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Three-Body Dynamics Induced by Loosely Bound Nuclei

Abstract: The main object of this thesis is to correctly understand nuclear dynamics
when the system consists of a three-body system including loosely bound nuclei. If a
projectile is bound loosely, it can break up into its continuum state in the intermediate state
of scattering process. Thus the channel couplings among bound and continuum states of
the projectile is expected to be important to precisely describe the dynamics. By explicitly
taking into account the channel couplings with the method of the continuum-discretized
coupled-channels (CDCC), we clarify how the continuum channels of loosely bound nuclei
are significant.

First, we focus on transfer reactions. We construct a precise reaction model based
on the coupled-channel Born approximation (CCBA), which explicitly treats the channel
couplings among bound and continuum states of both a projectile and a residual nucleus in
the initial and final channels, respectively, by means of the CDCC method. From the CCBA
analysis of transfer reactions, it has been found that the interference between the elastic
transfer (ET) and the breakup transfer (BT) can be important. The former is the transfer
process from an ground state to an ground state in each channel, whereas the latter is the
transfer process from or into continuum states in the initial or final channels, respectively.
Furthermore, it has also pointed out that transferred angular momenta can vary due to the
channel couplings.

Second, we concentrate on breakup reactions with a low incident energy, in particular
when a target nucleus is heavy and thus there is a strong Coulomb field. In such a case, it
was reported that the eikonal approximation, which can efficiently treat breakup reactions
by assuming that a distorted wave between a projectile and target does not deviate from
a plane wave, does not work. To solve this difficulty, we propose an efficient way to
extend the eikonal model to low energy reactions. As a result we found that the Coulomb
correction based on the distance of closest approach in Rutherford scattering works well.
It suggests that a concept of a “trajectory” is held and thus a simple picture for dynamics
remains in complicated reaction process.

Third, the a-clustering phenomena, which is the localization of a-particles at surface
region of nuclei, has been investigated through a-transfer reactions. Wave functions in a
structure part of nuclei are calculated by means of a microscopic cluster model. By compar-
ing calculated transfer cross sections with experimental data, we can extract an “a-cluster
probability” at surface region of nuclei. The probability is different from neither a spectro-
scopic factor, which have been regarded as an indicator of the clustering, or an asymptotic
normalization coefficient (ANC).

Keywords: Nuclear reaction, continuum state, coupled-channels method, transfer reac-
tion, breakup reaction
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CHAPTER 1

Introduction

Contents

1.1  Three-body dynamics . . . . . . . ... ... ... ...
1.1.1  Elastic scattering . . . . . . . . . . . ..
1.1.2  Inmelastic scattering . . . . . . . . . . ...

1.1.3  Transferreaction . . . . . . .. . ... . ... . ... . .....

=R~ N

1.2 Constructionof thesis . . . . . . . . . . . . . ...

1.1 Three-body dynamics

In nuclear physics, nucleon-nucleon, nucleon-nucleus, and nucleus-nucleus scattering have
been studied to reveal the nuclear interaction and nuclear structures. The correct interpre-
tation of the mechanism for these nuclear reactions is also an important subject of physics.
It is, however, not easy to understand correctly the reaction mechanism when system can
be regarded as the three-body system. If two particles are bound loosely and form a pro-
jectile, the system including a target nucleus should be treated as the three-body system.
For example, let us consider the scattering of deuteron and a target nucleus A. In a naive
picture, it can be understood as scattering of d by the nuclear and Coulomb field produced
by A. However, in this picture the degree of freedom of nucleons, which is the fact that d
consists of proton and neutron, is ignored. The dynamics that proceeds by the interactions
between the nucleons in d and A is desired to be considered when one nucleus is loosely
bound. We would like to discuss how the picture of nuclear reactions changes when we
consider this kind of the three-body dynamics. In this thesis, we focus on the effect due to
breakup of a nucleus in the intermediate state of the scattering.

In the direct nuclear reaction picture [1,2], nuclear reactions can be categorized as elas-
tic scattering, inelastic scattering, which includes breakup reactions, and transfer reactions.
Below we discuss important features of these reactions which are characterized by loosely
bound nuclei.

1.1.1 Elastic scattering

Among nuclear reactions, elastic scattering is the simplest reaction, in which a projectile is
ejected with having the same energy as in the initial state. However, it does not necessar-
ily mean that an incident nucleus is inert throughout the scattering process. For example,
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Figure 1.1: (a) Rutherford ratio of the elastic cross section as a function of the scattering
angle of d for the d4-°2Ni at 56 MeV. (b) Same as in panel (a) but for the d+2"8Pb system.
In each panel the solid line stands for the result of the CDCC calculation, which explicitly
takes into account the virtual breakup process of d with its s- and d-wave states. The
dashed (dotted) line stands for the result which dose not include the breakup states of d
with (without) the d-wave component in the ground state of d. This figure is taken from
Ref. [3]. In each panel, circles are the experimental data taken from Ref. [4].

in Fig. 1.1 we show the Rutherford ratio of the elastic cross section as a function of the
scattering angle of d for (a) the d+°5Ni at 56 MeV and (b) d+2°®Pb at 56 MeV [3]. In
each case, if one neglects any effects of the breakup states of d, the dashed and dotted
lines are obtained. Note that the former (latter) includes (does not include) the d-wave
component in the s-wave ground state of d. They cannot well reproduce the experimen-
tal data (circles) [4]. The solid line is for the result calculated with the method of the
continuum-discretized coupled-channels (CDCC) [3, 5, 6], which explicitly takes into ac-
count the channel-couplings of the breakup channels. In Chap. 2 we mention CDCC in
detail. It reproduces well the experimental data even at backward angles. This fact indi-
cates the importance of treating the virtual breakup process of d. Note that it is called the
virtual breakup that a projectile breaks up in intermediate states of elastic scattering.

To understand the virtual breakup, we show the behavior of the dynamical polarization
potential (DPP) of unstable nuclei reported in Ref. [7]. The optical potential Uspt, which
describes the elastic scattering, and the DPP are defined by

(1.1)
(1.2)

Uopt = PV P + Uppp,

1
Uppp = PVQ lim

——FQVP
E%OE—I-Z'E—QHQQV '
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Figure 1.2: Trivially equivalent local form the DPPs of 117 i (solid line), ®He (dashed line),
and SLi (dash-dotted line) on the target nucleus 2°®Pb. The panel (a) and (b) respectively
correspond to the real and imaginary parts of the DPP. The dotted lines denote the Coulomb
polarization potentials for ''Li and He. The detail of the calculation is given in Ref. [7].

where H (V') is the many-body Hamiltonian (interaction) of the projectile-target system. F
and € are the total energy and the infinitesimal value, which ensures an outgoing boundary
condition, respectively. The operator P projects onto the elastic channel (P space) and
@) = 1 — P is the projection operator onto the non elastic channels (@) space). The first
term of Eq. (1.1) is the folding potential describing the interaction that does not go through
the () space. The folding potential is real, local, and energy independent. The second
term Uppp, which is complex, non-local, and energy dependent function, describes the
channel couplings between the P and () spaces. Thus, by seeing the behavior of Uppp, we
can estimate the contribution of the coupling with the () space. In Fig. 1.2, DPPs in the so
called trivially equivalent local potential [8] of the projectiles, 'Li (solid line), °He (dashed
line), and °Li (dash-dotted line), for the scattering on the 208pp target nucleus at 29.8 MeV,
18 MeV, and 29 MeV, respectively, are shown as a function of the relative distance of each
projectile and the target. In panels (a) and (b) their real and imaginary parts are respectively
plotted. These calculations were performed with CDCC in Ref. [7]. The DPPs of the
unstable nuclei, 'Li and ®He, have a quite long tail compared to that of the DPP for the
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stable SLi nucleus. In Ref. [7] it was reported that the calculated cross sections with CDCC
including breakup channels of each projectile well reproduce experimental data [9-11] of
the elastic cross section for each system, whereas CDCC without their breakup channels
does not. Therefore, this unusual feature of the DPP for the unstable nuclei suggests that
a strong coupling with the () space, the breakup states of unstable nuclei in particular, is
necessarily taken into account to correctly describe the elastic scattering.

Thus, in elastic scattering the importance of the three-body dynamics, the breakup
effects of loosely bound nuclei in particular, is well known, and their dynamics can be well
described through the analysis by means of CDCC. We should clarify how the three-body
dynamics of loosely bound nuclei is important in other reactions. CDCC can provide us
with clear interpretation of reaction mechanisms. The formulation of CDCC is given in
Chap. 2.

1.1.2 Inelastic scattering

In this thesis we do not discuss usual inelastic reactions, which proceed with an excita-
tion of a target nucleus. We focus on breakup reactions that can be regarded as inelastic
scattering in a broad sense. In breakup reactions, a projectile breaks up into its fragments,
and hence their description trivially requires the channel couplings of elastic and breakup
channels. If we consider a breakup reaction on a heavy ion target, not only nuclear inter-
action but also Coulomb interaction play an important role. In such a case, sometimes the
following assumption is adopted. The reaction is dominated by the Coulomb interaction
between the projectile and the target, and proceeds with the one-step process, in which the
transition from a bound state to a continuum state is described by the Born approximation.
The virtual photon theory (VPT) [12], which is one of such naive models, is often used
for analyses of Coulomb-dominant breakup reactions, because it is difficult to explicitly
treat the long-ranged Coulomb interaction in coupled-channels (CC) calculations. If one
aims to explicitly treat the Coulomb breakup with full quantum mechanics, sometimes the
scattering wave function needs to calculate up to more than 1000 fm with the number of
partial waves of more than 10000 &. Thus, VPT simplifies the Coulomb breakup reaction
by regarding the reaction as the dissociation of a projectile by the Coulomb dipole (E1)
photon absorption. However, it is not trivial that the picture by VPT is correct. The role of
the quadrupole (E2) component, nuclear interaction, and the multistep process, which are
not taken into account in VPT, should be investigated. Note that EA is the electric multipole
moment when one expands the Coulomb interaction by means of the Legendre polynomial
P, with its multipolarity A. The multipole expansion of the Coulomb interaction is written
in Appx. B.

For example, we discuss the importance of these effects in the 2°*Pb(®B,p”Be) breakup
reaction reported in Ref. [13]. In Fig. 1.3 the breakup cross section of the 208pp(3B,p"Be)
is plotted as a function of the scattering angle g of the center of mass (c.m) of the p-
"Be system. The cross section corresponds to the breakup energy 17 of the p-"Be system
ranging from 500 keV to 750 keV. The solid line stands for the calculated cross section
with CDCC, which includes all orders of the nuclear and Coulomb breakups as well as all
the multipolarities of the Coulomb interaction. When the nuclear breakup is ignored, one
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Figure 1.3: The breakup cross section calculated with CDCC of ®B on 2%®Pb at
52 MeV/nucleon as a function of the scattering angle fg in the center of mass (c.m.) of
the p-"Be system. The cross section corresponds to the breakup energy 17 of the p-"Be
system ranging from 500 keV to 750 keV. The solid line is obtained by CDCC with all
orders of the nuclear and Coulomb breakups. The cross section for only the Coulomb
breakups with all orders of the multipolarity of the Coulomb interaction is shown by the
dashed line. When multistep processes and the higher multipolarity than E2 (E1) are ne-
glected, the dotted (dash-dotted) line is obtained. See Ref. [13] for more detail.

obtains the dashed line. Furthermore, if one assumes a one-step transition process with only
the E1 and E2 (E1) of the multipolarities, the dotted (dash-dotted) line is obtained. The E1
one-step calculation, which essentially corresponds to VPT, is often adopted. These results
indicate that the higher multipolarity and multistep transition exist non-negligibly even for
heavy ion targets.

In Refs. [13, 14] the reaction model based on CDCC, which can treat the Coulomb
breakup precisely and conveniently by adopting the eikonal approximation, is developed,
that is, the eikonal-CDCC (E-CDCC). The eikonal approximation is based on the concept
that, for high energy reactions, variation of the projectile-target distorted wave from a plane
wave is expected to be small. E-CDCC has an advantage that it has high accuracy with
less computational cost than full quantum calculation. The details of E-CDCC is given in
Chap. 2.

In the same period as E-CDCC had been established, another reaction model based
on the eikonal approximation that is, the model with the dynamical eikonal approximation
(DEA), was proposed [15, 16]. For low energy reactions, the eikonal approximation is
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expected to be not applicable, and recently it is found that DEA is difficult to reproduce a
full quantum calculation at low incident energies, say 20 MeV/nucleon [17].

Therefore it is demanded to build up a reliable and economical reaction model, which
can be applied to low energy reactions. In this thesis the construction of such a reaction
model is done by adopting a simple correction for the Coulomb trajectory. E-CDCC and
DEA have same philosophy to efficiently treat the Coulomb breakups, based on the eikonal
approximation, except how to calculate the projectile’s wave function in each model. The
former uses a partial wave expansion, and the latter calculates the wave function with three-
dimensional points. Thus, comparison of E-CDCC and DEA given in Chap. 4 is important
to describe the Coulomb breakups efficiently.

1.1.3 Transfer reaction

Transfer reactions have been widely used to investigate a single-particle structure of nuclei.
As an example let us consider the transfer reaction A(a,b)B. When one aims to seek a
single-particle structure of the residual nucleus B in its ground state, an low incident energy
is usually adopted to make the momentum matching better. Here the momentum matching
means how small the energy difference between an incident energy and a single-particle
energy is. If the energy difference is small, the matching is good. For naive understanding,
sometimes it is used the metaphorical expression that one jumps from a running train into
another running train. It is not easy to jump if each velocity of the two trains differs from
each other. Since a single-particle energy of B is merely from several MeV to several
tens MeV, an incident energy also should be taken as in similar order.

In conventional description of the transfer reaction, the breakup states of a and B are
neglected by using the distorted-wave Born approximation (DWBA). Because it is difficult
and it requires a large computational cost to perform CC calculation for breakup states
in transfer reactions. Thus, in DWBA, the transfer process is described by a one-step
transition between the ground states in the initial and final channels. At energies typically
adopted for transfer reactions, there is enough “time” for particles to interact each other,
and couplings to several complicated channels such as breakup or rearrangement channels
may be important. In transfer reaction, since deuteron, which is a loosely bound nucleus, is
often used as the projectile a to reproduce a single-particle state of B, the breakup channels
of d, in particular, are expected to play a significant role. Furthermore, if B is a loosely
bound nucleus, its breakup channels should also be taken into account.

To explicitly take into account these breakup effects, in the mid-1960s, the coupled-
channels Born approximation (CCBA) was proposed by Penny and Satchler [18] and Iano
and Austern [19]. From the end of 1960s to the 1970s, a large number of the CCBA
calculations were performed [20-96] by using some computational codes for the CCBA
calculation, for example CHUCK [97], SATURN-MARS [98,99], and OUKID [100]. Note
that, at that time, the channel-couplings with only a few bound excited states of the projec-
tile a and/or the residual nucleus B in the region of stable nuclei were taken into account in
these codes. For example, in Ref. [101], the authors clarified the importance of the channel-
couplings with some resonance states of the target nucleus in order to resolve a failure of
DWBA on the heavy-ion induced transfer reaction 40Ca(3C,N)3K [102]. In Fig. 1.4(a),
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(a)
< “9cq('3c N K(gs. 5 )
£ To35
b|c " Y03
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100} . 5 449 MeV

3" | 374MeV

0y 0.00 MeV  §3/2° 0.00 MeV
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Figure 1.4: (a) The cross section of the 40Ca(13C,14N)39K reaction at 68 MeV. Horizontal
axis is the emitting angle of *N in the c.m. frame. The solid (dashed) line is the CCBA
result including the channel-couplings among 0", 37, and 5~ (between 0 and 37) states
of 4°Ca. Experimental data are taken from Ref. [102]. (b) A schematic picture of the path
of the transfer process with the CC effects. See Ref. [101] for more detail.

we show the cross section of the *°Ca(*3C,14N)3%K reaction at 68 MeV as a function of
the N emitting angle. If one neglects all channel-couplings regarding the excited states
of 40Ca, the dashed line, which corresponds to the DWBA result, is obtained. It is not able
to reproduce the oscillation pattern of the experimental data [102]. The dotted line is the
result for the CCBA calculation, which takes into account the channel-couplings between
0% and 3~ states of *°Ca. When the couplings to the 5~ state of “’Ca is also added, the
solid line is obtained. Note that these excites states are bound states since the proton sepa-
ration energy of “°Ca is 8.33 MeV. They agree with the experimental data even at forward
angles, where the DWBA calculation fails to reproduce the data. Thus CCBA has been
achieved success. Though the importance of the CC effects was argued by these works,
the continuum states of a and/or B were not taken into account owing to a limitation of the
computational power at that time.

After establishment of CDCC in the end of 1980s, several CCBA calculations with
CDCC were performed to treat breakup states involving both resonant and non resonant
states of loosely bound nuclei by using computer codes FRESCO [103, 104], RANA [105],
and so on. Note that, in CDCC, infinite number of states, not only resonance states but
also non resonant continuum states, of the projectile a and/or the residual nucleus B are in
principle considered. For instance, in Ref. [106], the effects of the 5Li breakup into o and
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Figure 1.5: The cross sections calculated with the ZR-CCBA of the *C(®Li,d)! 7O reaction
at 3.6 MeV are plotted as a function of the deuteron emitting angle. In the calculation
the breakup effects of Li was taken into account. The figure indicates that the breakup
channels of Li are important, and a treatment of them requires a huge model space. See
Ref. [106] for more detail.

d on the transfer reaction *C(°Li,d)'"O was investigated within the CDCC framework.
In Fig. 1.5, the calculated cross sections of the 13C(5Li,d)' O reaction at 3.6 MeV are
plotted as a function of the deuteron emitting angle. The dash-dotted line and the others
respectively correspond to the results including and not including the breakup channels of
SLi. The differences among the solid, dashed, and dotted lines are due to the model space
dependence of the calculation. These results indicate that the breakup channels of °Li play
an important role and a huge model space is needed for the calculation. In Ref. [106],
although the breakup effects of °Li is explicitly taken into account, those of 7O are not.
Moreover, the zero-range (ZR) approximation, in which the product of the a-d interaction
and its wave function is assumed to be represented by a J-function, was adopted to save
the computational task. At this moment, there is only one CCBA work [107], in which the
breakup states of both a projectile and a residual nucleus were considered, simultaneously.
However the detail of the breakup mechanism of a projectile and a residual nucleus has not
been discussed yet.

From these points of view, we need a more precise CCBA model, which explicitly
takes into account the breakup channels of both a and B in order to investigate the breakup
effects of a and B. Thus, in Chap. 3, we construct such a CCBA model, in which the exact
finite-range (FR) integration instead of the ZR approximation is adopted. This CCBA
model enables us to describe transfer reactions in detail and correctly.
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1.2 Construction of thesis

This thesis is constructed as follows. In Chap. 2 the formulation of CDCC is given. E-
CDCC is also formulated there. As mentioned above, the three-body dynamics, breakup
effects of nuclei in particular, is expected to be important for loosely bound system. CDCC
explicitly treats CC of the breakup channels of nuclei, and enables us to correctly interpret
the picture of dynamics. First, the three-body dynamics on transfer reactions is discussed
in Chap. 3. The CCBA framework, which can perform the CC calculation regarding the
breakup channels both in the initial and final channels, are proposed. As an application,
the ®B(d,n)°C reaction, which is paid attention with an astrophysical interest [108], is
analyzed with the CCBA model and the breakup effects of d and °C are investigated. As
for breakup reactions, in Chap. 4, we propose a method for treating Coulomb breakup
reactions with efficient and precise models. As a specific reaction, the breakup reaction
208Pb(l‘f’C,nMC) is described with two reaction models, E-CDCC and DEA, which are
based on the eikonal approximation. In Chap. 5, a-clustering phenomena, which is the
localization of « particles at surface region of nuclei, are investigated through a-transfer
reactions by using a microscopic wave function for the structure part. We summarize this
thesis in Chap. 6.

