = uy € A* with u € A!
and y > 0. B

For v € ¥g, and a quasi-character y, of F pfj(X“
sum associated with y, by

G(xv) = / Xo(uzoy @0 ) (uy I 00 a4,
UX

v

) denotes the conductor of Xv- We define the Gauss

If , is unramified, G(x,) equals x, (w;d”)qv_d”/z. If , is ramified, then |G(x, )| equals gy S0 /2= d“/z(

q;1)~!. For any quasi-character y = Hvezp Xv of F*\A*, the conductor of x is denoted by f,. The
Gauss sum G(x) associated with x is defined by the product of G(x,) over all v € Xg,. We set x(a) =
[loes,. Yo (o (a)) for any ideal a of 0. For v € ¥, we denote the trivial character of F,* by 1,, and
the trivial character of A* by 1. Throughout this thesis, any quasi-character x of F*\A* is assumed to
satisfy x(y) =1 for all y € R-o. Such a quasi-character is a character. For any v € ¥ (resp. v € Xgy)
and any character y, of F., let b(x,) denote b, € R (resp. b, € [0,27(log g,) 1)) such that the restriction
of X, to R+ (resp. @w?) is of the form | -|¥». For any character x of F*\AX the analytic conductor q(x)

of x is defined to be
00 ={ I G+ bO)DING)-

1.4. Let n be a real valued character of F”*\A* with conductor §,. Such 7 is quadratic or trivial. For
any v € Yoo, there exists ¢, € {0,1} such that n,(z) = (z/|z|,)¢. We call ¢, the sign of n at v, and set
€(n) = > ex. € Let I(f,) be the group of fractional ideals relatively prime to f,. Then we define a

character 7 : I(f,) — {1} by setting 7(p, N 0) = 0y (w,) for any v € Xg, — S(f,). We define the adele

Fmo) gor v € Yfn, respectively. It determines the idele z

zy € A by z,, =0 for v e X and z,, , = Wy .
such that all its archimedean components are equal to one and the projection of z; to Agy, coincides with

that of .

1.5. Let ¢ be a smooth function on G,. The right translation of ¢ by g € G4 is denoted by R(g)e,
ie., [R(g)p](h) = ¢(hg). For any compactly supported smooth function f on the product [],.g G
for a finite subset S C X, the right translation of ¢ by f is defined by the convolution R(f)e(z) =
fl_I e 2 (zgs) f(gs) dgs for x € G with respect to the product measure dgs = ®,ec5dg,. The derived
actlon of the universal enveloping algebra of the complexified Lie algebra g, of G on smooth functions
on Gy is also denoted by R.

Let W and W be the element [ ! :l] of slo(C) and its complex conjugate, respectively. Let
denote the Casimir element of GL(2 R) defined by

Q= [0+ 2WW 4 2w = (03] +2[0 5] + 4w,

Then, Q corresponds to the differential operator (—2) x (—y®)(9°/9z* 4 9% /dy?) on the Poincaré upper
half plane. For any v € ¥, the elements of Lie(G,)c corresponding to Q, W and W are denoted by €2,
W, and W, respectively.
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1.6. Fix a relatively compact subset wp of B = {[24] | a, d € A', b € A} such that Bf = Bpwsg.

Let 6! = wp { [é t£)11| | t >0, t* > c}K with some ¢ > 0 be a Siegel domain such that G, = Z,Gr &'.

Define y : Gy — R+ by setting y ([g g] k:) = |a/d|a for any [8 2] € By and k € K.

1.7. In this subsection, we give a result on weighted equidistributions. The following assertion is needed
to prove non-vanishing results of L-values in Part 1, Part 2 and Part 3. It is a generalization of [39,
Proposition 1].

Proposition 1.1. Let X be a locally compact Hausdorff space and p a positive Radon measure on X.
Let {ux}aea be a directed sequence of positive Radon measures on X such that py converges weakly to p
on C.(X). Suppose that A is a p-measurable set of X satisfying

(1) Its boundary OA is p-null,

(2) There exists a compact subset K of X containing A such that its boundary 0K is p-null.

Then, we have
lim px(A) = p(A).
—

AEA

Proof. The restriction of py and p to K gives Radon measures py|x and p|x on K, respectively. By [3,
Chap. IV, §5, n°12, Proposition 22], it is sufficient to prove limy |k (K) = p|x (K) for any relatively
compact subset K of X such that 0K is p-null. The proof is given in the following way, which was
suggested by Tsuzuki.

Let K° and K be the interior and closure of K, respectively. By u(K) — u(K°) = u(K — K°) =
u(0K) = 0, we have u(K°) = u(K) = u(K). Let € > 0 be a positive number. By inner regularity of u
(and Urysohn’s lemma), there exists fe € C.(X) such that 0 < fo < chgo and p(K°) —€/2 < u(fe). In a
similar way, by outer regularity of u, there exists g. € C.(X) such that chgz < g and u(ge) < u(K)+¢€/2.

For ¢, fe and g., there exists A € A such that we have |px(fe) —p(fe)] < €/2 and |px(ge) — p(ge)| < €/2

for any A > A.. Then, we obtain
1K) = p(K°) < p(fe) +€/2 < pa(fe) + € < pa(K) +e

and

pa(K) < pa(ge) < pulge) +€/2 < p(K) + e = p(K) + ¢
for any A > A.. This completes the proof. O
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Part 1. Relative trace formulas for even Hilbert Maass forms
2. ESTIMATES OF NUMBER OF CHARACTERS

Before introducing a relative trace formula, we prepare Lemma 2.1, which is used to estimate a con-
tinuous spectrum of the relative trace formula in Lemma 10.3.

Let n be an ideal of 0. For an ideal ¢ of 0, let Z¢(c) be the set of all characters x of F*\A* such that
fx = ¢ and x,(—1) = 1 for all v € Y. We write Z(n) for (Je), Zo(c). Let Uj be the set of all totally
positive units of o and set

log Uy = {(log uy)ves.. | (wo)ves., € U;}
Then, log U is a lattice of Z-rank dp —1in V, where V = {(2y)vex., € R* | 3 o5, = 0}. Set
Lo ={(b)ves. €V | D buly € Z for all (Iy)vex., € logUjt}.
VEY oo

Then, Lo is also a Z-lattice in V. Let x be a character of F*\A*. Since x(y) = 1 for any y € R.o,
we have > s b(xy) = 0. Thus, if we denote by b(x) the element (b(xy))ves,, of R? | then b(x) € Lo
holds. Therefore the mapping x — b(x) is a surjection from Z(n) onto Ly and the kernel Ejq(n) of this

mapping is a finite abelian group.

Lemma 2.1. Let X(n) be the order of Exer(n). Then, for any € > 0, the estimate
X (n) < N(n)/2+e

holds with the implied constant independent of n.

Proof. For any ideal a of 0, we set [r(a) = [[,cx R X[],cx, (1+a0,). Then, the ray class group Cr(a)
modulo a is defined by Cr(a) = F*\F*Ip(a). For any fixed ¢ satisfying ¢?|n, the group Zo(c) N Eker(n)
is equal to the set of all characters of F*\A* of finite order contained in E¢(c). Hence

#(Z0(¢) N Zxer(n)) < #(F\A /I (c)) = hp#(Cr(0)/Cr(c)) < hrN(e) < hpN(n)'/?

holds, where hp is the class number of F. Noting } ., 1 < N(n)¢ for any € > 0, we obtain the
assertion. O

3. REGULARIZED PERIODS OF AUTOMORPHIC FORMS

In this section, we recall explicit formulas in [41] of the regularized periods of automorphic forms on
Gy.

3.1. Zeta integrals of cusp forms. Let m be a K..-spherical irreducible cuspidal automorphic repre-
sentation of G with trivial central character, where the representation space V; is realized in L?(Z,Gr\Ga).
For any quasi-character 1 of F*\A* and ¢ € V., we define the global zeta integral by

Zene)= [ ek e sec
FX\AX

The defining integral converges absolutely for any s € C, and hence Z(s,7, ¢) is an entire function in s.
We fix a family {7, }yex, consisting of irreducible admissible representations such that 7 = @), 5, To-
The conductor of 7 is denoted by f., which is the ideal of o defined by fr0, = pf,(ﬂv) for all v € Xgy,
where pi(w“) is the conductor of 7,. Let n be an ideal of o which is divided by f,.
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Let n be the maximal non-negative integer m such that Sy, (nf;') # 0. For p = (pr)i1<k<n € A%(n) =
15—, Map (Sk (nf-1),{0,..., k:}), let ¢ , denote the cusp form in V;{‘”Ko(n) corresponding to

® ¢0,v 2y ® ® ¢pk (v),v 0 ® ¢0,v

v€0o k=1veSy(nfzt) vESfn—S(nfr t)
by the isomorphism V, & ®vezp Vr,. Here, V. denotes the Whittaker model of m, with respect to
YF,, ¢op is the spherical vector in V; given in [41, §1.4] for v € 3, and the function ¢, is the
Ko (no,)-invariant vector constructed in [41, §2 and §3] for v € Xg,. Then, the finite set {¢x p},cn0(n) 18
an orthogonal basis of Vi-=¥("  Here V, ¢ L2(Z,Gr\Gy) is equipped with the L2-inner product (cf.
[41, Proposition 17]).
We consider a character n of F*\A* satisfying

=1,
(31) VE Yoo = Ny = 1.,

fn is relatively prime to n and 7j(n) = 1.

VKOOKU(n)

For such a character n and ¢ € , we define the modified global zeta integral by

Z*(S777a90) :77(56;;)2 (Svnaﬂ([(l)zln])QO)? seC.
Here x,, (resp. x) is the adele (resp. idele) determined by 7 (see §1.4).
3.2. Regularized periods of cusp forms. We recall a definition of regularized periods of automorphic

forms on G, defined in [47, §7]. Let B be the space of all holomorphic even functions 8 on C satisfying
that there exist A > 0 and B € R such that

|60 +it)| < e~ Alt+BY 5 ¢ [a,b],t € R

holds for any interval [a,b] C R. We note that B as above is a proper subspace of B defined in [47, §6.1].
The growth condition of 3 is essentially used in Part 2.
For § € B and A € C, we define a function 8y on Ry by

5 1 (2)
t)=— t*d —Re(A
BA( ) o L. 2+ A 2, (0> e( ))’
where L, is as in the notation. The estimate |Gy (t)| < inf{t”, t= RN} > 0 is given in [47, Lemma
7.1].
For 8 € B, A € C, a character n of F*\A* satisfying (3.1) and a function ¢ : ZyGr\Ga — C, we
consider

Pi\(p) = /FX\AX {Ba(tla) + Ba(tls e (1691 [g 7 ]) mltay)dt.

Now we assume that for any 8 € B, there exists a constant C' € R such that the integral ng 1 (¢) converges
if Re(\) > C and the function {z € C | Re(z) > C} > XA = PJ,(¢p) is continued meromorphically
to a neighborhood of A = 0. Then a constant P/, (p) is called the regularized (H,n)-period of ¢ if

reg

CTa=0Pj \(¢) = Pl,(¢)B(0) for all 3 € B. Then the following was proved in [41].

reg

Proposition 3.1. [41, Main Theorem A] For any p = (pi)i<k<n € A2(n) and n satisfying (3.1), the
period Pll,(¢x,) can be defined and we have

Pr?sg(‘PTr,p) = Z*(1/27777(P7r7p) = Q(n){H H sz(v)w(??m1)}L(1/2,7T®77),

kE=1yeSy (nfrt)

where the constants QZ:(U) (v, 1) are given as follows:
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o Ifc(my) =0 and (o, oy t) is the Satake parameter of m,, then

1 (k=0),
ay + oyt
Tv = nv(wv) - _ (k = 1),
ko (10, 1) AP
a5 (@) 2 (s nu(we) — V(g qs *nu(we) = 1) (k> 2).
1/2

o If ¢(my) = 1, then m, is isomorphic to a special representation o(xo| - [v'", Xol * |;1/2) for some

unramified character x, of F) and
1 (
m)v (nm 1) = _ _ _
¥ m(wv)k 1(”1}(“@) — 4y 1Xv(wv) 1) (
o Ifc(my) =2, then Qk v (N, 1) = nv(wv)k for any k € Ny.

3.3. Preliminaries for regularized periods of Eisenstein series. We fix a character y = HvezF X

of F*\A*. For v € C, we denote by I(x]- V/ ) the space of all smooth C-valued right K-finite functions
f on G with the Bj-equivariance

F([28]9) = x(a/d)a/d) ™" f(g)

for all [¢5] € By and g € Gy. If v € iR, then the space I(x]| - |X ) is unitarizable and a Ga-invariant
hermitian inner product is given by

ESRES
VAl
AR

(filfa) = /K £ () Fa(R)dk

for any fi, f2 € I(x|- V/Q).
For v € C and f) € I(x] - ”/2) the family {f*)}, ¢ is called a flat section if the restriction of f*)
to K is independent of v € C. We define the Eisenstein series for f*) € I(x| - |g/2) by

E(f g = > "9, ge€Ga
yeBrp\Gr
The defining series converges absolutely if Re(v) > 1. If {f")},cc is a flat section, then E(f*), g) is
continued meromorphically to C as a function in v. We remark that the function E(f*), g) is holomorphic
on iR. On the half plane Re(v) > 0, E(f*), g) is holomorphic except for v = 1, and v = 1 is a pole of
E(f®),g) if and only if x? = 1.
Let n be an ideal of 0. Throughout §3, we assume that a character y of F*\A* is contained in Z(n).

3.4. Zeta integrals of Eisenstein series. We consider Eisenstein series for f € I(x| - |X/2))K°°K0(“).
Let n be the maximal non-negative integer m such that Sm(nfgz) # (. For each v € X, the space

I(x| - |Z/2) is defined in the same way as the global case. Set

n

Ay(n) = [T Map(Si(nfy®). {0, k}).

k=1
For p = (pr)1<k<n € Ay(n), let ffcy,z denote the vector in I(x] - |X/2) corresponding to
“) o &
Qi e® & flw® &

CISPMS k=1 ye8, (nfx?) VESfin—S(nfy?)
17



by the isomorphism I(X\ V/Q) 2 Quex, Lol - 5/2), where f(y)] is the spherical vector in I(x,] - Z/Q)

normalized so that f07X17 (13) equals one for v € ¥, and fkl)')zv is the Ky (no,)-invariant vector constructed

in [41, §7 and §8] for v € Xgn. Then, for any p = (pr)i<k<n € Ay(n), the family {ffgg}uec is a flat
|4/ YKo Ko(w)

section. Moreover, if v € (R, the finite set { f;iu,z} peA, (n) is an orthonormal basis of I(x
(cf. [41, Proposition 33]).
Let p € Ay (n) and set E,, ,(v,g) = E(fi_yp, g). The constant term of E(f( 5,9) is defined by
E;,p(V79) = Ey, W [51]lg) dz.
F\A

For k € {1,...,n}, the sets Ur(p), Ri(p) and Ry(p) are defined as follows:

Ur(p) = |J pm' (k) = S(5y), = | o' (B) N S(Fy),

Ro(p) = < U et 0)n S(fx)> UGS G) = S(ig?).

Furthermore, for any k € Ny, set

Si(p) =
Ho) {Uk(P) URk(p)  (k=1),
R(p) = Ui—y Ri(p) and S(p) = Uj_, Sk(p). Then, by [41, Proposition 34] we have
o 1% L(l/? X2) -V
ES (v, g) = f( )( )+ UzAxm@)Wfffl?p(g)’
where
dy /2 —ki/ (1 -V X;27wFu>€(1 + V/27Xvava) L(l + V7X’L2]) }
AXP H H { 6(1_1//2’)(171’va) L(l_anEQ) .

k=0veSk(p)

We fix a character n of F*\A* satisfying (3.1). 3.1. For any v € g, — S(f,) and k& € Ny, let
QY (1, X) be the polynomial defined in [41, §9] as follows:

k,x
e For v € Zg, — S(fy), set
Qk; X v (771;7 )
1 (k=0),
—v/2 1 v/2
Xo(@o)qv "~ 4 Xo(@o) " go
— (@)X — EYERYE (k=1),

qglnv(wv)k72Xk72
< (xXo(@)a8 ™10 (@) X = 1) (xo(@0) 1a8 T Pnp(wn) X 1) (k> 2).

e For v € S(fy), set
Ql(@l/i,, (10, X) = nv(wv)ka~

Then, we have the following.
18



Proposition 3.2. [41, Proposition 35] We set E% ,(v,g) = Ey ,(v,9) — ES ,(v.g). Then EEW(V, —) s
left Bp-invariant and we have

L(s +v/2,xn)L(s — v/2, x"'n)

Z*(s,n, B, (v,—)) =G(n) D" *N(},) />~ B1 (s,v)

L(1+v,x?) ’
where
s 1/2 s
By ,(s,v) / H [T @ 0 d* )L +v,x3)
k=0veSk(p)
1/2
—u/2 g +1 —kv/2
x I a+q? H 11 (qv_1> q,
veU1 (p) k=2veUg(p

H H qd v/2— k:u/2 )1/29(X1)) H XU(wU)dU

k=0 ve R (p) vEXsin—R(p)

3.5. Regularized periods of Eisenstein series. For any characters x; and xo of F*\A*, we put
Oyix: = 6(x1 = x2). The regularized period P[,(E, ,(v,—)) was computed as follows in [41].

reg

Proposition 3.3. [41, Main Theorem B] Assume v € iR. Then the integral Py ,(Ey,,(v,—)) converges

absolutely for any (8,\) € B x C such that Re(\) > 1. Moreover PiL,(Ey ,(v,—)) can be defined, and we

have

L((1 +v)/2, xn) L((1 = v)/2,x" ")
L(1+4v,x?)

We define two functions e, , —1 and e, ,0 on Gy by the Laurent expansion

Pl (Exp(vr,=)) =G D" *N(5,) /27 B ,(1/2,v)

ey.0,-1(9)

Eyp(v,9) = ,—1 " exp0(9) +O(w—1), (v—1).

We explain the regularized periods of ¢, , 1 and that of ey ,0. Set Rp = Ress—1 (r(s) = vol(F*\A).

Proposition 3.4. [41, Lemma 38 and Theorem 39] We have

p=12p
ex.p,—1(9) =0 (X2 =L =0,50p) = @) 2177(2)17

for any g € Gu. Moreover, for A € C such that Re(\) > 0, we have

x(det g)

2D*R2, B(0)

Pg,,\(ex,p,—l) =d(x=mn.fx =0,5(p) =0) QFFi@)T
and Ply(ey,p,—1) = 0.
For any character £ of F*\A*, we define R(£), Cy(£) and C1(£) by the Laurent expansion
R
15, 6) = T 4 e + s~ 1) + 05~ 1), (5 1),

We note R(£) = d¢.1Rp for any character £ of F*\A*.

Proposition 3.5. [41, Theorem 40 and Corollary 41] Let  be a character of F*\A* satisfying (3.1).
The integral Pj \(ey,p0) converges absolutely for any (8,\) € B x C such that Re(\) > 1. There exists
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an entire function f(X) on C such that
1 1
Plaeend) = Senef@B2) {127 + 157 1 80)

A1 A+l
~1/2 (1) ,
+25x,nRFDF""’(12){RF < gi% Ay (1) + A;,p(1)> + Co(l)Axm(l)}ﬂ()\O)

Cr(2) ] )
100 = D7 s o - Bt 4 Pl )

G(m Dy an vy p2 BO) L A , B(0)
_CF(ZF)JXJ]{ - (BXW) (O)RFT + BX7P(O)RF)\2},

where ngp(z) = e(—z,x " 'n)B} (=2 +1/2,1). Moreover we have

D—1/2N —-1/2 1 B
CTs-0Pf (e o) = SO S Do LB OURES0) + al 0)50) .

where

a’l (0) = 1

7, 25%,,(1%;,,))”(0)1%% — 26, B ,(0)RpC1(1) + BY ,(0)Co(xn)*.

3.6. An orthonormal basis of V:{O"Ko(u). Let 7 be a cuspidal automorphic representation of G such

that 7 € Teys(n). We put

P(mKom) = Y Z°(1/2.1,9)2°(1/2,n,9),

peB(m;m)
where B(m;n) is an orthonormal basis of VKo 1) this subsection, we examine P(m; Ko(n)). Set
OBV = ., where p, is a unique element of A2 (f,).

Lemma 3.6. The value P"(7; Ko(n)) is independent of the choice of B(m;n) and we have

L(1/2,7)L(1/2, 7 ®@n)
|lomew|[2

P"(m; Ko(n)) = Dy *G(n)wi ()

Here wy () is an explicit non-negative constant defined as

w;’(ﬂ-) = H H 7“(7%771;, k) = H r(ﬂ-vanvaordv(nfgl))

k=1yes,(nfz 1) veS(nfrt)

where 1(my, Ny, k) s defined as follows:

k+1 w(y) = 1),
o Ifc(my) =2, then r(my, ny, k) = _t . (@) = 1)
2 (1 + (_1) ) (nv(wv) = _1)'
o If c(my) = 1, then m, is isomorphic to o(xu| - |11/2, Xol - |;1/2) for some unramified character x,
of F). Then
1- Xo Wy q;1
1+(—)71k (nv(wv)zl),

1+ v w’U v
(0,0, K) = xolem)a

2711+ (-1)%) (no(wy) = =1).
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o Ifc(my) =0 and (o, oy t) is the Satake parameter of m,, then

2 1-Q(my) gu+1, o) =
[T Q0m) T Qg1 D (@) =1,

7 (T, Mo, k) =
qv + 11+ (_1)k
qv — 1 2
where Q(my) = (o + 3@/ +a0*) 7.
Moreover, G(n) P (m; Ko(n)) is non-negative.

(o (@) = —1),

Proof. The first assertion is obvious. Thus we may take {||¢x, ||~ @x.p}pero () as B(m;n). By virtue of
Proposition 3.1, we have

P'(mKo(n) = )

pPEAS (1)
_ - Q). (Lo D@7 o (10, 1) | G(1)G(m)L(1/2,m)L(1/2,7 @ )
=2 I 11 ){ 7r, (01 (v), 1 (v) Bk

1 * *
T3 27 (1/2,1,0)Z7(1/2,n,¢)
|0l

pEAS (n) k=1 45y (nfr?!

Then, we obtain the second assertion by setting

" Q7 0 (Lo DQTY (00, 1)
wi(n) = Z H H { (v) (@), }

PGAQ‘.(H) k=1 ’UESk(nf;l) TTrv (pk(v)?pk(v))

Here 7y, (4,7) = ||¢jo||? for j € N, and || - ||, is the norm on V;, defined by the G,-invariant inner
product normalized so that ||@g.||l, = 1. We remark that an explicit formula of 7, (j,j) was given in
[41, Corollaries 12, 16 and Lemma 3] (see (20.6)). By definition and a direct computation, we have

aw=11{ I rof-11 1I S

o )y 0y BT D VESK () E=Luesy(nfy ) =0

and Zfzo Tv,j = 7“(7Tv777v7 k‘), where Tv,j = Q;f;(]—va 1)@;{2("7117 1)7—7ru (jaj)_l-
Then, one can check wy(7) € Rxq easily by noting |Q(m,)] < 1 when ¢(m,) = 0. The estimate
L(1/2,7)L(1/2,7 ®n) = 0 by [10] gives G(n) " P (r; Ko(n)) > 0. O

Since n? = 1, we have 7j(n) = +1. We consider only the case of 7j(n) = 1 because of the following
reason.

Lemma 3.7. Let w be a K, -spherical irreducible cuspidal automorphic representation of Gy with trivial
central character. Let n be a character of F*\A* such that n* = 1 and §, is relatively prime to §.
Suppose that n,(—1) =1 for allv € . Then, L(1/2,7)L(1/2, 7 @ n) = 0 unless 7(fr) = 1.

Proof. By the argument in the proof of [47, Lemma 2.3], it is enough to show €(1/2, m,, ¥, )e(1/2, 7, @

NosVE,) = My (@™ for any v € Uksa Sk(fr). Tt follows immediately from fundamental properties of
e-factors (cf. [38, 1.1]). We note that 7, is unramified if v € S(f.). O

3.7. Adjoint L-functions. Let 7 be a cuspidal automorphic representation of G contained in Icus(n).
To examine an explicit description of ||¢5%||? in terms of the adjoint L-function of 7, we compute the

Rankin-Selberg convolution of ¢2°" and the K-spherical Eisenstein series

Bip(m9)= >, y(9)¥™7?  geGa, Re(v) > 1,
’YGBF\GF
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where py denotes a unique element of Aq(0). For any v € ¥, Z,(s) denotes the local Rankin-Selberg
integral

[ 0 190 G TG TRt o
K, JES

Lemma 3.8. Set S; = {v € Zgy | ord,(f=) = 2}. We have

/ P ()P (g) B po (25 — 1, 9)dg
ZyGr\Ga

‘ dy(3/2—5)
=[Kan : Ko(F)] " 'N(x)* D */*Cr(28) 7 (s) L(s, m Ad) [ &
vES,

for Re(s) > 1. Moreover, we have ||@2V||? = 2N (f)[Kan : Ko(f+)] " L5 (1,7, Ad).
Proof. If v € ¥ — Sy, then Z,(s) is computed in [47, Lemma 2.14]. Hence, it suffices to examine Z,(s)
when v € Sy. By [Ky : Ko(pi™)] = ¢5™ (1 4 ¢;'1), we obtain the first assertion.

We note Z,(1) = qv_d”/2 for v € S;. Then we obtain the second assertion by taking the residue at
s =1 since Res,—1 F1,,,(5,9) = D;l/zRFCF@)_l holds by Proposition 3.4. O

qs(m)(lfs)zv(s) 1+ qv—l
L(s,my, Ad) 14+4¢,°

4. GREEN’S FUNCTIONS ON GL(2,R)

In this section, we review the definition of Green functions on GL(2,R), which was introduced in [47,
§4]. For s,z € C such that Re(s) > 2|Re(z)], set
(41) ¥ (s9)

-1 T((s+224+1)/4)T((s —2z+1)/4)

:‘ detg|(s+1)/2 (a2 + b2)—(s—22+1)/4(02 + d2)—(s+2z+1)/4

8/ I'(s/24+1)
s+2z2+1 5s—22+1 s . (det g)?
X2F1< /R S P s

for any g = [ 4] € GL(2,R). We call this the Green function on GL(2,R).

Lemma 4.1. [47, §4] Set T = {['} 2] | t1, t € RX}.

(1) For any [ tg] €T and k € O(2,R), we have
VE(5 [ 1 )gk) = /¥ (s19), g € GL(2,R).
(2) For any a, = [Sohr sinhr ] yith r € R, we have

—1 T((s+ 22 + 1)/4)T((s — 2z + 1)/4)

\I](Z) sap) = h2 7(84’»1)/2
(s;ar) W T(s/2+ 1) (cosh 2r)
s+2z24+1 s—2z2+1 s 1
F =+ —).
X2 1( 4 ’ 4 ’2+ ’cosh22r)

(3) The function W(%)(s) is smooth on GL(2,R) —T O(2,R) and a Casimir eigenfunction with eigen-
value (s> —1)/2, i.e.,

ROV (s)](a,) = =

&) (s;a,), reR—{0}
(4) We have

d d
im — 0@ (s:0.)— lim —U® (s:a.) =
rhIEO dr\I' (s;ar) Thr£10 dr\I/ (s;ar) = 1.

In particular, U3 (s) is continuous on GL(2,R) but not smooth on T O(2,R).
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Remark 4.2. Tsuzuki considered the differential equation in (3) under the conditions (1) and (4). He
solved it and gave an explicit formula (2), which suffices to obtain Lemma 4.1 by using the decomposition
GL(2,R) =T{a, | r € R}SO(2,R) and the equivariance (1).

Proposition 4.3. [47, §4] Assume that s € C and z € C satisfy Re(s) > [2Re(z)|+1. Let f : GL(2,R) —
C be a smooth function such that f ([tol t02] gk) = |t1/ta];7f(g) for all [tol t02] eT, ke O2R) and
g € GL(2,R). Suppose

2

m=0

m

;;ﬁf(ar) < (cosh 2r) Re®) e R,

Then the equality

U (s, g)[R(Q— (5> — 1)/2) f](g9)dg = f(12)
T\GL(2,R)

holds with the integral being convergent absolutely.

5. GREEN’S FUNCTIONS ON GL(2) OVER NON-ARCHIMEDEAN LOCAL FIELDS

This section is a review of results in [47, §5]. We fix a place v € Xg,. For z € C, there exists a unique
function ‘béi); : G, — C such that

(5.1) ([ A1 1851k = [/t 6@ € 0,), [ 2] € Hy [§3] € Ny, k €K,
Given z € C and s € C/4ri(log q,)~Z, we consider the following inhomogeneous equation
(5.2) R (Tu (g2 g g(149)/2) 1KU) U ‘1’873
where U : G, — C satisfies the (H,, K,)-equivariance
(5.3) ([ 0)gk) = [/l W), [§ 0] €HykeK,.
Here T, and 1k, are elements of the spherical Hecke algebra H(G,, K, ) defined by
1 1
T,=—————ch chk,.

v . b 1 YT TRy
vol(Ky;dg) Ko T Ko 7 Vol(K,; dg)
The function T, is called the v-th Hecke operator.

Lemma 5.1. [47, Lemma 5.2] Suppose Re(s) > |2Re(z) — 1|. Then, there exists a unique bounded
(2)

function Uy (s;—) : Gy — C satisfying (5.2) and (5.3), whose values on N, are given by
(5.4)
U (55 [§9]) = =, V21— g 0TI TN L - g CTPEU) T hsup(1, [a],) T TR e B

Proof. We note the decomposition G, = [, Honpm K, with n,,, = [(1) w{m } . Hence, the condition (5.3)

implies that a function ¥ satisfying (5.2) and (5.3) is determined by all values a(m) = ¥(n,,), m > 0.
By (5.2), we have a relation on a(m — 1), a(m) and a(m + 1). By solving the recurrence equation and
noting the boundedness of {a(m)}m>0, we determine {a(m)}.,,>0 uniquely. We can refer to [47, Lemmas
5.1 and 5.2] for details. O

The following lemma is used in the proof of Propositions 6.1 and 12.2.

Lemma 5.2. [47, Lemma 54| Let f : G, — C be a smooth function such that f([% tOJgk) =
[t1/ta], % f(g) for any t1,ta € F and for any k € K,. Then, the equality

(5.5) /H o W (s55.9) [R(Ty — (¢824 4f'=9/%) 1k, ) f1(9) dg = vol(H,\H,K,) f(12)

holds as long as the integral on the left-hand side converges absolutely.
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6. EVEN NON-HOLOMORPHIC ADELIC GREEN FUNCTIONS

We define the adelic Green function on G, associated with an arbitrary ideal n of o. This was
introduced in [47] in the case where n is square-free.

Assume that s € C and z € C satisfy Re(s) > 2| Re(z)|. For each v € X, we denote by \111()2)(37 —) the
Green function on G, = GL(2,R) defined in §4. For each v € S(n), we set

O ([ L1 1541k) = |t /t2]26(x € 0,)d(k € Ko(no,))
for any ty,ts € ), x € F, and k € K,, and put <I>((f1)} = <I>5127)J for v € Xg, — S(n).

Fix a finite subset S of Y such that X, C S and set S, = S N Xgn. Set Xg = Hvezw C x
[Toes,, (C/4mi(log q,)~'Z) and q(s) = inf,cs(Re(s,) + 1)/4 for any s € Xg. For any s € Xg and z € C

such that g(s) > | Re(z)| + 1, the adelic Green function is defined by
\I’(z n|s 9) H \Il(z (505 Gv) H \I’(z (505 Gv) H (I’nz: H (I’E)fq);(gv)
VEX o VE Stin veS(n) v%SUS’(n)

for any g = (gy)ves, € Ga. Note that the function ¥(*)(n|s) on Gy is right K. Ko(n)-invariant and
continuous on G. Moreover, we have W) (n|s; [ 2 ] g) = [t1/t2]3 %) (n]s; g) for all [} )] € Hy and
g € Ga.

To state a main property of adelic Green functions, we consider the integral

o) (g) = / (hg) . (h)dh
ZyHp\Hp

for any ¢ € C°(ZyGFp\Gp), where x, : Hp\Hy — C* is the quasi-character defined by

x=([ % tg]) It1/t2l%

for any t;,ty € AX. The integral ¢7(*)(g) converges absolutely and ¢+(*)(hg) = x.(h) '™ (*)(g) holds
for any h € Hy (cf. [47, §6.2]).

Let 3(go0) be the center of the universal enveloping algebra of the complexification of g.. For s € Xg,
the element Qg(s) of the algebra 3(goc) ® {®), g, H(Gv, Ky)} is defined as

Qs(s) = ® ( ) 552—1> ® (Tv—(qf,l_s“)/Q+q7gl+s“)/2)11<v)-

VEX o VE Stin

The following proposition is proved in the same way as [47, Lemma 6.3].
Proposition 6.1. Suppose q(s) > 2| Re(2)|+1. Then, for any ¢ € C°(ZyGp\Gy)K=¥Ko™ the function
g+ ) (n]s; 9)™3)(g) is integrable on Hy\Gx and we have

/H o, YOl LR g = vol i\ HinKo(m)" (1),

7. SPECTRAL EXPANSIONS OF RENORMALIZED GREEN FUNCTIONS

The set X5 = [[,ex Cx [l es,, (C/4mi(log q,) ' Z) is considered as a complex manifold with respect
to a usual complex structure. Let Ag be the space of holomorphic functions a(s) on Xg such that for
any v € S and 8’ € Xg_¢,}, the function s, — a(s', s,) is contained in B.

For ¢ € R we put Lg(c) = {s € X5 | Re(s) = ¢}. A multidimensional contour integral of a
holomorphic function f(s) on Xg along Lg(c) is defined inductively as

/ILS(C) f(s)dus(s) = /Lv(cv) {/ILSM(c') F(s', 80)dps—(vy (s )} dpi(sy)
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for ¢ = (c/, ¢,) € R®, where
sds (veEXw),

duy(s) =< 1

o 5 (10g.)(gy' ™2 — ! =)ds (v € Tpn)

and L(c,) stands for ¢, + iR and ¢, + C/4mi(log g,) ~'Z for v € ¥, and v € Lg,, respectively. Then, for
c € R® and z € C such that g(c) > | Re(z)| + 1, the integral

#S
Wl = (55) [ RACCrACTEe

2,
is absolutely convergent and is independent of the choice of ¢, and the function z +— (=) (n]a; g) is entire.
Furthermore, for g € B, A € C and g € Gy, we consider the integral
1 (2)

Vg a(nfasg) = —

omi ), z+A{‘i’(z)(n\a;9)+‘i’(_z)(n|a;9)}d2’

for o € R such that —inf(g(s) —1,Re()\)) < o < ¢(s) —1. The integral of the right-hand side is absolutely
convergent and is independent of the choice of 0. Moreover, for a € Ag, € B and A € C with Re(A) > 0,
the Poincaré series of ¥ \(n|a; g) is defined to be

Tya(nfasg)= Y Tga(nla;g)
’YGHF\GF

for g € Gp. In the same way as [47, Proposition 9.1], we obtain

(1) The series ¥4 (n|; g) is absolutely convergent locally uniformly in {Re(\) > 0} x G. Moreover,
the function A — W4 x(nla;g) on Re(A) > 0 is holomorphic and the function g — ¥4 5 (n|e; g)
on G, is continuous, left Gp-invariant and right K., Ko(n)-invariant.

(2) For Re(\) > 0, we have W 5(n|a) € L"™(Z4Gr\Gy) for any m > 0 such that m(1 — Re(\)) < 1.

