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Three-Body Dynamics Induced by Loosely Bound Nuclei

Abstract: The main object of this thesis is to correctly understand nuclear dynamics
when the system consists of a three-body system including loosely bound nuclei. If a
projectile is bound loosely, it can break up into its continuum state in the intermediate state
of scattering process. Thus the channel couplings among bound and continuum states of
the projectile is expected to be important to precisely describe the dynamics. By explicitly
taking into account the channel couplings with the method of the continuum-discretized
coupled-channels (CDCC), we clarify how the continuum channels of loosely bound nuclei
are significant.

First, we focus on transfer reactions. We construct a precise reaction model based
on the coupled-channel Born approximation (CCBA), which explicitly treats the channel
couplings among bound and continuum states of both a projectile and a residual nucleus in
the initial and final channels, respectively, by means of the CDCC method. From the CCBA
analysis of transfer reactions, it has been found that the interference between the elastic
transfer (ET) and the breakup transfer (BT) can be important. The former is the transfer
process from an ground state to an ground state in each channel, whereas the latter is the
transfer process from or into continuum states in the initial or final channels, respectively.
Furthermore, it has also pointed out that transferred angular momenta can vary due to the
channel couplings.

Second, we concentrate on breakup reactions with a low incident energy, in particular
when a target nucleus is heavy and thus there is a strong Coulomb field. In such a case, it
was reported that the eikonal approximation, which can efficiently treat breakup reactions
by assuming that a distorted wave between a projectile and target does not deviate from
a plane wave, does not work. To solve this difficulty, we propose an efficient way to
extend the eikonal model to low energy reactions. As a result we found that the Coulomb
correction based on the distance of closest approach in Rutherford scattering works well.
It suggests that a concept of a “trajectory” is held and thus a simple picture for dynamics
remains in complicated reaction process.

Third, the α-clustering phenomena, which is the localization of α-particles at surface
region of nuclei, has been investigated through α-transfer reactions. Wave functions in a
structure part of nuclei are calculated by means of a microscopic cluster model. By compar-
ing calculated transfer cross sections with experimental data, we can extract an “α-cluster
probability” at surface region of nuclei. The probability is different from neither a spectro-
scopic factor, which have been regarded as an indicator of the clustering, or an asymptotic
normalization coefficient (ANC).

Keywords: Nuclear reaction, continuum state, coupled-channels method, transfer reac-
tion, breakup reaction
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CHAPTER 1

Introduction

Contents
1.1 Three-body dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Elastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Inelastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Transfer reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Construction of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Three-body dynamics

In nuclear physics, nucleon-nucleon, nucleon-nucleus, and nucleus-nucleus scattering have
been studied to reveal the nuclear interaction and nuclear structures. The correct interpre-
tation of the mechanism for these nuclear reactions is also an important subject of physics.
It is, however, not easy to understand correctly the reaction mechanism when system can
be regarded as the three-body system. If two particles are bound loosely and form a pro-
jectile, the system including a target nucleus should be treated as the three-body system.
For example, let us consider the scattering of deuteron and a target nucleus A. In a naive
picture, it can be understood as scattering of d by the nuclear and Coulomb field produced
by A. However, in this picture the degree of freedom of nucleons, which is the fact that d
consists of proton and neutron, is ignored. The dynamics that proceeds by the interactions
between the nucleons in d and A is desired to be considered when one nucleus is loosely
bound. We would like to discuss how the picture of nuclear reactions changes when we
consider this kind of the three-body dynamics. In this thesis, we focus on the effect due to
breakup of a nucleus in the intermediate state of the scattering.

In the direct nuclear reaction picture [1,2], nuclear reactions can be categorized as elas-
tic scattering, inelastic scattering, which includes breakup reactions, and transfer reactions.
Below we discuss important features of these reactions which are characterized by loosely
bound nuclei.

1.1.1 Elastic scattering

Among nuclear reactions, elastic scattering is the simplest reaction, in which a projectile is
ejected with having the same energy as in the initial state. However, it does not necessar-
ily mean that an incident nucleus is inert throughout the scattering process. For example,
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(a) (b)

Figure 1.1: (a) Rutherford ratio of the elastic cross section as a function of the scattering
angle of d for the d+58Ni at 56 MeV. (b) Same as in panel (a) but for the d+208Pb system.
In each panel the solid line stands for the result of the CDCC calculation, which explicitly
takes into account the virtual breakup process of d with its s- and d-wave states. The
dashed (dotted) line stands for the result which dose not include the breakup states of d
with (without) the d-wave component in the ground state of d. This figure is taken from
Ref. [3]. In each panel, circles are the experimental data taken from Ref. [4].

in Fig. 1.1 we show the Rutherford ratio of the elastic cross section as a function of the
scattering angle of d for (a) the d+58Ni at 56 MeV and (b) d+208Pb at 56 MeV [3]. In
each case, if one neglects any effects of the breakup states of d, the dashed and dotted
lines are obtained. Note that the former (latter) includes (does not include) the d-wave
component in the s-wave ground state of d. They cannot well reproduce the experimen-
tal data (circles) [4]. The solid line is for the result calculated with the method of the
continuum-discretized coupled-channels (CDCC) [3, 5, 6], which explicitly takes into ac-
count the channel-couplings of the breakup channels. In Chap. 2 we mention CDCC in
detail. It reproduces well the experimental data even at backward angles. This fact indi-
cates the importance of treating the virtual breakup process of d. Note that it is called the
virtual breakup that a projectile breaks up in intermediate states of elastic scattering.

To understand the virtual breakup, we show the behavior of the dynamical polarization
potential (DPP) of unstable nuclei reported in Ref. [7]. The optical potential Uopt, which
describes the elastic scattering, and the DPP are defined by

Uopt = PV P + UDPP, (1.1)

UDPP = PV Q lim
ε→0

1

E + iε−QHQ
QV P, (1.2)
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Figure 1.2: Trivially equivalent local form the DPPs of 11Li (solid line), 6He (dashed line),
and 6Li (dash-dotted line) on the target nucleus 208Pb. The panel (a) and (b) respectively
correspond to the real and imaginary parts of the DPP. The dotted lines denote the Coulomb
polarization potentials for 11Li and 6He. The detail of the calculation is given in Ref. [7].

whereH (V ) is the many-body Hamiltonian (interaction) of the projectile-target system. E
and ε are the total energy and the infinitesimal value, which ensures an outgoing boundary
condition, respectively. The operator P projects onto the elastic channel (P space) and
Q = 1 − P is the projection operator onto the non elastic channels (Q space). The first
term of Eq. (1.1) is the folding potential describing the interaction that does not go through
the Q space. The folding potential is real, local, and energy independent. The second
term UDPP, which is complex, non-local, and energy dependent function, describes the
channel couplings between the P and Q spaces. Thus, by seeing the behavior of UDPP, we
can estimate the contribution of the coupling with the Q space. In Fig. 1.2, DPPs in the so
called trivially equivalent local potential [8] of the projectiles, 11Li (solid line), 6He (dashed
line), and 6Li (dash-dotted line), for the scattering on the 208Pb target nucleus at 29.8 MeV,
18 MeV, and 29 MeV, respectively, are shown as a function of the relative distance of each
projectile and the target. In panels (a) and (b) their real and imaginary parts are respectively
plotted. These calculations were performed with CDCC in Ref. [7]. The DPPs of the
unstable nuclei, 11Li and 6He, have a quite long tail compared to that of the DPP for the
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stable 6Li nucleus. In Ref. [7] it was reported that the calculated cross sections with CDCC
including breakup channels of each projectile well reproduce experimental data [9–11] of
the elastic cross section for each system, whereas CDCC without their breakup channels
does not. Therefore, this unusual feature of the DPP for the unstable nuclei suggests that
a strong coupling with the Q space, the breakup states of unstable nuclei in particular, is
necessarily taken into account to correctly describe the elastic scattering.

Thus, in elastic scattering the importance of the three-body dynamics, the breakup
effects of loosely bound nuclei in particular, is well known, and their dynamics can be well
described through the analysis by means of CDCC. We should clarify how the three-body
dynamics of loosely bound nuclei is important in other reactions. CDCC can provide us
with clear interpretation of reaction mechanisms. The formulation of CDCC is given in
Chap. 2.

1.1.2 Inelastic scattering

In this thesis we do not discuss usual inelastic reactions, which proceed with an excita-
tion of a target nucleus. We focus on breakup reactions that can be regarded as inelastic
scattering in a broad sense. In breakup reactions, a projectile breaks up into its fragments,
and hence their description trivially requires the channel couplings of elastic and breakup
channels. If we consider a breakup reaction on a heavy ion target, not only nuclear inter-
action but also Coulomb interaction play an important role. In such a case, sometimes the
following assumption is adopted. The reaction is dominated by the Coulomb interaction
between the projectile and the target, and proceeds with the one-step process, in which the
transition from a bound state to a continuum state is described by the Born approximation.
The virtual photon theory (VPT) [12], which is one of such naive models, is often used
for analyses of Coulomb-dominant breakup reactions, because it is difficult to explicitly
treat the long-ranged Coulomb interaction in coupled-channels (CC) calculations. If one
aims to explicitly treat the Coulomb breakup with full quantum mechanics, sometimes the
scattering wave function needs to calculate up to more than 1000 fm with the number of
partial waves of more than 10000 ℏ. Thus, VPT simplifies the Coulomb breakup reaction
by regarding the reaction as the dissociation of a projectile by the Coulomb dipole (E1)
photon absorption. However, it is not trivial that the picture by VPT is correct. The role of
the quadrupole (E2) component, nuclear interaction, and the multistep process, which are
not taken into account in VPT, should be investigated. Note that Eλ is the electric multipole
moment when one expands the Coulomb interaction by means of the Legendre polynomial
Pλ with its multipolarity λ. The multipole expansion of the Coulomb interaction is written
in Appx. B.

For example, we discuss the importance of these effects in the 208Pb(8B,p7Be) breakup
reaction reported in Ref. [13]. In Fig. 1.3 the breakup cross section of the 208Pb(8B,p7Be)
is plotted as a function of the scattering angle θ8 of the center of mass (c.m) of the p-
7Be system. The cross section corresponds to the breakup energy ε17 of the p-7Be system
ranging from 500 keV to 750 keV. The solid line stands for the calculated cross section
with CDCC, which includes all orders of the nuclear and Coulomb breakups as well as all
the multipolarities of the Coulomb interaction. When the nuclear breakup is ignored, one



1.1. Three-body dynamics 5

Figure 1.3: The breakup cross section calculated with CDCC of 8B on 208Pb at
52 MeV/nucleon as a function of the scattering angle θ8 in the center of mass (c.m.) of
the p-7Be system. The cross section corresponds to the breakup energy ε17 of the p-7Be
system ranging from 500 keV to 750 keV. The solid line is obtained by CDCC with all
orders of the nuclear and Coulomb breakups. The cross section for only the Coulomb
breakups with all orders of the multipolarity of the Coulomb interaction is shown by the
dashed line. When multistep processes and the higher multipolarity than E2 (E1) are ne-
glected, the dotted (dash-dotted) line is obtained. See Ref. [13] for more detail.

obtains the dashed line. Furthermore, if one assumes a one-step transition process with only
the E1 and E2 (E1) of the multipolarities, the dotted (dash-dotted) line is obtained. The E1
one-step calculation, which essentially corresponds to VPT, is often adopted. These results
indicate that the higher multipolarity and multistep transition exist non-negligibly even for
heavy ion targets.

In Refs. [13, 14] the reaction model based on CDCC, which can treat the Coulomb
breakup precisely and conveniently by adopting the eikonal approximation, is developed,
that is, the eikonal-CDCC (E-CDCC). The eikonal approximation is based on the concept
that, for high energy reactions, variation of the projectile-target distorted wave from a plane
wave is expected to be small. E-CDCC has an advantage that it has high accuracy with
less computational cost than full quantum calculation. The details of E-CDCC is given in
Chap. 2.

In the same period as E-CDCC had been established, another reaction model based
on the eikonal approximation that is, the model with the dynamical eikonal approximation
(DEA), was proposed [15, 16]. For low energy reactions, the eikonal approximation is
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expected to be not applicable, and recently it is found that DEA is difficult to reproduce a
full quantum calculation at low incident energies, say 20 MeV/nucleon [17].

Therefore it is demanded to build up a reliable and economical reaction model, which
can be applied to low energy reactions. In this thesis the construction of such a reaction
model is done by adopting a simple correction for the Coulomb trajectory. E-CDCC and
DEA have same philosophy to efficiently treat the Coulomb breakups, based on the eikonal
approximation, except how to calculate the projectile’s wave function in each model. The
former uses a partial wave expansion, and the latter calculates the wave function with three-
dimensional points. Thus, comparison of E-CDCC and DEA given in Chap. 4 is important
to describe the Coulomb breakups efficiently.

1.1.3 Transfer reaction

Transfer reactions have been widely used to investigate a single-particle structure of nuclei.
As an example let us consider the transfer reaction A(a, b)B. When one aims to seek a
single-particle structure of the residual nucleusB in its ground state, an low incident energy
is usually adopted to make the momentum matching better. Here the momentum matching
means how small the energy difference between an incident energy and a single-particle
energy is. If the energy difference is small, the matching is good. For naive understanding,
sometimes it is used the metaphorical expression that one jumps from a running train into
another running train. It is not easy to jump if each velocity of the two trains differs from
each other. Since a single-particle energy of B is merely from several MeV to several
tens MeV, an incident energy also should be taken as in similar order.

In conventional description of the transfer reaction, the breakup states of a and B are
neglected by using the distorted-wave Born approximation (DWBA). Because it is difficult
and it requires a large computational cost to perform CC calculation for breakup states
in transfer reactions. Thus, in DWBA, the transfer process is described by a one-step
transition between the ground states in the initial and final channels. At energies typically
adopted for transfer reactions, there is enough “time” for particles to interact each other,
and couplings to several complicated channels such as breakup or rearrangement channels
may be important. In transfer reaction, since deuteron, which is a loosely bound nucleus, is
often used as the projectile a to reproduce a single-particle state ofB, the breakup channels
of d, in particular, are expected to play a significant role. Furthermore, if B is a loosely
bound nucleus, its breakup channels should also be taken into account.

To explicitly take into account these breakup effects, in the mid-1960s, the coupled-
channels Born approximation (CCBA) was proposed by Penny and Satchler [18] and Iano
and Austern [19]. From the end of 1960s to the 1970s, a large number of the CCBA
calculations were performed [20–96] by using some computational codes for the CCBA
calculation, for example CHUCK [97], SATURN-MARS [98, 99], and OUKID [100]. Note
that, at that time, the channel-couplings with only a few bound excited states of the projec-
tile a and/or the residual nucleusB in the region of stable nuclei were taken into account in
these codes. For example, in Ref. [101], the authors clarified the importance of the channel-
couplings with some resonance states of the target nucleus in order to resolve a failure of
DWBA on the heavy-ion induced transfer reaction 40Ca(13C,14N)39K [102]. In Fig. 1.4(a),
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0+ 0.00 MeV
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4.49 MeV
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3/2+
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Figure 1.4: (a) The cross section of the 40Ca(13C,14N)39K reaction at 68 MeV. Horizontal
axis is the emitting angle of 14N in the c.m. frame. The solid (dashed) line is the CCBA
result including the channel-couplings among 0+, 3−, and 5− (between 0+ and 3−) states
of 40Ca. Experimental data are taken from Ref. [102]. (b) A schematic picture of the path
of the transfer process with the CC effects. See Ref. [101] for more detail.

we show the cross section of the 40Ca(13C,14N)39K reaction at 68 MeV as a function of
the 14N emitting angle. If one neglects all channel-couplings regarding the excited states
of 40Ca, the dashed line, which corresponds to the DWBA result, is obtained. It is not able
to reproduce the oscillation pattern of the experimental data [102]. The dotted line is the
result for the CCBA calculation, which takes into account the channel-couplings between
0+ and 3− states of 40Ca. When the couplings to the 5− state of 40Ca is also added, the
solid line is obtained. Note that these excites states are bound states since the proton sepa-
ration energy of 40Ca is 8.33 MeV. They agree with the experimental data even at forward
angles, where the DWBA calculation fails to reproduce the data. Thus CCBA has been
achieved success. Though the importance of the CC effects was argued by these works,
the continuum states of a and/or B were not taken into account owing to a limitation of the
computational power at that time.

After establishment of CDCC in the end of 1980s, several CCBA calculations with
CDCC were performed to treat breakup states involving both resonant and non resonant
states of loosely bound nuclei by using computer codes FRESCO [103, 104], RANA [105],
and so on. Note that, in CDCC, infinite number of states, not only resonance states but
also non resonant continuum states, of the projectile a and/or the residual nucleus B are in
principle considered. For instance, in Ref. [106], the effects of the 6Li breakup into α and
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Figure 1.5: The cross sections calculated with the ZR-CCBA of the 13C(6Li,d)17O reaction
at 3.6 MeV are plotted as a function of the deuteron emitting angle. In the calculation
the breakup effects of 6Li was taken into account. The figure indicates that the breakup
channels of 6Li are important, and a treatment of them requires a huge model space. See
Ref. [106] for more detail.

d on the transfer reaction 13C(6Li,d)17O was investigated within the CDCC framework.
In Fig. 1.5, the calculated cross sections of the 13C(6Li,d)17O reaction at 3.6 MeV are
plotted as a function of the deuteron emitting angle. The dash-dotted line and the others
respectively correspond to the results including and not including the breakup channels of
6Li. The differences among the solid, dashed, and dotted lines are due to the model space
dependence of the calculation. These results indicate that the breakup channels of 6Li play
an important role and a huge model space is needed for the calculation. In Ref. [106],
although the breakup effects of 6Li is explicitly taken into account, those of 17O are not.
Moreover, the zero-range (ZR) approximation, in which the product of the α-d interaction
and its wave function is assumed to be represented by a δ-function, was adopted to save
the computational task. At this moment, there is only one CCBA work [107], in which the
breakup states of both a projectile and a residual nucleus were considered, simultaneously.
However the detail of the breakup mechanism of a projectile and a residual nucleus has not
been discussed yet.

From these points of view, we need a more precise CCBA model, which explicitly
takes into account the breakup channels of both a and B in order to investigate the breakup
effects of a and B. Thus, in Chap. 3, we construct such a CCBA model, in which the exact
finite-range (FR) integration instead of the ZR approximation is adopted. This CCBA
model enables us to describe transfer reactions in detail and correctly.
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1.2 Construction of thesis

This thesis is constructed as follows. In Chap. 2 the formulation of CDCC is given. E-
CDCC is also formulated there. As mentioned above, the three-body dynamics, breakup
effects of nuclei in particular, is expected to be important for loosely bound system. CDCC
explicitly treats CC of the breakup channels of nuclei, and enables us to correctly interpret
the picture of dynamics. First, the three-body dynamics on transfer reactions is discussed
in Chap. 3. The CCBA framework, which can perform the CC calculation regarding the
breakup channels both in the initial and final channels, are proposed. As an application,
the 8B(d,n)9C reaction, which is paid attention with an astrophysical interest [108], is
analyzed with the CCBA model and the breakup effects of d and 9C are investigated. As
for breakup reactions, in Chap. 4, we propose a method for treating Coulomb breakup
reactions with efficient and precise models. As a specific reaction, the breakup reaction
208Pb(15C,n14C) is described with two reaction models, E-CDCC and DEA, which are
based on the eikonal approximation. In Chap. 5, α-clustering phenomena, which is the
localization of α particles at surface region of nuclei, are investigated through α-transfer
reactions by using a microscopic wave function for the structure part. We summarize this
thesis in Chap. 6.

Main purpose of this thesis is to correctly understand the three-body dynamics induced
by loosely bound nuclei by means of precise and efficient reaction models.
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The method of the continuum-discretized coupled-channels (CDCC), which explicitly
takes into account the channel-couplings between elastic-breakup and breakup-breakup
channels, is described in this Chapter. CDCC has been successful in describing various
reactions. In Ref. [109], it is confirmed that CDCC wave function for the three-body
system explicitly corresponds to the 0th-order term of the distorted-wave Faddeev wave
function [110] which is the exact solution of three-body scattering. Moreover, the first-
order term of the Faddeev component is expected to be small. Therefore the reliability
of the wave function described by CDCC is well established. These facts are summa-
rized in Appx. A. Details of the formulation and the development of CDCC are given in
Ref. [3, 5, 6].

2.1 Continuum-discretized coupled-channels (CDCC) formal-
ism

2.1.1 Truncation and discretization of three-body wave function

We consider the scattering of the projectile a and the target nucleusA. To take into account
explicitly the breakup effects of a, we regard a as a two-body system consisting of x and y.
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Figure 2.1: Coordinates of the three-body system (x+ y +A).

Thus we work with the three-body model (x+ y+A) shown in Fig. 2.1. The Hamiltonian
of the three-body system is given by

H = TR + V (N)
x (rx) + V (C)

x (rx) + V (N)
y (ry) + V (C)

y (ry) + h, (2.1)

h = Tr + V (N)
x (r) + V (C)

x (r), (2.2)

where r (R) is the relative coordinate between x (the center of mass of the x-y system) and
y (A), and TR is the kinetic energy operator for the coordinate R. V (N)

x (V (N)
y ) and V (C)

x

(V (C)
y ) respectively represent the nuclear and Coulomb interactions between x (y) and A.

The internal Hamiltonian for the x-y system is expressed by h.
The orbital angular momenta L and ℓ, which respectively correspond to the coordinates

R and r, satisfy

J = L+ ℓ, (2.3)

where J is the total angular momentum. The three-body wave function Ψ satisfies the
Schödinger equation

(H − E)Ψ(r,R) = 0, (2.4)

where E is the total energy of the system and M is the z-component of J . In CDCC
we expand Ψ with the internal wave function ψℓm of a, which approximately forms the
complete set as follows:

Ψ(r,R) =
∑

|J−ℓ|<L<|J+ℓ|

[
ψℓ(k0, r)⊗ χJ

ℓLML
(K0,R)

]
JM

+
∞∑
ℓ=0

∑
|J−ℓ|<L<|J+ℓ|

∫ ∞

0
dk
[
ψℓ(k, r)⊗ χJ

ℓLML
(K,R)

]
JM

, (2.5)

[
ψℓ ⊗ χJ

ℓLML

]
JM

≡
∑
m,ML

(ℓmLML|JM)ψℓmχ
J
ℓLML

, (2.6)
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where χJ
ℓLML

represents the distorted wave of the a-A system. m (ML) is the z-component
of ℓ (L), and the relative momentum for the x-y (a-A) system is denoted by ℏk (ℏK). From
the energy conservation, the total energy E satisfies

E =
ℏ2k2

2µr
+

ℏ2K2

2µR
. (2.7)

Here µr (µR) is the reduces mass of the x-y (a-A) system. The first term of Eq. (2.5)
stands for the elastic component in which x and y are bound and form the ground state of
a, while the second term corresponds to the breakup component in which the x-y system
is in continuum states. ψℓm satisfies

(h− ε)ψℓm(k, r) = 0, (2.8)

with the eigenenergy ε of the x-y system defined by

ε =
ℏ2k2

2µr
. (2.9)

It is difficult to handle the second term of Eq. (2.5), since it has infinite number of “chan-
nels”. Therefore, in CDCC, the breakup component Ψbu, that is the second term of
Eq. (2.5) is approximated as

Ψbu ≡
∞∑
ℓ=0

∑
|J−ℓ|<L<|J+ℓ|

∫ ∞

0
dk
[
ψℓ(k, r)⊗ χJ

ℓL(K,R)
]
JM

≈
ℓmax∑
ℓ=0

∑
|J−ℓ|<L<|J+ℓ|

∫ kmax

0
dk
[
ψℓ(k, r)⊗ χJ

ℓL(K,R)
]
JM

=

ℓmax∑
ℓ=0

∑
|J−ℓ|<L<|J+ℓ|

nmax∑
n

∫ kn

kn−1

dk
[
ψℓ(k, r)⊗ χJ

ℓL(K,R)
]
JM

≈
ℓmax∑
ℓ=0

∑
|J−ℓ|<L<|J+ℓ|

nmax∑
n

[
ψ̂nℓ(r)⊗ χ̂J

nℓL(R)
]
JM

. (2.10)

Equation (2.10) means that CDCC first truncates the model space at ℓmax and kmax. Next
we divide the momentum space [0, kmax] and then discretize it by a specific procedure.
This concept is shown as a schematic picture in Fig. 2.2. For the procedure we have tow
methods, one is the average method and the other is the pseudostate method. Below the
detail of the two procedures of the discretization is given.

2.1.2 Average method

In this method the momentum space [0, kmax] is divided into several ranges called “bin”
states specified by the momentum width ∆kn = kn − kn−1. Then ψℓm in each bin is taken
as an average;

ψ̂nℓm(r) =
1√
∆kn

∫ kn

kn−1

ψℓm(k, r)dk, (2.11)

χ̂J
nℓLML

(R) =
√

∆knχ
J
ℓLML

(K,R). (2.12)
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This prescription is called the average method for discretization. ψ̂nℓm has an orthonor-
mality:

⟨
ψ̂nℓm(r)|ψ̂n′ℓ′m′(r)

⟩
= δnn′δℓℓ′δmm′ .. (2.13)

The diagonalization of h results in

⟨
ψ̂nℓm(r) |h| ψ̂n′ℓ′m′(r)

⟩
= ε̂nδnn′δℓℓ′δmm′ , (2.14)

where the discretized eigenenergy ε̂n is calculated as

ε̂n =
1

∆kn

∫ kn

kn−1

ℏ2k2

2µr
dk

=
ℏ2

2µr

1

3
(k2n + k2n−1 + knkn−1)

=
ℏ2k̂2n
2µr

, (2.15)

k̂n ≡ (kn + kn−1)
2

4
+

(∆kn)
2

12
. (2.16)

Thus, from the total energy conservation, we have

E = ε̂0 +
ℏ2K2

0

2µR
= ε̂n +

ℏ2K2
n

2µR
, (2.17)

where ε̂0 = ε0 is the ground stated energy of the projectile a and Kn, which is the dis-
cretized form of K, is defined by Eq. (2.17). The average method is adopted in the calcu-
lation for breakup reactions discussed in Chap. 4.

truncation!

i=1!

i=2 

 !
"

i
#$%"

g.s.!

discretization!

x+ y

Figure 2.2: Schematic picture of the truncation and discretization in CDCC.
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2.1.3 Pseudostate method

In this method ψℓm is expanded with some basis functions. We adopt the Gaussian basis in
this thesis,

ψℓm(r) = ϕℓ(r)i
ℓYℓm(r̂), (2.18)

ϕℓ(r) =

imax∑
i

ciφℓi(r), (2.19)

φℓi(r) = Nir
ℓ exp

[
−
(
r

ρi

)2
]
, (2.20)

where the range parameter ρi is determined by using the relation of the geometric series,

ρi = ρmina
i−1, (2.21)

a =

(
ρmax

ρmin

)1/((imax)−1)

. (2.22)

Here ρmin (ρmax) stands for the first (final) term of the series. The normalization factor Ni

is determined from the condition,

⟨φℓi |φℓi⟩ = 1. (2.23)

The expansion coefficient ci is evaluated from the variation principle in which we minimize
the expectation value of the energy ⟨ε⟩ as

⟨ε⟩ = ⟨ϕℓ |h |ϕℓ⟩
⟨ϕℓ |ϕℓ⟩

=

∑
ij c

∗
i cj ⟨φℓi |h |φℓj⟩∑

ij c
∗
i cj ⟨φℓi |φℓj⟩

, (2.24)

∂ ⟨ε⟩
∂c∗i

=

⟨
φℓi

∣∣∣h ∣∣∣∑j cjφℓj

⟩
∑

ij c
∗
i cj ⟨φℓi |φℓj⟩

−
∑

ij c
∗
i cj ⟨φℓi |h |φℓj⟩∑

ij c
∗
i cj ⟨φℓi |φℓj⟩

⟨
φℓi

∣∣∣∑j cjφℓj

⟩
∑

ij c
∗
i cj ⟨φℓi |φℓj⟩

= 0. (2.25)

Then we obtain ⟨
φℓi

∣∣∣∣∣∣h
∣∣∣∣∣∣
∑
j

cjφℓj

⟩
= ε

⟨
φℓi

∣∣∣∣∣∣
∑
j

cjφℓj

⟩
. (2.26)

This can be rewritten with the matrix expression;[(
Hij

)
− ε

(
Nij

)](
cj

)
= 0, (2.27)

where

Hij = ⟨φℓi |h |φℓj⟩ =
∫ ∞

0
φ∗
ℓi(r)hφℓj(r), (2.28)

Nij = ⟨φℓi |φℓj⟩ =
∫ ∞

0
φ∗
ℓi(r)φℓj(r). (2.29)
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By diagonalizing the generalized eigen-equation Eq. (J.8), we obtain the eigenenergy ε,
which is discrete. We regard the pseudostate energy ε, which depends on the basis param-
eters, for example, the number of the bases imax and the range parameter ρi, as the energy
ε̂n of the nth channel. We adopt the pseudostate method in the calculation for transfer
reactions in Chap. 3.

2.1.4 Comparison of two procedures of discretization

Here we compare the average and pseudostate methods. To take an overlap of the true
scattering wave function ψlm and the discretized-continuum wave function ψ̂nlm is useful
to understand what the discretized-continuum states stand for. For the average method, it
can be calculated analytically;

⟨
ψlm(k, r)

∣∣∣ ψ̂nlm(r)
⟩
r
=

∫
ψlm(k, r)

(
1√
∆kn

∫ kn

kn−1

ψℓm(k′, r)dk′

)
dr

=
1√
∆kn

∫ kn

kn−1

δ(k − k′)dk′

=

{
1/

√
∆kn (kn−1 ≤ k ≤ kn),

0 (k < kn−1, k > kn).
(2.30)

As shown in Fig. 2.3(a), this stands for that we sum up the continuum states ψlm from kn−1

to kn with the constant weight 1/
√
∆kn. For the pseudostate method, it can be calculated

numerically. As a result shown in Fig. 2.3(b), it has the peak at k = k̂n. It corresponds to
the summation up ψlm with a certain weight.

Furthermore, the good agreement of observables calculated with two procedures was
reported [111]. Thus the discretized-continuum states obtained from each procedure are
expected to be equivalent to each other if we adopt a proper model space.

kn

kn−1

k̂n

k

k̂n

k
(a) (b) 

〈

ψlm(k, r)
∣

∣

∣
ψ̂nlm(r)

〉 〈

ψlm(k, r)
∣

∣

∣
ψ̂nlm(r)

〉

Figure 2.3: Schematic picture of the value of overlap
⟨
ψlm(k, r)

∣∣∣ ψ̂nlm(r)
⟩
r

within (a)
the average method and (b) the pseudostate method. Horizontal axis is the value of the
overlap.
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2.1.5 CDCC equation

To obtain the distorted wave χ̂J
c′ and then calculate observables from the scattering ma-

trix ŜJ
cc0 , we derive the following CDCC equation by inserting Eqs. (2.5) and (2.10) into

Eq. (2.4), and multiplied by
[
ψ̂nℓ(r)⊗ iLYL(R̂)

]
JM

from the left;

⟨[
ψ̂nℓ(r)⊗ iLYL(R̂)

]
JM

|H − E|ΨJM (r,R)
⟩
r,R̂

= 0, (2.31)

[
− ℏ2

2µR

d2

dR2
+

ℏ2

2µR

L′(L′ + 1)

R2
− En

]
χ̂J
c (R) = −

∑
cc′

Fcc′(R)χ̂
J
c′(R), (2.32)

where

En ≡ ℏ2K2
n

2µR
= E − ε̂n, (2.33)

and for simplicity the quantum numbers {n, ℓ, L} are expressed as c. The coupling poten-
tial Fcc′ is defined by

Fcc′(R) = F
(N)
cc′ (R) + F

(C)
cc′ (R), (2.34)

F
(N)
cc′ (R) =

⟨[
ψ̂nℓ(r)⊗ iLYL(R̂)

]
JM

∣∣∣V (N)
x + V (N)

y

∣∣∣ [ψ̂n′ℓ′(r)⊗ iL
′
YL′(R̂)

]
JM

⟩
r,R̂

,

(2.35)

F
(C)
cc′ (R) =

⟨[
ψ̂nℓ(r)⊗ iLYL(R̂)

]
JM

∣∣∣V (C)
x + V (C)

y

∣∣∣ [ψ̂n′ℓ′(r)⊗ iL
′
YL′(R̂)

]
JM

⟩
r,R̂

.

(2.36)

F
(N)
cc′ and F (C)

cc′ are the nuclear and Coulomb coupling potentials, respectively. One obtains
the distorted wave χ̂J

c′ and the scattering matrix (S matrix) ŜJ
cc′ by solving Eq. (2.32) up to

R = Rmax and then at Rmax connecting χ̂J
c′ with the boundary condition

χ̂J
c′(R) →

{
H

(−)
L,ηn

(KnR)δcc′ −
√
K0/KnŜ

J
cc′H

(+)
L,ηn

(KnR) for En ≥ 0, (2.37)

−ŜJ
cc′W−ηn,L+1/2(−2iKnR) for En < 0. (2.38)

When the channels are open (En ≥ 0), the boundary condition is expressed by Eq. (2.37).
Here H(−)

L,η (H(+)
L,η ) is the Coulomb function having the incoming (outgoing) asymptotic

form. The Sommerfeld parameter ηn is defined by

ηn ≡ µRZaZAe
2

ℏ2Kn
, (2.39)

whereZa andZA are the atomic numbers of a andA, respectively. On the other hand, when
the channel is closed (En < 0), χ̂J

c is connected with the Wittaler function W−ηn,L+1/2 as
shown in Eq. (2.38).
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2.1.6 Cross section

If we neglect the Coulomb interaction between the projectile a and the target nucleus A,
the asymptotic form of the Ψ can be written as

Ψα(rα,Rα) ∼ eiKα·Rαψα +
1

(2π)3/2

∑
β

eiKβRβ

Rβ
fβα(Ωβ)ψβ + ϕsc, (2.40)

where we put the subscript α and β to explicitly represent the transition from an α channel
to a β channel. ψγ is the projectile’s wave function in the γ channel and ϕsc is the wave
function when the system is in a three-body or more many-body configuration. The relative
wave number Kγ corresponds to K. Using the S matrix in Eq. (2.37), the scattering
amplitude fβα regarding the angle Ωβ = (θ, ϕ) is given by

fβα(Ωβ) = δαβf
Coul
α (Ωβ)

+
2π

Kα

√
vβ
vα

∑
JLL′

ei(σ
α
L+σβ

L′ ) (δαβδLL′ − Scc′)

×
∑

MMLM
′
L

(ℓmLML|JM)
(
ℓ′m′L′M ′

L|JM
)
Y ∗
LML

(K̂α)YL′M ′
L
(Ωβ), (2.41)

where the Coulomb scattering amplitude fCoul
α is explicitly written as

fCoul
α (Ωβ) = − ηn

2Kα
cosec2

(
θ

2

)
exp

[
−iηn ln

(
sin2

θ

2

)
+ 2iσα0

]
. (2.42)

The factor σγL is the Coulomb phase shift in the γ channel and that with L = 0 is given by

σγ0 =
1

2i
ln

Γ(1 + iηn)

Γ(1− iηn)

= arg Γ(1 + iηn). (2.43)

The velocity vγ is defined by

vγ =
ℏKγ

µR
. (2.44)

If we take the z axis to the direction of Kα, we obtain the scattering amplitude for the
scattering angle θ;

fβα(θ) = δαβf
Coul
α (θ)

+
i

2Kα

√
vβ
vα

∑
JLL′

ei(σ
α
L+σβ

L′ )L̂L̂′ (δαβδLL′ − Scc′)

×
∑
M ′

L

(−)(M
′
L−|M ′

L|)/2

√
(L′ − |M ′

L|)!
(L′ −M ′

L)!

× (ℓmL0|Jm)
(
ℓ′m′L′M ′

L|JM
)
PL′|M ′

L|(cos θ), (2.45)
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where PL′|M ′
L| is the Legendre function.

The “discretized” differential cross section is defined by

dσc′

dΩ
= σc′(θ) =

1

2ℓ+ 1

∑
mm′

|fβα(θ)|2. (2.46)

For the elastic scattering, α = β and c′ = c, it is often used the Rutherford ratio
σc(θ)/σRut(θ) with the Rutherford cross section

σRut(θ) = |fCoul
α (θ)|2. (2.47)

For the breakup reaction, the cross section is calculated from Eq. (2.46) with α ̸= β and
c′ ̸= c. In particular, we use the double differential cross section d2σ/dΩdε defined by

d2σ

dΩdε
= G(ε)

∑
ℓ′ ̸=ℓ

dσc′

dΩ
. (2.48)

Here we introduce the smoothing function G in order to obtain the continuous function
regarding ε by interpolating the differential cross section Eq. (2.46) for the energy in-
dex n′. For the interpolation in our numerical code, we adopt the Lagrange’s polynomial
method [112] with before and after 3 points. The angular distribution dσbu/dΩ of the
breakup cross section is given by

dσbu
dΩ

=

∫
dε

d2σ

dΩdε
. (2.49)

Similarly, by integrating over the scattering angle of the c.m. of system, we obtain the
energy distribution or energy spectrum dσbu/dε of the breakup cross section as

dσbu
dε

=

∫
dΩ

d2σ

dΩdε
. (2.50)

The partial cross section is defined by

σβα(L) =
1

2ℓ+ 1

π

K2
0

∑
J,L′

(2J + 1)
∣∣δαβδLL′ − SJ

cc′
∣∣2 . (2.51)

In particular the partial breakup cross section σn0l
bu is given by

σn0ℓ
bu (L) =

∑
n,ℓ′

σ̃n0ℓ;nℓ′

bu (L), (2.52)

σ̃n0ℓ;nℓ′

bu (L) =
1

2ℓ+ 1

π

K2
0

∑
J,L′

(2J + 1)
∣∣SJ

cc′
∣∣2 . (2.53)
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2.2 Coupling potential

In this section the formulation of the coupling potential Fcc′ defined by Eq. (2.34) is given.
Note that in this work we include only the central part of the nuclear potentials V (N)

x and
V

(N)
y . To calculate the integral in Eq. (2.35), we expand V (N)

x with the multipole λ of the
Legendre polynomial Pλ(cos θ),

V (N)
x (rx) =

∑
λ

V λ(N)
x (αr,R)Pλ(w)

=
∑
λ

V λ(N)
x (αr,R)

4π

λ̂2

∑
µ

Yλµ(R̂)Y ∗
λµ(r̂)

= 4π
∑
λ

(−)λ

λ̂
V λ(N)
x (αr,R)

∑
µ

(λµλ− µ|00)Yλµ(R̂)Y ∗
λ,−µ(r̂)

= 4π
∑
λ

(−)λ

λ̂
V λ(N)
x (αr,R)

[
Yλ(R̂)⊗ Yλ(r̂)

]
00
, (2.54)

V λ(N)
x (αr,R) =

λ̂2

2

∫ 1

−1
V (N)
x (rx)Pλ(w)dw, (2.55)

where µ is the z-component of λ and we have used

rx = R− my

mx +my
r ≡ R− αr, (2.56)

rx =
√
R2 + α2r2 + 2αRrw, (2.57)

ry = R+
mx

mx +my
r ≡ R+ βr, (2.58)

ry =
√
R2 + α2r2 − 2αRrw. (2.59)

Here mx (my) stands for the mass of x (y), and we use λ̂ =
√
2λ+ 1 and w = cos θ,

where θ is the angle between r and R shown in Fig. 2.1. Equation (2.55) is obtained by
integrating V (N)

x (rx)Pλ(w) over w for −1 ≤ w ≤ 1.In the integration the orthogonal
condition of the Legendre polynomial is used;∫ 1

−1
dwPλ(w)Pλ′(w) =

2

λ̂2
δλ′λ. (2.60)

Other interactions, V λ(N)
y , V λ(C)

x , and V λ(C)
y can be similarly expanded as

V λ(N)
y (βr,R) =

λ̂2

2

∫ 1

−1
V (N)
y (ry)Pλ(w)dw, (2.61)

V λ(C)
x (αr,R) =

λ̂2

2

∫ 1

−1
V (C)
x (rx)Pλ(w)dw, (2.62)

V λ(C)
y (βr,R) =

λ̂2

2

∫ 1

−1
V (C)
y (ry)Pλ(w)dw. (2.63)

Bellow we give the specific forms of the nuclear and Coulomb coupling potentials.
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2.2.1 Nuclear coupling potential

If we write ψ̂nℓm as

ψ̂nℓm(r) =
ϕ̂nℓ(r)

r
iℓYℓm(r̂), (2.64)

we can factorize Eq. (2.35) into the radial and angular parts;

F
(N)
n′ℓ′L′,nℓL(R) =

∑
λ

f
(N)
n′ℓ′nℓλ(R)Z(ℓ

′L′ℓL;λJ), (2.65)

where

f
(N)
n′ℓ′nℓλ(R) =

∫ ∞

0
ϕ̂∗n′ℓ′(r)

(
V λ(N)
x (αr,R) + V λ(N)

y (βr,R)
)
ϕ̂nℓ(r)dr, (2.66)

Z(ℓ′L′ℓL;λJ)

= 4π
(−)λ

λ̂

×
⟨[
iℓ

′
Yℓ′(r̂)⊗ iL

′
YL′(R̂)

]
JM

∣∣∣[Yλ(r̂)⊗ Yλ(R̂)
]
00

∣∣∣ [iℓYℓ(r̂)⊗ iLYL(R̂)
]
JM

⟩
r,R̂

.