Main purpose of this thesis is to correctly understand the three-body dynamics induced
by loosely bound nuclei by means of precise and efficient reaction models.
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The method of the continuum-discretized coupled-channels (CDCC), which explicitly
takes into account the channel-couplings between elastic-breakup and breakup-breakup
channels, is described in this Chapter. CDCC has been successful in describing various
reactions. In Ref. [109], it is confirmed that CDCC wave function for the three-body
system explicitly corresponds to the Oth-order term of the distorted-wave Faddeev wave
function [110] which is the exact solution of three-body scattering. Moreover, the first-
order term of the Faddeev component is expected to be small. Therefore the reliability
of the wave function described by CDCC is well established. These facts are summa-
rized in Appx. A. Details of the formulation and the development of CDCC are given in
Ref. [3,5,6].

2.1 Continuum-discretized coupled-channels (CDCC) formal-
ism
2.1.1 Truncation and discretization of three-body wave function

We consider the scattering of the projectile a and the target nucleus A. To take into account
explicitly the breakup effects of a, we regard a as a two-body system consisting of x and y.
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\\ ,’a A

Figure 2.1: Coordinates of the three-body system (x + y + A).

Thus we work with the three-body model (x 4+ y + A) shown in Fig. 2.1. The Hamiltonian
of the three-body system is given by

H =T+ VN(r) + V) + VIV (ry) + VO (ry) + h, @2.1)
h="T,+ V™ (r) + V), 2.2)

where r (R) is the relative coordinate between x (the center of mass of the - y system) and
Y (A) and Tg, is the kinetic energy operator for the coordinate R. Vx (V ) and Vm(c)
(Vy( ) respectively represent the nuclear and Coulomb interactions between x (y) and A.
The internal Hamiltonian for the x-y system is expressed by h.

The orbital angular momenta L and £, which respectively correspond to the coordinates
R and r, satisfy

J=1L+¢, 2.3)

where J is the total angular momentum. The three-body wave function ¥ satisfies the
Schodinger equation

(H— E)¥(r,R) =0, 2.4)

where E is the total energy of the system and M is the z-component of J. In CDCC
we expand W with the internal wave function )y, of a, which approximately forms the
complete set as follows:

¥(r,R) = > [e(ko, ) @ X/par, (Ko, R)]
|H|<L<|J+z|

PY Y [Tt o, (R, @3)
£=0 |J—t|<L<|J+|

[0 ® Xty )y = D (EmMLMy|TM) Yunxlpn, 2.6)
m,Mrp,
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where X‘g o, Tepresents the distorted wave of the a-A system. m (M) is the z-component
of £ (L), and the relative momentum for the z-y (a-A) system is denoted by ik (AK). From
the energy conservation, the total energy E satisfies

k2 hPK?

2/ 2pR ‘
Here p, (ug) is the reduces mass of the z-y (a-A) system. The first term of Eq. (2.5)
stands for the elastic component in which = and y are bound and form the ground state of
a, while the second term corresponds to the breakup component in which the x-y system
is in continuum states. 1), satisfies

E = @.7)

(h — &) (k, 1) =0, (2.8)
with the eigenenergy € of the z-y system defined by
h2k?
€= . 2.9)
21y

It is difficult to handle the second term of Eq. (2.5), since it has infinite number of “chan-
nels”. Therefore, in CDCC, the breakup component Uy, that is the second term of
Eq. (2.5) is approximated as

=y ¥ /dmw )& X (K, R)]

£=0 |J—L|<L<|J+¢|

£max Kmax

~ / dk [e(k,v) @ X[ (K, R)] ,,,
0=0 |J—b|<L<|J+|
Lmax Nmax

- Sy / ) @b K R,
=0 |J—4|<L<|J+L n
Lmax Mmax

Q

Z Z [%m ) @ R (R )LM- (2.10)

0=0 |J—f|<L<|J+t| n
Equation (2.10) means that CDCC first truncates the model space at ;.5 and kpax. Next
we divide the momentum space [0, kmax] and then discretize it by a specific procedure.
This concept is shown as a schematic picture in Fig. 2.2. For the procedure we have tow
methods, one is the average method and the other is the pseudostate method. Below the
detail of the two procedures of the discretization is given.

2.1.2 Average method

In this method the momentum space [0, kmax| is divided into several ranges called “bin”
states specified by the momentum width Ak,, = k,, — k,,—1. Then 1)y, in each bin is taken
as an average;

. 1 kn
wmww\ﬂké o (k1) R, @.11)

Xoooar, (R) =/ Akpxia, (K, R). (2.12)
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This prescription is called the average method for discretization. zﬁngm has an orthonor-

mality:

(Dt () W (1)) = S Bt S -

The diagonalization of h results in

<1;Z)n€m(r) |h’ T;Z)n’f’m’(r)> = é7’L5nn’6££/6mm’a

where the discretized eigenenergy &, is calculated as

1 kn h2 k_2
én / dk
k

- Ak, 1 24y
1
= g3 Fn ks haknoa)
%
pr— 2HT 5
]Af — (kn + kn_1>2 (Ak’n)2
" 4 12

Thus, from the total energy conservation, we have

h2K? h2K?
E =§y+ 9 —¢, + n
2pR 2R

(2.13)

(2.14)

(2.15)

(2.16)

2.17)

where £y = ¢ is the ground stated energy of the projectile a and K, which is the dis-
cretized form of K, is defined by Eq. (2.17). The average method is adopted in the calcu-

lation for breakup reactions discussed in Chap. 4.

k/\ k/\

. kma.x T
truncation discretization
—— »

ki

- —=—=d -ty - - - -1 -

g.s.

Figure 2.2: Schematic picture of the truncation and discretization in CDCC.
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2.1.3 Pseudostate method

In this method ¢, is expanded with some basis functions. We adopt the Gaussian basis in
this thesis,

Yo (r) = de(r)i Yo (7), (2.18)
imax
do(r) = cipui(r), (2.19)
i
2
Y r
@ei(r) = N;ir~exp [— <p) ] : (2.20)
7
where the range parameter p; is determined by using the relation of the geometric series,
pi = Pmina’ 2.21)
p 1/((imax)—1)
a= < ma") : (2.22)
Pmin

Here pmin (Pmax) stands for the first (final) term of the series. The normalization factor V;
is determined from the condition,

(i | peiy = 1. (2.23)

The expansion coefficient ¢; is evaluated from the variation principle in which we minimize
the expectation value of the energy () as

(e} = (belhlge) _ 2icicileal ] pe)
(P | Pe) >_ij i (e | i)

0 {e) <% h‘zjcj¢£j> i i (el bl we) <Wi

(2.24)

Zj Cj‘Péj>
oc;  dicicilenlwe)  Dicici (ealwe) Yo cici (ea | i)

=0. (2.25)

Then we obtain

<(/7Ki h chwj> =€ <<Pzi chwj>- (2.26)
J J

This can be rewritten with the matrix expression;

Hey = (ou | 1| o) = /0 ot () (), (2.28)

Ny = (pu ] oty) = /0 (o (r). (2.29)

where
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By diagonalizing the generalized eigen-equation Eq. (J.8), we obtain the eigenenergy ¢,
which is discrete. We regard the pseudostate energy €, which depends on the basis param-
eters, for example, the number of the bases 7,,,x and the range parameter p;, as the energy
€y of the nth channel. We adopt the pseudostate method in the calculation for transfer
reactions in Chap. 3.

2.1.4 Comparison of two procedures of discretization

Here we compare the average and pseudostate methods. To take an overlap of the true
scattering wave function 1y, and the discretized-continuum wave function &nlm is useful
to understand what the discretized-continuum states stand for. For the average method, it
can be calculated analytically;

<¢,m(k,r)‘@z3nlm(r)>r - /mm(k,r) <\/A17n /k’“ Wm(k;',r)dk’> dr
1 kn -
v /kn_1 S(k — K')dk'

C1UVBE, (Rt < E < Ey),
o (k < kn_1, k> k).

(2.30)

As shown in Fig. 2.3(a), this stands for that we sum up the continuum states v;,,, from k,,_1
to k,, with the constant weight 1/+/Ak,,. For the pseudostate method, it can be calculated
numerically. As a result shown in Fig. 2.3(b), it has the peak at k = k. 1t corresponds to
the summation up );,,, with a certain weight.

Furthermore, the good agreement of observables calculated with two procedures was
reported [111]. Thus the discretized-continuum states obtained from each procedure are
expected to be equivalent to each other if we adopt a proper model space.

i (@) X (b)

A A
ko
knfz— (Y (b, 7) | frim () o i (13, 7) | i (1))

Figure 2.3: Schematic picture of the value of overlap <wlm(k, ) ‘ 1/3nzm(7°)> within (a)

the average method and (b) the pseudostate method. Horizontal axis is the value of the
overlap.
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2.1.5 CDCC equation

To obtain the distorted wave )“Q], and then calculate observables from the scattering ma-
trix S, we derive the following CDCC equation by inserting Egs. (2.5) and (2.10) into

cco?

Eq. (2.4), and multiplied by [u?ng(r) ® iLYL(R)} ., from the left

<[zﬁnz( )@ iLYL(R )} \H — E| U (r, R)> =0, 2.31)
o2 R (L +1)
_E Fou(R)Y( 232
{ Y dRE | 2un R ] Z ) (2-32)
where
2K2
B, ="t _p_ (2.33)
2(R

and for simplicity the quantum numbers {n, ¢, L} are expressed as c. The coupling poten-
tial F» is defined by

Foo(R) = £ (B) + FO(R), 239
FO(R) = <[w ) @i YL(R):| Iz )+Vy(N)’ [%/e/(r)@L,YL'(R)} JM>T’R’
(2.35)

<[1/Jng ®iLYL(R)} . VO V(C)‘ [ Yo (1) ® iL/YL'(R)} JM>r,R'
(2.36)

Fc(g) and FC(CC,) are the nuclear and Coulomb coupling potentials, respectively. One obtains

the distorted wave )Zg, and the scattering matrix (S matrix) S é]c' by solving Eq. (2.32) up to
R = R ax and then at Ry, connecting f(({, with the boundary condition

HY ) (KnR)beor — /Ko KnStuHY,) (KuR)  for B, > 0,(2.37)

e
—SL W, 1i1ja(—2iK,R) for E,, < 0.(2.38)

—n,

When the channels are open (F,, > 0), the boundary condition is expressed by Eq. (2.37).
Here H; () (Hé ) is the Coulomb function having the incoming (outgoing) asymptotic
form. The Sommerfeld parameter 7, is defined by

MRZaZA62
Mn hQKn )

(2.39)

where Z, and Z 4 are the atomic numbers of a and A, respectively. On the other hand, when
the channel is closed (£, < 0), Xg is connected with the Wittaler function W_,, 1, 1/2 as
shown in Eq. (2.38).
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2.1.6 Cross section

If we neglect the Coulomb interaction between the projectile a and the target nucleus A,
the asymptotic form of the ¥ can be written as

1 eiKBRg

\I]a aaRa ~ iKa Ra o
(r )~e Y +(27T)3/2 R

fﬁa(Qﬁ)'@Z}ﬁ + Qbsc’ (2-40)

where we put the subscript « and § to explicitly represent the transition from an « channel
to a 3 channel. v, is the projectile’s wave function in the v channel and ¢ is the wave
function when the system is in a three-body or more many-body configuration. The relative
wave number K, corresponds to K. Using the S matrix in Eq. (2.37), the scattering
amplitude f3, regarding the angle Q3 = (6, ¢) is given by

f30(28) = Sapfs " (2p)

2 y (o]
L2 s ﬁ ez(aL-i-ai/)((gaﬂ(gLL,_Scc,)
Ko
“ JLr
XY (tmLML|IM) (€'m! LML |TM) Yiyy, (Ka) Yo (), (241)
MMM},

where the Coulomb scattering amplitude fo(;om is explicitly written as

SOUI(QB) = —277K" cosec? <g) exp [—inn In (Sln g) + 2200} (2.42)

The factor o] is the Coulomb phase shift in the y channel and that with L = 0 is given by

o) = 1 n F(l + inn)
0 .
20 T(1—iny,)

=arg (1 + iny,). (2.43)
The velocity v is defined by
hK
vy = —7. (2.44)
KR

If we take the z axis to the direction of K, we obtain the scattering amplitude for the
scattering angle 0;

fﬁa( )—5aﬁfcoul )

Z ez(aL-i-UL, LI (50465LL’ — S.)
JLL'

" Z oy -y g2 | (L= [ME))!
(L' — Mp)!

2K Vo

X (emLO\Jm) (¢'m' L' M| TM) Ppijagy | (cos ), (2.45)
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where Pp| M} | is the Legendre function.
The “discretized” differential cross section is defined by

dog 1
—ou(f) = —— 0)|2. 2.46
mm
For the elastic scattering, a = 3 and ¢ = ¢, it is often used the Rutherford ratio

0c(0)/oRrut(0) with the Rutherford cross section
orue(0) = £5°"(O)". (2.47)

For the breakup reaction, the cross section is calculated from Eq. (2.46) with o # [ and
¢’ # c. In particular, we use the double differential cross section d?c /d2de defined by

d?o dog

g0z~ 9@ 2. aq
=y

(2.48)

Here we introduce the smoothing function G in order to obtain the continuous function
regarding € by interpolating the differential cross section Eq. (2.46) for the energy in-
dex n’. For the interpolation in our numerical code, we adopt the Lagrange’s polynomial
method [112] with before and after 3 points. The angular distribution doy,/dS2 of the
breakup cross section is given by

dopy d’c
70 _/dngde' (2.49)

Similarly, by integrating over the scattering angle of the c.m. of system, we obtain the
energy distribution or energy spectrum doy,, /de of the breakup cross section as

dopy d’o
= [ dQ) . 2.
de / d€)de 2.50)

The partial cross section is defined by

1 s J 12
opa(L) = WTIR? %;(QJ +1) [0apdrr — St (2.51)
In particular the partial breakup cross section aggl is given by

opd (L) =Y apet (L), (2.52)

n !

! 1
grotnt (1) Y @1+ 1) sk (2.53)

J,L!

AT IKE
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2.2 Coupling potential

In this section the formulation of the coupling potential I, defined by Eq. (2.34) is given.
Note that in this work we include only the central part of the nuclear potentials VmN) and
Vy(N). To calculate the integral in Eq. (2.35), we expand Vx(N) with the multipole A of the
Legendre polynomial Py (cos ),

VN (p,) = ZVA(N) (ar, R)Py(w)
= ka N(ar, R 4”21@ R)Yy,(7)

—47TZ

(ar, R) Y~ (ApA — p[00) Y, (R)Yy _,(7)

/\ p
(ar, R) [YA(R) SACIN (2.54)
A
)\2 1
VX (ar, R) = o / Vi (ra) Pa(w) duw, 2.55)
-1
where p is the z-component of A and we have used
r, = R— EILUTE— - ar, (2.56)
My + My
re = VR2+a2r2 + 20 Rrw, (2.57)
ry=R+—2 _r=R+§r, (2.58)
Mg + My
ry = VR2 + a2r? — 2aRruw. (2.59)

Here m, (m,) stands for the mass of x (y), and we use A =+V2\+1and w = cos 0,
where 6 is the angle between r and R shown in Fig. 2.1. Equation (2.55) is obtained by
integrating vV (ry)Py(w) over w for —1 < w < 1.In the integration the orthogonal
condition of the Legendre polynomial is used;

1
2
/ Cl’wP)\(’LU)P)\/ (u)) = Eé,\/,\. (260)
-1
Other interactions, Vy)‘(N), Vz’\(c), and Vy’\(c) can be similarly expanded as
32 1
N)(Br, R) =5/ V;N (ry) Px(w)dw, (2.61)
5\2
V2O (ar, R) =5 / VO (1) Py(w)dw, (2.62)
1
22
ﬁr R) ? V ry )Py (w)dw. (2.63)

Bellow we give the specific forms of the nuclear and Coulomb coupling potentials.
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2.2.1 Nuclear coupling potential

If we write ¥, as

Unom(r) = Wz’fifzm@), (2.64)

we can factorize Eq. (2.35) into the radial and angular parts;

ES e (R Z FO) A (R)Z(EL'EL; M), (2.65)

where

fS’\BnD\(R> = /O QB:’(LIZI (T) (V$>\(N) (Oé?“, R) + Vy/\(N) (ﬁr, R)) (Z)nﬁ(r)dra (266)

Z(0'L'CL; \J)
(=)

=4r-—

.0 ~ L ~ ~ ~ 0 o .L ~
x { [i¢'vy vu(R) |nmend)] |[iY AT
(@ et vum] |[neen®)] [[iveein®] )
(2.67)
Here, by using the Wigner-Eckart theorem, Z (¢'L'¢L; \J) called Z factor is written as
077,

A2
x (£'0£0|\0) (L'0LOJAO) W (¢€'LL"; AJ). (2.68)

Z(WO'L UL \T) = it T

where W (£¢'LL'; \.J) is the Racah coefficient. f(N) vanishes at a finite value of R because
of the short range property of the the nuclear potentials VxA(N) and Vy’\(N). The derivation
of Eq. (2.68) is given in Appx. B.

2.2.2 Coulomb coupling potential

As for the Coulomb coupling potential, we can factorize Eq. (2.36) into
ES) (R Z £ (R)Z(€L'EL; AJ) (2.69)
with
Hhun®) = [ () (VO ar, ) + VO (6 B)) )i @270)

and the Z factor Z(¢'L'¢L; \J) given Eq. (2.67). After a few manipulations of Eq. (2.70)
with the multipole expansion, we obtain
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(©) . Znyez T'max ~ - R — Rc
fm’n/yn&(R) =7 OninOprp — ﬂ?Rc &1 (1) P (r)dro (rmax — -

R—Rg

[T G 4 W R )ar
0
R+Rc R R
« A ~ - C

+ /R_RC Grip (1) (X;\’?)(R) + W:;\,B(T? R)) One(r)dro (rmax — o )

Tmax . ~ R - RC
+ ﬁ e, (1) (X2 (R) + W2 (1, R)) e (r)dr0 (rmax -== ) ,

2.71)

where R¢ is the Coulomb radius of the uniformly charged sphere. 0(r; — r2) is the step
function defined by

0 ri<ry

2.72
1 ™ Z r9. ( )

O(r, —12) = {

The derivation of Eq. (2.71) and the specific forms of X ;C\Z and WIAZ are given in Appx. B.

We have a similar form of the multipole decomposition of Vy’\(c).