Let us compute the spectral expansion of li’g’ a(n|a) explicitly. Recall spectral parameters at S of
automorphic forms (cf. [47, 9.1.3]). For a given automorphic form ¢ on Gy, if there exists v, g =
(Vy,0)ves € Xg such that

and
R(T,)p = (g} ¥e)/2 4 ¢ Tve)/2)g
hold for all v € ¥ and all v € Sgy, respectively, then we call v, s the spectral parameter at S of ¢. Set
C(n, S) = (—1)#5vol(Hgn\ HanKo(n)) = (~1)#*5 DKy : Ko(n)] .
By using Proposition 6.1 and the argument similar to [47, Lemma 9.4], we have the following.

Lemma 7.1. Assume Re(\) > 1. Then, for any automorphic form ¢ on G with spectral parameter
Ve s, we have

(W a(nla)|p)r2 = C(n, S)a(ve,s)PiA(P),
where (:|-)12 is the L?-inner product on L*(ZyGr\Gy).
For any character x of F*\A* and o € Ag, we define the function &, on C by
ay (V) = a((v + 2ib(xv))ves)

and write &(v) for a1 (v).
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Koo Ko(n)

Fix an orthonormal basis Beus(n) of Zweﬂcus(n) Va and let Byes(n) be the orthonormal system

consisting of all functions ¢, = vol(ZyGr\Ga)~ 1/2 v o det on G4 for any x € Zo(0) such that x? = 1.

We write A(n) for Aj(n). Lemma 7.1 and the same method as [47, Lemma 9.6] give the following,.

Lemma 7.2. Assume Re(\) > 1. Then we have the expression

B (0l g) ZC(mS){ Yo aves)Pia@el9) + Y alves)PiA®)el9)

PEBcus (n) PEBres(n)

+ Z Z / PﬁA (V:))Ex,p(’/ag)dl/}-

X€EE(n) pEAX(n)

The series and integrals in the right-hand side converge absolutely and locally uniformly on ZyGp\Ga.

Lemma 7.3. For any g € Gy, the function A — lilg)\(n|a; g) onRe(A) > 1 is continued to a meromorphic
function on Re(A) > —1/2.

Proof. Let Weus(A) = Peus(A, @, 9)y Pros(A) = Ures (A, @, g) and Py (A) = Ui (A, @, g) be the cuspidal part,
residual part and Eisenstein part divided by C(n,S) in the spectral expansion of lil@ a(n|as g) given in
Lemma 7.2, respectively.

First we examine W,qs(A). For Re(\) > 0, by applying Proposition 3.4, the function W,es(\) is written
as

R 0
B =l PR =280 e O
X€Eo(0),x2=1
and has a meromorphic continuation to C. From this, CT\—qW,es(A) = 0 holds.
Next we examine Weus(A). By the same computation as in the proof of [47, Lemma 9.8], the series
Ueus(A) converges absolutely and the estimate

Weus(\, a, 9)| < ylg)™, g€
holds. Moreover, W .s(A) is analytically continued to an entire function and we have
CT)\:()\Ilcus()\) = Z a(l/tp S)Preg(@)so(g)'
QOGBCUS(n)

Therefore, it is enough to examine Wci(A). Assume Re(A) > 1 and v € iR. By the proof of [41
Theorem 37], the integral Pj\lﬁ (Ey-1,,(—v,—)) can be expressed as

PLy(Byr p(—v, ) =Py (1A, —v) + DA 0 (— )LL(i)) P (1,\,v)
+ Q;—l’p(17 )\7 _V) + Q;—ltp(]-’ )‘7 _V)7
where
(k) Bl(Fv—1)/2) | B((r+1)/2)
Peer(n, A 2v) = fra, (12)0n i {/\ VIS 7 S Ny 1)/2}
and

B(2) dz.

A+ 2z

1
+ _ * b
Q. mh ) =5 | 2120 B (0,)

We remark E, ,(v,—) = E\-1 ,(—v,—). Furthermore, by the residue theorem, we have

P)%,ﬁ(Ex—Hp(_V» _))

=P —1(1,)\, —V) + D;l/QAX—l ( V)

X

Cr(=v) 0 .
iy A+ @, ()
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Bllv+1)/2)
A (v+1)/2

Bllv=1)/2)
Nt (1)) =0 1)/2}f 1 ,(=2 =),

B { Bl(=v+1)/2)
A (—v+1)/2

L Bl=v=1)/2)
A (—v—1)/2

Res,—(—y41)/2 + Res,—(v+1)/2

Resz:(—u—l)/Q =+

where we put
_ % b
Fpzv) =27 (2 +1/2,0, E5 (v, —))
and

pnd0) = 5z [ AR + 1 (-2

for Re(A) > —o. Thus we express U ()\) as the sum of the following four terms:

(1) (4 1 1
o 2 A7 [ a0s - 02 oo ey e o

dz

T eAn)
M0 S (D=1 ) SEE) s
p;{n)f ) [ a)D A () SH D ((w + 1)/

! 1
X{/\ (V+1)/2+ + (v +1)/2}E10(V79)d%

Z Z /ax LA —v)E, ,(v,g)dv,

xe (n) pEAL(

R v+1)/2)
Z AZ( , 8 = / {)\Jr v+ 1//2 Res.—(41)/2
B(( v+1)/2) o Bllv-1)/2) _
T ot 12 NS T T g e
B((—v - 1)/2) ) ]
T = 1y)2 RS-/ }{fx—apw —)}ay (V) Ex,p (v, g)dv.

By the functional equation

D' Ay (—v) C%‘”Z) E1,(v,9) = Exp(~v.9)

of the Eisenstein series, the following equalities hold:

Do) = > 0 [ a7 1) S )+ 12

pEA(n
1

1
x{ — )/2+)\+(u+1)/2}dy
v 1 1
Z fl)lz/ )Elp( )/8((_”+1)/2){>\_(_V+1)/2+)\+(—V—|—1)/2}dy

pGA
=B (N).

Thus we have to consider only ®1(\), ®3(A\) and P4(N).
We take ¢ > 1. Then ®4()\) is expressed as

o 2 0 LWt -0 { s s ) P

pGA(n)
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—or 2 0 [ 808 - D/ Bl

pEA(n) iR A (—v+1)/2
(= V) aly v ; , y
o 2 0 [ 6018w =125 o)

— QWZd(l)ﬁ(())iel,p,l(g)}

The first term is holomorphic on Re(\) > —1/2, the second term is holomorphic on Re(X\) > (—c+1)/2
and the third term is holomorphic on C — {0}. Hence ®;(\) = ®5()) has a meromorphic continuation
to Re(\) > —1/2. Since ®3(\) is described as an absolutely convergent double integral, ®3(\) has an
analytic continuation to C. We note that the integral Q;_l’p(l, A, —v) is absolutely convergent and is
entire as a function in A. In order to examine ®4()\), we consider the following residues:

_ v Yy L(—v,x !
Res.—(uiy/2 fy-1 (=7 —) = D PPN VA B (2, —V)M6X,1D2/2RF,

_ v .y L(v,x !
RGSZ:(7u+1)/2 f;—l,p(—% —V) = DF1/2+ /2N(fx)1/2+ B;*17p(y/27 —V>L(7X)5x,1D;/2RF,

(1 - X72)
- y y L(1—v,x7!
Res.—(,_1y/2 fior (=2, —v) = D PP PNG OV BL, (1 - v/2, —u)w(—éx,mp»
_ v » L(1+4+v,x
Ros.—(mty/a Flon (20 0) = D PPN GO I B (1t w2, 0) N (b )

The functions Res,—(+,+1)/2 f;,l p(—z, —v) are holomorphic on iR as functions in v and vanish unless
x = 1. Therefore, the integral

JRECE PN T
Ttz TN (U )/2
is holomorphic on Re(\) > —1/2.

Consider the integral

/m {B((V_WQ) Res.—(v-1)/2 +w Res,—(—y-1)/2 }fil,,,(—z, —1)ay (V) Ey. (v, g)dv.

Res._(_us) /2} FLu (=2 —0)ii () By s )

A+ (v—1)/2 A+ (—v—-1)/2
Set Ff (v) = Reszz(y,l)/g fi (=2, —v). We note that F,"(v) is entire. By taking ¢ > 1, we obtain
Bllv-1)/2) ~
)\ _|_ At =12 Res.—(,—1)/2 f1,,(—2,—v)a(v) B, (v, g)dv
2 B N
MF*( )a(v)Ex,,(v, g)dv — 2mi )F;(l)a(l)el7p7_1(g).

At w12
The first term of the right-hand side is holomorphic on Re(X) (—c¢+1)/2 and the second term is
meromorphic on C. Set F, (v) = Res.—(_,_1)/2 f1,,(—2,—v). By the relation Bf ,(1 — v/2,—v) =
Bip(l —v/2,v)A; ,(—v), we have

(0
A
>

F,,<V>D;”2A1,p<u>cf(f_i) =B} (1 - v/2,0)DY*(~Rp) D54y p(—v) = FF (v),
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and hence, we obtain

| A b i) By = [ DI B i) B v g
.

o L0 F”QAL,J(—WCiﬁ_i)awwl,p(u,g)du
MF+

rA+ (v —1)/2°7 (v)a(v)Eq (v, g)dv

Then, in the last line of the equalities above, the first term is holomorphic on Re(\) > (—c+ 1)/2 and
the second term is meromorphic on C. Hence ®4()) has a meromorphic continuation to Re(A) > —1/2.
This gives us a meromorphic continuation of We(A) to Re(A) > —1/2.

Lemma 7.4. We have

CTa_ oW (nlasg) :c<n,5>{ S alvps) PL Do)
‘PeBcus(n)

+ Z Z / reg *1,p(_V7_))Ex,p(Va g)dv

XEE(n) pehy (n)

Y (1) + Da >}{a/<1>e1,p,_1<g>+d<1>e1,p,o<g>}}ﬂ<o>,

pEA(n)

where we put Dy(p) = 0(U3_ySk(p) = 0) [, cs, ({0 (@0) a0 /2 } forn € Eg(o).

Proof. In the proof of Lemma 7.3, we gave the constant terms of the cuspidal and residual parts at A = 0.

Therefore, it is enough to evaluate the constant term of the Eisenstein part Wey(A) = 281 (\) + P3(N) +
®4(N). By the residue theorem, we have

v) -1
CTacos (A ; 100) [ 6B = 1)/2) 55 B )i
v ~ 1
g(n)fl,p (12) [ aWw)B(w ~ 1)/2) gy 5 ety o)
1
p&;ﬂ)f (12)2mi Res,— (6B = 1)/2) (575 Frs(:9))
5 > A Merp1(9) + ()6 0(9)}5(0)
pE/\(n)

and the integral Q?(,l ,(1,0,—v) is written as

1 B(z)
0 _ 1 1
Q1.0 =g [ s e s e e
= fi1 ,(0,—1)B(0) + {Res.—(141)/2 + Res.— (1) /2 + Res.—(_141) 2
B(z
+ Resz-(lu)/z}{fil,p(z) _V)% °
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Thus the constant term of ®3()\) is evaluated as
CTr=0P3())

RF Z Z /aX ,(1,0, =) Ey (v, g)dv

n) p€Ay(n)

Z Z {/R ;‘1,9(0’ —v)Ey (v, g)dvB(0 /{Resz (1+v)/2

XEE(n) pE (n)
p(2)
z

b () g)iv .

We examine the constant term of ®4()\). By the expression of ®4(\) given in the proof of Lemma 7.3,
we have

CTy= 0‘1>4(/\)

+Res.—(1—vy2 + Res.—(—140)/2 + ReSz_(1u)/2}{f;1,p(Z7 —v)

= 1)/2) B((-v +1)/2) )
= F Z Z / { V + 1 /2 Res.— (v+1)/2 +m ReSz:(,y+1)/2 }fxl,p<_z7 —l/)

XEE(n) p€A(
X G (v )EX o (v, g)du
- Blv-1)/2) o ,
* EA(n){/ l/—l/2 P() ()Elp( g)d}

Therefore we obtain
CTr=0{P3(\) + P4(N\)}

ey > { RG-SR

XEE(n) p€AL(
B(z)
z

" / {Resz:<_1+u)/2+Resz . V>/2}{f1 (e 22 6 0B g}
oy {/ Bl T /2 P =D72) pr )4 (I/)ELP(I/,g)dV}.

pEA(n)

By noting the relation

[ rr =0 m wgar = [ 02D 0B 0n )i
1R R

(=172 (—v—1)/2
we have
]; pEZA: /{Rebz _14vy2 T Res— (1 u/2}{f1p( )j)}&(V)ELp(y?g)dy
P B =1/ g
2 x 81 peg(n)‘/l‘c (V—l)/2 Fp ( ) ( )El,p( ﬂg)d
- 8mi g(n)/m{@” (v— )/2 +F, (V) (—v—1)/2 } (V) Er,(v,9)d
N E M a(v 12 v
2 X {71 pe%n) . (w—1)/2 p( v)a(v)Ey (v, g)d
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RF M v,
= e %/W W Bl
o R Z / 5 V_l /2 Fer( ) (V)Elvp(y,g)dl/

pPEA(n)
B S oy Resyer { 2D )00y B L (0) b
471 ey { (v=1)/2 °* 7 }

Here the residue is expressed as

Res,—1 { A= (i) lv.a) |

(v—1)/2
14 2 1 v
:Resﬂl{((())/; (V) B, (v, 9) D P72 BE (1 —v/2,—v)(~ RF)}

={2&/(1)e1,p,1(9) + 2a(1)e1,0,0(9)} D1(p)(—Rr)B(0).
We note Dg’fl)mBZ’p(l —v/2,—v) = 1(Dr/q)Dy(p) for any n € Eg(o) satisfying n? = 1. Therefore we

obtain

1
Ry~ {Res.—(—14v)/2 + Res,— (1 V)/g}{fl (2, y)ﬂiz)}~(y)El7p(y,g)d1/
EA(n iR
R_ v —
SR I Vﬁf = E )0 B o )
pEA(n)
-1
:% > 2mi{28' (Ver 5.-1(9) + 26(1)er 50(9)} D1 (0) R B(0)
pEA(n)
= > Dilp){a' (e, -1(g9) + a(1)ex 5.0(9)}5(0),
pEA(n)
and hence
CTr=0Wct(A Z Z /R 1,p(07_V)Ex,p(Va g)dv(0)

XEE(n) p€Ay(n)

+ Z {9 12) + D1(p) H& (erp—1(9) + @(L)e,p0(9) }5(0).

pEA(n)
This gives the expression of CTx—o®g x(n]a; g).
We define the regularized smoothed kernel li’reg(n|a; g) by the relation
CTr—o¥pa(no:g) = reg(n|as 9)B(0), B EB.

Lemma 7.5. The following estimates hold for any g € & uniformly.

(1) For any m >0, we have 3_ e () [0(Vp,5) Pig (9)(9)] <m y(g) ™™
(2) There exists N € N such that we have the estimate

PR DR / (G (1) Py (Ey -1y (1, =) Ex p (0, 9) || <v y(0)™

XEE(n) peAy(n)

(3) For any p € A(n), we have |e1,5,0(9)] + [e1,p,—1(9)| < y(9)-
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(4) For N as in (2), we have
|‘Ilreg(n|a;g)‘ <N y(g)N

Proof. There exists a positive constant C' such that Lgy, (s, x) does not vanish for any non-quadratic
character x of F*\AX if Re(s) > 1—C/log{q(x)(3+ |Im(s)|)} (cf. [14, Theorem 5.10]). Hence, by virtue
of the proof of [45, Theorem 3.11], the estimate

< log q(x)
|Lﬁn(1a X)'

holds uniformly for non-quadratic characters y of FF*\A*. Next we give a generalized Siegel’s theorem
for quadratic characters of F*\A*. By [28, Theorem 2.3.1], for any € > 0, the estimate

|Lain (1, )| > a(x) ™

holds uniformly for quadratic characters x of F*\A*. Indeed, [28, Theorem 2.3.1] works for general
L-functions over F' in the sense of [4].
As a consequence, we have the estimate

— < q(® [N veiR
TN ETRO] a(x*| - 1%)

with the implied constant independent of xy € Z(n) and n. Combining this with the argument of the proof
of [47, Lemma 9.9], we have the assertions. O
8. PERIODS OF REGULARIZED AUTOMORPHIC SMOOTHED KERNELS: THE SPECTRAL SIDE

By (4) in Lemma 7.5, the integral Pg’A(\ilreg(Moz)) converges absolutely for Re(A) > N and is holo-
morphic on Re(\) > N. The following is given in the same way as [47, Lemma 10.1].

Lemma 8.1. For Re(\) > N, we have the expression
Pg)\(‘i’reg(lﬂa)) ('ﬂ S){Pcus(ﬁ7 A O[) + Pg}b(ﬂ’ )‘ CY) + Pres(ﬁ7 )‘7 OZ)},

where
cus(ﬁv)‘ Ol) Z a(”@,S)Prcg( )P"] ( )
‘PeBcus(n)
LCECEDIPIE e [ PR By ) P (B
XEE(n) p€AX(
and

PLB A a) = Y {AY (1) + Di(p)}(@ (1) P] A (ex.p—1) + G(1)PY  (e1,0))-
pEA(n)

Here the series converge absolutely and locally uniformly on Re(\) > N.
By Propositions 3.4 and 3.5, we have the following.

Lemma 8.2. The function A — PP (8, X\, &) on Re(X) > N is analytically continued to a meromorphic
function on C. Its constant term at A = 0 is given by
G(n) D5

CT=oP} r(2)

LB a) = 3 {£%(12) + Di(p)}a(1)

pEA(n)

. { ~ 5Bl (0)FE"(0) + a¥7p<0>6<0>}~
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Here B;Zp(z) =e(—z,x 'n)B} (=2 +1/2,1) and
1, - - -
a1 ,(0) == 5(B1,,)"(0)dy1 R — 2By ,(0)RrC1(1)dy,1 + By ,(0)Co(m).

Lemma 8.3. The function X\ — P

Us(By A, @) on Re(X) > N is analytically continued to a meromorphic
function on Re(X) > —1/2.

Proof. By Proposition 3.2, we have

L(s +v/2,xn)L(s —v/2,x"'n)
L(1+v,x?)

Z*(s,m, E%,(v,—)) =G(n) D" *N(},) />~ Bl (s,v)

Set

v L((A+v)/2, xn)L((1 —v)/2,x"'n)
n _ /2 1/24v pn o 5 5
'SXW(V) - DF N(fX) Bxfl’p(1/27 V) L(]. — v, X,Q)

and recall the expression

L(v, x? _
P (By o0, —)) =Py(y, A ) + D2 A, (0) 2L X))PX1<n,A,—u>+Q;p<n,x,u>+QX,,,<n,A,u>.

L(1+v,x?
We remark

Pr )= Y Y & / )k, 0{ PA)

XEE(n) peAy(n)

-1/2 L(V,X ) 0
+ DF AX,P(V) L(]. + 1, Xz) PX*1 (777 A7 _V) + Qx,p(na )‘7 V)
S f(a) Resz_a{f;’m(z,z/)}}dz/.
+a
a=(xv+1)/2

In order to examine P7, (8, \, a), we decompose this into the following four terms:

- X 3 B [ aopp et w00

XEE(n) peAy(

1 1
. 5XWRF{ o s P D/

Ry pDoi/? -1/2 L(v, Xg) 0
Z Z F / aX F / Qi’p(V)DF / Ax,p(y)mfi,)lﬁp(lg)

XEE(n) pEAy (n)

1 1
. 5X’"RF{)\— (—v+1)/2 gy (—v+1)/2

=Y X [ amne e, 00k,

XEE(n) peAy (n)

Z Z / aX ;1/2’8)1(,;7(1/) Z ff)a ReSz:a{f;g,p(—Z, V)}dl/.

XEE(n) peAy( a=(xv=+1)/2

}ﬂ((—u +1)/2)dv

When x =17, then f, = o holds and by using the functional equations

£, 0)DF A, ) L = 23 ()
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and B} (1/2,v) = B} (1/2,—v)A, ,(v), we obtain ®f (X) = ®7 (A). The term ®7 ()) is expressed as

_ 1
=> > { / ax (D52} () K1)y g R 5o (v 4+ 1)/2)dv
XEZE(n) peAy(n) iR A+ (V + 1)/2
+ Be [ 4 (D21 (1) 1O (15)6, 0 R —————— B((v + 1)/2)dv }.
8t Jig ¥ FomopIxe TN~ (v +1)/2
Then the first term in the summation is holomorphic on Re(A\) > —1/2. For any fixed o > 1, the second
term in the summation is transformed into

Rp' ~ 1 1
8TF2'DF1 2{ /L_g ax(V)Exap(V)f>(<?2702)6x7nRFmﬁ(@ +1)/2)dv
O 2 RES, =1 (mdn< ) o )) f(o)(12)RF}

The first term in the expression above is meromorphic on Re(A) > (—o + 1)/2. In order to prove the
meromorphicity of the second term in the expression above, we put

v L(L4+v)/2,nL((1—v)/2,n) D, D", \
or (r(l=v) Sz T or1 TR Ol D), (v -,

By ,(1/2,~v) = pj(p) +p{(p)(v + 1) + 3 (p) (v + 1)* + O((v + 1)), (v — —1)

and

M@nm =g\ + N +1)+0((v+1)%), (v— —1).

Then these give the following expressions:

Res, 1 { (D6, 0088, 0 ) = SOOIDT, + SEGNDT, + DD,

o = 220 oy - (B 1 2 o)

Therefore ®(\) = ®; (\) has a meromorphic continuation to Re(\) > —1/2. Since ®5()\) is described
as an absolutely convergent double integral, ®2(\) is entire.
We examine ®3(A). This is written as

Z Z Ry {/ ~><(V)Dl[?1/2£}>1<,p(v) Z ffl Res.—q f} (—z,v)dv

XEE(n) pEAy (n) a=(£v+1)/2

+ /Rax(y)pgl/%;p(y) > MResz:a f;p(—z,u)dy}.

a=(tvr—1)/2 Ata

In the bracket of the right-hand side, the first term is holomorphic on Re(A) > —1/2 and the part of
a = (—v —1)/2 in the second term is transposed into

/Rd’“( V)DL (v )MResZ:(,u,w2 1 (=2 v)dv

A+ (—v—1)/2
:/ &y (v)D —1/231 (v )m Res.—(_y_1y2 f)} (=2, v)dv

+ 27 &y Resl,:_l(S,lhp(u))dn(l)D;l/Q@g(n)D;/QBgm(l/Q, ~1)(—Rp)
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for any fixed o > 1. We note Res, =1 £} (v) = p{(p) D", + p{(p)D",. Thus the part of a = (—v —1)/2
is meromorphic on Re(A) > —1/2. Noting that the part of a = (v — 1)/2 equals that of a = (—v —1)/2,
the function ®3(A) has a meromorphic continuation to Re(A) > —1/2. This completes the proof. O

Lemma 8.4. We have
CTa=oPL (B8, N, @) + CT= OPres(ﬁ,/\ @)

{g( DR PR Y Z /ax ()€, (~v)dv

X€E(n) peAy(

85, = o) (Y (W) (1) + Yy (), (1) + Yy (n)a ()}+Y"()d(1)}6(0)7
where we put

pEA(n)
= 3 DRP{F0(1s) + Dy() D" pl(p) + D opl(0) ),
PEA(n)
= Y DR 1) + Dy(p) HD" 293 (p) + D 197 (p) + Dipi(p)}
pEA(n)

and

~1/2
Y, (n) = % | %{ﬁ?ﬁ(lz) 1 Da(p)}al (0).

Proof. Let <I>i', ®, and ®3 be the functions defined in the proof of Lemma 8.3. Then, we obtain
CTr—oP (B, A, ) = CTr—o(20F (\) + <I>2()\) + ®3(N)). A direct computation gives us

_ B£(0
CTr=0®] (N Z /O‘n Fl/zg;p(y)fg?g(12)(yjfl))/2dy
pEA(n)
_ -1/2 a1 (0)(1 ﬁ(O)
=) Y g ), EDE e, w0 =
peitn) 87i —(v+1)/2
and
CTaco®a(\ Z > 3 / Gy () D22} ,(1)QY (0,0, v)dv,
X€EE )pEAX(n)
where

o 1:0:0) = £,(0,1)B(0) + Z Res.—, {fg,p(—zv’/)ﬁ(;)}.

a=(xv+1)/2
The constant term of ®3(\) at A = 0 is evaluated as

CTxa—o®3(N)

Z > 3 By { / ()DL ) Y ﬁf;”Resz_af;,p<_z,y>dy}

XEE(n) peAy (u) a=(£tv+1)/2

B [ [ s =2 B =1)/2)
—20(f, = 0) il i &, (v)D / 2‘717,9(”)— Res.—(—v_1y2 fil ,(=z,v)dv ;.
pE;(n) T { /U F (—V _ 1)/2 ( )/ }
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Hence, we obtain

CTA O]PEIS(/Ba )‘7 Oé)

_ _ 1 “1/24(0) () A +/2)
= 26(f, = o) Z 8m T </ / ) nolv) (v+1)/2 d

peA(n)

+ Z Z /ax D2l () f1(0,0)5(0)dv

(n)pEAX(n)
D12 B((-v—1)/2)
+20(F, =0) > ( ) el ()
ot { A Dr (v =12

X Resz:(fufl)/Z f:]’p(—z, V)dV}

= D520 (1) Res,— 0777(1/)3,1]7/)(1/)75((”—'_1)/2)
- Z() { i)

DD / DE2EL ()Gm)EL, (—1)8(0)d

XEE(n) PEAX(ﬂ)

+0(f, =0) Z Rg Res,—_1 {dﬂ(V)Dpl/QS%,p(V)W Res.—(—y—1y2 [ (=2, y)}
pPEA(N)

We remark
RGSZ:(,V,D/Q fr?,p(_z7 I/) = g(n)(_RF)D};V/2Bv7,p<V/2 +1, V) = —Rp Dn(p)

and compute the residues as follows:

- pllv+1)/2)1 _ . pl(=r=1)/2)
Res,—_1 {a”(y)s’lhp(y)(y—pl)ﬁ} = —Res,—_1 {O‘ﬂ(y)’g;p(’/)(_,}_m}

= G (P (AD",5(0) + 23, () 5§ (r) D" + (2D 1)
+an(0{ D7, (204()50) + ()" (0)) + 2D 575)50) + 2D3()5(0) |-

One can check that the sum of all terms containing £”(0) in CT =Pl (8, A, @) + CTA=oPL (5, A, @)
vanishes with the aid of Lemma 8.2. As a consequence, we obtain the assertion. g

Lemma 8.5. Suppose f, = 0. For any ¢ > 0, we have the following estimates
V()] < N(m)*, je{-1,0,1,2},
where the implied constant is independent of n.

Proof. The proof is given by describing Yj"(n) for j € {—1,0,1,2} explicitly. Since n is unramified, we

have ,
1/2
Qv+ 1
T i T T1 0o (325) ot

vES (p) k=2veSk(p
and
- Qv —
Po(p) =N(Dr/0) H (1- nv(wv))qjq'u 1z

veS1(p) v
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Xﬁ I {(m(wv)—l)(nvgm)qv—l) (ZZtDl/qu_k/Q}-

k=2 vE Sy (p) Q= v
Moreover, we obtain expressions
i) =i®@r) >, { I YWEDHIED (-
weS(p) veS(p)—{w}
and

AR S DS 1 veenfoaeoesyey

weS(p) ~z€S(p)—{w} *veS(p)—{wx}

+{ T wenfoaren),

veS(p)—{w}

where we set

n 1/2
Oy = (v € S1(p)) +9 ( 1l Sk<ﬂ>> (Zi)

k=2

and
kv/2
YI(v) = Cofgu + 1+ nu(w0) (g2 4 1=/} -2
Qv — qv
Further we have

- 1)2 + k(1 + nv(wv»(lv(qg — 1) +2(1 + nu(w0)) o

(Y1 (=1) = C, (logq ), —k/2 1w (o) o (go

v

2k(g3 — 1)(gv — 1)

and

(¥2)'(-1)

e (U a)(gw — g, ") + (1= qo){k(qw — g, ") +2¢, '}
:Cv (0, (1 k\2 k/2( v v v
no(w@y) (log ¢y) ", P2 g )2

(logq )2 —k/2 (@) {k(gy — qv) + 2¢0}
v 4k (14 q0)(1 = ¢3)
- 1+ 1y (@0))gw k?
+ (log ¢*)%q;*/? ( —(@ -1 +1) (@ -1+ k(g2 —1)+2) (g2 - 1) ¢|.
(log ¢,)"q (= )o(go — 1) @1 (qy — 1)~ + (k(gy — 1) +2)(q, — 1)
Thus, by noting #A(n) < N(n), we obtain the estimates of Y;'(n) for j € {0, 1,2}.
Next let us examine Y"| (n). We have the following expressions:

B ,(0) = (0,m)BY ,(1/2,1),

-1/
By (/2,1 = ] (nv(wv)_iiqvl2

vES (p) 1-g¢")

><H 1 ){nv =) () = o (21) — a) (qv+1)1/2qv—k/2}7

k=2 vE S ( 1—gqy qu—1

(B1,,)"(0) = €"(0,1)B,(0) + 2¢'(0,1)B,,(0) + €(0,1) B/ (0).
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Here we set B,(2) = Bi (-2 +1/2,1) = D" [],e5(,) Bo(2) and

~1/2
z Qv
Bu(2) =8(u € $i(o)a5 ~ 1"
n /2 —k/2
v+ 1
+) (v € Sk(p))(gh™ — gV T — g DF 4 g (q - ) .
qv — 1 1-— Qv
A direct computation gives us
By(0) = (og D) I B+ Y2 { [I  Bu(0)}BL(©)
veS(p) weS(p) veS(p)—{w}
B)(0) =(log Di')* [ Bu(0)+2(ogDy") Y { J[ B.(0)}B,(0)
veS(p) weS(p) wveS(p)—{w}
+ 2 { > { II Bosozo+{ ]I BU(O)}B{L(O)},
wes(p) | weS(p)—{w} veS(p)—{w,a} veS(p)—{w}
—1/2 12 —k/2
Gy +1 q
B0 =600 & 81 logan) 25 + 3 o(w e Selposan) (251) L2
1 v k=2 Qv — 1 1 + (Jv
and
q—1/2
B,(0) =6(v € S1(p))(log gv)? . ——
" 2% —1— (2k —3)q;t [(qo+ 1\ ¢ "/
1 k\2 v v )
+) (v € Sk(p))(log f) 2 1 T
This completes the proof of the estimate of Y (n). O

With the aid of Lemmas 8.1 and 8.4, we obtain the expression of the spectral side of

Plly(Wreg(na)).

Theorem 8.6. The value P/, (W, (n|a)) can be defined and we have

reg

Py (¥1eg(n]ar) = O(n, S){TLq(nla) + I (n]a) + D7 (n]er)}.

Here we put

ngs( | ) = Z a(VLP,S)Prleg(QO)Png(Q)a

PEBcus(n)

USRS D S (NN EA R AT

XEE(n) pé/\x(n)
and

D"(nfa) = 8(Fy = 0){¥3' (n)ay (1) + ¥{" (n)a, (1) + Y (n)ay (1)} + Y, (m)a(1).
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9. PERIODS OF REGULARIZED AUTOMORPHIC SMOOTHED KERNELS: THE GEOMETRIC SIDE

In this section, we describe the geometric expression of W, (n|a) and its regularized period P, (¥ (n|a)).

reg
For § € G, we put St(§) = Hp N6 'Hpd. By [47, Lemma 11.1], the following elements of G form a
complete system of representatives of the double coset space Hp\Gr/HF:
e=[5%), wo=[77'],
w=[§1la=1[19], wwo = [} 5], wwo = [{ Z1],
5, = [1+§71 ., be F* —{-1}.
Moreover, we have St(e) = St(wg) = Hp and St(0) = Zp for any § € {u, @, uwg,two} U {&|db € F* —
{=1}}. We note

Hp\Gr = 1 Hr\(HréHR) = IT  sto)\He.
6€eHr\Gr/HF 6€Hr\Gr/HF
Thus we obtain the following expression for Re(\) > 0:
o (s [§91 [ 7)) = > Yo e (nlassy [§91[57]) -
0€eHp\Gr/HFp v€St(6)\HF

Set
Ts(B Aty = > W (nlesoy[§9]1[57])
YESt(S\HF
for any o€ HF\GF/HF.
The following three lemmas are proved in similar fashions to [47, Lemma 11.2], [47, Lemma 11.3] and
[47, Lemma 11.21].

Lemma 9.1. Both functions A — Jo(B, A, a5t) and XA — Ju, (5, A, a;t) are analytically continued to entire
functions. The values of these functions at A = 0 are equal to Jia(c;t)B(0) and d(n = 0)Jia(a;t)5(0),
respectively, where

Jia(ast) = 6(f, = L) TL d
aen =560 (5] [ Titinsts)
with
-1 F((3v+1)/4)2 - 1)/2y—1 1)/2\—1
Ti(s) = _— 1 — g~ (sot1)/ 1 — glset1)/ i
S(S) {UGI;IOQ 3 F((5v+3)/4)2}{1]€1;[m( 4y ) ( dy ) }
‘We put
Ju(ﬁ7)‘7a7t) = Ju(ﬁa)‘aa7t> + Jﬂ’wo(/Ba A7a7t)
and

Jﬁ(ﬂa )‘7 O[,t) = Juwo (ﬂa Avavt) + Jﬂ(Bv )‘7 aat)'

Lemma 9.2. Forx € {u, 1}, the function A — J.(8, \, a, t) is analytically continued to an entire function
and the value at A =0 is equal to J.(a;t)5(0), where

nn=(£)" X [ {s0 o)

211
a€FX*

+0(mn=0)TO (nfs; [ 1 V][5, 7] wo) }a(s)dus(s)

Ja(est) = (271”>#s

and

> [ {roesanny)

acF
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+0(n=0)T (nfs;[5 4] [, 9] wo) }a(s)dus(s).
These series-integrals are absolutely convergent.

‘We put

Tp(BA i) = Y Ty Bhast) = > W (nlesd [49][54])

beF* —{—1} beF*X—{—1}acFX*

Lemma 9.3. The function Juyp (B, A, a;5t) on Re(X) > 1 is analytically continued to an entire function
and the value at X =0 is Jpyp(c; t)3(0), where

Taplost) = D> Y VO (nlesdy [ 9157 ])-
bEFX —{—1} agFx
The series converges absolutely and locally uniformly in t € A*.
1z,

Lemmas 9.1, 9.2 and 9.3 give the geometric expression of W, (s [E91 145 ])-

Proposition 9.4. Let n be an ideal of 0 and S a finite subset of X satisfying Yoo C S and SNS(n) = (.
Let n be a character satisfying (3.1). Then, for any a € Ag, we have

Breg (nlos [§9] 57 ])
=1+ d6(n=0))Jia(et) + Ju(e;t) + Ja(a;t) + Jnyp(a;t), t €A™,

Next let us compute Preg(\ilreg(nm)) explicitly. Define

B s = [ At + Bt

for § € {id, u, @, hyp} and

Tis) = { 11 ‘;m} { [T (=)t m(wnq;(s“*”ﬂ)-l}.

VEX oo VE Stin

For any ideal a of o, we set

d
€40(5) =Coln) + Bl { 105(DEN@) + U (Cone + 21052 ~ g )

log g, 1 Sy +1 Sy +3
+Z (s“+1)/2+7z <1/)< 4 )+¢< 4 )>}’

'UESﬁn V€Y o

where (z) = I''(s) /I'(s) is the digamma function and Cgyle, is the Euler constant. We note that if  # 1,
then €4 (s) is independent of the choice of a, and &% (s) = Co(n) = L(1,7). Put

fyns) = 3 /AX\I/(O) nls; 8 [£9] [1 0 ]) n(ta)dxt.

beF* —{—1}

The defining series-integral converges absolutely if we take ¢ € R such that Re(s) = ¢ = (¢)yes and
(¢+1)/4 > 1. By the expression of W, (n|) in Proposition 9.4 and the same computation as in the

proof of [47, Theorem 12.1], we can express the geometric side of Prcg(\I'mg(nm)) as follows.
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Theorem 9.5. For any f§ € {id, u, G, hyp}, the integral Jg(ﬁ,)\;a) converges absolutely and locally uni-
formly in {\ € C |Re(\) > 1}. The function A — Jg(ﬁ, A; ) is analytically continued to a meromorphic
function on {\ € C |Re()\) > —1}. Moreover, the constant term CTx=oJ} (8, \; ) is equal to J (n|a) 3(0),
where

I (nfa) = 0,

Ji(nla) = (1+8(n = 0))D*G(n) / T4(s)€h  (s)a(s)dus(s),

]LS (C)

Ti(nla) = (14 3(n = 0))DY*G(n) / Th(s)€%,, (s)a(s)dpus(s)
Ls(c)
and

#S
"Hgyp(ﬂa) = (217”> e Ry (nls)a(s)dps(s).