(2.67)

Here, by using the Wigner-Eckart theorem, Z(ℓ′L′ℓL;λJ) called Z factor is written as

Z(ℓ′L′ℓL;λJ) = iℓ+ℓ′+L+L′
(−)L+L′+J ℓ̂ℓ̂

′L̂′L̂′

λ̂2

×
(
ℓ′0ℓ0|λ0

) (
L′0L0|λ0

)
W (ℓℓ′LL′;λJ). (2.68)

whereW (ℓℓ′LL′;λJ) is the Racah coefficient. f (N) vanishes at a finite value ofR because
of the short range property of the the nuclear potentials V λ(N)

x and V λ(N)
y . The derivation

of Eq. (2.68) is given in Appx. B.

2.2.2 Coulomb coupling potential

As for the Coulomb coupling potential, we can factorize Eq. (2.36) into

F
(C)
n′ℓ′L′,nℓL(R) =

∑
λ

f
(C)
n′ℓ′nℓλ(R)Z(ℓ

′L′ℓL;λJ) (2.69)

with

f
(C)
n′ℓ′nℓλ(R) =

∫ ∞

0
ϕ̂∗n′ℓ′(r)

(
V λ(C)
x (αr,R) + V λ(C)

y (βr,R)
)
ϕ̂nℓ(r)dr (2.70)

and the Z factor Z(ℓ′L′ℓL;λJ) given Eq. (2.67). After a few manipulations of Eq. (2.70)
with the multipole expansion, we obtain
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f
(C)
x,n′ℓ′nℓλ(R) =

ZxZye
2

R

[
δn′nδℓ′ℓ −

∫ rmax

R−RC
α

ϕ̂∗n′ℓ′(r)ϕ̂nℓ(r)drθ

(
rmax −

R−RC

α

)]

+

∫ R−RC
α

0
ϕ̂∗n′ℓ′(r) +W λ

x,2(r,R)ϕ̂nℓ(r)dr

+

∫ R+RC
α

R−RC
α

ϕ̂∗n′ℓ′(r)
(
Xλ

x,3(R) +W λ
x,3(r,R)

)
ϕ̂nℓ(r)drθ

(
rmax −

R−RC

α

)
+

∫ rmax

R+RC
α

ϕ̂∗n′ℓ′(r)
(
Xλ

x,1(R) +W λ
x,1(r,R)

)
ϕ̂nℓ(r)drθ

(
rmax −

R−RC

α

)
,

(2.71)

where RC is the Coulomb radius of the uniformly charged sphere. θ(r1 − r2) is the step
function defined by

θ(r1 − r2) =

{
0 r1 < r2
1 r1 ≥ r2.

(2.72)

The derivation of Eq. (2.71) and the specific forms of Xλ
x,i and W λ

x,i are given in Appx. B.

We have a similar form of the multipole decomposition of V λ(C)
y .

2.3 CDCC with eikonal approximation

2.3.1 Eikonal-CDCC equation

In this section we formulate the model of CDCC with the eikonal approximation, called
eikonal-CDCC (E-CDCC) [113, 114]. In E-CDCC the three-body wave function Ψ is ex-
panded in terms of intrinsic states ψ̂nℓm;

Ψ(r,R) =
∑
nℓm

ψ̂nℓm(r)
∑
J

e−i(m−m0)ϕRχJ
nℓm(R, θR), (2.73)

where the coefficient
∑

J e
−i(m−m0)ϕRχJ

nℓm(R, θR) represents the center of mass (c.m.)
motion of a, and m0 is the m in the initial state. Here we adopt the cylindrical coordinate
as shown in fig. 2.4. ϕR is the azimuthal angle of R. By inserting Eq. (2.73) into Eq. (2.4)
with multiplied by ψ̂nℓm from the left and integrating over r, one obtains CC equations for
χJ
nℓm; ∑

J

e−i(m′−m0)ϕR (TR + ε̂n − E)χJ
n′ℓ′m′(R, θR)

= −
∑
nℓm

Fn′ℓ′m′;nℓm(R)
∑
J

e−i(m−m0)ϕRχJ
nℓm(R, θR), (2.74)
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where TR and the coupling potential Fn′ℓ′m′;nℓm are defined by

TR ≡ −ℏ2

2µR
∇R, (2.75)

Fn′ℓ′m′;nℓm(R) ≡
⟨
ψ̂n′ℓ′m′

∣∣∣V (N)
x + V (C)

x + V (N)
y + V (C)

y − VC

∣∣∣ ψ̂nℓm

⟩
≡ Fc′c(b, z)e

−i(m′−m0)ϕR , (2.76)

where we represent the set of the quantum numbers {n, ℓ,m} as c. The Coulomb interac-
tion VC between a and A is defined by

VC(R) =
ZaZAe

2

R
. (2.77)

We factorize χJ
nℓm with a plane wave as

χJ
nℓm(R, θR) ∼ ξcc0(b, z)

1

(2π)3/2
eiKn·Rϕ(C)

n (R) (2.78)

with

Kn =

√
2µR (E − ε̂n)

ℏ2
. (2.79)

If there is interactions, the wave number Kn depends on b, and it can be written as

Kc(b) =

√
2µR (E − ε̂n)

ℏ2
− (m0 −m)2

b2
. (2.80)

z

x

y

b

φR

R = (b,φR, z)

Figure 2.4: Cylindrical coordinates for E-CDCC.
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In Eq. (2.78), the factor ϕ(C)
n , which is defined by

ϕ(C)
n (R) = eiηn ln[KnR−Knz], (2.81)

represents deviation of the incident wave from corresponding plane wave due to the
Coulomb interaction. Here ηn is the Sommerfeld parameter defined by Eq. (2.39).

When one inserts Eq. (2.78) into Eq. (2.74), the second-order derivative of ξcc0 can be
neglected since it is expected to vary slowly compared with the plane wave eiKN ·R. This
is the eikonal approximation. Then we obtain following CC equation called the E-CDCC
equation for ξ̄cc0 ≡

∑
J ξcc0 ;

∂

∂z
ξ̄cc0(b, z) =

1

iℏvn(R)
∑
c′

Fcc′(b, z)ξ̄cc0(b, z)e
i(Kn′−Kn)zRnn′(b, z), (2.82)

where we commuted c and c′. Since Eq. (2.82) is the differential equation regarding z,
the impact parameter b is no longer the dynamical variable. Thus Eq. (2.82) should be
numerically solved in each b with the boundary condition

lim
z→−∞

ξ̄cc0(b, z) = δcc0 . (2.83)

Here c0 stands for c in the initial state. The velocity vn for the a-A system is given by

vn(R) =
1

µ

√
ℏ2K2

n − 2µRVC(R). (2.84)

The factor Rnn′ is defined by

Rnn′(b, z) =
(Kn′R−Kn′z)iηn′

(KnR−Knz)
iηn

. (2.85)

The explicit form of Fcc′ is given in Ref. [113, 114].

2.3.2 Scattering amplitude

The scattering amplitude fcc0 for the transition to the channel specified by index c is given
by

fcc0 = −(2π)2µR
ℏ2

⟨
ψ̂c′(r)

r
iℓYℓ′m′(r̂)

1

(2π)3/2
eiK

′
c(b)·R

∣∣∣∣∣ Ṽ
∣∣∣∣∣Ψc0,Kn(r,R)

⟩
, (2.86)

where Ṽ = V
(N)
x + V

(C)
x + V

(N)
y + V

(C)
y − VC and K ′

c(b) is the relative wave number in
the final channel. From Eqs. (2.73), (2.74), and (2.78), we obtain

fcc0 = − µR
2πℏ2

∫
dR
∑
c′

Fcc′(b, z)e
i(m0−m)ϕR ξ̄c′c′0(b, z)e

i[Kc′ (b)−K′
c(b)]·R. (2.87)
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Here we evaluate the scalar product [Kc′(b)−K ′
c(b)] ·R. When we take the Madison

convention and the scattering angle θf , the wave number vectors become

Kc′(b) = (0, 0,Kc′(b)) , (2.88)

Kc′(b) = (Kc(b) sin θf , 0,Kc(b) cos θf ) . (2.89)

Since the coordinate R is R = (b cosϕR, b sinϕR, z), the scalar product is given by[
Kc′(b)−K ′

c(b)
]
·R = −Kc(b)b sin θf cosϕR + [Kc′(b)−Kc(b) cos θf ] z

∼ −Kc(b)bθf cosϕR + [Kc′(b)−Kc(b)] z, (2.90)

where we assume the forward scattering and then we take the first order of θf in the trigono-
metric functions. Thus fcc0 becomes

fcc0 ∼ − µR
2πℏ2

∫
bdbdϕRdz

∑
c′

Fcc′(b, z)e
i(m0−m)ϕR ξ̄c′c′0(b, z)

× e−iKc(b)bθf cosϕRei[Kc′ (b)−Kc(b)]z. (2.91)

In Eq. (2.91), the z-integration can be done by using Eq. (2.82);∫
dz
∑
c′

Fcc′(b, z)ξ̄c′c′0(b, z)e
i[Kc′ (b)−Kc(b)]z =

∫ ∞

−∞
dz
iℏ2

µR
Kc(b)

∂

∂z
ξ̄cc0(b, z)

=
iℏ2

µR
Kc(b)

[
ξ̄cc0(b, z)

]∞
−∞ (2.92)

From Eqs. (2.83) and (2.92) we have

fcc0 =
1

2πi

∫
bdbdϕRKc(b)e

i(m0−m)ϕRe−iKc(b)bθf cosϕR (Scc0(b)− δcc0δmm0) , (2.93)

where we define the eikonal S matrix Scc0

Scc0(b) ≡ lim
z→∞

ξ̄cc0(b, z). (2.94)

In E-CDCC, the b-integration in Eq. (2.93) is expressed by the following discretized
summation;

fcc0 ∼ − 1

2πi

∑
L

∫ bmax
L

bmin
L

bdb

×
∫
dϕRKc(b)e

i(m0−m)ϕRe−iKc(b)bθf cosϕR (Scc0(b)− δcc0δmm0) ,

(2.95)

where the interval for the b-integration is determined from

Kc(bL)b
min
L ≡ L, (2.96)

Kc(bL)b
max
L ≡ L+ 1. (2.97)
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If we assume each the b-dependence of Kc(b), e−iKc(b)bθf cosϕR , and Scc0(b) is negligibly
small, we obtain

fcc0 ∼ 1

2πi

∑
L

Kc(bL) (Scc0(bL)− δcc0δmm0)

{∫ bmax
L

bmin
L

bdb

}

×
∫
dϕRe

i(m0−m)ϕRe−iKc(b)bθf cosϕR , (2.98)

where bL is defined from

Kc(bL)bL ≡ L+
1

2
. (2.99)

Thus the b-integration can be done;∫ bmax
L

bmin
L

bdb =
1

2(Kc(b))2
[
(L+ 1)2 − L2

]
=

2L+ 1

2(Kc(b))2
. (2.100)

From the relation regarding the ϕR-integration,∫
dϕRe

i(m0−m)ϕRe−iKc(b)bθf cosϕR ∼ 2πi(m0−m)

√
4π

L̂
YL,m0−m(θf , 0), (2.101)

the scattering amplitude fcc0 becomes

fcc0 ∼ 1

2πi

∑
L

Kc(bL) (Scc0(bL)− δcc0δmm0)
2L+ 1

2(Kc(b))2
2πi(m−m0)

√
4π

L̂
YL,m0−m(θf , 0)

=
2π

iKn

∑
L

Kn

Kc(bL)

L̂√
4π

(Scc0(bL)− δcc0δmm0) i
(m−m0)YL,m−m0(K̂

′
n)

≡ fEcc0 . (2.102)

For the scattering amplitude fQcc0 calculated by the quantum mechanics, we have
Eq. (2.45). We rewrite it as

fQcc0 =
2π

iKn

∑
JL0L

L̂0√
4π

(ℓ0m0L00|Jm0) (ℓmLm0 −m|Jm0)

×
(
SJ
cL,c0L0

− δcc0δLL0

)
i(m−m0)YL,m−m0(K̂

′
n). (2.103)

Here we neglect the Coulomb interaction for simplicity.
In the E-CDCC framework, by setting a critical value LC at a proper point of L, the

scattering amplitude described by the quantum mechanics and it by the eikonal approach
can be connected, that is, we adopt Eq. (2.103) for L ≤ LC, and Eq. (2.102) for L > LC

as the “hybrid” scattering matrix fHcc0 ;

fHcc0 =
2π

iKn

∑
L≤LC

fQL;cc0YL,m−m0

(
K̂

′)
+

2π

iKn

∑
L>LC

fEL;cc0YL,m−m0

(
K̂

′)
, (2.104)
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where the partial scattering amplitudes fQL;cc0 and fEL;cc0 are respectively defined by

fQL;cc0 =
2π

iKn

L+ℓ∑
J=|L−ℓ|

J+ℓ0∑
L0=|J−ℓ0|

L̂0√
4π

(ℓ0m0L00|Jm0) (ℓmL0m0 −m|Jm0)

×
(
SJ
cL,c0L0

− δcc0δLL0

)
i(m−m0), (2.105)

fEL;cc0 =
Kn

Kc(bL)

L̂√
4π

(Scc0(bL)− δcc0δmm0) i
(m−m0). (2.106)

The critical value LC is determined so that the relation fQL;cc0 = fQL;cc0 is satisfied. This
hybrid procedure enables us to perform numerical calculation efficiently with high preci-
sion as well as that of the full quantum calculation [113, 114]. This can be regarded as the
quantum mechanical correction.
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3.1 Introduction

Transfer reactions are useful to investigate a single-particle structure of nuclei because of
its selectivity of kinetic and angular momenta, so called the momentum matching. For
example by using the A(d,p)B reaction, the single-particle structure of B with the n-A
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configuration can be examined. In a conventional way, the (d,p) reaction is described with
the distorted-wave Born approximation (DWBA), which assumes that n transfers to A

through a one-step process. However, in particular, the breakup channels are expected to
play an important role because the deuteron is bound with only 2.22 MeV. Furthermore, if
the residual nucleus B is a loosely bound system such as unstable nuclei, its breakup chan-
nels also must be considered. In this chapter we discuss the role of the breakup channels
of loosely bound nuclei in the transfer reaction.

3.2 Formal theory for transfer reaction

To include the breakup channels in the description of the transfer reaction, below the for-
mulation of the coupled-channels Born approximation (CCBA), which explicitly takes into
account the couplings of the breakup channels of both the projectile and the residual nu-
cleus, is given. Below, we first show the formal theory of the scattering to introduce the
transition matrix. Then, the CCBA formalism in terms of the method of the continuum-
discretized coupled-channels (CDCC) is given.

3.2.1 Total wave function

We consider the transition of the state from the initial channel, the a + A system, to the
final channel, the b+B system, as shown in Fig. 3.1. The former and latter are respectively
represented by the indices α and β. The total wave function Ψ

(+)
α of the initial state can be

expressed by

Ψ(+)
α =

∑
α

ψα (ζα) ξ
(+)
α (rα), (3.1)

which satisfies

[H − E] Ψ(+)
α = 0, (3.2)

r α r β

B

ba

A

Figure 3.1: Illustration of the transfer reaction a+A→ b+B.
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where E is the total energy of the system and the Hamiltonian H is defined by

H = hα +Kα + Vα

= hβ +Kβ + Vβ. (3.3)

Here Vα (Kα) is the interaction potential (kinetic operator) between a and A.
The explicit form of the internal Hamiltonian hα is defined below. The wave function

ψα is defined by

ψα (ζα) ≡ ψa (ζa)ψA (ζA) , (3.4)

with the wave function ψX of the particle X (X = a or A), which forms a complete
set and the intrinsic variables are denoted by ζ. The expansion coefficient ξ(+)

α describes
the relative motion of the a-A system associated with its relative distance rα. ψα and its
components satisfy

[hα − εα]ψα = 0, (3.5)

[ha − εa]ψa = 0, (3.6)

[hA − εA]ψA = 0, (3.7)

where internal Hamiltonian hα is the sum of the Hamiltonian operators of each particle;
hα = ha + hA. Thus, for the eigenenergy ε, we have the relation εα = εa + εA. The
sum, therefore, in Eq. (3.1) is taken over all intrinsic states of each particle. Using the
orthonormality of ψα, ξ(+)

α can be represented as

ξ(+)
α (rα) =

⟨
ψα

∣∣∣Ψ(+)
α

⟩
=

∫
dζαψ

∗
α (ζα)Ψ

(+)
α . (3.8)

The superscript (+) and (−), appears below, represent the outgoing and incoming
boundary conditions for the scattering wave, respectively. For the final channel, we can
similarly define the functions and variables.

3.2.2 Rearrangement component

In general, Ψ(+)
α should contain the rearrangement component of other channels such as

ψβξ
(+)
β , i.e.,

Ψ(+)
α =

∑
α

ψα (ζα) ξ
(+)
α (rα) +

∑
β

ψβ (ζβ) ξ
(+)
β (rβ) + · · · , (3.9)

Note that the components ψαξ
(+)
α and ψβξ

(+)
β are not orthogonal. It means that the overlap

of ψα and ψβ is not zero;

Oαβ =

∫
dζαψ

∗
α (ζα)ψβ (ζβ) ̸= 0, (3.10)
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because ξβ can be represented as a function of ζα and rα. Explicit case is shown in
Sec. 3.3.1. Moreover, we have the relation Oαβ ̸= Oβα.

Form Eq. (3.9) it is, in principle, possible to represent Ψ(+)
α in terms of the β channel

configuration;

Ψ(+)
α =

∑
β

ψβ (ζβ) ξ
(+)
β (rβ). (3.11)

The coefficient ξ(+)
β is defined from the analogy of Eq. (3.8) as

ξ
(+)
β (rβ) =

⟨
ψβ

∣∣∣Ψ(+)
α

⟩
=

∫
dζβψ

∗
β (ζβ)Ψ

(+)
α . (3.12)

3.2.3 Transition matrix

From Eq. (3.2) and (3.3), we obtain

[E − hβ −Kβ] Ψ
(+)
α = VβΨ

(+)
α . (3.13)

Then multiplying by ψ∗
β from the left and integrating over ζβ lead

[Eβ −Kβ] ξ
(+)
β (rβ) =

⟨
ψβ

∣∣∣Vβ ∣∣∣Ψ(+)
α

⟩
, (3.14)

where Eβ = E − εβ .
The formal solution of this equation can be obtained by following the standard Green’s

function procedure [2, 115, 116], that is,

ξ
(+)
β (rβ) = eikα·rαδαβ −

µβ
2πℏ2

∫
dr′β

eikβ|rβ−r′
β|∣∣∣rβ − r′β

∣∣∣
⟨
ψβ

∣∣∣Vβ ∣∣∣Ψ(+)
α

⟩
, (3.15)

with the boundary condition for the asymptotic form

ξ
(+)
β (rβ) ∼ eikα·rαδαβ + fβα(r̂β,kα)

eikβrβ

rβ
. (3.16)

Here the wave number kγ is defined by kγ =
√

2µγEγ/ℏ with the reduced mass µγ of the
γ channel.

Now we may have ∣∣rβ − r′β
∣∣ ≈ rβ − r̂β · r′β = rβ − k̂β · r′β, (3.17)

for the limit rβ ≫ r′β . Then we have the scattering amplitude fβα;

fβα(kβ,kα) = −2πℏ2

µβ
Tβα(kβ,kα), (3.18)

with the transition matrix (T matrix) defined by

Tβα(kβ,kα) =
⟨
eikβ ·r′

βψβ

∣∣∣Vβ ∣∣∣Ψ(+)
α (kα)

⟩
.

=

∫
dζβdr

′
βe

−ikβ ·r′
βψ∗

β (ζβ)Vβ
(
ζβ, r

′
β

)
Ψ(+) (kα)α (3.19)
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3.2.4 Gell-Mann, Goldberger transformation

Since Eq. (3.19) is not easy to calculate owing to the presence of the complicated interac-
tion Vβ , we introduce the auxiliary potential Uβ . From Eq. (3.3), we have

H = hβ +Kβ + Vβ

= hβ +Kβ +Wβ + Uβ, (3.20)

with the residual interaction

Wβ = Vβ (ζβ, rβ)− Uβ (rβ) . (3.21)

Then the Schrödinger equation (3.22) is now written by

[Eβ −Kβ − Uβ (rβ)] ξ
(+)
β (rβ) =

⟨
ψβ

∣∣∣Wβ

∣∣∣Ψ(+)
α

⟩
. (3.22)

The purpose of adding Uβ is to make small the effect of the inhomogeneous from the right-
hand-side of Eq. (3.22) compared to Eq. (3.2) by taking Wβ as small as possible. The
distorted wave χ(+)

β describes the scattering due to the potential Uβ with the Schrödinger
equation

[Eβ −Kβ − Uβ (rβ)]χ
(+)
β (rβ) = 0. (3.23)

The proper choice of Uβ is case by case. Explicit form of Uβ in specific reactions is given
in Sec. ChapTRForm2.

The formal solution of Eq. (3.22) can be expressed in terms of the solution χ(+)
β for the

homogeneous equation (3.23). From the similarity to Eq. (3.15), it is given by

ξ
(+)
β (rβ) = χ(+)

α (kβ, rβ) δαβ −
µβ
2πℏ2

∫
dr′βG

(+)
β

(
rβ, r

′
β

) ⟨
ψβ

∣∣∣Wβ

∣∣∣Ψ(+)
α

⟩
, (3.24)

where the Green’s function G(+)
β propagates in the potential Uβ . Therefore we obtain the

T matrix

Tβα(kβ,kα)

= T
(0)
β (kβ,kα)δβα +

⟨
χ
(−)
β (kβ)ψβ

∣∣∣Wβ

∣∣∣Ψ(+)
α (kα)

⟩
.

= T
(0)
β (kβ,kα)δβα +

∫
dζβdrβχ

(−)
β (kβ, rβ)Vβ (ζβ, rβ)− Uβ (rβ)Ψ

(+)
α (kα) ,

(3.25)

where T (0)
β defined by

T
(0)
β (kβ,kα) =

⟨
eikβ ·rβ

∣∣∣Uβ

∣∣∣χ(+)
β (kα)

⟩
(3.26)

describes the elastic scattering due to the potentialUβ when β = α. The incoming spherical
wave χ(−)

γ is defined as the time-reversal of the outgoing wave χ(+)
γ ;

χ(−)
γ (kγ , rγ) = χ(+)∗

γ (−kγ , rγ) . (3.27)

The second term of Eq. (3.25) is nothing but that it describes the transition from the α
channel to β (̸= α) channel. The transformation such as from Eqs. (3.20) to (3.25) with
introducing the auxiliary potential Uβ is known as the Gell-Mann, Goldberger transforma-
tion.
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3.2.5 Post prior representation

From here we formulate with the post form representation, in which the T matrix involved
the interaction in the final channel. There exist another one called the prior form. This is
based on the idea that nuclear structures and reactions are the time-reversal invariant. Under
this invariance, the transfer reaction A(a, b)B is physically equivalent to the b(B, a)A
except for the phase factor;

T−β,−α(−kβ,−kα) = (−)πβαTβα(kβ,kα). (3.28)

The phase factor πβα is related to the spins of particles. If we ignore the degree of spins,
πβα = 0. The T matrices corresponding to Eqs. (3.19) and (3.25) are respectively given by

Tβα(kβ,kα) =
⟨
Ψ

(−)
β (kβ)

∣∣∣Vα ∣∣∣ψαe
ikα·rα

⟩
(3.29)

= T (0)
α (kβ,kα)δβα +

⟨
Ψ

(−)
β (kβ)

∣∣∣Wα

∣∣∣ψαχ
(+)
α (kα)

⟩
. (3.30)

The post and prior form of the T matrix is mathematically equivalent. However this
equivalence may be broken when approximation is introduced to calculate the exact wave
function Ψ

(+)
γ or the distorted wave χ(+)

γ .

3.2.6 Lippmann-Schwinger equation and Born series

The Schrödinger equation (3.2) leads the Lippmann-Schwinger equation

Ψ(±)
α = ψα (ζα)ϕα (kα, rα) +

1

Eα −Kα − Vα ± iε
VαΨ

(±)
α

= ψα (ζα)ϕα (kα, rα) +G(±)
α VαΨ

(±)
α , (3.31)

where ϕα stands for the plane wave of the α channel, ϕα (kα, rα) = eikα·rα , and G(±)
α is

the Green’s function of the full Hamiltonian H;

G(±)
α =

1

E − hα −Kα − Vα ± iε
, (3.32)

We can represent G(±)
α with another expression by introducing the Green’s function G(±)

0α ,

G
(±)
0α =

1

E − hα −Kα ± iε
, (3.33)

for the free Hamiltonian;

G(±)
α = G

(±)
0α +G

(±)
0α VαG

(±)
α . (3.34)

The formal solution of the Schrödinger equation (3.2) is obtained from Eq. (3.31);

Ψ(±)
α = ψα (ζα)ϕα (kα, rα) +G(±)

α Vαψα (ζα)ϕα (kα, rα) . (3.35)
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By using Eq. (3.35), the T matrix for elastic scattering is given by

T (k′
α,kα) =

⟨
ψαϕ

(
k′
α, rα

) ∣∣∣Vα ∣∣∣Ψ(±)
α

⟩
=
⟨
ϕ
(
k′
α, rα

) ∣∣∣Vα + VαG
(+)
α Vα

∣∣∣ϕ (kα, rα)
⟩
, (3.36)

where

k2α = k
′2
α = 2µαE/ℏ2. (3.37)

Equation (3.36) can be expressed with the Lippmann-Schwinger type;

T (k′
α,kα) = Vα + VαG

(+)
α (E)Vα (3.38)

= Vα + VαG
(+)
0α (E)T (k′

α,kα). (3.39)

Here we explicitly put the argument E of the Green’s functions. When Eq. (3.37) is sat-
isfied, T (k′

α,kα) is called ’on-the-energy shell’ or just ’on-shell’. For more complicated
reactions such as multiple scattering, Eq. (3.37) may not be satisfied. This is said to be
’off-the-energy-shell’ or ’off-shell’.

The Lippmann-Schwinger equation (3.31) can be rewritten as the Born series;

Ψ(+)
α =

[
1 +G

(+)
0α Vα +G

(+)
0α VαG

(+)
0α Vα + · · ·

]
ϕα (kα, rα)ψα (ζα) . (3.40)

Similarly for the residual interaction Wα defined by Eq. (3.21), we have

Ψ(+)
α =

[
1 +G(+)

α Wα +G(+)
α WαG

(+)
α Wα + · · ·

]
χ(+)
α (kα, rα)ψα (ζα) . (3.41)

From these expression with the Born series, the T matrix for the β ̸= α transition is given
by

Tβα =
⟨
eikβ ·rβψβ

∣∣∣Vβ + VβG
(+)
0α Vα + VβG

(+)
0α VαG

(+)
0α Vα + · · ·

∣∣∣ eikα·rαψα

⟩
(3.42)

and

Tβα =
⟨
χ
(−)
β ψβ

∣∣∣Wβ +WβG
(+)
α Wα +WβG

(+)
α WαG

(+)
α Wα + · · ·

∣∣∣χ(+)
α ψα

⟩
. (3.43)

If we choose only the first term of these series, the former gives the first Born approxima-
tion, or just the Born approximation;

TBA
βα (post) =

⟨
eikβ ·rβψβ

∣∣∣Vβ ∣∣∣ eikα·rαψα

⟩
, (3.44)

while the latter leads the T matrix of the distorted-wave Born approximation (DWBA);

TDWBA
βα (post) =

⟨
χ
(−)
β ψβ

∣∣∣Vβ − Uβ

∣∣∣χ(+)
α ψα

⟩
. (3.45)

Similarly T matrices of the prior form is given by

TBA
βα (prior) =

⟨
eikβ ·rβψβ

∣∣∣Vα ∣∣∣ eikα·rαψα

⟩
, (3.46)

TDWBA
βα (prior) =

⟨
χ
(−)
β ψβ

∣∣∣Vα − Uα

∣∣∣χ(+)
α ψα

⟩
. (3.47)
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These are basic formalisms in order to describe transfer reactions; in particular DWBA is
often adopted for analyses. However, in DWBA, higher order processes, for example the
breakup effects of the projectile and the residual nucleus, are missing for the calculation of
χ
(+)
γ . Thus, in this work, we increase the accuracy of the model by formulating the coupled-

channels Born approximation (CCBA), which includes the DWBA framework with a three-
body model.

3.3 Coupled-channels Born approximation (CCBA) formalism

As a CCBA model, we explicitly take into account the breakup effects of the projectile
and the residual nucleus by means of the method of the continuum-discretized coupled-
channels (CDCC) in terms of a three-body model. Below the explicit form of the CDCC
wave function with the partial wave expansion is given.

3.3.1 CDCC wave functions

In this subsection, we formulate the explicit form of the CDCC wave function with the
partial wave expansion. An illustration of the stripping reaction, a(x + b) + A → b +

B(x + A) is shown in Fig. 3.2. In our model it is assumed that the intrinsic spin of each
of x, b, and A does not change through the scattering. Thus the degree of freedom of the
intrinsic spin does not appear explicitly in the distorted wave. In addition the target nucleus
A is assumed as structureless that vanishes ψA in this formulation.

In CDCC the three-body wave function in the initial channel Ψ(+)
α is given by

Ψ(+)
α (rxb, rα) ≈

∑
i

ψi
xb(rxb)χ

ii0(+)
α (rα), (3.48)

b

r  , L

x AB

a

r  , Lα

r   , lxA

β β

α

xA

r   , lxb xb

rbA

Figure 3.2: Coordinates for the transfer reaction a(x+ b) +A→ b+B(x+A).
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which satisfies

[Hα − E]Ψ(+)
α (rxb, rα) = 0, (3.49)

Hα = Krα + hxb + U
(α)
xA (rxA) + V

(C)
xA (rxA) + U

(α)
bA (rbA) + V

(C)
bA (rbA). (3.50)

The coordinates for the transfer reaction are shown in Fig. 3.2 Eqs. (3.49) and (3.50) cor-
respond to Eqs. (2.4) and (2.2), respectively. E is the total energy of the system and KX is
the kinetic energy regarding the coordinateX . The U (γ)

cA and V (C)
cA are, respectively, the nu-

clear distorting potential and Coulomb interaction between c (= x or b) and A. Note that α
and β respectively represent the initial and final channels. ψi

xb is the internal wave function
of the projectile a with i its energy index; i = i0 corresponds to the ground state of a and
i ̸= i0 to the discretized continuum states of the x-b system. In this CCBA framework we
adopt the pseudostate method given in Sec. 2.1.3 for the discretization because Gaussian
basis functions used in the pseudostate method are applicable to CCBA, in which the radial
part of ψi

xb has to be expanded with any function. The detail of the expansion of ψi
xb in

CCBA is shown in Appx. C. Equation (2.8) for ψi
xb with the x-b internal Hamiltonian hxb

can be written as (
hxb − εixb

)
ψi
xb(rxb) = 0, (3.51)

hxb = Krxb
+Vxb(rxb) + V

(C)
xb (rxb), (3.52)

where εixb is the energy eigenvalue of the x-b system. Vxb is the nuclear binding potential,
which reproduces the binding energy εi0xb and V

(C)
xb stands for the Coulomb interaction

between x and b.
Similarly, the three-body wave function Ψ

(+)
β in the final channel is given by

Ψ
(+)
β (rxA, rβ) ≈

∑
j

ψj
xA(rxA)χ

jj0(+)
β (rβ) (3.53)

with the energy index j of the residual nucleus B, which corresponds to i in the initial
channel. Ψ(+)

β , satisfies

[Hβ − E]Ψ
(+)
β (rxA, rβ) = 0, (3.54)

Hβ = Krβ
+ hxA + U

(β)
bA (rbA) + V

(C)
bA (rbA) + V

(C)
xb (rxb), (3.55)

where the x-A internal wave function ψj
xA satisfies following Schrödinger equation with

the x-A internal Hamiltonian hxA;(
hxA − εjxA

)
ψj
xA(rxA) = 0, (3.56)

hxA = KrxA + VxA(rxA) + V
(C)
xA (rxA), (3.57)

where εjxA, VxA, and V (C)
xA are respectively same as εixb, Vxb, and V (C)

xb but for the x-A
system. Note that Hβ does not contain the nuclear interaction between x and b that has
been used as a transition interaction Vxb as shown below. This is noting but the fact that we
choose the auxiliary potential in Eq. (3.21) so that only the interaction Vxb remains.
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The partial waves of Ψ(+)
α and Ψ

(+)
β can be represented by

Ψ(+)
α =

∑
l′xbm

′
xb

∑
i

Φi
a,l′xbm

′
xb
χ
ii0(+)
mxbm

′
xb
(kα, rα), (3.58)

χ
ii0(+)
mxbm

′
xb
(kα, rα) =

4π

kαrα

∑
JLαL′

α

iL
′
αχJii0

LαL′
αlxbl

′
xb
(kα, rα)

×
∑

µMαM ′
α

(lxbmxbLαMα|Jµ)
(
l′xbm

′
xbL

′
αM

′
α|Jµ

)
× Y ∗

LαMα
(k̂α)YL′

αM
′
α
(r̂α), (3.59)

Ψ
(+)
β =

∑
l′xAm′

xA

∑
j

Φj
B,l′xAm′

xA
χ
jj0(+)
mxAm′

xA
(kβ, rβ), (3.60)

χ
jj0(+)
mxAm′

xA
(kβ, rβ) =

4π

kβrβ

∑
JLβL

′
β

iL
′
βχJjj0

LβL
′
β lxAl′xA

(kβ, rβ)

×
∑

µMβM
′
β

(lxAmxALβMβ|Jµ)
(
l′xAm

′
xAL

′
βM

′
β|Jµ

)
× Y ∗

LβMβ
(k̂β)YL′

βM
′
β
(r̂β). (3.61)

Here, lxb (Lα) is the orbital angular momentum between x and b (a and A) in the initial
channel, while lxA (Lβ) stands for one between x and A (b and B) in the final channel,
as shown in Fig. 3.2. mxc and Mγ are respectively their z-components in each channel.
Through the scattering process, the projectile’s (residual nucleus’) state can vary from its
“incident” state owing to the interaction between a and A (b and B) in the initial (final)
channel. Thus their quantum numbers can change to “prime” one due to the CC in the
intermediate state, in which the particles interact each other. J (µ) is the total angular
momentum (its z-component). The wave number regarding the coordinate rγ of the γ
channel is expressed by kγ .

The overlap Oαβ defined by Eq. (3.10) is now

Oαβ =

∫
drxbψ

∗
xb(rxb)ψxA(rxA), (3.62)

where we assume i = i0 and j = j0, and they are omitted. From Fig. 3.2 we can see that
the coordinate rxA can be written as the linear combination of the coordinates rxb and rα
as rxA = rα+

b
arxb. ThusOαβ is a function of rα. However this nonorthogonality appears

in the inner region regarding rα. Now, since ψxb and ψxA decay exponentially owing to
their bound states property, it is clear that Oαβ(rα) becomes zero for rα → ∞. This fact
is physically reasonable because in the interior region, in which a and A can overlap, we
cannot distinguish the system whether it should be represented as the a-A or b-B systems.

3.3.2 Transition matrix and cross section

In this subsection, by adopting CDCC, we formulate the transition matrix (T matrix) of the
stripping reaction which includes the coupled-channels (CC) concerning the breakup states
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of the projectile and the residual nucleus in both the initial and final channels, respectively.
The T matrix in the post form is given by

T = J
⟨
Ψ

(−)
β

∣∣∣Vxb ∣∣∣Ψ(+)
α

⟩
= J

∑
l′xAl′xbm

′
xAm′

xb

∑
ij

⟨
Φj
B,l′xAm′

xA
χ
jj0(−)
mxAm′

xA

∣∣∣Vxb ∣∣∣Φi
a,l′xbm

′
xb
χ
ii0(+)
mxbm

′
xb

⟩
, (3.63)

the factor J is the Jacobian of the transformation from the integration variables (rxA, rxb)
or (rxA, rbA) to the (rα, rβ) used in the present framework, which is given by

J =
∂(rxA, rxb)

∂(rα, rβ)
=

[
aB

x(a+A)

]3
. (3.64)

The reason why we choose the interaction Vxb as the residual interaction is, in general,
the range of Vxb is expected to be the shortest in each subsystem. It means that we just have
to calculate the T matrix in the range of the residual interaction. For example deuteron
induced reactions, the interaction between p and n, which forms deuteron with the range
of the nuclear interaction, is adopted.

In the exact form of Eq. (3.63), Ψ(+)
α includes not only the a-A components, consisting

of the elastic and breakup ones, but also rearrangement components such as Eq. (3.9).
The latter is not explicitly taken into account in the present CCBA calculation. However,
if we include large enough values of lxb, the rearrangement channels can be described
well [109,117]. Furthermore, the transitions between the former and latter are shown to be
weak [109, 117] (See also Appx. A).