2.3 CDCC with eikonal approximation

2.3.1 Eikonal-CDCC equation

In this section we formulate the model of CDCC with the eikonal approximation, called
eikonal-CDCC (E-CDCC) [113, 114]. In E-CDCC the three-body wave function ¥ is ex-
panded in terms of intrinsic states 1,,¢p,;

U(r,R) = thuum(r) Y e "Ry, (R, OR), 2.73)
J

ném

where the coefficient ) ; e~ Hm=mo)or Xg@m (R, 0R) represents the center of mass (c.m.)
motion of a, and mg is the m in the initial state. Here we adopt the cylindrical coordinate
as shown in fig. 2.4. ¢ is the azimuthal angle of R. By inserting Eq. (2.73) into Eq. (2.4)
with multiplied by @@ngm from the left and integrating over 7, one obtains CC equations for

J .
Xntm>

Zefi(m’fmo)@% (TR + én — E) Xi’ﬂ’m’(R’ GR)
J

== Fuominmm(R) > _ e mmmo)ony, (R, 0p), (2.74)
ném J



2.3. CDCC with eikonal approximation 23

where Tr and the coupling potential Fj,/ gy, nep, are defined by

—_hK?
TR= — Vg, (2.75)
2up
Fn’[’m’;ném(R) = <¢n’£’m’ Vgc(N) + Vx(C) + Vy(N) + Vy(c) - VC ’¢n£m>
= Fuelb, 2)e W —m0)or (2.76)

where we represent the set of the quantum numbers {n, ¢, m} as c. The Coulomb interac-
tion Vi between a and A is defined by
ZoZ ae?

Vo(R) = =22 2.77)

We factorize X;{ /m With a plane wave as

Xihom (B OR) ~ Eceo (b, 2) e EnRy(O)(R) (2.78)

(27)3/2

2:“ (E_én)
K = | R (2.79)

If there is interactions, the wave number K, depends on b, and it can be written as

K.(b) = \/ 21 (B = &) _ (mo —m)? (2.80)

with

h? b?

Figure 2.4: Cylindrical coordinates for E-CDCC.
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In Eq. (2.78), the factor ¢7(10)’ which is defined by
¢(C) (R) — einn hl[KnR—KnZ]’ (281)

represents deviation of the incident wave from corresponding plane wave due to the
Coulomb interaction. Here 7, is the Sommerfeld parameter defined by Eq. (2.39).

When one inserts Eq. (2.78) into Eq. (2.74), the second-order derivative of .., can be
neglected since it is expected to vary slowly compared with the plane wave e!5~ "B This
is the eikonal approximation. Then we obtain following CC equation called the E-CDCC

equation for &eey = D 5 ey

1

J = & i(Kn'— z
agcco (b’ Z) - m Z ]:cc/ (b> Z)gcco (b> Z)e (K Kn) Rnn’(bv Z)v (282)

where we commuted ¢ and ¢’. Since Eq. (2.82) is the differential equation regarding z,
the impact parameter b is no longer the dynamical variable. Thus Eq. (2.82) should be
numerically solved in each b with the boundary condition

Hm Eeey (b, 2) = ey - (2.83)

Z——00

Here ¢ stands for ¢ in the initial state. The velocity v,, for the a-A system is given by

un(R) = ;\/712&% —2prVe(R). (2.84)

The factor R, is defined by

(KR — Kpyz)™
(KyR— Kpz)™

R (b, 2) = (2.85)

The explicit form of F.. is given in Ref. [113,114].

2.3.2 Scattering amplitude

The scattering amplitude f.., for the transition to the channel specified by index c is given
by

om)? be R -
fren = _(@27m)°ur <1/Jc (r) Y (7) GKL0)R | 7

2 ; ) amyre

Uk, (T, R)> , (2.86)

where V = ViV 4+ 7,19 4 V;,(N) + V;J(C) — Ve and K,(b) is the relative wave number in
the final channel. From Eqgs. (2.73), (2.74), and (2.78), we obtain

oo = / RS Fou (b, 2)em—mIRE,,, (b, )l Ko O-KLOIR (287,
T
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Here we evaluate the scalar product [K . (b) — K.(b)] - R. When we take the Madison
convention and the scattering angle 67, the wave number vectors become

K. (b) =(0,0,Kx(b)), (2.88)
K. (b) = (Kc(b)sin0y,0, K.(b) cosfy) . (2.89)

Since the coordinate R is R = (bcos ¢, bsin ¢, z), the scalar product is given by

[Ko(b) — KL(b)] - R=—K(b)bsinby cos ¢ + [Ke (b) — K.(b) cosby] z
~ —K.(b)bOy cos pr + [K(b) — K (b)] 2, (2.90)

where we assume the forward scattering and then we take the first order of 6 in the trigono-
metric functions. Thus f.., becomes

KR i(mo—m ¢
Jeco ~ —5 25 / bdbdgpdz Y Feer (b, 2)e' M MORE, (b, 2)

C/

% e—iKc(b)be COS¢R€i[KC/(b)—KC(b)]Z‘ (291)

In Eq. (2.91), the z-integration can be done by using Eq. (2.82);

F KB —Keb)e _ [, i 9 &
/dzzl]:cc’(ba Z)gc’c{)(ba Z)e [Ker(B) ®)e = / dziKC(b)agcco(ba Z)

- —00 LR
= ﬁK (B) [Eceo (b, 2)] 7 (2.92)
LR c cco\Yy — 00 .
From Eqgs. (2.83) and (2.92) we have
1 . )

fcco — % / bdbdgbRKc(b)el(mO*M)ﬁbR efzKC(b)be cosdr (SCC() (b) _ 5600 5mm0) , (293)

where we define the eikonal S matrix S,
Seco(b) = 1im Eegy (b, 2). (2.94)

In E-CDCC, the b-integration in Eq. (2.93) is expressed by the following discretized
summation;

pmax

Fecy ~ —% ZL: bLL bdb
x / dprK(b)e'Mom)r e K(OOr cosOR (S (B) — Feymmo) »
(2.95)
where the interval for the b-integration is determined from
K (bp)bV™ = L, (2.96)

Ko (b )b = L+ 1. (2.97)
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If we assume each the b-dependence of K. (b), e~ c(0)t0scosér and S, (b) is negligibly
small, we obtain

1 bl[[/lax
fcco ~ 277” ZKc(bL) (Scco (bL) - 50005mm0) {/l;min bdb}
L L

" /d¢Rei(mo—m)¢Re—iK6(b)b9f cos (2.98)
where by, is defined from
Ko(bp)by = L + % (2.99)
Thus the b-integration can be done;
pmax
/banL bdb = 2(K1(b))2 [(L+1)2— 17
_ 2?}?6(2)1)2, (2.100)

From the relation regarding the ¢ r-integration,

. . VA
/ dg get(mo—m)dR =ik (0)b0y cosér 2m<m0—m>T7TYL,mO,m(9f,0), (2.101)

the scattering amplitude f.., becomes

1 ) AT g VI
fcco i ZL: Kc(bL) (Scco (bL) 5000 5mmo) Q(Kc(b))2 2mi f/ YL,mofm ((9}0, O)

2T K, L Ny
= = cc br) — 6cc 5mm ~(m—m0)Y m—m, K
iK, ZL:Kc(bL)\/E(S 0( L) 0 O)Z L, 0( n)

= fr. (2.102)

For the scattering amplitude fc(%o calculated by the quantum mechanics, we have
Eq. (2.45). We rewrite it as

271’ IA/()
feto = 37 Z —— (LomoLo0|Jmg) (¢mLmgo — m|Jmy)
ZKn JLoL vV 47T

/

X (S&]L,COLO — becoOLLy) i(mimO)YL,m—mo(IA{n). (2.103)
Here we neglect the Coulomb interaction for simplicity.

In the E-CDCC framework, by setting a critical value L¢ at a proper point of L, the
scattering amplitude described by the quantum mechanics and it by the eikonal approach
can be connected, that is, we adopt Eq. (2.103) for L. < L¢, and Eq. (2.102) for L > L¢
as the “hybrid” scattering matrix fclgo;

2T .y 27 .y
= > IR Yimome (K) + 5 > fEeeYimmo (K'), 2104)
B L<L¢ K L>Lc
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where the partial scattering amplitudes fg‘, cco and fLE; ce, are respectively defined by

L+¢ J+€0 2

27T LO
fgcc = T Z Z — (fomoL()O’Jmo) (EmLomo — m|Jmo)
P iy T Tt LomTto] VAT
X (SJpcono — OcaaOrLy) i), (2.105)
Ky ﬁ -(m—m,
f]LE;CCO = K.(br) \/TTT (Scco (br) — 5cc05mm0) il o), (2.106)

The critical value L¢ is determined so that the relation fgcco = fgcco is satisfied. This
hybrid procedure enables us to perform numerical calculation efficiently with high preci-
sion as well as that of the full quantum calculation [113,114]. This can be regarded as the
quantum mechanical correction.
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3.1 Introduction

Transfer reactions are useful to investigate a single-particle structure of nuclei because of
its selectivity of kinetic and angular momenta, so called the momentum matching. For
example by using the A(d,p)B reaction, the single-particle structure of B with the n-A
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configuration can be examined. In a conventional way, the (d,p) reaction is described with
the distorted-wave Born approximation (DWBA), which assumes that n transfers to A
through a one-step process. However, in particular, the breakup channels are expected to
play an important role because the deuteron is bound with only 2.22 MeV. Furthermore, if
the residual nucleus B is a loosely bound system such as unstable nuclei, its breakup chan-
nels also must be considered. In this chapter we discuss the role of the breakup channels
of loosely bound nuclei in the transfer reaction.

3.2 Formal theory for transfer reaction

To include the breakup channels in the description of the transfer reaction, below the for-
mulation of the coupled-channels Born approximation (CCBA), which explicitly takes into
account the couplings of the breakup channels of both the projectile and the residual nu-
cleus, is given. Below, we first show the formal theory of the scattering to introduce the
transition matrix. Then, the CCBA formalism in terms of the method of the continuum-
discretized coupled-channels (CDCC) is given.

3.2.1 Total wave function

We consider the transition of the state from the initial channel, the a + A system, to the
final channel, the b+ B system, as shown in Fig. 3.1. The former and latter are respectively
represented by the indices « and 3. The total wave function \I/(Ojr) of the initial state can be
expressed by

\I’&+) = Z Yo (Coa) €&+)(ra), (3.1

which satisfies

[H — E|¥(H) =0, (3.2)

«

Figure 3.1: Illustration of the transfer reactiona + A — b + B.
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where FE is the total energy of the system and the Hamiltonian H is defined by

H=hy+ K,+V,
= h@ + Kg + V3. 3.3)

Here V,, (K,) is the interaction potential (kinetic operator) between a and A.
The explicit form of the internal Hamiltonian h,, is defined below. The wave function
1 is defined by

Ya (Ca) =g (Ca) ha (CA) > (3.4)

with the wave function ©x of the particle X (X = a or A), which forms a complete
set and the intrinsic variables are denoted by (. The expansion coefficient gfj) describes
the relative motion of the a-A system associated with its relative distance 7. 1, and its
components satisfy

[ha — €a) o =0, (3.5)
[ha — €a) %a = 0, (3.6)
[ha —ealtba =0, (3.7)

where internal Hamiltonian h,, is the sum of the Hamiltonian operators of each particle;
ho = hq + ha. Thus, for the eigenenergy €, we have the relation ¢, = ¢, + €4. The
sum, therefore, in Eq. (3.1) is taken over all intrinsic states of each particle. Using the
orthonormality of ¥, &(;r) can be represented as

£ (ra) = (va| ¥5)
— [ dcavi (G W (3.8)

The superscript (+) and (—), appears below, represent the outgoing and incoming
boundary conditions for the scattering wave, respectively. For the final channel, we can
similarly define the functions and variables.

3.2.2 Rearrangement component

In general, \I/Sf)

Yes, e,

should contain the rearrangement component of other channels such as

U =Y ()€ (ra) + Y 0 (o) €5 rp) + -+ (3.9)
- E

Note that the components waé’&H and wg(fgr) are not orthogonal. It means that the overlap

of 1, and g is not zero;

Oap = /dcaw; (Ca) ¥ (¢p) # 0, (3.10)
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because {g can be represented as a function of ¢, and r,. Explicit case is shown in

Sec. 3.3.1. Moreover, we have the relation O,g # Og,.

Form Eq. (3.9) it is, in principle, possible to represent \I!&Jr) in terms of the S channel

configuration;

WD =" 0s (¢o) €57 (). (3.11)
B

The coefficient 5};) is defined from the analogy of Eq. (3.8) as

5 (rg) = <¢B ’ ‘1’&”>

= / ¢ (Cp) WD, (3.12)
3.2.3 Transition matrix
From Eq. (3.2) and (3.3), we obtain
[E — hg — K| UL = V3000 (3.13)

Then multiplying by j; from the left and integrating over (g lead

By — Kl €5 (rg) = (s | Vi | 95D, (3.14)

where Eg =F - €gB-
The formal solution of this equation can be obtained by following the standard Green’s
function procedure [2,115,116], that is,

(+) ikoTa Hs , elrsril (+)
67 (rg) = e redeg — L2 [ar (vs|Vs| o), Ga1s)
™ ‘rg — 'r/’B
with the boundary condition for the asymptotic form
eik‘ﬁ'f’ﬁ

5}” (rg) ~ e*T50s + foa(Ps, ka) (3.16)

rs
Here the wave number k- is defined by k., = \/2u. F., /h with the reduced mass ., of the
~ channel.
Now we may have
”I"B—’PH %rg—f'ﬂr%:rg—kﬁm%, (3.17)
for the limit 5 > r;. Then we have the scattering amplitude fg,;

27 h?
fa(kg, ka) = — s Tsa(ks, ka), (3.18)

with the transition matrix (7" matrix) defined by
Tsa(kg, ka) = <6ikﬁ'rb¢6 ‘ Vs ‘ wih (ka)> :

N / dCadrize™ " 55 (o) Vs (Goy ) W) (Ra), (3.19)
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3.2.4 Gell-Mann, Goldberger transformation

Since Eq. (3.19) is not easy to calculate owing to the presence of the complicated interac-
tion V3, we introduce the auxiliary potential Ug. From Eq. (3.3), we have

H:hﬁ—i—Kg—FVﬁ

=hg+ Kg+ Wg+ Ug, (3.20)
with the residual interaction
Ws = Vg (Cg,ms) — Us (rp) - (3.21)
Then the Schrédinger equation (3.22) is now written by
[Es — Kz —Ug (rp)] 5/(3” (rg) = <¢6 ‘ Wp ‘ ‘1’8+)> : (3.22)

The purpose of adding Up is to make small the effect of the inhomogeneous from the right-

hand-side of Eq. (3.22) compared to Eq. (3.2) by taking W3 as small as possible. The
(+)

distorted wave x 3 describes the scattering due to the potential Ug with the Schrodinger
equation
+
[Bs — Kp — Us (rg)] x5 (rs) = 0. (3.23)

The proper choice of Ug is case by case. Explicit form of Ug in specific reactions is given
in Sec. ChapTRForm?2.

The formal solution of Eq. (3.22) can be expressed in terms of the solution ng) for the
homogeneous equation (3.23). From the similarity to Eq. (3.15), it is given by

7
£é+) (r5) = X5 (kp, 1) dap — %Zg/dr,IBG,S;) (r5,775) <¢ﬁ ‘ Wp ‘ ‘1’&+)>, (3.24)

where the Green’s function Ggr)

T matrix
Tsa(kp, ko)
0 _
= 14" (kg, ka)3sa + <Xé ) (kg) s ‘ Ws ’ vl (ka)> :

= 14" (kg, ko) S + /dcﬁdrﬁxg_) (kg,m3) Vi (Ca,m5) — Us (1) U (ko)
(3.25)

propagates in the potential Ug. Therefore we obtain the

where T/E,O) defined by

0 ikg-r
TS (k. ko) = <e ks

Us ( x (ka)) (3.26)

describes the elastic scattering due to the potential Ug when 3 = «. The incoming spherical

wave X(_) is defined as the time-reversal of the outgoing wave Xﬁ);

X (ky,7y) = X(WJF)* (=ky,75) (3.27)

The second term of Eq. (3.25) is nothing but that it describes the transition from the «
channel to 5 (# «) channel. The transformation such as from Egs. (3.20) to (3.25) with
introducing the auxiliary potential Ug is known as the Gell-Mann, Goldberger transforma-
tion.
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3.2.5 Post prior representation

From here we formulate with the post form representation, in which the 7" matrix involved
the interaction in the final channel. There exist another one called the prior form. This is
based on the idea that nuclear structures and reactions are the time-reversal invariant. Under
this invariance, the transfer reaction A(a,b)B is physically equivalent to the b(B,a)A
except for the phase factor;

T—B,—a(_kﬁa —kia) = (—)ﬂﬁaTga(kﬁ, ka). (3.28)

The phase factor mg,, is related to the spins of particles. If we ignore the degree of spins,
Tgo = 0. The T" matrices corresponding to Egs. (3.19) and (3.25) are respectively given by

Tpa(kp, ka) = <lp(ﬁ_) (ks) ‘ Va ¢a€ika.ra> (3.29)

= T (kg ka)dsa + (U5 (k) | Wa | xS (ka)) . (330)

The post and prior form of the 7" matrix is mathematically equivalent. However this

equivalence may be broken when approximation is introduced to calculate the exact wave

function \I/gﬂ or the distorted wave X(7+)'

3.2.6 Lippmann-Schwinger equation and Born series

The Schrodinger equation (3.2) leads the Lippmann-Schwinger equation

1
(+) — (+)
Vo = Vo lCa) 9o (ko o) + gy Vol
=Y (Ca) Pa (Ko, 7o) + GVLUE), (3.31)

where ¢, stands for the plane wave of the « channel, ¢, (ko, 7o) = ¢tkara and G((Ni) is

the Green’s function of the full Hamiltonian H;

1

G = 3.32
@ E—hg— Ky —Vytic’ (3-32)
We can represent G(ai) with another expression by introducing the Green’s function G[%),
1
G = 3.33
0o ™ B hy — K, +ic’ (3.33)
for the free Hamiltonian;
+ +
G =al +eiv,a). (3.34)

The formal solution of the Schrédinger equation (3.2) is obtained from Eq. (3.31);

\I/((x:t) = Ya (Ca) ba (kaa 7'04) + G(oci)va@ba (Ca) ba (kav ra) : (3.35)
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By using Eq. (3.35), the 1" matrix for elastic scattering is given by

T(K.,, ko) = <wa¢ (K., 7o) | Va \pgi)>
- <¢ (KL 70) | Va + VoGPV, <;5(k:a,ra)>, (3.36)
where
k2 = k2 = 2u.E /2. (3.37)

Equation (3.36) can be expressed with the Lippmann-Schwinger type;

T(k), ko) = Vo + VoGP (E)V, (3.38)
= Vo + VaGS(EYT (K., o). (3.39)

Here we explicitly put the argument E of the Green’s functions. When Eq. (3.37) is sat-
isfied, T'(k.,, k) is called *on-the-energy shell’ or just on-shell’. For more complicated
reactions such as multiple scattering, Eq. (3.37) may not be satisfied. This is said to be
’off-the-energy-shell’ or ’off-shell’.

The Lippmann-Schwinger equation (3.31) can be rewritten as the Born series;

00 = [14 GGV + GEVAGEVa -+ [ fa (ke ma) Y (Ga) . (B40)
Similarly for the residual interaction W,, defined by Eq. (3.21), we have
U = [14 GEOWe + GEOWLGEIWa + -+ | XED (ko ma) Ya (Ga) . (34D

From these expression with the Born series, the T matrix for the 8 # « transition is given
by

Tio = (™70 ’Vﬁ + ViGoo Vo + VoGho VoGtV + -+

e'kaTa wa> (3.42)
and
TBa = <X(ﬁ_)¢5 ‘Wﬁ + WgGg)Wa + W,BG(oj_)WaG((;—)Wa + - ‘ X<(x+)¢a> . (3.43)

If we choose only the first term of these series, the former gives the first Born approxima-
tion, or just the Born approximation;

T st = (45751, |V

ey ). (3.44)
while the latter leads the 7" matrix of the distorted-wave Born approximation (DWBA);

TIVPA (post) = (x| Vi = Us | x§D ). (3.45)
Similarly 7" matrices of the prior form is given by

Th (prior) = (72| V,

¢ikaTa ¢a> , (3.46)

TENP4 (prior) = <x(g_)wﬁ ) Vo —Ua [ x5 )wa> . (3.47)
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These are basic formalisms in order to describe transfer reactions; in particular DWBA is
often adopted for analyses. However, in DWBA, higher order processes, for example the
breakup effects of the projectile and the residual nucleus, are missing for the calculation of
Xgﬂ. Thus, in this work, we increase the accuracy of the model by formulating the coupled-
channels Born approximation (CCBA), which includes the DWBA framework with a three-
body model.