In particular, we have
Pilg(Preg(n]a)) = Tl (n|a) + T (n[a) + I, (n]e).
10. PROOFS OF MAIN THEOREMS FOR EVEN HILBERT MAASS FORMS

Fix a character n of F*\A* so that > = 1 and n,(—1) = 1 for all v € . Let S be a finite
subset of ¥ such that S D X and San N S(f,) = 0. Let j;n be the set of all ideals n of o such that
Sn)N(SUS(fy)) =0 and 77(n) = 1. By Theorems 8.6 and 9.5, we obtain the relative trace formula

C(n, S{I s (nfa) + L (nla) + D7 (n]a)} = Ji(n|a) + Jg(nle) + I, (n|a)
for any a € Ag and n € .75’77.

10.1. Estimates of error terms. The following estimate of ngp(n\a) is given by the same argument
as in the proof of [47, Lemma 12.9].

Lemma 10.1. For any o € Ag and g > 0, we have |J} (na)| < N(n)~? with the implied constant
independent of n € ‘7;71'

Lemma 10.2. For any € > 0, we have
IBY,(1/2,0)] < N(f,)"/*"N(n)*, v e€iR, peA(n), x €E(n)
with the implied constant independent of n € ‘7»;77'

Proof. Assume v € iR. Then, the following estimate holds for any € > 0:

|BY ,(1/2,v)]
H T 1, vl +vx3) I a+ah
k=0veSk(p) veUi(p)
G+ 1 1/2 n

11 1 ( )T T a0 - a2t

k=2 veUy(p s k=0 veE Ry (p)

1/2
2 go +1 1
1 v —1/,1/2 2
< H (1"‘%)(1"‘ 72 1/2)1_q1H H ( ) 0 (ay +1)1_q1

veU: (p) Tv Tv k=2 veUs (p)

& dy,/2 1y1/2%v f(xy)/2 , 1
x v/2(1 — g~ v

IH H @ ( ) 1—(]1, 1_(]171

=0veR(p)
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< N(jy) ™/ N(nf ?)".
This completes the proof. O

Note that [Kgn : Ko(n)] = N(n) [T, c5(n)(1 + g, 1) holds by an easy computation.

Lemma 10.3. For any o € Ag, there exists § > 0 such that |C(n, S)I7, (n|a)| < N(n)=° with the implied
constant independent of n € js,n-

Proof. We recall that for any € > 0, the estimate |Lg, (1 + v, x%)| 7! < q(x?| - 4)¢, v € iR holds with the
implied constant independent of x € Z(n) and n. This was given in the proof of Lemma 7.5. Let 6 be a
real number such that |Lg,(1/2 + it, x)| < q(x| - |§¥)/4*?, ¢ € R uniformly for any x € Z(n) and n. We
can take such 6 so that —1/4 < 6 < 0 by [27, Theorem 1.1]. Thus, with the aid of Lemma 10.2 and

‘ (1+v /2 Xo)L((1 = v)/2,x, )
VEX o 1_ V7X172)

= ] 1 +v+2ib(x.)""/2,

VEY oo

which follows from Stirling’s formula, the explicit description of P,
us the estimate

| Pt (Bxp (v, =) < N(R)YPN () T2 N@m) (N(F)Y*H)NG) T (0 + v+ 2ib () )
VEY oo

= N(f)2N(m)* [T 1+ |v +2ib(x0))**
VEYX oo

< N(n)1/4+9+e H (1+|V+2ib(xv)|)29+e

VEYX oo

P, (Ey ,(v,—)) in Proposition 3.3 gives

for any € > 0, where the implied constant is independent of v € iR, x € Z(n) and n € jS—tn' With the aid
of Lemma 2.1, we have

C(n, ) (n|a)| < [Ken : Ko(n) Z > /Ireg D Preg (Ex,p(v; =))lléy (v) |dv]

Z(n) peAy(n)

«Nw™ Y (Z 1) / NG T 0 b+ 200D i)

XEE(n) aln VED oo

€ N0 575 [ CTT (ke 25 Hal Gy + 200, ) e ldy

XEEker (1) bELo YR e
< N(n)2ot4e / (1+ ]2+ |a(iy) |dy.
yERIF

Note >, 1 < N(n)¢. Since we can take ¢ > 0 so that 20 + 4¢ < 0, we obtain the assertion. U

aln

Lemma 10.4. For any ¢ > 0 and a € Ag, we have |C(n,S)D"(n|a)| < N(n)~1T¢ with the implied
constant independent of n € (7;77,

Proof. This follows immediately from Lemma 8.5. U

For n € j;'n, we set

(AL(n), £) = 2D°G(n) " [Kan : Ko(m)] ™1 Y PU(m; Ko(n)) f(vs(m))
mE€Mgus (n)
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for any f € C.(X%") or for any f = o € Ag. The defining series is convergent in the same way as [47,
Lemma 13.16]. Combining Lemmas 3.6, 3.8, 10.1, 10.3 and 10.4 with the argument in [47, Lemma 13.18],
we have the following.

Proposition 10.5. For a fired o € Ag, there exists § > 0 such that

o Ko Kolf)] . L(1/2,0)L(1/2,7 @)
D300) = X R Ko S L5 (1,7, Ad)

mEIcys (1)

ovs(m)) = (Ag, @) + O(N(n)™?)

as N(n) = oo innej;n.

10.2. Schwartz spaces on X%". The Schwartz space S(X%") was introduced in [47, §13.2]. However,
the definition is inaccuracy; indeed, the Weierstrass approximation theorem does not work in the proof

of [47, Lemma 13.17]. In this subsection, we introduce another Schwartz space S(X%"). Set

xT_i_ _ ’iR>0 U (0, 1] (’U S 200)7
k i[0, 27 (log Qv)_l] U (0,1J U {(0,1] + 271'i(10gqv)_1} (v € Shn)

and %ng =TIlyes X9+, We note
0T =Ry

by the homeomorphism s + (1 — 52)/4 if v € ¥, and

X" (0 + ¢, 0 + a4,
by the homeomorphism s +— qv_s/2 + qi/Q if v € Sgp.

Definition 10.6. We define S(X%‘;) as the space of all functions f on %%‘; such that f is of the form
<p((1_4Si Joes.,) for some ¢ € S((Rs0)¥=). Here S((Rxo)*=) is the Schwartz space in the usual sense.

We define the Schwartz space on X(;' =1Il,es X9, which is denoted by S(}C%Jr), as

S(T%Jr) = S(%%J;) ® C(%%:n) (algebraic tensor).

Both measures A\%(n) and A% on X%" are naturally extended as linear functionals on S(X%") (cf. [47,
Lemmas 13.14 and 13.16]).

Lemma 10.7. We have the following.
(1) Let Agy denote the C-vector space of all functions on .’{%:n generated by [[,cq Qu (qv_s”/2 + qi”m)

Jor any polynomials Q,[X] € C[X], (v € San). Then, Agy is dense in C(X% ) with respect to
the topology by supremum norm.

(2) The symbol Ao, denotes the C-vector space of all functions on %%1 generated by the functions

X% 35 =(s0)vez. =[] Qu(s?)exp((s2 —1)/4)
VEYX oo

for any polynomials Q,(X) € C[X], (v € X). Then, A is dense in S(%%J;) with respect to
the Fréchet topology determined by the semi-norms
P (f) = sup [87f(s)|(1+ Is[[*)™
sef%to
for all m € Ny and all n € (Ng)¥~. Here O™ denotes the higher order partial derivative
[Toes_ 0™ /0sye for any multi-index n = (ny)ves,, € (No)™<, and we put |s|]| =, cx _ [s0]?.
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Proof. To prove (1), we only have to use the Stone-Weierstrass theorem for the compact Hausdorff space
%%:n. The assertion (2) follows from [36, Theorem V.13 (p.143)] and [5, Lemma 9.3]. O

10.3. Extraction of the new part. Let I;.'m be the set defined in §0.1. Set

* 1 L(1/2,m)L(1/2, @
ALy (n; f) = N(n)ﬂ@;(n) ( /Ls,,)(l,(ﬂ’/Ad)(gn)f(l/s(?T))

cus

for any n € j;,n and any f € C’c(%gf) (or f = a € Ag). The convergence of the defining series is

proved as follows. We note that L(1/2,7)L(1/2,7 ®n) > 0 by [10] and that G(n) ~'P"(m; Ko(n)) = 0 by

Lemma 3.6. Furthermore, Lemma 3.6 gives us wy (n) = 1 if 7 € Il us(n) satisfies f, = n. Hence we have

|ALy;(n; £)| < (NL(n), | f]). Here we note (A%(n), |f]) < oo (cf. [47, Lemma 13.16]).
We extract the new part ALy (n; f) from (AZ(n), f).

Theorem 10.8. There exists a sufficiently small § > 0 such that
ALy (n; @) = v(n)(Ag, a) + O(N(n)~*)
holds for any a € Ag as N(n) - oo inn € I;n. Moreover, for any f € S(T%"'), we have
1
v(n)

as N(n) > 0o inn € Igfm. The limit for any f € S(X%") as above is valid for any f € C.(X%1).

ALy (n; f) = (A&, f)

The proof of this theorem is given in §10.4. As a corollary, by Proposition 1.1, we have the following.

Corollary 10.9. For any bounded Borel measure J of %g"' with boundary X\%-null, we have
1.
as N(n) » oo inneIg, .
10.3.1. The N -transform. We introduce N -transform, which will be used in Part 2 and Part 3.
For any ideal ¢ and a place v € Xgy, set
1 (v e S(c)
wv(c) = Qv +1
Qv — 1
For any pair of integral ideals m and b, define
wm,b) =d(mcb) J[ wo(mb™).
veS(b)

);
(v & 5(c).

Given an ideal n, let ng denote the largest square-free integral ideal dividing n; thus, there exists the
unique integral ideal n; such that
n = ngni.
Let 7 be a set of integral ideals such that if n € Z, then all integral ideals m dividing n are elements of Z.
Proposition 10.10. Let B(m) and A(m) be two arithmetic functions defined for ideals m € Z. Then,
the following two conditions are equivalent each other:
(i) For anyn € Z,
B(n) = w(n,b?) A(nb~?).
b|n1
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(ii) For anyn € Z,
Amy= > (0*{ I  wmo)}yBe]]r:?)
ICS(nl) ’UGIﬂSl(ﬂl) vel

Proof. We show that (i) implies (ii). By substituting (i), the right-hand side of (ii) becomes

Yo E0F I womod Yo w][Rs %) A [T 8%))

ICS(ny) veINSy(ny) blny HUEI p;l vel vel
= Z { Z (1) w (n H p, 2, nib 2 H pv2> H wv(no)} A(ngb?)
biln1 “1CS(nibyh) vel vel v€INS1(n1)NS(n1bT ")

Here to have the equality, we made the substitution by = n1b™* ] ., p;'. If by = ny, the term inside
the bracket is 1 obviously; otherwise it equals

Z (_1)#1 H Qv + i H gy +1

v v 1
ICS(nib7h) vES(n1by ! [T,er b ) —S(nob?) 4 v€INS(n1b7 1)NS1(n1)—S(no) ¢
v +1 v +1
- Z (—1)* H qv 1 H qv -1
ICS(nybyh) veE[(I—S1(n1b71)U(S(n1b7 1) —1)]—S(ngb2) vEINSy (n1b7 1) —S(ngb?)
+1 v +1
_ _)# Qv v
2, (D =
ICS(nb;t) vE(S(n1b7 ) —I)—S(nob?) vel—S(ngb?)

= H (wv(nob%) —Wv(nOb%))’

veS(n1byt)

which is zero by S(n;b7') # . We can prove that (ii) implies (i) in a similar fashion. O

Set v(m) = [Kgin : Ko(m)] = [, e5(m) (1 + @)ao ordv(m=1 for any ideal m of o.

Definition 10.11. For an arithmetic function B : T — C, we define its N -transform N'|B] : T — C by
the formula

v Tye 0y
NBIm) = > (~)*{ J[ wuno)} 1761 Bm][[#?
ICS(ny1) velINSy(ny) vel
Lemma 10.12. Fort € C, let N* be the arithmetic function n — N(n)* on I. For any ideal n, we have
NN =Nm { [ @-¢*{ JT 0-0-g¢") g "))

veS(ny)—S2(n) vESa(n)

In particular, N'[1] is equal to
viy={ I  -a’B{ I] 0@ -0k
veS(ny)—Sa(n) vES(n)

Proof. For any subset I C S(n), we have

n]Tperpe?) _ .

ot = er 1 aean™

vel veINSz(n)
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Therefore, we obtain

S ocufl ] wm)}“”nvi“”” N ] )

ICS(ny) veINSi(ny) vel
¢ @ +1 —1\— - ¢
=Nm' Y )*{ ] P I a+aH "{I]a)
IcS(ny) velnSa(n) v veINSa(n) vel
=Nw' Y 0¥ I - "{I[«
ICS(ny) veINSa(n) vel
=Nm'{ [ @-¢2"{ [ a-a-gH) g2}
vES(n1)—S2(n) vES3(n)

For any arithmetic function B : Z — C, we define another function N/ "[B] by setting

DR | I L I O

ICS(ny) veINSi(ny) vel
for n = ngn? € Z. In a similar way to Lemma 10.12, we have
(10.1) NANT=Nm'{ [ O+ [ 0+0-g¢") "¢ )}

veES(n1)—S2(n) vES2(n)
for any t € R.

Lemma 10.13. Let ¢ > 0. For any sufficiently small € > 0, we have
NFINTT () <, N(n)~ D@48y e 7

Proof. From N(n)~¢t¢ < N(n)~ f(eD+¢ we have NH[N~T(n) < N T[N~ D4 (1) obviously. Let
us set t = —inf(c,1) 4+ € and examine the right-hand side of the formula (10.1). We note that ¢t + 1 =
1 —inf(c,1) + € > € > 0. The set P(e) = {v € Xaa|1 — g, ! < ¢, €} is a finite set. For v € Sa(n) — P(e),
we have (1 —q; )71 < ¢¢ and ¢, 24D < < ;% by these the factor 1+ (1 — g, )q;2(t+1) is bounded by
1+ ¢, ¢. For v e S(ny) — Sz(n) or v € Sa(n) N P(e), we simply apply qu 20D q;%¢. Thus,

(10.2)
NNy <N [T G+a? R [T a+0 - e [T G+a9n

vES(n1)—S2(n) vEP(€) vESa(n)—P(e)

In the right-hand side, the second factor is independent of n. The first and the last factors combined are
estimated as

{ II a+e?n{ JI a+ran<{]] a+a9)’

vES(ny)—Sa(n) vESa(n)—P(e) vES(n)

<A I] @y <N@*

veS(n)

Hence there exists a constant C(¢) > 0 dependent of € such that (10.2) is less than C(e) N(n)~ nf(e.1)+3¢
for any n € 7. d
46



10.3.2. The totally inert case over n. Let Jg, be the set of all ideals n relatively prime to S U S(f,).
Let Zg,, be the monoid of ideals generated by prime ideals p, N o such that v € X5, — S U S(f,) and
f(py, N0) = —1. Note that Zg, is a submonoid of Jg, and that Zg, = If‘tn UZg, (cf. §0.1). We
relate ALy, (n; @) to the N-transforms of arithmetic functions (A%(-), a) on Zg,,. We remark that an ideal
n € Zg, satisfies the condition

Ny (wy) = —1, v € S(n).
This means that the quadratic extension of F' corresponding to n is inert over all places dividing n.
7

Lemma 10.14. Let n € Zg,,. Then, for any m € Ileus(n), we have wy(m) = 0 unless nf; ' = b for some
integral ideal b, in which case

wil(m) = w(n, nf ).

Proof. Let v € S(nf; 1) and set k, = ord,(nf;!). From Lemma 3.6,

v 1 (c(my) 2 1)
1+ (=1)k v ’
v v;k'u = 5 v 1
Pt k) = TR L gy = )
qv — 1
Thus 7(7y, N, ky) = 0 unless k, = ord, (nf, 1) is even.
O
For any fixed o € Ag and n € Zg,,, set
1 L(1/2,m)L(1/2,m ®n)
AL} (n;a) = d .
M(nv Q) N(n) Z LS“(LTF,Ad) O‘(VS(T())
Lemma 10.15. For anyn € ZLg,,,
(mb=2)
(AL(n),a) = zb:w(n, b?) o) ALy (nb™ 2 o),
where b runs through all the integral ideals such that n C b2,
Proof. This follows immediately from Lemma 10.14. d

Lemma 10.16. For any n € Zg,,,
ALy (n; ) = NAS(), )] (n).

Proof. By Lemma 10.15, we obtain the formula by applying Proposition 10.10 with B(m) = ¢(m) (AZ(m), c)
and A(m) = ¢(m) AL3;(m; ) both defined for m € Zg,,. O

10.4. Proof of Theorem 0.2. We prove Theorem 10.8, from which Theorem 0.2 follows immediately.
For a fixed a € Ag, by Proposition 10.5 and Lemmas 10.12, 10.13 and 10.16, we have
ALY (n;0) =NA(), @)](n) = N1 (n) x (AL, @) + ONFINTF(n))
=v(n) (A%, ) + O(N~*+3(n)).

forn € I;fm with sufficiently small 6 > 0 and € > 0. Hence, we obtain the first assertion of Theorem 10.8.

With the aid of the proof of [47, Theorem 13.17] and the first assertion of Theorem 10.8, for any
f e S(X%) we have

1

AL ) = O £)
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as N(n) > coinn € I;rm. Indeed, by Lemma 10.7, for any f € S(X%"), any € > 0 and any m € N, there

exists a function a on X%" of the form

N [
a(s) =Y [I QuilsDexn((s; =1)/4) [ Quilaes**+a’?),  sexg

j=1v€Sm 0ESiin
for N € N and a family of polynomials @, ;(X) € C[X], (v € S, 1 < j < N) such that

sup | f(s) — a(s)|(1+]s[[*)" < e
s€3€g+

We regard naturally « as a function on Xg; then « is an element of Ag. From this, the argument in the
proof of [47, Lemma 13.17] is valid by using ALy;(n; —) in place of A% (n). As a consequence, we obtain
the second assertion of Theorem 10.8.

The assertion for f € S(X%") deduces to that for f € C.(X%") in the following way. It suffices to
prove the assertion for f € C.(X%").

Take any f € C’AX%‘*‘) and any € > 0. Fix a locally compact bounded open subset U of %gﬁ' such that
supp(f) C U. We may suppose U = Uy, X Ug, for some Uy, C X% and Ug, C X%:n, where both U, and
Uty are locally compact bounded open subsets. Then, we have f|y € C.(U). Let C°(Us) be the space

of all compactly supported functions h on Uy, such that h(s) = w((%)vez‘”) for some C°°-function
¢ on the set {z = (z,)vex.. € (Rs0)™> | (VI —42,)ves.. € Ux}. By the Stone-Weierstrass theorem,
C®°(Uso) ® C(Usgy) is dense in C.(U) with respect to the topology by supremum norm. Thus there exists
ge € C°(Uso) ® C(Ugy) satisfying

sup [f(s) = ge(s)| <€

seU

By the extension by zero, the function g. is naturally extended as an element of C’SO(XOEJ;) ®C (%gj),

which is also denoted by g.. Then, we have g. € S (}Igf).
From this and the second assertion of Theorem 10.8, there exists M > 0 such that for any n € IS+,77
with N(n) > M, we have
v (n)"TALY (n5 g6) — (NG, 90)| < e
In the same way as [47, Lemmas 13.14 and 13.16], we have the estimates

v (n) ALY (n; f = ge)| < 0835(1 +1Is]|*)™ €

and
(NS f—ge)| < ngg(l +Is|1*)™ e,

where C' > 0 and m € N are independent of n € I;fn, the function f and € > 0. As a consequence, for
any n € Zg, with N(n) > M, we obtain

() TTALY (05 f) — (NG, £ < () TTALY (05 f = go)| + [v(n) ALY (05 g6) — (Mg, g6)| + [(AG, ge — f)
<{1+ 2Csu8(1 +[|s]|*)™ Ve
sE

This completes the proof of the third assertion of Theorem 10.8. d

10.5. Proof of Theorem 0.3. We may assume that J, for each v € ¥, is bounded. Let J be the set of
all (v,)ves € X% such that (1—v2)/4 € J, for all v € Xog and ¢, **/* + ¢4*/% € J, for all v € Sgy. Then,
J is a bounded Borel set of %gﬁ' whose boundary is A%-null. Hence Theorem 0.3 follows from Corollary
10.9. O
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10.6. Remarks on Theorems 0.4 and 0.5. Both theorems 0.4 and 0.5 are proved in the same way as
[47, Theorem 1.3, Corollary 1.4] since we can generalize [47, Theorem 14.1] to the case of arbitrary levels
by using the relative trace formula explained in §10. We remark that |L27 (1,7, Ad)| < |Lan (1, 7, Ad)| <

(14 |lvs_ (m)]])€ is due to [23]. Although [29] is refered to in [47], the Rankin-Selberg condition (A5) in
[29] is valid only for general L-functions over Q.
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Part 2. Relative trace formulas for holomorphic Hilbert modular forms
11. HOLOMORPHIC SHINTANI FUNCTIONS ON GL(2,R)
11.1. Discrete series of PGL(2,R). For n € Z, let 7,, be the character of SO(2,R) defined by
o (ko) = €™, 0 e R.
Let I > 2 be an even integer. Recall that there correspond discrete series representations DlJr and
D; of SL(2,R) such that Dif|SO(2,R) is a direct sum of characters 7, for all n € (I + 2Np). We
have a unitary representation D; of GL(2,R) such that (a) D; has the trivial central character and

(b) Dy|SL(2,R) = D" @ D;. We call D; the discrete series representation of PGL(2,R) of minimal
SO(2,R)-type .

11.2. Shintani functions. Let f(7) be a cusp form on the upper half plane satisfying the modularity
condition f((at +b)/(ct +d)) = (c7 +d)! f(7) for any matrix [¢ Y] in a fixed congruence subgroup I of
PSL(2,Z). Then it is lifted to a left I-invariant function f on the group GL(2,R) by setting

fl9) = (detg)'2(ci+ )~ f (425) x 3(detg > 0),  g=[24] € GL2R).
Let fc be the complex conjugate of f . Then, fc satisfies the conditions
Jelgko) = (ko) fo(g), (¥ko € SO(2,R)),  [R(W)f(g) =0.
Since Ad(kg)W = e 29 W in any (gly(R), O(2,R))-module (7, V), we have 7(W)V[r;] C V[r,_2], where
Vin] = {v e V|r(kg)v = e v (Yky € SO(2,R)) }.

Let V be the (gla(R), O(2,R))-submodule of the regular representation L?(I'\GL(2,R)) generated by f..
Then the condition above, or equivalently f. € V[n] and R(W)f. = 0, tells us that inside the module
V' (which is a finite sum of discrete series D;) the vector f. is extremal. For z € C, let x. be the
quasi-character of the diagonal split torus 7" defined by . ([tol t(;]) = |t1/t2|*. The integral

6(g) = / fuhg) x—-(h)dh, g€ GLE.R),
INT\T

often called the (T, x.)-period integral of fc, satisfies the following two conditions:
o o (['¢ 2] gke) = It1/t2|* Ti(ke) ¢(g) forall [§ )] €T and 6 € R,

e R(W)¢ =0.
A function satisfying these conditions is called a holomorphic Shintani function of weight [. The next
proposition tells that these conditions determine the function ¢(g) uniquely up to a constant multiple.

Proposition 11.1. [11, Proposition 5.3] Let z € C. For each even integer | > 2, there exists a unique
C-valued C*-function W) (I; =) on GL(2,R) with the properties:

(S-1) It satisfies the equivariance condition

UE (15[ 2] gke) = [t1/ta]* Ti(ke) ¥ (1) for all [' 2] €T and 6 € R.
(S-ii) It satisfies the differential equation
RW) W) (1;—) = 0.

(S-ii) U (1;15) = 1.

We have the explicit formula

20 N 2
T (1 q,) = 2712 (—y)22=D/4 (1 — )2 ithy—= (S
(l;a,) (~y) (1-y9) withy = | 5
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We remark that all values ¥(*)(l;a,),7 € R characterize the function ¥(*)(I; —) by (S-i) and the
decomposition GL(2,R) = T {a,|r € R} SO(2,R) (cf. [11, Lemma 3.1]).

Lemma 11.2. Let W) (1; =) be as in Proposition 11.1. Then,
& (k) = (1 4ix)*712, zeR
Proof. By a direct computation, [§ ] = [{ %] a, ks with
t=(1+ a4, cosh2r = (14 22)'/2, sinh 2r = z,

ol _ (V1+a22+1)1/2 (1_ i >
\/5(1+x2)1/4 \/1+x2+1

andy—IH,l—y— O
Lemma 11.3. We have the estimate
‘\I/(z) ( [ A t2] ) | l/2 |t1/t2|Rc(z)err\1m(z)\/2(cosh 2T)7l/2
for any t1,ts € R*, r € R and k € SO(2,R).
Proof. Set y = (iirlz) . Then,
2 .
2 2i tanh 2r
= (tanh2r — =1- - .
Y ( AET T osh 2r) cosh?2r  cosh2r

Hence, by a direct computation, we have |1 — y| = (cosh2r)~!. Furthermore, by |y| = 1, we have
|(—y)(22=D/4| < emI™m(2)1/2 This completes the proof. O

11.3. An inner product formula of Shintani functions. For an even integer [ > 2 and z € C, let
us consider the integral

Cl(z):/loo{<— (le)2>+<— <Z+z)2>} (1+u?) "l du.

Lemma 11.4. The integral C)(z) converges absolutely. It has the following properties.

(i) The function z — Cy(z) is entire and satisfies the functional equation
Ol(*Z) = C’l(z)
(ii) The value at z =0 is given by
Ci(0) =27'T((1—1)/2)*T(1 — 1)~ = 22~ 27D(1 — 1)D(1/2) 2
(iii) The estimate
Ci(2)] < Ci(0) exp(a|lm(z)[),  z€C
holds.

Proof. By the variable change v~ = 1 + 42, we have

e} 1
Cy(0) = 2/ (1 +u) 2 du =271 / (1 —0)=3/2p0=3/2 gy — 2717((1 = 1) /2)°T(1 = 1) !
1 0

as desired in (ii). Remark that the second equality in (ii) is obtained by the duplication formula. Since
w = —((u—1i)/(u+1))? satisfies |w| = 1, by definition, we have w* = exp(ifz) with 6 € (—m,7]. Thus,
|w?| = exp(—Im(z) 8) < exp(w|Imz|), by which (iii) is immediate. From definition, we have the relation
w™* = (w™!)?, which shows the functional equation in (i). O

The inner product of Shintani functions ¥(*)(I; —) and ¥(=2)(I; —) is given as follows.
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Proposition 11.5. We have
/ V& (1 9) WA (1 g) dg = 2171 Ci(2).
T\GL(2,R)
Proof. Set f(g) = ¥ (1;g) ¥(=2)(I; g). We have

/ flg)dg =2 / f(a,) cosh 2r dr
T\GL(2,R) R
by the formula [47, (3.3)]. From Proposition 11.1,

2r .\ 2
) =27 (—y) 2R (1 ) ith v — e -1 .
f(ar) (~y) (1-y) withy= -5 e

By this, we compute

“+oo foe}
2/ f(a,) cosh 2r dr = 2~ / (—y)~2+% (1 — y)! cosh 2r dr
0 0

oo A\ 2 z
:21—1/ {_(quz) } 1+ u2) "l =2 du,
1 u 7

setting u = €?”. In the same way, we have
0 00 (2) %
2/ f(ar)coshZTdr:?’l/l {— (Z—_Fz) } (1+u2)1*l ut=2 du.

11.4. Orbital integrals of Shintani functions. Set wg = k2 = [(1) ’01].

Lemma 11.6. If 0 < Re(z) < 1/2, then, for e, ¢ € {0,1}, we have
/ ¢ (l; [52] wél) lz|?sgn (z)d*z = 2i* T(2)[(1/2 — 2)[(1/2) " i€ cos (Z(z+¢),
RX
/ g (l; [19] wf)/) lz|?sgn (z)d*z = 2i*T(2)D(1/2 — 2)[(1/2) " (—i)¢ cos (Z(z+¢)).
RX

Proof. Let Jj () denote the first integral with ¢ = 0. From Lemma 11.2, we have J; (2) = J; (2) +
(—=1)¢J; (2) with

JE(2) = /000(1 + iz) V22 d*x.
By the formula [8, 3.194.3], we have
JE(2) = (£i)*B(2,1/2 — 2) = (i) *T(2)T(1/2 — 2)(1/2)"" (/2 > Re(z) > 0).
Hence,
Tie(2) = T(2)T(1/2 = 2)T(1/2) i + (=1)(=i) 7},

Since i~% 4 (—1)¢(—i) % = 2i€ cos(n(z + €)/2), we are done. We have the Iwasawa decomposition

[%(1)]::[ 1L2 ’ :|[éﬂke with e = 1+it_
0 VIt V1t
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Hence, by Lemma 11.2, we obtain

v (1 [19) = (1) x ( Al )l x (L4 it) "2 = (1 —it)=*71/2

1+1¢2 V1 + 12
Using this formula, in the same way as above, we can prove the second formula with ¢ = 0. The remaining
two formulas follow immediately from the proved ones by the relation ¥ (I; gwg) = i* WO (i; ¢). O

12. HOLOMORPHIC AUTOMORPHIC (GREEN FUNCTIONS

Let S C Y5, be a finite subset. Put
xs =] ((C/4m'(logqv)_1Z) ,
vES

which we regard as a complex manifold in the obvious way. Note that for any ¢ € R, the slice Lg(c) =
{s € X5|Re(s) = c} is a compact set homeomorphic to the torus (S!).
Given s € Xg, z € C, an ideal n C o such that S(n) NS =0, and a family | = (I,)ves.. € (2Zs2)>>,

the adelic Green function \Il(z)(n|s —) is defined by

U (n)s; g) : H U (1,5 90) H‘I’(z) 50} Gv) H e (g H g)zq);(gv)

V€Y o veS veS(n) UGEﬁnf(SUS(n))

for any g = (gv)vex, € Ga, where \IIS,Z)(ZU; —) for v € ¥ is the holomorphic Shintani function on

G, = GL(2,R) defined in Proposition 11.1, \IIS,Z)(S; —) for v € S is the Green function recalled in §5, and
for any v € Xg,, we set

o) ([4 2] [531k) = |t /t2]20(x € 0,)0(k € Ko(na,)), ti.ta € FY, x € Fy, k€ K,

We remark that &%) = &%) if v € Sg, — S(n). The adelic Green function \Ill(z) (n|s; —) is a smooth

U
function on Gy having the equivariance property

i (s hgkocksn) = { [ 7. (ko) bx=(h) {7 (n]s, 9), g€ Ga
VEX oo
for any h € Hy, koo = (ky)ves.. € K% and kg, € Ko(n) = Hvezﬁn Ko(no,), where x, : Hp\Hy — C*
is the quasi-character defined by
x- ([0 0]) =lt/tli, ti b€ A

To state the most important property of the adelic Green functions, we introduce the (H, x)-period
integral of ¢ € C°(Z,GF\Ga) by setting

") (g) = / ¢ (hg)x-(h)dh.
ZyHp\Hy
The integral ¢:(*)(g) converges absolutely and satisfies p*(*)(hg) = x.(h)~1p(*)(g) for any h € Hy.
Let C°(ZyGr\Ga)[m] be the space of ¢ € C°(Z,Gr\Ga) such that

={ H 71, (ko) }o(g)  for any koo = (ky)ves., € K% and g € Gy.
VEY oo

Lemma 12.1. Suppose p € COO(ZAGF\GA)[TZ} and R(i Yo =0 for allv € ¥o. Then we have
2 (gngoc) = { [] 05 (103 9)18" ) (95m)
VEX o

for goo = (gv)ves. € Goo and gsn € Gan.
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Proof. Let gan € Gay. For any v € ¥, we can easily verify
EH,(z) (gﬁ [ 0 f2] Joo ) = |t1/t2|;ZTlu(k)71¢H’(Z) (gﬁngoo)a t17t2 € vavk € Kga Joo € Goo
Moreover we have R(W,) (@(*)) = 0 by the equality R(W,) ("7*)) = (R(W,) )" *). Thus the

uniqueness of Shintani functions (Proposition 11.1) yields a constant C such that

77 (gingoc) = C [ ©5 7 (s g0) for all goo € G

VEY o

By setting goo = 12, we have C' = g(?) (g Tves.. gl (ly;12)} 7' = 33 (gg,). This completes
the proof. O

For s € Xg, we consider the element

Ts(s) = AT, — (@72 + q{/?) 1k, }
vES

H(G,,K,). We also set
q(s) = inf{(Re(sy) +1)/4|v e S}.

Proposition 12.2. Letl = (I,)vexn,, be a family of even positive integers, and suppose q(s) > 2| Re(z)| +
1. For ¢ € CX(ZyGr\Ga)[m]¥e™ such that ROW,)¢ = 0 for all v € o, the function g +
\I/l(z)(n|s;g)¢H’(z)(g) is integrable on Hy\Ga. Moreover, we have

/H o, W@l lRCTs ()™ g)dg = T] 27l (2ol (i Hi Ko ()7 12)

VEY oo

of the Hecke algebra @), ¢

Proof. We follow the argument in the proof of [47, Lemma 6.3]. By Lemma 12.1, the integral in the
left-hand side is

/H (T 9 g0) 982 s ) H T 59 (50 90) H o) (90) I o)
A

\Ga yexo, veS veS(n VED g —(SUS(n))
x [R(Ts(s))2™" ) (gsn) dg.

Hence, by Proposition 11.5 and Lemma 5.2, we obtain the assertion. 0

12.1. Automorphic smoothed kernels. Set [ = inf,ex_ [, for a family | = (I,),ex, € (2N)*=
In this subsection, we introduce the automorphic renormalized smoothed kernel function \illﬁ L] 9)
depending on a complex parameter A and study its properties when [ > 4 and 1/2 < Re(\) < /2 —1. It
is defined by the Poincaré series (12.1).

Let B denote the space of all the entire functions §(z) on C satisfying 8(z) = 5(—z) and that there
exist A > 0 and B € R such that the estimate

1B(c +it)| < e~ AWH+BY G clab], teR
holds for any interval [a,b] C R. We have C;B C B by Lemma 11.4 (iii).

We define the renormalized Green function by

1 B(z)

3t | s i) + Wi (s g) s

Ul \(nfs; g) =

for o € R such that —inf(g(s) — 1,Re(A)) < 0 < ¢(s) — 1. The defining integral is absolutely convergent
and independent of o as above. The normalization is meaningful to link Green functions and regularized
periods in Lemma 12.4.
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For any (8,A,s) € B x C x Xg such that Re(A) > 0 and ¢(s) > 1, we consider the average of the
renormalized Green function \IJ% \(n|s; g) over the G p-orbits:

W\ (nfs;g) = Z Ui \(nlsivg), g€ Ga.
YEHF\GF

Lemma 12.3. Suppose | > 4.