Let us introduce the form factor in order to integrate the angular part of Eq. (3.63). As
shown in Eq. (8) of Ref. [118], the form factor is given by⟨

Φj
B,l′xAm′

xA

∣∣∣Vxb ∣∣∣Φi
a,l′xbm

′
xb

⟩
=
∑
lm

i−lAl

(
lml′xbm

′
xb|l′xAm′

xA

)
f ijlm(rβ, rα). (3.65)

Here, l is the transferred angular momentum defined by

l = lxA − lxb = l′xA − l′xb, (3.66)

and it can vary in the range of

|lxb − lxA| ≤ l ≤ lxb + lxA, (3.67)∣∣l′xb − l′xA
∣∣ ≤ l ≤ l′xb + l′xA. (3.68)

m is the z-component of l. The phase factor i−l ensures time reversal properties. Al is the
spectroscopic amplitude and the form factor f ijlm can be given with the spherical harmonics
expansion, Eq. (32) of Ref. [118], as follows;

f ijlm(rβ, rα) =
∑

L1L2M1M2

F ij
lL1L2

(rβ, rα) (L1M1L2M2|lm)Y ∗
L1M1

(r̂β)Y
∗
L2M2

(r̂α).

(3.69)



40 Chapter 3. Transfer Reaction of Loosely Bound System

Explicit form of f ijlm in some cases is given in Appx. C. For example, when we expand ψi
xb

and ψj
xA with Gaussian basis functions, the exact finite-range (FR) form of FlLβLα is given

by

FlLβLα(rβ, rα) =
∑

λAλbL

Rij
λAλbL

(rβ, rα)A
lLβLα

λAλbL
, (3.70)

Rij
λAλbL

(rβ, rα) ≡
1

4π
hλA

(rα, rβ)hλb
(rα, rβ)

∑
iAib

g̃ijiAib
(rα, rβ )̃iL(γ

ij
iAib

rβrα), (3.71)

A
lLβLα

λAλbL
≡
∑
jαjβ

(−)jα+Lα−LL̂2 l̂xA l̂xbĵαĵβ ̂lxA − λxA ̂lxb − λxbλ̂xAλ̂xb

× (lxA − λxA, 0, lxb − λxb, 0|jα0) (λxA0λxb0|jβ0)
× (jα0L0|Lα0) (jβ0L0|Lβ0)

×W (jαjβLαLβ; lL)


lxA − λxA λxA lxA
lxb − λxb λxb lxb

jα jβ l

 . (3.72)

Here the factor W (jαjβLαLβ; lL) is the Racah coefficient and the 3 × 3 matrix in the
braces {} is the 9-j symbol. Note that in this thesis an angular momentum with “hat”, L̂,
stands for

L̂ =
√
2L+ 1. (3.73)

The definitions of each variable in Eq. (3.70) are given in Appx. C.

To perform the angular integration we need to write down the time-reversal form of
Eq. (3.61), χjj0(−)

mxAm′
xA

;

χ
jj0(−)∗
mxAm′

xA
(kβ, rβ) = χ

jj0(+)
−mxA,−m′

xA
(−kβ, rβ)

= (−)mxA−m′
xA

4π

kβrβ

∑
JLβL

′
β

iL
′
βχJjj0

LβL
′
β lxAl′xA

(kβ, rβ)

×
∑

µMβM
′
β

(lxA,−mxALβMβ|Jµ)
(
l′xA,−m′

xAL
′
βM

′
β|Jµ

)
(−)Lβ+Mβ

× YLβ ,−Mβ
(k̂β)YL′

βM
′
β
(r̂β). (3.74)



3.3. Coupled-channels Born approximation (CCBA) formalism 41

Inserting Eqs. (3.65), (3.69), and (3.74) to Eq. (3.63), we obtain

T = J
∑

l′xAl′xbm
′
xAm′

xb

∑
ij

∫
drα

∫
drβ

× (−)mxA−m′
xA

4π

kβrβ

∑
JLβL

′
β

iL
′
βχJjj0

LβL
′
β lxAl′xA

(kβ, rβ)

×
∑

µMβM
′
β

(lxA,−mxALβMβ|Jµ)
(
l′xA,−m′

xAL
′
βM

′
β|Jµ

)
× (−)Lβ+MβYLβ ,−Mβ

(k̂β)YL′
βM

′
β
(r̂β)

×
∑
lm

i−lAl

(
lml′xbm

′
xb|l′xAm′

xA

)
×

∑
L1L2M1M2

F ij
lL1L2

(rβ, rα) (L1M1L2M2|lm)Y ∗
L1M1

(r̂β)Y
∗
L2M2

(r̂α)

× 4π

kαrα

∑
LαL′

α

iL
′
αχJii0

LαL′
αlxbl

′
xb
(kα, rα)

×
∑

MαM ′
α

(lxbmxbLαMα|Jµ)
(
l′xbm

′
xbL

′
αM

′
α|Jµ

)
Y ∗
LαMα

(k̂α)YL′
αM

′
α
(r̂α). (3.75)

In Eq. (3.75), the angular integration can be done;∫
dr̂αY

∗
L2M2

(r̂α)YL′
αM

′
α
(r̂α) = δL2L′

α
δM2M ′

α
, (3.76)∫

dr̂βY
∗
L1M1

(r̂β)YL′
βM

′
β
(r̂β) = δL1L′

β
δM1M ′

β
. (3.77)

The T matrix is then given by

T = 4πJ
∑
lJ

∑
l′ALβL

′
β

∑
l′bLαL′

α

AlI
llxAl′xAlxbl

′
xbij

JLαL′
αLβL

′
β

×
∑
mµ

∑
m′

xAMβM
′
β

∑
m′

xbMαM ′
α

YLβ ,−Mβ
(k̂β)Y

∗
LαMα

(k̂α)(−)mxA−m′
xA+Lβ+Mβ iL

′
β+L′

α−l

× (lxA,−mxALβMβ|Jµ)
(
l′xA,−m′

xAL
′
βM

′
β|Jµ

)
×
(
lml′xbm

′
xb|l′xAm′

xA

) (
L′
βM

′
βL

′
αM

′
α|lm

)
× (lxb,mxbLαMα|Jµ)

(
l′xb,m

′
xbL

′
αM

′
α|Jµ

)
, (3.78)

where the overlap integral I llxAl′xAlxbl
′
xbij

JLαL′
αLβL

′
β

is defined by

I
llAl′Albl

′
bij

JLαL′
αLβL

′
β
≡ 4π

kαkβ

∑
ij

∫
rαdrα

∫
rβdrβ

× χJjj0
LβL

′
β lAl′A

(kβ, rβ)F
ij
lL′

βL
′
α
(rβ, rα)χ

Jii0
LαL′

αlbl
′
b
(kα, rα). (3.79)
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If we take the z-axis to be parallel to the incident beam following the Madison conven-
tions, the spherical harmonics becomes

Y ∗
LαMα

(0, 0) = δMα0L̂α(4π)
−1/2, (3.80)

YLβ ,−Mβ
(θ, 0) = (−)(|Mβ|−Mβ)/2L̂β(4π)

−1/2

[
(Lβ − |Mβ|)!
(Lβ + |Mβ|)!

]1/2
PLβMβ

(cos θ).

(3.81)

Using Eq. (3.80) and (3.81), we obtain

T = J
∑
lJ

∑
l′xALβL

′
β

∑
l′xbLαL′

α

AlI
llxAl′xAlxbl

′
xbij

JLαL′
αLβL

′
β
L̂αL̂β

×
∑
mµ

∑
m′

xAMβM
′
β

∑
m′

xbM
′
α

(−)mxA−m′
xA+Lβ (−)(|Mβ|+Mβ)/2iL

′
β+L′

α−l

× (lxA,−mxALβMβ|Jµ)
(
l′xA,−m′

xAL
′
βM

′
β|Jµ

)
×
(
lml′xbm

′
xb|l′xAm′

xA

) (
L′
βM

′
βL

′
αM

′
α|lm

)
× (lxbmxbLα0|Jµ)

(
l′xbm

′
xbL

′
αM

′
α|Jµ

)
×
[
(Lβ − |Mβ|)!
(Lβ + |Mβ|)!

]1/2
PLβMβ

(cos θ). (3.82)

The summation over m, m′
xA, m′

xb, M
′
α, and M ′

β in Eq. (3.82) results in∑
mm′

xAm′
xbM

′
αM

′
β

(−)−m′
xA
(
l′xA,−m′

xAL
′
βM

′
β|Jµ

) (
lml′xbm

′
xb|l′xAm′

xA

)
×
(
L′
βM

′
βL

′
αM

′
α|lm

) (
l′xbm

′
xbL

′
αM

′
α|Jµ

)
=
∑

(−)−m′
xA(−)l+l′xb−l′xA

(
l′xbm

′
xblm|l′xAm′

xA

) (
l′xA,−m′

xAL
′
βM

′
β|Jµ

)
× (−)L

′
β+L′

α−l(−)L
′
β+M ′

β
l̂

L̂′
α

(
l,−mL′

βM
′
β|L′

α,−M ′
α

) (
l′xbm

′
xbL

′
αM

′
α|Jµ

)
= (−)µ(−)L

′
α+l′xb−l′xA

l̂

L̂′
α

×
∑(

l′xbm
′
xblm|l′xAm′

xA

)
(−)l

′
xA+L′

β−J (l′xAm′
xAL

′
β,−M ′

β|J,−µ
)

× (−)l+L′
β−L′

α
(
lmL′

β,−M ′
β|L′

αM
′
α

) (
l′xbm

′
xbL

′
αM

′
α|Jµ

)
= (−)µ(−)l

′
xb+l−J l̂

L̂′
α

δµ0(−)l
′
xb+l+L′

β+J l̂′xAL̂
′
α

{
l′xb l l′xA
L′
β J L′

α

}
= l̂l̂′xAδµ0(−)L

′
β

{
l′xb l l′xA
L′
β J L′

α

}
, (3.83)

where
{
l′xb l l′xA
L′
β J L′

α

}
is the 6-j symbol and we have used the relation (−)m

′
xA−M ′

β =

(−)−m′
xA+M ′

β = (−)µ ensured by properties of the Clebsch-Gordan coefficient
(l′xA,−m′

xAL
′
βM

′
β|Jµ).
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Inserting Eq. (3.83) to Eq. (3.82), the T matrix becomes

TlxblxAmxA
= J

∑
lJ

∑
l′xALβL

′
β

∑
l′xbLαL′

α

AlI
llxAl′xAlxbl

′
xbij

JLαL′
αLβL

′
β
L̂αL̂β l̂l̂

′
xA

×
{
l′xb l l′xA
L′
β J L′

α

}
(−)Lβ+L′

β iL
′
β+L′

α−l

×
∑
µMβ

δµ0(−)mxA(−)(|Mβ|+Mβ)/2 (lxA,−mxALβMβ|Jµ) (lxbmxbLα0|Jµ)

×
[
(Lβ − |Mβ|)!
(Lβ + |Mβ|)!

]1/2
PLβMβ

(cos θ). (3.84)

Here we put the suffixes of T matrix, lxb, lxA, and mxA, explicitly.
Next let us take the summation over µ as∑

µ

δµ0 (lxA,−mxALβMβ|Jµ) (lxbmxbLα0|Jµ)

= (lxA,−mxALβMβ|J0) (lxbmxbLα0|J0)
= (lxA,−mxALβmxA|J0) (lxb0Lα0|J0) δMβmxA

δmxb0. (3.85)

Then Eq. (3.84) becomes

TlxblxAmxA
= J

∑
lJ

∑
l′xALβL

′
β

∑
l′xbLαL′

α

AlI
llxAl′xAlxbl

′
xbij

JLαL′
αLβL

′
β
L̂αL̂β l̂l̂

′
xA

× (−)Lβ+l′xA+l′xbiL
′
β−L′

α−l(−)(|mxA|−mxA)/2

× (lxA,−mxALβmxA|J0) (lxb0Lα0|J0)W (l′xAl
′
xbL

′
βL

′
α; lJ)

×
[
(Lβ − |Mβ|)!
(Lβ + |Mβ|)!

]1/2
PLβMβ

(cos θ). (3.86)

If mxA ≥ 0, we can rewrite Eq. (3.86) by

TlxblxAmxA
= J

∑
lJ

∑
l′xALβL

′
β

∑
l′xbLαL′

α

AlI
llxAl′xAlxbl

′
xbij

JLαL′
αLβL

′
β
L̂αL̂β l̂l̂

′
xA

× (−)Lβ+l′xA+l′xbiL
′
β−L′

α−l

× (lxA,−mxALβmA|J0) (lxb0Lα0|J0)W (l′xAl
′
xbL

′
βL

′
α; lJ)

×
[
(Lβ −mxA)!

(Lβ +mxA)!

]1/2
PLβmxA

(cos θ), (3.87)

TlxblxA,−mxA
= (−)lxA+mxAJ

∑
lJ

∑
l′xALβL

′
β

∑
l′xbLαL′

α

AlI
llxAl′xAlxbl

′
xbij

JLαL′
αLβL

′
β
L̂αL̂β l̂l̂

′
xA

× (−)Lβ+l′xA+l′xbiL
′
β−L′

α−l

× (−)Lβ−J (lxA,−mxALβmxA|J0) (lxb0Lα0|J0)W (l′xAl
′
xbL

′
βL

′
α; lJ)

×
[
(Lβ −mxA)!

(Lβ +mxA)!

]1/2
PLβmxA

(cos θ). (3.88)
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Eq. (3.88) can be expressed as

TlxblxA,−mxA
= (−)lxA+mxA π̂αβTlxblxAmxA

, (3.89)

where π̂αβ is the operator which reproduces the phase factor (−)Lβ−J in the Lβ- and J-
sums when παβ operates TlxblxAmxA

for mxA ≥ 0.
Then the transfer cross section is given by

dσ

dΩ
= S

µαµβ
(2πℏ2)2

kβ
kα

lxA∑
mxA=−lxA

∣∣∣T l
lxblxAmxA

∣∣∣2 , (3.90)

where µα and µβ are the reduced masses for the initial and final channels, respectively.
Equation (3.90) does not specify the z-components of particles’ spins. Therefore it includes
the spin factor S defined by

S ≡
Ĵ2
B

Ĵ2
Aŝ

2
x l̂

2
xA

, (3.91)

which comes out by taking an average over the initial spin orientations and a sum over
them in the final channel. We only have to consider S as the spin dependent part, where
sX or JX is the intrinsic spin of the particle X . The derivation of Eq. (3.91) is given in
Appx. E. Note that lxb is determined by the incident condition and also lxA can be assumed
from an observation condition.

Sometimes the zero-range (ZR) approximation is used for the overlap integral
I
llxAl′xAlxbl

′
xbij

JLαL′
αLβL

′
β

. to save the computational cost. In the ZR approximation it is assumed

that, in the form factor, the range of Di
xb defined by

Di
xb(rxb) = Vxb(rxb)ψ

i
xb(rxb) (3.92)

is short and it can be expressed by the δ-function, Di
xb(rxb) ∼ δ(rxb). Equation (3.79)

with the ZR approximation is rewritten as

I
llxAl′xA
JLβL

′
β
=

√
4π

kαkβ

B

A
Di

0

Ĵ L̂′
β

l̂

(
L′
β0J0|l0

)
×
∫
drαχ

Jjj0
LβL

′
β lAl′xA

(
kβ,

A

B
rα

)
ϕj∗
l′A
(rα)χ

Jii0
α (kα, rα) (3.93)

with

Di
0 =

∫
drxbD

i
xb(rxb). (3.94)

Note that in the ZR approximation the transition from non s-wave of ψi
xb is neglected

because that components cannot be represented by the δ-function. See Appx. C for more
detail.
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3.3.3 Distorted-wave Born approximation (DWBA)

In this subsection we simplify the formula of the T matrix by neglectiing any CC effects,
that is DWBA. For DWBA, the three-body wave function Ψ

(+)
α and Ψ

(+)
β can be written by

Ψ(+)
α = Φa;lxbmxb

χ(+)
mxb

(kα, rα), (3.95)

χ(+)
mxb

(kα, rα) =
4π

kαrα

∑
JLα

iLαχJ
Lα

(kα, rα)

×
∑
µMα

(lxbmxbLαMα|Jµ)Y ∗
LαMα

(k̂α)YLαMα(r̂α), (3.96)

Ψ
(+)
β = ΦB;lxAmxA

χ(+)
mxA

(kβ, rβ), (3.97)

χ(+)
mxA

(kβ, rβ) =
4π

kβrβ

∑
JLβ

iLβχJ
Lβ

(kβ, rβ)

×
∑
µMβ

(lxAmxALβMβ|Jµ)Y ∗
LβMβ

(k̂β)YLβMβ
(r̂β). (3.98)

The T matrix with DWBA can be easily derived by following similar way as in CCBA. For
mxA ≥ 0, we obtain

TlxblxAmxA
= J

∑
JlLβLα

AlI
l
JLαLβ

l̂L̂β(−)lxb+lxAiLα+Lβ+l

×W (lxAlxbLβLα; lJ)

[
(Lβ −mxA)!

(Lβ +mxA)!

]1/2
PLβmxA

(cos θ) (3.99)

with the overlap integral I lJLαLβ
defined by

I lJLαLβ
≡ 4π

kαkβ

∫
rαdrα

∫
rβdrβχ

J
Lβ

(kβ, rβ)FlLβLα(rβ, rα)χ
J
Lα

(kα, rα). (3.100)
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3.4 The 8B(d,n)9C reaction

3.4.1 Background

As a first application, we focus on the transfer reaction 8B(d,n)9C at 14.4 MeV/nucleon.
The projectile d is loosely bound with its binding energy 2.22 MeV. In addition, the residual
nucleus 9C is a proton-rich unstable nucleus; its proton separation energy is 1.30 MeV.
Thus to describe the transfer reaction precisely, one should take into account the breakup
effects of d and 9C and investigate how significant these effects on the transfer cross section.

The 8B(d,n)9C reaction has been paid attention with an astrophysical interest [108,
119]. Its cross section was measured [108] to indirectly determine the reaction rate of
the proton capture reaction of 8B, 8B(p,γ)9C. The 8B(p,γ)9C reaction in low-metallicity
supermassive stars, is expected to lead the process called hot pp chain [119]:

8B(p, γ)9C(α, p)12N(p, γ)13O(β+ν)13N(p, γ)14O. (3.101)

The hot pp chain can be a possible alternative path to the synthesis of the CNO elements.
Thus determination of the cross section σpB of the 8B(p,γ)9C reaction is important to un-
derstand the process. It is, however, difficult to measure σpB since the εpB-dependence of
σpB is quite strong, in particular, at low energy it has extremely small value. Therefore,
instead of the cross section, the astrophysical factor,

S18(εpB) = εpBσpB(εpB) exp[2πη], (3.102)

which has weak energy dependence has been evaluated from several alternative measure-
ments [108, 120, 121]. In particular S18 at zero energy, S18(0) is important to estimate
since a typical stellar energy is extremely small. For example, the temperature of the sun at
its center, 1.5× 107 K, corresponds to around 1 keV. Here, η is the Sommerfeld parameter.
Below, comparison of the calculated cross section and experimental data, and prospect to
astrophysics are also given.

3.4.2 Numerical setting

In the 8B(d,n)9C reaction, p, n, and 8B respectively corresponds to x, b, and A describe
in Chap. 3.3. In this analysis ψj

pB is regarded as the overlap function of 9C with the p-
8B(g.s.) configuration. Since the ground state of 9C includes the component that cannot
be described by the p-8B(g.s.) configuration, ψj0

pB has to be normalized by the square root

of the spectroscopic factor S. The breakup components ψj
pB (j ̸= j0) also have to be

normalized by the same factor
√
S, because

Ψ
(+)
β (rpB, rβ) = lim

ε→+0

iε

E −Hβ + iε
eikβ ·rβ

√
Sψj0

pB(rpB)

=
√
S lim

ε→+0

iε

E −Hβ + iε
eikβ ·rβψj0

pB(rpB);

(3.103)
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note that the ψj
pB (j ̸= j0) are generated by the Mϕller wave operator iε/(E −Hβ + iε).

Here, S has only one quantum number, i.e., lpB = 1 in the ground state of 9C. This is due to
the neglect of the intrinsic spin of each particle in the present study. Thus S is understood
as an averaged value of the S’s, each with a different value of the total angular momentum
of the p-8B(g.s.) system.

We adopt the one-range Gaussian interaction [122] for Vpn. The pseudo state method
described in Sec. 2.1.3 with the real-range Gaussian basis functions [111] is used for ob-
taining the discretized-continuum states of d; we include the s- and d-states with neglecting
the intrinsic spin of d. The number of the basis functions taken is 20, and the minimum
(maximum) range parameter of Gaussian is 1.0 (30.0) fm. In CDCC we include the pseu-
dostates with εipn < 65 MeV and εipn < 80 MeV for the s- and d-states, respectively. To

obtain Ψ
(+)
α , ψi

pn is calculated up to rpn = 100.0 fm. The number of the partial waves for

χ
ii0(+)
α and χjj0(−)

β is 25. The maximum value of rα and rβ for them are 25.0 and 20.0 fm,
respectively. Thus for describing the transfer reaction, Eq. (3.63) is integrated over rα and
rβ up to these values.

In the calculation of ψj
pB in the final channel, we adopt a Woods-Saxon central potential

VpB(rpB) = V0

[
1 + e(rpB−R0)/a0

]−1
(3.104)

as VpB with the radial parameter R0 = 1.25× 81/3 fm and the diffuseness parameter a0 =
0.65 fm. Its depth V0 is determined to reproduce the proton separation energy of 1.30 MeV
in the p-state. The interaction between a point charge and a uniformly charged sphere
with the charge radius 2.5 fm is used as V (C)

pB , which is used also in the CDCC calculation
in the initial channel. The pseudo state method is also used for the final channel. For
the expansion of ψj

pB we take 20 Gaussian basis functions with the minimum (maximum)
range parameter of 1.0 (20.0) fm. We take into account the s-, p-, d-, f-, and g-waves of

0

20

40

60

80

ε p
n
(M
eV
)

d

i

(a)

s

0

20

40

60

80

100

ε p
(M
eV
)

j B

p s d f g

(b)

Figure 3.3: The eigenenergy of (a) εipn ((b) εjpB) for the each partial wave of ψi
pn (ψj

pB).
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ψj
pB with the maximum values of εjpB of 70, 75, 85, 90, and 70 MeV, respectively. ψj

pB

is calculated up to rpB = 100.0 fm. The Calculated energy spectra for ψi
pn and ψj

pB are
shown in Fig. 3.3.

As for U (α)
pB , U (α)

nB , and U (β)
nB , we adopt the nucleon global optical potential for p-shell

nuclei by Watson et al. [123] (WA). The non-local correction proposed by Timofeyuk
and Johnson [124–126] (TJ) to the nucleon distorting potentials in the initial channel is
used. Note that the TJ correction can effectively treat the non-locality of the deuteron
optical potential, which consists of the nucleon optical potentials. The calculated energy
shift [124–126] with the above mentioned p-n model is 17.8 MeV in the c.m. frame. The
detail of the calculation of this energy shift is summarized in Appx. H. We thus evaluate
U

(α)
pB and U (α)

nB at 33.0 MeV in the laboratory frame, which is shifted from the incident

energy of 14.4 MeV/nucleon. The non-local correction to U (β)
nB is made following Perey

and Buck [127] with the non-local parameter β = 0.85 fm.
We include only the s-states of ψi

pn, consisting of the ground and discretized-continuum
states, in the calculation of the T matrix of the transfer process. It should be noted that the
coupling between the s- and d-states of ψi

pn is taken into account in the calculation of Ψ(+)
α

with CDCC. It is found that Di
pn defined below by Eq. (3.113) is negligibly small for the

d-states of the deuteron, which justifies the neglect of them in the transfer process.

3.4.3 Breakup effects of d and 9C on transfer cross section

We show in Fig. 3.4 the cross section of the transfer reaction 8B(d,n)9C at
14.4 MeV/nucleon as a function of the neutron emission angle in the c.m. frame. The
thick (thin) solid line shows the cross section calculated with (without) the breakup states
of both d and 9C. Inclusion of the breakup channels gives large increase of about 58% in
the cross section at 0◦.

To see the breakup effects in more detail, we decompose the T matrix into

Tβα = Tβ(el),α(el) + Tβ(el),α(br) + Tβ(br),α(el) + Tβ(br),α(br), (3.105)

Tβ(el),α(el) ≡
⟨
ψj0
pBχ

j0j0(−)
β

∣∣∣Vpn∣∣∣ψi0
pnχ

i0i0(+)
α

⟩
, (3.106)

Tβ(el),α(br) ≡

⟨
ψj0
pBχ

j0j0(−)
β

∣∣∣Vpn∣∣∣∑
i̸=i0

ψi
pnχ

ii0(+)
α

⟩
, (3.107)

Tβ(br),α(el) ≡

⟨∑
j ̸=j0

ψj
pBχ

jj0(−)
β

∣∣∣Vpn∣∣∣ψi0
pnχ

i0i0(+)
α

⟩
, (3.108)

Tβ(br),α(br) ≡

⟨∑
j ̸=j0

ψj
pBχ

jj0(−)
β

∣∣∣Vpn∣∣∣∑
i̸=i0

ψi
pnχ

ii0(+)
α

⟩
. (3.109)

The T matrix with the subscript γ(el) and γ(br) corresponds to the elastic transfer (ET) and
the breakup transfer (BT) in the γ channel, respectively. A schematic picture of the ET and
BT is shown in Fig. 3.5. Tβ(el),α(el) describes the transition from the ground channel in the
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Figure 3.4: Breakup effects of d and 9C on the cross section of 8B(d,n)9C at
14.4 MeV/nucleon as a function of the neutron emission angle in the c.m. frame. The
thick solid and thin solid lines show, respectively, the results with and without the breakup
states of both d and 9C. The dashed (dotted) line represents the result with neglecting the
breakup states of d (9C) in the T matrix Tβα. The cross section corresponding to the elastic
transfer is shown by the dash-dotted line. See the text for detail.
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Figure 3.5: Illustration of the transfer processes. The transition from the initial channel
(d+8B) to the final channel (n+9C) can be described by four T -matrix elements. See text
for more detail.
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initial channel (d+8B system) to the ground channel in the final channel (n+9C system),
that is, the ET. Note that the ET includes the breakup effects through the back couplings,
which is the channel couplings between the ground state and the discretized-continuum
states in each channel. Tβ(el),α(br)

(
Tβ(br),α(el)

)
corresponds to the BT, which represents

the transition from the breakup (ground) channel of d to the ground (breakup) channel of
9C. The transfer process between the breakup channels in each channel is expressed by
Tβ(br),α(br).

The dash-dotted line in Fig. 3.4 shows the cross section due to the ET, which includes
the back couplings. The small difference between the thin solid line and the dash-dotted
line indicates that those back-coupling effects are not significant in the present case. In
other words, the ET can be described by the DWBA model because the small back-coupling
effects are expected to be involved as the imaginary part of the optical potentials in the
DWBA for the d-8B and n-9C systems. The dashed line shows the result including the
breakup states of only d, which is by about 23% larger than the thin solid line at 0◦. It is
also found that the transfer cross section through the breakup states of d, which is calculated
with only Tβ(el),α(br) is less than 1% of the dashed line. We thus conclude that the increase
in the cross section caused by the breakup states of d is due to the interference between
Tβ(el),α(el) and Tβ(el),α(br). This conclusion holds also for the role of the breakup states
of 9C; large interference between Tβ(el),α(el) and Tβ(br),α(el) increases the cross section by
about 38% at 0◦ as shown by the dotted line. Furthermore, it is found numerically that the
contribution of Tβ(br),α(br) on the cross section is negligibly small.

These properties of the numerical result can be understood as follows. If we make the
adiabatic approximation [128–132] to Ψ

(+)
α , we have

Ψ(+)
α (rpn, rα) ≈ ψi0

pn(rpn)χ
AD(+)
α (rpn, rα). (3.110)

Note that in the adiabatic approximation, the eigenenergy εipn is replaced by the ground
state energy εi0pn, and then rpn is no longer the dynamical variable. The adiabatic wave

function χAD(+)
α satisfies[

Krα+ U
(α)
pB (rpB)+U

(α)
nB (rnB)− Eα

]
χAD(+)
α (rpn, rα)= 0, (3.111)

where Eα = E + εi0pn. The rpn dependence of U (α)
NB (N = p or n) gives that of χAD(+)

α .

Consequently, Ψ(+)
α contains not only the elastic-channel but also the breakup-channel

components:

χii0AD(+)
α (rα) ≡ ⟨ψi

pn(rpn)|ψi0
pn(rpn)χ

AD(+)
α (rpn, rα)⟩. (3.112)

The rpn dependence of U (α)
NB is, however, quite weak within the range of Vpn. Then one can

expect that for χii0AD(+)
α with i ̸= i0, the amplitude is quite smaller than that of χi0i0AD(+)

α

because of ⟨ψi
pn|ψi0

pn⟩ ∼ 0 and the phase is very similar to that of χi0i0AD(+)
α owing to

⟨ψi
pn|ψi0

pn⟩ ∼ 1. The former is the reason for the very small contribution of the BT and the
latter is that for the constructive interference between the ET and BT amplitudes.

These properties have been confirmed numerically. In Fig. 3.6, we show the moduli
of the distorted wave χii0(+)

α for the elastic component i = i0 (thick solid line) and the
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proton-8B wave function ψj0

pB. These moduli correspond to the Lα = 1 partial wave,
which is calculated within the ZR limit. See the text for more detail.

breakup component i ̸= i0 (dashed line). The former and latter are respectively defined by∣∣∣χi0i0(+)
α

∣∣∣2 and
∣∣∣∣Di

pn

D
i0
pn

χ
i0i0(+)
α

∣∣∣∣2, where Di and Di are respectively defined by Eqs. (3.92)

and (3.94). The thin solid line is the proton single-particle wave function ψj0
pB. Note that

we take only the Lα = 1 partial wave for this moduli, for which the ZR approximation
is adopted for simplicity. In the ZR limit, from Eq. (3.93), one can easily understand that
the distorted wave only within the range of ψj0

pB contributes to the transition amplitude.
Therefore, if we see the region of rα lower than around 8 fm, it can be seen that the phases
of the solid and dashed lines are similar to each other and the latter has small amplitude
compared to that of the former. This interpretation of the breakup effects can be applied to
also Ψ

(−)
β in the final channel. It should be noted that the adiabatic approximation [128–

132] itself is found to work well; it makes the cross section smaller by about 6% (12%)
when applied to Ψ

(+)
α

(
Ψ

(−)
β

)
.

The non-negligible BT component in each channel is opposite to what found in the
analysis [106] of 13C(6Li,d)17O below the Coulomb barrier energy, in which breakup ef-
fects of 6Li (= α + d) were investigated. Below we discuss the difference between the
breakup properties of d and 6Li in the two reactions. The origin of the difference can be
understood from behavior of Di

pn defined by

Di
pn(rpn) = Vpn(rpn)ϕ

i
pn(rpn), (3.113)
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where ϕipn is the radial part of ψi
pn. Eq. (3.113) is also defined for the α-d system:

Di
αd(rαd) = Vαd(rαd)ϕ

i
αd(rαd), (3.114)

where the two-range Gaussian interaction Vαd given in Ref. [133] is adopted to generate
the radial part ϕiαd of the s-wave eigenstate ψi

αd. We show in panel (a) of Fig. 3.7 Di
pn for

some s-wave eigenstates of d; the eigenvalue εipn is given in the legend. Similarly, we plot
Di

αd in panel (b) of Fig. 3.7.
In panels (a) and (b) of Fig. 3.7, respectively, Di

pn and Di
αd for some eigenstates are

plotted. One sees that the amplitude ofDi
pn for breakup states (the dashed and dotted lines)

are comparable to that of Di0
pn (solid line). On the other hand, Di

αd for the breakup states
are quite smaller thanDi0

αd, which is found to be due to the Coulomb interaction between α
and d. Thus, difference in the BT components between the 8B(d,n)9C and 13C(6Li,d)17O
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reactions can be understood. It should be noted that a large value of Di for a breakup
state does not necessarily give a large BT cross section, because even in this case χii0

α can
be small as a result of the channel-couplings. Furthermore, the importance of the back-
coupling effect depends on the reaction system in a non-trivial manner.

Another important finding is that the breakup channels in non p-state of 9C play signifi-
cant role on the transfer reaction. When we include the breakup states of ψj

pB with l′pB ̸= 1,
the transfer angular momentum of l ̸= 1 can contributes to the transfer reaction. This is a
quite interesting phenomenon, which has not been discussed so far. In usual DWBA anal-
ysis, if the projectile is an s-wave state, lpn = 0, l is uniquely determined as l = lpB from
its definition of Eq. (3.67). However, l in the breakup states defined by Eq. (3.68) can be
different even if lpn = l′pn = 0. It means that we have two sources of the transferred an-
gular momentum. In fig. 3.8, the dotted and thin solid lines show the transfer cross section
calculated with and without the breakup states of 9C, respectively, when we include only
the p-wave states of ψj

pB. The breakup channels of the p-wave states increase the cross sec-
tion by about 25% at 0◦. This calculation corresponds to usual CCBA approach, in which
l is uniquely determined to be 1. When we include the p-, s-, d-, f-, and g-waves, one
obtains the solid line, which is about 25% larger than the dotted line. This enhancement
of the cross section is due to the contribution of the d-wave in particular, as shown by the
dashed line corresponding to the calculation with only the p- and d-waves. Thus, not only
the l = 1 component but also the l = 2 one in the T matrix play an important role in the
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(dashed) line shows the cross section calculated with the p-, s-, d-, f-, g-waves (p-, and
d-waves) of ψj

pB. The cross section calculated with (without) the breakup states of 9C in
the only p-wave is shown by dashed (thin solid) line. The thick (thin) solid line is same as
that in Fig. 3.4.
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transfer reaction. This change of the transferred angular momentum l is brought from the
channel couplings in the final channel. In other words, it is essential that lpB couples to
non p-waves in the intermediate state, described by Eq. (3.61).

This fact is expected to be due to the dynamical property of the present n-9C system.
We show, in Fig. 3.9, the partial breakup cross section (PBCS) of the 9C on n at 22.1 MeV
in the c.m. frame as a function of the n-9C relative angular momentum Lβ . The solid line
is the total PBCS, which is defined by Eq.(2.52), while PBCSs defined by

σ̃
j0lpB;l

′
pB

bu (Lβ) =
∑
j

σ̃
j0lpB;jl

′
pB

bu (Lβ), (3.115)

for each partial wave lpB of 9C are plotted as other lines. Note that σ̃
j0lpB;jl

′
pB

bu is defined
by Eq. (2.53). Obviously the d-wave component (dash-dotted line) is dominant though the
s-wave component (thick dotted line) has appreciable contribution. Other components, p
(thick dotted line), f (thin dashed line), and g (thin dotted line), are negligibly small.

In Fig. 3.10, a simple picture of the breakup effects on the 8B(d,n)9C reaction, which
enables us to correctly interpret the three-body dynamics of the present system, is illus-
trated. Important features of the transfer reaction are as follows:

1. The strong interferences between the ET and BT in each channel.

2. The weak back couplings and the small BT amplitude in each channel.
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Figure 3.9: The partial breakup cross section for the n(9C,p8B) reaction at 22.1 MeV in
the c.n. frame as a function of Lβ . The solid line is the result of the total partial breakup
cross section and the results for each partial wave lpB of 9C of lpB = 0, 1, 2, 3, and 4 are
respectively shown by the thick dashed, thick dotted, dash-dotted, thin dashed, and thin
dotted lines.
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momentum are illustrated. (b) Schematic picture of the transfer process in the energy space
is shown.

3. The change of l due to the channel couplings.

These features are completely different from the picture described by usual DWBA ap-
proach, in which any breakup effects are neglected and the proton is assumed to transfer
into 8B by a one-step process. We emphasize that the detail of the breakup effects of both
the projectile and the residual nucleus is newly discussed by the present study.
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3.4.4 Astrophysical study

In Fig. 3.11 the solid line shows the CCBA result. We have normalized the result to re-
produce the experimental data [108] with multiplied by S = 0.361. Note that from the
present transfer reaction, S cannot be determined because the reaction is peripheral as
confirmed below. Instead, the asymptotic normalization coefficient (ANC) [106, 134, 135]
C

9C
p8B for the overlap of the 9C wave function with the p-8B(g.s.) configuration is well de-

termined. From S and the so-called single-particle ANC of ψj0
pB, one can obtain the ANC;

(C
9C
p8B)

2 = 0.59 fm−1.
The uncertainty of the value of the ANC due to the distorting potential and peripherality

of the reaction is examined in Ref. [136] By compiling the uncertainties due to peripher-
ality (2%) and the optical potential (3%) as well as the experimental error of 22% [108],
we obtain (C

9C
p8B)

2 = 0.59 ± 0.02 (theor.) ± 0.13 (exp.) fm−1, where (theor.) and (exp.)
respectively stand for the theoretical and experimental uncertainties. Using the proportion-
ality of (C

9C
p8B)

2 to the astrophysical factor S18(0) defined by Eq. (3.102), we have

S18(0) = 22± 1 (theor.)± 5 (exp.) eVb. (3.116)

Our resulting value of S18(0) = 22 ± 6 is by about 51% smaller than the result of the
previous analysis evaluated from the same experimental data [108] with the DWBA anal-
ysis, which does not explicitly take into account the breakup states of nuclei. Thus, main
reason of this discrepancy is expected to be due to the treatment of the breakup channels.
As mentioned above, the back-coupling effects are found to be small in the present case. In
fact, if we evaluate C

9C
p8B and S18(0) from the thin solid line in Fig. 3.4, which ignore all of
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Figure 3.11: Cross section calculated with CCBA (solid line) is normalized to the experi-
mental data [108].
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the breakup channels, we obtain (C
9C
p8B)

2 = 0.95 fm−1 and S18(0) = 36 eVb. This value
is, within only about 2% difference, consistent with the result corresponding to the D1-N1
set for the distorting potentials, (C

9C
p8B)

2 = 0.97 fm−1, shown in Table 1 of Ref. [108]; the
N1 corresponds to the WA potential. We have confirmed by our DWBA calculation that
the result with the D1-N1 set agrees well with the thin solid line in Fig. 3.4. From these
findings we conclude that inclusion of the breakup states of both d and 9C is necessary
to accurately describe the transfer reaction, which gives quite large increase in the cross
section, that is, decrease in S18(0).

In fig 3.102, we compare our result of S18(0) with the previous results extracted from
indirect measurements. As mentioned, we obtained a smaller S18(0) than that of Ref. [108]
because of the contribution of d and 9C breakup states. The present result is not consis-
tent with the result of a three-body model analysis [135] of the inclusive [120] and exclu-
sive [121] 9C breakup reactions within 2σ. Further investigation is necessary to understand
the reason for this discrepancy. Extension of the present framework to include breakup
channels of 8B as well as the three-body model description of 9C will be important future
work. Another possible reason for the discrepancy in S18(0) is the Pauli blocking effect on
the transfer reaction [137,138]. Antisymmetrization between a nucleon in d and that in 8B
in calculation of the d-8B three-body wave function will be an important subject.
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3.5 The 28Si(d,p)29Si reaction

3.5.1 Background

As another example we chose the 28Si(d,p)29Si. Since, the ground state of 29Si can be
regarded as an s-wave well bound nuclei with its n-28Si binding energy of 7.69 MeV, we
assume the breakup effects of 29Si is negligible small and thus ignored. As a result shown
below, the breakup effects are very different from them discussed in the previous section.