3.3 Coupled-channels Born approximation (CCBA) formalism

As a CCBA model, we explicitly take into account the breakup effects of the projectile
and the residual nucleus by means of the method of the continuum-discretized coupled-
channels (CDCC) in terms of a three-body model. Below the explicit form of the CDCC
wave function with the partial wave expansion is given.

3.3.1 CDCC wave functions

In this subsection, we formulate the explicit form of the CDCC wave function with the
partial wave expansion. An illustration of the stripping reaction, a(z + b) + A — b+
B(z + A) is shown in Fig. 3.2. In our model it is assumed that the intrinsic spin of each
of z, b, and A does not change through the scattering. Thus the degree of freedom of the
intrinsic spin does not appear explicitly in the distorted wave. In addition the target nucleus
A is assumed as structureless that vanishes /4 in this formulation.

In CDCC the three-body wave function in the initial channel \Il((j) is given by

U (rap, ma) wab (rap) X2 (1), (3.48)

X B A

Figure 3.2: Coordinates for the transfer reaction a(z + b) + A — b+ B(x + A).
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which satisfies
[Ho — B (740, 70) = 0, (3.49)
Hy = Kppp + hap + U (rpa) + VD (ra) + U (roa) + Vi (r50). (3.50)

The coordinates for the transfer reaction are shown in Fig. 3.2 Eqgs. (3.49) and (3.50) cor-
respond to Egs. (2.4) and (2.2), respectively. E is the total ene §y of the system and Kx is
the kinetic energy regarding the coordinate X. The U Z‘ and V_, " are, respectively, the nu-
clear distorting potential and Coulomb interaction between ¢ (= x or b) and A. Note that «
and 3 respectively represent the initial and final channels. wib is the internal wave function
of the projectile a with 7 its energy index; ¢ = %3¢ corresponds to the ground state of a and
1 # g to the discretized continuum states of the z-b system. In this CCBA framework we
adopt the pseudostate method given in Sec. 2.1.3 for the discretization because Gaussian
basis functions used in the pseudostate method are applicable to CCBA, in which the radial
part of wib has to be expanded with any function. The detail of the expansion of wfvb in
CCBA is shown in Appx. C. Equation (2.8) for w;b with the x-b internal Hamiltonian h,y,
can be written as

(ha — €h )l (1) = 0, (3.51)
hap = Ky +Vap(Tap) + VA (rap), (3.52)

where Eib is the energy eigenvalue of the x-b system. V; is the nuclear binding potential,
which reproduces the binding energy siob and ng )

between x and b.

stands for the Coulomb interaction

Similarly, the three-body wave function \Izg') in the final channel is given by
U (rpa,75) Zwm rea) X5 (rp) (3.53)

with the energy index j of the residual nucleus B, which corresponds to ¢ in the initial
channel. \II(B+), satisfies

[Hg — E]9S) (r4a,75) = 0, (3.54)
Hpg = Ky + hoa + Uéﬁ) (1p4) + Vb(f)(rbA) + V) (r), (3.55)

where the x-A internal wave function wi 4 satisfies following Schrodinger equation with
the x-A internal Hamiltonian h, 4;

(h:E a—c A)wg A(raa) =0, (3.56)
han = Kn,y + Var(rea) + V.9 (ren), (3.57)

where &’ A Ve, and V( A) are respectively same as 5xb, Ve, and Vx(bC ) but for the x-A
system. Note that g does not contain the nuclear interaction between x and b that has
been used as a transition interaction V; as shown below. This is noting but the fact that we
choose the auxiliary potential in Eq. (3.21) so that only the interaction V; remains.
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The partial waves of \IIE:F) and \Il(ﬁﬂ can be represented by

Z Z albm ijozbnz (kaara) (358)

%

Uppmiy
tio(+) _ An Ll i
mozbm,b(ka,ra)  kaTa JLoL! ' XLZOL/ Loblay (o 7a)
Y (Lopmap Lo Ma| Jp) (Uymly, L M| T )
puMa M,
< Y7 ar, (ko) Yi oz, (Fa), (3.59)
JJ (+)
Z Z B! ym! 4 m(;Am;A(kﬁ7Tﬁ)> (360)
Uoamya I
Jjo(+) k _ Am L'B Jjjo k
Xm“;m;A( 5,’!‘5) k‘g’f‘g i XLBL/ lpall 4 ( 577"5)
xS (eameaLsMalJu) (I aml, oLy MELT )
,LLMBMé
X YEBMﬂ(’%ﬁ)YL'BMé (P5). (3.61)

Here, I, (L) is the orbital angular momentum between x and b (a and A) in the initial
channel, while [, 4 (Lg) stands for one between x and A (b and B) in the final channel,
as shown in Fig. 3.2. my. and M, are respectively their z-components in each channel.
Through the scattering process, the projectile’s (residual nucleus’) state can vary from its
“incident” state owing to the interaction between a and A (b and B) in the initial (final)
channel. Thus their quantum numbers can change to “prime” one due to the CC in the
intermediate state, in which the particles interact each other. J (u) is the total angular
momentum (its z-component). The wave number regarding the coordinate 7. of the
channel is expressed by k..
The overlap O, defined by Eq. (3.10) is now

Oap = / dr b gy (Tap) VA (T2A), (3.62)

where we assume ¢ = ig and j = jg, and they are omitted. From Fig. 3.2 we can see that
the coordinate 7,4 can be written as the linear combination of the coordinates r,; and 7,
aSTzA = To+ 27%1)- Thus O, is a function of 7. However this nonorthogonality appears
in the inner region regarding r,. Now, since 1., and 1,4 decay exponentially owing to
their bound states property, it is clear that O,3(7) becomes zero for r, — co. This fact
is physically reasonable because in the interior region, in which @ and A can overlap, we
cannot distinguish the system whether it should be represented as the a-A or b-B systems.

3.3.2 Transition matrix and cross section

In this subsection, by adopting CDCC, we formulate the transition matrix (7' matrix) of the
stripping reaction which includes the coupled-channels (CC) concerning the breakup states
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of the projectile and the residual nucleus in both the initial and final channels, respectively.
The T" matrix in the post form is given by

T= g <\1z(‘>(vxb xp(;>>

_ .7]0
/ Z Z< Bl/AmzA mIAm ‘be

lelzbmzAmzb i

“0(+)/ > : (3.63)

!
al pM erbmzb

the factor ¢ is the Jacobian of the transformation from the integration variables (734, )
or (ry4,Tpa) to the (74, 73) used in the present framework, which is given by

(3.64)

7= O(rea;Tay) _ [ (GB )r

O(Ta,T3) rzla+ A

The reason why we choose the interaction V, as the residual interaction is, in general,
the range of V, is expected to be the shortest in each subsystem. It means that we just have
to calculate the 7" matrix in the range of the residual interaction. For example deuteron
induced reactions, the interaction between p and n, which forms deuteron with the range
of the nuclear interaction, is adopted.

In the exact form of Eq. (3.63), \I/((j) includes not only the a-A components, consisting
of the elastic and breakup ones, but also rearrangement components such as Eq. (3.9).
The latter is not explicitly taken into account in the present CCBA calculation. However,
if we include large enough values of [,;, the rearrangement channels can be described
well [109, 117]. Furthermore, the transitions between the former and latter are shown to be
weak [109, 117] (See also Appx. A).

Let us introduce the form factor in order to integrate the angular part of Eq. (3.63). As
shown in Eq. (8) of Ref. [118], the form factor is given by

<CI’)79 I ‘ Vb | @4

bm;b> = it Ay (Imlymly |l 4l a) £i2 (Pa, 7). (3.65)
Im

Here, [ is the transferred angular momentum defined by
L=lps—lypy=U,-1,, (3.66)
and it can vary in the range of

|lmb — le| <[ < lmb + le, (3.67)
[y — U] SU< U+ Uy (3.68)

m is the z-component of [. The phase factor if'l ensures time reversal properties. A; is the
spectroscopic amplitude and the form factor flzfn can be given with the spherical harmonics
expansion, Eq. (32) of Ref. [118], as follows;

£ (rp,re) = Z FllilLQ(rﬁ,ra) (L1 My Lo Mo|lm) Y7y (#8) YT, a1, (Pa)-
Ly Lo My Ms
(3.69)
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Explicit form of f;il in some cases is given in Appx. C. For example, when we expand 7/1;b
and wi 4 with Gaussian basis functions, the exact finite-range (FR) form of Fjy, 5L is given
by

i7 ILgLy
Firsa(rere) = Y R 1 (rera) ey 55 (3.70)
AapL

g 1 L L
‘%;]A)\b[, (Tﬁ, TOL) = Eh)\A (rou T,B)h)\b (TOU TB) Z g;,bizb (TOM rﬁ)’LL(PY@Z'iibT,BTCX)v (371)
iaip
ILgLq i L3327 7 & o~ -\ - v 3 3
JZ{)\Aib[/ = Z(_)JQ+LQ LLleAl:Eb]aJ,leA - AxAl:):b - A:J:IJ)\JUA)\Jcb
jajB
X (lacA - )\Z’Aa 0, l:vb - )\:cba 0|]a0) ()\$AO)\II)O|]BO)
% (ja0LO|La0) (50L0|L50)
l:rA - )\mA >\:EA le
X W(jangaLg; lL) l:cb — >\xb )\xb lxb . (3.72)
jcx j/o’ l

Here the factor W (jajgLaLg;lL) is the Racah coefficient and the 3 x 3 matrix in the
braces {} is the 9-5 symbol. Note that in this thesis an angular momentum with “hat”, L,
stands for

L=+v2L+1. (3.73)

The definitions of each variable in Eq. (3.70) are given in Appx. C.

To perform the angular integration we need to write down the time-reversal form of
Eq (3 61) X]]O( )

MeAm), 4’

X.Ziii;le (kﬁa ’I"ﬁ) XJ,JO(+) m’ (_kﬁa ’I"B)

MyA,—
—m/ L, Jj
= (e S i (o)
ko751 L,
x> (loas—maaLaMp|Jp) (I, —mly s Ly Mb| Jpr) (=)Mo
;LMBMé

X Y15, (kp)Yr, a1, (75)- (3.74)
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Inserting Eqs. (3.65), (3.69), and (3.74) to Eq. (3.63), we obtain

T= 7 Z Z/dra/dr,g

o
! Ala:bmzAma:b v

47 Ji
_\mga—ml =" JJjo
X ( ) A Akﬂ’f’ﬁ BXLBL’ zAl/ (kﬁ,T’g)
JLgL’
X Z (lmAa _mxALBMﬁL]M) (ZZBA7 _m;AL/ﬁMH‘]:UJ)
,uMBM’B

X (—)L5+MﬂYLﬁ,—Mg(’%ﬁ)YL'BMé (P5)

x> F o (rgra) (LiMyLyMs|lm) Y7y, (76) Y ar, ()
L1 Lo My Ms

4
L Ji
Z QXLa%’ lapll, (ko"ro‘)

r
a aLaL’

X Y (LpmapLa Mol T ) (Lymly L M| Tp) Yi ar (ko) Yz ar (Pa). (3.75)

In Eq. (3.75), the angular integration can be done;
/‘Jlf’ocYL*QM2 (7)Y 02 (o) = Or,1 Oy, s (3.76)
/df’/é’YL*lM1 (76) Y1 0, (P3) = Or, 1, Onn sy (3.77)

The T" matrix is then given by

Hoall, Jlzpll 7
T=dn gy, >, . Ay LsL,

1 Uy LgLly Uy Lo L,

7 * 7 —m/ Lg+Mg :L',+L" —I1
x> > > Vi oy (k) Y7 g, (o) (=) ™eA ™ meat bat Mo bt ba
mp m;AMgM’ m’szaM(’x

B8
X (lea, =meaLgMg|J ) (I, 4, —miy 4 Lis Mp|J 1)
(lmlwbmxb]lemxA) (LgMéL’aMC’y]lm)
X Ly Miab Lo M| T ) (L, mipy Ly M | T 1) (3.78)

. wAll Alzpl!
where the overlap integral I 7 LA L””,“‘L; LI,W is defined by
8

UAl llij 47T

JLa L, LgLly =

radre [ radrg

Jj Ji
X XL;]IS’ Lal'y (k&rﬁ) lL’ L, (TB’TQ)XL”%'Z I (Ko o). (3.79)
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If we take the z-axis to be parallel to the incident beam following the Madison conven-
tions, the spherical harmonics becomes

Y 1.(0,0) = Sar,0La(4m) 712, (3.80)
_ . ~ Lg — | Mg|)1?
Y (6.0) = (—)(Ms|=Ms)/2} L (4)~1/2 (575 P 0).
Lg, MB( ,0)=(-) ﬁ( ) (Lﬂ+|MB|)! L,@M,8<COS )
(3.81)
Using Eq. (3.80) and (3.81), we obtain
Upall, Lol i
T:/Z Z Z AIJLiL'ALbL'b L L,B
1 U4 LgLly U, LaLl,
« Z Z Z myA mzAJrLg( )(|M@‘+M5 /2 L’ +LL,—1
mp m/, Mg MY, ml,, MY,
X (lpa, —maaLgMp|J ) (I a, —mipa LigMp|J 1)
X (lml;;bm;b]l;:Am;A) (L/BMéL;M&\lm)
X (Lpmab Lo 0| J 1) (Lpymipy L, My, | J 1)
(Lp — [Mg))1]"?
e P, 0). .82
] Pt .

The summation over m, m/, 4, m;,, M, and M in Eq. (3.82) results in

Z (=) maa (lhon, =mip AL Mp|J ) (Imlymipy |l 4l )
mm;Am;bM(’lM/’g
x (L MpLy, M, |lm) (Iymiy, e, M| J )
= Z _mzA H_llb Z;A (l/ bmzblm’la:Am A) (Z;A7 _mf’cAL/BML/?’J:U')

% (_)L/B-FLQX—I(_)L%-FM&

f/ (I, =mLiMp|L.,, —M,) (Lymiy Li, ML |J 1)
«

L

L,

X Z Loymigglm|l ami 4) (— Yaatl= (U amipaLly, —Mp|J, —pu)
x (=)Es e (Im L, — MBI LLMY) (Lymly, Ly ML J )

l

/ l/ _l/
= (=) ()t

/ / ragy o=, (U v
— (—)‘u(—)l$b+liJf&uo(—)l1b+l+L5+Jl;AL/a { x/b x;A
I L, J L,
/ L] Ly 1 loa

U, 1 o

where { f,b J Lx;“} is the 6-j symbol and we have used the relation (—)"=4 My _
B a

(_)—m;AJrMB (—)* ensured by properties of the Clebsch-Gordan coefficient

(lpa, —mipaLigMp| I ).
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Inserting Eq. (3.83) to Eq. (3.82), the T matrix becomes

Uy lr Ilz ij 2
Tistoamen = # 3 D0 D AL Lalsll,s

1 U ALgLiyll, LaLl,

/ /
{la:b l xA}(_)LﬁJrLjBiL'BJrL;—l

L, J L
X Z 8u0(—)"=A (=) (|7M5[+05)/2 (lea, —mgaLgMg|J 1) (Lupmagy L0 J 1)
uMpg
(L — |Mg)!]"?
[([/IM-WBD' PLBMB (COS 9) (384)

Here we put the suffixes of T matrix, [, [, 4, and m, 4, explicitly.
Next let us take the summation over u as

> 640 (Leas, —maeaLgMp|J 1) (Lopmap LaO| Jp2)
M

= (lzA, —mmAL5M5|JO) (lzpmap Lo 0]J0)
= (lzA, —mxAngmwA‘JO) (1:50L,0]J0) 6MBm$A6mxb0. (3.85)

Then Eq. (3.84) becomes

llel A zblzbl]
Tigylyaman = /Z Z Z AIIJLQE'L L, LaLgll, 4

W U LgLly U, Lall,
% (—)Lﬁ"’_l;cA—i—l;:biLQ?_Léx_l(7)(‘mmA|_mzA)/2
X (lya, —mgaLgmga]JO) (1;50L,0]J0) W (I AlngLﬂL’;lJ)
(Lg — !Mﬂl)!} 2
— 7 P, (cosB). (3.86)
[(LﬁHMﬁI)! e
If mz4 > 0, we can rewrite Eq. (3.86) by
- lw z lz ij 2
Titeamen = 5 3, 2 3 Ayt LaLsll, g
W U LgLlyll, Lol
)Lﬁ+lwA+l/ il La—l

x (=
X (lpas —mgaLgmalJ0) (1;p0La0]JO) W (I oLy, LisLL; 1)

% L,B - m.’,EA 1/2 P ( 9) (3 87)
T . N cosvb), .
Lﬁ + mxA Lomaa
ﬂwblmAvfmxA - ( leatm A/ E E E AIIJLIZL/AL;L/b L L,Bll
lJ l LBL’ l pLa Ly,
X (_)La+l;A+l;bi%—L;—l

x (=)"2 77 (lya, —maaLpmaa| JO) (Lp0La0|JO) W (I 4l L3 Liy; 1)

Lo —mya)1"?2
X [W] PLgmg(cos ). (3.88)
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Eq. (3.88) can be expressed as

T, = () eaTmeAz STy 1 imoas (3.89)

ableA, =Mz A

where 7,z is the operator which reproduces the phase factor (—)F5=7 in the Lg- and J-
sums when 7,3 operates 1}, ,m, , for mza > 0.
Then the transfer cross section is given by

2
, (3.90)

lza
D7 _ gttty K5y 1
a0 (271'7”22)2 ke, loplzamaa

MmgAa=—lzA

where 1, and pg are the reduced masses for the initial and final channels, respectively.
Equation (3.90) does not specify the z-components of particles’ spins. Therefore it includes
the spin factor . defined by

72
= j2{52’ (3.91)
A5zlia

which comes out by taking an average over the initial spin orientations and a sum over
them in the final channel. We only have to consider . as the spin dependent part, where
sx or Jx is the intrinsic spin of the particle X. The derivation of Eq. (3.91) is given in
Appx. E. Note that [, is determined by the incident condition and also [, 4 can be assumed
from an observation condition.