(1) The series \Illﬁ’)\(n\s;g) converges absolutely and locally uniformly in (\,;s,g) € {Re(\) > 0} x
{q(8) > 1} xGp. For a fized (\,s) in this region, \Illﬁ)\(n|s;g) is a continuous function in g € Gy,
which is left ZyG p-invariant and right Ko(n)-invariant, and satisfies

Q%,A(MS? gk,) =, (k/’v)‘I’%,A(MS? 9)

for allv € X, and k, € K.
(2) Let (A, s) be an element of Cx Xg such that 2Re(X\) > 1, ¢(s) > 2Re(N)+1 and 1/2 > Re(\) + 1.
Then, for any o € (1/2,Re(X)), we have the estimate

B4 \(n]s;9)| < y(g)' ™7, g€

Proof. The same proof as in [47, Proposition 8.1] goes through with a minor modification; Lemma 11.3
is used in the course. The outline is as follows. For p > 0 and ¢ > 1, set

Eipas (G o )(ar, Joes (157 Doesa k) =int{[t/taf [t1 /1237 T (cosh2r,) ™2

VEY oo
< [ sup(L,f2ul)™ [ 0(xw € 00)
vES vEXfin—S

for t1,ta € A%, (ry)vexn. € R¥> and (7,)pexy, € Agn, and set

Eipa.s(9) = Z Eipa,8(79), g € Ga.
"/GHF\GF

Since [/2 > 1, the series 5, 4,5(g) is locally uniformly convergent in Ga. Moreover, if 1 4+ 2¢ < p and
1+ p<1/2, we have

Eipas(e) <ylg)'™?, ged

Indeed, it is enough to replace ¢ in the archimedean factors of Z, 4 5 used in [47, Lemma 3.5] with [/2.
We also note that the condition 14 p < 1/2 is needed to guarantee [, cosh (2r,)P~L/2+1dr, < co. In this
setting, Z; 5 4(s),s With 0 < o < inf(Re()), ¢(s) — 1) gives a majorant of \I/lﬁ’)\(n\s) in the same way as [47,
Lemma 6.7]. Thus &, (s),s is also a mojorant of 'Ill67/\(n|s). O

For a fixed (A, s) such that 2Re(A) > 1, ¢(s) > 2Re(A\) +1 and [/2 > Re(A) + 1, the function 'Ilg,/\(n|s)
defines a distribution on ZyGp\G4 by

(ha(nls). ) :/ZG > Tl (ns; 9)p(g)dg, ¢ € C(ZuGr\Ga)¥o.

We remark that the absolute convergence of the integral is valid for any rapidly decreasing function ¢ by
Lemma 12.3 (2).
55



12.2. Regularized periods. (For details, see [47, §7] and [41].) We recall the regularization of period
integrals along H explained in §3.2. Although such a regularization is not needed in the spectral side of
our relative trace formula since (12.1) is cuspidal, the regularization as below plays a role in the geometric
side in §15.

For a real valued character n of F*\A*, let x, and zj be as in §1.4. A continuous function ¢ on
ZyGFp\Gy is said to have the regularized (H,n)-period P, (¢) € C if, for any 8 € B, the integral

Piate)= [ e (88 D) mias) (st + Br(e)

converges absolutely when Re(\) >> 1 and is continued meromorphically in a neighborhood of A = 0
with the constant term CTa=oPj , () = Pfl,(¢)B(0) in its Laurent expansion at A = 0. We note that if

@ € C°(ZpGFr\Gy) is rapidly decreasing on &', then by [47, Lemma 7.3], the regularized period P,q,(¢)
coincides with the (H,1)-period.

Lemma 12.4. Assumel > 4. Let (\,s) be an element of Cx Xg such that 2Re(\) > 1, q(s) > 2Re(N)+1
and 1/2 > Re(\) + 1. Then, for any rapidly decreasing function ¢ € C™(ZyGp\Gu)[n]¥°™ such that
R(W ) =0 for all v € Yo, we have

(T (nls), R(Ts(s)p) = { [] 2" }vol(Hsn\HsnKo(n) Pic, (7).

VEY oo
where C(2) = [[,ex.. C1,(2)-

Proof. The proof is given in the same way as [47, Lemma 8.2] with the aid of Lemma 11.3 and Proposition
12.2. We note that Pj, ,(9) is well-defined because SC; belongs to B. O

Assume [ > 4. Given a holomorphic function a(s) on Xg such that a(es) = a(s) for all ¢ € {£1}7, we
define the renormalized smoothed kernel

R 1
W, (nfas g) = (

2mi

#5
) [ whawlsio)ainsts
Ls(c)

for Re(\) > 0 and ¢ € R such that ¢(c) > sup(Re(\) + 1,2), where fls(c)f(s) dus(s) means the
multidimensional contour integral along the slice Lg(c) oriented naturally, which is as in the beginning
of §7, with respect to the form dus(s) = [],cg dito(s,) with

d/u'v(sv) =271 log g, (q1(;1+8)/2 - q1(;1is)/2) dsy.
For Re(A) > 0, let us consider the Poincaré series
(12.1) U \(nfasg) = D> Uha(nlasg), g€ G
YEHR\GF
In the same way as [47], we analyze this series and obtain the following.
Lemma 12.5. (1) The series \ilfB)A(n|a;g) converges absolutely and locally uniformly in (A, g) €
Re(\) > 0} x Ga. The function g — WL\ (nlas g) is continuous on Gy, left ZaG p-invariant,
B
and right Ko(n)-invariant; moreover it satisfies
(12.2) W\ (nfas gky) = 7, (ko) W) 5 (0o g)

for allv € ¥ and k, € Kg.
(2) For Re(\) > 0, the function lil%,)\(nm;g) belongs to L™ (ZyGp\Gy) for any m > 0 such that
m(1 —Re(N)) < 1.
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Proof. The argument in the proof of [47, Proposition 9.1] works with a minor modification; We use Z; 5 4.5
and ;4 s given in the proof of Lemma 12.3. g

Proposition 12.6. For 1/2 < Re(\) < 1/2 — 1, the function \i'fB)A(n|a;g) is cuspidal.
Proof. From Proposition 11.1 and Lemma 12.5, we have the equations

(12.3) R(W,) W}, , (n]as ) =0, g € Ga,

(12.4) R(Qv)‘i’lﬁ,,\("\a;g) = 271(112; - 2lv)\ilf37,\(n|a;g), g€ Gy

for all v € ¥,. Hence, by (12.4), there exists f € C2°(Gy) such that \illﬁ)\(n\a) * f = \illﬁ)\(nm) by [2,
Theorem 2.14]. By Lemma 12.5 (2), \illﬂ’A(n\a;g) belongs to L?(ZyGr\Ga)¥o™. Thus, for any X € goo,
the derivative R(X)‘illﬁ’/\(n|a) = \il,l@)\(nm) * R(—X)f also belongs to L?(ZyGp\Gy)¥o™. Let V be
the (goo, Koo )-submodule of L?(Z,Gp\Gx)¥0™ generated by \Illﬁ)\(n\a). From (12.2) and (12.3), V is
decomposed into a finite sum of the discrete series representation K,ex_ D;, of PGL(2, F ®gR) of weight

(Iy)ves,,. By Wallach’s criterion [49, Theorem 4.3], the space V is contained in the cuspidal part of
L2(ZyGF\Gy). O

By Proposition 12.6, for 1/2 < Re(\) < /2 — 1, the function 'i’%y/\(n|a; g) has the spectral expansion

(12.5) U \(njesg) = Y > (Th L (mlo)le) 2(9)-

7'rel_[cus(l n) CPEB(ﬂ' l n)

Here (-|-) 72 is the L?-inner product on L?(ZyG r\G4) and B(r;1,n) is an orthonormal basis of Vy [r;]¥0(®).
From the finite dimensionality of

{9 € LA(ZuGp\Gu)[n]5o™ | ROV,)p = 0 (Vo € o0},

the sum in (12.5) is finite and the equality holds pointwisely for all g.

13. SPECTRAL EXPANSIONS

From this section until §18, we fix a family | = (I,),ex., € (2N)¥>< an ideal n C o, a character n of
F>*\A* such that n* = 1 whose conductor f, is relatively prime to n, and a finite subset S C Sg, —S(nf,).
Using the spectral expansion (12.5), we show that \illﬁ L (n|a; ¢g) has an entire extension to the whole A-
plane. As the value at A = 0 of the entire extension, we define the regularized kernel \Illeg(n|a; g) and
obtain its spectral expression. The upshot of this section is Proposition 13.6, which gives the period
integral of the regularized kernel.

13.1. Extremal Whittaker vectors of discrete series. For v € X, let m, be the discrete series
representation of PGL(2,R) of minimal K%-type I, > 2. Let V,, denote the Whittaker model of m,
with respect to the character ¢¥p, (see §1.3). It is known that V [7,] contains a unique vector rj)fjjv
characterized by the formula

(13.1) o5, ([49]) = 2lyllr/2e*™5(y < 0)

for any y € R*. We remark that gbé”m is extremal, i.e., m, (W)(bé”jv =0, and Vy [n,] = Cgf)é”’v. The local
standard L-factor of m, is given by L(s,m,) = Ic(s + (I, — 1)/2), and the local epsilon factor of 7, is
given as €(s, m, ® sgn™, Yp, ) = ilv for m € {0,1}.
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13.2. Construction of a basis. Let (7, V) be an irreducible cuspidal automorphic representation of
G with trivial central character such that V, C L?(Z,Gp\Ga). We fix a family {(m,, Vz,)} ves, of
unitarizable irreducible admissible representations of G, with V., being contained in the ¥ p -Whittaker
functions on G, such that m = @,y 7. Given an ideal n of 0 and I = (I,)vex,, € (2N)¥>=, let
ITeyus(l,n) denote the set of all those cuspidal representations 7 such that 7, = D;  for any v € ¥ and
the conductor §, of m divides n.

For a fixed 7 € Ileys(l, n), we write Ar(n) for A2(n) = [],_, Map(Sk(nf;1),{0,...,k}), where n is the
maximal non-negative integer m such that Sy, (nf, 1) # (. By the same procedure as in §3.1, corresponding
to each p = (pr)7_; € Ar(n), we have a cusp form ¢y . , € Vi [1]%0(™) as the image of the decomposable

tensor
X 4.2 @ dpwe® &Q  doo

V€Yo k=1 vESk(nf;l) ueEﬁ,,fs(nf;I)

noy)

by the isomorphism V; = @, 5, Vx,, where for each v € Xy, the system {¢y .} is the basis of ol
constructed in [41]. In this way, we have an orthogonal basis {¢; ., | p € Ax(n)} of the finite dimensional
space Vy[n]¥o(™ equipped with the L2-inner product on ZyGp\Ga (cf. [41, Propdosition 17]). The
vector ¢y x o With po(v) = 0 for all v € Xg, is denoted by ore.

We note that if ¢ € C®(Z,Gr\Gy) is rapidly decreasmg on &1, then by [47, Lemma 7.3], the period
P, (¢) coincides with the global zeta integral Z*(1/2,7, ¢) fFX\AX (169118 %)) m(tx;;) d*t, which
is absolutely convergent. The following proposition is obtained by computing the global zeta integral;

the proof is a minor modification of that of [41, Main Theorem A].

Proposition 13.1. For any p € Az(n), @i, has the reqularized (H,n)-period given by
Pl (¢rr0) = 27 (1/2,m,00m0) = (DG [ @ty ol DIL(L/2,7 @ ).
uES(nf,, )

Here we set p(v) = pi(v) for each v € Sk(nf;1) and (U) (M, 1) is the constant given in Proposition
3.1 (c¢f. [41, Main Theorem A]).

Remark: Here we note that, throughout [41], it is assumed that 7,(—1) = 1 for all v € ¥, and hence
(=1)<( does not appear in [41, Main Theorem A].
Set

]Pm(ﬂ';l,t‘l)z Z Preg( )Png( )7

pEB(m;l,n)

where B(m;1,n) is an orthonormal basis of V;[r]¥0(™),
Lemma 13.2. The sum P"(w;1,n) is independent of the choice of B(w;l,n). We have

R e

and that the value (—1)=G(n)~'P"(r;1,n) is non-negative. Here wijl(m) is the explicit non-negative
constant given in Lemma 3.6. In particular, if n satisfies n,(w,) = —1 for all v € S(n), then wi(7) =0
unless nf! is a square of integral ideal.

Proof. With the aid of Proposition 13.1, we obtain the assertion in the same way as Lemma 3.6. The
non-negativity of (—1)=<WG(n) =P (x; l7 n) follows from wy (7) > 0 combined with the non-negativity of
L(1/2,7)L(1/2,m ® n) proved in [18]. O

The sign of the functional equation of the L-function L(s,7)L(s, 7 ® n) is given as follows.
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Lemma 13.3. We have €(1/2,7)e(1/2,7 @n) = (=1)5(§,). In particular, L(1/2,7)L(1/2,7®n) =0
unless (—1)<M7(f,) = 1.

Proof. Since 1, is even for all v € ¥, by virtue of Lemma 3.7, we have

e(1/2,me(t/2,xmen) = [ & [T w0 I n@™) ={ ] n(=0Yil) = (=D i)
VEX oo veS(fn) vES(fr) VEDfin

By the functional equation, we are done. ]

13.3. Adjoint L-functions : holomorphic case. Let E(v, ) = E1,4,(v,9) = > cp,\ap y(yg) /2
for Re(v) > 1 be the K-spherical Eisenstein series on Gy (see §3.7).

Lemma 13.4. For any 7 € Heys(l,n),
w2 [ AT @Ees - Loy
ZyGr\Ga

(] » g mszf "2 Cr(s)L(s,m, Ad) I @ PZ,(s)  14grt
VEX o . Ko(f‘ﬂ')] CF(QS) c(ﬂ-v)(s_l)L(Syﬂ'vaAd) 1+ q;S

for Re(s) > 0 and ||op3"]1* = Q{Hvexw 21~ l“}N(f,r)[Kﬁn Ko(f:)] 1L (1,7, Ad). Here we set Sy :=
{v € Zan|ordy (fx) > 2} and Zu(s) := [ [px P00 ([ F]K) do,0 ([§ F]F)[t5~ d*tdk for v € By

Proof. By the standard procedure, we see that the left-hand side of (13 2) is a product of the integrals
Z,(s) over all v € B, where Z,(s) for each v € Y, is defined for ¢f, in the same way as the non-
archimedean case. If v € Y, using (13.1), we easily have Z,(s) = 21 LDr(s)Tr(25) " L(s, my, Ad).
Together with the computations at finite places (cf. [47, Lemma 2.14 and Corollary 2.15] and Lemma
3.8) , this completes the proof. O

Remark : Nelson, Pitale and Saha [32] also considered the integrals Z,(s) and gave explicit formulas of
Z,(s). However, as already remarked in [32, 1.3], it seems difficult to give a simple formula of Z,(s) for
v E Sy.

13.3.1. Spectral parameters. Let m € lcus(l,n). For any v € ¥g, — S(fr), the v-th component , of 7 is
isomorphic to the K,-spherical principal series representation
L(vy) = Indg (|- [/ 2 & - [77%)

where v, belongs to [0, 27(logq,) U {z +iy | z € (0,1), y € {0,27(logq,)~'}}. The point vg(m) =
(Vy)ves of Xg is called the spectral parameter of 7 at S.

13.4. The spectral side. We can describe the coefficients of \illﬁ’/\(n|a) in the L2-expansion (12.5) in
terms of (H,1)-period integrals and the spectral parameters of representations in Il..s(l, n).

Lemma 13.5. Let m € Tcus(l,n) and vg(w) = (vp())ves the spectral parameter of m at S. Then, for
any ¢ € Vi [n]¥o™ and for 1/2 < Re()\) < 1/2 — 1, we have

(Fhamla)lp)s = (~1)F TT 20705 *[Kan : Ko(m)] ™ alvs(m) Pie, A (9)-
VEY oo

Proof. In the same way as [47, Lemma 9.2] with the aid of the majorant Z; ge(x)—e,q(c),s for any suffi-
ciently small € > 0 (Note: in the proof of [47, Lemma 9.2], the majorant of the integral (9.3) should be

ERe(A)—c,q(c),Sxn ); WE have

(W, (n]a) ) 2 = ( L

#S
) / (T (n]s), @ha(s)dps(s)
Ls(c)

211
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for any rapidly decreasing function ¢ € C™(ZyGr\Gy)[n]¥°™, where ¢(c) is sufficiently large. Con-
trary to [47, Lemma 9.2], the condition Re(A) > 1 is not needed. Indeed, in the proof of [47, Lemma
9.2], the estimate |p(g)| < ||g|[it is replaced with |¢(g)| < ||g||,™ for any m > 0, and moreover,
[y~ Re@H1H+2exy ig replaced with [y~ Re()‘)_m"’edxyA (Note: in the proof of [47, Lemma 9.2],
[0y BT @y should be [y~ ReVTIT2¢qxy) Thus, (¥4 | (nfa)|e) L2 is equal to

(2;)“ / (a0l RETS(s)9

% {H(q1(]1+0)/2 + q’l(Jlfuv(w))/2 _ q1€1+sv)/2 _ qq(jlfsv)/2)}fla(s)d‘us(s).
vES
Here we use gi' T )/2 4 ofl=7(M)/2 ¢ R By Lemma 12.4, <\Illﬂ)\(n| ), R(Ts(s))@) is independent of

S
s, and hence [47, Lemma 9.5] works. We also note vol(Hgn\HanKo(n)) = D;1/2[Kﬁn s Ko(n)] (cf. [47,
Lemma 8.3]). As a result, we obtain the desired formula. O

By this lemma and (12.5), we have

Wl \(mlasg) =(-DF [] 27305 K : Ko(n)]
VEY oo

xS Y a(s(m)Ploa@)ele), g€ Ca.

TE€lcus (I,n) wEB(m;l,n)

The integral PBC (@) is continued to an entire function in A for any cusp form ¢ by [47, Lemma 7.3]. As a

finite linear combination of such, the function lIl 1 (n]a; g) has a holomorphic analytic continuation to the
whole A-plane. Since CTx—oPjc, A(#) = Ci(0 ) reg@) B(0), we can define the regularized automorphic
smoothed kernel lIlreg(n|oz, g) by the relation

CTA:O‘:A[’,IB,)\(n|a;g) = ‘I’reg<n|a g)ﬁ(o>

for any 5 € B. Indeed, we have the expression

Lo (D [T 20 C(0) DR .
@' (n]asg) = K Tom) > wez%;m a(vs(m)) PLy(#)e(9),

mEleys (I,1) ,n)

which is valid pointwisely with the summation being finite. From this, the regularized (H,n)-period
P2 (! (n|)) is explicitly described as follows.

reg reg

Proposition 13.6. Suppose > 4. The function \Ilreg( |) has the regularized (H,n)-period given by

Pl (Wl (nfa)) =(~)*{ ] 2 )}D UKsn : Ko(n)] ™! x (1)< G(n)

VEX oo l /2
L(1/2,m)L(1/2,7 @ n)

- WGHZ(l n) R IN () [Kfin : Ko(fx)] LS~ (1, W,Ad)a(VS(W))'

Proof. By cuspidality of ¢ € B(m;l,n), PL,(¢) becomes the usual absolutely convergent integral

[ ) e

60



Thus, by term wise integration, we have

PlLy (¥ g (nfa)) =(~1)#5{ H 21~ 11C1(0) DR 2 [Kiin : Ko(n)] ™!

< S Y PL(9)PL(9)a(vs(m).

7m€llcus (I,n) pEB(m;l,n)

Then we obtain the assertion by Lemma 11.4 (ii), Proposition 13.1, Lemmas 13.2 and 13.4. O

14. GEOMETRIC EXPANSIONS

Suppose | = inf,ex__ I, > 4. In this section and the next, we compute the quantity Plfég(\Ilﬁcg (n]a)) by
using the series expression (12.1) (cf. §9). The firt step is to break the sum in (12.1) over Hp\Gp to a sum
of subseries according to double cosets HrdHp. For § € G, we put St(§) := Hrp N6~ Hpd. Then, the

following elements of G form a complete set of representatives of the double coset space Hp\Gr/Hp:

e=[thw=09%1
u:[(lJHvE:H(lj]vqu_H ()1] ﬂwO:[l :1]7
& =[N 1] be FX — {1}

Moreover, we have St(e) = St(wg) = Hp and St(§) = Zp for any § € {u,u, uwg, uwe} U {d|b € F* —
{—1}}. (See [35, Lemma 1] and [47, Lemma 11.1]). Thus we obtain the following expression for Re(\) > 0:

Wl (nlas [§9100 %)) ZJ5 B\ a;t),

where § runs through the double coset representatives listed above and, for each such 9, Jg(ﬁ, A a;t) is
the sum of \Ilﬂ » (nla; o[ § ][1 “n1) for v € St(6)\Hp.

Lemma 14.1. The function \ — JL(B,\, a;t) and X — quO (B, A\, ;1) are entire on C. Moreover their
)

values at X = 0 are Jl;(a;t)3(0) and i[5(n =0)J}(a; 1) B(0), respectively, where

1

#S
Hast) =ati, =o) (51 ) [ Tt

with [ = Zvezw l, and

Ti(s) = [[(1— g, o tD/2) 71 (1 — gt D/2)

veES

Proof. Since \IIS,O)(ZD; 15) = 1 for all v € X, the assertion is proved in the same way as [47, Lemma
11.2]. O
We put
TL(B. A ast) = JL (B @ t) + T, (B, A, )
and

JEB A ast) = Tl (BN o t) + JL(B, A, i, t).

Lemma 14.2. For x € {u,a}, the function A — JL(B, )\, a;t) on Re(\) > 0 has a holomorphic continu-
ation to C whose value at A = 0 is equal to JL(c;t)3(0), where

Ji(a;t):<1.)#s > /LS(C){\I’I( (nlsi [5 o 116 % ]) + 20 (nlss [ 50 915, $Two) }a(S)dus(S)

21
a€eFX*
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and

Ti(ast) = (;m.)#s )3

a€F*

/ . {0 ol 3 005D + 90 (s [ 1102, Do) b

Proof. We follow the proof of [47, Lemma 11.3]. Take o > 0 such that [/2 > o + 1. Let us examine
i]}é(ﬂh, A, a;t). First we consider the sum of the functions \I!lﬁ)\ (n]osul§ (1)]['161 ?][é 1)) over all a € F*.
e have

W (nlosul§ 9107”915 1)

:<21m‘>#s/ms<c){23ri LﬂzJ(r)xUtI W) (ns; (39t ][5 7))

I s [ o 1 D) fals)ds )
Here c is taken so that ¢(c) is sufficiently large. There exists an ideal a of F' such that the estimate

W (nlsi (3o 1 D] < fla),  a€ F¥(s,2) € Ls(e) x Lo

1 o1
holds, where

H |1+ iant; 5™ Z/QHsupl layty t],)~2a©)=2) H d(ay € aoy), a€A.

VEY veS Zein—S
Thus to establish the absolute convergence of the sum of \i/,lgl\ (nla;ul§ 9], (1)][(1) ?n]) over a € F*,
it is enough to show »  _px f ( ) < 400. The convergence of the latter sum in turn follows from the

convergence of the integral [, f 4 f(a)da, which is a product of the archimedean integrals for all v € ¥
convergent when [,,/2 — o > 1 and the non-archimedean ones convergent for sufficiently large g(c).

The sum of the functions ‘11%7A (nla;awo[§ 9], ‘N[(l) “n]) over a € F* is analyzed similarly. By the
estimate

+
‘\I/l( ?) (n|s; [atl,l ?][,;” ?]wo)’ < f(a), a€F*,(s,z2) €lLg(c)x Ly,

the problem is reduced to the convergence of the same series ), .« f(a) as above. Hence the assertion
on JL(B, A, a;t) is obtained. The integral J.(3,\, a;t) is examined in the same way. This completes the
proof. O

14.1. Hyperbolic terms. We consider the convergence of
Hyp(BXast) = Y J5 (B, A ;).
beFx —{—1}
Let v € ¥oo. Fort € FX, b€ F —{—1} and o, p € R, set
FO s t,0) = {(b+ 1)2% + b2}/ 270/ (1 4 472) /2l /4y ~20
and
Moo p.1u5b) = b+ 1 TP ol 4 [ O bz et

where ¢_ = inf(0, ¢) for ¢ € R.
Lemma 14.3. Let v € X, and let l, > 2 be an even integer. Then, for any o € R we have

‘\Ilq()z) (l'u; [1+f_1 1][0 1])‘ |b| g‘ﬂg ﬂ-lIm(Z)l/2.f ( t7b)a te FU><7 be F’UX - {_1}7 S Lo’~

Proof. By writing the Iwasawa decomposition [ 10~ "1 HENE [ 2] [4 7]k explicitly, we have |1+iz| =

(14+t72)Y2((b + 1)%t% + b*)1/2. Then the assertion follows from Proposition 11.1 and Lemma 11.2. O
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Lemma 14.4. Letv € ¥ and [, € 2Z>2. Let 0,p € R. Then the estimate

(14.1) My(0,p,1y;b) < |b+ 1) /4022 e=p)- = pe pX — {1}

holds if 1,/4 > |p| — o/2 and l,/4 > o/2. Moreover, for ¢ > 0 and ¢ € R, the function |b(b +
Ve by /DN (5, p,1,:b) in b € Fy is locally bounded if

(142)  |lpl—o|+(c—p)-<e/3<1, L/d>0c/2—(c—p)-+1, (c+1)/4>0/2—(c—p)-.
Proof. The assertion is proved in a similar way to [47, Lemma 11.14]. By b% +t2(b+1)? > 2| |b+ 1| |¢|
and 0/2 —1,,/4 < 0, we estimate

o0
My (0, p, Ly b) <[b + 1|~ (0= [p|l/4=0/2 x / {1o][b + L[]}/ 271 A1 4 ¢72) o2l A oty
0

=|b+ 1|—l1;/4+0’/2—(0’—p)7 /oo |t|p+lu/4+0’/2(1 +t2)_0/2_lv/4dxt.
0

The integral converges absolutely if 1,/4 > |p| — 0/2. In the same way as in the proof of [47, Lemma
11.14], we have

(b + 1)|€ |b| /4D N (0, p, 1,3 b)
Kb + 1|77 lpI=lo=p)—Fe/3 p (et D)/dta/2=Ipl+e/3 |p(h 4 1)|/Sm(r; b(b + 1)),

where 7 = 1, + 20 — 4|p| — 4¢/3 and m(r;b(b+ 1)) = [7°[(1 + t72)(b? + t2(b+ 1)2}] /4 d*¢t. By [47,
Lemma 15.5], the function [b(b + 1)|¢m(r; b(b + 1)) (with 7 > 0) is 1ocally bounded on F,. From this,
[b(b 4 1)|¢|b| =t/ 4+ (HD/AN (0, p, 1,5 D) is also locally bounded on F, if

o—|pl—(c—p)-+¢€¢/320, r=1,+20—4|p|—4¢/3>0, (c+1)/44+0/2—|p|+¢€/3=0
This condition is satisfied by (14.2). Thus, under (14.2), the estimate (14.1) is extendable to F),; from
this, the last assertion is obvious. O

Let ¢ = (¢y)ves € RS, 1= (Iy)ves., € (2Zs2)¥=,t € AX, be F* —{-1} and o, p € R. For v € S, we
put
1, || D]y )~ (ot D)/ 24 tyly <1
(U)(Cv,tv,b) inf(l, ‘tv|;2)o Sup( ‘ |v | | ) s (| ‘ )7
sup(L, [to]o[b+ o) 7@ FD2ET ([t |, > 1),
M, (o, p, ¢;b) = sup(1, [b + 1],,) ~(HD/AFo/2Hlo=rl,
and for v € Xg, — 5, we put
37 (0, b) = inf(1, [t,[73)7 6(b € p 7O g2 bl < Jtulo < b+ 111,
Then, define
N(njo,l,e;t,b) =[] [] £7uit,d) [T £57(costo, b)

VEX oo veSs

< [ otto € no,) {7 (.. b) 11 £ (t,,b),

’L)GS(I’I) UGEf;nf(SUS(n))

M(njo,p,1,c;0) = [ 1Bl "/ *F72 My (0, p, 1; b) [T 101, /472 M (0, ps e, D)
VEY oo veS
< [ supplgt) J] 6 €f, noy)
VEXfin VEXfin—S
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and Mc(n|o, p,1,¢;b) = {[[,ex_ [6(b+ 1)[5} M(n|o, p,l,c;b) for € > 0. By closely following [47, §11.4],
we have the following series of lemmas.

Lemma 14.5. If ¢(c) > |o| + 1, then we have

‘\Ilfz) (nls; du[ § (f][é ””1"])‘ < N(n|o,1,c;t,b)etr™ M2 (5 §) e L, x Lg(c), be F* —{—1}, t € A~

with the implied constant is independent of n.

Proof. This follows from Lemma 14.3, [47, Corollary 11.6, Lemma 11.10] and [47, Corollary 11.7], which
can be generalized to the case of arbitrary ideals n; in the assertion of [47, Corollary 11.7], the factor
d(t € py) is replaced with §(¢ € no,). O

Lemma 14.6. If q(c) > |o|+ |p| + 1, /4 > sup(0/2, |p| — 0/2) and o # *p, then we have
/ N(n|o,l,¢c;t,b)|t|hd*t <. Mc(n|o, p,1,c;b)N(n)e, be F* —{-1}
AX

for any € > 0, with the implied constant independent of the ideal n.
Proof. We can apply the same argument in [47, Lemma 11.16] by using [, in place of ¢, + 1 for all
LE Yo O

Lemma 14.7. Let U be a compact subset of A*. If q(c) > |o| + |p| + 1, 1/4 > sup(c/2,|p| — 0/2) and
o # +p, then we have

> N(nlo,l,¢;t,b) < Mc(n|o,p,1,¢;b)N(n),  beF*, teU
teFx

for any € > 0, with the implied constant independent of the ideal n.

Proof. This follows from Lemma 14.6 and the argument in [47, Corollary 11.17]. g

Lemma 14.8. If o +p > —1, 0 # £p, (c+1)/4 > 5lo|/2+ 2|p| + 1, /4 > |o| + |p| + 1 and 1/2 >
(c+1)/4+3|o|/2+ |p| + 1 hold, then, we have the estimate

ST M.nfo,p,l,c;b) < N(n)~(c+D/4F0/2Ho
beF* —{—1}

for some € > 0 such that |[p| — o| + (0 — p)— < €/3 <1 and 1/2> (c+1)/4+3|o|/2+ |p| + 1 + 2¢, with
the implied constant independent of n. Here ¢ = (¢y)ypes with ¢, = ¢ (Vv € 5).

Proof. We give a proof in a similar way to [47, Lemma 11.19], replacing ¢, + 1 with [, for all . € X
Under the assumption on I, g, p, ¢ in this lemma, the series

Yo LT Bl DM (o, p, L )] ] sup(L, 17 H) Mo (0, p, e 0)} IN(B(b + 1)),
beo(S)—{—-1} vEX vES

which is denoted by Ag(a, p, 1, ¢), converges for some € > 0 such that ||p| — 0|+ (0 —p)- <e/3<1and

/2 > (c+1)/4+3|o|/2 + |p| + 1 + 2¢. Here 0(S) denotes the S-integer ring of F. Indeed, this follows

from Lemma 14.4 and [47, Lemma 11.18]. By noting the Artin product formula |b|, = 1 for b € F*,| we
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have

> Mc(nlo,p,1,¢;b)

beFx—{—1}
= 3 {TT swoa vl )3T Ibl; CH0/449/2 0, (0, p, ;b))
befy 'no(S)—{0,—1} vE€Xsin ves
< { T 1oI75/4+/2M, (0, p, 13 0)}IN(B(b + 1)) |
VEY oo

= > { II sue(n, jplg o)l =er2y

bef, 'no(S)/0(S)* vEDtn—S
b0, 1

x> LT bl AT AM (0, p, Ly ub) ] ] sup(L, [ublSTP) M, (o, p, ¢; ub)}
u€o(S)* vEX veS
X |N(ub(ub + 1))[
< D T su g BT A2 Ag (o, .1, ¢).
bef, 'no(S)/0(S)* vEDtn—S
b#0,—1

We note that the series in the last as above is majorized by N(n)~(c+1/4+o/2+otrl a5 in the proof of [47,
Lemma 11.19]. O

Lemma 14.9. Let | = (I,)pes., € (2Z>2)"= and c¢,0 € R. Assume the following conditions:
L =6,

o> —1,

(c+1)/4>9|0]/2+1,

1/2> (c+1)/4+5lo]/2 + 1.

Then, for any compact subset U of A*, the series

> | (sl 0 )|

beF*x—{—1}acFX*

converges uniformly in (t,z,s) € U x L, xLg(c), and there exists € > 0 such that, for any p € R satisfying
0<|lp| —0o| <eand o+ p>—1, the integral

/tEAX

converges uniformly in (z,8) € L, x Lg(c).

i (nls: o[ 9100 )| IHg e
beFx—{—1}

Proof. By assumption, we can take p € R such that (¢ +1)/4 > 5|0|/24+2|p|+ 1, 0+p > —1,1/4 >
lo| +|pl + 1 and /2 > (c+ 1)/4 + 3|o|/2 + |p| + 1 (we can take p = 0 if 0 > —1 and o # 0). Thus
the assertion follows from Lemmas 14.5, 14.6, 14.7, and 14.8. We remark that the assumption [ > 6 is
indispensable in our estimation of hyperbolic terms as above. Indeed, the third and the fourth inequalities
in Lemma 14.9 imply [/2 > 7|o| + 2, and hence [ > 4. O

Lemma 14.10. Suppose [ > 6. The function Jﬁyp(ﬁ, A, a;t) on Re(A) > 1 has a holomorphic continua-
tion to C whose value at X = 0 equals J}llyp(a;t)ﬁ(O), where

7,0 a Ty
Rty = 3 3 (nas a4 911050
beF*x—{—1}acFX
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where we put

#5
¥ (n]a; ) = <1> /IL (c) ¥ (ns; g)a(s)dpus (s)

271

for c € RS such that q(c) > |Re(2)|+1 (cf. §7). The series converges absolutely and uniformly int € AX.
Proof. This follows from Lemma 14.9 in the same way as [47, Lemma 11.21]. O

From Lemmas 14.1, 14.2 and 14.10, we have
(14.3) Wi, (nas [§9][5 77]) = (L+id'6(n = o)) Jig(ast) + Tl (ast) + Jh(ast) + iy (ast)
for any t € A*.

15. GEOMETRIC SIDE

Suppose | = infyex__ I, = 6. We fix a holomorphic function a(s) on Xg such that a(es) = a(s) for any

e € {£1}°. Let 8 € B as before. For fj € {id,u, @, hyp}, we set
T8 ) = / " Ty (s ){Ba(Jt]a) + Ba([tly ) In(tay)dt.
FX X

In this section, we shall show that this integral converges absolutely when Re(A) > 1 and has a mero-
morphic continuation to a neighborhood of A = 0; at the same time, we determine the constant term in
its Laurent expansion at A = 0. As a result, by the identity

Pl (B (n]a) = T (1 8, A5 0) + da(n = 0)T0 (5 B, As @) + T0(L B, s @) + T2 B, A @) + I7 (1 8, 4 )

obtained from (14.3), we have another expression of reg’(\Ilreg’ (n]ar)) already computed in Proposition 13.6
by means of the spectral expansion.

For the term J,(l; 8, A; &), we have the following lemma, which is proved in the same way as [47,
Lemma 11.2].

Lemma 15.1. For Re(\) > 0, the integral I, (I; 8, A; ) converges absolutely and we have

271 A

Moreover, the function I?,(1; B, X; &) in A has a meromorphic continuation to C with CT x=oJ,(1; 8, \; ) =
0.