3.5.2 Numerical setting

In the 28Si(d,p)29Si reaction, n, p, and 28Si can be treated as x, b, and A, respectively,
describe in Chap. 3.3. The model of d is same as that for the 8B(d,n)9C reaction but
we include only the s-wave of ψi

pn. The maximum energy of εipn is 33 MeV. χii0(+)
α is

calculated up to 15.0 fm with the maximum number of partial waves of 15. These values
are adopted also for χjj0(+)

β .
As for the finial channel, we neglect any breakup channels of 29Si. Thus, we approxi-

mate Ψ
(+)
β as

Ψ
(+)
β (rpSi, rβ) ∼ ψj0

nSi(rnSi)χ
j0j0(+)
β (rβ)

≡ ψnSi(rnSi)χ
(+)
β (rβ). (3.117)

The distorted wave χ(+)
β in the final channel satisfies

[
Krβ

+ U
(β)
pSi (rβ) + V

(C)
pSi (rβ)

]
χ
(+)
β (rβ) = 0. (3.118)

The Schrödinger equation for ψnSi is given as Eq. (3.56). The Woods-Saxon central poten-
tial (3.104) is adopted as VnSi with radial parameter R0 = 1.16× 281/3 fm and diffuseness
parameter a0 = 0.78 fm [139]. Its depth is adjusted to reproduce the neutron separation en-
ergy of 7.69 MeV in the s-state. ψpSi is expanded with 10 Gaussian functions. Their range
parameters are taken from 0.1 fm to 11.0 fm. As for U (α)

pSi , U (α)
nSi , and U (β)

pSi , the nucleon
global optical potential for sd-shell nuclei [140] is adopted.

3.5.3 Breakup effects of d on transfer cross section

In fig. 3.13 we show the cross section of the 28Si(d,p)29Si reaction at 18.75 MeV. The hor-
izontal axis is the emitting angle of p in the c.m. frame. The thick solid line corresponds
to the calculated cross section with CCBA, which explicitly includes the breakup states of
29Si. When the CC of the breakup states is switched off, the thin solid line is obtained.
At forward angles, the difference between two lines is small. On the other hand, at back-
ward angles, the breakup effects is appreciable. By decomposing the T matrix, we can
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investigate the BT and ET;

T = TET + TBT, (3.119)

TET =
⟨
ψnSiχ

(−)
β

∣∣∣Vpn ∣∣∣ψi0
pnχ

i0i0(+)
α

⟩
, (3.120)

TBT =

⟨
ψnSiχ

(−)
β

∣∣∣∣∣∣Vpn
∣∣∣∣∣∣
∑
i̸=i0

ψi
pnχ

ii0(+)
α

⟩
. (3.121)

The T -matrix elements TET and TBT describe the ET and BT, respectively, in the initial
channel. The calculated cross section with the former (latter) is shown by the dashed
(dotted) line. The constructive interference between them can be seen in a whole region
of θ, except that on the second peak of the cross section at about θ = 30◦ the destructive
interference exists. Note that in this calculation we assume the spectroscopic factor S is
unity. Thus the calculations somewhat overestimate the experimental data [139].

As another finding, the significant difference between the dashed and thin solid lines
can be seen. It indicates that there are strong back couplings between the elastic-breakup
channels of d. Except for the second peak, the back couplings decrease the cross section.

These findings are very different from them for the 8B(d,n)9C reaction discussed in the
previous section. Though the origin of this difference is not clarified, it is clear that the
breakup effects strongly depend on system of reactions. Therefore a systematic study is
important in order to investigate how the breakup effects change in each system.
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Figure 3.13: The cross section of the 28Si(d,p)29Si reaction at 18.75 MeV as a function of
the emitting angle of p in the c.m. frame. The thick solid line is the CCBA result, which
includes the CC effects of 29Si. The elastic and breakup transfers in the initial channels are
respectively shown as the dashed Thin solid line corresponds to the result without including
the breakup channels. and dotted lines. Experimental data are taken from Ref. [139].



60 Chapter 3. Transfer Reaction of Loosely Bound System

3.6 Summary

We formulate the CCBA framework that can explicitly take into account the CC of the
breakup states of both the projectile and the residual nucleus.

In the 8B(d,n)9C reaction, the breakup effects of both d and 9C are found to be signif-
icant on its cross section. In particular the strong interference of the ET and BT in each
channel exists. By including the breakup channels of 9C, which can have the different par-
tial waves from that of the ground state, the change of the transferred angular momentum l

involving the continuum states of 9C is treated with in the present work. Different l com-
ponents due to the dynamical CC play an important role as they significantly increase the
cross section.

As for the 28Si(d,p)29Si reaction, it is found that at forward angles, the breakup effects
of d is small. On the second peak of the cross section, the destructive interference between
the ET and BT can be seen. It is also found that the back couplings are rather strong, and
they seem to decrease the cross section except the second preak.

As a future work, a systematic study is demanded because the breakup effects can be
different in each reaction, as shown in the Secs. 3.4 and 3.5. We would like to clarify
how and why different the breakup effects are in each reaction. It is also interesting to
investigate the four-body dynamics induced by a three-body loosely bound nuclei on the
transfer reaction. For that purpose a two-nucleon transfer reaction could be one of subjects.
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4.1 Introduction

Let us consider the breakup reaction on a heavy ion target, for example, the dissociation
of a charged nucleus by 208Pb. In a naive description, the reaction process can be regarded
as that a projectile breaks up into their fragments by the electric field generated by 208Pb.
As mentioned in Chap. 1, it is not easy to handle the Coulomb interaction because of its
long-range property. Thus, a primitive reaction model, for example, the virtual photon
theory (VPT) [12] is often used to describe the reaction simply. The VPT assumes that the
breakup reaction proceeds with the one-step process caused by a virtual photon absorption.
However, it is not trivial that the picture described by VPT is correct. The role of nuclear
interaction and the multistep process, which are missing in VPT, should be investigated.

Recently the 15C dissociation on the 208Pb target is analyzed [17] by means of the dy-
namical eikonal approximation (DEA) [15,16], in which the channel couplings of breakup
states of 15C due to the nuclear and Coulomb interaction is efficiently taken into account.
Note that, in the eikonal approximation, it is assumed that the projectile-target distorted
wave is not significant different from a corresponding plane wave [141]. By the analy-
sis it is found that DEA is difficult to describe the Coulomb breakups precisely for a low
incident energy case. Note that the Coulomb breakup stands for the breakup reaction dom-
inated by Coulomb interaction and includes effects of nuclear interaction and the multistep
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process. On the other hand, as formulated in Chap. 2, there is another reaction model
based on the eikonal approximation; the eikonal continuum-discretized coupled-channels
method (E-CDCC) [13, 14]. Thus, comparison of E-CDCC and DEA is expected to be
important to describe the Coulomb breakups at low incident energy. After the comparison,
the prescription to two models for the Coulomb breakups at low energy is proposed.

4.2 Formalism

4.2.1 The dynamical eikonal approximation (DEA)

We focus on the 15C breakup reaction on the 208Pb target at 20.0 MeV/nucleon and work
with the three-body model (n+14C+208Pb). In the system, n, 14C, and 208Pb correspond
to x, y, and A, respectively, as described in Chap. 2. In Fig. 4.1, the coordinate of the
center-of-mass (c.m.) of 15C relative to 208Pb is denoted by R, and r is the neutron-14C
relative coordinate. Rn and R14 are, respectively, the coordinates of neutron n and the
c.m. of 14C from 208Pb. We assume both 14C and 208Pb to be inert nuclei. In this study we
neglect the spin of n.

In the DEA, the three-body wave function is factorized following [15, 16]

Ψ(r,R) = φ (b, z, r) eiK0zeiχC(b,z)eiε0z/(ℏv0), (4.1)

where we take the incident direction as z-axis of the cylindrical coordinate shown by
Fig. 2.4 and R = (b, z). The wave number K0 between 15C and 208Pb is defined by
Eq. (2.17) and ε0 is the ground state energy of 15C. The factor χC stands for the Coulomb
phase that accounts for the Coulomb projectile-target scattering

χC(b, z) = − 1

ℏv0

∫ z

−∞
VC(R) dz

′, (4.2)

where v0 = ℏK0/µ is the initial velocity of the projectile with the Coulomb interaction VC
of the 15C-208Pb system defined by Eq. (2.77). Note that the phase exp [ε0z/(iℏv0)] can

n

14
C

R
    14

R
    n

R

15
C

r

208
Pb

Figure 4.1: Schematic illustration of the (14C+ n) + 208Pb three-body system.
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be ignored as it has no effect on physical observables [16]. φ describes the difference of
the distorted wave from the plane wave.

From the factorization in Eq. (4.1), we obtain the DEA equation [15, 16]

iℏv0
∂

∂z
φ (b, z, r) = [h+ U14(R14) + Un(Rn)− ε0 − VC(R)]φ (b, z, r) , (4.3)

where h is the internal Hamiltonian of the projectile. To simulate the interaction between
n (14C) and 208Pb, we adopt the optical Un (U14). The initial condition for φ is given by

lim
z→−∞

φ (b, z, r) = ψ0ℓ0m0(r), (4.4)

where ψ0ℓ0m0 stands for the ground state of 15C. Note that the eigenstate ψnℓm of the
n-14C system is specified by energy index n, the orbital angular momentum ℓ, and its z-
component m for the system. When indices {n, ℓ,m} = {0, ℓ0,m0}, it stands for the
initial state.

The DEA equation (4.3) is solved for all b with respect to z and r expanding the
wave function φ on a three-dimensional mesh. This allows to include naturally all relevant
states of 15C, i.e., eigenenergies ε up to high values in the n-14C continuum, and large
angular momentum ℓ, and its z-component m. This resolution is performed assuming
a constant projectile-target relative velocity v = v0. It should be noted that this does
not mean the adiabatic approximation, because in Eq. (4.3) the internal Hamiltonian h

is explicitly included. The DEA thus treats properly the change in the eigenenergy of
15C during the scattering process. However, it does not change the 15C-208Pb velocity
accordingly, which is taken into account in E-CDCC as described by Eq. (2.84). This gives
a violation of the conservation of the total energy of the three-body system. However, even
at 20 MeV/nucleon, its effect is expected to be only a few percents as discussed below.

The calculation of physical observables requires the wave function Ψ of Eq. (4.1) at
z → ∞ [15, 16]. The corresponding Coulomb phase χC reads [142]

lim
z→∞

χC = 2η0 ln(K0b), (4.5)

where η0 is the Sommerfeld parameter for the entrance channel given by Eq. (2.39).

4.2.2 Comparison between DEA and E-CDCC

To compare the DEA with the E-CDCC, we rewrite the DEA equation given by Eq. (4.3)
in a coupled-channel (CC) representation. We expand φ as

φ (b, z, r) =
∑
iℓm

ξnℓm(b, z)ψnℓm(r)eεiz/(iℏv0)ei(m0−m)ϕR . (4.6)

Inserting Eq. (4.6) into Eq. (4.3), multiplied by ψn′ℓ′m′ from the left, and integrating
over r, one gets

∂

∂z
ξc(b, z) =

1

iℏv0

∑
c′

Fcc′(b, z)ξc′(b, z)e
(εn′−εn)z/(iℏv0), (4.7)
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which is nothing but the DEA equation (4.3) in its CC representation. Here we represent
the channel indices {n, ℓ,m} as c. The coupling potential Fcc′ is defined by Eq. (2.76).

The boundary condition Eq. (4.4) thus reads

lim
z→−∞

ξc(b, z) = δcc0 , (4.8)

which corresponds that of the E-CDCC given by Eq. (2.83). By inserting Eq. (4.6) into
Eq. (4.1), the total wave function reads

Ψ(r,R) =
∑
c

ξc(b, z)ψc(r)e
(εn−ε0)z/(iℏv0)ei(m0−m)ϕReiK0zeiχC(b,z). (4.9)

For comparison we rewrite the CC equation and three-body wave function within the
E-CDCC, which are given in Chap. 2;

∂

∂z
ξ̄c(b, z) =

1

iℏvn(R)
∑
c′

Fcc′(b, z)ξ̄c′(b, z)e
i(Kn′−Kn)zRnn′(b, z), (4.10)

Ψ(r,R) =
∑
c

ξ̄c(b, z)ψc(r)e
iKnzei(m0−m)ϕRϕCn (R), (4.11)

where the velocity vn, the factor Rnn′ , and the approximate Coulomb incident wave ϕCn
are defined by Eqs. (2.84), (2.85), and (2.81), respectively.

One may summarize the difference between Eqs. (4.7) and (4.10) as follows. First, the
DEA uses the constant and channel-independent 15C-208Pb relative velocity v0, whereas
E-CDCC uses the velocity depending on both R and the channel n that ensures the total-
energy conservation.

Second, whereas the right-hand side of Eq. (4.7) involves the phase
exp [(εn′ − εn)z/(iℏv0)], the E-CDCC Eq. (4.10) includes the phase exp [i(Kn′ −Kn)z].
The former can be rewritten as

εn′ − εn
iℏv0

z =
ℏ2(K2

n −K2
n′) µz

2µ iℏ2K0
=
Kn′ +Kn

2K0
i (Kn′ −Kn) z. (4.12)

If we can assume the semi-adiabatic approximation

Kn′ +Kn

2K0
≈ 1, (4.13)

the exponent Eq. (4.12) becomes the same as in E-CDCC. In the model space taken in the
present study, Eq. (4.13) holds within 1.5% error at 20 MeV/nucleon of incident energy.

Third, E-CDCC equation contains Rnn′ taking account of the channel dependence of
the 15C-208Pb Coulomb wave function, which DEA neglects. Nevertheless, it should be
noted that, as shown in Refs. [113, 114], the Coulomb wave functions in the initial and
final channels involved in the transition matrix (T matrix) of E-CDCC eventually give a
phase 2ηj ln(Kjb), with j the energy index in the final channel. Thus, if Eq. (4.13) holds,
the role of the Coulomb wave function in the evaluation of the T matrix in E-CDCC is
expected to be the same as in DEA, since DEA explicitly includes the Coulomb eikonal
phase, Eq. (4.5).
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When the Coulomb interaction is absent, we have Rii′(b, z) = 1 and no R dependence
of the velocity. Therefore, it will be interesting to compare the results of DEA and E-
CDCC with and without the Coulomb interaction separately. This correspondence of the
two eikonal model is newly discussed by the present study [143].

4.3 Results and discussion

4.3.1 Model setting

We calculate the energy spectrum dσ/dε and the angular distribution dσ/dΩ of the breakup
cross section of 15C on 208Pb at 20 MeV/nucleon, where ε is the relative energy between
n and 14C after breakup, and Ω is the scattering angle of the c.m. of the n-14C system.
We use the potential parameters shown in Table 5.1 for UnC (the n-14C interaction), U14,
and Un [17]; the depth of UnC for the d-wave is changed to 69.43 MeV to avoid a non-
physical d resonance. The spin of the neutron is disregarded as mentioned earlier. We
adopt Woods-Saxon potentials for the interactions:

Ux(Rx) = −V0f(Rx, R0, a0)− iWvf(Rx, Rw, aw)

+iWs
d

dRx
f(Rx, Rw, aw) (4.14)

with f(Rx, α, β) = (1 + exp[(Rx − α)/β])−1; Rx = r, R14, and Rn for x = nC, 14, and
n , respectively. The Coulomb interaction between 14C and 208Pb is described by assuming
a uniformly charged sphere of radius RC.

In E-CDCC, we take the maximum value of r to be 800 fm with the increment of
0.2 fm. When the Coulomb interaction is turned off, we take the n-14C partial waves up to
ℓmax = 10. For the discretization of ε, we adopt the average method given in Chap. 2. For
each ℓ the continuum state is truncated at kmax = 1.4 fm−1 and discretized into 35 states
with the equal spacing of ∆k = 0.04 fm−1; k is the relative wave number between n and
14C. The resulting number of coupled channels, Nch, is 2311. The maximum values of z
and b, zmax and bmax, respectively, are both set to 50 fm. When the Coulomb interaction is
included, we use ℓmax = 6, kmax = 0.84 fm−1, ∆k = 0.04 fm−1, zmax = 1000 fm, and
bmax = 150 fm. We have Nch = 589 in this case.

In the DEA calculations, we use the same numerical parameters as in Ref. [17]. In the
purely nuclear case, the wave function φ is expanded over an angular mesh containing up
to Nθ ×Nϕ = 14× 27 points, a quasi-uniform radial mesh that extends up to 200 fm with

Table 4.1: Potential parameters for the pair interactions UnC, U14, and Un [17].
V0 R0 a0 Wv Ws Rw aw RC

(MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) (fm)
UnC 63.02 2.651 0.600 — — — — —
U14 50.00 9.844 0.682 50.00 — 9.544 0.682 10.84
Un 44.82 6.932 0.750 2.840 21.85 7.466 0.580 —
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200 points, bmax = 50 fm, and zmax = 200 fm (see Ref. [144] for details). In the charged
case, the angular mesh contains up to Nθ ×Nϕ = 12× 23 points, the radial mesh extends
up to 800 fm with 800 points, bmax = 300 fm, and zmax = 800 fm.

4.3.2 Comparison without Coulomb interaction

In this subsection we would like to clarify the difference in the treatment of the Coulomb
breakup between the E-CDCC and DEA. Thus we first check that both models agree when
the Coulomb interaction is switched off. We show in Fig. 4.2 the results of dσ/dε cal-
culated by DEA (solid line) and E-CDCC (dashed line). Note that, to obtain dσ/dε, the
integration in Eq. (2.50) is done for the scattering angle of the c.m. of the n-14C system in
the whole variable region. The two results agree very well with each other; the difference
around the peak is below 3%.

In Fig. 4.3 the comparison in dσ/dΩ defined by Eq. (2.49) is shown. For the angu-
lar distribution, we integrate the double differential cross section Eq. (2.48) over ε up to
10 MeV. The agreement between the two models is excellent confirming that, when the
Coulomb interaction is turned off, the DEA and E-CDCC solve the same equation and give
the same result, as expected from the discussion at the end of Sec. 4.2.2. In particular this
comparison indicates that Eq. (4.13) turns out to be satisfied with very high accuracy. It
should be noted that the good agreement between the DEA and E-CDCC is obtained only
when a very large model space is taken. In fact if we put ℓmax = 6 in E-CDCC, we have
30% smaller dσ/dε than the converged value and, more seriously, even the shape cannot
be reproduced. This result shows the importance of the higher partial waves of n-14C for
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Figure 4.2: Energy spectrum of the 15C breakup cross section on 208Pb at 20 MeV/nucleon
with the Coulomb interaction turned off. The solid and dashed lines show the results ob-
tained by DEA and E-CDCC, respectively.
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Figure 4.3: Same as Fig. 4.2 but for the angular distribution.

the nuclear breakup at 20 MeV/nucleon.

4.3.3 Comparison with Coulomb interaction

When the Coulomb interaction is switched on, DEA and E-CDCC no longer agree with
each other. As seen in Fig. 4.4, the DEA energy spectrum (solid line) is much larger
than the E-CDCC one (dashed line). Moreover none of them agrees with the full CDCC
calculation (thin solid line): DEA is too high while E-CDCC is too low. The discrepancy
of both models with the fully quantal calculation manifests itself even more clearly in the
angular distribution. In Fig. 4.5 we see that not only do the DEA and E-CDCC cross
sections differ in magnitude, but—as already seen in Ref. [17]—their oscillatory pattern
is shifted to forward angle compared to the CDCC calculation. To understand where the
problem comes from we analyze in Fig. 4.6 the contribution to the total breakup cross
section of each projectile-target relative angular momentum L . As expected from Figs. 4.4
and 4.5, the DEA calculation is larger than the E-CDCC one, and this is observed over
the whole L range. However, the most striking feature is to see that both models seem
to be shifted to larger L compared to the full CDCC calculation. This shift is expected
to be came from an insufficient description of projectile’s trajectory due to the Coulomb
deflection. To correct this, we replace in our calculations the transverse component of the
projectile-target relative coordinate b by the empirical value [142, 145, 146]

b′ =
η0
K0

+

√
η20
K2

0

+ b2. (4.15)

Equation (4.15) stands for the distance of closest approach in Rutherford scattering and is
based on a concept that how we approximate the curved trajectory by straight line one. The
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Figure 4.4: Energy spectrum of the 15C breakup cross section on 208Pb at 20 MeV/nucleon
including the Coulomb interaction. The solid, dashed, and thin solid lines show the results
obtained by DEA, E-CDCC, and full (QM) CDCC, respectively. The results obtained with
the correction (4.15) are displayed with a dash-dotted line for DEA and a dotted line for
E-CDCC.

Coulomb correction Eq. (4.15) make the impact parameter b and L larger, and hence the
partial breakup cross section with the Coulomb correction is expected to shift toward lower
L direction. The corresponding results are displayed in Figs. 4.4, 4.5 and 4.6 as dash-dotted
lines for DEA and dotted lines for E-CDCC.

The correction Eq. (4.15) is very effective. It significantly reduces the shift observed
in the L contributions to the breakup cross section (see Fig. 4.6). Accordingly, it brings
both DEA and E-CDCC energy spectra closer to the full CDCC one (see Fig. 4.4). Note
that for this observable the correction seems better for E-CDCC than for DEA: even with
the shift, the latter still exhibits a non-negligible enhancement with respect to CDCC at
low energy ε. More impressive result is the improvement of the behavior of the shift in
the angular distribution observed in Ref. [17] and in Fig. 4.5. In particular, the shifted
DEA cross section is now very close to the CDCC one, but at forward angles, where DEA
overestimates CDCC. Once shifted, E-CDCC still underestimates slightly the full CDCC
calculation. However, its oscillatory pattern is now in phase with that of the CDCC cross
section, which is a big achievement in itself. This shows that the lack of Coulomb deflection
observed in Ref. [17] for eikonal-based calculations can be efficiently corrected by the
simple shift Eq. (4.15) suggested long ago [142, 145].

Albeit efficient, the correction Eq. (4.15) is not perfect. This is illustrated by the en-
hanced (shifted) DEA cross section observed in the low-energy peak in Fig. 4.4 and at
forward angles in Fig. 4.5. Both problems can be related to the same root because the
forward-angle part of the angular distribution is dominated by low-energy contributions.
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As shown in Ref. [16], that part of the cross section is itself dominated by large b’s, at
which the correction Eq. (4.15) is not fully sufficient. As shown in Fig. 4.6, the shifted
DEA remains slightly larger than the full CDCC. Future works may suggest a better way
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to handle this shift than the empirical correction Eq. (4.15). Nevertheless, these results
show that this correction provides a simple, elegant, and cost-effective way to account for
Coulomb deflection in eikonal-based models. This fact suggests that the concept of the
“trajectory” is well held even though complicated processes exist, for example the interfer-
ence of the nuclear and Coulomb interactions and the multistep process.

The underestimation of the full CDCC angular distribution by E-CDCC comes most
likely from a convergence problem within that reaction model. This is illustrated in
Fig. 4.7, showing the L-contribution to the total breakup cross section. The thin solid
line corresponds to the (converged) CDCC calculation, whereas the other lines correspond
to (shifted) E-CDCC calculations with bin widths of ∆k = 0.02 (solid line), 0.03 (dashed
line), and 0.04 fm−1 (dotted line). As can be seen, below L ≈ 500 ℏ, no convergence can
be obtained, although CDCC has fully converged. We cannot expect this model to provide
accurate breakup cross sections. The results displayed in Figs. 4.4 and 4.5 are therefore
unexpectedly good. Note that the present ill-behavior of E-CDCC occurs only when the
Coulomb interaction involved is strong and the incident energy is low; no such behavior
was observed in previous studies [6, 113, 114, 147, 148]. Interestingly, DEA does not ex-
hibit such a convergence issue. This is reminiscent of the work of Dasso et al. [149], where
it was observed that reaction calculations converge faster by expanding the wave function
upon a mesh rather than by discretization of the continuum.

The aforementioned results indicate that the shift Eq. (4.15) corrects efficiently for the
Coulomb deflection, which is expected to play a significant role at large L. At small L, we
believe the nuclear projectile-target interaction will induce significant couplings between
various partial waves, which cannot be accounted for by that simple correction. To in-
clude these couplings, the hybrid solution between E-CDCC and the full CDCC has been
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Figure 4.7: Convergence problem observed in (shifted) E-CDCC calculations: cross sec-
tions computed with different bin widths do not converge towards the CDCC calculation.
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suggested [113, 114] and described as Eq. (2.104). At low L a usual CDCC calculation
is performed, which fully accounts for the strong coupling expected from the nuclear in-
teraction between the projectile and the target. At larger L, these couplings are expected
to become negligible, which implies that a (shifted) E-CDCC calculation should be reli-
able. As explained in Refs. [113, 114], the transition angular momentum LC above which
E-CDCC is used is an additional parameter of the model space that has to be determined
in the convergence analysis. Depending on the beam energy and the system studied, usual
values of LC are in the range 400–1000 ℏ. In the present case, due to the convergence issue
observed in E-CDCC, the value LC = 500 ℏ is chosen.

The cross sections calculated with this hybrid solution are barely visible as they are
superimposed to the full CDCC results for both the angular distribution (Fig. 4.8(a)) and
the energy spectrum (Fig. 4.8(b)). The coupling of the hybrid solution to the Coulomb
shift Eq. (4.15) enables us to reproduce exactly the CDCC calculations at a much lower
computational cost since the computational time for each b with E-CDCC is about 1/60 of
that for each Lwith full CDCC. In addition, it solves the convergence problem of E-CDCC.
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4.4 Summary

The eikonal approximation is known to be an efficient procedure to describe breakup re-
actions. However, at a low incident energy, it was reported [17] that a model based on the
eikonal approximation, that is the dynamical eikonal approximation (DEA), cannot repro-
duce the result obtained from more rigorous calculation with the method of the continuum-
discretized coupled-channels (CDCC). As another reaction model based on the eikonal
approximation, there exists the hybrid version of the CDCC method with the eikonal ap-
proximation (E-CDCC). To solve this discrepancy, we have compared the E-CDCC with
the DEA. It have been shown that two models solve essentially same Schrödinger equation
when the Coulomb interaction is absent.

We have focused on the same test case as in Ref. [17], i.e., the breakup of 15C on
208Pb at 20 MeV/nucleon. For this reaction Eq. (4.13) holds within 1.5% error. When the
Coulomb interaction is artificially turned off, DEA and E-CDCC are found to give the same
result within 3% difference for both the energy spectrum and the angular distribution. This
supports the equivalence of the two models for describing the breakup process due purely
to nuclear interactions as expected.

Next we make a comparison including the Coulomb interaction. In this case, DEA
and E-CDCC no longer agree with each other and they both disagree with the full CDCC
calculation. In particular both angular distributions are focused at too forward an angle, as
reported in Ref. [17]. This lack of Coulomb deflection of the eikonal approximation can
be solved using the empirical shift Eq. (4.15). Using this shift the agreement with CDCC
improves significantly. This suggests that, for the low energy breakup reaction, the concept
of the “trajectory” is held even though the reaction process includes complicated features
such as the interference of the nuclear and Coulomb interactions and the multistep process.

It has been found that the quantum mechanical (QM) correction to the E-CDCC pro-
posed in Ref. [113, 114] works well. In the QM correction, the partial wave calculated by
E-CDCC with a lower orbital angular momentum is replaced by that obtained from the full
CDCC. It would be important to find a efficient QM correction to the DEA. Moreover, it
will be interesting to apply the eikonal approximation with the corrections proposed here
for transfer reactions, in which generally a low incident energy is adopted.
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5.1 Introduction

The clustering phenomena, which is the separately localization of some particles, have been
predicted by theoretical studies that several states of unstable nuclei or of sd-shell nuclei
have a cluster structure [150]. However, there is no direct measurement of the cluster
structure except for resonance states decaying into constituent clusters. Therefore, it is
desirable to establish how to extract the quantitative information on the clustering from
observables.

In theoretical studies it is known that the α-cluster state develops in the surface region
of nuclei. In this work we focus on 20Ne as a typical nucleus having an α-16O cluster
structure, though it is well bound nucleus. The purpose of the present study is to ex-
tract the probability of the α-clustering in the surface region from the α-transfer reaction,
16O(6Li,d)20Ne.

Furthermore, at excited states of nuclei, if they populate near thresholds, cluster struc-
tures are expected to develop and loosely bound state. Thus, for the investigation of these
cluster structures by using nuclear reactions, it is needed to consider the dynamics of
loosely bound system, in particular the breakup effects of nuclei into their constituent clus-
ters. However, at this moment, the inclusion of these effects in our model is out of our
scope. First, in this paper, we aim to show how to identify the cluster structure regarding
the well-bound stable nucleus, 20Ne, from observables. Then, as future works, it will come
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out that the cluster-investigation of loosely bound systems such as unstable nuclei with
taking into account their breakup effects.

5.2 Theoretical framework

5.2.1 Microscopic description of cluster wave function

As for the relative wave function between α and 16O, we adopt a microscopic cluster model.
The total wave function of 20Ne with the resonating group method (RGM) [151–154] for
the α-16O configuration is given by

|ΨNe⟩ =
1√
20!

A [χl(r)Yl0(r̂)ϕ(α)ϕ(Ne)] , (5.1)

where r is the relative coordinate between α and 16O, A stands for the antisymmetrization
operator, and ϕ(C) is the intrinsic wave function of the nucleus C. χl can be expanded by
the orthonormal set Rnl of the radial wave function of the harmonic oscillator (HO) as

χl(r) =
∑
n

anRnl(r), (5.2)

an =

∫
r2drRnl(r)χl(r). (5.3)

Here, n and l correspond to the principal quantum number and the orbital angular momen-
tum of the HO, respectively. The relative wave function is defined by

ul(r) =
∑
n

an
√
µnlRnl(r) (5.4)

with the eigenvalue µnl of the RGM norm kernel [155]. For a normalized cluster wave
function satisfying ⟨Ψ|Ψ⟩ = 1, the relative wave function ul is normalized to unity. Details
of the formulation of the microscopic cluster model are given in Ref. [156]

5.2.2 Distorted-wave Born Approximation (DWBA) formalism

In this work the α-transfer reaction 16O(6Li,d)12C is described with the post form distorted
wave Born Approximation (DWBA) approach expressed in Sec. 3.3.3. The coordinates
for the reaction system are illustrated in Fig. 5.1. The transition matrix for the α-transfer
reaction is given by

T
(post)
DWBA =

⟨
Ψ

(−)
f

∣∣∣Vαd ∣∣∣Ψ(+)
i

⟩
, (5.5)

where the α-d interaction Vαd in the final channel is adopted as the transition interaction,
which causes the transition from the initial channel i to the final channel f . The total wave
functions Ψ(+)

i and Ψ
(−)
f for the initial and final channels, respectively, are written as

Ψ
(+)
i (rαd, ri) = ψαd(rαd)χ

(+)
i (ri), (5.6)

Ψ
(−)
f (rαO, rf ) = ψαO(rαO)χ

(−)
f (rf ), (5.7)
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Figure 5.1: Illustration of the three-body system.

where ψαd (ψαO) is the relative wave function of the α-d (α-16O) system and the distorted
wave between 6Li and 16O (d and 20Ne) is represented by χ(+)

i (χ(−)
f ). The superscript

(+) and (−) represents the outgoing and incoming boundary conditions, respectively, on
the scattering wave function. We adopt the cluster wave function defined by Eq. (5.4) for
ul, the radial part of ψαO. Thus ψαd is given by

ψαd(rαd) = ul(rαd)Ylm(r̂αd), (5.8)

where m is the projection of l onto the z-axis.

5.3 Result

5.3.1 Numerical inputs

We adopt the Volkov No. 2 effective interaction with the Majorana parameter m =

0.62 [157] to calculate the α-16O relative wave function ul. The width parameter ν =

0.16 fm−2 is used for both α and 16O. ψαd is calculated with a two-range Gaussian inter-
action Vαd [133].

We consider the 16O(6Li,d)20Ne reaction at four incident energies: 20, 38, 42, and
75 MeV. At 20 and 38 MeV, we adopt phenomenological distorting potentials of a Woods-
Saxon form given in Ref. [158] for calculating χ(+)

i and χ(−)
f . At 42 (75) MeV, potential

parameters are taken from Ref. [159] (Ref. [160]) and Ref. [161] (set 2 of Ref. [162]) for
the initial and final channels, respectively.

5.3.2 α distribution on transfer cross section

To investigate the role of the α-cluster distribution in the transfer reaction 16O(6Li,d)20Ne,
the cross sections are calculated with the 20Ne wave functions of the cluster model (CM),
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Figure 5.2: (a) The α-16O relative wave functions for the 0+1 state calculated with CM
(solid line) and two parameter sets of PM: PM1 (dashed line) and PM2 (dotted line). (b)
Same as in (a) but for the 1−1 state.
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Eq. (5.4), and of the potential model (PM). In PM the α-16O relative wave function
is simply calculated with the Woods-Saxon potential VαO between α and 16O: VαO =

−V0/[1 + exp{(rαO − r0)/a}]. The parameters of VαO are listed in Table 5.1. Fig-
ures 5.2(a) and 5.2(b) show the α-16O relative wave functions of the 0+1 (ground state)
and the 1−1 state (5.79 MeV), respectively. For the 1−1 state we use a bound state approx-
imation to calculate the relative wave function, taking the binding energy to be 0.2 MeV.
By changing the parameter a, the PM wave function (PM2) can reproduce the behavior of
the CM wave function in the surface region (rαO ≳ 5 fm).

The transfer cross sections of 16O(6Li,d)20Ne(0+1 ) as a function of the neutron emitting
angle θ in the center-of-mass frame are compared with the experimental data [158,160,163]
in Fig. 5.3. One sees the result with CM (solid line) agrees well with that with PM2 (dotted
line) up to the third maximum at all energies. On the other hand, the result with PM1
(dashed line) deviates from the other two significantly. As shown in Fig. 5.2, CM and
PM1 gives the same distribution in the surface region but are different from each other
in the inner region. Whereas the two sets of PM show a difference only in the surface
region. Thus, the results of Fig. 5.3 suggest that the transfer cross section is not sensitive
to the inner part of the structure of 20Ne but it probes the α-16O radial wave function in
the surface region. , where a clustering structure is known to make ul show a characteristic
behavior.

It should be noted that the radial wave functions used here are normalized to unity.
Nevertheless, PM1 gives a significantly different absolute value of the cross section from
the results with other two models. This strongly suggests that an accurate determination
of a spectroscopic factor (SF) from a transfer reaction is very difficult. Another important
remark is that the surface region in this study means about 5–8 fm in the relative distance
of α and 16O, i.e., still within a range of the nuclear interaction between the two clusters.
Thus, the transfer process considered here is not governed by the asymptotic normaliza-
tion coefficient (ANC). The α-clustering probability in the surface region will be a third
alternative to the SF and the ANC for nuclear structural information to be extracted from
reaction observables.

Unfortunately, however, agreement of the calculations with CM and PM with the exper-
imental data is not satisfactorily well. One of the reasons for this will be ambiguity of the
distorting potentials, those for 6Li in particular. We will fix this possible problem by adopt-
ing an α + d + 16O three-body model in describing the transfer reaction. In this case we
need the α-16O and d-16O distorting potentials, for which some global parameterizations

Table 5.1: Potential parameters for VαO in fm. The depth V0 of VαO is determined so as to
reproduce the binding energy 4.73 MeV and 0.20 MeV for 0+1 and 1−1 states, respectively.

0+1 1−1
r0 a r0 a

PM1 1.25×161/3 0.65 1.25×161/3 0.65
PM2 1.25×161/3 0.76 1.25×161/3 0.83
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Figure 5.3: Transfer cross sections of 16O(6Li,d)20Ne(0+1 ) at (a) 20 MeV, (b) 38 MeV, (c)
42 MeV, and (d) 75 MeV. In each panel, the solid line shows the calculation with the CM
wave function. Results with PM1 and PM2 wave function are shown by the dashed and
dotted lines, respectively. Experimental data are taken from Ref. [158, 160, 163].
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Figure 5.4: Same as in Fig. 5.3 but for the transfer cross section to the 1−1 state of 20Ne.

can be used.
Figure 5.4 shows the transfer cross section populating the 1−1 state of 20Ne. One may

draw a similar conclusion on this result to that for the transfer to the 0+1 state. It implies a
possibility to probe a cluster structure also in a resonance state of a nucleus. This will be
one of the advantages to use transfer reactions for the study of clustering phenomena.

5.4 Summary

We have analyzed the transfer reaction 16O(6Li,d)20Ne to investigate the radial dependence
of the α-cluster probability. The α-16O relative wave function calculated microscopically
are adopted in the DWBA analysis. We have found that the angular distribution of the
transfer cross section is a good probe to see the radial dependence of the α-clustering
probability. The procedure proposed in the present study can be useful and applicable to
probe the cluster structure via observables in general systems such as unstable nuclei and
sd-shell nuclei. As future work, to take into account the breakup channels of 6Li with an
α + d+16O three-body model by means of the continuum-discretized coupled-channels
method (CDCC) [3,5,6] will be important. This will also minimize ambiguity of distorting
potentials required in reaction calculations.



CHAPTER 6

Conclusion and Prospect

In this thesis, a three-body dynamics induced by loosely bound nuclei is studied. When
a system consists of a projectile, which is loosely bound system of a two-body, and a
target nucleus, the projectile can break up into its constituents in the intermediate state of
scattering. Thus we have focused on a role of the breakup states of a projectile and it has
been investigated by means of the method of the continuum-discretized coupled-channels
(CDCC). By using the CDCC method, one can explicitly take into account the channel-
couplings among ground and breakup channels of nuclei. An analysis with CDCC enables
us to understand a three-body dynamics correctly.

In Chap. 2, the formulation of CDCC has been given. In CDCC a three-body wave
function of the system is expanded with projectile’s eigenfunctions, which include infinite
number of states. It is difficult to handle this wave function, we truncate the momentum
space at a certain value. Then its discretization is done in a finite space with using one of
two procedures of the discretization. One is the average method, in which the projectile’s
wave function is taken as an average in momentum “bin” state. The other is the pseudostate
method, in which the projectile’s wave function is expanded with basis functions and the
internal Hamiltonian of the projectile is diagonalized with them. The former is adopted
for breakup reactions in Chap. 4, while the latter is used for transfer reactions discussed
in Chap. 3. Moreover, the CDCC framework with the eikonal approximation, in which
the deviation of the projectile-target distorted wave from a plane wave is assumed to be
small, is formulated, that is the eikonal-CDCC (E-CDCC). The E-CDCC can be performed
as a coupled-channels calculation with a minimal computational cost compared to a full
quantum calculation.