Sometimes the zero-range (ZR) approximation is used for the overlap integral
Upall, \lopl, i
JLaLi,LgL

that, in the form factor, the range of Dib defined by

. to save the computational cost. In the ZR approximation it is assumed

D:icb(rxb) = be(rxb)wib(rmb) (392)

is short and it can be expressed by the J-function, Dib('racb) ~ 0(ryp). Equation (3.79)
with the ZR approximation is rewritten as

Upall,, V4T B JL'

i B (71
Lot _kakBZDO 7 (L30J0]10)

g A . ”
X /draxiffblAZ;A <k,57 B%z) ?%(ra)Xi *(kasTa) (3.93)
with
D = / dr oy Dy (1) (3.94)

Note that in the ZR approximation the transition from non s-wave of w;b is neglected
because that components cannot be represented by the §-function. See Appx. C for more
detail.
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3.3.3 Distorted-wave Born approximation (DWBA)

In this subsection we simplify the formula of the 7" matrix by neglectiing any CC effects,
that is DWBA. For DWBA, the three-body wave function \IIE:F) and \I!(;) can be written by

UEH = Dy Xk, (K Ta), (3.95)
4 .
Xg;;)b(kaa'ra) = Lor ZZLaXia(ka,Ta)
al o JLa
X 3 (LapMapLa Mol Tp) Y v, (ko) YEoaz, (Pa), (3.96)
uMq
U = Dpy, ym, X5, (R, s), (3.97)
47 .
Xot), (kg mp) = g > itexd (ks rp)
T
X Y (leameaLgMp|Jp) Y ar, (kg) YL, (7). (3.98)
wMp

The T matrix with DWBA can be easily derived by following similar way as in CCBA. For
mga > 0, we obtain

l T lop+Hloa s La+Lg+l

Lopigamen = 7 Z AZIJLD‘LBZL/B(—) bHloajLatlpt
JILgLa

(Lg —maa)!

1/2
Ly +m A)!] Prym, 4 (cos0) (3.99)

X W(lpalgpLgLas;lJ) [

with the overlap integral 1 fJ LoLs defined by

47
s = o / radra / radraxt, (kg m8) Py 1 (g r) X (s o). (3.100)
o
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3.4 The *B(d,n)"C reaction

3.4.1 Background

As a first application, we focus on the transfer reaction *B(d,n)’C at 14.4 MeV/nucleon.
The projectile d is loosely bound with its binding energy 2.22 MeV. In addition, the residual
nucleus C is a proton-rich unstable nucleus; its proton separation energy is 1.30 MeV.
Thus to describe the transfer reaction precisely, one should take into account the breakup
effects of d and ?C and investigate how significant these effects on the transfer cross section.

The 8B(d,n)°C reaction has been paid attention with an astrophysical interest [108,
119]. Its cross section was measured [108] to indirectly determine the reaction rate of
the proton capture reaction of B, ®B(p,7)?C. The ®B(p,7)’C reaction in low-metallicity
supermassive stars, is expected to lead the process called hot pp chain [119]:

*B(p,7)?C(a, p)*N(p,7)30(8Tv)*N(p, 7)'*O. (3.101)

The hot pp chain can be a possible alternative path to the synthesis of the CNO elements.
Thus determination of the cross section opp of the 8B(p,v)?C reaction is important to un-
derstand the process. It is, however, difficult to measure o, since the ¢,5-dependence of
opB 18 quite strong, in particular, at low energy it has extremely small value. Therefore,
instead of the cross section, the astrophysical factor,

S18(ep8) = £p0uB(epm) exp[27r], (3.102)

which has weak energy dependence has been evaluated from several alternative measure-
ments [108, 120, 121]. In particular S;g at zero energy, Sig(0) is important to estimate
since a typical stellar energy is extremely small. For example, the temperature of the sun at
its center, 1.5 x 107 K, corresponds to around 1 keV. Here, 7 is the Sommerfeld parameter.
Below, comparison of the calculated cross section and experimental data, and prospect to
astrophysics are also given.

3.4.2 Numerical setting

In the 8B(d,n)9C reaction, p, n, and 8B respectively corresponds to x, b, and A describe
in Chap. 3.3. In this analysis w;B is regarded as the overlap function of C with the p-
8B(g.s.) configuration. Since the ground state of 9C includes the component that cannot
be described by the p-®B(g.s.) configuration, 1/);?3 has to be nprmalized by the square root
of the spectroscopic factor S. The breakup components @Z);B (j # Jjo) also have to be

normalized by the same factor \/3 , because

(+) o i€ ikgr jo
U (romors) = MmNV SU (rn)
— VS lm — = 6ik5'r51/1£(1)3(7'pB)§

e=+0 E — Hg + i
(3.103)
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note that the w;B (j # jo) are generated by the M¢ller wave operator ic/(E — Hg + ic).
Here, S has only one quantum number, i.e., [, = 1 in the ground state of 9C. This is due to
the neglect of the intrinsic spin of each particle in the present study. Thus & is understood
as an averaged value of the S’s, each with a different value of the total angular momentum
of the p-®B(g.s.) system.

We adopt the one-range Gaussian interaction [122] for V),,. The pseudo state method
described in Sec. 2.1.3 with the real-range Gaussian basis functions [111] is used for ob-
taining the discretized-continuum states of d; we include the s- and d-states with neglecting
the intrinsic spin of d. The number of the basis functions taken is 20, and the minimum
(maximum) range parameter of Gaussian is 1.0 (30.0) fm. In CDCC we include the pseu-
dostates with sgm < 65 MeV and sjm < 80 MeV for the s- and d-states, respectively. To

obtain W5, i,
ijo(ﬂ and Xéjo(_) is 25. The maximum value of r,, and rg for them are 25.0 and 20.0 fm,
respectively. Thus for describing the transfer reaction, Eq. (3.63) is integrated over r,, and
73 up to these values.

In the calculation of @ZJ]JJ'B in the final channel, we adopt a Woods-Saxon central potential

is calculated up to 7, = 100.0 fm. The number of the partial waves for

-1
Vi (1) = Vo [ 1+ el o) eo] (3.104)

as V,,p with the radial parameter Ry = 1.25 x 8'/3 fm and the diffuseness parameter ag =
0.65 fm. Its depth Vj is determined to reproduce the proton separation energy of 1.30 MeV
in the p-state. The interaction between a point charge and a uniformly charged sphere
with the charge radius 2.5 fm is used as V;g ), which is used also in the CDCC calculation
in the initial channel. The pseudo state method is also used for the final channel. For
the expansion of 1/JZ,B we take 20 Gaussian basis functions with the minimum (maximum)
range parameter of 1.0 (20.0) fm. We take into account the s-, p-, d-, f-, and g-waves of

100
(b)
80| @ __ 80} —
60l — 601 -
S > - — _
() ()
S 400 — L §40k _ — -
-5 - A _ -
200 - 200 —_— _ -
S d P S d f g

Figure 3.3: The eigenenergy of (a) afjn ((b) 5;]3) for the each partial wave of w;'m (wgB).
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¢ZB with the maximum values of EZ)B of 70, 75, 85, 90, and 70 MeV, respectively. 1/1213

is calculated up to r,g = 100.0 fm. The Calculated energy spectra for zp}im and wi;B are
shown in Fig. 3.3.

As for UIE%), Uéoé), and U flg), we adopt the nucleon global optical potential for p-shell
nuclei by Watson ef al. [123] (WA). The non-local correction proposed by Timofeyuk
and Johnson [124-126] (TJ) to the nucleon distorting potentials in the initial channel is
used. Note that the TJ correction can effectively treat the non-locality of the deuteron
optical potential, which consists of the nucleon optical potentials. The calculated energy
shift [124—126] with the above mentioned p-n model is 17.8 MeV in the c.m. frame. The
detail of the calculation of this energy shift is summarized in Appx. H. We thus evaluate
U @) and U, (a) at 33.0 MeV in the laboratory frame, which is shifted from the incident

energy of 14. 4 MeV/nucleon. The non-local correction to U, (5 )

and Buck [127] with the non-local parameter 5 = 0.85 fm.

We include only the s-states of %im, consisting of the ground and discretized-continuum
states, in the calculation of the 7" matrix of the transfer process. It should be noted that the
coupling between the s- and d-states of zﬁ}m is taken into account in the calculation of \IJ&H
with CDCC. It is found that Dy, defined below by Eq. (3.113) is negligibly small for the

d-states of the deuteron, which justifies the neglect of them in the transfer process.

is made following Perey

3.4.3 Breakup effects of d and °C on transfer cross section

We show in Fig. 3.4 the cross section of the transfer reaction ®B(d,n)°C at
14.4 MeV/nucleon as a function of the neutron emission angle in the c.m. frame. The
thick (thin) solid line shows the cross section calculated with (without) the breakup states
of both d and °C. Inclusion of the breakup channels gives large increase of about 58% in
the cross section at 0°.

To see the breakup effects in more detail, we decompose the 7' matrix into

Tsa = Tp(e1),a(el) T TB(e1),a(br) + Lpbr),alel) + Lp(br),a(br)s (3.105)
a = < .70.70 ‘%n wpnxlo?lo +)> , (3106)
Ts(el),a(br) = < Jo xR ‘V}m >l Xt )> (3.107)
i#£i0
Ta(on).afel) = <Z Ui | Vo eisxie® +)> , (3.108)
J#jo

T (br),(br) = <Z Wi )Vpn D wxae +)> (3.109)
J#jo 1#io

The T matrix with the subscript y(el) and ~y(br) corresponds to the elastic transfer (ET) and
the breakup transfer (BT) in the -y channel, respectively. A schematic picture of the ET and
BT is shown in Fig. 3.5. Tig(cl),a(c1) describes the transition from the ground channel in the
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Figure 3.4: Breakup effects of d and °C on the cross section of ®B(d,n)°C at
14.4 MeV/nucleon as a function of the neutron emission angle in the c.m. frame. The
thick solid and thin solid lines show, respectively, the results with and without the breakup
states of both d and °C. The dashed (dotted) line represents the result with neglecting the
breakup states of d (?C) in the T matrix Tsq- The cross section corresponding to the elastic
transfer is shown by the dash-dotted line. See the text for detail.

¢ Back coupling

T gor),a(or)

T'ge ofcl)
d+%B n+°C

Figure 3.5: [Illustration of the transfer processes. The transition from the initial channel
(d+®B) to the final channel (n+°C) can be described by four T-matrix elements. See text
for more detail.
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initial channel (d+°B system) to the ground channel in the final channel (n+4-°C system),
that is, the ET. Note that the ET includes the breakup effects through the back couplings,
which is the channel couplings between the ground state and the discretized-continuum
states in each channel. Tig(cl) a(br) (Tﬁ(br)@(el)) corresponds to the BT, which represents
the transition from the breakup (ground) channel of d to the ground (breakup) channel of
9C. The transfer process between the breakup channels in each channel is expressed by
T'g(br) a(br)-

The dash-dotted line in Fig. 3.4 shows the cross section due to the ET, which includes
the back couplings. The small difference between the thin solid line and the dash-dotted
line indicates that those back-coupling effects are not significant in the present case. In
other words, the ET can be described by the DWBA model because the small back-coupling
effects are expected to be involved as the imaginary part of the optical potentials in the
DWBA for the d-*B and n-°C systems. The dashed line shows the result including the
breakup states of only d, which is by about 23% larger than the thin solid line at 0°. It is
also found that the transfer cross section through the breakup states of d, which is calculated
with only Tg(el),a(br) 18 less than 1% of the dashed line. We thus conclude that the increase
in the cross section caused by the breakup states of d is due to the interference between
Tg(e1),a(el) @and Tg(el),a(br)- This conclusion holds also for the role of the breakup states
of ?C; large interference between Tg(e1),a(el) and Tigbr) a(el) Increases the cross section by
about 38% at 0° as shown by the dotted line. Furthermore, it is found numerically that the
contribution of Tig(p,p) o(br) 0N the cross section is negligibly small.

These properties of the numerical result can be understood as follows. If we make the

adiabatic approximation [128-132] to \IJ((;F), we have

‘I’((;r) (Tpnv To) A w;%(Tpn)XgD(+) (Tpm Ta). (3.110)

Note that in the adiabatic approximation, the eigenenergy 5;71 is replaced by the ground
state energy €%, and then Tpn 18 N0 longer the dynamical variable. The adiabatic wave

pn>
function XQD(JF) satisfies
[K,,a+ U (ry) + U (ra) — EQ}XQDH)(%, ra)=0, 3.111)

where £, = F + 51@;1. The 7,,, dependence of U](\?g (N = p or n) gives that of XQD(H.

Consequently, \113” contains not only the elastic-channel but also the breakup-channel
components:

XZOADH) (Ta) = <¢;n(rpn) |¢;(;z(rpn)X§D(+) (Tpn:Ta))- (3.112)

The 7,, dependence of U ](\?g is, however, quite weak within the range of V},,,. Then one can

expect that for XZOAD(+) with ¢ #£ i, the amplitude is quite smaller than that of Xi?iOAD(JF)

because of (17, |[¢)%0) ~ 0 and the phase is very similar to that of X00APH) Gwing to
(Vpnliby) ~ 1. The former is the reason for the very small contribution of the BT and the
latter is that for the constructive interference between the ET and BT amplitudes.

These properties have been confirmed numerically. In Fig. 3.6, we show the moduli

of the distorted wave Xzo(ﬂ for the elastic component ¢ = g (thick solid line) and the
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Figure 3.6: Moduli of the distorted wave XZO(H for the elastic component ¢ = ¢ (thick
solid line) and the breakup component ¢ # io (dashed line). The thick solid line is the
proton-*B wave function @Z);%. These moduli correspond to the L, = 1 partial wave,
which is calculated within the ZR limit. See the text for more detail.

breakup component i # iy (dashed line). The former and latter are respectively defined by
ioio(+) ’2 Diy _ivio(+)
Xa

and |
D;Q‘L XOL

, where D; and D; are respectively defined by Egs. (3.92)

and (3.94). The thin solid line is the proton single-particle wave function w;%. Note that
we take only the L, = 1 partial wave for this moduli, for which the ZR approximation
is adopted for simplicity. In the ZR limit, from Eq. (3.93), one can easily understand that
the distorted wave only within the range of ;?3 contributes to the transition amplitude.
Therefore, if we see the region of r,, lower than around 8 fm, it can be seen that the phases
of the solid and dashed lines are similar to each other and the latter has small amplitude
compared to that of the former. This interpretation of the breakup effects can be applied to
also \Il(ﬁ_) in the final channel. It should be noted that the adiabatic approximation [128—
132] itself is found to work well; it makes the cross section smaller by about 6% (12%)
when applied to \I/((j) (\I/(ﬁ_)>.

The non-negligible BT component in each channel is opposite to what found in the
analysis [106] of 3C(°Li,d)!"O below the Coulomb barrier energy, in which breakup ef-
fects of SLi (= o + d) were investigated. Below we discuss the difference between the
breakup properties of d and ®Li in the two reactions. The origin of the difference can be
understood from behavior of D;m defined by

D;n(rpn) = Vpn(rpn)ﬁ%n(rpn)» (3.113)
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where (;Sjm is the radial part of wl”;n. Eq. (3.113) is also defined for the a-d system:

D} g(raa) = Vad(Tad) Ohq(rad); (3.114)

where the two-range Gaussian interaction V4 given in Ref. [133] is adopted to generate
the radial part qﬁg g4 of the s-wave eigenstate 1/13 4+ We show in panel (a) of Fig. 3.7 Dzm for
some s-wave eigenstates of d; the eigenvalue €, is given in the legend. Similarly, we plot
D , in panel (b) of Fig. 3.7.

In panels (a) and (b) of Fig. 3.7, respectively, D,,, and D, for some eigenstates are
plotted. One sees that the amplitude of D)},,, for breakup states (the dashed and dotted lines)
are comparable to that of D), (solid line). On the other hand, Dy, for the breakup states
are quite smaller than Di? , which is found to be due to the Coulomb interaction between «
and d. Thus, difference in the BT components between the ®B(d,n)?C and *C(°Li,d)'"O

50 ;
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Figure 3.7: (a) Dzim for several ith states with the eigenenergy s;n. (b) Same as in panel
(a) but for the a-d system.
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reactions can be understood. It should be noted that a large value of D’ for a breakup
state does not necessarily give a large BT cross section, because even in this case 0 can
be small as a result of the channel-couplings. Furthermore, the importance of the back-
coupling effect depends on the reaction system in a non-trivial manner.

Another important finding is that the breakup channels in non p-state of C play signifi-
cant role on the transfer reaction. When we include the breakup states of w;B with Z;B #1,
the transfer angular momentum of [ # 1 can contributes to the transfer reaction. This is a
quite interesting phenomenon, which has not been discussed so far. In usual DWBA anal-
ysis, if the projectile is an s-wave state, I, = 0, [ is uniquely determined as [ = [,g from
its definition of Eq. (3.67). However, [ in the breakup states defined by Eq. (3.68) can be
different even if I, = l;m = 0. It means that we have two sources of the transferred an-
gular momentum. In fig. 3.8, the dotted and thin solid lines show the transfer cross section
calculated with and without the breakup states of ?C, respectively, when we include only
the p-wave states of 1/);]3. The breakup channels of the p-wave states increase the cross sec-
tion by about 25% at 0°. This calculation corresponds to usual CCBA approach, in which
[ is uniquely determined to be 1. When we include the p-, s-, d-, f-, and g-waves, one
obtains the solid line, which is about 25% larger than the dotted line. This enhancement
of the cross section is due to the contribution of the d-wave in particular, as shown by the
dashed line corresponding to the calculation with only the p- and d-waves. Thus, not only
the [ = 1 component but also the [ = 2 one in the 7" matrix play an important role in the

14
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Figure 3.8: Contribution of the partial waves of ¢;ZB on the cross section. The thick solid
(dashed) line shows the cross section calculated with the p-, s-, d-, f-, g-waves (p-, and
d-waves) of w;B. The cross section calculated with (without) the breakup states of 9C in
the only p-wave is shown by dashed (thin solid) line. The thick (thin) solid line is same as
that in Fig. 3.4.



54 Chapter 3. Transfer Reaction of Loosely Bound System

transfer reaction. This change of the transferred angular momentum [ is brought from the
channel couplings in the final channel. In other words, it is essential that /,g couples to
non p-waves in the intermediate state, described by Eq. (3.61).

This fact is expected to be due to the dynamical property of the present n-°C system.
We show, in Fig. 3.9, the partial breakup cross section (PBCS) of the °C on n at 22.1 MeV
in the c.m. frame as a function of the n-?C relative angular momentum L 3. The solid line
is the total PBCS, which is defined by Eq.(2.52), while PBCSs defined by

inl ;l, _jol ;.l,
G (L) =D G TP (L), (3.115)
J
ol
for each partial wave [,g of 9C are plotted as other lines. Note that 6]b?1p P78 i defined

by Eq. (2.53). Obviously the d-wave component (dash-dotted line) is dominant though the
s-wave component (thick dotted line) has appreciable contribution. Other components, p
(thick dotted line), f (thin dashed line), and g (thin dotted line), are negligibly small.

In Fig. 3.10, a simple picture of the breakup effects on the ®B(d,n)°C reaction, which
enables us to correctly interpret the three-body dynamics of the present system, is illus-
trated. Important features of the transfer reaction are as follows:

1. The strong interferences between the ET and BT in each channel.

2. The weak back couplings and the small BT amplitude in each channel.

3.0
2.5
2.0
1.5
1.0

Gy (L) (mb)

0.5
0,

8 10

Figure 3.9: The partial breakup cross section for the n(?C,p®B) reaction at 22.1 MeV in
the c.n. frame as a function of Lg. The solid line is the result of the total partial breakup
cross section and the results for each partial wave [, of 9C of l,g = 0,1,2,3, and 4 are
respectively shown by the thick dashed, thick dotted, dash-dotted, thin dashed, and thin
dotted lines.
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Figure 3.10: (a) The breakup effects of the transfer reaction in particular the contribution
of the breakup channels and new feature such as the change of the transferred angular
momentum are illustrated. (b) Schematic picture of the transfer process in the energy space
is shown.