#S
L1 B, A @) = 6,y 1vol(F7\A )( L ) /}L ( )Tg(s)a(s)dUS(s)w(O),

Let us examine the terms J?(I; 3, \; ) and J2(I; 8, \;). Assume that q(Re(s)) > Re(\) > o and
1 <o <1/2 and set

1 B(2) 0) L
+ . _ . 1z, * +z
Upy(Xis) = 27ri /on Z4+ A /Ax O (nls; [§ 1 1o % ) n(tay)[t]=d " tdz,

1 B(2)
+ . _ (0) .7 1.0 1 0 * +z
U9 = o [ 25 [ s L D) n iz

and

Th(zi8) = [[(1 = mo(wo)g, HEFI2) 711 — gfotD/2)7
veSs

n (. 1/2 I'(lo/2+2) jev 4 n(,.
T (28) =D {#(o/fn) 1{1)!;[ z+ev) (lv/2) cos (5(*Z+ev))}Ts(Z,s).

Here €, € {0,1} is the sign of 7, for v € X, (see §1.4).
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Lemma 15.2. The double integrals U(i[n and Ulim converge absolutely and

1
Uy ) = 57 [ PN T LG ) (1T, ()

IB < z z~ .
U is) = g [ NG TN 7000 = o)L (i T ()
Fo
where | = Yoves, v and e(n) =3 v €

Proof. This is proved in the same way as [47, Lemma 12.3]; to compute the archimedean integral, we use
Lemma 11.6. O

By 1 < 0 < 1/2, the possible poles of the integrand of Ugfn()\;s) in the region —o < Re(z) < o are
z =0,—1. In fact, we observe that the integrand is holomorphic at z = —1. We shift the contour L_, to
Ly; by the residue theorem,

1 B(z . . B(0 .
U Ni8) =5r | 2NN L2 (-1 T (i) = 20, Re(-1) T8,
where 6,1 = 6(n =1) and Rr = Ress=1 (r(s). In a similar manner,
1 Bz . 7 B0 7
Ul'fn()\;s) =5 ; z—(l—))\N(f") L(—2,m)6(n=0)4 T3, (258)dz — %5%1 Rpd(n=0)i Ti(s).

Define Cy(n) and R(n) b
L(s,m) = R(n)(s = 1)~ + Co(n) + O(s = 1), (s = 1).
We remark that Rp = R(n) if n is trivial.

Lemma 15.3. The function A — J1(l; 8, \;a) on Re(A) > 1 has a meromorphic continuation to the
region Re(X) > —1/2. The constant term of J1(1; B, X\; ) at A = 0 equals J1(1,n|a))3(0). Here we put

o 1\*°
I7(1,nja) = (=1)<MG(n) D1 4 (=1)“Dij(n)i's(n = o)) (2M> /IL o T§(s)€Y , (s)(s)dps(s)
with
d ly/2— 1 o
€g,u(s) = 7-(-5(77)00(77) + R(n){ - 7F(CEuler + 10g7T Z Z Z (gbq—tl)/2 + IOg DF}

VEX o =

In particular, we have € (s) = Lan(1,1) if 1 is non-trivial.

Proof. By definition,

#5
1
JIG B, A a) = () / (Ugrn()\; s) + Ug.,,(A; s) + Ufrn(/\; s) + Uy, (A s))a(s)dus(s).
2mi Ls(e) 7 ’ 7
From Lemma 15.2 and the computation after it,

Tl B, M )
#8 .
N <1) / o &((—1)6(") +i'0(n = 0)){N(f,) *L(—z,n) Y%, (2;s)
Ls(c

2me y2mi Jp, 2+ A

(=)< +il5(n = o)
2

+N(fy)*L(z,m) T (—2;8) }dza(s)dpus(s) — TN 8,0 ),
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with 1 < o < [/2 and Re(\) > —o. Since o is arbitrary, this gives a meromorphic continuation of
J1(l; B, A\; ) to Re(\) > —1/2. By the above expression,

CTa=odi(l; 8, A )

1 #9 1 /B(Z) e(n . —z Yl .
N (m) /Ls<c> 7 [ ()T il = 0){N(f,) L(=zm) T (=:5)

Ly

+N(fy)*L(z,m) Y (—2;8) }dza(s)dus(s)

(-0 + o= [ P )+ e

z

z

—((—1)™ 4 §(n = 0)) Res.—q (W’fu(z)) — (—1)°™ 4 5(n = 0))B(0)CTs—0 ful2).

Here we put fu(2) = N(f;)"*L(—2,7)Tg,(z;s). By setting Tgvl(z;s) = D}/z{#(o/fn)x}”fgl(z;s), the

constant term is computed as follows:

CTacofu(2) = SNG) “2L(=2m) TS, (539)

z=0
:jz{N(fn)_z x 2D DYPN(,) Y2 {#(0 /1) Y6 () DY TN () VP L(z + 1,7)

. D;W{#wfn)*}1Tz,l<z;s>}

z=0

d N
=G (n) D}/* x dZ{vazL(z +1,1) x Tg,z(Z;S)}

z T%',l (Z7 S) |Z:0 }
T§,1(05 s)
h

Here €(n) = >, cx_ €. We note that Tg,l((); s) = (—im)<™MT%(0;s) holds by

U (=2)0(l,/2+2) .. (m
Ta(—2+ e)T/2)" (3C=+e)

&.‘& g

=G(n)Dy/ %f(")frg(s){aog Dr)R(n) + Co(n) + R(n)

= (—im)*

2=0

for v € Y. The logarithmic derivative of Té,l(z; s) at z = 0 is computed as

d —2)'(l, z Tz
> dzlog{zrr(R(Z)(r(f/er) Jcos (2)}

V€S o 220
d —(z+(s — s _
+ Z - log(1 — g GHse+D/2))=1(q _ glsut1)/2)=1
ves z=0
= ly/2 ! 1 1 —z log q.,
= Z Y(ly/ )*5 ogm + 51/) 5 —(=2) Y Jrzw
VEY o = veES qv

By the formulas

ly/2—1

e S N T I )

= ichlera

we are done.
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Assume that ¢(Re(s)) > Re(A) > o and 1 < ¢ < [/2. Analyzing the integrals

i /L /A WO (nfs; [19][L 1)) n(tat) [HE=d¥tdz,
+o X
0) * +2z 3%
27” ‘/Li Ax Il|S H—wn } O) n(txn)‘ﬂA d*tdz

in the same way as UZ; ();s), we obtain the following lemma.

Lemma 15.4. The function A\ — JL(I;8,X;«) on Re(\) > 1 has a meromorphic continuation to the
region Re(\) > —1/2. The constant term of J1(I; 8, \; ) at A = 0 equals J2(I,n|a)3(0). Here we put

_ I 1\**

T1.nle) = (-1 G DY () Witn) + 50 = o) (51) [ o S CalEab)dis(E)

s(c
with
€ o(s) =€, (s) + R(n) log N(n).
Let us consider the term Jﬁyp(l' B, A; «), which is, by definition, equal to
[0 0 e 1590 1357 D) (Bl + Aa(e o) .
beFx —{—1}

Lemma 15.5. Suppose | > 6. The integral Jzyp(l;ﬂ,)\;a) converges absolutely and has an analytic
continuation to the region Re(\) > —e for some ¢ > 0. Moreover, we have CT,\Zouﬂﬂyp(l;ﬁ,/\;a) =
Ty (lin]@)B(0). Here Iyl (I,n|a) is defined by
1\*°
> / K41, n|s) a(s) dus(s)

]Ls(c)

2

Bypltole) =
with
A= Y / B (nfs: 8y [£9] [120]) n(tal) de.
beF X —{—1}

Proof. We take ¢ € R such that [/2 —1 > (¢ + 1)/4. Then, from Lemma 14.9, there exists ¢ > 0 such
that, for 0 < |p| < € the integral

(15.1) /LS@ $)lldis |/

which is majorized by

dp7r|Im(z)|/2
[ laG)ldus(s) / ldel YD (M0, esb) + Mo(alo, —p, L)},
Ls(C) ‘Z+ | beFX —{—1}

S Gl 4108 1) [ + e e,

b€F>< (-1}

is convergent. By [t|k + [t],” > 2 (t € A*), the integral (15.1) is finite even for p = 0. Hence, we obtain
an analytic continuation of the function

hyp(l B, A; )

:(271Ti>#s/ms(c){21m L,,zﬁJ(rZ)A( > /AX v (nfs; s[4 9105 %))

beFx —{—1}

< (7 4+ 1] mlt?) d*t) dz}a(s)dus(s)
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in the variable A to the region Re(\) > —e. O

16. THE RELATIVE TRACE FORMULA FOR HOLOMORPHIC HILBERT MODULAR FORMS

Let n be an integral ideal of F', I = (I,)yex.. € (2N)¥= a family such that [, > 6 for all v € ¥, and
n a real valued character of F*\A* unramified at all v € S(n). Let f, denote the conductor of 7. We
assume (—1)<M7(n) = 1, where €(n) = > vex.. v is the sum of €, € {0,1} such that n, = sgn® for any
v € Yoo (see §1.4). Put [ = > ves. lv- Let S be a finite subset of ¥, disjoint from S(n) U S(f,). For
v € S, let A, be the space of all holomorphic functions a,(s,) in s, € C satisfying o, (s,) = a,(—$,) and

ay(Sy + ﬁgé ) = a(s,). We denote by Ag the space of all holomorphic functions o on C¥ such that for

each vy € S, the function s,, — a(s,,,s’) is contained in A, for all s’ € C5—{vo},

Theorem 16.1. For any function a € Ag, we have the identity

(16.1) Cln,S) > Thu(mlm)alvs(r)) = I nla) + Ihy, (1, n|e)
€ eys (I,n)

Here vg(m) = {vy(m) }oes is the spectral parameter of ™ at S (see §13.5.1),

C(l,n,S) = (-)*{ ] 27TFZ 0,/2) )}Dé; [Ksin : Ko(n)] 7',
VEX oo

" ) B e . L(1/2,7)L(1/2, 7 ®n)
Bha(rt) = 00D w) G5 1R, Rl £ (1A

with wy (7) given in Lemma 3.6, and

~ #S
Jﬂz(z,nm)=2(—1>f<">g<n>D;/2<1+ila<n=o))( 1.) / (L ls)ale)s(5).

2mi

1\*°
I (I,n|a () / KL(,ns) a(s)dus(s
L) = (5) [ Sb(nis)a(s) dus(e
with
s s - log g
ﬂg(lm\s):H(l—m(wu)q (s0+1)/2)=1(] _ gls2+1)/2) I{C%(l,nH—R(U)E ) q(svil)/g},
veES veS - Hv

Sy = S0 [0l (wls (60 )

beF* —{—1}
and
l,/2—1

C?;(L Il) = ﬂ'e(n)CO(n) + R(U){ - 7(CEuler + logﬂ') + log(DFN 1/2 + Z Z }
vEY s k=1

T =

We remark C'.(I,n) = Lgn(1,n) if n is non-trivial.
Proof. From Lemmas 15.1, 15.3, 15.4 and 15.5, reg(\Ill (n]a)) is given by the right-hand side of (16.1);

reg

the left-hand side is pr0v1ded by Proposition 13.6. d

We restrict our attention to the test functions of the form a(s) =[], g oz,(Jm”)(sU) with
(16.2) agm)( v) = qms“’/2 + q_"““/2 v €S, me Ng.

As is well known, these functions form a C-basis of the image of the spherical Hecke algebra H(G,,, K, ) by
the spherical Fourier transform. Thus, by restricting our consideration to these functions, no generality
is lost practically. The following two theorems are proved in §17 and §18.

70



Theorem 16.2. For a = Qycsay,, we have

olnla)y= > {J] 7 Gad [T 7ot { I 700}

beF*X—{—1} veS UISPIINS VEXfin —S

Here J! (b; o) is given by Lemma 17.2, Jv(b) is given by Lemmas 17.4, 17.5 and 17.9, and J}* (l,;b)
s given by Lemma 17.15.

Theorem 16.3. For a = Qyucs50,, we have

T1(1.nla) = 2(=1)MG(n) DY*(1 + ié(n = 0))

x { CLn) [T U (aw) + R) > UMew) [ Ui (cw)

veS veES weS—{v}
Here Ul (o) and U} (o) are explicitly given in Proposition 18.1.

16.1. Proofs of Theorems 0.6 and 0.7. By the same procedure as in the proof of Theorems 0.2, with
the aid of N-transform (cf. §10.4), the estimation is reduced to that for the similar average over Il.,s(, 1)
(in place of IT*.(I,n)). Since J¥(I, n|a) is evaluated by [47, Lemma 13.15], from Theorem 16.1, it suffices
to show that Jj (I,n|a) = O (N(n)~L/241%€) for any sufficiently small € > 0, where [ = inf,cx_ [,. This
follows from the proof of Lemma 15.5 and Lemmas 14.7 and 14.8 by taking ¢ € R and p # 0 such that
1/2—1>(c+1)/4> (c+1)/4—|p| >1/2—1—€>1and |p| is sufficiently small. By Lemma 10.13 with
¢ =1/2 —1, the exponent of the error term is —inf(c,1) + €= —1+e. O
Next we prove Theorem 0.7. Theorem 0.6 is also valid for any function

HP u/2+q u/2)
vES

where P,(X) € C[X] for each v € S. Therefore, with the aid of the Stone-Weierstrass theorem, we have

2T l — 2 1 L(1/277T)L(1/27 ™R 77) —vy(m)/2 l/rU(Tr)/Q
{ H { 111/2 -1 '}2} x (Il)l/(ﬂ) GH*Z(Z 0 LSW(Lﬂ-’Ad) f( (qv + qy )UGS )
4D (L) /[ e @)

for any continuous function f € C([_272]S) as N(n) - oo inn € I;{,,- Here we set dus,n(fﬂ) =
®ves Aty n, () and

qv — 1
@+ a7 )2 dpst (o) (v (w0) = +1),
v v — Ty
dpto,n, (Tv) = 1 q(i +1

(@ + g 7?2 — g2 dust(wy) (o (w0) = —1).

Hence, by applying Proposition 1.1, we obtain Theorem 0.7. ]

Remark : Suppose 7 is totally odd, i.e., n,(—1) = —1 for all v € X,. If the level n is sufficiently large
compared with N(f,) and the degree of «, the hyperbolic term Jﬂyp(l, n|a) vanishes completely and the
asymptotic formula in Theorem 0.6 is an exact formula without the remainder term O(N(n)~17¢); this
kind of phenomenon, called the stability, was already observed in [26], [6] and [31].
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17. EXPLICIT FORMULA OF THE HYPERBOLIC TERM

In this section, we compute Jﬁyp(l ,n|a) further for particular test functions @ = ®,ecg,. By changing
the order of integrals, we have

otnla)y= > T[]/ Ga) { ] 7} T 00

beFx—{—1} veSs VEX o VEXfin—S

where

setan) = o [ » {[ T (s 1590 W00t )

211

for v € S with ¥, (s,; —) being the Green function on G, (Lemma 5.1),

I (b) = /F 3% (5b [59] [(1) w;?%)}) no(tw; 7)Y d% ¢, if v € Dy — S,

J;’“(lv;b):/ WO (1,16, [£0]) mo() &t if v € S
RX

with \IISJO)(ZU; —) being the Shintani function (Proposition 11.1).

17.1. An evaluation of non-archimedean integrals (for unramified 7,). In this paragraph, we
explicitly compute the integrals J (b; a,(]”)) at v € S and the integrals J*(b) at v € Egn — S U S(fy).

Lemma 17.1. Letv € S. Let aq(,m)(sv) = q;,m”/z + q[msv/? with m € Ny. Set

B9 = g7 [ 601 90000 (),
If m > 0, then, for any x € F, such that sup(|z|,, 1) = ¢!, with | € Ny, we have
0 ((=m+1),
Do (53] = |~ ™" (i =m),
(m—1—1g ™= (m—1+1)g™? (0< 1< m).

If m = 0, then for any x € F, such that sup(|z|,,1) = ¢}, with | € Ny, we have

—

Dy ([o§]) =—26(1=0)

Proof. From Lemma 5.1 and the formula dpu,(s) = 27! logq, (q751+s)/2 _ qqgl—S)/2) ds, we have
To([b3]) = —— [ gl (1 gD/ (g _ g/

- 211 L (c) v

x (g, ™2 + q*?) 27 og gy (/2 — g1 =*)/?) ds,

where L, (c) is the contour ¢ + i [— 102g7:1u’ 102’;@ ]. By the variable change z = ¢2/?, this becomes
(1-1)/2 d
T e B e e G e
with R = qﬁ/ 2 (> 1). Thus, by the residue theorem, we have the equality
(17.1) Dom((§7]) = a2 (Res,_120(2) + Res.z06(2))
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.2 m —m 1/2 . .
with ¢(z2) = % 4. By a direct computation, we have
—0/%z

(17.2) Res,_ _12¢(2) = — ¢!t/ <{(m +l+1)(1— g, ") +2q, ey

{em ) -+ 2qv1}qvm/2)7

(17.3) Res,—0d(z) =6(1 = m+ 1) {(I —m+ 1)g=™*tV/2 _ (1 —m —1)gl=m=D/2}
+0(1 > 1=m) {(I+m+ g2 — (14 m = 1)gf 02
+{6(m =1)+d6(m = -1)} q,/>.
From (17.1), (17.2) and (17.3), we obtain the desired formula easily. O

Lemma 17.2. Letv € S. Let aq()m)(sv) = g% 4 gy ™% with m € No. Then, for any b € Fr—{-1},

T3 (B al™) = I (s b) + ()L (ms w3 (b + 1)
with
I (m; b) = vol (o) 2(m=0 (—q;m/2 575 ()

m—1

D SR (R R R S A L O) )

I=sup(0,—ord,, (b))
where for n € Ny,
(ordy(b) +1)°"=0) (mo(@y) = 1),
27 (o (0) + 1)) =0 (1 (w0) = —1).
Proof. Let m > 0. By definition, J (b;ay,) = I (m;b) + I, (m;b) with I} (m;b) and I, (m;b) being

the integrals of ®.,,, (06 [ £ 9]) mo(t) with respect to the measure d*¢ over |t|, < 1 and over |t], > 1,
respectively. From [47, Lemma 11.4],

6, (b) = 6([blo < q;) mu(wy)) {

t|=1b], tly, < 1),
(7.4) Bl49) € Ho[J{) K, with m—{"v" (1t < 1)

—tllo 1) ([t} > 1).

Hence, by Lemma 17.1, I} (m;b) becomes the sum of the integral

(17.5) [ e Camhmod
sup(L,[t[;*[blo)=q"

and

m—1
(17.6) > R (e e L e (R R S ML 2

=0 “sup(L]t], Hblv) =,
The condition [t|, < 1, sup(1, [t|;1[bl,) = ¢ is equivalent to |b|, < q., |t|, = ¢;|bl, if I > 0 and to
|b] < |t| < 1if = 0. Hence, (17.5) is equal to —q ™2 vol(0.) 87 (b), and (17.6) is equal to the following
expression

m—1
vol(og) > {(m —1—1)g,™™"* — (m =1+ 1)g; "/} 67" (b).
l=sup(0,—ord, (b))
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This completes the evaluation of the integral I} (m;b). In the same way as above, the other integral
I (m;b) is calculated in a similar form; from the resulting expression, I, (m;b) = n,(w, ) I} (m; @, H(b+
1)) is observed. This settles our consideration when m > 0. The other case m = 0 is similar.

From Lemma 17.2, we have a useful estimate for the function J, (b, o, ) in b.

Lemma 17.3. Let ozgm)(sv) @ 4+ qp ™% with m € No. If m > 0, then
|70 (b, al™)] < (m+1D)X8(blo < @) ay ™2+ 80l = ) g, ?), be B —{~1}
with the implied constant independent of v and m. If m =0, then,
T (b, al?) = =2vol(03) AT (b),
where A" is a function on F) — {—1} defined by
(17.7) A7 (b) = 6(b € 0,)0" (b(b+ 1))

Proof. To infer the estimate from Lemma 17.2 in the case when m > 0, it suffices to note that L (ot (b+

1)) = 0 if [b|, > g™, or equivalently if | (b + 1)|, > ™. The formula of J,(b,a\’) is obtained by
noting the relation A7 (b) = 67" (b) + 1, (wy) 80° (w1 (b + 1)) O

Lemma 17.4. Let v € ¥g, — SU S(nf,). Then
S (b) = vol(o) A" (b)

with A (b) being defined by (17.7).
Proof. This is proved in the same way as the case m = 0 in Lemma 17.3. O
Lemma 17.5. Let v € S(n) — S(f,). If ny(wy) =1, then

J(b) = vol(0.) §(b € noy) {ord,(b) — ord,(n) + 1}.
If ny(wy) = —1, then

T (b) = vol(03) 6(b € noy) 27 (1, (b) + (=1)°" ™).

Proof. This is proved in the same way as Lemma 17.4. We only have to remark that the assertion in the
last sentence of [47, Lemma 11.4] is relevant here. O

17.2. An evaluation of non-archimedean integrals (for ramified 7,). We shall calculate the
integral J' () at finitely many places v € S(f,). In what follows in this paragraph, we fix v € S(f,) and
set f = f(ny); thus f is a positive integer. For | € Z, consider the following subsets of F,* depending on
be Ff —{-1}.

Di(b) = {t € Ff|[tly = q,", 1 +tw, |, b+ tw, ' (0+ 1)y < q,'}, (L€Z—{f}),
Dy(b) ={t € F)| —tewl(o) = Un(f), 1 +tw, /|, [b+tw, /(b+1)], < g, },
where U,(m) =1+ p2* for any positive integer m.

Lemma 17.6. Let | > f. Then, Di(b) =0 unless | = f — ord, (b + 1) + ord, (b), in which case, we have
ord,(b) > 0, ord,(b+ 1) =0 and

—b
N (t) d*t =, (wfj) (1- q;l)*l q;f*dv/?
/teDl(b) b+1
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Proof. By the variable change t = w!t', we have
/ 0o (t) At = 1, (') / ny(t) d*t
te Dy (b) teD’
with D' = {#' € oX| |1 + '@, F|, b+ '@ F(b+ 1), < ¢!} Let t' € 0. Then, the condition
L+ twy T b+ twy T (b + D < g
is equivalent to
(17.8) tewm] ' Zh 1+ @b o).
If |wlb~ 1], > 1, then 1 + @!b~to, = @/ b~ to,. Hence, from (17.8),

s
, Fel —b 11| _ | =
1=ty < |w) T @b ‘v— oy

)
v

and b+ 1 € pJ follows. Since f > 0, we obtain |b|, = 1, which, combined with |w!b~!|, > 1, implies the
inequality ||, > 1 contradicting to [ > f > 0.
If |w!b=t|, = 1, then b € wlo); thus, b+ 1|, = 1 by I > f > 0. Hence, from (17.8), we have the
inequality
L=t < [l = Iwlh =0,
which is impossible due to f > 0. From the considerations so far, we have the inequality |/ b~|, < 1,
which yields 1 + @b~ 10, C 0X. Hence, from (17.8), we have the second equality of

of—l=b

1:|t/"l}: b b-‘rl‘v’

which implies | = f — ord, (b + 1) + ord,(b). From this and [ > f, we have ord,(b+ 1) < ord, (b), which
holds if and only if ord,(b) > 0 and ord,(b+ 1) = 0.

If we set t/ = w{f*l%r, then (17.8) becomes r € 1+ w' b~ 1o, = 1 + w]o,; thus

| modt=n@n (=) [ wee
teD;(b) rel+twy o,

o (=18 a0 g
O

Lemma 17.7. Letl < f. Then, Dy(b) = 0 unless I = f — ord,(b+ 1) + ord,(b), in which case, we have
ord,(b+1) > 0, ord, (b) =0 and

—b
ﬂv(t) d*t = M <w5> (1 _ qv—l)—lqv—f_d,u/g.
/tEDl(b) b+1

Proof. This is proved in the same way as the previous lemma. O

Lemma 17.8. The set D¢(b) is empty unless ord, (b) = ord,(b+ 1) < 0, in which case

b —b
w0t =0 (g o) m (@lyoy ) (- ah) a0
/tGDf(b) b+1 b+1

Proof. By t = —w]{t', the set D;(b) is mapped bijectively onto the set of ¢ such that
(17.9) t'eof —Uy(f),
(17.10) 1=t b=t (b+1)], <gq7
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We shall show that (17.9) and (17.10) are equivalent to the following conditions:
(17.11) t' e 25 (1+wmlb to,),
(17.12) sheok, b pe

Noting that, under the condition (17.12), the sets U, (1) and b+1 (1+w/b~Lo,) are disjoint, we see easily
that (17.11) and (17.12) imply (17.9) and (17.10). To have the converse, we first observe that (17.9) is
equivalent to ¢ € 0¥ and |t/ — 1|, > ¢; /. Hence by (17.10),

|b7t/(b+ 1)|v < QJf|t, - 1|;1 < 17

or equivalently

(17.13) b—t'(b+1) € p.
If b € py, then b+ 1 € 0. From these and (17.13), ¢ € m + p, = py; this contradicts ¢’ E 0. Thus
b & p, is obtained. From (17.13), we have t’HTl € 1+p, CoX. Since t' € o) by (17.9), m € o) is

obtained. From (17.13),
t'€ g+ pabe = g (1407 1p).

Since b~! € 0,, we have ¢’ € H%Uy(l)7 which yields ¢ € 0% — U,(1) because b%Uv(l) NU,(1) = 0.
Thus |[t' — 1|, = 1. Combining this with (17.10), we obtain (17.11). This settles the desired converse
implication.

Consequently, we have

/ nv(t)dxt:'qv(qujj) /nv(tl) axt

tGD‘f(b)

1) L6057b¢pv Uv—w{ v T / nvrdxr
(b+1 ) ( ) (Hl) rel+wib=to, ")

=5 (7 € o) mo (@l ) 0 € 0) g T Hor W72 1 — g )L,

Lemma 17.9. Let n, be a character of E.° of order 2 and of conductor f > 0. Then, forb € F} —{-1},
we have

T (0) = 8(b € p, ) {mo(— 8(b € 0,) +0(b & 0,)gy™ " )y (—b(b + 1))} g T~ — g )7
Proof. From [47, Lemmas 11.4 and 11.5],
T (0) = 8(b € p, T)(I5(0) + T3 (0))
with
—tew! UL(f) ! (1), iz (b) = —teF) ~w] Uy(f) oty ) dt.
\t|,,\b+1|1,<1 [14tw, |y bty (b4+1) o< |t]o
If b€ p,/, then t € —wf U,(f) implies |b+ 1|, < ¢f = |t|;*; thus,
T1(0) = 1y (1) vol(=wf Uy (f); d"t) = 1, (=1)vol(Us (£);d*t) = mo(—1) ¢ T~/ (1 — ¢ ) 7.
The integral domain of J,/%(b) is a disjoint union of the sets D;(b) (I € Z). From Lemmas 17.6, 17.7 and
17.8, we have

T (0) = (5(b € 0,) +6(b & 0,)qy™ ), (ﬁ’l) A (e
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Lemma 17.10. Let n be a character of F*\A* with conductor f, such that n* = 1. There exists a
constant C' > 1 independent of n such that

|72 ()] < CS(Jbly < gl ™)) g, 7
for any v € S(f,) and for any b € F} —{—1}.
Proof. This is obvious from the previous lemma. Indeed, C' = 4 is sufficient. d

Corollary 17.11. For any € > 0, we have
| IT 7eml <o { T] ot ep, 7/ ™ING,) " be F*—{-1}
veS(fy) veS(fy)

with the implied constant independent of n and b € F* — {—1}.

Proof. Given € > 0, let P(e) be the set of v € Xg, such that ¢, < C/¢, where C' > 0 is the constant in
the previous lemma. Then, from the lemma,

|17 (0)] < C6([blo < ] ")) g, 7T if v € S(f,) N Ple)
and
T ()] < 8([bly < ] ™)) gy Tt if v € S(fy) — Poe).
Taking the product of these inequalities, we have
I 7eei={ I Wreont [ o)
v€S(fy) vES(f)NP () v€S(fy)—P(e)

< OFEENPEO) CTT (b € py 7))y N(f,) 71
veS(fy)

17.3. An evaluation of archimedean integrals. In this subsection, we evaluate the integral
(17.14) ) = [ W08 (G2 . be R~ (-1)
RX
explicitly, where 7 : R* — {#£1} is a character, and ¥(©)(I; —) is the holomorphic Shintani function of
weight (> 4).
Lemma 17.12. We have

J(1;b) :/ (1—it) " P+ b+t7200) 2 pt)d*t, beR* —{-1}.
]RX

Proof. From Lemma 11.2,

TO (16, [£9]) = €™ (1 +42)™V2 if 6, [L9]) € T[L%] ko
1

) =
+it

i and T = bt=1 4+ t(b+1). Thus,

A direct computation yields e’ =

J(1;b) = /R (;%)l {14t + b+ 1)} 12 n(t) d*t

(1—at)"V2(1L+ b+t i)~ /2 n(t) d*t.

I
T
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Lemma 17.13. Define
o N\ —1/2
J(I;b) = 4'/? (1+b)*l/2/ (t+i)~1/2 (H’b%) 2= gy
0

Then

JHED) = T (156) + T (150),  JB(b) = J4.(1;0) — T4 (D).

Proof. By dividing the integral J"(I; b) to two parts according to ¢t > 0 and ¢ < 0, we obtain the assertions
immediately. U

Lemma 17.14. Suppose b(b+ 1) > 0. Then

1/2 ! 1/2—1 1/2—1 1 —l/2
To(sb) = (14 b)Y / a2 =) (Fhu 1)
0

= (L+0)72T/2°T () 2 Fy (1/2,0/2 50+ 1)) = 2Q2-1 (20 + 1),
where Qn(x) is the Legendre function of the 2nd kind.

Proof. If we set f(2) = i'/2(1 +b)~Y2 (2 + i) "/?{z + bi/(b+ 1)} 7/221/271 then f(z) is a meromorphic

function on C with poles only at z = —i and 1_+b2’ both of which are in the lower half plane Im(z) < 0.

For R > 0, let Qg denote the rectangle 0 < Im(z) < R, 0 < Re(z) < R. Regarding 0Qr as a contour
with counterclockwise orientation, by Cauchy’s theorem, we have |, 00n f(2)dz = 0. From this,

Ji(l;b) = (z)dz — lim f(z)dz = f(z)dz
0i R—00 JaQr—[0,R|Ui[0,R] 0i

too —1/2
=1+ b)*l/Z/ (t41)71/2 (t + b%) 21 qt.
0
By the variable change ¢ + 1 = u ™!, this becomes

1 —1/2
(1+ b)fl/2/ w2711 — )2 (ﬁu + 1) du.
0

By using the integral representation of o F(a, b; ¢, z) in [24, p.54] here, we obtain
T (1;0) = (1+0)"Y20(1/2)°0(0) " o Fy (1/2,1/2;5(0+1)71) .
If we further apply the formula
271 (2n + D)2 Qu(z) = (1 +2)~ "+, Ry (n Yl L2n 42 m%)
([24, p.233]) with n =1/2 — 1 and = = 2b+ 1, then J (I;b) = 2Q;/2—1(2b + 1) as desired. O
Lemma 17.15. (1) If b(b+1) > 0, then
JHIb) = (L+0)7220(1/2)°0 (1) ' o Fy (1/2,1/2;1(b+1)7Y),  J8%(13b) = 0.
(2) Ifb(b+1) <0, then
[1/4]

b+1 8l —4m+1
b’ Pra1(20+1) - Z ( ) Prja_om(20+1),

(17.15) J(l;b) = 2log 2m —1)(1 — 2m)

m=1

(17.16) TEN13b) = 2mi Py 1(20+ 1),

where P,(z) denotes the Legendre polynomial of degree n.
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Proof. First suppose b € R and b(b+ 1) > 0. Then from the previous lemma, J(I;b) is a real number.
Thus, J(I;b) = 2J7(I;b) and J*"(I;b) = 0 by Lemma 17.13.
From J, (I;b) = 2Q;/2—1(2b + 1), applying the formula in [24, p.234], we obtain

(/4]
b+1 41 —4m+1)
17.1 ;b)) =1 — | P, 2 1) — E P, 2 1
( 7 7) J+(l’b) Og( b ) 1/2*1( b+ ) = (2 71)([*2 ) l/272m( b+ )

for b € R such that b(b+ 1) > 0. From the defining formula of J, (I;b), the function b — J,(I;b) on
R* — {—1} has a holomorphic continuation to the whole complex b-plane away from the set D = {b €
C| bi—il € (—00,0)} U{0,—1}, which is the upper half of the circle centered at —1/2 of radius 1/2 with
the edge points included. Thus, if we choose the branch of log(lT“’) on the domain C — D so that it
is real for b > 0, then the formula (17.17) remains valid on C — D by analytic continuation. If b € R
satisfies b(b+ 1) < 0, then b is contained in C — D. Hence, by taking the sum of (17.17) and its complex

conjugate, we obtain the formula for J*(I;b). As for J*%(l;b), we have

JE(1b) = Ty (1:b) — T (10) = {log (%) — loa(%50) } a1 (2b+ 1) = 2miP oy (2b+ 1),

([
18. EXPLICIT FORMULA OF THE UNIPOTENT TERM
Let v € S. The aim of this section is to evaluate the integrals
1 .
(18'1) U;]v (av) = 5 / (1 - nv(wv)q;(s+1)/2)_l(l - Q’(()6+1)/2)_1 av(s) d,uv(s)7
21 Ly (c)
18.2 U’ _ loggy 1 (s+1)/2y-2(1 —(s+1)/2y—1 d
(18.2) (o) = o (1-qy ) "(1—gq, )7 aw(s) dpy(s).
Y L,(c)
for the test functions given by (16.2).
Proposition 18.1. Let a,(s) = q;ns/z + qv_ms/2 with m € Ng. We have
U ay) = 45> 0@ 2 {m = 1) = (m+ 1 gty =28m=0)  (n(e2) = 1),
ST Bm e 2N) @71 - gp ) — 2 6(m = 0) (mo(@0) = ~1),
Up(aw) = =27 (log gu) gy~ ™% 6(m > 0) {(m — 1)(m — 2) = m(m + 1) ¢, }.
Proof. We give an indication of proof when 7, (w,) = —1; the remaining cases are similar. By a variable
change,
1 dz
U y) =— 1 —-1/2 _—1y-1 1— 1/2_ \—1/,m -m\,1/2/, _ —1\**
e R e O G
:{Reszzqq/z +Res,_ 12+ Res,—o }é(2),
where ¢(z) = (22_11)51#%”. By evaluating the residues, we are done. U

19. SUBCONVEXITY ESTIMATES IN THE WEIGHT ASPECT

In this section we prove Theorem 0.8 by using the relative trace formula (Theorem 16.1); we take a
particular test function ag € Ag depending on a fixed cuspidal representation 7 with varying S. To have
a good controle of the term Jﬂyp(l,n\ag) explicating the dependence on S, our formula of local orbital
integrals (Lemma 17.3) is indispensable. In this section, 6 € [0,1] denotes a real number such that the
spectral radius of the Satake parameter A,(m) of m € Heys(l,n) at v € Tgy — S(fr) is no greater than
qg/ % for any v € Ygp, — S(fr). Since the Ramanujan conjecture for the holomrphic Hilbert cusp forms is
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known ([1]), we can actually take § = 0; however, we let § unspecified until the very end to be able to
keep track of the dependence on the Ramanujan exponent 6 in various estimations.
In this section, we abuse the symbol p, to denote the global ideal p, No.