In Chap. 3, we have formulated the coupled-channel Born approximation (CCBA)
model, which explicitly takes into account the breakup states of both a projectile and a
residual nucleus in the initial and final channels, respectively. As a first application, the
8B(d,n)9C reaction at 14.4 MeV/nucleon has been analyzed with the CCBA model. It has
been found that there exists a strong interference between the elastic transfer (ET) and the
breakup transfer (BT) in each channel. Note that the former is the transfer process from the
ground state in the initial channel to the ground state in the final channel, and includes the
back couplings, which is the channel-couplings between the ground and breakup states in
each channel. The latter is the transfer process from or into breakup states in each channel.
It has also been pointed out that the back couplings are weak in each channel and the BT
between breakup channels is negligibly small. Furthermore the transferred angular mo-
mentum l can change through the channel-couplings with non ground state’s partial waves
of 9C. This dynamical change of l enhances the cross section by about 25% at forward
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angles, and the importance of that involving the continuum states of 9C has been newly
discussed by our study. Thus it has been found that the picture of the 8B(d,n)9C reac-
tion is different from that described by a conventional distorted-wave Born approximation
(DWBA), in which the breakup channels of both d and 9C are neglected. Next, the CCBA
calculation has been performed for the 28Si(d,p)29Si reaction. For this reaction, it has been
found that there is a strong back couplings in the initial channel and it decreases the cross
section. This fact is very different from that for the 8B(d,n)9C reaction. Therefore it is
needed to systematically investigate breakup effects on transfer reactions in order to clarify
how that effects change in each reaction.

A discussion on breakup reactions has been given in Chap. 4. In particular, we have fo-
cused on a case with heavy ion target at a low incident energy, for example 208Pb(15C,n14C)
at 20.0 MeV/nucleon. For such a case, it has been expected to be difficult to precisely de-
scribe the reaction due to Coulomb interactions by means of the eikonal approximation.
In the eikonal approximation, a Schrödinger equation to be solved is reduced to a first-
order differential equation and it is much easier to solve compared to that in a full quantum
case. First, we have compared two reaction models, which are based on the eikonal ap-
proximation, one is the eikonal CDCC (E-CDCC) and the other is the dynamical eikonal
approximation (DEA). It has been found that two models solve essentially same equations
when Coulomb interactions are absent. In this artificial case, the cross sections calculated
with two models agree with each other. When Coulomb interactions exist, a situation is
changed. Both models have not been able to reproduce results obtained from a full quan-
tum calculation. To solve this problem, we have adopted the distance of closest approach
in Rutherford scattering. This corresponds to the Coulomb correction that the curved tra-
jectory is approximated by the straight line one, and it has worked well. Two models with
the correction have reproduced well the full quantum results. It suggests that a concept
of a “trajectory” is efficient in order to describe breakup reactions with strong Coulomb
interactions.

The presence of the α-cluster states in nuclei has been investigated from the analysis
of α-transfer reactions. Since cluster states develop at near threshold energy for decaying
into their fragment, their structure is expected to be loosely bound system. In particular,
for unstable nuclei, it may appear in their ground state. As a first application, the search
for the α-cluster state of 20Ne with the α-16O configuration in its ground state, though it
is not loosely bound state, has been done by using the α-transfer reaction, 16O(6Li,d)20Ne.
For the description of the α-transfer reaction, the wave function of 20Ne calculated from
the microscopic cluster model is adopted. Whereas, the DWBA model has been used for
the description of the reaction process. It has been found that the transfer cross section
is sensitive to evaluate the relative position of α particle to the 16O core. We call the
amplitude of the cluster wave function at this position as the α-clustering probability. Since
this probability is involving the information of radii of clusters, which are not discussed in
several studies to see spectroscopic factors, this probability could be a new indicator to
argue the presence of α-cluster structures in nuclei. Furthermore it can be determined
by comparing the experimental data, i.e., our framework is corroborative study, which
exists out of conventional works that only bring theoretical predictions. For the future
work it is needed to take into account the breakup states of 6Li be means of CDCC in
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the CCBA analysis of the α-transfer reaction. Though it is interesting to consider the
continuum states of the residual nucleus, 20Ne in this case, for the CCBA calculation, they
cannot be calculated by the microscopic cluster model at this moment. After we buildup
the procedure to prove the cluster structure of 20Ne, the systematic investigation of the
clustering in several nuclei, for example, well-known light nuclei with cluster structure,
sd-shell nuclei, which do not have the α-cluster in their ground state, and unstable nuclei,
will come out.





APPENDIX A

The Continuum-Discretized
Coupled-Channels Method as

Approximate Faddeev Formulation
with Angular Momentum

Truncation

The method of the continuum-discretized coupled-channels (CDCC) is discussed in
Ref. [109] as an approximate calculation of three-body systems with a truncation of a Fad-
deev formulation [164,165] in angular momentum space. We consider the d+A scattering
with the p + n + A three-body model. The total wave function Ψ of the system satisfies
the Schrödinger equation

[E −K − V (r)− Up(rp)− Un(rn)]Ψ = 0, (A.1)

where E is the total energy and K stands for the kinetic energy operator of the system.
We assume that the p-n interaction V is rotationally invariant and the interaction potentials
between the nucleons in d and A are Up and Un. Coordinates of the system is shown in
Fig. A.1.
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rn

r

p
R

Figure A.1: Coordinates of the p+ n+A three-body system.
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Appendix A. The Continuum-Discretized Coupled-Channels Method as

Approximate Faddeev Formulation with Angular Momentum Truncation

Here we introduce the projection operator P defined by

P =

∫
dr̂

lm∑
l=0

∑
m

Ylm (r̂)Y ∗
lm (r̂) , (A.2)

which only selects the low angular momentum l regarding the p-n system up to a maximum
value lm. Then we can define

Q ≡ 1− P, (A.3)

P 2 = P, (A.4)

Q2 = Q, (A.5)

PQ = QP = 0. (A.6)

The partial wave functions PΨ and QΨ are orthogonal. Furthermore they consist of
the Faddeev components; Ψ = Ψd +Ψp +Ψn, where the each components are defined by
the standard Faddeev equations [164, 165]

[E −K − V ] Ψd = V (Ψp +Ψn) , (A.7)

[E −K − Up] Ψp = Up (Ψd +Ψn) , (A.8)

[E −K − Un] Ψn = Un (Ψd +Ψp) . (A.9)

As we can see from Eqs. (A.7) to (A.9), the deuteron component Ψd corresponds to the state
when p and n construct d. Whereas the proton (neutron) component Ψp (Ψn) expresses the
channel for the proton (neutron) scattering state toward the n-A (p-A) subsystem, which
can be both bound and continuum states.

By multiplying Eq. (A.1) by P and Q from the left, we have the following coupled
equations respectively;

[E −K − V − PU ]PΨ = PUQΨ, (A.10)

[E −K − V −QU ]QΨ = QUPΨ, (A.11)

where U = Up + Un. When one sets the right-hand side (RHS) of Eq. (A.10) as 0, it
becomes

[E −K − V − PUP ]PΨ = 0. (A.12)

Thus the CDCC approximation ΨCDCC ≈ PΨ leads

[E −K − V − PUP ] ΨCDCC = 0. (A.13)

The elimination of the coupling term PUQΨ in Eq. (A.10) is based on the argument that
PUQΨ is expected to be small (a) because U has small matrix element if l significantly
changes between the P andQ spaces, and (b) because, when lm is taken to be a large value,
U only connects l ∼ l′ states in each space.
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To make clear the difference between the CDCC approach and the complete theory, we
look the distorted Faddeev equations

[E −K − V − PUP ] Ψ̂d = V
(
Ψ̂p + Ψ̂n

)
, (A.14)

[E −K − Up] Ψ̂p = (Up − PUpP ) Ψ̂d + UpΨ̂n, (A.15)

[E −K − Un] Ψ̂n = (Un − PUnP ) Ψ̂d + UnΨ̂p, (A.16)

in which the three-body distorting potentials are inserted. It was pointed out [110] that
the distorted Faddeev equations (A.14) to (A.16) still hold the mathematical properties of
the standard Faddeev equations (A.7) to (A.9). When Eqs. (A.14) to (A.16) are added, the
original Schrödinger equation (A.1) is recovered.

By adding only Eqs. (A.15) and (A.16), one obtains

[E −K − Up − Un]
(
Ψ̂p + Ψ̂n

)
= (U − PUP ) Ψ̂d. (A.17)

The subtraction of PUP in Eq. (A.17) is expected to weaken the coupling between Ψd and
Ψp +Ψn.

Since, from Eq. (A.14),QV
(
Ψ̂p + Ψ̂n

)
= V Q

(
Ψ̂p + Ψ̂n

)
∼ 0, we can approximate

that the deuteron component Ψ̂d has only the P -space contribution;

Ψ̂d ≈ P Ψ̂d. (A.18)

Then the insertion of Eq. (A.18) into Eq. (A.17) leads

[E −K − Up − Un]
(
Ψ̂p + Ψ̂n

)
≈ QUP Ψ̂d. (A.19)

Here we use

(U − PUP ) Ψ̂d ≈ (U − PUP )P Ψ̂d

= [U − (1−Q)U (1−Q)]P Ψ̂d

= (PUQ+QUQ+QUP )P Ψ̂d

= QUP Ψ̂d. (A.20)

Within the approximation Eq. (A.18), each component of Ψ is calculated by solving
the simultaneous equations associated with Eqs. (A.14) and (A.19). The amplitude of
Ψ̂p+Ψ̂n extracted from Eq. (A.19) is expected to be small owing to the projection operator
Q. Furthermore, since the short-ranged V suppresses the magnitude of Ψ̂p + Ψ̂n within its
range in Eq. (A.14), theQ components from Eq. (A.19) do not contribute to the calculation.

One can insert the CDCC wave function ΨCDCC into Eq. (A.19) as a zeroth order ap-
proximation for Ψ̂d. Then Eq. (A.14) is solved as an inhomogeneous differential equation.
In the calculation the P -space part of Ψ̂p + Ψ̂n should be considered because V is the
short ranged interaction. This is the justification of CDCC as a truncation of the Faddeev
formalism in the space of l.
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Approximate Faddeev Formulation with Angular Momentum Truncation

This fact can also be understood from that, first we adopt ΨCDCC as the zeroth order
solution of Eq. (A.14) when the RHS is set to be zero. Then Ψ̂d is inserted as the source
term in the RHS of Eq. (A.19). As mentioned above, the component QUP Ψ̂d, which is
expected to be small if lm is taken to be large enough, produces a small amplitudes of
Ψ̂p + Ψ̂n in Eq. (A.19). Therefore, we can regard ΨCDCC as an approximate solution of
Eq. (A.14). These formulations that elucidate the good agreement between CDCC and the
distorted Faddeev formulation is sometimes called the Austern-Yahiro-Kawai theorem.

Before establishing the Austern-Yahiro-Kawai theorem, CDCC was criticized [166,
167] for (I) how to define the asymptotic behavior of coupled-channel distorted wave, (II)
whether CDCC calculations provide converged results regarding their model space param-
eters such as the maximum values of the p-n orbital angular momenta and the p-n relative
momenta, and (III) the justification of the results if they converge. The problem (I) was re-
solved in Ref. [5] by the l-truncation that enables to reduce the asymptotic form of coupling
potentials to proper one. Then, for the task (II), it was numerically proved that results ob-
tained by CDCC calculations does converge [168–170]. Finally the formulation of CDCC
was authorized to be an good approximation of the Faddeev exact solution for three-body
scattering with the idea based on the l-truncation [109, 117].
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In this appendix, the derivations of Eqs. (2.68) and (2.71) are given.

B.1 Derivation of Z factor

The integral in Eq. (2.67) can be done by using the Wigner-Eckart theorem as follows;⟨[
Yℓ′(r̂)⊗ YL′(R̂)

]
JM

∣∣∣[Yλ(r̂)⊗ Yλ(R̂)
]
00

∣∣∣ [Yℓ(r̂)⊗ YL(R̂)
]
JM

⟩
=
⟨[
Yℓ′(r̂)⊗ YL′(R̂)

]
J

∣∣∣∣∣∣[Yλ(r̂)⊗ Yλ(R̂)
]
0

∣∣∣∣∣∣ [Yℓ(r̂)⊗ YL(R̂)
]
J

⟩ 1

Ĵ
(JMJ00|JM)

= Ĵ


ℓ L J

λ λ 0

ℓ′ L′ J

 ⟨Yℓ′ ||Yλ||Yℓ⟩ ⟨YL′ ||Yλ||YL⟩

= Ĵ


ℓ′ L′ J

ℓ L J

λ λ 0

 (−)λ
ℓ̂′λ̂√
4π

(
ℓ′0λ0|ℓ0

)
(−)λ

L̂′λ̂√
4π

(
L′0λ0|L0

)
. (B.1)

Here, for the third line of Eq. (B.1), we have used the relation of the reduced matrix element
with the 9-j symbol given by⟨[

Yℓ1(r̂)⊗ YL1(R̂)
]
J1

∣∣∣∣∣∣∣∣[Yl2(r̂)⊗ Yl2(R̂)
]
J2

∣∣∣∣∣∣∣∣ [Yℓ3(r̂)⊗ YL3(R̂)
]
J3

⟩

= Ĵ1Ĵ2Ĵ3


ℓ3 L3 J3
ℓ2 L2 J2
ℓ1 L1 J1

 ⟨Yℓ1 ||Yℓ2 ||Yℓ3⟩ ⟨YL1 ||YL2 ||YL3⟩ , (B.2)

To obtain the fourth line of Eq. (B.1), we have used Eq. (K.186).
The 9-j symbol including 0 component can be expressed by the Racah coefficient as
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follows;⟨[
Yℓ′(r̂)⊗ YL′(R̂)

]
JM

∣∣∣[Yλ(r̂)⊗ Yλ(R̂)
]
00

∣∣∣ [Yℓ(r̂)⊗ YL(R̂)
]
JM

⟩
= Ĵ


ℓ′ ℓ λ

L′ L λ

J J 0

 ℓ̂′L̂′λ̂2

4π

(
ℓ′0λ0|ℓ0

) (
L′0λ0|L0

)
= Ĵ

(−)ℓ+L′+λ+J

λ̂Ĵ

{
ℓ′ ℓ λ

L L′ J

}
ℓ̂′L̂′λ̂2

4π

(
ℓ′0λ0|ℓ0

) (
L′0λ0|L0

)
= (−)ℓ+L′+λ+J

{
ℓ ℓ′ λ

L′ L J

}
ℓ̂′L̂′λ̂

4π

(
ℓ′0λ0|ℓ0

) (
L′0λ0|L0

)
= (−)ℓ+L′+λ+J(−)ℓ+ℓ′+L+L′

W (ℓ, ℓ′, L, L′;λ, J)
ℓ̂′L̂′λ̂

4π

(
ℓ′0λ0|ℓ0

) (
L′0λ0|L0

)
= (−)ℓ

′+L+λ+JW (ℓ, ℓ′, L, L′;λ, J)
ℓ̂′L̂′λ̂

4π
(−)ℓ

′ ℓ̂

λ̂

(
ℓ′0ℓ0|λ0

)
(−)L

′ L̂

λ̂

(
L′0L0|λ0

)
= (−)L+L′+λ+J ℓ̂ℓ̂

′L̂L̂′

4πλ̂

(
ℓ′0ℓ0|λ0

) (
L′0L0|λ0

)
W (ℓ, ℓ′, L, L′;λ, J) (B.3)

Thus, by inserting Eq. (B.3) into Eq. (2.67), we obtain the Z factor

Z(ℓ′L′ℓL;λJ) = iℓ+ℓ′+L+L′
(−)L+L′+J ℓ̂ℓ̂

′L̂′L̂′

λ̂2

×
(
ℓ′0ℓ0|λ0

) (
L′0L0|λ0

)
W (ℓℓ′LL′;λJ). (B.4)

B.2 Derivation of Coulomb coupling potential

Since the Coulomb interaction is well known, its form of the multipole expansion is also
known. V λ(C)

x defined by Eq. (2.62) can be decompose into two terms;

V λ(C)
x (αr,R) ≡ Xλ

x (R) +W λ
x (r,R), (B.5)

whereXλ
x (W λ

x ) does not (does) depend on r. As follows we seeXλ
x for each case, which is

divided by the magnitude relation of rx and RC. RC is the Coulomb radius of a uniformly
charged sphere,

V (C)(ρ) =


ZxZye2

2RC

(
3− ρ2

RC

2)
for ρ ≤ RC,

ZxZye2

ρ for ρ > RC.
(B.6)

1. rx ≤ RC for every w
In this case we have

V (C)
x (rx) =

ZxZye
2

2RC

(
3− r2x

R2
C

)
=
ZxZye

2

2RC

(
3− R2 + α2r2

R2
C

)
− ZxZye

2

2RC
.
αRrw

R2
C

(B.7)
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Thus from Eq. (2.62) we obtain

V λ(C)
x (αr,R) =

λ̂2

2

∫ 1

−1

[
ZxZye

2

2RC

(
3− R2 + α2r2

R2
C

)
− ZxZye

2

2RC

αRrw

R2
C

]
Pλ(w)dw

=


ZxZye

2

2RC

(
3− R2 + α2r2

R2
C

)
λ = 0,

−ZxZye
2

2RC

αRr

R2
C

λ = 1,

0 λ ≥ 2

(B.8)

Here P0(w) = 1, P1(w) = w, and∫ 1

−1
wnPλ(w)dw = 0 for n = 0, 1, · · · , λ− 1, (B.9)

are used. Therefore Xλ
x,i is calculated by

Xλ
x,1(rx) =


ZxZye

2

2RC

(
3− R2

R2
C

)
λ = 0,

0 λ ≥ 1

(B.10)

2. rx ≥ RC for every w
In this case we have following relation:

1

rx
=

1√
R2 + α2r2 + 2αRrw

=


1

R

∑
ℓ

(αr
R

)ℓ
Pℓ(w) R ≥ αr,

1

αr

∑
ℓ

(
R

αr

)ℓ

Pℓ(w) R ≤ αr

(B.11)

Thus V λ(C)
x is

V λ(C)
x (αr,R) =

λ̂2

2

∫ 1

−1

ZxZye
2

rx
Pλ(w)dw

=


ZxZye

2 (αr)
λ

Rλ+1
Pℓ(w) R ≥ αr,

ZxZye
2 Rλ

(αr)λ+1
Pℓ(w) R ≤ αr

(B.12)

Here ℓ aligns to λ in Eq. (B.12) since we use the orthogonal condition Eq. (2.60).
Therefore Xλ

x,ii is finite only when λ = 0 and R > αr:

Xλ
x,2(rx) =

ZxZye
2

R
, (B.13)

and any other cases Xλ
x,2 = 0.
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3. Exception of 1 and 2
V

λ(C)
x can be written as

V λ(C)
x (αr,R) =

λ̂2

2

(∫ w0

−1

ZxZye
2

rx
Pλ(w)dw +

∫ 1

w0

ZxZye
2

RC

(
3− r2x

R2
C

)
Pλ(w)dw

)
,

(B.14)

where w0, which express that at w = w0 rx = RC, is defined by

w0 =
R2

C −R2 − α2r2

2αRr
. (B.15)

We can obtain Xλ
x,3 from Eq. (B.14).

Therefore Xλ
x and W λ

x = V
λ(C)
x − Xλ

x can be evaluated. When R ≤ RC, f (C)
x in

Eq. (2.70) is written by

f
(C)
x,n′ℓ′nℓλ(R) =

∫ ∞

0
ϕ̂∗n′ℓ′(r)V

λ(C)
x (αr,R)ϕ̂nℓ(r)dr

=

∫ RC−R

α

0
ϕ̂∗n′ℓ′(r)

(
Xλ

x,1(R) +W λ
x,1(r,R)

)
ϕ̂nℓ(r)dr

+

∫ RC+R

α

RC−R

α

ϕ̂∗n′ℓ′(r)
(
Xλ

x,3(R) +W λ
x,3(r,R)

)
ϕ̂nℓ(r)dr

+

∫ ∞

RC+R

α

ϕ̂∗n′ℓ′(r)
(
Xλ

x,2(R) +W λ
x,2(r,R)

)
ϕ̂nℓ(r)dr. (B.16)

On the other hand for R ≥ RC we obtain

f
(C)
x,n′ℓ′nℓλ(R) =

∫ R−RC
α

0
ϕ̂∗n′ℓ′(r)

(
Xλ

x,2(R) +W λ
x,2(r,R)

)
ϕ̂nℓ(r)dr

+

∫ R+RC
α

R−RC
α

ϕ̂∗n′ℓ′(r)
(
Xλ

x,3(R) +W λ
x,3(r,R)

)
ϕ̂nℓ(r)dr

+

∫ ∞

R+RC
α

ϕ̂∗n′ℓ′(r)
(
Xλ

x,1(R) +W λ
x,1(r,R)

)
ϕ̂nℓ(r)dr. (B.17)

Here let’s focus on the case of R > RC. In the case, only the first term of Eq. (B.17)
has an amplitude. We write the term, which contains Xλ

x ,∫ R−RC
α

0
ϕ̂∗n′ℓ′(r)X

0
x,2(R)ϕ̂nℓ(r)dr

=
ZxZye

2

R

(∫ ∞

0
ϕ̂∗n′ℓ′(r)ϕ̂nℓ(r)dr −

∫ ∞

R−RC
α

ϕ̂∗n′ℓ′(r)ϕ̂nℓ(r)dr

)

=
ZxZye

2

R

(
δn′nδℓ′ℓ −

∫ ∞

R−RC
α

ϕ̂∗n′ℓ′(r)ϕ̂nℓ(r)dr

)
. (B.18)
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Here we use Eqs. (2.13) and (B.12). In CDCC Eq. (B.18) is integrated up to r = rmax as
follows.∫ R−RC

α

0
ϕ̂∗n′ℓ′(r)X

0
x,2(R)ϕ̂nℓ(r)dr

≈ ZxZye
2

R

(∫ rmax

0
ϕ̂∗n′ℓ′(r)ϕ̂nℓ(r)dr −

∫ rmax

R−RC
α

ϕ̂∗n′ℓ′(r)ϕ̂nℓ(r)dr

)

≈ ZxZye
2

R

(
δn′nδℓ′ℓ −

∫ rmax

R−RC
α

ϕ̂∗n′ℓ′(r)ϕ̂nℓ(r)dr

)
. (B.19)

Note that rmax should be taken as the orthogonal condition Eq. (2.13) can be satisfied. The
second term of Eq. (B.19) appears when rmax ≥ R−RC

α . Thus we obtain the same form as
Eq. (B.17):

f
(C)
x,n′ℓ′nℓλ(R) =

ZxZye
2

R

[
δn′nδℓ′ℓ −

∫ rmax

R−RC
α

ϕ̂∗n′ℓ′(r)ϕ̂nℓ(r)drθ (rmax − (R−RC)/α)

]

+

∫ R−RC
α

0
ϕ̂∗n′ℓ′(r) +W λ

x,2(r,R)ϕ̂nℓ(r)dr

+

∫ R+RC
α

R−RC
α

ϕ̂∗n′ℓ′(r)
(
Xλ

x,3(R) +W λ
x,3(r,R)

)
ϕ̂nℓ(r)drθ (rmax − (R−RC)/α)

+

∫ rmax

R+RC
α

ϕ̂∗n′ℓ′(r)
(
Xλ

x,1(R) +W λ
x,1(r,R)

)
ϕ̂nℓ(r)drθ (rmax − (R−RC)/α) ,

(B.20)

where θ(r1 − r2) is the step function defined by

θ(r1 − r2) =

{
0 r1 < r2
1 r1 ≥ r2.

(B.21)
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C.1 Finite-range Form factor

C.1.1 Gaussian expansion

The form factor defined by Eq. (3.69) with the exact finite-range (FR) integration of
Eq. (3.79) can be rewritten with using Eqs. (3.76) and (3.77) by

flm(rβ, rα) =
∑

LαLβMαMβ

FlLβLα(rβ, rα) (LβMβLαMα|lm)Y ∗
LβMβ

(r̂β)Y
∗
LαMα

(r̂α)

=
∑
LαLβ

(−)Lβ+Lα−lFlLβLα(rβ, rα)
[
YLα(r̂α)⊗ YLβ

(r̂β)
]∗
lm
. (C.1)

The form factor flm can be also written by definition,

flm(rβ, rα) ≡
∑

mAmb

(−)mb (lAmAlb,−mb|lm)ψ∗
xA(rxA)Dxb(rxb), (C.2)

where,

Dxb(rxb) ≡ Vxb(rxb)ψxb(rxb). (C.3)

Here we assume the interaction Vxb(rxb) between x and b is scalar, and ψxc is the relative
wave function between x and c.

To express the Eq. (3.65) with the set of coordinates (rβ, rα), we expand the radial
part of Eq. (3.65) with Gaussian. Thus ψxA and Dxb can be written as

ψxA(rxA) =
ϕlA(rxA)

rlAxA
rlAxAYlAmA

(r̂xA), (C.4)

Dxb(rxb) =
dlb(rxb)

rlbxb
rlbxbYlbmb

(r̂xb). (C.5)
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The radial parts of Eq. (C.4) and Eq. (C.5) are expanded:

ϕlA(rxA)

rlAxA
=
∑
iA

CiA exp(−νiAr
2
xA), (C.6)

dlb(rxb)

rlbxb
=
∑
ib

Cib exp(−νibr
2
xb). (C.7)

Using Eq. (C.6) and (C.7), we obtain

flm(rβ, rα) =
∑
iAib

giAib(rα, rβ) exp(γiAibrβ · rα)

×
∑

mAmb

(−)mb (lAmAlb,−mb|lm) rlAxAY
∗
lAmA

(r̂xA)r
lb
xbYlbmb

(r̂xb), (C.8)

where

giAib(rα, rβ) ≡ CiACib exp(−αiAibr
2
α) exp(−βiAibr

2
β), (C.9)

and coordinates are written by rxA = srα + trβ and rxb = prα + qrβ with

s ≡ B

x

a

a+A
, t ≡ −B

x

b

b+B
,

p ≡ a

x

A

a+A
, q ≡ −a

x

B

b+B
, (C.10)

then α, β, and γ are defined by

αiAib = νiAs
2 + νibp

2,

βiAib = νiAt
2 + νibq

2,

γiAib = −2(νiAst+ νibpq) > 0. (C.11)

Gaussian, exp(γiAibrβ · rα), can be expanded with modified Bessel function iL,

exp(γiAibrβ · rα) = 4π
∑
L

(−)LL̂iL(γiAibrβrα) [YL(r̂α)⊗ YL(r̂β)]00 . (C.12)

Since coordinates can be expressed by rxA = srα + trβ and rxb = prα + qrβ in
spherical harmonics with r̂α r̂β , the spherical harmonics converts,

rlAxAY
∗
lA,mA

(r̂xA) =

lA∑
λA

hλA
(rα, rβ) [YlA−λA

(r̂α)⊗ YλA
(r̂β)]

∗
lAmA

, (C.13)

rlbxbYlb,mb
(r̂xb) =

lb∑
λb

hλb
(rα, rβ) [Ylb−λb

(r̂α)⊗ Yλb
(r̂β)]lbmb

, (C.14)

where

hλA
(rα, rβ) ≡

√
4π

λ̂A

√
2lA+1C2λA

(srα)
lA−λA(trβ)

λA , (C.15)

hλb
(rα, rβ) ≡

√
4π

λ̂b

√
2lb+1C2λb

(prα)
lb−λb(qrβ)

λb , (C.16)
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and

2lc+1C2λc =
(2lc + 1)!

(2lc + 1− 2λc)!(2λc)!
(C.17)

is the binomial coefficient.

The radial part FlLβLα of Eq. (C.1) can be calculated by

FlLβLα(rβ, rα) = (−)Lβ+Lα−l

∫
dr̂αdr̂β

[
YLα(r̂α)⊗ YLβ

(r̂β)
]
lm
flm(rβ, rα).

(C.18)

Inserting Eq. (C.8), (C.12), (C.13), and (C.14) to Eq. (C.18), we obtain

FlLβLα(rβ, rα) =
∑
iAib

giAib(rα, rβ)
∑
λAλb

hλA
(rα, rβ)hλb

(rα, rβ)4π
∑
L

(−)LL̂iL(γiAibrβrα)

× (−)Lβ+Lα−l

∫
dr̂αdr̂β

∑
mAmb

(−)mb (lAmAlb,−mb|lm)

× [YlA−λA
(r̂α)⊗ YλA

(r̂β)]
∗
lAmA

[Ylb−λb
(r̂α)⊗ Yλb

(r̂β)]lbmb

× [YL(r̂α)⊗ YL(r̂β)]00
[
YLα(r̂α)⊗ YLβ

(r̂β)
]
lm
. (C.19)

Here we convert the spherical harmonics in the vector coupling in order to align its argu-
ments as follows:∑
mAmb

(−)mb (lAmAlb,−mb|lm) [YlA−λA
(r̂α)⊗ YλA

(r̂β)]
∗
lAmA

[Ylb−λb
(r̂α)⊗ Yλb

(r̂β)]lbmb

=
[
[YlA−λA

(r̂α)⊗ YλA
(r̂β)]lAmA

⊗ [Ylb−λb
(r̂α)⊗ Yλb

(r̂β)]lbmb

]∗
lm

=
∑
jαjβ

l̂A l̂bĵαĵβ


lA − λA λA lA
lb − λb λb lb
jα jβ l


×
[
[YlA−λA

(r̂α)⊗ Ylb−λb
(r̂α)]jα ⊗ [YλA

(r̂β)⊗ Yλb
(r̂β)]jβ

]∗
lm
. (C.20)

Then the angular integration of Eq. (C.19) can be done using the Wigner-Eckart theo-
rem: ∫

dr̂αdr̂β

[
[YlA−λA

(r̂α)⊗ Ylb−λb
(r̂α)]jα ⊗ [YλA

(r̂β)⊗ Yλb
(r̂β)]jβ

]∗
lm

× [YL(r̂α)⊗ YL(r̂β)]00
[
YLα(r̂α)⊗ YLβ

(r̂β)
]
lm

=
⟨[

[YlA−λA
(r̂α)⊗ Ylb−λb

(r̂α)]jα ⊗ [YλA
(r̂β)⊗ Yλb

(r̂β)]jβ

]∗
lm

×
∣∣[YL(r̂α)⊗ YL(r̂β)]00

∣∣ [YLα(r̂α)⊗ YLβ
(r̂β)

]
lm

⟩
=

1

l̂
(lm00|lm) ⟨jαjβl ∥LL0∥LαLβl⟩ . (C.21)
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The reduced matrix element can be calculate with 9-j and 6-j symbol

⟨jαjβl ∥LL0∥LαLβl⟩ = l̂2


jα jβ l

Lα Lβ l

L L 0

 ⟨jα ∥L∥Lα⟩ ⟨jβ ∥L∥Lβ⟩

= l̂2
(−)−jβ−l−Lα−L

l̂L̂

{
jα jβ l

Lβ Lα L

}
×
⟨
[YlA−λA

(r̂α)⊗ Ylb−λb
(r̂α)]jα ∥YL(r̂α)∥YLα(r̂α)

⟩
×
⟨
[YλA

(r̂β)⊗ Yλb
(r̂β)]jβ ∥YL(r̂β)∥YLβ

(r̂β)
⟩

= l̂2
(−)−jβ−l−Lα−L

l̂L̂

{
jα jβ l

Lβ Lα L

}
× 1√

4π

̂lA − λA ̂lb − λb

ĵα
(lA − λA, 0, lb − λb, 0|jα0)

× 1√
4π

λ̂Aλ̂b

ĵβ
(λA0λb0|jβ0)

× ⟨Yjα(r̂α) ∥YL(r̂α)∥YLα(r̂α)⟩
⟨
Yjβ (r̂β) ∥YL(r̂β)∥YLβ

(r̂β)
⟩

=
l̂

L̂
(−)−jβ−l−Lα−L

{
jα jβ l

Lβ Lα L

}
×

̂lA − λA ̂lb − λbλ̂Aλ̂b

4πĵαĵβ
(lA − λA, 0, lb − λb, 0|jα0) (λA0λb0|jβ0)

× (−)L
ĵαL̂√
4π

(jα0L0|Lα0) (−)L
ĵβL̂√
4π

(jβ0L0|Lβ0)

=
1

(4π)2
(−)−jβ−l−Lα−L(−)jα+jβ+Lα+Lβ l̂L̂ ̂lA − λA ̂lb − λbλ̂Aλ̂b

×W (jαjβLαLβ; lL) (lA − λA, 0, lb − λb, 0|jα0) (λA0λb0|jβ0)
× (jα0L0|Lα0) (jβ0L0|Lβ0) . (C.22)

Inserting Eq. (C.21) to Eq. (C.19) using Eq. (C.22), we obtain following formula with a
few transformations,

FlLβLα(rβ, rα) =
∑

λAλbL

RλAλbL(rβ, rα)A
lLβLα

λAλbL
, (C.23)

RλAλbL(rβ, rα) ≡
1

4π
hλA

(rα, rβ)hλb
(rα, rβ)

∑
iAib

g̃iAib(rα, rβ )̃iL(γiAibrβrα), (C.24)

A
lLβLα

λAλbL
≡
∑
jαjβ

(−)jα+Lα−LL̂2 l̂A l̂bĵαĵβ ̂lA − λA ̂lb − λbλ̂Aλ̂b

× (lA − λA, 0, lb − λb, 0|jα0) (λA0λb0|jβ0) (jα0L0|Lα0) (jβ0L0|Lβ0)

×W (jαjβLαLβ; lL)


lA − λA λA lA
lb − λb λb lb
jα jβ l

 , (C.25)
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where we transform the product of Gaussian and the modified Bessel function as follows;

(−)LgiAib(rα, rβ)iL(γiAibrβrα) = g̃iAib(rα, rβ )̃iL(γiAibrβrα), (C.26)

g̃iAib(rα, rβ) = CiACib exp
[
−νiA(srα + trβ)

2
]
exp

[
−νib(prα + qrβ)

2
]
, (C.27)

ĩL(γiAibrβrα) = (−)L exp(−γiAibrβrα)iL(γiAibrβrα). (C.28)

The “reduced” modified Bessel function ĩL(γiAibrβrα) is calculated by the subroutine
BESSI [171] in our CCBA code FRANTIC. The details of the clculation for ĩL(γiAibrβrα)

is discussed in Appx. I.

C.1.2 Multipole expansion

If the bound state wave functions are expanded with the multipole expansion method in-
stead of Gaussian, the representation of the form factor will be changed. In this method,
we expand the product of ϕ∗lxA(rxA)/r

lxA
xA and dlb(rxb)/r

lb
xb, it means,

Q(rxA, rxb) ≡
ϕ∗lA(rxA)

rlAxA

dlb(rxb)

rlbxb

=
∑
k

Q̃k(rα, rβ)Pk(w), (C.29)

Q̃k(rα, rβ) =
k̂2

2

∫ 1

−1
Q(rxA, rxb)Pk(w)dw, (C.30)

where w = cos θαβ with the angle θαβ between rα and rβ .

Then we can obtain the form factor

flm(rβ, rα) =
∑
k

Q̃k(rα, rβ)Pk(w)
∑

mxAmxb

(−)mxb (lxAmxAlxb,−mxb|lm)

= rlAxAY
∗
lAmA

(r̂xA)r
lb
xbYlbmb

(r̂xb)

=
1√
4π

∑
k

Q̃k(rα, rβ)
4π

k̂
(−)k [Yk(r̂α)⊗ Yk(r̂β)]00

×
∑

mAmb

(−)mb (lAmAlb,−mb|lm)

= [YlA−λA
(r̂α)⊗ YλA

(r̂β)]
∗
lAmA

[Ylb−λb
(r̂α)⊗ Yλb

(r̂β)]lbmb
(C.31)

Because the term which relates to the sums of mA and mb is completely same as Eq.
(C.20), we just have to calculate the angular integration same as Eq. (C.21) and (C.22)
except that L in the Gaussian expansion is equivalent to k in the multipole expansion.
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Therefore the radial part of Eq. (C.31) is given by

FlLβLα(rβ, rα) =
∑

λAλbk

RλAλbk(rβ, rα)A
lLβLα

λAλbk
,

RλAλbk(rβ, rα) ≡
1

4π
hλA

(rα, rβ)hλb
(rα, rβ)Q̃k(rα, rβ),

A
lLβLα

λAλbL
≡
∑
jαjβ

(−)jα+Lα l̂A l̂bĵαĵβ ̂lA − λA ̂lb − λbλ̂Aλ̂b

× (lA − λA, 0, lb − λb, 0|jα0) (λA0λb0|jβ0)
× (jα0k0|Lα0) (jβ0k0|Lβ0)

×W (jαjβLαLβ; lk)


lA − λA λA lA
lb − λb λb lb
jα jβ l

 , (C.32)

C.2 Zero-range form factor

In the zero-range (ZR) limit, we do not have to expand the wave functions of the projectile
and the residual nucleus. The form factor with the ZR approximation is given,

flm(rβ, rα) ≡ ψ∗
xA(rxA)Dxb(rxb)

≈ ψ∗
xA(rxA)D0δ(rxb)

= ψ∗
xA(rα)D0δ

(
rβ − A

B
rα

)
, (C.33)

where Dxb is defined by Eq. (C.3). We can understand from Fig. C.1 that rxA becomes
equal to rα and δ(rxb) = δ

(
rβ − A

Brα
)

because rxb = prα+ qrβ . Eq. (C.33) means that
ψxb(rxb) is the s-wave because so is δ-function.

b

x A

r
rxb

rα

rxA

β

rα

rβb

x AB

a

zero-range

Figure C.1: illustration of the ZR approximation.



C.2. Zero-range form factor 101

The radial part of Eq. (C.33) can be derive with same way as that of Eq. (3.70),

FlLβLα(rβ, rα) = (−)Lβ+Lα−l

∫
dr̂αdr̂β

[
YLα(r̂α)⊗ YLβ

(r̂β)
]
lm
flm(rβ, rα)

= (−)Lβ+Lα−lϕ∗lA(rα)D0
δ
(
rβ − A

B rα
)(

A
B rα

)2
×
∫
dr̂α

∫
dr̂βδ (r̂β − r̂α)

[
YLα(r̂α)⊗ YLβ

(r̂β)
]
lm
Y ∗
lm(r̂α)

= (−)Lβ+Lα−lϕ∗lA(rα)D0
δ
(
rβ − A

B rα
)(

A
B rα

)2
×
∫
dr̂α

[
YLα(r̂α)⊗ YLβ

(r̂α)
]
lm
Y ∗
lm(r̂α)

= ϕ∗lA(rα)D0
δ
(
rβ − A

B rα
)(

A
B rα

)2 1√
4π

L̂αL̂β

l̂
(Lβ0Lα0|l0)

∫
dr̂αYlm(r̂α)Y

∗
lm(r̂α)

= ϕ∗lA(rα)D0
δ
(
rβ − A

B rα
)(

A
B rα

)2 1√
4π

L̂αL̂β

l̂
(Lβ0Lα0|l0) . (C.34)

Then we can calculate the overlap integral, I llAl′A
JLβL

′
β

, with the assumption, lb = l′b = 0,

I
llAl′A
JLβL

′
β
=

4π

kαkβ
D0

1√
4π

ĴL̂′
β

l̂

(
L′
β0J0|l0

)
×
∫
rαdrα

∫
rβdrβχ

J
LβL

′
β lAl′A

(kβ, rβ)ϕ
∗
l′A
(rα)

δ
(
rβ − A

B rα
)(

A
B rα

)2 χJ
α(kα, rα)

=

√
4π

kαkβ

B

A
D0

Ĵ L̂′
β

l̂

(
L′
β0J0|l0

) ∫
drαχ

J
LβL

′
β lAl′A

(
kβ,

A

B
rα

)
ϕ∗l′A

(rα)χ
J
α(kα, rα).