3. The change of | due to the channel couplings.

These features are completely different from the picture described by usual DWBA ap-
proach, in which any breakup effects are neglected and the proton is assumed to transfer
into ®B by a one-step process. We emphasize that the detail of the breakup effects of both
the projectile and the residual nucleus is newly discussed by the present study.
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3.4.4 Astrophysical study

In Fig. 3.11 the solid line shows the CCBA result. We have normalized the result to re-
produce the experimental data [108] with multiplied by S = 0.361. Note that from the
present transfer reaction, S cannot be determined because the reaction is peripheral as
confirmed below. Instead, the asymptotic normalization coefficient (ANC) [106, 134, 135]
CZSB for the overlap of the 9C wave function with the p—8B(g.s.) configuration is well de-
termined. From S and the so-called single-particle ANC of 1/)1{0 , one can obtain the ANC;
(CIG)?* = 0.59 fm~1,

The uncertainty of the value of the ANC due to the distorting potential and peripherality
of the reaction is examined in Ref. [136] By compiling the uncertainties due to peripher-
ality (2%) and the optical potential (3%) as well as the experimental error of 22% [108],
we obtain (CZBCB)2 = 0.59 £ 0.02 (theor.) & 0.13 (exp.) fm~—!, where (theor.) and (exp.)
respectively stand for the theoretical and experimental uncertainties. Using the proportion-
ality of (CZBCB)Q to the astrophysical factor S15(0) defined by Eq. (3.102), we have

S18(0) =22 £ 1 (theor.) £ 5 (exp.) eVb. (3.116)

Our resulting value of Si5(0) = 22 £ 6 is by about 51% smaller than the result of the
previous analysis evaluated from the same experimental data [108] with the DWBA anal-
ysis, which does not explicitly take into account the breakup states of nuclei. Thus, main
reason of this discrepancy is expected to be due to the treatment of the breakup channels.
As mentioned above, the back-coupling effects are found to be small in the present case. In
fact, if we evaluate OZSCB and S1g(0) from the thin solid line in Fig. 3.4, which ignore all of

6 T T T T T T

® Beaumel et al. 1
5L — CCBA (x0.361) |

do/dQ (mb/sr)

6 (deg)

Figure 3.11: Cross section calculated with CCBA (solid line) is normalized to the experi-
mental data [108].
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Figure 3.12: S15(0) in the present work (circle) is compared with the results evaluated
from the ®B(d,n)°C reaction (diamond) [108] and values extracted from ?C breakup reac-
tions (triangle [120], cross [121], square [135]).

the breakup channels, we obtain (C’;ch)2 = 0.95 fm~! and S13(0) = 36 eVb. This value
is, within only about 2% difference, consistent with the result corresponding to the D1-N1
set for the distorting potentials, (CZgB)Q = 0.97 fm~—!, shown in Table 1 of Ref. [108]; the
N1 corresponds to the WA potential. We have confirmed by our DWBA calculation that
the result with the D1-N1 set agrees well with the thin solid line in Fig. 3.4. From these
findings we conclude that inclusion of the breakup states of both d and °C is necessary
to accurately describe the transfer reaction, which gives quite large increase in the cross
section, that is, decrease in S15(0).

In fig 3.102, we compare our result of S1g(0) with the previous results extracted from
indirect measurements. As mentioned, we obtained a smaller S1g(0) than that of Ref. [108]
because of the contribution of d and ?C breakup states. The present result is not consis-
tent with the result of a three-body model analysis [135] of the inclusive [120] and exclu-
sive [121] °C breakup reactions within 20.. Further investigation is necessary to understand
the reason for this discrepancy. Extension of the present framework to include breakup
channels of ®B as well as the three-body model description of ?C will be important future
work. Another possible reason for the discrepancy in S15(0) is the Pauli blocking effect on
the transfer reaction [137, 138]. Antisymmetrization between a nucleon in d and that in 8B
in calculation of the d-®B three-body wave function will be an important subject.
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3.5 The ?*Si(d,p)*°Si reaction

3.5.1 Background

As another example we chose the 28Si(d,p)?°Si. Since, the ground state of 29Si can be
regarded as an s-wave well bound nuclei with its n-22Si binding energy of 7.69 MeV, we
assume the breakup effects of 2Si is negligible small and thus ignored. As a result shown
below, the breakup effects are very different from them discussed in the previous section.

3.5.2 Numerical setting

In the 28Si(d,p)*°Si reaction, n, p, and 2®Si can be treated as x, b, and A, respectively,
describe in Chap. 3.3. The model of d is same as that for the 8B(d,n)’C reaction but
we include only the s-wave of @bfm. The maximum energy of 5§m is 33 MeV. XZOH) is
calculated up to 15.0 fm with the maximum number of partial waves of 15. These values
are adopted also for 7/ oH),

As for the finial channel, we neglect any breakup channels of 29Si. Thus, we approxi-

mate \IJE;) as

W (51, 75) ~ 0% (rasi )X ()

= wnSi(rnSi)xgﬂ(rﬁ). (3.117)

(+)

The distorted wave x 3 in the final channel satisfies

[Km + U (r) + V) (7‘5)] () =o. (3.118)
The Schrodinger equation for v,,g; is given as Eq. (3.56). The Woods-Saxon central poten-
tial (3.104) is adopted as V,,5; with radial parameter Ry = 1.16 % 281/3 fm and diffuseness
parameter ag = 0.78 fm [139]. Its depth is adjusted to reproduce the neutron separation en-
ergy of 7.69 MeV in the s-state. 1),,s; is expanded with 10 Gaussian functions. Their range
parameters are taken from 0.1 fm to 11.0 fm. As for ]Egi), Ui%‘i),
global optical potential for sd-shell nuclei [140] is adopted.

and U;gi) , the nucleon

3.5.3 Breakup effects of d on transfer cross section

In fig. 3.13 we show the cross section of the 2®Si(d,p)?”Si reaction at 18.75 MeV. The hor-
izontal axis is the emitting angle of p in the c.m. frame. The thick solid line corresponds
to the calculated cross section with CCBA, which explicitly includes the breakup states of
29Si. When the CC of the breakup states is switched off, the thin solid line is obtained.
At forward angles, the difference between two lines is small. On the other hand, at back-
ward angles, the breakup effects is appreciable. By decomposing the 1" matrix, we can
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investigate the BT and ET;

T =TT+ 1InT, (3.119)
Tgr = <¢nSiX/(3_) ‘ Von ;%Xi?io(+)>, (3.120)
Tgr = <wns1x§§) Von Zw;nx30<+)>. (3.121)

iio

The T-matrix elements T and Tt describe the ET and BT, respectively, in the initial
channel. The calculated cross section with the former (latter) is shown by the dashed
(dotted) line. The constructive interference between them can be seen in a whole region
of 0, except that on the second peak of the cross section at about § = 30° the destructive
interference exists. Note that in this calculation we assume the spectroscopic factor S is
unity. Thus the calculations somewhat overestimate the experimental data [139].

As another finding, the significant difference between the dashed and thin solid lines
can be seen. It indicates that there are strong back couplings between the elastic-breakup
channels of d. Except for the second peak, the back couplings decrease the cross section.

These findings are very different from them for the ®B(d,n) C reaction discussed in the
previous section. Though the origin of this difference is not clarified, it is clear that the
breakup effects strongly depend on system of reactions. Therefore a systematic study is
important in order to investigate how the breakup effects change in each system.
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Figure 3.13: The cross section of the ?8Si(d,p)?°Si reaction at 18.75 MeV as a function of
the emitting angle of p in the c.m. frame. The thick solid line is the CCBA result, which
includes the CC effects of 2?Si. The elastic and breakup transfers in the initial channels are
respectively shown as the dashed Thin solid line corresponds to the result without including
the breakup channels. and dotted lines. Experimental data are taken from Ref. [139].
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3.6 Summary

We formulate the CCBA framework that can explicitly take into account the CC of the
breakup states of both the projectile and the residual nucleus.

In the 8B(d,n)°C reaction, the breakup effects of both d and ?C are found to be signif-
icant on its cross section. In particular the strong interference of the ET and BT in each
channel exists. By including the breakup channels of °C, which can have the different par-
tial waves from that of the ground state, the change of the transferred angular momentum [
involving the continuum states of ?C is treated with in the present work. Different [ com-
ponents due to the dynamical CC play an important role as they significantly increase the
cross section.

As for the 28Si(d,p)29$i reaction, it is found that at forward angles, the breakup effects
of d is small. On the second peak of the cross section, the destructive interference between
the ET and BT can be seen. It is also found that the back couplings are rather strong, and
they seem to decrease the cross section except the second preak.

As a future work, a systematic study is demanded because the breakup effects can be
different in each reaction, as shown in the Secs. 3.4 and 3.5. We would like to clarify
how and why different the breakup effects are in each reaction. It is also interesting to
investigate the four-body dynamics induced by a three-body loosely bound nuclei on the
transfer reaction. For that purpose a two-nucleon transfer reaction could be one of subjects.
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4.1 Introduction

Let us consider the breakup reaction on a heavy ion target, for example, the dissociation
of a charged nucleus by 2°®Pb. In a naive description, the reaction process can be regarded
as that a projectile breaks up into their fragments by the electric field generated by 2°8Pb.
As mentioned in Chap. 1, it is not easy to handle the Coulomb interaction because of its
long-range property. Thus, a primitive reaction model, for example, the virtual photon
theory (VPT) [12] is often used to describe the reaction simply. The VPT assumes that the
breakup reaction proceeds with the one-step process caused by a virtual photon absorption.
However, it is not trivial that the picture described by VPT is correct. The role of nuclear
interaction and the multistep process, which are missing in VPT, should be investigated.
Recently the '°C dissociation on the 2°8Pb target is analyzed [17] by means of the dy-
namical eikonal approximation (DEA) [15, 16], in which the channel couplings of breakup
states of 1°C due to the nuclear and Coulomb interaction is efficiently taken into account.
Note that, in the eikonal approximation, it is assumed that the projectile-target distorted
wave is not significant different from a corresponding plane wave [141]. By the analy-
sis it is found that DEA is difficult to describe the Coulomb breakups precisely for a low
incident energy case. Note that the Coulomb breakup stands for the breakup reaction dom-
inated by Coulomb interaction and includes effects of nuclear interaction and the multistep
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process. On the other hand, as formulated in Chap. 2, there is another reaction model
based on the eikonal approximation; the eikonal continuum-discretized coupled-channels
method (E-CDCC) [13, 14]. Thus, comparison of E-CDCC and DEA is expected to be
important to describe the Coulomb breakups at low incident energy. After the comparison,
the prescription to two models for the Coulomb breakups at low energy is proposed.

4.2 Formalism

4.2.1 The dynamical eikonal approximation (DEA)

We focus on the '5C breakup reaction on the 2°Pb target at 20.0 MeV/nucleon and work
with the three-body model (n +'4 C +298 Pb). In the system, n, 1*C, and 2°*Pb correspond
to z, y, and A, respectively, as described in Chap. 2. In Fig. 4.1, the coordinate of the
center-of-mass (c.m.) of 1°C relative to 2°8Pb is denoted by R, and 7 is the neutron-4C
relative coordinate. R, and R4 are, respectively, the coordinates of neutron n and the
c.m. of C from 2°¥Pb. We assume both 14C and 2°®Pb to be inert nuclei. In this study we
neglect the spin of n.
In the DEA, the three-body wave function is factorized following [15, 16]

\I](,m R) = (b, 2, ,,,) eiKozech(b,z)eisoz/(hvo)’ 4.1)

where we take the incident direction as z-axis of the cylindrical coordinate shown by
Fig. 2.4 and R = (b,2). The wave number K between °C and 2°®Pb is defined by
Eq. (2.17) and € is the ground state energy of '°C. The factor ¢ stands for the Coulomb
phase that accounts for the Coulomb projectile-target scattering

1 z

_ ! 4.2
h’l)(] _Oo VC(R) dz 3 ( )

XC(ba Z) =

where vg = hKj/p is the initial velocity of the projectile with the Coulomb interaction Vi
of the 15C-298Pb system defined by Eq. (2.77). Note that the phase exp [ez/(ihvg)] can

Figure 4.1: Schematic illustration of the (}4C + n) + 298Pb three-body system.
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be ignored as it has no effect on physical observables [16]. ¢ describes the difference of
the distorted wave from the plane wave.
From the factorization in Eq. (4.1), we obtain the DEA equation [15, 16]

ihv(]%cp (b,z,7) = [h+ Uisa(R14) + Up(Ry) — €0 — Ve (R)] ¢ (b, z,7) (4.3)
where h is the internal Hamiltonian of the projectile. To simulate the interaction between
n (*4C) and 2°8Pb, we adopt the optical U,, (U14). The initial condition for ¢ is given by

ZEIPOOSO (b, z,7) = Yotgmy (1), (4.4)
where Yys,m, stands for the ground state of 15C, Note that the eigenstate 1y, of the
n-14C system is specified by energy index 7, the orbital angular momentum ¢, and its z-
component m for the system. When indices {n,¢,m} = {0, ¥y, mq}, it stands for the
initial state.

The DEA equation (4.3) is solved for all b with respect to z and r expanding the
wave function ¢ on a three-dimensional mesh. This allows to include naturally all relevant
states of '°C, i.e., eigenenergies € up to high values in the n-'“C continuum, and large
angular momentum /¢, and its z-component m. This resolution is performed assuming
a constant projectile-target relative velocity v = wvg. It should be noted that this does
not mean the adiabatic approximation, because in Eq. (4.3) the internal Hamiltonian A
is explicitly included. The DEA thus treats properly the change in the eigenenergy of
15C during the scattering process. However, it does not change the 1C-2%8Pb velocity
accordingly, which is taken into account in E-CDCC as described by Eq. (2.84). This gives
a violation of the conservation of the total energy of the three-body system. However, even
at 20 MeV/nucleon, its effect is expected to be only a few percents as discussed below.

The calculation of physical observables requires the wave function ¥ of Eq. (4.1) at
z — o0 [15,16]. The corresponding Coulomb phase x ¢ reads [142]

lim xc = 219 In(Kob), (4.5)

where 79 is the Sommerfeld parameter for the entrance channel given by Eq. (2.39).

4.2.2 Comparison between DEA and E-CDCC

To compare the DEA with the E-CDCC, we rewrite the DEA equation given by Eq. (4.3)
in a coupled-channel (CC) representation. We expand ¢ as

0 (b,2,1) = Enom (b, 2)inem (r)esi*/ o) gilmo=mion, (4.6)
im
Inserting Eq. (4.6) into Eq. (4.3), multiplied by %,,/4/,,,» from the left, and integrating

over r, one gets

0

1 .
—_ - E , , (e, —€n)z/(thvg) 4.
aZ£C(b7 Z) ZFLUO - ‘FCC (b7 Z){C (b7 Z)e ’ ( 7)
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which is nothing but the DEA equation (4.3) in its CC representation. Here we represent
the channel indices {n, £, m} as c. The coupling potential F. is defined by Eq. (2.76).
The boundary condition Eq. (4.4) thus reads

lim &(b, 2) = Gecy, 4.8)

Z——00

which corresponds that of the E-CDCC given by Eq. (2.83). By inserting Eq. (4.6) into
Eq. (4.1), the total wave function reads

Zé-c b Py wc an—ao )z/(ihvo) z(mo m)quezKoz ixc (b, z) (4.9)

For comparison we rewrite the CC equation and three-body wave function within the
E-CDCC, which are given in Chap. 2;

o0 -
5 e, 2) = chc (b, 2)E (b, 2)e B =Kn)ZR (b, 2), (4.10)

zhvn

ch b P wc anz zmo m)¢R¢C( ) 4.11)

where the velocity v, the factor R,,,,/, and the approximate Coulomb incident wave ¢§
are defined by Eqs. (2.84), (2.85), and (2.81), respectively.

One may summarize the difference between Eqs. (4.7) and (4.10) as follows. First, the
DEA uses the constant and channel-independent 1°C-2"8Pb relative velocity vy, whereas
E-CDCC uses the velocity depending on both R and the channel n that ensures the total-
energy conservation.

Second, whereas the right-hand side of Eq. (4.7) involves the phase
exp [(ey — en)z/(ihvg)], the E-CDCC Egq. (4.10) includes the phase exp [i( K, — K,,)z].
The former can be rewritten as

Ew—en  P(KZ—-K2)pz Ky+K

= = i (K — Ky) 2. 4.12
i 21 ih2K, o, K = Kz (4.12)
If we can assume the semi-adiabatic approximation
Kn’ + Kn
—— 1 4.13
9K, ; (4.13)

the exponent Eq. (4.12) becomes the same as in E-CDCC. In the model space taken in the
present study, Eq. (4.13) holds within 1.5% error at 20 MeV/nucleon of incident energy.
Third, E-CDCC equation contains R,/ taking account of the channel dependence of
e 15C-298Pb Coulomb wave function, which DEA neglects. Nevertheless, it should be
noted that, as shown in Refs. [113, 114], the Coulomb wave functions in the initial and
final channels involved in the transition matrix (7' matrix) of E-CDCC eventually give a
phase 2n; In(kK;b), with j the energy index in the final channel. Thus, if Eq. (4.13) holds,
the role of the Coulomb wave function in the evaluation of the 7" matrix in E-CDCC is
expected to be the same as in DEA, since DEA explicitly includes the Coulomb eikonal
phase, Eq. (4.5).
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When the Coulomb interaction is absent, we have R;;(b, z) = 1 and no R dependence
of the velocity. Therefore, it will be interesting to compare the results of DEA and E-
CDCC with and without the Coulomb interaction separately. This correspondence of the
two eikonal model is newly discussed by the present study [143].

4.3 Results and discussion

4.3.1 Model setting

We calculate the energy spectrum do /de and the angular distribution do /dS2 of the breakup
cross section of >C on 208Pb at 20 MeV/nucleon, where ¢ is the relative energy between
n and 'C after breakup, and € is the scattering angle of the c.m. of the n-'*C system.
We use the potential parameters shown in Table 5.1 for U, ¢ (the n-14C interaction), U4,
and U, [17]; the depth of U, for the d-wave is changed to 69.43 MeV to avoid a non-
physical d resonance. The spin of the neutron is disregarded as mentioned earlier. We
adopt Woods-Saxon potentials for the interactions:

Ux(Rx) - _VOf(R:ra ROa CL()) - inf(Rxa Rwa aw)
d
W ——— zy LT, Qu 4.14
+szR$f(R R, aw) (4.14)

with f(Ry, a, B) = (1 +exp[(R: — @)/B]) "L Ry = 7, R14, and R, for x = nC, 14, and
n , respectively. The Coulomb interaction between 'C and 2°8Pb is described by assuming
a uniformly charged sphere of radius Rc.

In E-CDCC, we take the maximum value of r to be 800 fm with the increment of
0.2 fm. When the Coulomb interaction is turned off, we take the n-'4C partial waves up to
lmax = 10. For the discretization of ¢, we adopt the average method given in Chap. 2. For
each ¢ the continuum state is truncated at k. = 1.4 fm—! and discretized into 35 states
with the equal spacing of Ak = 0.04 fm~!; k is the relative wave number between n and
14C. The resulting number of coupled channels, N, is 2311. The maximum values of z
and b, zmax and by ax, respectively, are both set to 50 fm. When the Coulomb interaction is
included, we use lyax = 6, kmax = 0.84 fm~!, Ak = 0.04 fm™ !, z,,.x = 1000 fm, and
bmax = 150 fm. We have N, = 589 in this case.