19.1. An auxiliary estimate of semilocal terms. Let S be a finite set of finite places v such that
Nw(w@y) = —1. For a decomposable function as(s) = [[,cg o (sy) in Ag, we set

s(hios) = [[ Ju(bran), beF*—{-1},
vES

where we simply write J, (b; o, ) in place of J* (b; av,,). Extending this linearly, we have a linear functional
as — Jg(b;ag) on the space Ag. Given 7 € Il s(l,n), set

)\v (ﬂ) =tr Av(ﬂ)7 (S Eﬁn - S(fﬂ')

with A,(7m) € GLy(C) the Satake parameter of m,. Then, we define a function in Ag depending on the
automorphic representation 7 as follows:

2
= (Z{Mw) (o +2, ") — (20 + 2,7 + 1)}) ,
veS

where z, = qiv/2 for each v € S. We need an estimate of Jg(b; a%) with varying b. For an integral ideal
a such that S(a) C S, let us define a function Dg(a; —) on F* — {—1} by

Ds(a;b)={ J[ Au®}{ J] 0(bls <)},

weS—S(a) veS(a)
where Ay, (b) = 6(b € 04)(0rdy, (b(b+ 1)) + 1).
Proposition 19.1. Set P = {(v1,v2) € S?|v1 # va }. We have the estimate

PACEAIRS Z{DS(U;b) a"™/? + Dg(py;b) ¢
veES

+ Dg(p2;0) ¢S + Ds(p2;0) gy * + Ds(pl; ) QJQ}

. {Ds (036) 472 gPHD/2 1 Dg(py,0) ¢0+V/2 1 D (o ugs )
(v1,v2)€EP

+ Ds(p2 Poy; b)ayt + Ds(p2 ) a,t ¢l0TD/2 + Dg(pZ pZ )q;fq;;}

forb e F* — {—1}, where the implied constant is absolute.

Proof. Set Z, = X\y(7) (2y + 2,1) — (22 + 2,2 + 1) for any v € S. By expanding the square, we have

=>"Z0+ > Zuy Z,

veS (v1,v2)€EP
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which, together with Lemma 17.3, gives us
(19. 1)

Jsag)=> { I Ju®:}n®z)+ > { JI  Ju®D)}Ju(;20) (b Z0,)

veS weS—{v} (v1,v2)EP weS—{vy,v2}

=50 J]  —2vollol) Auw(b)} Ju(b; 22)

veS weS—{v}
+ > {4 TT —2vole) Aw(®)} Ju, (b Zu,) Juy (b; Zuy)-
(v1,02)EP wES—{v1,v2}
Let us estimate the integral J,(b; Z2). By expanding the square,
Z3 = X(m)? (20 + 2,7+ 2) + (2 + 2, +2) 42020 +2,2) + 1= 20, () (2) + 2,%) — 4ho(m) (20 + 2, 1)
= M\ (m)2 (P + ) + a® + 202 + ;a — 2\, (m)al®) — 4\, (1)all.
By this expression and by the estimates in Lemma 17.3, we obtain
(19.2) [ Ju(b; Z5)lvol(o) ™
< 6(lble < 1) {Au (M)l + Ao (0) (L + Ao (1))} +6(1blw < g0) {IAe(m)lan ™2 + 1+ A ()}
+0([bly < QH) {[Ao(m)la, 124 qul + |>‘v(7")|2qgl} +0([bls < qg) {1 (m)la, 32 4 qgl}
+0(|blo < ) 4
< 8(Jbl, < 1) {g" 2 + A, (b) 47}
+0([blv < qu) % +0([bly < qq;)‘]u L+ 6(Jblv < qi) Qz?l +0([bly < qf) %727
where to show the second inequality we use the estimate |A,(7)| < 2qz/ % as well as the inequalities
-1<(0-1)/2<6<(0+1)/2, (6 —3)/2 < —1. For J,(b; Z,), directly from Lemma 17.3, we have
(19.3) | Ju(b; Z,)| vol(07) ™ << 6(Jbly < 1) {ai™*V/% + Ay (0)} + 6(Jbls < 40) +6(Ibl0 < ¢7) q; "
From (19.1), (19.2) and (19.3), we have the desired estimate immediately. O

19.2. A basic majorant for the hyperbolic term (odd case). For b € F* — {—1}, viewing b as a
real number, say b,,, by the mapping F' — F, & R for each v € Eoo, we define

moo(l;0) = [ 17" (i bo)
VEY oo

where J%8"(1,; b, ) is the integral (17.14). For relatively prime integral ideals n and a and for I = (I, )yes. €
(2Z5)% >, we set

J(l,n,a) = > { T] Ao®)} Dslasb)mae(i;b),
beno(S)—{0,—1} vEXgL—S
where S is a finite set of places such that S(a) C S C g, — S(n), and 0(S) is the S-integer ring. As will

be seen below, this is independent of the choice of such S.

Lemma 19.2. Let a and n be relatively prime ideals. Then, for any € > 0, the estimate
I(mya) < { [ L} /2 N(a)?/ e
VEY o
holds with the implied constant depending on € while independent of the data (I,n, a).

If a is trivial, the following vanishing holds.
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Lemma 19.3. For any n and l, we have J(I,n,0) = 0.
19.3. Proofs of Lemmas 19.2 and 19.3. Set
FS@Oe) = T M) TT o0l < g™ @),
vEXgin—S(a) veS(a)

Then we have
(19.4) I(l,n,a) = > 5@ (b) moo (13 b).

bena—1—-{0,—1}
Lemma 19.4. For any ¢ > 0, we have

@) < (N@?N(BB+1))  bea ' —{0,-1}

with the implied constant independent of b.
Proof. Let b € a=* — {0}. Then (b(b+1))a® =b I, p;j, where e; are positive integers, p; are prime
ideals of o relatively prime to a, and b is an ideal of o dividing a. For each j, there exist a prime number
p; and an integer d; € N such that N(p;) = p;lj. By taking norms, we have

N(a)2 |N(b(b + 1))| = N(b) H N(pj)ej — N(b) Hpjjej-

Hence . .
d(N(a)’IN(b(b +1))) = d(N(b)) [](esdj +1) = [] (e +1) =75 ),
j=1 j=1
where, for a natural number m, d(m) denotes the number of positive divisors of m. Invoking the well
known bound d(m) <. m¢, we obtain the desired estimate. O

From Lemmas 19.4 and 17.15,
I(na) < N(@)> > NGO+ [] 127 P, 21 (200 + 1)),

beEna—1NQ VEY oo
where Q. denotes the cube (—1,0)>> in [T,y R. Invoking the inequality |P,(z)| < (1 —g?)"1/2n"1/2
for |z] < 1, n € N ([24, p.237]), we have

(19.5) I(lmya) < m T N(@)* >0 N+ D) [T (/2172

bena—1NQ IS
To estimate the sum ;1o [N(b(b+ 1))]~/4*¢, we need several lemmas.

Lemma 19.5. For a positive integer ¢, let v(c) be the number of integral ideals ¢ such that N(c) = c.
Then, for any € > 0, v(c) K. ¢ with the implied constant independent of c.

Proof. Suppose c is a prime power p’. Then an ideal ¢ such that N(¢) = p’ must be a power of a prime
ideal p lying above p. The number of choices for such p is at most dp = [F : Q]. If ¢ = p®, then N(¢) = p'
is equivalent to p™¢ = p', where N(p) = p™. Hence ¢ = % <t < tlogy p < log, pt. From this, we have
the inequality v(p') < dr log, pt. Given € > 0, let x(€) > 1 be a number such that dp log, z < x¢ for any
x > z(e). Let Q(e) be the set of prime powers p’ such that p* < z(e). Noting that Q(e) is a finite set, we
set C(€) = [[,eq(e ¥(q), which is a constant depending only on e. Let ¢’ (resp. ¢”) be the product of the
prime powers p'* such that pi* € Q(e) (resp. pi* € Q(e)) in the prime factorization ¢ = I pii of ¢. Since
v is multiplicative, we have

v(e) =v(d)v(d") < H v(q) H dr log, pii < Ofe) H phic < C(e) (pr)s < Cle) .
q€Q(e) i3 pile’’ i;pile’’ i
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This completes the proof. O

Lemma 19.6. Let C = {C,}yex,, be a family of positive real numbers. For any € > 0, we have

#{u € 0X|uy| < Cy (Vo € Boo) } <o < 11 Cv)e

VEY o

with the implied constant independent of C'.
Proof. For simplicity, we set d = dp. By the Dirichlet unit theorem, there exist fundamental units
g; (1 <j < d—1) such that any vy € 0* is written uniquely in the form v = £e}* ---£/}*7" with integers
n; € Z. By this, the inequality |v,| < C, is written as

d—1
(19.6) an log |(g5)v| < logCly, (v € Xuo).

j=1
Let (C) be the set of u € 0* such that |u,| < C, for all v € ¥. Thus, the number #4U(C) is
bounded from above by the number of integer points (n;) € Z?~! lying on the Euclidean domain D(C)
in R?~! defined by the system of linear inequalities (19.6). Fix an enumeration ¥, = {vy,...,v4} and
let E; = (log|(g;)v;)1<j<d—1 € R for 1 < i < d. First d — 1 vectors E; (1 < i < d — 1) form a basis
of RI~1; Jet E7 (1 <j <d-—1) be its dual basis. From the relation [N(g;)| = 1, we have Zle E; =0.
Hence, if we write a general point y € R*~! by y = Z?;ll (log Cy, —y;) Ef, then y € D(C') if and only if

d—1 d
yi >0 (1<i<d-1), Zyi<ZIOgC’W.
i=1 j=1

The volume of this region in the y-space with respect to the Euclidean measure is m (Z?:l log C., )4,
where 7 is the regulator of F. Thus vol(D(C)) < (log ], Cv)? <. (I, Cv)¢, and we are done. O

Lemma 19.7. Let a be an integral ideal and ¢ a positive integer. For any ¢, > 0,
#{bea 1N Qu|N((b)a) = ¢} <co ¢ ~“N(a)*
with the implied constant independent of a and c.

Proof. Let ¢ be an integral ideal such that N(¢) = ¢. From Lemma 19.5, the number of such ¢ is bounded
by ¢¢ for any € > 0. If ca™! is a principal ideal, say (€), then, using Lemma 19.6, we have

#{bea N Qulc=(B)a} =#{ucoX||u,] <[] (Vo€ Tu)}
< (IT 16l = (IN@©)I™) = (¢ N()".

VEY oo
O
19.3.1. The completion of the proof of Lemma 19.2. From (19.5), we have
(19.7) I(lna) < N> { JT 372 >0 ING(b+1))| /4
VED o bea"1NQo

with the implied constant independent of (I,n,a). Setting N((b)a) = ¢, we rewrite the last summation in
the following way.

Z |N(b(b + 1))|71/4+6 _ N(a)l/ﬁlfe Zcfl/4+e Z ‘N(b + 1)|71/4+5.
c=1

bEa~1NQuo bca 'NQw
IN((b)a)|=c
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The range of ¢ is reduced to 1 < ¢ < N(a) by the condition b € Q.. Since (0) # (b+ 1l)a C o,
we have N((b + 1)a) > 1, by which the last summation in b is trivially bounded by N(a)'/4=¢#{b €
a1 N Qx| IN((b)a)| = ¢} for any € € (0,1/4). Combining these considerations and by Lemma 19.7, we
obtain the bound

N(a)
Z |N(b(b + 1>)|—1/4+e Less N(a)1/2—2e Z C—1/4+ec§’_5 N(a)ts
bea—1NQ c=1
(19.8) s N(a)/272N(a)? x N(a)?/4++9" =910 N(a)
(19.9) = N(a)®/*=+" log N(a)

for any sufficiently small 6, > 0. Consequently, we have the desired estimate from (19.7) and (19.9). O

19.3.2. Proof of Lemma 19.3. Suppose b € n N Q. The integrality of b yields N(b) € Z. From the
condition b € Q, we have 0 < |b,| < 1 for all v € X, from which 0 < |[N(b)| < 1 is obtained. Thus, if
a = o, then the summation in the right-hand side of (19.5) is empty. This completes the proof. O

19.4. An estimate of the hyperbolic term. Given a quadratic character n of F*\A* with conductor
f, and an integral ideal n, for a large number K > 2, let S = Sp"7 = {v € Z5,—S(nf,))| no(wy) = —1, K <
¢» < 2K }, and consider the test function ag(s) depending on a cuspidal representation 7 € Iloys(l, 1).

Lemma 19.8. There exists a constant C > 1 independent of n and n such that C1K(log K)~! < #S <
C K(log K)™t for all K > 2.

Proof. This follows from an analogue of Dirichlet’s theorem on arithmetic progression for number fields.
O

For S = SE" and for a given 7 € Ileys(l, 1), let a%(s) be the function defined in §19.1.
Proposition 19.9. For any € > 0, we have
[Ty (L nfaB)l < { [T )2 NG/ Ko
VEY o
with the implied constant independent of I, n, m, n and K.

Proof. Set P = {(v1,v2) € S?|v1 # v2 }. From Lemmas 17.4 and 17.5, we have the bound
Tplnlad)l < > WsaDI{ ] O TT 1700 mec (U 0).
beF*x—{—-1} UEZfin—SUS(fn) veS(fn)

Combining this with Corollary 17.11 and Proposition 19.1, we have that this is majorized by the N(f,) ~' ¢
times the following expression.

{3 a 210 n ) + 3 a0 3 pafy) + D 0l I pf)

veES vES vES

+qu lnpvfn +Zq72ﬁlnpvf7])

veS veES
(19.10) +{D 0 d g2y 5( gy
(v1,v2)EP
(19.11) +> 0 a0 pnt) + D I pubuafy)
(’Ul ’U2)€P (’Ul ’U2)€P
+OY @ Il ) D g a3 fy)
(v1, v2)€P (v1,v2)€EP
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D DR S [ S i

(Ul,vz)EP

Invoking the bound #5 <« K obtained from Lemma 19.8 and applying Lemma 19.2 or Lemma 19.3, we
estimate each term occurring above. Thus, after a power saving, we obtain
[Thyp (1 nlad)] <e N(Fy) ™1 o(l, K) with ¢(1, K) being

N(fn)5/4+6 L—1/2 (K(9+3)/2 4 K0+9/4+€ + K9+5/2+2€ 4 K15/4+3e +K4+4€ 4 K3+9 + K(29+15)/4+e
+ K9/2+26 + K19/4+3E + K(9+8)/2+26 4 K5+46),

where L =[] . Since 6 € [0, 1], this is bounded by N(f,)!/4+2¢ [~1/2 go+4e, a

VES oo
19.5. An estimate of the unipotent term. Set S = S" with K > 2
Proposition 19.10. Let 7 € Il.s(l,n). For any € > 0, we have

T2 nlaF)| <e [G()IN(F,) K,
with the implied constant independent of I, n, m, n and K.

Proof. We use the same notation as in the proof of Proposition 19.9. By substituting the expression
O/ST(S) = ZvES Zg + Z(vl,vg)EP ZUl ZU27 we obtain

G T nla)]
<|CL(Ln) (Z{ I wropuriy Y (] |an<1>|}|U;?fl<zm>||v;7;2<zw>)

veS weS—{v} (vi,v2)€P weS—{vi,v2}
<<Lﬁn<1,n><Z|U;7v<Zs>|+ 3 |U3;’1<ZU1>||U5;2<ZUQ>|)7
vES (v1,v2)EP

where to simplify the terms, we use Uy, (1) = —1 from Proposition 18.1. As in the proof of Proposition 19.1,
using Proposition 18.1, we compute each term and estimate it as follows.

U (Z3) = Ao(m)* (U (@) + U (af)} + U (V) + 207 (o) + gUZ'“ (o)
= MM - -2 +q (1-g ) +20-¢ ") -3
By | A (1) < ¢b/? with 0 € [0, 1], from this,
U (Z)] < a1+ a,") + a4, + oyt +1 < g
In a similar way,
Ul (Zo) = a;

Applying these, we continue the estimate of |J%(l, n|aZ)| as follows.

Lan(lm) (X ai+ D> a'a’)
veES (v1 'U2)€P
< N(fy) {K/log K x K’ + (K/log K)?K?} < N(j,) K"
We remark that Lgn(1,7) < N(f,)¢ (cf. [4, Theorem 2]). This completes the proof. O
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19.6. A subconvexity bound (odd case). Let n be an ideal of 0. For a family of positive even
integers [ = (ly)vex.., let IT% (1, n) denote the set of all cuspidal automorphic representations m = ), m,
of PGL3(A) such that f, = n and such that =, is isomorphic to the discrete series representation D, of
minimal K%-type [, for each v € X..

Theorem 19.11. Let n be a quadratic character of F*\A* with conductor f,, such that n,(—1) = —1 for
all v € ¥oo. Let n be an integral ideal relatively prime to f,. Assume thatl, > 6 for allv € Xo. Then,
for any € > 0 we have

|Lin(1/2,7) Lin (1/2,7 @ )| < (N(nfy) KL)*N(n) (LK®"" 4+ N(§,)*/* L K?),
where L = [[,cx_ lv and with the implied constant independent of I, n, n, K > 2 and m € II3 (I, n).

Proof. Let m € IT¥ ,(I,n) and let S = S". By applying Theorem 16.1 for the test function a%(s), we
have

Cln, S| > T(iln) aF(vs(x)] < T3 nlaF)] + [T7,, (1 nlad)]-
7/ E€llcys (1,n)

with C(I,n,S) = (=1)#9271 D! [Ken : Ko(n)] ™ [[,ex_ 27Tl — 1)/T(1,/2)%. From Proposition 13.6
and the non-negativity of I (7’;1,1n)/(=1)"G(n) by Lemma 13.2, the left-hand side becomes

cus

Kan : Ko(frr n/L12,7T/L12,7T/ - ,
Z [ ﬁN(fﬂ—/O)(f )]wn(ﬂ-) ( /LS‘")(L(W'{Ad)(@n) Oés(l/s(ﬂ' ))7

which is greater than the summand corresponding to 7 by the non-negativity again. Let us examine the
m-term closely. First, from the explicit formula, wy(7) = 1 for §, = n. Let A,(7) = diag(z,, 2, ) be the
Satake parameter of our m. Then, using Lemma 19.8, we obtain

|C (L, S)G ()]

7 €lleus (I,0)

o (s (r)) = (Z{w (2t 1)}) — (#5)? > K.

veS

Separating the gamma factors from the L-functions, we have

Loo(1/2,m) Loo(1/2,m @) _ 0 oy 2P 1) Tel/2)?
C(1n, 8)| (L m Ad) =[Kiin + Ko(n)] UEI;L (l,/2)2 Xvel;[m Te(ly)
=[Ken : Kom) ™" [T o -7,
VEY oo

where all the implied constants are only dependent on F'. The remaining factors in the w-term are easily
seen to be bounded from below by a constant independent of (I,n,m,n). Combining the considerations
so far, we obtain the estimate

Ln(1/2,7) Lgn (1/2, 7 @ 1)
Lir(1,m Ad)
From Propositions 19.9 and 19.10, the right-hand side is estimated by
< [GMINGy) K+ N(jy,) e L7V2 R0t

(19.12) IG(n)| K> *Nmn)~ ' Lt

<e [T nlaB)] + [T, (4 nla)].

To complete the proof, we invoke the bound L37(1,7,Ad) <, (N(n)L)¢ which is known to hold for a
general class of L-series (cf. [4, Theorem 2]). We remark that |G(n)| = D}l/gN(fn)_l/2 [Toesq,) (1 —

a7t > DR N G,) T O
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Theorem 19.12. Let n be a quadratic character of F*\A* such that n,(—1) = —1 for all v € ¥,. Let
n be an integral ideal relatively prime to f,. Assume that l, > 6 for allv € Xo. Then, for any e > 0,

|Lan(1/2,7) Lan(1/2, 7 © )| e N(f)* 4 N@) e { T 1,00/ @20+
VEY oo

with the implied constant independent of I, n, n and w € II% (I, n).

Proof. We apply the estimate in Theorem 19.11 with taking K so that LK?~1 =< L/2K3  or equivalently
K = L'Y/(8=20)  Then, we obtain the desired estimate. g

If € [0,1), the estimate in Theorem 19.12 breaks the convex bound Lg,(1/2,7) Lgn(1/2, 7 ® 1) <
{C(m) C(r @)} /it < (ITyes_ lw)'* in the weight aspect with a fixed level n and a fixed character 7).
To have Theorem 0.8, we only have to invoke the Ramanujan bound 6 = 0 (cf. [1]) in Theorem 19.12.
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Part 3. Relative trace formulas for holomorphic Hilbert modular forms : derivatives of
L-series

In this part, we establish an explicit relative trace formula for GL(2), which encodes central derivatives
of automorphic L-functions. Thoroughout this part, assume that [ € (2N)Z°° satisfies [ = inf,exn_ I, 2> 6

and that 7 is a quadratic character of F*\A*. Let n be an ideal of o relatively prime to f,. We consider a
!

reg(M]; g) associated

finite subset S of ¥, relatively prime to nf, and the automorphic Green function 7
with [, n and S. We abuse the symbol p, to represent the prime ideal p, N o.

In §0.4, we fix S and consider ideals a = [],cg(q) 7" such that S(a) C S. From now on, we treat only
the case S(a) = S. Although v ¢ S(a) holds for places v such that n, = 0, the case S = S(a) is sufficient
to be considered by substituting 0 for some n, formally.

20. SPECTRAL AVERAGE OF DERIVATIVES OF L-SERIES : THE SPECTRAL SIDE

Let B be the space of functions defined in §3.2. Given g € B, ¢t > 0 and )\ € C, we set

Wy L Blz) .
By (t)—Qm/Ld(er/\)Qt dz,

where L, = {z € C | Re(z) = ¢}. The defining integral is independent of the choice of & > —Re()\). By
the residue theorem,

(20.1) CTazo{B" (1) — B (1Y)} = B(0) log .
In the same way as [47, Lemma 7.1], we have the estimate
(20.2) 187 ()] <, if{t7, = RN} logt, >0, o> —Re(N).

Definition 20.1. For a cusp form ¢ on PGL(2,A), set
0P} \(p) = /F o U681 Lo D) mle B ) = BG4 Re(h) > 1.

By (20.2), the integral 9P ,(¢) is absolutely convergent for A € C and the function X — 9P ,(¢) is
entire on C. Therefore, (20.1) gives us the formula

d
CTr=00Pg\(¢) = /F e £ U681 Lo 7 ]) ez logltlad™t O) = 222" (omig)| B0

Here Z*(s,1, @) is the modified global zeta integral considered in §3.1 (cf. [47, 2.6.2] and [41, §4]).

20.1. For j € Ny, a place v € Xgy, an irreducible admissible representation w, of PGL(2, F,) and for a
character 7, of F* such that n? = 1, we define a polynomial of X by setting Q7 (ne, X) =

1 (j=0),

Mo (@) X — Q(my) (c(my) =0, =1),
(20.3) m(wu)j*lXjfl(m(wv)X — gy "X (@) ) (c(my) =1, 52> 1),

qU_177v(wv)j_QXj_2(avq})/znv(wv)X - 1)(&;1(]11)/2771, ()X — 1) (c(my) =0, j > 2),

1 (@) X7 (c(my) 22,5 21),

(cf. [41, Corollary 19]), where

Q(my) = (ay +a; M) /(g% + ¢;Y?)  with a the Satake parameter of , if ¢(m,) = 0,
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and X, is the unramified character of F such that m, =
Ieus(l, n), we set

1/2 —1
o (xol 1% X Io

Qﬂ,n,p(s) = H Qp(v) U(Uv, qv 5),

veS(nfﬂ )

where Ay (n) denotes the set [];_, Map(Sk(nf;'),{0,...k}) with n = max

p € Ar(n),

veS

/2) if ¢(m,) = 1. For 7 €

(nfzh) ord,(nf7!) and we

set p(v) = pi(v) for each v € Si(nf!). We recall here an explicit formula of the modified zeta integral
Z*(3,m, P1,r.p) for the basis {p; r ,} of Vi[r]¥o(™ ([41, Proposition 20] and Proposition 13.1):

(204) Z*(Sﬂ/]ﬂpl,ﬂ,p) = D;fl/Q(_

for any m € Ilcys(l,n) and p € Ay (n).

20.2. Let m € Iys(l,n) and p € A (n). For a complex parameter z, we set

DG (10)Qr . (8)L (s, m @ 1)

(20.5) witmz)= > T Q@D Q) 0100/ 7) 7, (p(v), p(v))
PER-(m) ves(afr )
= H ) (7, 1m0)
veS(nfx)
with

ord, (nf; 1)

Z Qj v(

,,,(z) (7T’U7 nv) -

Q5 (1, 1) Qs (o ay* %) /7, (4, )

Here Q7° (n,, X) is the polynomial deﬁned by (20.3), and 7, (4, j) is given by [41, Corollary 12, Corollary

v
16 and Lemma 3] as

1 (=0 or ¢(my)

Lo 1-— Q(Trv)Q (C(ﬂ-v) =0,j=

(20.6) T, (J,7) = 1-q2 (c(my) =1, j >
(1= Q(m)*)(1 - ¢;®) (c(my) =0, j 2

Here is the explicit determination of 7(*)(7,,n,).

Lemma 20.2. Let v € S(nf;!) and set k, = ord,(nf;!) and X = @
we have

1-X | (4aq,/?X)(4a,"q,/2X) 1-(=X)*
1+Q(my) (¢v—1)(1+Q(mv)) 1+X
_ X"rq;lX'u(wv) 1_(_1)kvka
14+q5 "X (o) 1+X

1+(71)k‘v Xkotl
1+X

,r(z) (71-1); nv) -

Suppose n,(w,) = 1. Then we have

o 1)2 -1 1/2 )
1+X ) + (1—ayq,/*X)(1—a, X)<Z§;2X]_2)

1+Q(7Tv (QUfl)(l‘i’Q(Trv))
& (e, m) =41+ )M&(Zj c)

jzo X

Proof. From (20.3) and (20.6), we obtain the result by a direct computation.
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We abbreviate r(1/2) (,,1,) to r(m,,1,). Define
wlm) = uim 1/, oudr) = () witme)
dz z=1/2

Note that the first quantity wy () is the same one as in Lemma 3.6 and Lemma 13.2. From Lemma 20.2,
the second quantity dwy () is also evaluated explicitly.

Corollary 20.3. Set Or(my,n,) = ﬁ (d%)z:yz &) (my, ). When (@) = —1,
_ L+ (=), ko (2k, —
1 9o +(q+ Q) | (=1) (2k 3)—=1 gvt1 —
TFQ(r,) T 2, (-DIFram) + a1 (dm)=0),
— 1—(=1)k 1+ (=1)%v (2k, —1
37”(71'1”%) - — (2 ) + +( ) 4( ) (C(’]‘(’v) = 1),

1+ gy xo ()
(=1)Fv (2k,+1)—1
1

When ny(w,) = 1,
_ 1)2‘11;_(‘11;"1‘1)@(7711) + (k'u_2)(k7'u_1) (‘h}"'l)(l_Q(ﬂ'u)) (C(ﬂ.v) — 0)7

1
1+Q(mw) + (ko

(¢ —1)(1+Q (7)) 2 (¢o—1)(1+Q (7))
_ ko 1_(1171)(11(@1)) kv(klr+1) _
Or(To ) =\ T T ra (w2 (c(m) = 1),
kv(kv+1)

20.3. Depending on a function o € Ag, we have constructed a cusp form denoted by lIlreg( nla) in §13.4.
Recall that it has the expression

(20.7)

_1)#S ey (0) Dy *
o) == {H[EEH.KO(})]Z() S X absm IR Am g ).

2
7€M ens (1,1) pEAL (1) 61,70

Proposition 20.4. We have
CTa=00P] , (¥ley(nla)) =(-)*{ T 2" ~"1Cu(0) D5 [Ken : Ko(m)] ™} (=1) G ()
VEYX oo
{ S (log Dpyu(n) 2B DLWBTED) (o)

new || 2
m€Mcus(I,n) HSO |

¢ Y ou MDD o)
TE€Meus (I,n)
S w(m HA2DL /2@

n new ||2
7€ nn () oozl

Proof. Since the spectral expansion (20.7) is a finite sum, we have

CTr—0dP) (B! (n]a)) =(—1)#5 T] 2" 1C1(0) DR ? [Kign : Ko(n)] ™!
Z*(1/2,1,01,) d .
S Z a(s(m) 22 lottm) 4 ge o B0).
e 7rp|| ds =1/2
€M cus (I,n) pEAL (1) N s=1/

By virtue of Proposition 13.1 and (20.4), we have

Z*(1 27 17 Pl , d *
Z (”/ 2 o) %Z (8,15 1m,p)
pEA (1) Plmp s=1/2
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S L DPQu ,(1/2)L(12,7) (108 Dr)G (1)@ (1/2)L(1/2,7 1)

peh(m) H‘Pl,mpH2

" Z llermpll? ||2 De?Qua,p(1/2)L(1/2,7)G (1) (Qrn.p) (1/2)L(1/2,7 @ 1)
pEAL (1) Pl,m,p

+ Y i ”2 D2 Qr1,p(1/2)L(1/2,m)G (1) Q. p (1/2) L' (1/2,7 @ 1)
pedn(n) 1PLToP

L(1/2,m)L(1/2, 7 @n)
||<pnew||2
M / ~1/2 L(1/2,m)L(1/2,7 ®@n)
+ Z H Ty (P(U),p(’U)) (Qﬂ',n,p) (1/2) DF g(n) ||<pnew||2

pPEAR(n) \weS(nfr')

# D5 g ) T

By the definition (20.5) of w,l(m, z), we have

=(log Dp) D" *G(n)wi(w)

owi(m)y = > 11 ol l). (Qrnp)' (1/2).

pPEAL(N) vES(nf;l) 7Tv( ('U 7p( ))

Thus we are done. O

21. SPECTRAL AVERAGE OF DERIVATIVES OF L-SERIES: THE GEOMETRIC SIDE

Recall that the function \Ilieg( n|a) has another expansion coming from the double coset space Hp\Gr/Hp
in §14:

(21.1) Wl (nas [§9105 %) = (1 +40(n = 0)Jlalast) + Jh(ost) + Jh(ast) + iy (ast), € AX,

where the terms in the right-hand side are defined in Lemmas 14.1, 14.2 and 14.10. For § € {id, u, @, hyp},
we consider the “orbital integrals”

W (8, Xa) = /F oo T@DEB ) = Bt )ds
for a € Ag, f € Band X € C such that Re(\) > 1. We shall show that these integrals converge absolutely

individually when Re(A) > 1 and admit an analytic continuation in a neighborhood of A = 0.

Lemma 21.1. Let A\ and w be complex numbers such that Re(w) < Re(\). Let & be a character of
F*\A*. Then, we have

B(=w)

[ A RSO = sl £

Proof. The proof is given in the same way as [47, Lemma 7.6]. ([

Lemma 21.2. For Re(\) > 0, the integral W, (8, X; &) converges absolutely and W, (8, \; a) = 0.

Proof. This follows immediately from Lemma 21.1, since Jiq(c;t) is independent of the variable ¢ (cf.
Lemma 14.1). O
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Assume that ¢(Re(s)) > Re(A) > o and 1 < o < [/2. Set

1 11l * +z
Vi = o [ e L W Gl )
1 * z
Vi) =g [ S [ el 1, Sl e e
Lo, ( AX

and

Th(ess) = (1= no(m)ay CHED/2) 11 = gfortD/2)7
veES

1 (i) =D 0/ T o o ier cos (G (2 ))) Yiaio)
VEY oo v v

Lemma 21.3. The double integrals ijtn(/\7 s) converge absolutely and

VO%”()\;S) - % /La (Zﬁiz))\)zN(fn)szL(¥Z7W)(—l)e(n)Tg,l(iz;s)dz

and

Vit (is) = o /L 0 mN(fn)ﬂFZN(@ﬂﬁ(n)a(n — 0)L(F2, )il T (5 8)d=.

Proof. As in Lemma 15.2, we exchange the order of integrals and compute the t-integrals first. Since
n # 1, the integrands in the remaining contour integrals in z are holomorphic on |Re(z)| < o; thus we
can shift the contour L_, to L, for VOJ;] and V', . O
Lemma 21.4. The integral W1 (8, A; ) has an analytic continuation to the region Re(X) > —1/2 as a
function in A. The constant term of W1(8, \;«) at X =0 equals W(l,n|a)B(0) with

21

pl/2 i 1\**
W1l nla) = (—1) PG DY + (1) fz(n)z’lam:o))(.) [ s (ests)

where Y'l(s) = Y%(0;8) and

. L'(1,m)
wy(s) =n O 1YL g D+ Z L
b/2-1 1 log ¢
+ Z 773 10g7r 2CEuler —0c,1log2 | + Z 1_ (s0+1)/2 }
vEDe \ k=1 ves (&)

Proof. From Lemma 14.2, we have the expression

#S
WI(8, \sa) = (21“) / o Vi 59) = Vi () + Vi, (8) = Vi () o) (o),

By Lemma 21.3, the right-hand side becomes

6 1" ! B(2) - -
((—1) () +1 6(“ = 0)) (27‘(1) /ILs(c) o L. (z+ \)? {N(fn) L(_Z777)TS,I(275)
= N(fy)*L(z,n) Y3, (—2;8) bdza(s)dps(s),

92




which is holomorphic on Re(\) > —o. Since 1 < ¢ < /2 is arbitrary, this gives an analytic continuation
of W2(8, A; ) to the region Re(\) > —1/2 and yields the equality

CTrx=oW (B, \; )
_ ( ! )#S / B (1 PG ff(e) - fu(—Z)}dZ> o(s)dps (5)

2mi 2mi Jp, 22

:((—1)6(n) + ifd(n =0))Res.—o (ﬁéj)fu(zo

:«_Umﬂ+J&n=o»ﬂﬂ;ﬂfd@ﬂmy+%R%xﬂﬁgaﬁxm}

z

where fu(2) = N(f;)"*L(—2,7)Y§,(z;s). Since 1 is non-trivial, by the functional equation

L(s,m) =i Dy N(f,) ™ #((0/f;) ) G(n) L(1 — s,7n),
fu(2) is holomorphic at z = 0. Thus,

CT._o fu(z) — im fu(2) ; £a(0)

z z—0

= — (log N(f;))L(0,m)Yg,(0;8) — L'(0,n) Y, (0;8) + L(0,n)(Tg,)"(0; 8)

=G () DTS, (0:)(~ (1, ) 1ogN(T,) + L(1,n) log(DeN(iy)) + I/(1,m) + L(1,n) - log Vs (2:9) o)

d -
=G(n)D*n TG (s){L(L, 1) log Dp + L'(L,7) + L(1, 1) log Ts1(=:5) -0},

where Yg,l(z;s) = D},/Q#((o/fn)x)Tg,l(z; s). Furthermore,

d ~ 1 1 — v
o log Ys,(2;8)|2=0 ZUGZE (1/1(%/2) -5 log m + 51{) ( Z;_ € ) —(—2) + %tang(—z + ev)) .
log gv
+ .
v; 1= ny(wo)g
Here, by (1) = —Cguler, ¥(1/2) = —Cguler — 21log 2 and % (tcott) |;=op = 0, we have
1
§CEuler (GU = 0)’

1 —z+ €, ™ s
2¢( 5 ) —P(—2) + 5 tan 5(_2‘*‘%) z:O

%7/} <;> - 7/}(1) = %CEuler - 10g2 (61, = 1)

Assume that g(Re(s)) > Re(\) > o and 1 < o < /2. Set

7+ . 1 /B(Z) (0) . 1z, * +z
‘/1,77(/\75) = % Ly, (Z+>\)2 Ax ‘Ill (n|s, [% (1)][() 1 ]) W(t%)\ﬂA dxtdz7

. 1 B(z)
+ ). Q) — (0) . 10 NME=
Vom(Ais) = i /Li(, EES\E /AX U (nls; [§ 4112, Tlwo) ntay)|t3*d™ tdz.

In the same way as Lemma 21.3, we obtain the following.
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Lemma 21.5. The double integrals ‘N/jin(/\, s) converge absolutely and

Vs = g [ U N ) TN T ) L ) Y ()

Vin(Ais) = 23” /L mN(fn)szé(n = 0)L(%2,n) (1)WY (F2;8)dz.