(C.35)

The strength of the δ-function, D0, can be calculated by definition,

D0 =

∫
drxbDxb(rxb). (C.36)

This integration can be done easily if ψxb is the s-wave. Otherwise we have to do a special
treatment to this integration, for example it is mentioned in Ref. [172]. Thus the assump-
tion, lb = l′b = 0, requires the alignment of Lα and J in Eq. (C.35). It should not, however,
be applied the ZR approximation for the case of the non s-wave projectile, because the
range of Dxb could be much larger than that of the s-wave function. Therefore the ZR
approximation may be bad for describing the precise form factor.

Note that the wave function of a bound state should be real, it means ϕ∗lA = ϕlA . As
for the transfer amplitude and the cross section, we can use same formulae as in the case
of the FR framework. Therefore inserting Eq. (C.35) to Eqs. (3.87) and (3.88), we obtain
the transfer amplitude and then can calculate the cross section with Eq. (3.90).
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D.1 FRC formalism with Distorted-wave Born approximation
(DWBA)

D.1.1 Formulation

We consider the transfer reaction, a(x+ b)+A→ b+B(x+A). The transition matrix of
the stripping reaction with the distorted-wave Born approximation (DWBA) is given by

TDWBA
βα =

⟨
χ
(−)
β (rβ) |F (rxb, rxA)|χ(+)

α (rα)
⟩
rα,rxb

, (D.1)

where the form factor F , which is not represented by the angular momentum expression,
is defined by

F (rxb, rxA) ≡ ψ∗
xA(rxA)Dxb(rxb), (D.2)

Dxb(rxb) ≡ Vxb(rxb)ψxb(rxb), (D.3)

with a scalar interaction Vxb(rxb) between x and b. χ(±)
γ is the distorted wave corresponds

to γ channel. And also we ignore intrinsic spins so as to simplify the discussion. Arguments
of the distorted waves shown in Fig. 3.2, can be written as

rα = rxA − σrxb, (D.4)

rβ = τ−1rxA − rxb, (D.5)
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with σ = b/a and τ = B/A. Here we will rewrite distorted waves χα and χβ with Taylor
expansion around rα = rxA and τrβ = rxA, respectively, that is,

χ(+)
α (rxA − σrxb) = e−σ∇rα ·rxbχ(+)

α (rxA), (D.6)

χ
(−)∗
β (τ−1rxA − rxb) = e−τ∇rβ

·rxbχ
(−)∗
β (τ−1rxA). (D.7)

Then Eq. (D.1) becomes

TDWBA
βα =

∫
drxbDxb(rxb)e

−(τ∇rβ
+σ∇rα )·rxb

×
∫
drxAχ

(−)∗
β (τ−1rxA)ψ

∗
xA(rxA)χ

(+)
α (rxA), (D.8)

where we use drα = drxA.
Since the rxb integration part of Eq. (D.8) has a short range function, Dxb, we expand

the exponential of this term as follows:∫
drxbDxb(rxb)e

−(τ∇rβ
+σ∇rα )·rxb

=

∫
drxbDxb(rxb)

[
1 +

1

6
(τ∇rβ

+ σ∇rα)
2r2xb + . . .

]
. (D.9)

This expansion is based on Ref. [2, 172], where it is formulated the expansion of the oper-
ator, exp(r ·O), that is,

er·O = 4π
∑
nlm

cnlr
2n+lY ∗

lm(r̂)O2n+lYlm(Ô), . (D.10)

cnl =
(n+ l)!2l

n!(2n+ 2l + 1)!
. (D.11)

In Eq. (D.10) the first order of the series can appear, but it will vanish because of the
symmetry of the odd function integration over whole region if we adopt the s-wave as Dxb.
The formulation of this kind of the finite-range correction (FRC) for the non s-wave case
is developed in Ref. [172], but I do not mention the detail of that here.

Anyway when we see up to only second order term of Eq. (D.10), in the transition
matrix we have

(τ∇rβ
+ σ∇rα)

2χ
(−)∗
β (τ−1rxA)ψ

∗
xA(rxA)χ

(+)
α (rxA)

=
[
(τ2 − στ)∇2

rβ
+ (σ2 − στ)∇2

rα
+ στ(∇rβ

+∇rα)
2
]

× χ
(−)∗
β (τ−1rxA)ψ

∗
xA(rxA)χ

(+)
α (rxA)

= (τ2 − στ)
{
∇2

rβ
χ
(−)∗
β (τ−1rxA)

}
ψ∗
xA(rxA)χ

(+)
α (rxA)

+ (σ2 − στ)χ
(−)∗
β (τ−1rxA)ψ

∗
xA(rxA)

{
∇2

rα
χ(+)
α (rxA)

}
+ στ(∇rβ

+∇rα)
2χ

(−)∗
β (τ−1rxA)ψ

∗
xA(rxA)χ

(+)
α (rxA). (D.12)
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The part of the first term of Eq. (D.12) can be

∇2
rβ
χ
(−)∗
β (τ−1rxA) = ∇2

rxA
χ
(−)∗
β (τ−1rxA)

=
1

τ2
∇2

τ−1rxA
χ
(−)∗
β (τ−1rxA), (D.13)

because drxA = τd
(
τ−1rxA

)
and ∇2

rxA
= 1/τ2∇2

τ−1rxA
. As for the third term of Eq.

(D.12), we can derive

(∇rβ
+∇rα)

2χ
(−)∗
β (τ−1rxA)ψ

∗
xA(rxA)χ

(+)
α (rxA)

=
{
∇rxA

(
χ
(−)∗
β (τ−1rxA)χ

(+)
α (rxA)

)
ψ∗
xA(rxA)

}
= χ

(−)∗
β (τ−1rxA)χ

(+)
α (rxA)

{
∇2

rxA
ψ∗
xA(rxA)

}
. (D.14)

To obtain Eq. (D.14) we perform the partial integration,
∫
(D.14) drxA, and use the nature

of wave functions, that is, χ(±)
γ (rγ = 0) → 0 and ψ∗

xA(rxA = ∞) → 0. Then Eq. (D.12)
can be written by

(D.12) = (1− σ

τ
)
{
∇2

τ−1rxA
χ
(−)∗
β (τ−1rxA)

}
ψ∗
xA(rxA)χ

(+)
α (rxA)

+ (σ2 − στ)χ
(−)∗
β (τ−1rxA)ψ

∗
xA(rxA)

{
∇2

rα
χ(+)
α (rxA)

}
+ στχ

(−)∗
β (τ−1rxA)

{
∇2

rxA
ψ∗
xA(rxA)

}
χ(+)
α (rxA)

= σ

[
(
1

σ
− 1

τ
)
{
∇2

τ−1rxA
χ
(−)∗
β (τ−1rxA)

}
ψ∗
xA(rxA)χ

(+)
α (rxA)

+ (σ − τ)χ
(−)∗
β (τ−1rxA)ψ

∗
xA(rxA)

{
∇2

rα
χ(+)
α (rxA)

}
+ τχ

(−)∗
β (τ−1rxA)

{
∇2

rxA
ψ∗
xA(rxA)

}
χ(+)
α (rxA)

]
. (D.15)

Now we have following relationship,

1

σ
− 1

τ
=
a

b
− A

B
=
aB −Ab

bB
=

(b+ x)B − (B − x)b

bB
=
x(b+B)

bB
=

x

µβ
, (D.16)

σ − τ =
b

a
− B

A
=
Ab− aB

aA
=

−x(B + b)

aA
= −x(a+A)

aA
= − x

µα
, (D.17)

τ =
B

A
= x

A+ x

xA
=

x

µx
. (D.18)

where µ is the reduced masses of corresponding systems. If the distorted waves are gener-
ated by potentials U , 1 then from the Schrödinger equation we have

∇2
rα
χ(+)
α (rxA) =

2µα
ℏ2

[Uα(rxA)− Eα]χ
(+)
α (rxA), (D.19)

∇2
τ−1rxA

χ
(−)∗
β (τ−1rxA) =

1

τ2
2µβ
ℏ2
[
Uβ(τ

−1rxA)−Eβ

]
χ
(−)∗
β (τ−1rxA). (D.20)

1 This U should consists of the nuclear potential and the Coulomb potential. We can see lately from
Eq. (D.25) that the Coulomb part will be canceled out in the term of VxA + Uβ − Uα for the (d, p) reaction.
Because the product of the proton numbers of two charged particles might be same, that is, Z1Z2 in Uα equals
to that in Uβ for the (d, p) reaction. As for the (d, n) reaction Z1Z2 in Uα equals to that in VxA. Note that,
however, the cancellation will be bad for general transfer reactions, for example (6Li,d) reaction.
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This is corresponded to the local energy approximation (LEA), that is, the operator ∇γ is
replaced by a local momentum or a local energy. As for the wave function of the residual
nucleus, it leads

∇2
rxA

ψ∗
xA(rxA) =

2µa
ℏ2

[VxA(rxA)− ExA]ψ
∗
xA(rxA), (D.21)

where µa = xb/a is the reduced mass of the projectile a, a = x+ b and VxA is the binding
potential between x and A (it might be real). So, inserting Eqs. from (D.16) to (D.21), into
Eq. (D.15), we have

(D.15) =
2µa
ℏ2
[
Uβ(τ

−1rxA)− Eβ + VxA(rxA)− ExA − Uα(rxA) + Eα

]
× χ

(−)∗
β (τ−1rxA)ψ

∗
xA(rxA)χ

(+)
α (rxA)

=
2µa
ℏ2
[
VxA(rxA) + Uβ(τ

−1rxA)− Uα(rxA)− (ExA + Eβ − Eα)
]

× χ
(−)∗
β (τ−1rxA)ψ

∗
xA(rxA)χ

(+)
α (rxA). (D.22)

From the energy conservation, it is trivial that

ExA + Eβ − Eα = −Ba, (D.23)

where Ba is the binding energy of x in the projectile a (positive value). Then we obtain the
transition matrix by inserting Eq. (D.9) and (D.22) to Eq. (D.8),

TDWBA
βα = D0

∫
drχ

(−)∗
β (τ−1r)ψ∗

xA(r)Fcorr(r)χ
(+)
α (r), (D.24)

Fcorr(r) ≡ 1 +
ρ2

6

2µa
ℏ2

[
VxA(r) + Uβ

(
A

B
r

)
− Uα(r) +Ba

]
(D.25)

where

D0 =

∫
drxbDxb(rxb)

=
√
4π

∫
drxbr

2
xbdxb(rxb), (D.26)

with the product of the the projectile wave function, ϕxb, and a scalar interaction between
x and b, Vxb(rxb), that is, dxb(rxb) = Vxb(rxb)ϕxb(rxb). ρ, which is defined by 2

ρ =

√∫
drxbr

2
xbDxb(rxb)√∫

drxbDxb(rxb)
. (D.27)

Now we can see the pretty important thing that if we include only first term of Fcorr, it
corresponds to the zero-range (ZR) limit, that is,

Dxb(rxb) = D0δ(rxb). (D.28)

Therefore the second term of Fcorr acts as a correction of the ZR to the exact finite-range
(FR) calculation. So, this framework is the second order correction.

2 ρ is the input parameter named FNRNG in the computer code RANA developed by Y. Iseri. Please note
that FNRNG = ρ/

√
6. This is due to the difference between the definition of this note and that of RANA.
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D.1.2 Application

We perform the DWBA calculation to see the FR effects on the 13C(6Li,d)17O at 3.6 MeV,
which is analyzed with the ZR approximation in Ref. [106]. In this calculation for the
distorted wave χ(+)

α (χ(−)
β ), we adopt the phenomenological optical potential [173] ( [174,

175]) for the 6Li-13C (d-17O) system. The detail of the numerical settings except for the
optical potentials are given in Ref. [106]. Figure D.1 shows that the transfer cross section
of the 13C(6Li,d)17O at 3.6 MeV as a function of the deuteron emitting angle. At backward
angle there is about 32% difference between the results of the FR (solid line) and ZR (dotted
line) calculation. The FRC (dashed line) overestimates the FR result at most region of θ.
This can be understood by looking Fig. D.2 in which Fcorr(r) and the distorted waves, χ(+)

α

and χ(−)
β are plotted. In panel (a) we show the real and imaginary parts Fcorr by the solid

and dashed lines, respectively. In the interior region Fcorr behaves with a nontrivial manner.
However this parts does not affect the cross section since the reaction is peripheral [106].
In panel (b) the real part of the s-wave components of the partial wave for χ(+)

α and χ(−)
β

are respectively plotted as the solid and dashed lines. The distorted waves in the region
lesser than about 5 fm have very small amplitude. Thus it can be understood that the real
part of Fcorr increase the cross section.
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Figure D.1: The cross section of the 13C(6Li,d)17O at 3.6 MeV/nucleon obtained by
DWBA of the FR calculation (solid line), the ZR calculation (dotted line), and the ZR
calculation with the FRC (dashed line).
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Figure D.2: (a) The real (imaginary) part of Fcorr is shown by the solid (dashed) line. (b)
The solid (dashed) line corresponds to the real part of the s-wave component of the partial
wave for χ(+)

α (χ(−)
β ) in the initial (final) channel.

As another example we choose the 28(d,p)29Si reaction discussed in Chap. 3. In fig. D.3
we show the cross section of the transfer reaction at (a) 17.85 MeV and (b) 50.00 MeV. In
each panel the lines correspond to them in Fig. D.1. Note that in panel (a), the calculations
does not reproduce the experimental data [139], because we assume the spectroscopic fac-
tor S = 1 for the n-28Si configuration. For both the incident energies the FR effects are
very small and the FRCs well reproduce the FR results.

On the 28(d,p)29Si reaction, the FR effects decrease the cross section, which is opposite
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Figure D.3: Same as that in Fig. D.1 but for the the 28(d,p)29Si reaction at (a)
17.85 MeV and (b) 50.00 MeV. The available experimental data for 17.85 MeV is taken
from Ref. [139].

on the peripheral 13C(6Li,d)17O reaction. This indicates that the Fcorr at the interior region
affects the cross section since the incident energies are much higher than the Coulomb
barrier height of the d-28Si. The behaviors of two Fcorrs for each incident energy are
very similar. This is due to the good cancellation in Eq. (D.25) even though the optical
potentials [140, 176] we adopt have an energy dependence.
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Figure D.4: The real and imaginary parts of Fcorr at 18.75 MeV (50.00 MeV) are respec-
tively shown as the solid (dashed) and dotted (dash-dotted) lines.

D.2 FRC formalism with coupled-channels Born approxima-
tion (CCBA)

D.2.1 Formulation

We work with the three-body (x+ b+A) model to formulate the FRC under the coupled-
channels Born Approximation (CCBA). The general expression of the transition matrix
based on the post form can be written by

Tβα =
⟨
Ψ

(−)
β

∣∣∣Vxb ∣∣∣Ψ(+)
α

⟩
rα,rxb

=

∫
drxbdrαΨ

(−)
β (rxA, rβ)Vxb(rxb)Ψ

(+)
α (rxb, rα), (D.29)

where Ψ
(+)
α (Ψ(+)

β ) is the exact three-body wave function in the initial (final) channel.
These wave functions satisfy following Schödinger equations:[

Krα + U
(α)
xA (rxA) + U

(α)
bA (rbA) + hxb − E

]
Ψ(+)

α (rxb, rα) = 0, (D.30)[
Krβ

+ U
(β)
bA (rbA) + hxA −E

]
Ψ

(−)
β (rxA, rβ) = 0. (D.31)

Here we ignore the intrinsic spins of each particles. Krγ is the kinetic operator related to
the coordinate rγ , and hxc is the internal Hamiltonian for the x-c system.

For the final channel, we adopt the countinuum-discretized coupled channels (CDCC)
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method [3, 5, 6]:

Ψ
(+)
β (rxA, rβ) ≈

∑
i

ψi
xA(rxA)χ

ii0(+)
β (rβ), (D.32)[

hxA − ε
(β)
i

]
ψi
xA = 0. (D.33)

ψi
xA stands for the x-A relative wave function, and the distorted wave of ejectile b is rep-

resented by χii0(+)
β . Here we use i as the energy index specifying a discretized continuum

state of B, and i0 corresponds to the ground state of B. One may obtain χii0(+)
β by solving

standard CDCC equations [3, 5, 6].
Arguments of the final state wave functions, rxA and rβ shown in Fig. 3.2, can be

written as

rxA = rα + σrxb, (D.34)

rβ = τ−1rxA − rxb

= τ−1rα + ξrxb, (D.35)

with ξ = σ/τ − 1. Then we will rewrite ψi
xA and χii0(+)

β with Taylor expansion around
rxA = rα and τrβ = rα, respectively, that is,

ψi
xA(rα + σrxb) = eσ∇rxA

·rxbψi
xA(rα), (D.36)

χ
ii0(+)
β (τ−1rα + ξrxb) = eτξ∇rβ

·rxbχ
ii0(+)
β (τ−1rα), (D.37)

where ∇rxA and ∇rβ
operates to only ψi

xA and χii0(+)
β , respectively. Then Eq. (D.29)

becomes

Tβα =
∑
i

∫
drxbdrαe

(σ∇rxA
+τξ∇rβ

)·rxb

× χ
ii0(−)∗
β (τ−1rα)ψ

i∗
xA(rα)Vxb(rxb)Ψ

(+)
α (rxb, rα). (D.38)

As similar way to that of DWBA case, we adopt the LEA for the final and the initial
channels, respectively;

∑
i

[
ℏ2

2µβ
∇2

τ−1rα
+

ℏ2

2µxA
∇2

rxA

]
χ
ii0(−)∗
β (τ−1rα)ψ

i∗
xA(rα)

=
[
U

(β)
xA (rxA) + U

(β)
bA (rbA)− E

]
χ
ii0(−)∗
β (τ−1rα)ψ

i∗
xA(rα), (D.39)

∇2
rα
Ψ(+)

α (rxb, rα) =
2µα
ℏ2

[
U

(α)
xA (rxA) + U

(α)
bA (rbA) + hxb − E

]
Ψ(+)

α (rxb, rα).

(D.40)

Here we used Kγ = −ℏ2∇2
rγ
/(2µγ). To obtain Eqs. (D.39) and (D.40) we perform the

partial integration, which corresponds to the rα-integration of Eq. (D.14) in DWBA, and
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use the nature of wave functions, that is, χii0(−)∗
β (rβ = 0) → 0 and ψi∗

xA(rxA = ∞) →
0 3 .

Then the transition matrix becomes

Tβα =
∑
i

∫
drxbdrαχ

ii0(−)∗
β (τ−1rα)ψ

i∗
xA(rα)Vxb(rxb)

×
(
1 +

1

6
r2xb

2µa
ℏ2
[
U

(β)
xA (rxA) + U

(β)
bA (rbA)− U

(α)
xA (rxA)− U

(α)
bA (rbA)− hxb

])
×Ψ(+)

α (rxb, rα). (D.41)

Let’s focus on the potentials U (γ)
xA (rxA) and U (γ)

bA (rbA). These can be written by fol-
lowings with Taylor expansion around rxA = rα and rbA = rα, respectively,

U
(γ)
xA (rxA) = U

(γ)
xA (rα + σrxb)

= U
(γ)
xA (rα) +

[
∇rαU

(γ)
xA (rα)

]
· σrxb +

[
∇2

rα
U

(γ)
xA (rα)

]
· (σrxb)

2

2
+ . . . ,

(D.42)

U
(γ)
bA (rbA) = U

(γ)
bA (rα − ηrxb)

= U
(γ)
bA (rα)−

[
∇rαU

(γ)
bA (rα)

]
· ηrxb +

[
∇2

rα
U

(γ)
bA (rα)

]
· (ηrxb)

2

2
+ . . . ,

(D.43)

where η = x/a and we use ∇rxA = ∇rbA
= ∇rα . If UbA satisfies

UbA(rα) ∼
b

x
UxA(rα)

=
σ

η
UxA(rα), (D.44)

the first order term of rxb in Eqs. (D.42) and (D.43) can be canceled out. The term larger
than second order of rxb may be negligible because the product of r2xb in Eq. (D.42) or
Eq. (D.43) and that of Eq. (D.41), r4xb, might be very small. Therefore Eq. (D.41) trans-
forms

Tβα =

∫
drxbdrαχ

ii0(−)∗
β (τ−1rα)ψ

i∗
xA(rα)Vxb(rxb)

×
(
1 +

1

6
r2xb

2µa
ℏ2
[
U

(β)
xA (rα) + U

(β)
bA (rα)− U

(α)
xA (rα)− U

(α)
bA (rα)− hxb

])
×Ψ(+)

α (rxb, rα). (D.45)

Next we apply the CDCC framework also for Ψ(+)
α , that is,

Ψ(+)
α (rxb, rα) ≈

∑
i

ψi
xb(rxb)χ

ii0(+)
α (rα), (D.46)

3 In principle ψi∗
xA must oscillate even in the asymptotic region. However in the frame work of the CDCC

we can reduce this oscillation with the concept that we see only the observables that is affected by ψi∗
xA with a

certain finite range of rxA.
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The x-b wave function ψi
xb satisfies(

hxb − ε
(α)
i

)
ψi
xb = 0. (D.47)

Using Eqs. (D.46) and (D.47), we obtain

Tβα =
∑
ij

Di
0

∫
drχ

jj0(−)∗
β (τ−1r)ψj

xA(r)F
i
corr(r)χ

ii0(+)
α (r), (D.48)

F i
corr(r) ≡ 1 +

ρ2i
6

2µa
ℏ2
[
U

(β)
xA (r)− U

(β)
bA (r) + U

(α)
xA (r)− U

(α)
bA (r)− ε

(α)
i

]
, (D.49)

where

Di
0 =

∫
drxbD

i
xb(rxb), (D.50)

with

Di
xb(rxb) = Vxb(rxb)ψ

i
xb(rxb). (D.51)

The integration of Eq. (D.50) can be done easily if ψi
xb is the s-wave. Otherwise we have

to do a special treatment to this integration, for example it is mentioned in Ref. [172]. ρi,
which is defined by

ρi =

√∫
drxbr

2
xbD

i
xb(rxb)√∫

drxbD
i
xb(rxb)

. (D.52)

If U (α)
xA = U

(β)
xA and U (α)

bA = U
(β)
bA , F i

corr becomes

F i
corr(r) = 1− ρ2i

6

2µa
ℏ2

εi. (D.53)

We can see from Eq. (D.53) that the elastic transfer (transfer process form the ground state
of a, that is, i = i0) increases the cross section because εi0 < 0. On the other hand, the
breakup transfer (transfer process from continuum states of a) decreases it since εi ̸=i0 > 0

(in general). It should be noted that the correction factor F i
corr depends only on i, the energy

index of the initial channel, not on j, that of the final channel.

In summarize the approximations to the potentials which we use in this framework.

1. U (γ)
bA (rα) ∼ (b/x)U

(γ)
xA (rα)

This is the assumption that the optical potential is proportional to the mass ratio.

2. U (α)
xA = U

(β)
xA

If we adopt the same x-A interaction for both initial and finial channel, the optical
potential of initial channel U (α)

xA might be real which is due to be consistent with
the final channel binding potential U (β)

xA . Therefore U (β)
xA − U

(α)
xA is canceled out

in Eq. (D.49). However if U (α)
xA ̸= U

(β)
xA , it is not trivial that the assumption of

Eq. (D.44) is reasonable or not.
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D.2.2 Application

We chose the transfer reaction 8B(d,n)9C at 14.4 MeV/nucleon, which is analyzed in
Chap. 3 to see the FR effects on the cross section. Numerical settings are mentioned in
Chap. 3.4.2. We show in Fig. D.5 the results obtained by the FR calculation (solid line), the
ZR calculation (dotted line), and the ZR calculation with the FRC described by Eqs. (D.48)
and (D.49) (dashed line). One finds the FR effect gives about 20% increase in the cross sec-
tion at θ = 0◦. The FRC works well qualitatively but not sufficient to get good agreement
with the solid line. This suggests the FR effect found in 8B(d,n)9C at 14.4 MeV/nucleon
contains a higher-order component that cannot be included in the present procedure.

The correction function F i
LEA of Eq. (D.49) is plotted in Fig. D.6; panel (a) and (b)

correspond to the real and imaginary parts of F i
LEA, respectively. It is found that F i

LEA

has a nontrivial behavior in the interior region, say, rα <∼ 6 fm. As clarified in Chap. 3,
however, the 8B(d,n)9C reaction at 14.4 MeV/nucleon is peripheral with respect to rpB
that is the same as rα in the ZR limit. Thus, the contribution of F i

LEA in the interior region
to the T matrix is expected to be very small. In this case, a simple estimation of the FR
effect based on Eq. (D.53) works well. At higher incident energies, where we have less
peripherality, the FR effect can change significantly.
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Figure D.5: Same as them in Fig. D.1 but for the 8B(d,n)9C at 14.4 MeV/nucleon de-
scribed with CCBA.
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APPENDIX E

Treatment of Spins for Transfer
Cross Section

Let’s consider the transfer reaction, a(x+b)+A→ b+B(x+A). The transfer cross section
which does not specify the z-components of particles’ spins in question must be taken an
average over the initial spin orientations and a sum over their final things. Therefore the
cross section is given by

dσ

dΩ
=

1

ŝ2aĴ
2
A

∑
maMAmbMB

µαµβ
(2πℏ2)2

kβ
kα

|T |2 , (E.1)

where µα (µβ) and kα (kβ) are the reduced mass and the wave number for the initial (final)
channel, respectively. sc or Jc is the intrinsic spins of particle c and its z-component is mc

or Mc. The transition matrix T is defined by

T =
⟨
Ψ

(−)
β

∣∣∣ V̂ ∣∣∣Ψ(+)
α

⟩
. (E.2)

Here we don’t mind whether T is the post or prior form. The total wave functions Ψ(+)
α for

the initial channel and Ψ
(+)
β for the final channel can be written by

Ψ(+)
α = Φ(a)

sama
Φ
(A)
JAMA

χ(+)
α (kα, rα), (E.3)

Ψ
(−)∗
β = Φ(b)∗

sbmb
Φ
(B)∗
JBMB

χ
(−)∗
β (kβ, rβ), (E.4)

where Φ(c) is the wave function of particle c and χ(±)
γ is the distorted wave of the γ channel.

The coordinates rα and rβ are shown in Fig. 3.2. Φ(a) and Φ(B) can be expanded with the
relative wave function of consisting particles, ψ(a) or ψ(B), respectively, that is,

Φ(a)
sama

=
∑

mxMxbmxb

(sxmxsbmb|SxbMxb) (SxbMxblxbmxb|sama)

× ψ
(a)
lxbmxb

Φ(x)
sxmx

Φ(b)
sbmb

, (E.5)

Φ
(B)
JBMB

=
∑

mxMxAmxA

(sxmxJAMA|SxAMxA) (SxAMxAlxAmxA|JBMB)

× ψ
(B)
lxAmxA

Φ(x)
sxmx

Φ
(A)
JAMA

, (E.6)

where Sxc (lxc) and Mxc (mxc) are the channel spins (relative angular momenta) between
x and c, and its z-component.
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We assume that the transition interaction V̂ dose not operate onto Φ(c), it means V̂ is
commutable to Φ(c). Using this assumption, we obtain the transition matrix by inserting
Eqs. from (E.3) to (E.6) into Eq. (E.2) as

T =
∑

mxbmxA

⟨
χ
(−)
β ψ

(B)
lxAmxA

∣∣∣ V̂ ∣∣∣ψ(a)
lxbmxb

χ(+)
α

⟩
×

∑
mxMxb
m′

xMxA

(sxmxsbmb|SxbMxb) (SxbMxblxbmxb|sama)

×
(
sxm

′
xJAMA|SxAMxA

)
(SxAMxAlxAmxA|JBMB)

×
⟨
Φ
(x)
sxm′

x
Φ(b)
sbmb

Φ
(A)
JAMA

∣∣∣Φ(x)
sxmx

Φ(b)
sbmb

Φ
(A)
JAMA

⟩
=

∑
mxbmxA

T̃mxbmxA

∑
mxMxbMxA

(sxmxsbmb|SxbMxb) (SxbMxblxbmxb|sama)

× (sxmxJAMA|SxAMxA) (SxAMxAlxAmxA|JBMB) ,

(E.7)

where

T̃mxbmxA ≡
⟨
χ
(−)
β ψ

(B)
lxAmxA

∣∣∣ V̂ ∣∣∣ψ(a)
lxbmxb

χ(+)
α

⟩
, (E.8)

and we used ⟨
Φ
(x)
sxm′

x
Φ(b)
sbmb

Φ
(A)
JAMA

∣∣∣Φ(x)
sxmx

Φ(b)
sbmb

Φ
(A)
JAMA

⟩
= δmxm′

x
. (E.9)

In order to insert Eq. (E.7) to Eq. (E.1), we have to calculate following z-component
summation,∑
maMA
mbMB

|T |2 =
∑

maMA
mbMB

∑
mxbmxA
m′

xbm
′
xA

T̃mxbmxA T̃
∗
m′

xbm
′
xA

×
∑

mxMxb
MxAm′

x
M ′

xbM
′
xA

(sxmxsbmb|SxbMxb)
(
sxm

′
xsbmb|SxbM ′

xb

)

× (SxbMxblxbmxb|sama)
(
SxbM

′
xblxbm

′
xb|sama

)
× (sxmxJAMA|SxAMxA)

(
sxm

′
xJAMA|SxAM ′

xA

)
× (SxAMxAlxAmxA|JBMB)

(
SxAM

′
xAlxAm

′
xA|JBMB

)
. (E.10)

For simplicity we assume lxb = mxb = m′
xb = 0. This would be reasonable for the case

of the s-wave dominant projectile, such as the deuteron induced transfer reaction. Then we
have

(SxbMxb00|sama) = δSxbSaδMxbma ,(
SxbM

′
xb00|sama

)
= δSxbSaδM ′

xbma
. (E.11)
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Therefore∑
mambMxbM

′
xb

(sxmxsbmb|SxbMxb)
(
sxm

′
xsbm

′
b|SxbM ′

xb

)
δSxbSaδMxbmaδM ′

xbma

=
ŝ2a
ŝ2x

∑
mamb

(sa,−masbmb|sx,−mx)
(
sa,−masbmb|sx,−m′

x

)
δSxbSa

=
ŝ2a
ŝ2x
δSxbSaδmxm′

x
. (E.12)

Using Eq. (E.12) we obtain∑
mxm′

xMA

(sxmxJAMA|SxAMxA)
(
sxm

′
xJAMA|SxAM ′

xA

)
δmxm′

x
= δMxAM ′

xA
. (E.13)

Then we can sum over remaining components∑
MxAM ′

xAMB

(SxAMxAlxAmxA|JBMB)
(
SxAM

′
xAlxAm

′
xA|JBMB

)
δSxbSaδMxbmaδMxAM ′

xA

=
Ĵ2
B

l̂2xA

∑
MxAMB

(SxAMxAJB,−MB|lxA,−mxA)
(
SxAMxAJB,−MB|lxA,−m′

xA

)
=
Ĵ2
B

l̂2xA
δmxAm′

xA
. (E.14)

Finally Eq. (E.10) becomes

∑
maMAmbMB

|T |2 =
ŝ2aĴ

2
B

ŝ2x l̂
2
xA

∑
mxA

∣∣∣T̃mxA

∣∣∣2 , (E.15)

and we obtain the cross section formula

dσ

dΩ
= S

µαµβ
(2πℏ2)2

kβ
kα

∑
mxA

∣∣∣T̃mxA

∣∣∣2 , (E.16)

S ≡
Ĵ2
B

Ĵ2
Aŝ

2
x l̂

2
xA

. (E.17)

Eq. (E.16) means that we only have to multiply the “spinless” cross section , which is
calculated with T̃mxA , by the spin factor S .
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The formulation of the transfer cross section in the plane wave limit is useful to check
the coding. In this note the projectile is assumed to be an s-wave nucleus. The degree of
spins is neglected.

F.1 Case for transfer angular momentum l=0

F.1.1 Integration over coordinates of bound state nuclei

First let’s consider the transfer angular momentum l is equal to zero. It means that the
residual nucleus B in the transfer reaction a(x + b) + A → b + B(x + A) is an s-wave
state. In the plane wave limit the transition matrix for this reaction can be written by

TPW =

∫
drxbdrxAe

−ikβ ·rβψxA(rxA)Vxb(rxb)ψxb(rxb)e
ikα·rα , (F.1)

where we assume the interaction Vxb(rxb) between x and b is scalar, and ψxc is the relative
wave function between x and c. Coordinates are shown in Fig. 3.2. kα (kβ) is the relative
wave number for the a-A (b-B) system.

If the radial parts of ψxA and Dxb = Vxbψxb are respectively expressed with Gaussian;

Dxb(rxb) =
Cb√
4π

exp(−νbr2xb), (F.2)

ψxA(rxA) =
CA√
4π

exp(−νAr2xA), (F.3)
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Eq. (F.1) can be written as

TPW =
CbCA

4π

∫
drxb exp(−νbr2xb)e−iqxb·rxb

∫
drxA exp(−νAr2xA)e−iqxA·rxA , (F.4)

qxb = c1kα − d2kβ, (F.5)

qxA = c2kα − d2kβ. (F.6)

Here we use

rα = c1rxb + c2rxA, (F.7)

rβ = d1rxb + d2rxA, (F.8)

c1 ≡ − t

qs− pt
, c2 ≡

q

qs− pt
,

d1 ≡
s

qs− pt
, d2 ≡ − p

qs− pt
. (F.9)

Coordinates Eq. (F.9) are defined by

rxA = srα + trβ, (F.10)

rxb = prα + qrβ, (F.11)

s ≡ B

x

a

a+A
, t ≡ −B

x

b

b+B
,

p ≡ a

x

A

a+A
, q ≡ −a

x

B

b+B
. (F.12)

By using the formula for the Fourier transformation of the Gaussian,∫
dx eip·xe−a(x±y)2 =

∫
dx′ eip·(x

′∓y)e−ax′2
=
(π
a

)3/2
e−p2/(4a)e∓ip·y, (F.13)

the integration in Eq. (F.4) can be done. Thus we obtain

TPW =
CbCA

4π

(
π

νb

)3/2

e−q2xb/(4νb)

(
π

νA

)3/2

e−q2xA/(4νA). (F.14)

If Dxb and ψxA is expanded by the superposition of many Gaussian bases,

Dxb(rxb) =
∑
ib

Cib√
4π

exp(−νibr
2
xb), (F.15)

ψxA(rxA) =
∑
iA

CiA√
4π

exp(−νiAr
2
xA), (F.16)

Eq. (F.14) can be written as

TPW =
1

4π

∑
ib

Cib

(
π

νib

)3/2

e−q2xb/(4νib )
∑
iA

CiA

(
π

νiA

)3/2

e−q2xA/(4νiA ). (F.17)
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F.1.2 Integration over coordinates of plane waves

Let’s convert the integration variables (rxb, rxA) into (rα, rβ) in Eq. (F.1). Eq. (F.1) is
now

TPW = J

∫
drαdrβe

−ikβ ·rβf(rα, rβ)e
ikα·rα , (F.18)

f(rα, rβ) = ψxA(rxA)Dxb(rxb)

=
CbCA

4π
e−αr2αe−βr2βeγrα·rβ . (F.19)

Here we use Eqs. (F.2) and (F.3) in Eq. (F.19) and then α, β, and γ are defined by

α = νAs
2 + νbp

2, (F.20)

β = νAt
2 + νbq

2, (F.21)

γ = −2(νAst+ νbpq) > 0. (F.22)

J is the Jacobian of the transformation from the variables (rxA, rxb) to the (rα, rβ). The
rα-integration in Eq. (F.18) can be done by the following procedure;∫

drαe
−αr2αeγrα·rβeikα·rα = eαε

2r2β

∫
drαe

−α(rα−εrβ)
2
eikα·rα

= eαε
2r2β
(π
α

)3/2
e−k2α/(4α)eiεkα·rβ , (F.23)

ε ≡ γ

2α
. (F.24)

To obtain Eq. (F.23) we use Eq. (F.13). Then we have

TPW =
J

4π
CbCA

(π
α

)3/2
e−k2α/(4α)

∫
drβe

i(εkα−kβ)·rβe−(β−ε2α)r2β

=
J

4π
CbCA

(π
α

)3/2
e−k2α/(4α)

(
π

β̄

)3/2

e−K2/(4β̄), (F.25)

K = εkα − kβ, (F.26)

β̄ = β − ε2α. (F.27)

If we adopt Eqs. (F.15) and (F.16) instead of Eqs. (F.2) and (F.3), Eq. (F.25) leads to

TPW =
J

4π

∑
ib

Cib

∑
iA

CiA

(
π

αiAib

)3/2

e−k2α/(4αiAib
)

(
π

β̄iAib

)3/2

e
−K2

iAib
/(4β̄iAib

)
,

(F.28)

KiAib = εiAibkα − kβ, (F.29)

β̄iAib = βiAib − ε2iAib
αiAib , (F.30)

εiAib ≡
γiAib

2αiAib

, (F.31)

αiAib = νiAs
2 + νibp

2, (F.32)

βiAib = νiAt
2 + νibq

2, (F.33)

γiAib = −2(νiAst+ νibpq) > 0. (F.34)



124 Appendix F. Plane Wave Limit on Transfer Reaction

To prove that Eqs. (F.17) and (F.25) are equivalent to each other, we transform some
variables. First, from the definition of β̄, Eq. (F.27), we obtain

β̄ = β − ε2α

= β − γ2

4α

= νAt
2 + νbq

2 − (νAst+ νbpq)
2

νAs2 + νbp2

=
(qs− pt)2νAνb
νAs2 + νbp2

, (F.35)

and then

αβ̄ = (qs− pt)2νAνb. (F.36)

Second, the argument of the exponential function in Eq. (F.25) can be rewritten by

k2α
α

+
K2

β̄
=

(
1

α
+
ε2

β̄

)
k2α +

1

β̄
k2β − 2

ε

β̄
kαkβ cos θ

=
νAt

2 + νbq
2

(qs− pt)2νAνb
k2α +

νAs
2 + νbp

2

(qs− pt)2νAνb
k2β

× −2(νAs
2 + νbp

2)

(qs− pt)2νAνb

−2(νAst+ νbpq)

2(νAs2 + νbp2)
kαkβ cos θ

=
1

αβ̄

(
βk2α + αk2β − γkαkβ cos θ

)
. (F.37)

By inserting Eqs. (F.36) and (F.37) into Eq. (F.25) we get

TPW =
CbCA

4π
CbCA

(
π2

νAνb

)3/2

exp

[
− 1

4αβ̄

(
βk2α + αk2β − γkαkβ cos θ

)]
. (F.38)

Here we use the property of J , a 6× 6 matrix, indicated symbolically by,

J =
∂(rxA, rxb)

∂(rα, rβ)
=

∣∣∣∣∣∂rxA
∂rα

∂rxb
∂rα

∂rxA
∂rβ

∂rxb
∂rβ

∣∣∣∣∣
3

=

∣∣∣∣s p

t q

∣∣∣∣3 = (sq − pt)3 =

[
aB

x(a+A)

]3
, (F.39)

where we do not care about sign of J because the cross section contains the only square
of J .