In the DEA calculations, we use the same numerical parameters as in Ref. [17]. In the
purely nuclear case, the wave function ¢ is expanded over an angular mesh containing up
to Ny x Ny = 14 x 27 points, a quasi-uniform radial mesh that extends up to 200 fm with

Table 4.1: Potential parameters for the pair interactions Uy, ¢, U14, and U, [17].
Vo Ry ap Wy Wi Ry, Ay Rc¢
MeV) (fm) (Em) MeV) MeV) (fm) (m) (fm)
U,c 63.02 2651 0.600 — — — — —
Uyg  50.00 9.844 0.682 50.00 — 9.544 0.682 10.84
U, 4482 6932 0.750 2.840 21.85 7.466 0.580 —
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200 points, byax = 50 fm, and zpax = 200 fm (see Ref. [144] for details). In the charged
case, the angular mesh contains up to Ny x Ny = 12 x 23 points, the radial mesh extends
up to 800 fm with 800 points, byax = 300 fm, and 2. = 800 fm.

4.3.2 Comparison without Coulomb interaction

In this subsection we would like to clarify the difference in the treatment of the Coulomb
breakup between the E-CDCC and DEA. Thus we first check that both models agree when
the Coulomb interaction is switched off. We show in Fig. 4.2 the results of do/de cal-
culated by DEA (solid line) and E-CDCC (dashed line). Note that, to obtain do/de, the
integration in Eq. (2.50) is done for the scattering angle of the c.m. of the n-4C system in
the whole variable region. The two results agree very well with each other; the difference
around the peak is below 3%.

In Fig. 4.3 the comparison in do /dS) defined by Eq. (2.49) is shown. For the angu-
lar distribution, we integrate the double differential cross section Eq. (2.48) over € up to
10 MeV. The agreement between the two models is excellent confirming that, when the
Coulomb interaction is turned off, the DEA and E-CDCC solve the same equation and give
the same result, as expected from the discussion at the end of Sec. 4.2.2. In particular this
comparison indicates that Eq. (4.13) turns out to be satisfied with very high accuracy. It
should be noted that the good agreement between the DEA and E-CDCC is obtained only
when a very large model space is taken. In fact if we put £, = 6 in E-CDCC, we have
30% smaller do /de than the converged value and, more seriously, even the shape cannot
be reproduced. This result shows the importance of the higher partial waves of n-'*C for

30 :
w/0 Coulomb
B DEA —
E-CDCC (¢,,,,=10) —--

]
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-

D~
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Figure 4.2: Energy spectrum of the '°C breakup cross section on 2°*Pb at 20 MeV/nucleon
with the Coulomb interaction turned off. The solid and dashed lines show the results ob-
tained by DEA and E-CDCC, respectively.
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Figure 4.3: Same as Fig. 4.2 but for the angular distribution.

the nuclear breakup at 20 MeV/nucleon.

4.3.3 Comparison with Coulomb interaction

When the Coulomb interaction is switched on, DEA and E-CDCC no longer agree with
each other. As seen in Fig. 4.4, the DEA energy spectrum (solid line) is much larger
than the E-CDCC one (dashed line). Moreover none of them agrees with the full CDCC
calculation (thin solid line): DEA is too high while E-CDCC is too low. The discrepancy
of both models with the fully quantal calculation manifests itself even more clearly in the
angular distribution. In Fig. 4.5 we see that not only do the DEA and E-CDCC cross
sections differ in magnitude, but—as already seen in Ref. [17]—their oscillatory pattern
is shifted to forward angle compared to the CDCC calculation. To understand where the
problem comes from we analyze in Fig. 4.6 the contribution to the total breakup cross
section of each projectile-target relative angular momentum L . As expected from Figs. 4.4
and 4.5, the DEA calculation is larger than the E-CDCC one, and this is observed over
the whole L range. However, the most striking feature is to see that both models seem
to be shifted to larger L compared to the full CDCC calculation. This shift is expected
to be came from an insufficient description of projectile’s trajectory due to the Coulomb
deflection. To correct this, we replace in our calculations the transverse component of the
projectile-target relative coordinate b by the empirical value [142, 145, 146]

2
Vo= [0 e (4.15)
Ko T\ K2

Equation (4.15) stands for the distance of closest approach in Rutherford scattering and is
based on a concept that how we approximate the curved trajectory by straight line one. The
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Figure 4.4: Energy spectrum of the °C breakup cross section on 2°8Pb at 20 MeV/nucleon
including the Coulomb interaction. The solid, dashed, and thin solid lines show the results
obtained by DEA, E-CDCC, and full (QM) CDCC, respectively. The results obtained with
the correction (4.15) are displayed with a dash-dotted line for DEA and a dotted line for
E-CDCC.

Coulomb correction Eq. (4.15) make the impact parameter b and L larger, and hence the
partial breakup cross section with the Coulomb correction is expected to shift toward lower
L direction. The corresponding results are displayed in Figs. 4.4, 4.5 and 4.6 as dash-dotted
lines for DEA and dotted lines for E-CDCC.

The correction Eq. (4.15) is very effective. It significantly reduces the shift observed
in the L contributions to the breakup cross section (see Fig. 4.6). Accordingly, it brings
both DEA and E-CDCC energy spectra closer to the full CDCC one (see Fig. 4.4). Note
that for this observable the correction seems better for E-CDCC than for DEA: even with
the shift, the latter still exhibits a non-negligible enhancement with respect to CDCC at
low energy €. More impressive result is the improvement of the behavior of the shift in
the angular distribution observed in Ref. [17] and in Fig. 4.5. In particular, the shifted
DEA cross section is now very close to the CDCC one, but at forward angles, where DEA
overestimates CDCC. Once shifted, E-CDCC still underestimates slightly the full CDCC
calculation. However, its oscillatory pattern is now in phase with that of the CDCC cross
section, which is a big achievement in itself. This shows that the lack of Coulomb deflection
observed in Ref. [17] for eikonal-based calculations can be efficiently corrected by the
simple shift Eq. (4.15) suggested long ago [142, 145].

Albeit efficient, the correction Eq. (4.15) is not perfect. This is illustrated by the en-
hanced (shifted) DEA cross section observed in the low-energy peak in Fig. 4.4 and at
forward angles in Fig. 4.5. Both problems can be related to the same root because the
forward-angle part of the angular distribution is dominated by low-energy contributions.
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As shown in Ref. [16], that part of the cross section is itself dominated by large b’s, at
which the correction Eq. (4.15) is not fully sufficient. As shown in Fig. 4.6, the shifted
DEA remains slightly larger than the full CDCC. Future works may suggest a better way

14 : :
DEA —
12¢ E-CDCC--- -
full CDCC—
10’ ) DEA_._ 4
0 with shift
é 8t E-CDCC - |
a ‘\‘wﬁhshﬁt
< 6 '
<
4
2
0 |

8 10 12 14

6
0 (deg)

Figure 4.5: Same as Fig. 4.4 but for the angular distribution.
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Figure 4.6: Contribution to the total breakup cross section per projectile-target angular
momentum L. Neglecting the Coulomb deflection, DEA and E-CDCC are shifted to large
L compared to the full CDCC. The correction Eq. (4.15) significantly reduces this shift for
both models.
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to handle this shift than the empirical correction Eq. (4.15). Nevertheless, these results
show that this correction provides a simple, elegant, and cost-effective way to account for
Coulomb deflection in eikonal-based models. This fact suggests that the concept of the
“trajectory” is well held even though complicated processes exist, for example the interfer-
ence of the nuclear and Coulomb interactions and the multistep process.

The underestimation of the full CDCC angular distribution by E-CDCC comes most
likely from a convergence problem within that reaction model. This is illustrated in
Fig. 4.7, showing the L-contribution to the total breakup cross section. The thin solid
line corresponds to the (converged) CDCC calculation, whereas the other lines correspond
to (shifted) E-CDCC calculations with bin widths of Ak = 0.02 (solid line), 0.03 (dashed
line), and 0.04 fm~! (dotted line). As can be seen, below L ~ 500 A, no convergence can
be obtained, although CDCC has fully converged. We cannot expect this model to provide
accurate breakup cross sections. The results displayed in Figs. 4.4 and 4.5 are therefore
unexpectedly good. Note that the present ill-behavior of E-CDCC occurs only when the
Coulomb interaction involved is strong and the incident energy is low; no such behavior
was observed in previous studies [6, 113, 114, 147, 148]. Interestingly, DEA does not ex-
hibit such a convergence issue. This is reminiscent of the work of Dasso et al. [149], where
it was observed that reaction calculations converge faster by expanding the wave function
upon a mesh rather than by discretization of the continuum.

The aforementioned results indicate that the shift Eq. (4.15) corrects efficiently for the
Coulomb deflection, which is expected to play a significant role at large L. At small L, we
believe the nuclear projectile-target interaction will induce significant couplings between
various partial waves, which cannot be accounted for by that simple correction. To in-
clude these couplings, the hybrid solution between E-CDCC and the full CDCC has been

10
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Figure 4.7: Convergence problem observed in (shifted) E-CDCC calculations: cross sec-
tions computed with different bin widths do not converge towards the CDCC calculation.
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suggested [113, 114] and described as Eq. (2.104). At low L a usual CDCC calculation
is performed, which fully accounts for the strong coupling expected from the nuclear in-
teraction between the projectile and the target. At larger L, these couplings are expected
to become negligible, which implies that a (shifted) E-CDCC calculation should be reli-
able. As explained in Refs. [113, 114], the transition angular momentum Lc above which
E-CDCC is used is an additional parameter of the model space that has to be determined
in the convergence analysis. Depending on the beam energy and the system studied, usual
values of L are in the range 400-1000 A. In the present case, due to the convergence issue
observed in E-CDCC, the value Lc = 500 A is chosen.

The cross sections calculated with this hybrid solution are barely visible as they are
superimposed to the full CDCC results for both the angular distribution (Fig. 4.8(a)) and
the energy spectrum (Fig. 4.8(b)). The coupling of the hybrid solution to the Coulomb
shift Eq. (4.15) enables us to reproduce exactly the CDCC calculations at a much lower
computational cost since the computational time for each b with E-CDCC is about 1/60 of
that for each L with full CDCC. In addition, it solves the convergence problem of E-CDCC.
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Figure 4.8: Comparison of the full quantum calculation (solid line) and the hybrid calcula-
tion (dashed line) on (a) the angular distribution and (b) the energy spectrum.
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4.4 Summary

The eikonal approximation is known to be an efficient procedure to describe breakup re-
actions. However, at a low incident energy, it was reported [17] that a model based on the
eikonal approximation, that is the dynamical eikonal approximation (DEA), cannot repro-
duce the result obtained from more rigorous calculation with the method of the continuum-
discretized coupled-channels (CDCC). As another reaction model based on the eikonal
approximation, there exists the hybrid version of the CDCC method with the eikonal ap-
proximation (E-CDCC). To solve this discrepancy, we have compared the E-CDCC with
the DEA. It have been shown that two models solve essentially same Schrédinger equation
when the Coulomb interaction is absent.

We have focused on the same test case as in Ref. [17], i.e., the breakup of °C on
208pp at 20 MeV/nucleon. For this reaction Eq. (4.13) holds within 1.5% error. When the
Coulomb interaction is artificially turned off, DEA and E-CDCC are found to give the same
result within 3% difference for both the energy spectrum and the angular distribution. This
supports the equivalence of the two models for describing the breakup process due purely
to nuclear interactions as expected.

Next we make a comparison including the Coulomb interaction. In this case, DEA
and E-CDCC no longer agree with each other and they both disagree with the full CDCC
calculation. In particular both angular distributions are focused at too forward an angle, as
reported in Ref. [17]. This lack of Coulomb deflection of the eikonal approximation can
be solved using the empirical shift Eq. (4.15). Using this shift the agreement with CDCC
improves significantly. This suggests that, for the low energy breakup reaction, the concept
of the “trajectory” is held even though the reaction process includes complicated features
such as the interference of the nuclear and Coulomb interactions and the multistep process.

It has been found that the quantum mechanical (QM) correction to the E-CDCC pro-
posed in Ref. [113, 114] works well. In the QM correction, the partial wave calculated by
E-CDCC with a lower orbital angular momentum is replaced by that obtained from the full
CDCC. It would be important to find a efficient QM correction to the DEA. Moreover, it
will be interesting to apply the eikonal approximation with the corrections proposed here
for transfer reactions, in which generally a low incident energy is adopted.
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5.1 Introduction

The clustering phenomena, which is the separately localization of some particles, have been
predicted by theoretical studies that several states of unstable nuclei or of sd-shell nuclei
have a cluster structure [150]. However, there is no direct measurement of the cluster
structure except for resonance states decaying into constituent clusters. Therefore, it is
desirable to establish how to extract the quantitative information on the clustering from
observables.

In theoretical studies it is known that the a-cluster state develops in the surface region
of nuclei. In this work we focus on 2’Ne as a typical nucleus having an a-'60 cluster
structure, though it is well bound nucleus. The purpose of the present study is to ex-
tract the probability of the a-clustering in the surface region from the a-transfer reaction,
160(5Li,d)?Ne.

Furthermore, at excited states of nuclei, if they populate near thresholds, cluster struc-
tures are expected to develop and loosely bound state. Thus, for the investigation of these
cluster structures by using nuclear reactions, it is needed to consider the dynamics of
loosely bound system, in particular the breakup effects of nuclei into their constituent clus-
ters. However, at this moment, the inclusion of these effects in our model is out of our
scope. First, in this paper, we aim to show how to identify the cluster structure regarding
the well-bound stable nucleus, 2°Ne, from observables. Then, as future works, it will come
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out that the cluster-investigation of loosely bound systems such as unstable nuclei with
taking into account their breakup effects.

5.2 Theoretical framework

5.2.1 Microscopic description of cluster wave function

As for the relative wave function between o and 60, we adopt a microscopic cluster model.
The total wave function of 2°Ne with the resonating group method (RGM) [151-154] for
the a-'%0 configuration is given by

[UNe) = Al (r)Yio(7) () p(Ne)], (5.1

1
V20!
where r is the relative coordinate between o and 60, A stands for the antisymmetrization

operator, and ¢(C) is the intrinsic wave function of the nucleus C'. x; can be expanded by
the orthonormal set R,,; of the radial wave function of the harmonic oscillator (HO) as

xi(r) =Y anRul(r), (5.2)

an = /r2d7’Rnl(r)Xl(r). (5.3)

Here, n and [ correspond to the principal quantum number and the orbital angular momen-
tum of the HO, respectively. The relative wave function is defined by

w(r) =Y an/HniRu(r) (5.4)

with the eigenvalue p,,; of the RGM norm kernel [155]. For a normalized cluster wave
function satisfying (V|¥) = 1, the relative wave function v; is normalized to unity. Details
of the formulation of the microscopic cluster model are given in Ref. [156]

5.2.2 Distorted-wave Born Approximation (DWBA) formalism

In this work the a-transfer reaction ‘°O(°Li,d)'?C is described with the post form distorted
wave Born Approximation (DWBA) approach expressed in Sec. 3.3.3. The coordinates
for the reaction system are illustrated in Fig. 5.1. The transition matrix for the a-transfer
reaction is given by

i = (357 |V

w), (55)

where the a-d interaction V4 in the final channel is adopted as the transition interaction,
which causes the transition from the initial channel 7 to the final channel f. The total wave
functions \I’Z(.+) and \Ifge_) for the initial and final channels, respectively, are written as

U (roa, i) = Gaa(raa)x " (7). (5.6)
V) (ra0, ) = Yao(rao)X (ry), (5.7)
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o 160

Figure 5.1: Illustration of the three-body system.

where 104 (0a0) is the relative wave function of the a-d (a-'%0) system and the distorted
wave between °Li and 'O (d and ?°Ne) is represented by X§+) (XET)). The superscript
(+) and (—) represents the outgoing and incoming boundary conditions, respectively, on
the scattering wave function. We adopt the cluster wave function defined by Eq. (5.4) for
uy, the radial part of ¥,0. Thus 9,4 is given by

wad(rad) = ul(rcxd)}/lm ('f'ad)> (58)

where m is the projection of I onto the z-axis.

5.3 Result

5.3.1 Numerical inputs

We adopt the Volkov No. 2 effective interaction with the Majorana parameter m =
0.62 [157] to calculate the a-'60 relative wave function u;. The width parameter v =
0.16 fm~2 is used for both « and 160. 1qaq 18 calculated with a two-range Gaussian inter-
action V4 [133].

We consider the 16O(6Li,d)20Ne reaction at four incident energies: 20, 38, 42, and
75 MeV. At 20 and 38 MeV, we adopt phenomenological distorting potentials of a Woods-
Saxon form given in Ref. [158] for calculating X§+) and ch_). At 42 (75) MeV, potential
parameters are taken from Ref. [159] (Ref. [160]) and Ref. [161] (set 2 of Ref. [162]) for
the initial and final channels, respectively.

5.3.2 « distribution on transfer cross section

To investigate the role of the a-cluster distribution in the transfer reaction 160(SLi,d)?"Ne,
the cross sections are calculated with the 2°Ne wave functions of the cluster model (CM),
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Figure 5.2: (a) The a-'%0 relative wave functions for the Of state calculated with CM
(solid line) and two parameter sets of PM: PM1 (dashed line) and PM2 (dotted line). (b)
Same as in (a) but for the 1] state.
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Eq. (5.4), and of the potential model (PM). In PM the a-1%0 relative wave function
is simply calculated with the Woods-Saxon potential Vo between a and 10: V,o =
—Vo/[1 + exp{(ra0 — 7r0)/a}]. The parameters of Vo are listed in Table 5.1. Fig-
ures 5.2(a) and 5.2(b) show the -0 relative wave functions of the Of (ground state)
and the 17 state (5.79 MeV), respectively. For the 1] state we use a bound state approx-
imation to calculate the relative wave function, taking the binding energy to be 0.2 MeV.
By changing the parameter a, the PM wave function (PM2) can reproduce the behavior of
the CM wave function in the surface region (r,o = 5 fm).

The transfer cross sections of 16O(6Li,d)20Ne(OI“) as a function of the neutron emitting
angle 6 in the center-of-mass frame are compared with the experimental data [158,160,163]
in Fig. 5.3. One sees the result with CM (solid line) agrees well with that with PM2 (dotted
line) up to the third maximum at all energies. On the other hand, the result with PM1
(dashed line) deviates from the other two significantly. As shown in Fig. 5.2, CM and
PMI1 gives the same distribution in the surface region but are different from each other
in the inner region. Whereas the two sets of PM show a difference only in the surface
region. Thus, the results of Fig. 5.3 suggest that the transfer cross section is not sensitive
to the inner part of the structure of 2°Ne but it probes the a-'%0 radial wave function in
the surface region. , where a clustering structure is known to make u; show a characteristic
behavior.

It should be noted that the radial wave functions used here are normalized to unity.
Nevertheless, PM1 gives a significantly different absolute value of the cross section from
the results with other two models. This strongly suggests that an accurate determination
of a spectroscopic factor (SF) from a transfer reaction is very difficult. Another important
remark is that the surface region in this study means about 5-8 fm in the relative distance
of o and 190, i.e., still within a range of the nuclear interaction between the two clusters.
Thus, the transfer process considered here is not governed by the asymptotic normaliza-
tion coefficient (ANC). The a-clustering probability in the surface region will be a third
alternative to the SF and the ANC for nuclear structural information to be extracted from
reaction observables.