Lemma 21.6. The integral W (B, X\; ) converges absolutely on Re(\) > 1 and has an analytic continu-
ation to the region Re(\) > —1/2 as a function in X\. The constant term of WZ(3,\;a) at X = 0 equals
W(l,n|a)B(0) with

1/2 i 1\*°
WAL wle) = (<1 OGO i) + 50 =) (5] [ kol (ods(s).

where
WY (1, nfs) = =7 YY(s) L(1, 1) log(N(m)N(f,)?) — WY , (I, nls).

Proof. From Lemma 14.2, we have the expression

WI(B, Xa) = (- ” Vol (Ass) — Vo (As) + Vit (Ass) — Vi (s d
W) = (gr5) [ 1068 = Vi 09) + it ) = Vi ()b

By Lemma 21.5, the right-hand side becomes
- #S
e+ s =o) () [ o [ < NG N e T 59
= N(f)"N()*L(=z,n) Y5, (2;8) }za(s)dps (s)-
As before, this gives an analytic continuation of W(8, \; &) to the region Re(\) > —1/2. We set fa(z) =
—N(f,)**N(n)? fu(2). Then,
CTr=oWi(B,X; )

=(i(n) + (=1)M¢ls(n 0)){CT.— Of a(?)

B(0) + %Reszzo fﬁ(z)ﬁ”(O)}.
Since 7 is supposed to be non-trivial, fz(z) is holomorphlc at 2z =0 and
oM —p1(0) = — 1oa(NIN(2) £0) 40
=G () D {=n "L (s)L(1,m) log(N(m)N(F3)) — 2% , (1, nls)}-

O

Lemma 21.7. The integral W (57)\ a) converges absolutely on Re(\) > 1 and has an analytic con-
tinuation to the region Re(X) > —e for some € > 0. The constant term of Whyp(ﬁ, Aja) at A =0 equals

Wi (L n|a)B(0). Here

1\*°
7 (1 ==— l d
Wpltnlo) = (555) [ it miansts
with

£y(lns) = Z /AX 0) (nfs, 05 [§ 9] [ 5 Dn(ta;) log [t|ad™t.

beF—{0,—

Proof. The absolute convergence and analytic continuation of Whyp(ﬁ, A; ) are given in the same way
as Lemma 15.5. We obtain the last assertion with the aid of (20.1). 0
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From the analysis so far, (21.1) yields the formula:
(212) an,)\( rcg( ‘ )) Wn(ﬁvA a)+Wn(ﬂa)‘ a)—'_Whyp(ﬁv)\;a)

which is valid on a half plane Re(\) > —e containing A = 0.

21.1. The derivative relative trace formula. For any ideal m of o, set

t(m) = [Kagy : Ko(m)] = H (14 go)g° ord, (m)—1
vES(m)

Let Js,, be the monoid of ideals generated by prime ideals p, for all v € X5, — S U S(f,). We shall
introduce several functionals in o € Ag depending on an ideal m € Jg,,:

(21.3) AL(mia)=C; Y ‘”N“‘(;“iﬁ”) L QL’S?(f i/ i’ d: 20 o (ws(m)),
7€Meus (I,m) T B

O Y i
7€Meus (I,m) T T

(21.5) ADLY(mia)=C; Y ‘;“Eg)) f((t’;")) La/ 2L§) (f Erl/j’(g 20 o (ws(r)),

Trencus(lvm)
e(1/2,7®n)==%1

where Cj is the same as (0.4). The derivative of L-functions in ADLY is eliminated by the functional
equation.

Proposition 21.8. We have

) . 1o wh(m) (1) LO/2,7) LA/ 7 0)
AP ) =€ D TesNORIPE G Lo agy )

Proof. By the functional equation,

€(1/2,m©n)

L'1/2,mr®on) = 5 L(1/2,7®n)
if (1/2,7®@n) = 1. An explicit form of the e-factor is given by €(s, 7@n) = €(1/2, 7@0){N(frey) D% }/?75 =
€(1/2,7 @ n){N(§x)N(f,)2D%}/2=5. Hence we obtain the assertion immediately. O

The following is the main consequence of this section.
Theorem 21.9. For any ideal nw € Js,, and for any o € Ag,
(21.6)  27Y(=1)#5TMG(n) DRt {ADLY (n; ) + ADLY (n; ) + (log Dp) ALY (n; o) + ALY (n; )}
=W7(1,n|a) +Whyp(l nla).
Here
(21.7) Wil nja) = (1 — (1)) (~) DG DY {1 + (1) Pi(n)ilé(n = o)}

i(n
(27”) / (0, nfs)a(s)dpis (5)
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with dus(s) = [1,eq2 " log qu(qw (IFs0)/2 _ (1_5“)/2) ds, and Lg(c) being the multidimensional contour
[loesisy € C | Re(sy) = ¢} directed usually,

(21.8)
W(1,n|s) =MLY (s)L log(+/N(n)DgN(f,) L', +3 log g»
8 U T 1 ot/
7 vES nv(wv)
T4(s) = TL( = m(n)ay F+072) 11 = gfton)/2)8
veS
l,/2—1
1 1 1
Qt(l) = Z E - 5 10g7T - ichlcr - 661,,1 10g2

VEY o k=1

Proof. From Proposition 20.4 together with Lemma 13.4,

CTA=08Pg7,\( reg(n‘ ))
=271 (—1)#5T<MG(n) D' {ADL” (n; @) + ADLY (n; ) + (log Dp)AL" (n; ) + AL (n; ) }.

On the other hand, from the formula (21.2), the same CT)\Zoan,/\( Leg(n|a)) is computed by Lem-
mas 21.4, 21.6 and 21.7. O

22. EXTRACTION OF THE NEW PART : THE TOTALLY INERT CASE

Let Zg,, be the monoid of ideals generated by prime ideals p, such that v € g, — S U S(f,) and
7(p,) = —1. Note that Zg,, is a submonoid of Js,, defined in §21.1.

In this section, we use the A/-transform defined in §10.3.1 and separate the new part, i.e., the contri-
bution of those 7 with f. = n, from the total average ADL" (n; &) under the condition n € Zg,,.

Given an ideal n, let ny denote the largest square-free integral ideal dividing n; thus, there exists the
unique integral ideal n; such that

n = ngni.

Let Z be a set of integral ideals such that if n € Z, then all integral ideals m dividing n are elements of Z.
The following is a corollary of Lemma 10.12; we take the derivative at t = 0 of the formula in Lemma 10.12.

Corollary 22.1. The N -transform of the arithmetic function log N(n) on Z is given by

NiogN|m)= [ (0-¢> J[ 0-(@-a)™

veES(n1)—S2(n) vES2(n)

21o v 2lo v
x | logN(n) + Z ngl + Z =98

_ 2 _ _
veS(ny)—Sa(n) £ vES,(n) Q= —1

22.1. The totally inert case over n : holomorphic case. Fixing a test function o € Ag for a
while, we study the arithmetic functions AL*(—; «) : Zs,, — C and ADL* (—; ) : Zg, — C defined by
the formulas (0.2) and (0.3), respectively. We relate these functions to the N-transforms of arithmetic
functions AL (—; a), ADLY (—; ) on Zg,,, where Zg,, is the set of ideals defined in §10.3.2.

As is seen in §1O 3.2, we remark that an ideal n € Zg,, satisfies the condition

Ny (wy) = —1, v e S(n).
We recall w(m, b) (cf. §10.3.1). For any ideal ¢ and a place v € Xy, set
1 (ve S(),

wv(c) =qq@t1
do—1 (v & 5(c)).
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For any pair of integral ideals m and b, define
w(m,b) =d(m C b) H wy(mb™
veS(b)
Lemma 22.2. Let n € Zg,. For any m € Ilys(l,n), we have the following.
(i) If nf;* = b2 with an integral ideal b, then
ow!(1) = w(n,nf 1) Z (—log qy) ord,(b).
veS(b)

(ii) Ifnf ! = b%p, with an integral ideal b and a place u € S(n), then

qu — 1
’ | ord, (b) + (1+auf1/2)(1+a_1 1/2) (c(mu) = 0),
dul(r) = w(n,nfz") (logau) { o o
ord,(b) + 1 (c(ma) > 2).

Except the above two cases (i) and (i), we have dwy(m) = 0.

Lemma 22.3. For anyn € Lg,,

AL"(n;a) = 3 w(n, b?) L(‘L‘bfz) AL*(nb~2; a),

z ")

(
w 2 L(nb_2) * —2
ADL"(n;0) = Y " w(n, b?) ADL* (nb~2%;a),

’ t(n)
b
ADLY (n;0) = ) " w(n, b?) L(‘:(bn) ) log(N(nb=2)"Y2N(f,) "' Dz') AL*(nb~2; a),
b

where b runs through all the integral ideals such that n C b2.

Proof. This follows immediately from Lemma 10.14, which is valid for © € TI¢us(l,n). To have the last
formula, we also need Proposition 21.8. ]
Lemma 22.4. For anyn € ZLg,,
AL (n; o) = N[ALY (= a)](n),
ADL* (n; ) = N[ADLY (—; )] (n),
—log(v/N(m)N(f,) D) AL* (n; a) = N[ADLY (=; a))(n).

Proof. In the same way as Lemma 10.15, we obtain the first formula by applying Proposition 10.10 with
B(m) = ¢(m) ALY (m;a) and A(m) = «(m)AL"(m;«) both defined for m € Zg,. The remaining two
formulas are proved in the same way. O

The formula (21.6) in Theorem 21.9 can be applied to an arbitrary ideal m € Zg,,. In the right-hand

side of the formula, we have two terms W7(l,m|a) and W} (I, m|a), which we regard as arithmetic

hyp !
functions in m for a while and consider their A-transforms AW (I, —|a)] and N W nyp (L =)

Proposition 22.5. For any n € Is,, we have the identity among linear functionals in a € Ag:
(22.1) ADLY (n; ) = 2(=1)#5+ " G(n) ™ Dp{NTWI(1, —|a)](n) + NW} (1, —[)](n)}
+1og(N(n)"/?N(f,)) AL* (n; @) = NTAL®"(=; )] (n).
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Proof. We take the N-transform of both sides of the formula (21.6) regarding it as an identity among
arithmetic functions on Zg,. Then apply Lemma 22.4. O

23. AN ERROR TERM ESTIMATE FOR AVERAGED L-VALUES

In this section we prove the first asymptotic formula (0.7) of Theorem 0.9. Recall the sets I;n, to
which n should belong. We note that, by the sign of the functional equation, L(1/2,7)L(1/2,7®n) = 0 if
7€ %, (I, n) unless n € Ij{n. Thus we restrict ourselves to those levels n belonging to I;,n’ for otherwise
AL*(n;a) = 0.

We have the following asymptotic result, whose proof is given in the next subsection.

Proposition 23.1. Suppose | = inf,ex_ l, = 6. For any ideal m € I;(a) we have

i’
ALY (m; aq) = 4DY? L (1,7) N(a) "Y280 (0, )di (a) + O 1, (N(@)H2 N (m) ~o+)
for any ideal a prime to §,, where ¢ = d;l(L/Q -1).

From this, we can deduce the asymptotic formula for the primitive part AL*(n;aq) stated in Theo-
rem 0.9. Indeed, we apply the first formula of Lemma 22.4 substituting the expression of ALY given in
Proposition 23.1. The main and the error terms are computed by Lemmas 10.12 and 10.13, respectively.
This completes the proof of the asymptotic formula (0.7). O

23.1. Proof of Proposition 23.1. For any place v € 3g,, we define a function A, : F, — {0,—-1} —» Z
by setting
Ay (b) = d(b € 0,){ord,(b(b+ 1)) + 1}.
For an integral ideal b, we set
#SOw ={ ] A®} J[ s(beb o), beF-{0,-1}.
VEXfin—S(b) veS(b)

For an even integer k(> 4) and a real valued character ¢ of R*, let J®(k;b) (b € R —{0,—1}) be the
integral studied in §17.3; they are evaluated explicitly in Lemma 17.15 as

Flkt) - (14 b) /2 2 By (k /2, k/2:k; (b + 1)) (b(b+1) > 0),

| 21og |0+ 1)/8] Pz (26 4+ 1) = o Gt Praam(2b+1)  (b(b+1) <0),

0 (b(b+1) > 0),

=

T (ks b) = {

where P, (z) is the Legendre polynomial of degree n.

Lemma 23.2. Let k be an even integer greater than 2 and n, a real valued character of R*. Then, for
any € > 0, we have the estimate

b+ DI JI7 (ks )] < (14 [B)7H/242, b e R - {0, -1}
with the implied constant depending on k and €.

Proof. For J%8%(k;b), the estimate is obvious. As for J1(k;b), we only have to note that the estimate

o Fy(k/2,k/2;k; (b+1)71) = O(]logb|) for small b > 0 ([24, p.49]) and the functional equation J(k;b) =

(=1)%/2JY(k; —=b—1) for b < —1. The functional equation is proved by the transformation formula of the

hypergeometric function 2 F(a,b;¢;2) = (1 — 2)"%2Fi(a, ¢ — b;¢; 25) ([24, p.47]). Indeed, the formula

gives the identity J*(k;b) = 2T'(k/2)2T (k)= '0*/23Fy (k/2,k/2; k; —b~1) = (=1)*/2J  (k; —b — 1). O
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Given relatively prime integral ideals n and b and for € > 0, we set

W(lwnb)= > SO@NOGO+1)) ] 1T s

benb—1—{0,—1} vEX

Proposition 23.3. Suppose [ > 6. Let b and n be relatively prime ideals. For any sufficiently small
€ >0 and any € > 0, we have

jg(l, n, b) <<€,€,,l N(b)1+c+e/ N(n)_c+25+5/
with the implied constant independent of b and n.

Proof. By Lemma 19.4 and Lemma 23.2; we have

3(m,b) e NO ST [T @+ b)) /22 = N(p)* O (mb )

benb—1—{0} vEX o

for any € > 0 and any ¢ > 0, where we regard the fractional ideal nb~! as a Z-lattice in the Euclidean
space Foo = F ®g R and O(A) is constructed for {l, — 4e — 8€¢'},ex., in place of | (see §27). If € > 0 and
€’ > 0 are small enough, then we can apply the theory in §27 to this ©(A). The desired estimate follows if
we apply Theorem 27.1 with A = nb~! and Ag = b~! noting D(nb~1) = N(n)N(b)~*, D(b~!) = N(b)~!
and r(b=1) < (o). O

Proposition 23.4. Suppose [ > 6. Given integral ideals n and a = HvES(a) prv relatively prime to each
other, for any € > 0, we have

|ngp(l,n|aa)| et N(a)H2HeN(n) et
with the implied constant independent of a and n.

Proof. Let v € S(a) and n € Ny. By (0.5),

Zn+l _ Z—(n+1) [n/2] _2
(23.1) app (V) = —"—F— = ol (v) = §(n € 2Ny)

—1
zZ—Zz
m=0

with o{™ (v) = 2™ + 2=™, z = ¢5/?. By Lemma 17.3, we have
T2 (b, @™ (1 4+ m)8(bl, < g)")go™ V7 2{L+ Ay (b)), be F* —{-1}

with the implied constant independent of m € Ny and v. Hence if n > 0,

|72 (b, )| < (10l < g {Z L+ m)%q, ™21+ A, (b))

o0

([blo < a3)qu (Z(l + m)22_m/2> {1+ A,(0)}

m=0
Thus we have a constant C' independent of v € S(a) and n € Ny such that

(23.2) |10 (b, app)| < C g™ 6(Jbly < @) {1+ A, (b)), be F* —{0,~1}.
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Combining (23.2) with Proposition 23.3 and Lemmas 17.4, 17.5 and Corollary 17.11, we obtain
‘ngp(lmma)‘ gC#S(a){ H qg(nu>0)} Z Z TS(HvEIp:;Lv)(b) H | T (1 b)

veS(a) ICS(a) ben(ITper p:j'U)flfgl VED oo
<CHON(@) Y Jolln.fy [T 000

ICS(a vel

<. ZC#S(a)N Z N anpnv 1+c+eN ) c+te

I1CS(a) vel
Lot CFSON(a) x 2#5(ON(a) TN (n) 7T,
By the estimate (2C)#9(®) <, N(a)¢, we are done. O

Lemma 23.5. Set T (s) = (1 — ny(wy)qw (1+s)/2) 1 - q51+s)/2)*1, Forn € Ny,

o+2mi(log gu) 1
o [ i ) oy (8) dis) =~z § O S 2NO) Oel@) = ),
2mi o—2mi(logqy,) 1 v n+1 ( ( )) +1)7
% v -1 v n —
oz . / A O L 10 AR SET. Gt (o =),
2T Jo_omilogqy)-t 1 — nv(wv)qff“)/2 Las (o (wy) = +1)

Proof. The second integral is U (apn) defined by (26.11). Then we have the second formula using (23.1)
and Lemma 26.13 by a direct computation. The first formula is confirmed in the same way by using
Proposition 18.1. g

To show Proposition 23.1, we apply Theorem 16.1 taking S = S(a). From the first formula of
Lemma 23.5,

(1, n|a) =2(~1) DG D (1 + 6(n = 0)) Lan(1, n)

< (=1)#5@ T gp™ /%6y €2No) [ 4™ /?(no +1)
veS(ay) veS(at)

=2(~1) G () D* (1 + 8(n = 0)) Ln(L,7) x (~1)#S@ON(a) V285 (a; )d: (a;}).

We use Proposition 23.4 to estimate Jﬁyp(l, n|ayg), which yields the error term. This completes the proof
of Proposition 23.1. O

24. AN ERROR TERM ESTIMATE FOR AVERAGED DERIVATIVE OF L-VALUES

Let I;n and I;n be the same as in §0.1 and let a = HveS(a) prv be an integral ideal. In this section
we prove the asymptotic formula of ADL* (n; o) for n € Is(u) stated in Theorem 0.9. We remark that
ADL* (n;aq) =0 if n € I+( ). Indeed, for such n, €(1/2,m)e(1/2,m @ n) = +1 for all = € II% . (I,n),
which means €(1/2,7) = —1 and hence L(1/2,7) = 0 for all m occurring in the sum ADL” (n; ay).

Starting from the formula (22.1) with « specialized to o, we examine the four terms in the right-hand
side separately as follows.

(i) We compute the term N[W7(I, —|ag4)](n) explicitly by using Lemma 26.13, Lemma 10.12 and
Corollary 22.1, which yields the main term of the formula (modulo a part of the error term); see
§24.1 for detail.

(ii) We prove

N[Wgyp( , —lea)](n) = Oe,l,n(N(a)C+2+EN(n)—inf(lyc)+e)

by using the explicit formula of local terms given in §26; see §24.2 for detail.
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(iii) Since n € Zg(ay >
equations.
(iv) We prove

the term AL"(n;«,) vanishes by the reason of the sign of the functional

NIAL (=3 00)] (1) = Ocry (N(@)7H/34 X () + N(@) 2N ()~ 001+¢)

This part is most subtle and the term X (n) arises from this stage; see §24.3 for detail.

Combining these considerations, we obtain the second formula in Theorem 0.9 immediately.

24.1. Computation of N[W7(l, —|ay)](n). Let us describe the procedure (i). We take a to be the
function ag. Set S = S(a). From (21.7), we have that N[W1(l, —|a4)](n) is the sum of the following two
integrals:

#5 )

(241) 2D (5] [ M -Iolon(s) dests)
pL/2 1\*9 ~

(24.2) 2(-1)G(n)D /(%) [ NI 8] (8) (s 5)

where 27 (1, —|s) is the quantity (21.8) viewed as an arithmetic function in n and D is an arithmetic
function given by D(n) = (=1)<™7(n)d(n = 0)i’. By the formula (21.8),

NI, ~[s)](n) = 7Y Y(s) L(1, n){Q_IN[log N(n)

+ <log(DFN(f,7)) + LL ((11’;’)) +en+Y =2 L /2> N[l](n)}.

vES 1- nv(wv)QU

By Lemma 10.12 and Corollary 22.1, we have formulas of A[log N](n) and of N[1](n); substituting these,
and by using Lemma 23.5, we complete the evaluation of the integral (24.1).

The evaluation of the integral (24.2) is similar; instead of N [log N] and N [1], we need N[D log N] and
N[D], which are much easier. Indeed, in the expression

NDINI() = ()i S (P T oy et e
ICS(ny) veINSi(ny)
<n [ s®) otn [T pi? = o) logN(n [T )
vel vel vel

for n = non? with square-free ideal ng, the sum survives only if n = [, . S(n) p2 and I = S(n). A similar
remark is applied to A[D](n). Hence,

AplogRltw = o5t H L l(lb)(i)smlog N(0) =0,
veS(n
N[D](n) = 6(S(n) H g +1 (1) (= t)(ism)
veS( n)

Since ¢(n)~! = O(N(n)~1), the integral (24.2) amounts at most to N(n)~'t¢N(a)~1/2F¢,
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24.2. Estimation of the term N[W] (I, —|aqa)](n). Let us describe the procedure (ii). We need the
following estimate, which we prove in §26.4.

Proposition 24.1. For any small € > 0,
|Whyp(l’n|aa)| Leln N(a)c+2+6N(n)7c+€7 Ig(u) n’
where the implied constant is independent of the ideal a.

From this proposition and Lemma 10.13,
IVTWE, (1 —laa)] ()] S NFIWE (1 —laa)[[(n) ey N(@) 2N NTF)(n) < N(a) 34 N(n)~ i D+,

24.3. Estimation of the term N[AL%"(—;aq)](n). Let us describe the procedure (iv).

Lemma 24.2. Let o € Ag. Then for anyn € IS(U) g We have the inequality

—2,.—1
‘ALaw I'l Oé Z D (nb Py ) ‘AL*(II[J 2p—17 )l7
(o v(n) “

where (b,u) Tuns through all the pairs of an integral ideal b and a place u such that n C b%p,. For such
(b,u), we set

1/2 i1
D(n;b,u) = w(n, b%p,) (log ¢.) <Ordu([’) + 1/2 1) )
qu

Proof. By Lemma 22.2, the m-summand of AL?"(n;«) vanishes unless the conductor f satisfies either
(i) nf-! = b2 with some n C b, or (ii) nf,* = b%p, with some n C b and v € S(n). In the case (i), the
m-summand vanishes. Indeed, fr belongs to Zg . and thus L(1/2,7)L(1/2,7 ®n) = 0 by the functional
equation. In the second case (ii), by the Ramanujan bound |a,| = 1 by [1] and the obvious relation
IXv ()| = 1, we have

ordy(b) + Gl (e(m) = 0),
|Ow] ()| < w(n, b%p,) (log qu) 4 ord,(b) + — (11u1 (c(my) = 1),
ord, (b) +1 (c(my) 2 2)

1/2

u 1
w(n, b2py,) (log qu) <q1/2+1 + ordv(b)> = D(n; b,u).
qu  —

1/2

Here, we use —— < —Zu1 _ — + to have the second inequality. O

1—q. (1— q1/2) - 1/2

Lemma 24.3. For any small € € (0,1), we have

—2, 1
(24.3) Z N(bzpu)e[W N(nb 2]1';1) inf(c,1)+€ <. N(n)—inf(c,1)+2€,
(b,u)
e [ Qu +1 2 L(I‘lb_Zp;l)

where (b,u) runs through the same range as in Lemma 24.2.
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Proof. A direct computation gives us the first estimate. Let us show the second estimate. By the
inequality ¢(nb=2p; 1) /e(n) < N(b~2p, 1),

€ U+1 ? nb € u+1 210 u
ZN(b) (q> (IOgQu)(ip\ ZN Tte (EII_l) %

(b,u) qu - 1
—ote . +1)° logg,
< (N Y ( ) )

bCo u€S(n) u
log qu 4log gy
= Cran(2 —€){ Z T Z ( )2}
ueS(n) Qu ueS(n) Qu =
Since (g an(2 — €) is convergent, we are done. O

Proposition 24.4. For any sufficiently small € > 0,
|AL? (n; ata)| ety N(a)H2dy (a)0p () X (n) + N(a)“H2+eN(n) = oDt q e 7o

S(a),n”
Proof. Let € > 0. From "‘+1 < z€ for x > 2, we have
2 qv+1 qu+1 e qutl
w(n, bpy) < H 7 « N(b) w1
vES( b)
with the implied constant independent of n and (b, u). By this,
c qu + 1 2 2 €
D(n;b,u) < N(b)“(log qu.) 1) < N(b"p.,)
with the implied constant independent of n and (b, u). Using these estimates, we have the desired bound
by (0.7) and Lemmas 24.2 and 24.3. O

Proposition 24.5. For any sufficiently small € > 0,
(24.5)

NIAL?Y (—; aq)](n) Lol N(a)_1/2d1(a;“)6g(a;) X (n) 4+ N(a)*F2+e N(n)~ fhate g Ts(aym
Proof. From Proposition 24.4, we have
VALY (= aq)(n)] < N(a)~"/2d1 (af)dn(a, JNF[X](n) + N(a)H2H N [N EOF (n)

forallne ZZ

S(a)- Since X(m) < X(n) if n Cm C o, we have

NT[X])(m) < X () N [1](n)
=xm{ JI @+ [I a+ra-aH ")

veS(n1)—Sa2(n) vESa(n)
{ [] O+ [] 0+ - e )} < X(n)
VEXfin VEfin

since the Euler products occurring are convergent.
From the proof of Lemma 10.13, we have N T[N~ D +e) () <« N(n)~nf(eD)+3¢ - Consequently, for
any sufficiently small € € (0, 1), we obtain the estimate

INTAL?Y (= aq)](n)] <e N(a)7V/%dy(a;) )00 (a, ) X (n) + N(a)*H2+eN(n) ~ nf(e)+3e

with the implied constant independent of n and a. Since € is arbitrary, we are done. g
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25. AN ESTIMATION OF NUMBER OF CUSP FORMS

Recall that we set ¢ = d.'(1/2 — 1). For each ideal a C o, we fix a set J, consisting of ideals prime
to f,a. We suppose that a family {7,}q satisfies J, C Jo for any a C a’. Moreover, we suppose that

*

there exists a family of real numbers {wy, ()| 7 € IT¥ (I, n)} for each n € J, which satisfies the following
estimate for any € > 0:

(25.1)

N(a)—1/2+e

N c+2+eN —inf(c,1)+e€
NN ,

Z wn () H Xo, (Au(m)) — H Ho,n, (Xn,) | Letn

melly (L) veS(a) vES(a)
with the implied constant independent of a and n € J7,. Moreover we impose the non-negativity condition:
(25.2) wp(m) 20 for all 7 € IT7 (I, n) and n € J,.

Let q be a prime ideal relatively prime to f,. In what follows, we abuse the symbol q to denote the
corresponding place vq of F; for example, we write v4(7), Aq(m) in place of v, (7), Ay, (7), etc. Let
S ={v1,..., v} be a finite subset of X, — S(f;q) and set ag = [[,cgpo- Let J = {J;};_; be a family
of closed subintervals of (—2,2). For each J;, we choose an open interval Jj'v such that JJ’- C J; and
C*-function yx; : R — [0, 00) with the following properties:

e xj(z) #0 forall z € J}.
e supp(x;) C Jj-
° f,22 X (@)d iy, (x) = 1, where
v — 1 d _
1z . —1/2 5 pst () (Mo (@y) = +1),
dpro n, () = (g0 +q(iv_|_ 1 - )

(@ +q )2 —x

Here dugr(z) = (2m)~'v/4 — 22dz. Fixing such a family of functions {x;}, we set

5 dUST(m) (nv(wv) = _1)~

Qu(m) =wa(m) [ x50, (1), 7€M (n), 0 € Tyas.
j=1

Lemma 25.1. For any sufficiently small € > 0, there exists N¢ g; > 0 such that
(25.3)

n+1 N(qn)—1/2+e

Z Qn (1) X (Aq (7)) =ty (Xn) | Lein,5.9 (log N(n))3 + log N(n)

welly, (I,n)

+ N<qn)2+c+eN(n)— inf(c,1)4€

for n € Ng and n € Jqqs with N(n) > Nc ;. Here the implied constant is independent of n and n.
Moreover,

cus

(25.4) Qu(m) =0 for all m € I, (I, n) and n € Tqay-

Proof. Given an integer M > 1, define x}(z) = ZQ/I:O Xj(n) Xn(z) for € [-2,2] with x;(n) =
ffg X;j (%) Xy (x)dpsT(x) and set

xx) =[], M) =[] )
Jj=1 j=1
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for x = (x;)1<j<r in the product space [—2,2]". Let n € Jqqs. By the triangle inequality, the left-hand
side of (25.3) is no greater than the sum of the following three terms :

(25.5) Y wnl®Xag(m){x(As(m)) XM(AS(W))}’7
mellg, (Ln)
(25.6) Yo wnmXaAg@XM As (1)) = sg,m, (Xa) s,y (M)

welly  (I,n)
(25.7) {5, (OM) = 15 (00} tq.mg (X)),

where A\g(7m) = (Ao (7))ves and ps, = ®@ves fho,y, - Note pg,(x) = 1. We shall estimate these quantities.
Since |x;(n)| <y, n~® for any n > 0 by integration by parts and by max|_» o) | X,| < n + 1, we have

@) <D ) [Xa(@)] <y, Y n7t <M
n<M n<M
and
max [x;(2) =33 @) < Y [R(n)] max [Xa] <y Y n7" < M7
z€[—2,2] ! =
By these,
(25.8) e [x(x ) = xM(x)| < e (ZI HXh zn)l X (x5) — (%)I) s M2
j=1 h=1

From (25. 1) for a = o, noting n € Jqas C Jo, we have the estimate |}° cpp. oy wn(m) — 1] ey
(log N(n))~! + N(n)~ nf(eD+e Hence (25.5) is majorized by

(ma Xl {_mags, 69 =GO Y ) s -+ DM+ Ny~ ),
’ ’ m€z . (I,n)

By (25.8), the quantity (25.7) is majorized by fiq., (Xn)M ~3, which amounts at most to (n+1)M 3. Let

us estimate (25.6). By expanding the product, x™ (x) is expressed as a sum of the terms H§:1 X;(n;) x

[[j=1 Xn, (x;) over all n = (n;)3, € {0,..., M}". Hence by using (25.1), we can majorize (25.6) from

above by

I T

S| S e X gl T K Oy (1)) — g (Ko o)
ne{0,...,M}7 |wellz, (I,n) j=1 j=1
N ClM n\—1/2+e .
<<57l1771S1X(15;);1\?(n) + N(ag/[q”)2+c+€N(n) inf(c,1)+e

Combining the estimations made so far, we have that the left-hand side of (25.3) is majorized by
N(ann) 1/24€

(25.9) (n+1)M~3(1 + N(n)~ fleD+e) 4 log N(n)

+ N(ag/[q")2+C+EN(n)_ inf(c,l)—i—e.
Now take
€ log N(n)

2+ c+elogN(ag)
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Then N(ag)MC+ete) < N(n)¢, and also N(ag)M(~1/2+¢) < 1 evidently. By these, (25.9) is majorized by

) n\—1/2+e )
(n—l—l)(logN(n))*?’ IOgN(as)3(1+N(ﬂ)7lnf(c’1)+6)+ N(q ) —I—N(qn)2+c+6N(‘ﬂ)7lnf(c’1)+2€
logN(n)
N(qn)fl/ZJre

N n2+c+éN 7inf(c,1)+2e.
NN

<es(n+1)(logN(n)) =2 +
O

Lemma 25.2. Let I C [—2,2] be an open interval disjoint from the set {\q(7)| m € II% (I, ), Qu(7) # 0}.

cus

Then for any small € > 0, there exists a constant Ne iy 5.4 > 0 such that for any ideal n € Jqqg with
N(n) > Nein,s.q:

figng (1) <etm,5.5 N()° (log N(n)) =+
holds with the implied constant independent of I, n and q.
Proof. The proof of [37, Proposition 5.1 and Lemma 5.2] goes through as it is with a small modification.

We reproduce the argument for convenience.
Let A > 0 be a parameter to be specified below and K a closed subinterval of I such that

(1) pgm, (I —K) <A.
Depending on A and K, we choose a C*°-function f on R such that
(ii) supp(f) C I,
(iii) f(x)=1lifr € Kand 0 < f(x) <1 for z € R,
(iv) |f®) (x)] < A~F for k € No.
Since I does not contain the relevant A\q(7)’s, from (ii) we have Qy(7)f(Aq(7)) = 0 for all © € IT} (I, n).
Using this, from (i) and (iii), we have the inequalities

2
Hq,nq (1) < Hq,ngq (K)+A< / fdpgm, + A
—2

2

> W fa) - [ o,

mellr (In)

cus

(25.10) < +A.

If we set far(x) = ZQ/I:O f(n) X,,(x), then the first term of (25.10) is bounded by the sum of the following

three terms

(25.11) (X 1on@l) - maglr - sl
mell}, (I,n)
2

(25.12) max | f — far| dpiqz,
_9[—2,2]

(25.13)

2
S ) S alr) — [ dtan,

melly  (I,n)

We remark that by the non-negativity of Q,(7), the absolute value in (25.11) can be deleted. Then by
the estimate | f(n)| < n~*A~* which follows from (iv) by integration by parts, and by max(_o o] | X, | <
n + 1, we have

max |f — fu] < Z |f(n)] max |X,| <k Z nFA=Fp < M2RAK
(=22 n>M [=2,2] n>M
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with & > 3. From (25.3) applied with n = 0, noting 1q,y, (Xo) = 1, we have the estimate [ 3> o ) Qn(7)—
1| e .53 (logN(n))~! + N(n)~nf(eD+e Hence the sum of (25.11) and (25.12) is majorized by
ATFMP R (14 (log N(n)) ™! 4 N(n) = HeDTe) « A7k a2 78

with the implied constant independent of A, M, q and n. By (25.3) and by |f(n)| < 1, the term (25.13)
is majorazed by

M
Zlf(n)\ Y Qlm) X)) — Han, (Xn)

el (In)
n -+ 1 N(qn)—1/2+e e .
. N(g"™ “+c+e N inf(c,1)+€
< lnSJZ( (log N(n 3T log N(n) + N(q") (n)

M? n 1
(logN(n))? * logN(n)
where ¢/ = 2 + ¢ + €. Putting all relevant estimations together, we obtain

1 n M?
logN(n) = (logN(n))3

with the implied constant independent of I, A, M, q and n. By setting M = [mféicc,l) igiggg”, this yields

< +N(g) M N(w) e,

fgng (1) <hetmsa A+ ATFMPF 4 +N(q)“ MN(n)~inflete

the estimate
Hang (1) <hetns3 A+ A (logN(q)* 2 (log N(w))*™* + (log N(n)) ™" + N(n)~ i(e:D/24e,
Let € > 0 and we let A vary so that it satisfies A=*(logN(n))2~* <}, (log N(n))~1*<, or equivalently
A <y, (logN(n)) =1 HE=a/k,

By taking k = [3/€] + 1, we have (logN(n))~'*¢/2 <. A <. (logN(n))~'*¢. Hence,

taune (1) €ets.s (og N(w) ™+ + (log N()) 1+ (log N())*~2 + (log N(n)) 1 + N()~nf(e:)/2+¢

< N(q)° (log N(n)) 71"

This completes the proof. ]

Lemma 25.3. Given € > 0, there exists a positive number Ne i, 54,3 such that for any ideal n € Jyag
with N(n) > N 5.q,3, the inequality

#{Aq(m)| 7 € Ty (1, m), Qa(m) # 0} > N(q)“(log N(n))'~
holds.

Proof. Tt follows immediately in the same way as [37, Lemma 5.3]. O

25.1. Let I' = Aut(C/Q). We let the group I act on the set (2N)¥= by the rule 1 = (I,-1,,)vex.. for
I = (Iy)ves., and o € T, regarding Yo, = Hom(F,C). Let Q(I) be the fixed field of Stabr(l), which is a
finite extension of Q. From [40] (see [34] also), the Satake parameter A, () belongs to GL(2,Q) for any
v € Y, — S(n) and the set Ie,s(l, n) has a natural action of the Galois group Gal(Q/Q(!)) in such a way
that (97)y & Te-14, for all v € ¥, and

(25.14) /2 A,(°m) = 0(gt/? Ay(nr))  for all v € Bg, — S(n).
The field of rationality of 7 € Il.us(I,n), to be denoted by Q(r), is defined as the fixed field of the group
{o € Gal(Q/Q()) |“m =7 }.
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From (25.14), by the strong multiplicity one theorem for GL(2), we have

Q(m) = Q) ({as"*Xo(m)] v € S — S(n)}).