Next, we focus on the argument of the exponential function in Eq. (F.14). It can be
rewritten by

q2xb
νb

+
q2xA
νA

=
1

(qs− pt)2

{(
t2

νb
+
q2

νA

)
k2α +

(
s2

νb
+
p2

νA

)
k2β + 2

(
st

νb
+
pq

νA

)
kαkβ cos θ

}
=

1

αβ̄

(
βk2α + αk2β − γkαkβ cos θ

)
. (F.40)

By inserting Eq. (F.40) into Eq. (F.14), we get Eq. (F.38).
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F.2 Case for transfer angular momentum l ̸= 0

F.2.1 Integration over coordinates of bound state nuclei

Eq. (F.14) can be easily extended in the case with a finite value of l. Now we assume that
the projectile is an s-wave, and hence, the orbital angular momentum of the partial wave of
ψxA is aligned to l. Thus ψxA is expanded by

ψxA(rxA) = ϕl(rxA)Ylm(r̂xA), (F.41)

ϕl(rxA) =
∑
iA

CiAr
l
xA exp(−νiAr

2
xA), (F.42)

where m is the z-component of l. For rxA-integration in Eq. (F.1), the following formula
is useful: ∫

dx eip·xe−ax2
xlYlm(x̂) =

(π
a

)3/2( ip
2a

)l

Ylm(p̂). (F.43)

Inserting Eqs. (F.15) and from (F.41) to (F.43) into Eq. (F.1),

TPW
m =

∑
ib

Cib√
4π

(
π

νib

)3/2

e−q2xb/(4νib )

×
∑
iA

CiA

(
π

νiA

)3/2

e−q2xA/(4νiA )

(
iqxA
2νiA

)l

Ylm(q̂xA). (F.44)

The unpolarized cross section is given by

dσ

dΩ
= S

µαµβ
(2πℏ2)2

kβ
kα

∑
m

|TPW
m |2

= S
µαµβ

(2πℏ2)2
kβ
kα

l̂2

4π

×

∣∣∣∣∣∣
∑
ib

Cib√
4π

(
π

νib

)3/2

e−q2xb/(4νib )
∑
iA

CiA

(
π

νiA

)3/2

e−q2xA/(4νiA )

(
qxA
2νiA

)l
∣∣∣∣∣∣
2

,

(F.45)

S ≡

(
ĴB

ĴAŝx l̂

)2

, (F.46)

where µα (µβ) is the reduced mass of the a-A (b-B) system. In Eq. (F.45) we use

∑
m

Y ∗
lm(q̂xA)Ylm(q̂xA) =

l̂2

4π
Pl(cos 0) =

l̂2

4π
. (F.47)
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F.3 Zero-range approximation

If we adopt the zero-range (ZR) approximation,

Dxb(rxb) ∼ D0δ(rxb), (F.48)

the rxb-integration of Eq. (F.43) can be easily done:∫
drxbDxb(rxb)e

iqxb·rxb = D0. (F.49)

Here we still assume that ψxb is an s-wave state. Then Eq. (F.44) and Eq.(F.45), respec-
tively, become

TPW
m = D0

∑
iA

CiA

(
π

νiA

)3/2

e−q2xA/(4νiA )

(
iqxA
2νiA

)l

Ylm(q̂xA), (F.50)

dσ

dΩ
= S

µαµβ
(2πℏ2)2

kβ
kα

l̂2

4π
D2

0

∣∣∣∣∣∣
∑
iA

CiA

(
π

νiA

)3/2

e−q2xA/(4νiA )

(
qxA
2νiA

)l
∣∣∣∣∣∣
2

. (F.51)

In the ZR approximation if we formulate the T matrix by integrating over only the
angular part of rxA, it is useful to estimate the numerical convergence of the radial integra-
tion of the overlap function such as Eq. (C.35). In the ZR limit the transition matrix with
remaining the rxA-integration is given by

TPW
m = D0

∫
drxA

∑
iA

CiAr
l
xA exp(−νxAr2xA)Ylm(r̂xA)e

−iqxA·rxA . (F.52)

By expanding the plane wave e−iqxA·rxA with Rayleigh formula,

e−iqxA·rxA = 4π
∑
LM

(−)LiLjL(qxArxA)Y
∗
LM (r̂xA)Y

∗
LM (q̂xA), (F.53)

we can easily derive the formula. Here jL(qxArxA) is the spherical Bessel function. From
Eqs. (F.53) and (F.52), we have

TPW
m = D0

∫ ∞

0
drxAr

2
xA

∑
iA

CiAr
l
xA exp(−νxAr2xA)4π

∑
LM

(−)LiLjL(qxArxA)Y
∗
LM (q̂xA)

×
∫
dr̂xAY

∗
LM (r̂xA)Ylm(r̂xA)

= 4πD0(−)lil
∑
iA

CiA

∫ ∞

0
drxAr

l+2
xA exp(−νxAr2xA)jL(qxArxA)Y ∗

LM (q̂xA).

(F.54)

To obtain Eq. (F.55) we use the orthogonal condition of the spherical harmonics,∫
dr̂xAY

∗
LM (r̂xA)Ylm(r̂xA) = δLlδMm. (F.55)
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Thus the cross section is given by

dσ

dΩ
= 4πS

µαµβ
(2πℏ2)2

kβ
kα
l̂2D2

0

∣∣∣∣∣∣
∑
iA

CiA

∫ ∞

0
drxAr

l+2
xA exp(−νxAr2xA)jL(qxArxA)

∣∣∣∣∣∣
2

.

(F.56)

As an example, we compare the cross sections calculated by Eqs. (F.51) and (F.56) for
the 8B(d,n)9C reaction at 14.4 MeV/nucleon. In fig. F.1 the thick solid line shows the cross
section calculated with Eq. (F.51). The dashed and the dotted lines correspond the result
obtained from Eq. (F.56) by integrating over rxA up to 25.0 and 15.0 fm, respectively. The
dashed line reproduces well the thick solid line. However the difference between the thick
solid line and the dotted line is appreciable at forward angle in the linear scale. While
one sees the oscillation of the dotted line at backward angle in the logarithmic scale. This
suggests that the radial integration of Eq. (F.56) converge with the maximum value of rxA
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Figure F.1: The transfer cross section of 8B(d,n)9C reaction at 14.4 MeV/nucleon when
we switch off any distorting potentials in the ZR limit. Thick solid line is the result obtained
from Eq. (F.51). The dashed (dotted) line shows the cross section calculated with Eq. (F.56)
by integrating over rxA up to 25.0 (15.0) fm. If we numerically integrate the overlap
function of Eq. (C.35), the thick solid line is obtained. In the small window the results in
the logarithmic scale are shown.



128 Appendix F. Plane Wave Limit on Transfer Reaction

of 25.0 fm. If we calculate the cross section from Eq. (C.35), where it is integrated over
rxA up to 25.0 fm without any distorted potentials, the thin solid line is obtained, which
is identical with the thick solid line. Thus, Eq. (F.56) is useful to naively understand how
large the model space describes the system.
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G.1 Formulation

Let us consider the stripping reaction a(x + b) + A → b + B(x + A). For simplicity we
ignore all of the intrinsic spins of each particle and all of the Coulomb interactions for the
subsystems x-A, b-A, and b-B. Here we discuss the adiabatic (AD) approximation to the
wave function Ψ

(+)
β in the final channel on the reaction. Following Ref. [177], Ψ(+)

β with

the AD approximation, that is, ΨAD(+)
β can be described by

Ψ
AD(+)
β (rxA, rβ) = χ̃

AD(+)
β (rbA)ψxA(rxA) exp (−iαkβ · rxA) , (G.1)

α ≡ mx

mB
, (G.2)

where the coordinates are shown in Fig. 3.2 and the relative wave number kβ is calculated
from the outgoing energy of the system. The wave function ψxA describes the relative
motion of the x-A system and mX is the mass of the particle X . The b-B distorted wave
χ̃
AD(+)
β satisfies[

ℏ2

2µβ
∇2

rβ
+ UbA(rbA)− (E − εxA)

]
χ̃
AD(+)
β (rbA) = 0, (G.3)

with the boundary condition

χ̃
AD(+)
β (rbA)

asymp.−−−−→ exp (iαkβ · rbA) + (outgoing wave). (G.4)

Here µβ is the reduced mass of the b-B system and the optical potential UbA between b
and A describes the distortion of the system. Owing to the AD approximation, the internal
Hamiltonian hxA in the Schrödinger equation is replaced by the ground state energy εxA
of the residual nucleus B. The total energy is expressed by E.
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If we adopt the zero-range (ZR) approximation expressed by Chap. 3 and Appx.D, the
coordinates become

rbA
ZR−−→ rxA, (G.5)

rβ
ZR−−→ µrxA, (G.6)

whereµ = mA/mB . Thus, within the ZR limit, we have

Ψ
AD(+)
β (rxA, rβ)

ZR−−→ χ̃
AD(+)
β (rxA)ψxA(rxA) exp (−iαkβ · rxA) ,

≡ Ψ
ZRAD(+)
β (rxA). (G.7)

One easily finds that the AD wave function with the ZR approximation has the proper
asymptotic form, i.e., the plane wave regarding the coordinate rβ;

Ψ
ZRAD(+)
β (rxA)

asymp.−−−−→ exp (ikβ · rxA)ψxA(rxA) exp (−iαkβ · rxA) + (outgoing wave),

= exp (iµkβ · rxA)ψxA(rxA) + (outgoing wave). (G.8)

From here, we discuss the partial wave expansion of ΨZRAD(+)
β . First, we expand the

distorted wave χ̃AD(+)
β as

χ̃
AD(+)
β (rxA) =

4π

kβrxA

∑
L

(−)LiLL̂χL(kβ, rxA)
[
YL

(
k̂β

)
⊗ YL (r̂xA)

]
00
. (G.9)

Similarly the plane wave in Eq. (G.7) is expanded by following the Rayleigh’s relation as

exp (−iαkβ · rxA) = 4π
∑
L′

iL
′
L̂′jL′(αkβrxA)

[
YL′

(
k̂β

)
⊗ YL′ (r̂xA)

]
00
, (G.10)

where jL′ is the spherical Bessel function. Thus we obtain

Ψ
ZRAD(+)
β (rxA) = ψxA(rxA)

4π

kβrxA

∑
L

(−)LiLL̂χL(kβ, rxA)
[
YL

(
k̂β

)
⊗ YL (r̂xA)

]
00

× 4π
∑
L′

iL
′
L̂′jL′(αkβrxA)

[
YL′

(
k̂β

)
⊗ YL′ (r̂xA)

]
00

= ψxA(rxA)
4π

kβrxA

∑
LL′

(−)LiL+L′
L̂2L̂′2χL(kβ, rxA)jL′(αkβrxA)

×
∑
λµ

1

λ̂
(λ,−µλµ|00)

(
L0L′0|λ0

) (
L0L′0|λ0

)
× Yλ,−µ

(
k̂β

)
Yλµ (r̂xA) . (G.11)
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Here we used the following relations;[
YL

(
k̂β

)
⊗ YL (r̂xA)

]
00

[
YL′

(
k̂β

)
⊗ YL′ (r̂xA)

]
00

=
[[
YL

(
k̂β

)
⊗ YL (r̂xA)

]
0
⊗
[
YL′

(
k̂β

)
⊗ YL′ (r̂xA)

]
0

]
00

=
∑
λ

λ̂2


L L 0

L′ L′ 0

λ λ 0

[[YL (k̂β

)
⊗ YL′

(
k̂β

)]
λ
⊗ [YL (r̂xA)⊗ YL′ (r̂xA)]λ

]
00

=
∑
λµ

λ̂

L̂L̂′
(λ,−µλµ|00)

[
YL

(
k̂β

)
⊗ YL′

(
k̂β

)]
λ,−µ

[YL (r̂xA)⊗ YL′ (r̂xA)]λµ ,

(G.12)[
YL

(
k̂β

)
⊗ YL′

(
k̂β

)]
λ,−µ

=
L̂L̂′
√
4πλ̂

(
L0L′0|λ0

)
Yλ,−µ

(
k̂β

)
, (G.13)

[YL (r̂xA)⊗ YL′ (r̂xA)]λµ =
L̂L̂′
√
4πλ̂

(
L0L′0|λ0

)
Yλµ (r̂xA) . (G.14)

Now we have the relation

(λ,−µλµ|00)Yλ,−µ

(
k̂β

)
=

(−)λ

λ̂
Y ∗
λµ

(
k̂β

)
, (G.15)

the wave function becomes

Ψ
ZRAD(+)
β (rxA) = ψxA(rxA)

4π

kβrxA

∑
λµ

∑
LL′

(−)L+λiL+L′ L̂2L̂′2

λ̂2

(
L0L′0|λ0

)2
× χL(kβ, rxA)jL′(αkβrxA)Y

∗
λµ

(
k̂β

)
Yλµ (r̂xA) .

(G.16)

When the arguments λ, µ, L, and L′ regarding the summations are replaced into

(λ, µ) → (L,M) , (G.17)

L′ → λ, (G.18)

L→ L′, (G.19)

Eq. (G.16) can be written as

Ψ
ZRAD(+)
β (rxA) = ψxA(rxA)

4π

kβrxA

∑
LM

∑
λL′

(−)L+L′
iλ+L′ L̂′2λ̂2

L̂2

(
L′0λ0|L0

)2
× χL′(kβ, rxA)jλ(αkβrxA)Y

∗
LM

(
k̂β

)
YLM (r̂xA) .

(G.20)

Meanwhile, ΨZRAD(+)
β can be straightforwardly expanded as

Ψ
ZRAD(+)
β (rxA) = ψxA(rxA)

4π

kβrxA

∑
LM

iLχ̃L(kβ, rxA)Y
∗
LM

(
k̂β

)
YLM (r̂xA) . (G.21)
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Therefore, by comparing Eqs. (G.20) and (G.21), the partial wave χ̃L′ , which should be
adopted in the AD approximation, is explicitly written down by

χ̃L(kβ, rxA) =
∑
λL′

(−)L+L′
iλ+L′−L L̂

′2λ̂2

L̂2

(
L′0λ0|L0

)2
χL′(kβ, rxA)jλ(αkβrxA)

=
∑
λL′

(−)L+L′
iλ+L′−Lλ̂2

(
L0λ0|L′0

)2
χL′(kβ, rxA)jλ(αkβrxA)

=
∑
λ

λ̂2jλ(αkβrxA)
∑
L′

(−)(L
′−L−λ)/2

(
L0λ0|L′0

)2
χL′(kβ, rxA),

(G.22)

where we used the property thatL+λ+L′ is even, which is ensured by the Clebsch-Gordan
coefficient. The maximum value of L′ is determined from L if the maximum value of λ is
given. Thus the range of the summation over λ has to be determined from the convergence
of the cross section.

Note that, in Eq. (G.22), one finds the argument (kβ, rxA) of χ̃L and χL′ is different
from that in the usual ZR approximation, (kβ, µrxA) as shown in Eq. (3.93). Due to this
vanishing of the factor µ from the argument, χ̃L must be normalized with multiplying by
µ so that it has a proper asymptotic form.

Also it should be noted that, if there is the Coulomb interaction, in order to obtain
Eq. (G.22), the Coulomb interaction between x and b has to be replaced by that between
b and A. Because the validity of this prescription is not ensured, we have to be careful
to adopt the present procedure for the charged particle system. If there is no Coulomb
interaction in the final channel, for instance, the (d, n) reaction, it is expected to work well
within the ZR approximation.

G.2 Application

As an application, we chose the 8B(d,n)9C reaction at 14.4 MeV/nucleon. The numerical
setups are same as that mentioned in Sec. 3.4.2. In this calculation we adopt the ZR approx-
imation. The breakup effects of d in the initial channel are explicitly taken into account
by means of CDCC as described in Chap. 3. On the other hand, them of 9C in the final
channel are treated with some procedures. The solid line in Fig. G.1 is the ZR-CCBA result
with adopting CDCC as well as the initial channel. This result is same as the dotted line
in Fig. D.5. The dashed line is the result obtained from the conventional AD approxima-
tion, or so-called the Johnson-Soper (JS) approximation [128–132]. The good agreement
between the solid and dashed lines are already mentioned in Chap. 3 even though it is the
finite-range (FR) case there. On the other hand, the dotted line, which is obtained from
the AD approximation proposed by Timofeyuk and Johnson [177], i.e., formulated in this
Appendix, is about 50% larger than the solid line at 0◦. For the calculate Eq. (G.22), λ
is taken up to 11. Though more detailed analysis is needed to clarify this discrepancy, it
can be said that the Timofeyuk-Johnson AD approximation seems to excessively take into
account the breakup effects of 9C in the transfer reaction compared to the conventional AD
approximation.
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H.1 Energy shift

In usual theoretical approach with the three-body (p+n+A) model for the transfer reaction
A(d,p)B, the d-A optical potential is assumed as a sum of neutron and proton optical
potentials taken at energy

EN =
Ed

2
. (H.1)

Here EN is the energy of a nucleon optical potential in the c.m. frame and Ed is the
deuteron incident energy in the c.m. frame. Equation (H.1) stands for that the nucleons
in deuteron are equally sharing the energy. However, the legitimacy of this assumption
has not yet been ensured. Instead of explicitly treating the energy dependence of nucleon
optical potentials, a non-local N -A potential can be alternative.

It is not easy to use non-local potentials, the prescription of the treatment of the non-
locality was proposed [124–126] for the so-called equivalent local potential. Following
Refs. [124–126], the non-locality can be easily treated by taking the energy EN as

EN =
Ed

2
+ ∆E, (H.2)

where the energy shift ∆E is defined by

∆E =
1

2
⟨Tpn⟩ , (H.3)

⟨Tpn⟩ =
ℏ2

MN

∫
drϕ1(r)∇2

rϕ0(r). (H.4)
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Here the MN is the nucleon mass and ϕ0 is the p-n relative wave function in the ground
state of deuteron. The relative distance between nucleons is represented by r and ϕ1 is
defined with the p-n interaction Vpn;

ϕ1(r) =
Vpn(r)ϕ0(r)

⟨ϕ0 |Vpn|ϕ0⟩
. (H.5)

The wave function ϕ0 satisfies the Schrödinger equation[
ℏ2

2µ
∇2

r + Vpn(r)− ε0

]
ϕ0(r) = 0, (H.6)

where µ = M2
N/(2MN ) and ε0 = −2.22 MeV is the ground state energy of deuteron.

Equation (H.4) stands for the expectation value of the p-n kinetic energy Tpn = ℏ2
2µ∇

2
r

averaged over the range of Vpn. The energy shift ∆E must be positive that is ensured by
Eq. (H.3). It means that the nucleon energy EN always becomes higher than original one.
Therefore the real part of nucleon optical potentials goes shallow and it effectively contains
the effect that the potential becomes shallower due to the non-locality.

By using Eqs. (H.5) and (H.6), ⟨Tpn⟩ becomes

⟨Tpn⟩ =
ℏ2

MN

∫
drϕ1(r)

2µ

ℏ2
[ε0 − Vpn(r)]ϕ0(r)

=
2µ

MN

[
ε0

⟨ϕ0 |Vpn|ϕ0⟩
⟨ϕ0 |Vpn|ϕ0⟩

−
⟨
ϕ0
∣∣V 2

pn

∣∣ϕ0⟩
⟨ϕ0 |Vpn|ϕ0⟩

]
= ε0 −

⟨
V 2
pn

⟩
, (H.7)⟨

V 2
pn

⟩
≡ ⟨ϕ1 |Vpn|ϕ0⟩

=

⟨
ϕ0
∣∣V 2

pn

∣∣ϕ0⟩
⟨ϕ0 |Vpn|ϕ0⟩

< 0. (H.8)

Here we used 2µ
MN

=
2M2

N/(2MN )
MN

= 1. One sees, from Eqs. (H.7) and (H.8), that the
energy shift ∆E can be calculated if the deuteron model, i.e., Vpn and ϕ0, is determined.

H.2 Specific model of deuteron

H.2.1 Hultén potential

As a simple model of deuteron, the Hultén potential [178] is often used. In this model Vpn
is given by

Vpn(r) = − V
(H)
0

e(γ−κ)r − 1
, (H.9)

V
(H)
0 =

ℏ2

2µ

(
γ2 − κ2

)
, (H.10)
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where κ = 0.232 fm−1 and γ = 6.255κ. Using this potential, the wave function ϕ0 is
analytically obtained as

ϕ0(r) =
u0(r)

r
Y00 (r̂) , (H.11)

u0(r) = N
(
e−κr − e−γr

)
, (H.12)

N =

√
2κγ (κ+ γ)

γ − κ
. (H.13)

Then the energy shift can be analytically calculated;

⟨ϕ0 |Vpn|ϕ0⟩ = 4π

∫
drr2ϕ0(r)Vpn(r)ϕ0(r)

=

∫
dru20(r)Vpn(r)

= − ℏ2

2µ
κ (κ+ γ) , (H.14)

⟨
V 2
pn

⟩
=

∫
dru20(r)V

2
pn(r)

⟨ϕ0 |Vpn|ϕ0⟩

=

(
NV

(H)
0

)2
⟨ϕ0 |Vpn|ϕ0⟩

∫ ∞

0
dre−2γr

=
ℏ2

2µ
(γ + κ)2 , (H.15)

⟨Tpn⟩ = ε0 −
ℏ2

2µ
(γ + κ)2 . (H.16)

Thus we have

∆E =
1

2

(
ε0 −

ℏ2

2µ
(γ + κ)2

)
∼ 57 MeV. (H.17)

H.2.2 Ohmura potential and Gaussian basis functions

If we adopt the Ohmura potential [122],

Vpn(r) = −V (O)
0 e

−
(

r
r0

)2

, (H.18)

V
(O)
0 = 72.15 MeV, r0 = 1.484 fm, it is convenient to expand ϕ0 in terms of the Gaussian

basis functions;

ϕ0(r) =
u0(r)

r
Y00 (r̂) , (H.19)

u0(r) =
∑
i

Cire
−µir

2
, (H.20)
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Figure H.1: Nucleon optical potential of the d-8B system for (a) the real and (b) imaginary
parts at 29.3 MeV for proton (solid line) and neutron (dashed line), and 11.5 MeV for
proton (dotted line) and neutron (dash-dotted line).

where we assumed that ϕ0 is the s-wave. How to calculate the expansion coefficients Ci is
shown in Appx. J.

Now, because every functions are written with Gaussian functions, the energy shift can
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be calculated analytically;

⟨ϕ0 |Vpn|ϕ0⟩ = 4π

∫
drr2ϕ0(r)Vpn(r)ϕ0(r)

=

∫
dru20(r)Vpn(r)

= −V (O)
0

∑
ij

CiCj

∫ ∞

0
drr2 exp

[
−
(
µi + µj +

1

r0

)
r2
]

= −
√
π

4
V

(O)
0

∑
ij

CiCj(
µi + µj +

1
r0

)3/2 , (H.21)

⟨
V 2
pn

⟩
=

∫
dru20(r)V

2
pn(r)

⟨ϕ0 |Vpn|ϕ0⟩

=

(
V

(O)
0

)2
⟨ϕ0 |Vpn|ϕ0⟩

∑
ij

CiCj

∫ ∞

0
drr2 exp

[
−
(
µi + µj +

2

r0

)
r2
]

=

√
π

4

(
V

(O)
0

)2
⟨ϕ0 |Vpn|ϕ0⟩

∑
ij

CiCj(
µi + µj +

2
r0

)3/2 , (H.22)

When we use setups shown in Sec. 3.4.2, the energy shift ∆E is calculated to be 17.8 MeV.
The effects of this energy shift on the potential is shown in Fig. H.1 for the
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Figure H.2: Non-locality of the nucleon-8B potential for the 8B(d,n)9C reaction at
14.4 MeV/nucleon. The cross section calculated with the equivalent local potential ob-
tained from the present prescription (solid line), the conventional procedure (dashed line),
and the local potential without the non-local correction (dotted line) are shown.
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nucleon-8B system at 14.4 MeV/nucleon in the laboratory frame, which corresponds to
11.5 MeV/nucleon in the c.m. frame. The parameters of the local optical potential are
taken from Ref. [123]. As we can see in Fig. H.1(a), the real parts of the energy-shifted po-
tentials for proton (solid line) and neutron (dashed line) are going to be shallow compared
to them at original energy of 11.5 MeV of the former (dotted line) and the latter (dash-
dotted line). Whereas the behavior of the imaginary parts of them shown in Fig. H.1(b) is
opposite.

Thus these tendency of the potentials is expected to decrease the elastic cross section
and also the transfer cross section since the amplitude of the distorted wave, which is gener-
ated by these energy-shifted potentials, become smaller compared with that by the default
ones. In fact, as shown in Fig. H.2, the transfer cross section of the 8B(d,n)9C reaction
calculated with the equivalent local potential obtained from the present prescription (solid
line) is about 12% smaller than the result without the non-local correction (dotted line), in
which no energy-shift is adopted. Note that these calculation is based on CCBA described
in Chap. 3, i.e., the breakup effects of d and 9C are explicitly taken into account by means
of the CDCC method.

Conventionally the Perey factor fNL [127] defined by

fNL(rα) =

[
1− µβ2

2ℏ2
UL(rα)

]−1/2

(H.23)

has been used for the non-local correction by multiplying distorted waves by fNL. Here
UL is the energy-dependent local potential and the non-local parameter β = 0.85 fm for
nucleon and 0.54 fm for deuteron is often used. The coordinate rα is the relative distance
between d and 8B. Since, fNL is less than unity only in the range of UL, the amplitude
of distorted waves with fNL becomes small in the interior region. In CDCC, there has
not been established well how to calculate the Perey factor, that is, it is not trivial what
we should adopt as UL. In the present work, fNL is calculated with UL assumed by the
coupling potential in the ground state of d;

UL(rα) ≈ ⟨ϕ0 |Up + Un|ϕ0⟩ , (H.24)

where we adopt the N -8B optical potential [123] as UN and β = 0.54 fm. The cross
section calculated with the Perey factor is shown by the dashed line in Fig. H.2. In the
present system, the non-local effects described by the Perey factor is found to be small.
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I.1 Reduced modified Bessel function

Let us consider a Gaussian function f(r) defined by

f(r) = e−νr2 , (I.1)

where ν is the range of Gaussian. If the argument r is expressed by

r = ax+ by, (I.2)

Eq. (I.1) is rewritten as

f(r) = e−ν(ax+by)2

= e−νa2x2
e−νb2y2e−2νabx·y. (I.3)

The factor e−2νabx·y can be expanded by using the modified Bessel function iL as follows,

e−2νabx·y =
∑
L

(−)LL̂2iL(z)PL(w), (I.4)

z ≡ 2νabxy, (I.5)

where PL is the Legendre polynomial and w = cos(θ) with the angle θ between x and y.
Eqs. (I.3) and (I.4) correspond to Eqs. (C.8) and (C.12), respectively.

In the subroutine BESSI [171], the “reduced” modified Bessel function ĩL is calculated
instead of iL in order to eliminate divergence, which appears in a process of calculation of
iL. Here ĩL is defined by

ĩL(z) ≡ (−)LiL(z)e
−z. (I.6)
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Then Eq. (I.4) becomes

e−2νabx·y = ez
∑
L

L̂2ĩL(z)PL(w). (I.7)

Thus we have

f(r) = e−νa2x2
e−νb2y2ez

∑
L

L̂2ĩL(z)PL(w)

= e−ν(ax−by)2
∑
L

L̂2ĩL(z)PL(w). (I.8)

I.2 Asymptotic form

The modified Bessel function iL is defined by

iL(z) ≡ (−)LjL(iz) for z ∈ R, (I.9)

where jL is the spherical Bessel function, which has the asymptotic form,

jL(z) →
1

z
sin

(
z − πL

2

)
. (I.10)

We extend this asymptotic form to the complex value:

jL(z) →
1

z2i

[
ei(z−

πL
2 ) − e−i(z−πL

2 )
]
. (I.11)

Thus we obtain

iL(z) → (−)L
1

iz2i

[
ei(iz−

πL
2 ) − e−i(iz−πL

2 )
]

=
1

2z

[
ez − (−)Le−z

]
. (I.12)

For the reduced modified Bessel function, its asymptotic form is given by

ĩL(z) → (−)L
1

2z

[
ez − (−)Le−z

]
e−z

=
1

2z

[
(−)L − e−2z

]
. (I.13)

One sees that in Eq. (I.13), L only acts as the parity factor (−)L.
Note that by a numerical test it is found that the accuracy of the asymptotic form of

Eq. (I.13) depends on L and it goes worse as L increases. For example when L = 10 and
z = 2000, the ambiguity of Eq. (I.13) is about 3%. In Eq. (C.24) we calculate

ĩL(z) = ĩL(γrαrβ) (I.14)

by using the definition Eq. (I.6) up to z ≤ 1000, and for z greater than 1000, Eq. (I.13)
is adopted in our CCBA code named FRANTIC. It should be noted that typically γ has a
value in the range of 0.1 fm2 < γ < 100 fm2. We evaluate the accuracy of Eq. (I.13) on
the cross section of the 28Si(d,p)29Si reaction at 18.75 MeV is at most less than 1% at 0◦ of
the emitting angle of p. For this reaction, the integration in for the T matrix is performed
over both rα and rβ up to 15.0 fm. The maximum value 15 ℏ of L is adopted. Therefore
for the cross section, it does not matter the accuracy of the asymptotic form Eq. (I.13).



APPENDIX J

Gaussian Expansion Method

As discussed in Chaps. 2 and 3, a wave function is expanded with Gaussian basis functions.
Here the details of the procedure for the expansion are given. We consider any function
f(r) defined for r ≥ 0, and expand it with the real Gaussian basis of n the number of the
bases;

f(r) =

n∑
i

ciNir
l exp

[
−νir2

]
. (J.1)

Here νi = 1/ρ2i and the range ρi of the Gaussian is given by the geometric series,

ρi = ρmina
i−1, (J.2)

a =

(
ρmax

ρmin

)1/(n−1)

, (J.3)

where ρmin (ρmax) stands for the first (final) term of the series. If f(r) is the radial function
of a partial wave with an orbital angular momentum l, f(r) behaves f(r) ∼ rl around
r ∼ 0. The factor rl is introduced so that the behavior of f(r) around r ∼ 0 is reproduced.
Each ith basis function is normalized to unity as∫ (

Nir
l exp

[
−νir2

])2
r2dr = 1. (J.4)

The integration in the left-hand-side of Eq. (J.4) can be done by using the Gauss integration;∫ (
Nir

l exp
[
−νir2

])2
r2dr = N2

i

∫
r2(l+1) exp

[
−νir2

]
r2dr

= N2
i

(2l + 1)!!

2l+2

√
π

(2νi)
2l+3

. (J.5)

Thus the normalization coefficient Ni is given by

Ni =

√
2l+2

(2l + 1)!!

(
(2νi)

2l+3

π

)1/4

. (J.6)
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The expansion coefficient ci is obtained as follows. If we integrate Eq. (J.1) with mul-
tiplied by Njr

l exp
[
−νjr2

]
over r, we have∫

f(r)Njr
l exp

[
−νr2

]
r2dr =

∑
i

ciNiNj

∫
r2(l+1) exp

[
− (νi + νj) r

2
]

=
∑
i

ciNiNj
(2l + 1)!!

2l+2

√
π

(νi + νj)
2l+3

=
∑
i

ci

(
2
√
νiνj

νi + νj

)(2l+3)/2

. (J.7)

Thus ci is obtained as a solution of the simultaneous equation(
Aij

)(
ci

)
=

(
Bi

)
, (J.8)

where Aij and Bj are given by

Aij =

(
2
√
νiνj

νi + νj

)(2l+3)/2

(J.9)

Bi =

∫
f(r)Nir

l exp
[
−νir2

]
r2dr. (J.10)
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Angular momentum algebra is summarized here. Reference [179] is helpful for the
algebra.

K.1 Spherical harmonics and related functions

K.1.1 Definition

The spherical harmonics Ylm(θ, ϕ), which are components of some irreducible tensor of
rank l, are defined by the commutation relations

[Lµ, Ylm(θ, ϕ)] =
√
l(l + 1) (lm1µ|l,m+ µ)Ylm(θ, ϕ), (K.1)

where Lµ (µ = ±1, 0) is a spherical component of the angular momentum operator L and
it is defined by

L1 = − 1√
2
eiϕ
{
∂

∂θ
+ i cot θ

∂

∂ϕ

}
, (K.2)

L0 = −i ∂
∂ϕ
, (K.3)

L−1 = − 1√
2
eiϕ
{
∂

∂θ
− i cot θ

∂

∂ϕ

}
. (K.4)

Three commutation relations for each µ generate

L±1Ylm(θ, ϕ) = ∓
√
l(l + 1)−m(m± 1)

2
Yl,m±1(θ, ϕ) (K.5)

L0Ylm(θ, ϕ) = mYlm(θ, ϕ) (K.6)
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K.1.2 Deferential equations

The spherical harmonics Ylm(θ, ϕ) is the eigenfunction of the operators L and Lz as fol-
lows;

L2Ylm(θ, ϕ) = l(l + 1)ℏ2Ylm(θ, ϕ), (K.7)

LzYlm(θ, ϕ) = mℏYlm(θ, ϕ). (K.8)

Thus, Ylm(θ, ϕ) satisfies[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
+ l(l + 1)

]
Ylm(θ, ϕ) = 0, (K.9)

[
i
∂

∂ϕ
+m

]
Ylm(θ, ϕ) = 0. (K.10)

K.1.3 Orthonormality

∫ 2π

0
dϕ

∫ π

0
dθ sin θY ∗

lm(θ, ϕ)Yl′m′(θ, ϕ) = δll′δmm′ , (K.11)∑
lm

Y ∗
lm(θ′, ϕ′)Ylm(θ, ϕ) = δ(θ′ − θ)δ(ϕ′ − ϕ). (K.12)

K.1.4 Phase

In this thesis, we chose the phase of Y ∗
lm(θ, ϕ) as 1

Y ∗
lm(θ, ϕ) = Ylm(θ,−ϕ) = (−)mYl,−m(θ, ϕ). (K.15)

K.1.5 Symmetric properties

1. Replacement θ → π − θ and ϕ = π + ϕ

Ylm(π − θ, ϕ) = (−)l−mYlm(θ, ϕ), (K.16)

Ylm(θ, π + ϕ) = (−)mYlm(θ, ϕ), (K.17)

Ylm(π − θ, π + ϕ) = (−)lYlm(θ, ϕ). (K.18)

1 Note that another phase convention is sometimes adopted in other paper;

Ỹlm(θ, ϕ) = ilYlm(θ, ϕ), (K.13)

Ỹ ∗
lm(θ, ϕ) = (−)l+mYl,−m(θ, ϕ). (K.14)
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2. Change of argument sign

Ylm(−θ, ϕ) = (−)mYlm(θ, ϕ), (K.19)

Ylm(θ,−ϕ) = (−)mYl,−m(θ, ϕ), (K.20)

Ylm(−θ,−ϕ) = Yl,−m(θ, ϕ). (K.21)

3. The periodicity in θ and ϕ

Ylm(θ ± nπ, ϕ) =

{
(−)lYlm(θ, ϕ) if n is odd,

Ylm(θ, ϕ) if n is even,
(K.22)

Ylm(θ, ϕ± nπ) =

{
(−)mYlm(θ, ϕ) if n is odd,

Ylm(θ, ϕ) if n is even.
(K.23)

K.1.6 Useful relations

∫
dΩYl1m1(Ω)Yl2m2(Ω)Y

∗
l3m4

(Ω) =
1√
4π

l̂1 l̂2

l̂3
(l1m1l2m2|l3m3) (l10l20|l30) . (K.24)

[Yl1(Ω)⊗ Yl2(Ω)]LM ≡
∑
m1m2

(l1m1l2m2|LM)Yl1m1(Ω)Yl2m2(Ω)

=
1√
4π

l̂1 l̂2

L̂
(l10l20|L0)YLM (Ω). (K.25)∫

dΩ [Yl1(Ω)⊗ Yl2(Ω)]LM = (−)l1 l̂1δl1l2δL0δM0. (K.26)

Ylm(Ω)Yl′m′(Ω) =
l̂l̂′√
4π

∑
k

(
l′0l0|k0

) (
l′m′lm|k,m′ +m

) 1
k̂
Yk,m′+m(Ω).

(K.27)

Yll(Ω) = (−)l
√

(2l + 1)!

2

1

2ll!
sinl θ

1√
2π
eilϕ. (K.28)

Ylm(0, ϕ) =
l̂√
4π
δm0. (K.29)

rlYlm(r̂) =

l∑
λ=0

√
4π

λ̂

√
2l+1C2λ(ax)

l−λ(by)λ [Yl−λ(x̂)⊗ Yλ(ŷ)]lm , (K.30)

r = ax+ by, (K.31)

2l+1C2λ =
(2l + 1)!

(2l + 1− 2λ)!(2λ)!
. (K.32)

where Ω ≡ r̂ ≡ (θ, ϕ). Note that, in this thesis, the “hat” on the angular momentum stands
for

L̂ =
√
2L+ 1. (K.33)
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K.1.7 Relations with other functions

1. Legendre polynomial Pl(w) (w ≡ cos θ)

Yl0(Ω) =
l̂√
4π
Pl(w). (K.34)∫ 1

−1
Pl(w)Pl′(w)dw =

2

l̂2
δll′ . (K.35)

∑
l

l̂2

2
Pl(w)Pl(w

′) = δ(w − w′), w′ ≡ cos θ′, (K.36)

Pl(w12) =
4π

l̂2

∑
m

Y ∗
lm(r̂1)Ylm(r̂2)

=
4π

l̂2

∑
m

Ylm(r̂1)Y
∗
lm(r̂2)

=
4π

l̂
(−)l [Yl(r̂1)⊗ Yl(r̂2)]00 , (K.37)

where w12 ≡ cos θ12 with the angle θ12 between two vectors r1 and r2.

2. Legendre function Plm(w)

Ylm(Ω) = (−)(|m|+m)/2

√
l̂2

4π

(l − |m|)!
(l + |m|)!

Plm(w)eimϕ. (K.38)

Plm(w) = (1− w2)|m|/2 d|m|

dw|m|Pl(w). (K.39)

Pl,−m(w) = Plm(w). (K.40)

Pl0(w) = Pl(w). (K.41)∫ 1

−1
Plm(w)Pl′mdw =

2

l̂2
(l − |m|)!
(l + |m|)!

δll′ . (K.42)
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K.1.8 Explicit forms

1. The spherical harmonics

Y00(Ω) =
1√
4π
. (K.43)

Y10(Ω) =

√
3

4π
cos θ, Y1±1(Ω) = ∓

√
3

8π
sin θe±iϕ. (K.44)

Y20(Ω) =

√
15

16π

(
3 cos3 θ − 1

)
, Y2±1(Ω) = ∓

√
15

8π
sin θ cos θe±iϕ,

Y2±2(Ω) =

√
15

32π
sin2 θe±2iϕ. (K.45)

Y30(Ω) =

√
7

16π
cos θ

(
5 cos2 θ − 3 cos θ

)
,

Y3±1(Ω) = ∓
√

21

64π
sin θ

(
5 cos2 θ − 1

)
e±iϕ,

Y3±2(Ω) =

√
105

32π
sin2 θ cos θe±2iϕ, Y3±3(Ω) = ∓

√
35

64π
sin3 θe±3iϕ. (K.46)

2. The Legendre polynomial

P0(w) = 1, P1(w) = w, P2(w) =
3

2
w2 − 1

2
, P3(w) =

5

2
w3 − 3

2
w. (K.47)

Pl(1) = 1, Pl(−w) = (−)lPl(w). (K.48)

P2n−1(0) = 0, n = 1, 2, 3, · · · , (K.49)

P2n(0) = (−)n
(2n− 1)!!

(2n)!!
, n = 1, 2, 3, · · · . (K.50)

3. The Legendre function

Pl0(w) = Pl(w), Pl,−m(w) = Plm(w). (K.51)

P11(w) = (1− w2)1/2. (K.52)

P21(w) = 3(1− w2)1/2w, P22(w) = 3(1− w2). (K.53)

P31(w) =
3

2
(1− w2)1/2

(
5w2 − 1

)
, P32(w) = 15(1− w2)w,

P33(w) = 15(1− w2)3/2. (K.54)

Plm(±1) = 0 (m > 0), (K.55)

Plm(0) =

{
0 (m > 0 and l −m is odd),

(−)(l−m)/2 (l+m−1)!!
(l−M)!! (m > 0 and l −m is even).

(K.56)
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K.2 Clebsch-Gordan coefficients

K.2.1 Definition

Let us consider a coupling of angular momenta. When the total angular momentum
j = (jx, jy, jz) is produced by the linear combination of the angular momenta j1 =

(j1x, j1y, j1z) and j2 = (j2x, j2y, j2z), that is

j = j1 + j2, (K.57)

the eigenvalue j of j is in the range

|j1 − j2| ≤ j ≤ j1 + j2, (K.58)

and its z-component m satisfies
m = m1 +m2, (K.59)

where m1 (m2) is the eigenvalue of j1z (j2z). When the simultaneous eigenfunction of j1
and j1z (j2 and j2z) is expressed by ψ1(j1m1) (ψ2(j2m2)) and they form the simultaneous
eigenfunction ψ(jm) of j and jz , the probability amplitude (j1m1j2m2|jm) is called the
Clebsch-Gordan coefficient, that is

ψ(jm) =
∑
m1m2

(j1m1j2m2|jm)ψ1(j1m1)ψ2(j2m2). (K.60)

K.2.2 Orthogonality

∑
m1m2

(j1m1j2m2|jm)
(
j1m1j2m2|j′m′) = δjj′δmm

′, (K.61)∑
j(m)

(j1m1j2m2|jm)
(
j1m

′
1j2m

′
2|jm

)
= δm1m′

1
δm2m′

2
. (K.62)

From these orthogonalities, we obtain

ψ1(j1m1)ψ2(j2m2) =
∑
j(m)

(j1m1j2m2|jm)ψ(jm). (K.63)

K.2.3 Symmetric properties

(j1m1j2m2|jm) = (−)j1+j2−j (j2m2j1m1|jm)

= (−)j1+j2−j (j1,−m1j2,−m1|j,−m)

= (−)j1−m1
ĵ

ĵ2
(j1m1j,−m|j2,−m2)

= (−)j2−m2
ĵ

ĵ1
(j,−mj2m2|j1,−m1) . (K.64)
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K.2.4 Special values

∑
m

(j10jm|jm) =
∑
m

(jmj10|jm) = ĵ2δj10. (K.65)

(j1m100|jm) = δj1jδm1m. (K.66)

(j1m1j2m2|00) = δj1j2δm1m2

(−)j1−m1

ĵ1
. (K.67)

(j10j20|j0) =


(−)j+g ĵ g!

(g−j1)!(g−j2)!(g−j)!

×
[
(j1+j2−j)!(j1+j−j2)!(j2+j−j1)!

(j1+j2+j+1)!

]1/2
, (if j1 + j2 + j = 2g),

0, (if j1 + j2 + j = 2g + 1),

(K.68)

where g is a positive integer.

K.2.5 Relation with 3-j symbol

(
j1 j2 j

m1 m2 m

)
=

(−)j+m+2j1

ĵ
(j1,−m1j2,−m2|jm) (K.69)

K.2.6 Explicit forms

(j1m1j2m2|jm)

= δm,m1+m2∆(j1j2j)

× [(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j +m)!(j −m)!(2j + 1)!]1/2

×
∑
z

(−)z

z!(j1 + j2 − j − z)!(j1 −m1 − z)!(j2 −m2 − z)!(j − j2 + j1 + z)!(j − j1 − j2 + z)!
,

(K.70)

∆(j1j2j) =

[
(j! + j2 − j)!(j1 − j2 + j)!(−j1 + j2 + j)

(j1 + j2 + j + 1)!

]
, (K.71)

where the summation index z assumes integer values for which all the factorial arguments
are non-negative.
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(
j1m1

1

2
m2|jm

)
HHHHHHj

m2 1
2 −1

2

j1 +
1
2

√
j1+m+ 1

2
2j1+1

√
j1−m+ 1

2
2j1+1

j1 − 1
2 −

√
j1−m+ 1

2
2j1+1

√
j1+m+ 1

2
2j1+1

(j1m11m2|jm)

HHHHHHj

m2 −1 0 1

j1 − 1
√

(j1+m)(j1+m+1)
2j1(2j1+1) −

√
(j1−m)(j1+m)

j1(2j1+1)

√
(j1−m)(j1−m+1)

2j1(2j1+1)

j1

√
(j1−m)(j1+m+1)

2j1(j1+1)
m√

j1(j1+1)
−
√

(j1+m)(j1−m+1)
2j1(j1+1)

j1 + 1
√

(j1−m)(j1−m+1)
(2j1+1)(2j1+2)

√
(j1−m+1)(j1+m+1)

(2j1+1)(j1+1)

√
(j1+m)(j1+m+1)
(2j1+1)(2j1+2)

K.2.7 Sums involving products of three Clebsch-Gordan coefficients

∑
αβδ

(aαbβ|cγ) (dδbβ|eε) (aαfφ|dδ) = pĉd̂ (cγfφ|eε)
{
a b c

e f d

}
, (K.72)

∑
αβδ

(bβcγ|aα) (bβeε|dδ) (aαfφ|dδ) = p
âd̂2

ê
(cγfφ|eε)

{
a b c

e f d

}
, (K.73)

∑
αβδ

(−)a−α (aαbβ|cγ) (dδbβ|eε) (dδa,−α|fφ) = pĉf̂ (cγfφ|eε)
{
a b c

e f d

}
, (K.74)

∑
αβδ

(−)b−β (aαbβ|cγ) (b,−βeε|dδ) (aαfφ|dδ) = p
ĉd̂2

ê
(cγfφ|eε)

{
a b c

e f d

}
,

(K.75)∑
αβδ

(−)a−α (aαc,−γ|bβ) (dδb,−β|eε) (aαfφ|dδ) = pb̂d̂ (cγfφ|eε)
{
a b c

e f d

}
,

(K.76)

where p = (−)b+c+d+f , and the factor
{
a b c

e f d

}
is the Wigner 6-j symbol.
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K.2.8 Sums involving products of four Clebsch-Gordan coefficients

∑
βγεφ

(bβcγ|aα) (eεfφ|dδ) (eεbβ|gη) (fφcγ|jµ)

= (−)a−b+c+d+e−f âĝ
∑
sσ

ŝ2 (aαsσ|jµ) (gηsσ|dδ)
{
b c a

j s f

}{
b e g

d s f

}

= âd̂ĝĵ
∑
kκ

(gηjµ|kκ) (dδaα|kκ)


c b a

f e d

j g k

 , (K.77)

∑
βγεφ

(bβaα|cγ) (fφjµ|cγ) (bβgη|eε) (fφdδ|eε)

= (−)a−b+f−j ĉ2ê2
∑
kκ

(gηjµ|kκ) (dδaα|kκ)


c b a

f e d

j g k

 , (K.78)

∑
βγεφ

(aαbβ|cγ) (gηeε|bβ) (dδfφ|eε) (jµcγ|fφ)

= (−)d+e−c−j b̂ĉêf̂
∑
kκ

(−)k−κ (gηjµ|k,−κ) (dδaα|kκ)


c b a

f e d

j g k

 , (K.79)

∑
βγεφ

(bβa,−α|cγ) (eεd,−δ|fφ) (gηb,−β|eε) (jµc,−γ|fφ)

= (−)b−c−g−α−η ĉêf̂2
∑
kκ

(gηj,−µ|kκ) (dδaα|kκ)


c b a

f e d

j g k

 , (K.80)

∑
βγεφ

(bβc,−γ|aα) (eεfφ|dδ) (e,−εgη|bβ) (fφjµ|cγ)

= (−)b+f−g−δâb̂ĉd̂
∑
kκ

(gηj,−µ|kκ) (dδaα|kκ)


c b a

f e d

j g k

 , (K.81)

∑
βγεφ

(bβcγ|aα) (eεfφ|dδ) (eεgη|bβ) (fφjµ|cγ)

= b̂ĉd̂
∑
kκ

k̂ (gηjµ|kκ) (dδkκ|aα)


a b c

d e f

k g j

 , (K.82)

∑
βγεφ

(bβc,−γ|aα) (eεf,−φ|dδ) (gηb,−β|eε) (jµf,−φ|cγ)

= (−)c+e−g+j+α−µâd̂êĉ
∑
kκ

(gηj,−µ|kκ) (dδaα|kκ)


c b a

f e d

j g k

 , (K.83)



K.2. Clebsch-Gordan coefficients 155

∑
βγεφ

(bβcγ|aα) (bβgη|eε) (fφdδ|eε) (fφcγ|jµ)

= (−)j−a+δ−ηâê2ĵ
∑
kκ

(gηj,−µ|kκ) (dδa,−α|kκ)


c b a

f e d

j g k

 , (K.84)

∑
βγεφ

(bβcγ|aα) (gηeε|bβ) (fφdδ|eε) (fφcγ|jµ)

= (−)j−a−g+δâb̂êĵ
∑
kκ

(g,−ηj,−µ|kκ) (dδa,−α|kκ)


c b a

f e d

j g k

 , (K.85)

∑
βγεφ

(−)c−γ+e−ε (aαbβ|cγ) (dδfφ|eε) (eεbβ|gη) (cγfφ|jµ)

= (−)a+d−α−δ ĉêĝĵ
∑
kκ

(gηj,−µ|kκ) (dδa,−α|kκ)


c b a

f e d

j g k

 , (K.86)

where the factor


c b a

f e d

j g k

 is the Wigner 9-j symbol.

K.2.9 Sums involving products of the Clebsch-Gordan coefficients and one
6-j symbol

∑
eε

(−)2eĉd̂ (bβdδ|eε) (fφcγ|eε)
{
a b c

e f d

}
= (aαbβ|cγ) (aαfφ|dδ) , (K.87)

∑
fφ

(−)c+d+f ĉê (eεaα|fφ) (dδcγ|fφ)
{
b a c

f d e

}
= (aαbβ|cγ) (dδbβ|eε) , (K.88)

∑
cγ

(−)2e−d+α+φâê (f,−φbβ|cγ) (eεa,−α|cγ)
{
c f b

d e a

}
= (bβdδ|eε) (fφdδ|aα) ,

(K.89)∑
cγ

(−)c+d−β−φd̂2 (aαbβ|cγ) (f,−φeε|cγ)
{
a b c

e f d

}
= (aαfφ|dδ) (b,−βeε|dδ) ,

(K.90)∑
cγ

(−)2eĉd̂ (aαbβ|cγ) (fφcγ|eε)
{
a b c

e f d

}
= (bβdδ|eε) (aαfφ|dδ) , (K.91)

∑
fφ

(−)2cêf̂ (bβdδ|fφ) (aαfφ|cγ)
{
a b e

d c f

}
= (bβaα|eε) (dδeε|cγ) . (K.92)
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K.2.10 Sums involving products of the Clebsch-Gordan coefficients and one
9-j symbol

∑
ak

âd̂ĝĵ (bβcγ|aα) (gηjµ|kκ) (dδaα|kκ)


c b a

f e d

j g k


= (eεfφ|dδ) (eεbβ|gη) (fφcγ|jµ) , (K.93)

∑
gj

âd̂ĝĵ (gηjµ|kκ) (eεbβ|gη) (fφcγ|jµ)


c b a

f e d

j g k


= (dδaα|kκ) (eεfφ|dδ) (bβcγ|aα) , (K.94)

∑
gj

(−)b+f−g−δâb̂ĉd̂ (bβc,−γ|aα) (eεfφ|dδ) (dδaα|kκ)


c b a

f e d

j g k


= (gηj,−µ|kκ) (e,−εgη|bβ) (fφjµ|cγ) . (K.95)

K.3 6-j symbols and the Racah coefficients

K.3.1 Definition

We consider the vector coupling of the three angular momenta, j1, j2, and j3, which
reproduce the total angular momentum j and its projection m. The combination of the
couplings for these vectors can be categorized as follows;

(I) j1 + j2 = j12, j12 + j3 = j, (K.96)

(II) j2 + j3 = j23, j1 + j23 = j, (K.97)

(III) j1 + j3 = j13, j13 + j2 = j. (K.98)

For the scheme (I), the eigenstate of the operators j21, j22, j23, j212, j2, and jz can be written
as ∣∣∣∣[[j1 ⊗ j2]j12 ⊗ j3

]
jm

⟩
=

∑
m1m2m3

(j1m1j2m2|j12m12) (j12m12j3m3|jm)

× |j1m1⟩ |j2m2⟩ |j3m3⟩ , (K.99)

where |jnmn⟩ is the simultaneous eigenstate for the operators j2n and jnz . Similarly one
can define the eigenstate for the schemes (II) and (III), respectively;∣∣∣∣[j1 ⊗ [j2 ⊗ j3]j23

]
jm

⟩
=

∑
m1m2m3

(j2m2j3m3|j23m23) (j1m1j23m23|jm)

× |j1m1⟩ |j2m2⟩ |j3m3⟩ , (K.100)∣∣∣∣[[j1 ⊗ j3]j13 ⊗ j2

]
jm

⟩
=

∑
m1m2m3

(j1m1j3m3|j13m13) (j13m13j2m2|jm)

× |j1m1⟩ |j2m2⟩ |j3m3⟩ . (K.101)
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The Wigner 6-j symbols
{
j1 j2 j12
j3 j j23

}
is the coefficient for the overlap of two eigenstates∣∣∣∣[[j1 ⊗ j2]j12 ⊗ j3

]
jm

⟩
and

∣∣∣∣[j1 ⊗ [j2 ⊗ j3]j23

]
jm

⟩
;

⟨[
[j1 ⊗ j2]j12 ⊗ j3

]
jm

∣∣∣∣ [j1 ⊗ [j2 ⊗ j3]j23

]
j′m′

⟩
= δjj′δmm′(−)j1+j2+j3+j ĵ12ĵ23

{
j1 j2 j12
j3 j j23

}
. (K.102)

One can also define the 6-j symbol from other overlaps as⟨[
[j1 ⊗ j2]j12 ⊗ j3

]
jm

∣∣∣∣ [[j1 ⊗ j3]j13 ⊗ j2

]
j′m′

⟩
= δjj′δmm′(−)j2+j3+j12+j13 ĵ12ĵ13

{
j2 j1 j12
j3 j j13

}
, (K.103)⟨[

j1 ⊗ [j2 ⊗ j3]j23

]
jm

∣∣∣∣ [[j1 ⊗ j3]j13 ⊗ j2

]
j′m′

⟩
= δjj′δmm′(−)j1+j+j23 ĵ13ĵ23

{
j1 j3 j13
j2 j j23

}
. (K.104)

The 6-j symbol can be written with the Clebsch-Gordan coefficients;∑
m1,m2,m3,m12,m23

(j12m12j3m3|jm) (j1m1j2m2|j12m12)

×
(
j1m1j23m23|j′m′) (j2m2j3m3|j23m23)

= δjj′δmm′(−)j1+j2+j3+j ĵ12ĵ23

{
j1 j2 j12
j3 j j23

}
, (K.105)

where m and m′ are fixed. In the 6-j symbol, the following triangular conditions are
satisfied;

|j1 − j2| ≤ j12 ≤ j1 + j2, (K.106)

|j12 − j3| ≤ j ≤ j12 + j3, (K.107)

|j2 − j3| ≤ j23 ≤ j2 + j3, (K.108)

|j23 − j1| ≤ j ≤ j23 + j1. (K.109)

If, at least, one of these triangular conditions is not satisfied, the 6-j symbol vanishes.

K.3.2 Racah coefficient

The Racah coefficient W (abed; cf) differs from the 6-j symbols only by a phase factor;{
a b c

d e f

}
≡ (−)a+b+d+eW (abed; cf). (K.110)
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K.3.3 Orthonormality

∑
j12

ĵ212ĵ
2
23

{
j1 j2 j12
j3 j j23

}{
j1 j2 j12
j3 j j′23

}
= δj23j′23 , (K.111)

∑
j23

ĵ212ĵ
2
23

{
j1 j2 j12
j3 j j23

}{
j1 j2 j′12
j3 j j23

}
= δj12j′12 . (K.112)

K.3.4 Symmetric properties

1. Classical symmetries

{
a b c

d e f

}
=

{
a c b

d f e

}
=

{
b a c

e d f

}
=

{
b c a

e f d

}
=

{
c a b

f d e

}
=

{
c b a

f e d

}
=

{
a e f

d b c

}
=

{
a f e

d c b

}
=

{
e a f

b d c

}
=

{
e f a

b c d

}
=

{
f a e

c d b

}
=

{
f e a

c b d

}
=

{
d e c

a b f

}
=

{
d c e

a f b

}
=

{
e d c

b a f

}
=

{
e c d

b f a

}
=

{
c d e

f a b

}
=

{
c e d

f b a

}
=

{
d b f

a e c

}
=

{
d f b

a c e

}
=

{
b d f

e a c

}
=

{
b f d

e c a

}
=

{
f d b

c a e

}
=

{
f b d

c e a

}
. (K.113)

These relations involve 3!× 4 = 24 different 6-j symbols.

2. Regge symmetries

{
a b c

d e f

}
=

{
a s1 − b s1 − c

d s1 − e s1 − f

}
=

{
s2 − a b s2 − c

s2 − d e s2 − f

}
=

{
s3 − a s3 − b c

s3 − d s3 − e f

}
=

{
s2 − d s3 − e s1 − f

s2 − a s3 − b s1 − c

}
=

{
s3 − d s1 − e s2 − f

s3 − a s1 − b s2 − c

}
, (K.114)

where

s1 =
b+ c+ e+ f

2
, s2 =

a+ c+ d+ f

2
, s3 =

a+ b+ d+ e

2
. (K.115)
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Combining the classical symmetries and the Regge symmetries, it reproduces totally
144 symmetry relations.

3. “Mirror” symmetries
The arguments of the 6-j symbols can be extended to negative integer or half-integer
values. For

x̄ = −x− 1 (x = a, b, c, d, e, or f), (K.116)

we have {
a b c

d e f

}
= −

{
ā b̄ c̄

d̄ ē f̄

}
= (−)φ1

{
ā b c

d e f

}
= (−)φ1+1

{
a b̄ c̄

d̄ ē f̄

}
= (−)φ2

{
ā b c

d̄ e f

}
= (−)φ2+1

{
a b̄ c̄

d ē f̄

}
= i(−)φ3

{
ā b̄ c

d e f

}
= i(−)φ3

{
a b c̄

d̄ ē f̄

}
= i(−)φ4

{
ā b̄ c̄

d e f

}
= i(−)φ4

{
a b c

d̄ ē f̄

}
= (−)φ5

{
ā b̄ c

d̄ e f

}
= (−)φ5+1

{
a b c̄

d ē f̄

}
, (K.117)

with

φ1 = b− c− e+ f, φ2 = 2(a+ d),

φ3 = c+ d+ e+ 2f, φ4 = a+ b+ c, φ5 = 2(c+ f) + 1. (K.118)

K.3.5 Special values

{
0 b c

d e f

}
=

(−)b+e+d

b̂ê
δbcδef , (K.119){

a 0 c

d e f

}
=

(−)a+d+e

âd̂
δacδdf , (K.120){

a b 0

d e f

}
=

(−)a+e+f

âd̂
δabδde, (K.121){

a b c

0 e f

}
=

(−)a+d+e

b̂ĉ
δbfδce, (K.122){

a b c

d 0 f

}
=

(−)a+b+d

âĉ
δafδcd, (K.123){

a b c

d e 0

}
=

(−)a+b+c

âb̂
δaeδbd. (K.124)
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K.3.6 Useful relations

∑
X

X̂2

{
a b X

a b c

}
= (−)2c, (K.125)

∑
X

(−)a+b+XX̂2

{
a b X

a b c

}
= âb̂δc0, (K.126)

∑
X

(−)p+q+XX̂2

{
a b X

c d p

}{
a b X

d c q

}
=

{
a c q

b d p

}
, (K.127)

∑
X

(−)2XX̂2

{
a b X

c d p

}{
c d X

e f q

}{
e f X

a b r

}
=


a f r

d q e

p c b

 , (K.128)

∑
X

(−)R+XX̂2

{
a b X

c d p

}{
c d X

e f q

}{
e f X

a b r

}
=

{
p q r

e a d

}{
p q r

f b c

}
,

(K.129)

where R = a+ b+ c+ d+ e+ f + p+ q + r.

K.4 9-j symbols

K.4.1 Definition

The Wigner 6-j symbol described above is the coefficient for which one transfers a cou-
pling scheme of three angular momenta to another coupling scheme. The Wigner 9-j
symbol is a same kind of it for not three but four angular momenta. The coupling schemes
of four angular momenta j1, j2, j3, and j4 can be written down as

(I) j1 + j2 = j12, j3 + j4 = j34, j12 + j34 = j, (K.130)

(II) j1 + j3 = j13, j2 + j4 = j24, j13 + j24 = j, (K.131)

(III) j1 + j4 = j14, j2 + j3 = j23, j14 + j23 = j, (K.132)

(IV) j1 + j2 = j12, j12 + j3 = j123, j123 + j4 = j, (K.133)

where j is the total angular momentum. For the scheme (I), the eigenstate of the operators
j21, j22, j23, j24, j212, j234, j2, and jz can be written as∣∣∣∣[[j1 ⊗ j2]j12 ⊗ [j3 ⊗ j4]j34

]
jm

⟩
=

∑
m1m2m3
m4m12m34

(j1m1j2m2|j12m12) (j3m3j4m4|j34m34) (j12m12j34m34|jm)

× |j1m1⟩ |j2m2⟩ |j3m3⟩ |j4m4⟩ , (K.134)
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where |jnmn⟩ is same as that in Eq. (K.99). Similarly, for the schemes (II), (III), and (IV),
the eigenstates are respectively defined by∣∣∣∣[[j1 ⊗ j3]j13 ⊗ [j2 ⊗ j4]j24

]
jm

⟩
=

∑
m1m2m3
m4m12m34

(j1m1j3m3|j13m13) (j2m2j4m4|j24m24) (j13m13j24m24|jm)

× |j1m1⟩ |j2m2⟩ |j3m3⟩ |j4m4⟩ , (K.135)∣∣∣∣[[j1 ⊗ j4]j14 ⊗ [j2 ⊗ j3]j23

]
jm

⟩
=

∑
m1m2m3
m4m14m23

(j1m1j4m4|j14m14) (j2m2j3m3|j23m23) (j14m14j23m23|jm)

× |j1m1⟩ |j2m2⟩ |j3m3⟩ |j4m4⟩ , (K.136)∣∣∣∣∣
[[

[j1 ⊗ j2]j12 ⊗ j3

]
j123

⊗ j4

]
jm

⟩
=

∑
m1m2m3

m4m12m123

(j1m1j2m2|j12m12) (j12m12j3m3|j123m123) (j123m123j4m4|jm)

× |j1m1⟩ |j2m2⟩ |j3m3⟩ |j4m4⟩ . (K.137)

The Wigner 9-j symbol or equivalently the Fano coefficient


j1 j2 j12
j3 j4 j34
j13 j24 j

 is defined

from the overlap of two eigenstates Eqs. (K.134) and (K.134);⟨[
[j1 ⊗ j2]j12 ⊗ [j3 ⊗ j4]j34

]
jm

∣∣∣∣ [[j1 ⊗ j3]j13 ⊗ [j2 ⊗ j4]j24

]
j′m′

⟩

= δjj′δmm′ ĵ12ĵ13ĵ24ĵ34


j1 j2 j12
j3 j4 j34
j13 j24 j

 . (K.138)

Using this definition one can obtain⟨[
[j1 ⊗ j2]j12 ⊗ [j3 ⊗ j4]j34

]
jm

∣∣∣∣ [[j1 ⊗ j4]j14 ⊗ [j2 ⊗ j3]j23

]
j′m′

⟩

= δjj′δmm′(−)j3+j4−j34 ĵ12ĵ14ĵ23ĵ34


j1 j2 j12
j4 j3 j34
j14 j23 j

 , (K.139)

⟨[
[j1 ⊗ j3]j13 ⊗ [j2 ⊗ j4]j24

]
jm

∣∣∣∣ [[j1 ⊗ j4]j14 ⊗ [j2 ⊗ j3]j23

]
j′m′

⟩

= δjj′δmm′(−)j3−j4−j23+j24 ĵ13ĵ14ĵ24ĵ23


j1 j3 j13
j4 j2 j24
j14 j23 j

 . (K.140)
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Note that the overlap with the coupling scheme Eq. (K.137) does not lead the 9-j symbol.
It generate the product of two 6-j symbols.

From Eq. (K.138), we have∑
mimik

(j1m1j2m2|j12m12) (j3m3j4m4|j34m34) (j12m12j34m34|jm)

× (j1m1j3m3|j13m13) (j2m2j4m4|j24m24)
(
j13m13j24m24|j′m′)

= δjj′δmm′ ĵ12ĵ13ĵ24ĵ34


j1 j2 j12
j3 j4 j34
j13 j24 j

 , (K.141)

where mi = m1, m2, m3, andm4 and mik = m12, m13, m24, andm34. The triangular
conditions for the angular momenta in the Clebsch-Gordan coefficients in Eq. (K.141) must
be satisfied for the finite value of the 9-j symbol.

K.4.2 Orthonormality

∑
gh

ĝ2ĥ2


a b c

d e f

g h j



a b c′

d e f ′

g h j

 =
δcc′δff ′

ĉ2f̂2
, (K.142)

∑
cf

ĉ2f̂2


a b c

d e f

g h j



a b c

d e f

g′ h′ j

 =
δgg′δhh′

ĝ2ĥ2
. (K.143)

K.4.3 Symmetric properties

1. Permutation symmetries

(a) Column permutations
j11 j12 j13
j21 j22 j23
j31 j32 j33

 = ε


j1i j1k j1l
j2i j2k j2l
j3i j3k j3l

 . (K.144)

(b) Row permutations
j11 j12 j13
j21 j22 j23
j31 j32 j33

 = ε


ji1 ji2 ji3
jk1 jk2 jk3
jl1 jl2 jl3

 . (K.145)

(c) Transposition
j11 j12 j13
j21 j22 j23
j31 j32 j33

 =


j11 j21 j31
j12 j22 j32
j13 j23 j33

 . (K.146)
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Here the phase factor ε is defined by

ε =


1 for even permutations

(cyclic permutations),

(−)R for odd permutations

(non-cyclic permutations),

(K.147)

R =

3∑
i,k=1

jik. (K.148)

These symmetries generate different 3!× 3!× 2 = 72 9-j symbols. We list up some
of them below when the even permutations are taken;


j11 j12 j13
j21 j22 j23
j31 j32 j33

 =


j21 j31 j11
j22 j32 j12
j23 j33 j13

 =


j31 j11 j21
j32 j12 j22
j33 j13 j23


=


j21 j22 j23
j31 j32 j33
j11 j12 j13

 =


j31 j32 j33
j11 j12 j13
j21 j22 j23

 . (K.149)

2. “Mirror” symmetries
These symmetries correspond to them of the 6-j symbols. For

x̄ = −x− 1 (x = a, b, c, d, e, f, g, h, or j), (K.150)
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we obtain


a b c

d e f

g h j

 =


ā b̄ c̄

d̄ ē f̄

ḡ h̄ j̄

 = η1


ā b c

d e f

g h j

 = η1


a b̄ c̄

d̄ ē f̄

ḡ h̄ j̄


= iη2


ā b̄ c

d e f

g h j

 = −iη2


a b c̄

d̄ ē f̄

ḡ h̄ j̄

 = η3


ā b c

d ē f

g h j

 = η3


a b̄ c̄

d̄ e f̄

ḡ h̄ j̄


= iη4


ā b̄ c̄

d e f

g h j

 = −iη4


a b c

d̄ ē f̄

ḡ h̄ j̄

 = η5


ā b̄ c

d̄ e f

g h j

 = η5


a b c̄

d ē f̄

ḡ h̄ j̄


= iη6


ā b̄ c

d e f̄

g h j

 = −iη6


a b c̄

d̄ ē f

ḡ h̄ j̄

 = η7


ā b c

d ē f

g h j̄

 = η7


a b̄ c̄

d̄ e f̄

ḡ h̄ j


= η5


ā b̄ c

d̄ ē f

g h j

 = η5


a b c̄

d e f̄

ḡ h̄ j̄

 = η8


ā b̄ c̄

d̄ e f

g h j

 = η8


a b c

d ē f̄

ḡ h̄ j̄


= −iη6


ā b̄ c

d̄ e f̄

g h j

 = −iη6


a b c̄

d ē f

ḡ h̄ j̄

 = −


ā b̄ c

d̄ e f

g h j̄

 =


a b c̄

d ē f̄

ḡ h̄ j


= −


ā b̄ c

d e f̄

g h j̄

 = −


a b c̄

d̄ ē f

ḡ h̄ j

 , (K.151)

where

η1 = (−)b−c−d+g, (K.152)

η2 = (−)c+d−e−g+h, (K.153)

η3 = (−)c+f−g−h, (K.154)

η4 = (−)R, (K.155)

η5 = (−)c−f−g+h+1, (K.156)

η6 = (−)g−h−j , (K.157)

η7 = (−)2(a+e+j), (K.158)

η8 = (−)R−d+e−f+1, (K.159)

where R is the summation over all components of each 9-j symbol. When we use



K.4. 9-j symbols 165

the z-components δ, ε, and φ of angular momenta d, e, and f , respectively, we have


d− δ e+ ε f + φ

d e f

g h j

 = i(−)g+ε−φ


d̄+ δ e+ ε f + φ

d̄ e f

g h j

 , (K.160)


d+ δ e− ε f + φ

d e f

g h j

 = i(−)h+φ−δ


d+ δ ē+ ε f + φ

d ē f

g h j

 , (K.161)


d+ δ e+ ε f − φ

d e f

g h j

 = i(−)j+δ−ε


d+ δ e+ ε f̄ + φ

d e f̄

g h j

 , (K.162)


d− δ e− ε f + φ

d e f

g h j

 = (−)h+φ−g+1


d̄+ δ ē+ ε f + φ

d̄ ē f

g h j

 , (K.163)


d− δ e+ ε f − φ

d e f

g h j

 = (−)g+ε−j+1


d̄+ δ e+ ε f̄ + φ

d̄ e f̄

g h j

 , (K.164)


d+ δ e− ε f − φ

d e f

g h j

 = (−)j+δ−h+1


d+ δ ē+ ε f̄ + φ

d ē f̄

g h j

 , (K.165)


d− δ e− ε f − φ

d e f

g h j

 = i(−)g+h+j+δ+ε+φ+1


d̄+ δ ē+ ε f̄ + φ

d̄ ē f̄

g h j

 .

(K.166)

K.4.4 Special values


a b c

a b c

g h j

 = 0 if g + h+ j = 2k + 1, (K.167)


a a c

d d f

g g j

 = 0 if c+ f + j = 2k + 1, (K.168)
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where k is positive integer.
a b c

d e f

g h 0

 = δcfδgh
(−)b+c+d+g

ĉĝ

{
a b c

e d g

}

= δcfδgh
1

ĉĝ
W (bcgd; ae), (K.169)

a b c

d 0 f

g h 0

 = δdfδbhδcfδgh
(−)a−b−c

b̂ĉ
, (K.170)


a b c

d e f

0 0 0

 = δadδbeδcf
1

âb̂ĉ
, (K.171)


0 b c

d 0 f

g h 0

 = δbcδbdδbfδbgδbh
(−)2b

b̂2
. (K.172)

K.4.5 Useful relations


a b c

d b f

g h j

 =
1

ĉf̂ ĝĥĵ2

∑
αβγ
δεφ
ηµν

(aαbβ|cγ) (dδeε|fφ) (cφfφ|jν)

× (aαdδ|gη) (bβeε|hµ) (gηhµ|jν)

=
(−)2(c+g)

â2ê2ĵ2

∑
αβγ
δεφ
ηµν

(cγbβ|aα) (gηdδ|aα) (bβhµ|eε)

× (dδfφ|eε) (fφcφ|jν) (hµgη|jν) , (K.173)


a b c

d e f

g h j

 =
∑
j′

(−)2j
′
ĵ′2
{
a d g

h j j′

}{
b e h

c j′ f

}{
c f j

j′ a b

}

=
∑
j′

(−)2j
′
ĵ′2
{
c f j

g h j′

}{
a d g

f j′ e

}{
b e h

j′ c a

}

=
∑
j′

(−)2j
′
ĵ′2
{
b e h

j g j′

}{
c f j

e j′ c

}{
a c g

j′ b c

}
, (K.174)

∑
cf

(−)d+e+f (−)d+b+q ĉ2f̂2


a b c

d e f

g h j



a e p

b d q

c f j

 = (−)b+d+h


a e p

d b q

g h j

 ,

(K.175)
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(cγfφ|jν)


a b c

d e f

g h j

 =
1

ĉf̂ ĝĥ

∑
αβδε
ηµν

(aαbβ|cγ) (dδeε|fφ)

× (aαdδ|gη) (bβeε|hµ) (gηhµ|jν) , (K.176)

∑
j

ĵ2
{
c f j

g h j′

}
a b c

d e f

g h j

 = (−)2j
′
{
a d g

f j′ e

}{
b e h

j′ c a

}
. (K.177)

K.5 Wigner-Eckart theorem

K.5.1 Derivation

When we consider the eigenstate

|jm⟩ = ψjm(ξ), (K.178)

of the square of the angular momentum j and its projection jz , the wave function ψjm

can be regarded as an irreducible tensor operator which has the rank j, where j(j + 1)ℏ2
and mℏ are the eigenvalues of j2 and jz , respectively. The internal coordinate ξ involves
coordinates both for real space and spin space. The matrix element ⟨j′m′ |Tλµ | jm⟩ for an
irreducible tensor operator Tλµ with the rank λ is given by⟨
j′m′ ∣∣Tλµ ∣∣ jm⟩

=

∫
dξψ∗

j′m′(ξ)Tλµ(ξ)ψjm(ξ)

=

∫
dξ(−)j

′−m′
[
(−)j

′+(−m′)ψ∗
j′,−(−m′)(ξ)

]∑
JM

(λµjm|JM) [Tλ ⊗ ψj ]JM

=

∫
dξ(−)j

′−m′ ∑
JJ ′MM ′

(
j′,−m′JM |J ′M ′) (λµjm|JM)

[
φj′ ⊗ [Tλ ⊗ ψj ]J

]
J ′M ′ ,

(K.179)

where the wave function φj′m′ is defend by

φj′m′(ξ) = (−)j
′+m′

ψ∗
j′,−m′(ξ). (K.180)

From a symmetry of the integration, the spatial integration in Eq. (K.179) is non-zero only
when J ′ =M ′ = 0. Thus the matrix element becomes⟨

j′m′ ∣∣Tλµ ∣∣ jm⟩
=

∫
dξ(−)j

′−m′∑
JM

(
j′,−m′JM |00

)
(λµjm|JM)

[
φj′ ⊗ [Tλ ⊗ ψj ]J

]
00

= (−)2j
′ (
λµjm|j′m′) ∫ dξ(−)j

′−m′
[
φj′ ⊗ [Tλ ⊗ ψj ]j′

]
00
. (K.181)
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Equation (K.181) can be written as⟨
j′m′ ∣∣Tλµ ∣∣ jm⟩ = (−)j

′−m′
(

j′ λ j

−m′ µ m

)⟨
j′
∥∥Tλ ∥∥ j⟩ ,

=
1

ĵ′

(
jmλµ|j′m′) ⟨j′ ∥∥Tλ ∥∥ j⟩ , (K.182)

⟨
j′
∥∥Tλ ∥∥ j⟩ = (−)j+j′−λ

∫
dξ(−)j

′−m′
[
φj′ ⊗ [Tλ ⊗ ψj ]j′

]
00
. (K.183)

Equation (K.182) is called the Wigner-Eckart theorem. The explicit form of the reduced
matrix element ⟨j′ ∥Tλ ∥ j⟩ for the specific Tλ is shown in the next section. The Wigner-
Eckart theorem means that the matrix element can be divided into two parts: The term
(jmλµ|j′m′) /ĵ′ is a geometrical factor, which does not depend on a physical meanings of
the operator T , while the reduced matrix element involves all of the physical contents of
T .

K.5.2 Reduced matrix element⟨
j′
∥∥ 1∥∥ j⟩ = ĵδjj′ , (K.184)⟨

j′
∥∥ j ∥∥ j⟩ =√j(j + 1)(2j + 1)δjj′ , (K.185)

⟨Yl′ ∥Yλ ∥Yl⟩ =
(−)λ√
4π
l̂′λ̂
(
l′0λ0|l0

)
, (K.186)

⟨Yl′(r̂) ∥∇r ∥Yl(r̂)⟩ = l̂
(
l010|l′0

)
×
[(

∂

∂r
− l

r

)
δl′,l+1

(
∂

∂r
+
l + 1

r

)
δl′,l−1

]
, (K.187)

⟨[
η1/2 ⊗ Yl′

]
j′

∥∥∥Yλ ∥∥∥ [η1/2 ⊗ Yl
]
j

⟩
=

(−)j+j′+1

2
√
4π

ĵ′λ̂

(
j′
1

2
λ0|j 1

2

)[
1 + (−)l+l′+λ

]
,

(K.188)

⟨
j′
∥∥ [Tλ1 ⊗ Uλ2 ]λ

∥∥ j⟩ = (−)j+j′+λλ̂
∑
J

{
λ1 λ2 λ

j j′ J

}⟨
j′
∥∥Tλ1

∥∥ J⟩ ⟨J ∥Uλ2 ∥ j⟩ ,

(K.189)

⟨
j′1j

′
2j

′ ∥∥ [Tλ1 ⊗ Uλ2 ]λ
∥∥ j1j2j⟩ = ĵĵ′λ̂


j′1 j′2 j′

j1 j2 j

λ1 λ2 λ

⟨j′1 ∥∥Tλ1

∥∥ j1⟩ ⟨j′2 ∥∥Uλ2

∥∥ j2⟩ ,
(K.190)⟨

j′1j
′
2j

′ ∥∥ (T λ1 ·Uλ2)
∥∥ j1j2j⟩ = (−)λ1 λ̂1

⟨
j′1j

′
2j

′ ∥∥ [Tλ1 ⊗ Uλ2 ]0
∥∥ j1j2j⟩

= δjj′δλ1λ2(−)j1+j′2+j ĵ

{
j′1 j′2 j

j2 j1 λ1

}
×
⟨
j′1
∥∥Tλ1

∥∥ j1⟩ ⟨j′2 ∥∥Uλ2

∥∥ j2⟩ , (K.191)

where the eigenstate |j1j2j⟩ is defined by |j1j2j⟩ =
∣∣∣[ψj1 ⊗ ψj2 ]j

⟩
.
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