Proposition 25.4. Suppose that | is a parallel weight, i.e., there exists k € 2N such that I, = k for
allv € L. Let S be a finite subset of Xgn — S(f,) and I = {Jy}ves a family of closed subintervals of
(—2,2). Given a sufficiently small € > 0 and a prime ideal q prime to S U S(f,), there exists a positive
integer Ne iy s,q,3 such that for any n € Jqas with N(n) > Ny s.q.3, there exists m € 115 (( n) such
that wy(m) # 0, Ay(7w) € J,, for allv € S, and

cus(

[Q(7) : Q] > , | max { (1 =€) loglogN(n) _ 2¢ O}.

log(161/N(q))

Proof. By choosing C'*°-functions {x,} as above, we construct the weight function Q,(7). We follow
the proof of [37, Proposition 7.3]. Let d(n,2) denote the maximal degree of algebraic numbers Aq(7)
(m e I} s (I,n), Qu(m) # 0). Then,
d(n, Q) < max{ [Q(m) : Q] |7 € I (I,n), Qu(m) # 0}
< max{ [Q(7) : Q] |7 € I (I, n), wa(m) # 0, Ay(m) € Jy (Vv € 5) }.

Let £(M,d) denote the set of algebraic integers which, together with its conjugates, have the abso-
lute values at most M and the absolute degrees at most d. From the parallel weight assumption, the
Heck eigenvalues N(q)'/2)\,(7) are known to be algebraic integers (cf. [40, Proposition 2.2]). Since
a(N(q)/2\q(7)) = N(q )1/2/\ (?7) from (25.14), by the Ramanujan bound by [1], we have N(q)'/2)\,(7) €
E(2N(q)'/2,d(n,€)). Then the cardinality of the set {N(q)/2X\q(m)|7 € T, (I,n), Qu,(T) 7é 0} is

bounded from above by #&(2N(q)/2, d(n,)), which in turn is no greater than (16N(q)1/2) (n)? By [37,
Lemma 6.2]. Combining this with the lower bound provided by Lemma 25.3, we have

N(q)“(log N(n))'~* < (16N(q)"/) ™",
By taking logarithms, we are done. U

CHS(

Remark : The parallel weight assumption can be removed if the integrality of the Hecke eigenvalues

qll,/ *Xy(7) for all v € Bg, — S(fx) is known in a broader generality.

25.2. Proof of Theorem 0.11. Theorem 0.9 means the numbers

C 1 L(1/2,7)L(1/2, 7 ®n)
wy(m) = , melli(ln), ne T
" 4D Len(1,v(n) N(n) LS (1,7, Ad) SUS()m
satisfy our first assumption (25.1). The second assumption (25.2) follows from [18]. Thus Theorem 0.11
is a corollary of Proposition 25.4 with this particular {w,(7)}. O
25.3. Proof of Theorem 0.12. For any M > 1, let Zg, g, ,[M] be the set of n € Zg g, such that
2 ves(n) Oguq” M. Theorem 0.9 means
Cl 1 L(1/2,m)L'(1/2,7 ®@n)
Ik (1 Te M

wnlm) = AD3? Lo (1, 1) v(n) log /N(n) N(n L5~(1,7, Ad) o mE Iy (n), 0 € g g(q) 4 [ M]
satisfy our first assumptlon (25.1). By our non-negativity assumption (0.9), the second assumption (25.2)
is also available. Thus Theorem 0.12 follows from Proposition 25.4. O

Remark : In the parallel weight two case (i.e., I, = 2 for all v € 3,) with totally imaginary condition
on 7, the assumption (0.9) follows from [53, Theorem 6.1] due to the non-negativity of the Neron-Tate
height pairing. Similar results may be expected in the parallel higher weight case (cf. [51]).
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26. COMPUTATIONS OF LOCAL TERMS

Let @ = ®yesay, be a decomposable element of Ag. We examine the term Wﬁyp(l, nja) appearing in
the formula (21.6), which is given in Lemma 21.7. Recall that the function \ilgo) (n]er, g) in adele points

g = {gv} is a product of functions ¥,(g,) on local groups GL(2, F,,) such that ¥,(g,) = Wgo)(ly;gv) for

v € Yoo,
1 0)
U, (g0) W (845 go)(Sv)d e (S0)
Lu(c)

- 21

for v e S, and U, (g,) = <I>£32, (gv) for v € X, — S (see §12). From Lemma 21.7, by exchanging the order
of integrals, we have the first equality of the formula

(26.1) Wiyp(nla) = > / U (a8, [ 91 [ 77 Dty log |tlad™t
beF—{0,—1} 74

= Z Z { H Jv(b)} Ww(b)v
beF—{0,—-1} weXr veXp—{w}
where

T,(6) = /F W [ 0] [E 7y Dt ),

v

Wat) = Wi 0) = [ Wl [t 2] [ ol ) 08 "

for b € F, — {0,—1}. The second equality of (26.1) is justified by 37, >~ {I],., [Jo(0)[}Wuw(b)| < oo,
which results from the analysis to be made in §26.4. The integrals J,(b) are studied and their explicit
evaluations are obtained in §17. In what follows, we examine the integral W, (b) separating cases w € S,
wE Yy — S and w € Y.

26.1. Orbital integrals for hyperbolic terms : S-part. Let v € S. Then the integral W, (b) depends
on the test function «, € A, and the character n, of F*. We write W* (b; a,,) in place of W, (b) in this
subsection. We have

1
Wi =5 [ (W68 [ Dm0 gt e ()i (5,)
27 L) R

Lemma 26.1. Letv € S. Let ozg,m)(sv) = ¢/ 4 g™ /? with m € Ny. Then, for any m € N and any
bEFv 7{0771}:

W (b; al™) = L (m; b) + no(@,){(l0g ¢u) I (m; @, (b+ 1)) = I (m;w, ' (b + 1))}
with TN (m; —) defined in Lemma 17.2 and

T (m3 b) = vol(02)(log g,) 2= (—qvm” 512 ()

m—1

D S (R R e U A e L O)

l=sup(0,1—ord, (b))
where we set ~
0 (b) = 0([bly < gy) vy )nw(b)(—n — ordy (b))
forn € N and
—27Yord, (b)(ord, (b) + 1) (u(@y) = 1),

47 (mu(b) — 1) + 271 ord, (b)n. (b) (1 (wy) = —1).
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When m = 0,

Wik (b; o) = =2 vol(0}) (10g 4,) (85" (b) + 0o (,)55" (w0, (b + 1)) = 10 (,)0" (0, ' (b + 1))
with §)" defined in Lemma 17.2.
Proof. This is proved in a similar way to Lemma 17.2. We decompose the integral into the sum
Wo(b; ™) = I (ms b)+1; (m; b), where I (m;b) = [, <y @om (00 [§ 91)m0(t) 1og [#]od*t with By (g,)
the integral computed in Lemma 17.1. We consider the case m > 0. By Lemma 17.1,

I (msb) = / (—gz™ /%), () log [t],d*t
[t|<1,sup(L,]t]5 " [blo)=aT

m—1
+ / {(m —1—1)g;™™% — (m — 1+ 1)q, ™/ *}n, (t) log |t|,d*t.
1—0 Y ItI<Lsup(L,]t]5 " [blo)=q},
We have the following three equalities:
o If | =0 and 7y (w,) =1,

1o(t) log [t d*t = 8(|bls < 1)vol(02) log gu— Ord”(b)(‘;rd”(b) +b)

~/|t<1’sup(17|tlglb|v)—q1lj
e If [ =0 and n,(w,) = —1,
w(b) — 1 dy, (D)0, (b
m®) =1, ord,(On.),

1o (t) log |t],d™t = 6(|bl, < 1)vol(o,)log g, (

/ltlsl,sup(l,tlalblnqz 4 2
o If [ >0,
/ () log [tld*t = 5(1b| < 1) / n0 () log [t]d¥t
|t|<1,sup(1,]t]y " blo) =4}, [tlo=qs ' [blw

= —3(]blo < gy)vol(0}) (1og g ) (w,b) (I + ord, (b))
Furthermore, I, (m;b) is transformed into

Ty (m;b) = / By (50 [ 01)0 (1) log ]od*
[t],>1
:/ @vm(éb [wv_;y_l ﬂ )nv(wv_ly_l) log |w;1y_1|vdxt
lylo<1

(@) [ ol [ O pmulo)oga, ~ log Iyl )%y
[yl <1

=1u(@0){(10g @) I (m; w0, (b + 1)) = I (m; ' (b + 1)}
From the results above, we have the lemma for m > 0. The case m = 0 is similar.

Lemma 26.2. For m € N,
W (b a™)| < (log 40)8(|blw < a5~ gy ™ *m(2m + ord, (b(b +1)))%,  be FY —{~1}.
When m = 0,
[ (b; al?)| < (log g,)3(|bly < 1)(ord, (b(b + 1)) + 1), be Ff —{-1}.
Here the implied constants independent of v, m and b. Moreover, for n € Ny,
(W (b; apn )| < (10g ¢0)q06(blo < g7)(0rdy(b(b+ 1)) +2n+ 1), be FX —{-1}
with the implied constant independent of v, n and b.
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Proof. Noting (23.1), by the first and second estimates in the lemma, the last estimate is given in the
same way as in the proof of Proposition 23.4. We only prove the first estimate. Suppose m > 1. By
Lemma 17.2, I (m,w, 1(b+ 1)) is estimated as

I (m, w H (b + 1)) < 6([bly < ¢ )(m + 1)%g1 /2,

’U

Next we examine If (m;b). From the definition of 67 (in Lemma 26.1), we have |6]"(b)| < 6(|b], <
1)27*(ord, (b) + 1)2. By using this,

-1

> (m —1—1)g,~"/2|5/" ()|

l=sup(0,1—ord, (b))

<O(m =1, 16y < ¢ %)a,” ’"/Z{Z — =D& (0)] + (m — 1)|55" (B[}
=1

m—1
<8(m = 1, |bly < gy )y ™2 (m = 1= 1)1+ ordy (b)) + (m — 1)[55" (b)[}
=1

=5(m = 1,|bly < g™ H)gt ™2 (m — 1){67 (m — 2)m + 27 (m — 2) ord, (b) + 67" (b)|}
<8(m = 2,y < g™ 2)gi ™ 2m(m? + mord, (b) + (ord, (b) + 1)?)
<b8(m =2, bl < g™ gt ™ 2m(m + ord, (b))
Similarly,
m—1
> (m =1+ 1)g; ™25 (b)] < 6(m > 1, bl < g ~?)g, ™ *m(m + ord, (b) + 1),

I=sup(0,1—ord, (b))
Hence, we obtain
|17 (ms;b)] < (log ¢,)8(|blo < ' Vg ™/ *m(m +ord,(b)*,  meN, be FY —{-1}.
Furthermore,
LS (ms o (b + 1))
<(10g¢,)8(Jb+ 1]y < ¢ gl =™/ 2m(m + ord, (b + 1)), meN, be F) —{-1}.

As a consequence, we have the lemma. O

26.2. Orbital integrals for hyperbolic terms : (X5, — S)-part. Let v € g, — S. There are three
cases to be considered: v € Eg, — S(nf,), v € S(n) and v € S(f,).

Lemma 26.3. Let v € X, — (SUS(nfy)). Forbe F) —{-1}, we have

Wi (b) = /F DS G[E 9y () log [t 4t = vol(0))(log a,)A7 (b),

where
~ o) (1l < 1),
AP (b) = 6(|bl, < 1) ¢ =607 (b+ 1) (Ib+1], < 1),
0 (Iblo = [b+ 1], = 1).
In particular, W (b)] < (log ¢,)3([b(b 4 1)], < 1)(ord, (b(b 4+ 1)) +1)2, b€ FX — {-1}.
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Proof. Tt follows immediately from the following computation:

| o@ls o ogld, ae = [ mlosid e [ ) log
P [blu <t <1 (b1l >t >1

=vol(0;') (log ¢u) {35" (b) — &g (b + 1)}

Lemma 26.4. Let v € S(n). If n,(w,) = 1, we have
W) = [ BMGE (0 log . a7
F
=vol(0)(—1og q,)d(b € noy) 2~ (ord, (b) + ord, (n))(ord,(b) — ord,(n) + 1).
Ifnv(wv) = —1, then
Wl (b)
=vol(0)(~10g ¢,)d(b € no,)[27 {ord, (), (@ ™) + ord, (b)n, (b)} + 47 {1, (b) = nu (@™ M)}
In particular,
W (b)| < 8(b € no,)(log g,)(ord, (b) + ord,(n) + 1), be F) —{-1}.
Proof. Tt follows immediately from the following computation:
| oo tos i = [ (e e noun(t)logltld*e
F [blo <t <1
ord, (b) ord, (b)
=4(b € no,) Z / Ny (wyu) log oy ul,du = §(b € noy)vol(o,) )(—logq,) Z My (5, ).
n=ord, (n) o5 n=ord, (n)

Lemma 26.5. Let v € S(f,) and put f = f(n,) € N. Forbe F) — {1},
W (b) =6(b € p, ) (-1)(1 = ¢, ) 'a, TP (log gu) x [ f+

10(b(b+1)){8(b € po)(—f — ord, (b)) +6(b € 0} )(—f + ordy (b+ 1)) +6(b ¢ 0,)(—f)ag™ " }].
In particular,

(W (b)] < 6(log gu)ay *8(1bly < g){f +8(lblo < 1)ordy(b(b+ 1))}, be FX —{-1}.

Proof. We have the expression W (b) = 6(b € p, /)(W," (b) + W,'5(b)) with

WoR®) = [, rp gy M) log [tod™t = nu(=1)(= flog gu)a T~ /(1 = g;") ™!
[tlo|[b+1]o <1
and
Wils(b) = 1o (twy ¥) log |t],d*t.

—teFX —wlU,(f)
[14-twoy f |y oty £ (0+1) |0 < t]w
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The integration domain of W'y (b) is a disjoint union of the sets Dy(b) (I € Z) defined in §17.2. By
Lemmas 17.6, 17.7 and 17.8, we obtain

W,/ (b) :Z(*llogqu)/ o (tw, T)d*t

=/ D (b)

—b
=0(|b]ly < 1 =10+ 1|,){(—f 4+ ord,(b+ 1) — ord, (b)) log ¢, } 1 (b—f—l) (1— gty tgy /2

—b —1y—1,—f+or —
+6(|b|v = |b+ 11)| 2 1)(_f10gQU)77’U <b-|—].> (1 — 4, 1) 1Q’U fordy(b)=dv/2
b L
+8(b+ 1], <1 =1b|,){(—f +ord,(b+ 1) — ord, (b)) log g, } 1 (b+1) (1—q, 1) 1% f—dy/2

=1y (bj)l) (1 =g, ") gy T2 (log qu){0([blo < 1= [b+1],)(—f — ordy (b))

+ (oo = b+ 1y = 1)(—=f)ad @ +5(]b+ 1|y < 1= [blo)(—f + ordy(b+ 1))}

=1y <b_+b1> (1—qy 1) gy =%/ (log g,){(b € py)(—f — ord, (b))

+0(b € of)(—f +ordy(b+1)) +5(b ¢ 0,)(— g}

This completes the proof. O

26.3. Orbital integrals for hyperbolic terms : Y -part. Let v € ¥, and fix an identification
F, = R. In this paragraph, we abbreviate [, to | omitting the subscript v. Let € : R* — {£1} be a
character; thus € is the sign character or the trivial one. From the proof of Lemma 17.12, we have

2+
:/ (1—it)"2(1 + b+ t~bi)V2e(t) log |t],d" t
RX

. l
WE(b) = /R (H”1> {14+t~ 4 (b + 1))} 2e(t) log |t|,d* t

= Wi () +e(=1)W(b),

where we set

) bi —1/2
W (b) :z‘l/?(ub)*l/?/ (t+i)~/2 <t+b+21) /2 ogt dt.
0

Here is an explicit formula of W, (b).
Lemma 26.6. Suppose l > 4. Then, for b € R* —{—1}, we have

Wi (b) = —mi J.(13b) — A(b) — i B(b),
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where
1/2—1

A®) = 3° (P ) { B og ) = E0E ()R + 1)

1/2—1 1/2—k—1
P3O T T (X h0 0 0 - i)
k=0 j=1
1/2—-1
B(b): Z (l/2+kk:71)(l/271) bk10g|b_‘%|9(b)
1/2 1 1/2—k—1 _
=0 () X NS RO ) o),

k=0 j=
0(b) =w/2ifb(b+1) <0, 0(b) =3n/2 if b(b+ 1) > 0 and J+(I;b) is the function defined in Lemma
17.15.
N —1/2
Proof. For b € R* — {—1}, put g(z) = i/2(1 + b)~1/2(z + i)~!/? (Z+ b%) 227 (log 2)?, where
log z = log |z| + i arg(z) with arg(z) € [0,27). Then, g(z) is holomorphic on C — (Rxq U {—1, Z;Tbi}). We

—bi
b+1

2rmi{Res.—+ Res._ e Jo(e) = [ "ttt + § o | " gty - le:eng

note € iR — {0, —i}. By Cauchy’s integral theorem, we have

with R sufficiently large and e > 0 sufficiently small. By limg_, §|Z|:R g9(z)dz =0, lim._, ¢ ﬁz\:s g(z)dz =
0 and (logt + 27i)? = (logt)? + 4milogt — 472, we also have

2mi{Res,—_; + Reszz% Yg(2) = —4miW (b) + 47T, (I; D).
Hence, we obtain
1
Wi (b) = fi{Resz:_i + Reszz%}g(z) —mi J1(1;b).

Furthermore, a direct computation gives us

1/2—1
Res,__; g(z) = Z (l/2+kk71>(_1)k+l/2<b+1)k
k=0
1/2—k—1 j—1
{(1/21 —9n? +9 Z lfﬂl j ( 771'7,_327TZ>}
m=1
and
1/2—1 )
L _ 1/2+k—1\1k 1/2—1 b -
Res,_ i g(z) = ,;J (12 bk {(/k ) (log|ﬁ| +0(b)z)
—k— j—1
l 2 1 b ;
23 (5 4 el o) |
j=1 m=1
This completes the proof. O
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Lemma 26.7. Suppose |l > 4. For any € > 0, we have
b(b+ 1)| [W5(b)| <ey (14 [0])7Y/22, beR—-{0,-1}.

Proof. From Lemmas 23.2 and 26.6, for any € > 0, |b(b+1)|¢|W, ()] is locally bounded around the points
b=0,—1. For b away from the set {0, —1}, we have

W, (5)] < [2b(b + 1) /4 / #4624 1) 14 log o] &t

0
by t2(b+ 1)2 + b% > 2|t||b(b + 1)|. Since [ > 4, the last integral is convergent; hence the above inequality
gives us |b(b+ 1)[¢|W, (b)] <y (14 |b])~H/2F2¢ for large |b|. O

26.4. Proof of Proposition 24.1. We start from the formula (26.1) taking « to be «, defined by (0.6).
If we set

(26.2) wry = > YA II 2oywa)

beF—{0,—1} weT veXp—{w}
for any subset T'C X, then (26.1) can be written in the form

Wip(linfae) = W(Ee) + W(S(a)) + W(S(n)) + W(S(fy)) + W(Zgn — S(nafy)).

We shall estimate each term in the right-hand side of this equality explicating the dependence on n and
a = [[,es(a)Pv"- Set ¢ = (/2 —1)/dp. For convenience, we collect here all the estimates used below
(other than these, we also need Lemma 26.7). Let wy € S(a), we € S(n), ws € S(fy), wa € Lan — S(afy),
and wy € Y. Let € > 0 be a small number. Then,

(26.3) | T, (0)] < 6(b € a Y ow,) qu, {1+ Aw, ()}, | Ty (D)] < 8(b € n0y,,) A, (D),
(264)  Jug(B)] < O(b € F; Lous), s (8)] < 66 € 00,) Ay (B),
(265) (b Dl oy (8)] ety (L [l 1o/ 272

(note the difference of <« and < ), and

(26.6) W, (0)] < (108 Guo, ) Guoy 6(b € a7 04, ) {200, + 0rdy, (b(b+ 1)) + 1}2,

(26.7) Wi, (0)] < (108 G, ) 5(b € 104,,) {orde, (b) + ord,, (n) + 1}2,

(26.8) W (b)) < (108 Gug) 8(b € 3, 0us) {2 (1) + 0rdu, (b(b + 1)) + 1},

(26.9) Wy (b)] < (108 Gy ) 6(10(b + 1) |y < 1) Ay, (B)?

for b € F*, where all the constants implied by the Vinogradov symbol are independent of the ideals n,
a and the places w; (1 <7 < 5). Indeed, the second estimate in (26.3) and the both estimates of (26.4)
follow from Lemmas 17.4, 17.5 and Corollary 17.11 immediately. The estimate (26.5) is from Lemma 23.2.
The first estimate in (26.3) is obtained in the proof of Proposition 23.4. The estimate (26.6) follows from
Lemma 26.2, (26.7) is from Lemma 26.4, (26.8) is from Lemma 26.5, and (26.9) is from Lemma 26.3.

In the remaining part of this section, all the constants implied by Vinogradov symbol are independent
of n and a (but may depend on [, 7 and a given small number e > 0).

Lemma 26.8. We have
[W(Es)| <e,in N(a)cT2+ e N(n) e,
Proof. Similarly to the proof of Proposition 23.4, by Lemma 26.7, we have
[W(Sao)| et CFSON(@) Y 35Ty [Ti0).
ICS(a) vel

Then, the desired estimate is given by Proposition 23.3. d
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Lemma 26.9. We have

[W(S(a)] e N(@)* 2 N(n) =,
Proof. By the estimates recalled above, the range of b in the summation (26.2) with T = S(a) can be
restricted to na~'f, ' — {0, —1}. If b € na~'f, !, then b(b + 1)a?f? is an ideal of 0. From this, noting

that 7 is unramified over S(a), we have the equality ord,, (b(b+ 1)a®f7) = 2n,, + ord,, (b(b + 1)) for any
w € S(a). By taking summation over w € S(a),

> {204 + ordy, (b(b + 1)) + 1} log gu < log N(b(b + 1)a’f2) + log N(a) <.y [N(b(b + 1))|/*N(a)“.
weS(a)
Using this, from (26.6), (26.3) and (26.4), we obtain
(W(S(a)) < > Yo I 1O (108 aw,) quy {ordu, (b(b+ 1)) + 204, + 1}

benf,ta—1—{0,—1} w1€S(a) veXp—{w1i}

Loy CFIO N(a)!H2 > IN(Gb+1) [] 170 [T A ] {10+A.0)}
benf, la=1—{0,~1} V€S a0 vezﬁn—S(am ves(a)
<CFSON@PH ST a0, T ei),
ICS(a) vel

where C' is the implied constant in the first estimate of (26.3) and (26.6). Noting C#5(%) <. N(a)¢, we
obtain the assertion by Proposition 23.3. O

Lemma 26.10. We have
[W(S(1)] e N(a)F2HN(n) .

Proof. From the estimates recalled above,
[W(S(n))|
<y C* N (a) > IT 17.0)] I a~o ] a+801r Y

benf, ta—1—{0,—1} vE€Zoo VEXfin—S(anfy) veS(a) wz€S(n)

where C' is the implied constant in the first estimate of (26.3). By (26.7),

Yo W@ < D (108 u,)(0rdy, (1) + ordy, (b) + 1)

w2€8(n) wz€S(n)
<< Z Ord’lU2 10g q'LUz ) Z (log Q’wz )AIUQ (b <<E H A
wa €S(n) wo €S (n) veES(n)

for b € nf, 'a~!. From this, we obtain

[W(S(n))] <enC*H N (@)N(n)* > IT e 11 ? T {1+ A
benf, ta—1-{0,-1} vE€Xoo veEﬁn—S(afn veS(a)
=CFSON@Nm > 350y [T ei).
ICS(a) vel
Then, the desired estimate is given by Proposition 23.3. ([

Lemma 26.11. We have
(W(S ()| Kein N(@) 2+ N(n)~F,
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Proof. By the same argument as in the proof of Lemma 26.9, we have

> {2f(nw) + ordy (b(b + 1)) + 1} log gu < logN(b(b + 1)a*f7) + log N(f,)
wES(fn)

e IN(b(b 4 1))|N(a)*
for b € na~'f,"!. From the estimates recalled as above, we obtain
(W(S(Fa))l < > o4 I eI} (108 qug ) {2/ (Mg ) + ordu (b(b + 1)) + 1}
benfyta=1—{0,-1} ws€S(fy) v€XF—{ws}

Lo T N(a) > NGO +1)N@?* TT 101 [T A® T {1+a.01

benf,ta—t—{0,—1} VEX o vEXfin—S(afy) veS(a)

LepgCHFIOIN(a) 2 > 30(n, 5, [ ] 000)-

I1CS(a) vel
Then, the desired estimate is given by Proposition 23.3. O
Lemma 26.12. We have

[W(S0 — S(anf,))] ey N@) 25 N(n) 5+,

Proof. In the summation on the left-hand side of (26.2) with T' = ¥g, — S(anf,), the range of (b, w) is
restricted to b € nf, 'a™" and w € S(b(b+ 1)o No) NT, due to the estimates recalled above. Thus,

(W (Xan — S(any))|

< > > { I 10B W, 0)

be“f;lafl_{()’_l} weS(b(b+1)ono)—S(anf,) veXp—{wa}

Loy C*5OIN(a) > I 1@ JT {1+ A.0)}

benf,; ta—1—{0,—1} vE€Zeo veS(a)
x > { 1T  A®)(oggu,)Au, ()
w4 €S(b(b+1)oNo)—S(anf,) vEXgL—S(afy)
REZT
Ko C*59N(a) > IT 1@ T {1+ A )}
benf, fa=1—{0,—1} V€Zoo veS(a)
x { Z log qu, } H A, (b)?
wy €S(b(b+1)oNo)—S(anf,) vEXfin—S (afy)
Ly C*5 9N (a) > IT 1@ T {1+ A )}
benf,ta—1—{0,—1} v€Xeo veS(a)

x T A®? x N(@)*|N(b(b + 1)
veEf;nfS(uf,,)
=CHSON() 2 Y 3(n g, [T el
ICS(a) vel
Here we note
> 108 qu, e N(@)*IN(b(b+ 1)), benf,'a™' —{0,-1}.

wa€S(b(b+1)oNo)—S(anfy,)
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Indeed, if b € nf, 'a™", we have b(b+1)f2a® C 0 and S(b(b+1)oNo) — S(anf,) C S(b(b+1)f;a®). Hence,

Z log g, < Z 10g u, < logN(b(b+ 1)f7a%)
wa€S(b(b+1)oNo)—S(anfy,) wa €S (b(b+1)f2a?)

< |N(b(b+1))N(f;)°N(a)*|,  benf,'a™" —{0,-1}.
Therefore, the assertion follows from Proposition 23.3 and from C#5(%) <« N(a)c. O

As a consequence, Proposition 24.1 follows from Lemmas 26.8, 26.9, 26.10, 26.11 and 26.12. O

26.5. Unipotent terms. We compute the local terms for Wﬁ(l, nla) at a place v € S. For v, € A, set

1 o+2mi(log g,) ! 1
(26.10) Ul (o) = —/ — . 0y () dpiy (),
271 Joamilogqn) 1 (1= nu(mo)qe " TD2) (1 - gD
- 1 pot2mi(loggy)”! 1o () log g
(26.11) Ul (ay,) = —/ — SU Y L . ayy(8) iy (s)
2mi o—2mi(log q,) =1 (1 - 771;(wv)QU ( +1)/2)2(1 — Qv ( +1)/2) qf)+1

with du,(s) = 27tlogq, (qq(JlJrS)/2 — ql(,l_s)/Q)ds and o > 0. The integral U is already computed in

Proposition 18.1. In the same way, we have the following lemma easily.
Lemma 26.13. For any m € Ny, we have

{QU—lm(_l)m _ 3qu+1 (_1)m + 1—(11;} (nv(wv) _ _1)7
U;]v (agm)) = —6(’[’77, > 0) qv_m/z(log q'u) {{(WQL—l)(m—2)q - mA(lm—i-l)} ‘
2 v 2

27. AN ESTIMATION OF A CERTAIN LATTICE SUM

Let d > 1 be an integer. We fix I = (Ij)1<j<d € R? such that Iy > ... > {1 > 4, and consider a positive
function f(x) on R? defined by

d
Fla)=TIA+lei))77%, &= (2;)1<j<a € R
j=1

Given a Z-lattice A C R? (of full rank), we define
o) = Y ).
beA—{0}

Viewing this as a function in A, we need to compare its asymptotic size with a certain power of D(A),
the Euclidean volume of a fundamental domain of R?/A. To state the main result of this section, we
need another quantity r(A) given by

1
A)== min ||
(A) méﬁ?g}” |

Theorem 27.1. Let F be a totally real number field of degree d. Let Ay and A be fractional ideals such
that A C Ao; we regard them as Z-lattices in R® by the embedding F — RHOM(FR) =~ Rd - Thep,

O(A) < {1+ r(Ag)}¥a/2 D(Ag) ™! D(A)I—L/2)/d

<

with the implied constant independent of A and Ag.

The proof is given at the last part of the next subsection after several lemmas.
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27.1. Proof of Theorem 27.1. Let du(w) denote the Euclidean measure on the sphere S?~! = {z =

(@)1<jca €RY | X7 22 =1},
Lemma 27.2. For any A = (\;) € C? such that Re()\;) < 1, we have

-1
d

d d
I\ = /Sdi1 H |w;| ™™ dp(w) = 2T Z 1—2Aj HF (1—2>\_7) .
j=1 =1

J=1

Proof. The formula is obtained by computing the integral

d
(27.1) /]R exp(—ellz|2) [T a5 da

Jj=1

in two different ways, where ¢ > 0 and Re()\;) < 1 for the absolute convergence of the integral.

expressing (27.1) as an iterating integral, we compute it as
g

d d -
H / e_“?|$j\_>‘jd$j _ H (Oi=1)/2p (%) — (A2 H r (%)
=1 R j=1 =1

on one hand. On the other hand, by the polar decomposition, (27.1) becomes

o0 d
ep? o
/0 /Sdfle 7T w7 0%t dpdp(w)

j=1

d oo
= /Sd_l H |wj|7/\j d,LL(w) </O efe;ﬂp, 27:1 Aj+d—1 dp>
j=1

-1 d_ xj—d)/2 1-);
= I(\) 27 te(Xi= PNy 5
j=1

Lemma 27.3. Fort = (t;)1<;j<a € [1,00)%, set

Oty ... tg) = , fltiwe, ... tawa) du(w).
§d—1

Fort > 1, let t denote the diagonal element (t;) defined by t; =t (1 < j < d). Then,
p(t) = O(471/2), 1€ [1,00).

Proof. For A = ()\;) € C% such that 0 < Re()\;) < 1, we compute the multiple Mellin transform

o o o dt
o= [ [ ettt TT6 P
0 0 o1 b
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By Lemma 27.2, we compute this in the following manner.

d oo
—1 2,01
/Sd_l{H | 20 ) dute

9 A —1
/Sd {H|w]| A/ (1+£5)757209 " dt } dpu(w)
d o) N
iy 12,1
/d_IH'wﬂ au) | (T1 [ e ey ae,
si-1 7 i=io

P(A)

d
=1I(\) {H L(l;/2)7 ' T(l;/2 = ) T(A\)}

-1

d
{H L(1;/2)7 " T((1 = A;)/2)T(1;/2 = X;) T(A)}-

By Stirling’s formula, this is bounded by a constant multiple of P(ImA\) exp(—m Z;l:l [Im(A;)|) with
some polynomial P(z1,...,z4) which can be taken uniformly with Re()\) varied compactly. Thus, by a
successive application of the Mellin inversion formula, we obtain

0= () [, L B,

where the contour (0;) = {Re(X) = 0;} should be contained in the band 0 < Re(\;) < 1. We shift the
contours (0;) in some order far to the right. The residues arise when the moving contour (¢;) passes the
points in (1 +2Z>0) U (I;/2 + Z>o). Among those residues, the one with the smallest possible power of
t~1 comes from the pole at \; = 11/2, Aj =1(2<j<d)ifly > 1y, which we assume for simplicity in the
rest of the proof of this lemma. (When Iy = Iy, there are several terms giving the same power in ¢~1.)
The residue term is O(t_(d_1+lz/2)), by which the contribution from the remaining terms are majorized.

This completes the proof. ]
Lemma 27.4. (1)
(27.2) flet+y) = f2) fly), = yeR?

(2)
vol(S*71) (1 4 p)~4/% < / flpw)dp(w) < (1+p)'=47172 0 p >0,
Sd—l
with the implied constant depending on | and d.

Proof. (1) is immediate from the inequality 1+ |z; + y;| < (1 + |z;])(1 + |y;]). As for (2), we first note
the inequality 0 < |w;| < 1 for w € S¥~1. Using this, we have H?:1(1 + |pw;]) < (14 p)?. By this,

d
> H (1+ \pw] —la/2 > (1 er)—dld/Q.

Taking the integral in w, we have the estimate from below as desired. The upper bound is provided by
Lemma 27.3. d
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We compare ©(A) with the integral of f(x) on the ball By = {z € R?|||lz|| < 7(A) }. For convenience,
we set I(D) = [, f(x)dx for any Borel set D in R®.

Lemma 27.5. Let Ag and A be Z-lattices such that A C Ag. Then, we have the inequality
O(A) < I(Ba,) ' I(R? — By)
Proof. The inequality (27.2) gives us
I(ByyON) < Y f(b+ ) de.
beA—{0} 7 Ba

Since A C Ag, we have By, C By, from which I(Bj,) < I(Bp) is obtained by the non-negativity of f(x).
Since (Bp + Ba) N A = {0}, the translated sets By +b(b € A — {0}) are mutually disjoint. From this
remark,

> fo+z)de < / f(z)dz = I(R? — By).

beA—{o} Y Ba Re—Ba
Putting altogether, we are done. O
Lemma 27.6. Let A be a Z-lattice.
I(By) = vol(S*™1) (1 + r(A)~#/2 r(A)?/d,
I(R? — By) < r(A)' 172
with the implied constant independent of A.
Proof. By Lemma 27.4 (2),

(M)
I(By) =/ f(pw) dw p*~* dp
0 sa-1
r(A)
> VOl(Sd_l) / (1 +p)—dld/2 pd—l d,O
0

> vol(ST 1) (1 + r(A))~Hal? /T(A) p? dp = vol(STH) (1 + r(A)) " /2 r(A)/d.
0

In a similar way,

(oo}
I(R? = By) = / fpw) dw p?~" dp
r(A) JSd—1

< / (1+ p)17d7l1/2 pd*1 dp < / p711/2 dp=(1,/2 — 1)717,(1\)1711/2'
r(A) r(A)

O

Lemma 27.7. Let F' be a totally real number field of degree d. There exist positive constants Cy and C/
such that Cyr(A)4 < D(A) < Chr(A)? for any fractional ideal A.

Proof. The first inequality follows from Minkowski’s convex body theorem. The second inequality is
proved as follows. For any b € A — {0}, there exists an ideal a C o such that (b) = aA, and hence
IN(b)] = N(A)N(a) > N(A). Thus, by the arithmetic-geometric mean inequality,

d d
1/2 _
DAY = NV T 10 PPN < 7 10y 2/} = = d= V2o

j=1 j=1

Hence, D(A)Y/? < 2d=/27(A). This shows D(A) < Cyr(A)? with C, = (2d=1/2)7. O
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Theorem 27.1 follows from Lemmas 27.5, 27.6 and 27.7 immediately. O
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