Unfortunately, however, agreement of the calculations with CM and PM with the exper-
imental data is not satisfactorily well. One of the reasons for this will be ambiguity of the
distorting potentials, those for 5Li in particular. We will fix this possible problem by adopt-
ing an o + d + 190 three-body model in describing the transfer reaction. In this case we
need the a-'%0 and d-'90 distorting potentials, for which some global parameterizations

Table 5.1: Potential parameters for V0 in fm. The depth V; of V¢ is determined so as to

reproduce the binding energy 4.73 MeV and 0.20 MeV for Of and 17 states, respectively.
0F Iy

o a To a

PMI1 | 1.25x16'3 0.65 | 1.25x16Y3  0.65

PM2 | 1.25x16Y3 0.76 | 1.25x16Y/% 0.83
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Figure 5.3: Transfer cross sections of 16O(6Li,al)20Ne(Of) at (a) 20 MeV, (b) 38 MeV, (c)
42 MeV, and (d) 75 MeV. In each panel, the solid line shows the calculation with the CM
wave function. Results with PM1 and PM2 wave function are shown by the dashed and
dotted lines, respectively. Experimental data are taken from Ref. [158, 160, 163].
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Figure 5.4: Same as in Fig. 5.3 but for the transfer cross section to the 17 state of °Ne.

can be used.

Figure 5.4 shows the transfer cross section populating the 17 state of 20Ne. One may
draw a similar conclusion on this result to that for the transfer to the 0] state. It implies a
possibility to probe a cluster structure also in a resonance state of a nucleus. This will be
one of the advantages to use transfer reactions for the study of clustering phenomena.

5.4 Summary

We have analyzed the transfer reaction '0(°Li,d)?°Ne to investigate the radial dependence
of the a-cluster probability. The a-'60 relative wave function calculated microscopically
are adopted in the DWBA analysis. We have found that the angular distribution of the
transfer cross section is a good probe to see the radial dependence of the a-clustering
probability. The procedure proposed in the present study can be useful and applicable to
probe the cluster structure via observables in general systems such as unstable nuclei and
sd-shell nuclei. As future work, to take into account the breakup channels of 6Li with an
a + d+190 three-body model by means of the continuum-discretized coupled-channels
method (CDCC) [3,5,6] will be important. This will also minimize ambiguity of distorting
potentials required in reaction calculations.



CHAPTER 6

Conclusion and Prospect

In this thesis, a three-body dynamics induced by loosely bound nuclei is studied. When
a system consists of a projectile, which is loosely bound system of a two-body, and a
target nucleus, the projectile can break up into its constituents in the intermediate state of
scattering. Thus we have focused on a role of the breakup states of a projectile and it has
been investigated by means of the method of the continuum-discretized coupled-channels
(CDCC). By using the CDCC method, one can explicitly take into account the channel-
couplings among ground and breakup channels of nuclei. An analysis with CDCC enables
us to understand a three-body dynamics correctly.

In Chap. 2, the formulation of CDCC has been given. In CDCC a three-body wave
function of the system is expanded with projectile’s eigenfunctions, which include infinite
number of states. It is difficult to handle this wave function, we truncate the momentum
space at a certain value. Then its discretization is done in a finite space with using one of
two procedures of the discretization. One is the average method, in which the projectile’s
wave function is taken as an average in momentum “bin” state. The other is the pseudostate
method, in which the projectile’s wave function is expanded with basis functions and the
internal Hamiltonian of the projectile is diagonalized with them. The former is adopted
for breakup reactions in Chap. 4, while the latter is used for transfer reactions discussed
in Chap. 3. Moreover, the CDCC framework with the eikonal approximation, in which
the deviation of the projectile-target distorted wave from a plane wave is assumed to be
small, is formulated, that is the eikonal-CDCC (E-CDCC). The E-CDCC can be performed
as a coupled-channels calculation with a minimal computational cost compared to a full
quantum calculation.

In Chap. 3, we have formulated the coupled-channel Born approximation (CCBA)
model, which explicitly takes into account the breakup states of both a projectile and a
residual nucleus in the initial and final channels, respectively. As a first application, the
8B(d,n)°C reaction at 14.4 MeV/nucleon has been analyzed with the CCBA model. It has
been found that there exists a strong interference between the elastic transfer (ET) and the
breakup transfer (BT) in each channel. Note that the former is the transfer process from the
ground state in the initial channel to the ground state in the final channel, and includes the
back couplings, which is the channel-couplings between the ground and breakup states in
each channel. The latter is the transfer process from or into breakup states in each channel.
It has also been pointed out that the back couplings are weak in each channel and the BT
between breakup channels is negligibly small. Furthermore the transferred angular mo-
mentum [ can change through the channel-couplings with non ground state’s partial waves
of 9C. This dynamical change of I enhances the cross section by about 25% at forward
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angles, and the importance of that involving the continuum states of C has been newly
discussed by our study. Thus it has been found that the picture of the ®B(d,n)’C reac-
tion is different from that described by a conventional distorted-wave Born approximation
(DWBA), in which the breakup channels of both d and °C are neglected. Next, the CCBA
calculation has been performed for the 28Si(al,p)295i reaction. For this reaction, it has been
found that there is a strong back couplings in the initial channel and it decreases the cross
section. This fact is very different from that for the ®B(d,n)”C reaction. Therefore it is
needed to systematically investigate breakup effects on transfer reactions in order to clarify
how that effects change in each reaction.

A discussion on breakup reactions has been given in Chap. 4. In particular, we have fo-
cused on a case with heavy ion target at a low incident energy, for example 2°Pb(1°C,n!4C)
at 20.0 MeV/nucleon. For such a case, it has been expected to be difficult to precisely de-
scribe the reaction due to Coulomb interactions by means of the eikonal approximation.
In the eikonal approximation, a Schrédinger equation to be solved is reduced to a first-
order differential equation and it is much easier to solve compared to that in a full quantum
case. First, we have compared two reaction models, which are based on the eikonal ap-
proximation, one is the eikonal CDCC (E-CDCC) and the other is the dynamical eikonal
approximation (DEA). It has been found that two models solve essentially same equations
when Coulomb interactions are absent. In this artificial case, the cross sections calculated
with two models agree with each other. When Coulomb interactions exist, a situation is
changed. Both models have not been able to reproduce results obtained from a full quan-
tum calculation. To solve this problem, we have adopted the distance of closest approach
in Rutherford scattering. This corresponds to the Coulomb correction that the curved tra-
jectory is approximated by the straight line one, and it has worked well. Two models with
the correction have reproduced well the full quantum results. It suggests that a concept
of a “trajectory” is efficient in order to describe breakup reactions with strong Coulomb
interactions.

The presence of the a-cluster states in nuclei has been investigated from the analysis
of a-transfer reactions. Since cluster states develop at near threshold energy for decaying
into their fragment, their structure is expected to be loosely bound system. In particular,
for unstable nuclei, it may appear in their ground state. As a first application, the search
for the a-cluster state of 2°Ne with the a-'%0 configuration in its ground state, though it
is not loosely bound state, has been done by using the a-transfer reaction, *°0(°Li,d)?°Ne.
For the description of the a-transfer reaction, the wave function of 2Ne calculated from
the microscopic cluster model is adopted. Whereas, the DWBA model has been used for
the description of the reaction process. It has been found that the transfer cross section
is sensitive to evaluate the relative position of « particle to the 10 core. We call the
amplitude of the cluster wave function at this position as the a-clustering probability. Since
this probability is involving the information of radii of clusters, which are not discussed in
several studies to see spectroscopic factors, this probability could be a new indicator to
argue the presence of a-cluster structures in nuclei. Furthermore it can be determined
by comparing the experimental data, i.e., our framework is corroborative study, which
exists out of conventional works that only bring theoretical predictions. For the future
work it is needed to take into account the breakup states of °Li be means of CDCC in
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the CCBA analysis of the a-transfer reaction. Though it is interesting to consider the
continuum states of the residual nucleus, 2°Ne in this case, for the CCBA calculation, they
cannot be calculated by the microscopic cluster model at this moment. After we buildup
the procedure to prove the cluster structure of 2’Ne, the systematic investigation of the
clustering in several nuclei, for example, well-known light nuclei with cluster structure,
sd-shell nuclei, which do not have the a-cluster in their ground state, and unstable nuclei,
will come out.






APPENDIX A

The Continuum-Discretized
Coupled-Channels Method as
Approximate Faddeev Formulation
with Angular Momentum
Truncation

The method of the continuum-discretized coupled-channels (CDCC) is discussed in
Ref. [109] as an approximate calculation of three-body systems with a truncation of a Fad-
deev formulation [164,165] in angular momentum space. We consider the d + A scattering
with the p + n + A three-body model. The total wave function ¥ of the system satisfies
the Schrodinger equation

[E—K—=V(r)—=Up(rp) —Uy(ry)| ¥ =0, (A.1)

where F is the total energy and K stands for the Kinetic energy operator of the system.
We assume that the p-n interaction V' is rotationally invariant and the interaction potentials
between the nucleons in d and A are U, and U,,. Coordinates of the system is shown in
Fig. A.1.

A

Figure A.1: Coordinates of the p + n + A three-body system.
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Here we introduce the projection operator P defined by

Im
P= / 47> Vi () Vi (7) (A2)

=0 m

which only selects the low angular momentum [ regarding the p-n system up to a maximum
value [,,,. Then we can define

Q=1-P, (A.3)
P?2=p, (A4)
Q°=Q, (A.5)
PQ=QP=0. (A.6)

The partial wave functions PV and QW are orthogonal. Furthermore they consist of
the Faddeev components; ¥ = ¥, + ¥, + ¥,,, where the each components are defined by
the standard Faddeev equations [164, 165]

[E—K—-V]U =V (¥,+1,), (A7)
[E—K—-U)V,=U,(Vs+,), (A.8)
[E—K—Uy) U, =U, (Vg+¥,). (A.9)

As we can see from Egs. (A.7) to (A.9), the deuteron component W ; corresponds to the state
when p and n construct d. Whereas the proton (neutron) component ¥,, (¥,,) expresses the
channel for the proton (neutron) scattering state toward the n-A (p-A) subsystem, which
can be both bound and continuum states.

By multiplying Eq. (A.1) by P and @) from the left, we have the following coupled
equations respectively;

[E— K —V — PU| PV = PUQY, (A.10)
[E— K-V —QU|QY¥ = QUPY, (A.11)

where U = U, + U,. When one sets the right-hand side (RHS) of Eq. (A.10) as 0, it
becomes

[E— K-V —PUP|PV =0. (A.12)
Thus the CDCC approximation ¥CPCC ~ PV leads
[E— K -V — PUP|WC¢PCC =, (A.13)

The elimination of the coupling term PUQV in Eq. (A.10) is based on the argument that
PUQV is expected to be small (a) because U has small matrix element if / significantly
changes between the P and () spaces, and (b) because, when [, is taken to be a large value,
U only connects | ~ [’ states in each space.
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To make clear the difference between the CDCC approach and the complete theory, we
look the distorted Faddeev equations

[E—K -V — PUP] \i}dzv<\ifp+\ifn), (A.14)
[E - K —U,) ¥, = (U, — PU,P) ¥, + UV, (A.15)
[E - K — U, Y, = (U, — PU,P) ¥4+ U,T,, (A.16)

in which the three-body distorting potentials are inserted. It was pointed out [110] that
the distorted Faddeev equations (A.14) to (A.16) still hold the mathematical properties of
the standard Faddeev equations (A.7) to (A.9). When Eqgs. (A.14) to (A.16) are added, the
original Schrodinger equation (A.1) is recovered.

By adding only Egs. (A.15) and (A.16), one obtains

E—K—U, - U]( +\IJ>:(U7PUP)\1Jd. (A.17)

The subtraction of PU P in Eq. (A.17) is expected to weaken the coupling between ¥, and
U, +V,.
Since, from Eq. (A.14), QV (‘i'p + \iin) =VQ (\i/p + \i'n) ~ 0, we can approximate

that the deuteron component U, has only the P-space contribution;
U, ~ PU,. (A.18)
Then the insertion of Eq. (A.18) into Eq. (A.17) leads
E-K-U,—U, ]( 0 ) ~ QUP,. (A.19)
Here we use

(U - PUP) ¥4~ (U - PUP) PV,

U-(1-QU(l-Q)P,

= (PUQ + QUQ + QUP) Py,

= QUPY,. (A.20)

Within the approximation Eq. (A.18), each component of W is calculated by solving
the simultaneous equations associated with Eqs. (A.14) and (A.19). The amplitude of
\ilp + W, extracted from Eq. (A.19) is expected to be small owing to the projection operator
Q. Furthermore, since the short-ranged V' suppresses the magnitude of \ifp + ¥, within its
range in Eq. (A.14), the ( components from Eq. (A.19) do not contribute to the calculation.

One can insert the CDCC wave function U°PCC into Eq. (A.19) as a zeroth order ap-
proximation for \Ild Then Eq. (A.14) is solved as an inhomogeneous differential equation.
In the calculation the P-space part of \Il + ¥, should be considered because V is the
short ranged interaction. This is the Justlﬁcatlon of CDCC as a truncation of the Faddeev
formalism in the space of .
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PYODCC 45 the zeroth order

This fact can also be understood from that, first we adopt
solution of Eq. (A.14) when the RHS is set to be zero. Then \ild is inserted as the source
term in the RHS of Eq. (A.19). As mentioned above, the component QU PV, which is
expected to be small if [/, is taken to be large enough, produces a small amplitudes of
\ilp + U, in Eq. (A.19). Therefore, we can regard ¥“PCC as an approximate solution of
Eq. (A.14). These formulations that elucidate the good agreement between CDCC and the
distorted Faddeev formulation is sometimes called the Austern-Yahiro-Kawai theorem.

Before establishing the Austern-Yahiro-Kawai theorem, CDCC was criticized [166,
167] for (I) how to define the asymptotic behavior of coupled-channel distorted wave, (I)
whether CDCC calculations provide converged results regarding their model space param-
eters such as the maximum values of the p-n orbital angular momenta and the p-n relative
momenta, and (III) the justification of the results if they converge. The problem (I) was re-
solved in Ref. [5] by the [-truncation that enables to reduce the asymptotic form of coupling
potentials to proper one. Then, for the task (II), it was numerically proved that results ob-
tained by CDCC calculations does converge [168—170]. Finally the formulation of CDCC
was authorized to be an good approximation of the Faddeev exact solution for three-body
scattering with the idea based on the [/-truncation [109, 117].
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Coupling Potential
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In this appendix, the derivations of Egs. (2.68) and (2.71) are given.

B.1 Derivation of Z factor
The integral in Eq. (2.67) can be done by using the Wigner-Eckart theorem as follows;

([e@meve@] |neen®) |[imevm] )

— (e e Vi (R HHYN © Yr(R HHYg )@ Yi(R }> (J M J00|J M)

¢ L J
=J9A A 0 (Y |Yal|Ye) (Yo |[YA]| YL)
0 LJ
0 LJ - -
. 2\ L'\
=J<0 L J5 (=)= (£0ox0]f0) (=) =2 (L'ONO|LO) . B.1

Here, for the third line of Eq. (B.1), we have used the relation of the reduced matrix element
with the 9-5 symbol given by

(P eva@], e evd] | Fneosvm)],)
ls L3 Js

=J1dads(le Lo J2 p (Yo Vel Yey) (YL 1YL, Yis) (B.2)
¢t L1 Jp

To obtain the fourth line of Eq. (B.1), we have used Eq. (K.186).

The 9-7 symbol including O component can be expressed by the Racah coefficient as
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follows;
(e vt [ier o], | s o vack)] )
/ A A A
A zl 0N pise / /
=JJL L A (£0A0]€0) (L'0A0|LO)
J J 0
A(_)€+L’+>\+J VR EA’[A/S\Q
= JT I gl am (€'0X0[€0) (L'0X0|LO)
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Thus, by inserting Eq. (B.3) into Eq. (2.67), we obtain the Z factor
Z(E/L/EL, )\J) — ,L'f+€/+L+L/(_)L+LI+JM/§2/I/
x (£'0€0|A0) (L'OLOIXO) W (L€' LL'; NJ). (B.4)

B.2 Derivation of Coulomb coupling potential

Since the Coulomb interaction is well known, its form of the multipole expansion is also
known. Vx)‘(c) defined by Eq. (2.62) can be decompose into two terms;

V2O (ar, R) = X)(R) + W)(r, R), (B.5)

where X} (W) does not (does) depend on r. As follows we see X for each case, which is
divided by the magnitude relation of r, and Rc. R¢ is the Coulomb radius of a uniformly
charged sphere,

2 2
ﬂ(?)—]’%—z) for p < R,

VO (p) =< e, (B.6)
% for p > Rc.
1. rp < R for every w
In this case we have
Zu 7,y €2 r2
©) _ Zxfy _ =z
Ve ) = opg (3 R%)
_ ZoZye? . R? +2a2r2 B Znye2.ang B
2R RC 2Rc RC
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Thus from Eq. (2.62) we obtain

A2t ZyZ,e° R? + a?r? ZxZ, €% aRrw
V;A(C)(ar, R) = 2/1 [ 2Ryc (3 — f > — 2Ryc 72 Py (w)dw
- C C
2 2 2,.2
Ly Zye 3_R +2ar A= 0,
= ZZye* aRr (B.8)
" 2R; RZ A=L
0 A>2
Here Py(w) = 1, P (w) = w, and
1
/ w"Py(w)dw =0 for n=0,1,--- ,\—1, (B.9)
-1
are used. Therefore X g’c\l is calculated by
ZyZye? R?
by ye <3 - 2> )\ — 0,
Xea(ra) =4  2Rc RY, (B.10)
0 A>1
2. rp > R for every w
In this case we have following relation:
1 ar\?*
- — | Py(w R > ar,
1 1 R ZZ: ( R ) ()
7:\/32 2,2 ¥ 2%aRrw 1 R\* ®B.11)
z + o r® + 2aRrw Z() Piw) R<ar
ar &= \ar
Thus Vx)‘(c) is
5\2 1 ZuZ 2
VMO (ar, R) = 2/ . y© Py (w)dw
71 x
A
Z.Z,e* (]f;;zl Py(w) R > ar,
- R (B.12)
ZmZye WP@('LU) < ar

Here ¢ aligns to A in Eq. (B.12) since we use the orthogonal condition Eq. (2.60).

Therefore X é‘“ is finite only when A = 0 and R > ar:
N ZyZye?
Xoalra) = =5 (B.13)

and any other cases X ;\’2 =0.
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3. Exception of 1 and 2

Vx)‘(c) can be written as
N2 ([0 7,7, € ' 2,7,¢ r2
MO R:/ VT py(w)d /“f 3— —Z ) P(w)d
T (OZT, ) 2 1 e )\(w) w + wo RC R% )\(w) w |,
(B.14)
where wg, which express that at w = wg r, = R, is defined by
R2 _ RQ 2.2
wp = —C ar. (B.15)

2aRr
We can obtain X ‘,ﬁ,g from Eq. (B.14).

Therefore X;\ and W;\ = Vx’\(c) — Xﬂ’c\ can be evaluated. When R < Rc, éc) in
Eq. (2.70) is written by

fm(‘fi)’f’nf)\ (R) = /0 (%;/Z/ (T)Vx)\(c) (Oﬂ', R) (Zgng(’l”)d’f’

+ ﬁcﬂa Grve (1) (X22(R) + Ws(r, R) ) Gue(r)dr. (B.16)

o

On the other hand for R > R we obtain
R—Rg
C (e A* A~
Frovemen(R) = /0 G (1) (X22(R) + W2a(r, R)) bue(r)dr
R+Rg

o Bar) (K2R + W24 R)) )i

o

o
4 e B 0) (X B £ WA B)) duar)dr. (BAT)

Here let’s focus on the case of R > Rc. In the case, only the first term of Eq. (B.17)
has an amplitude. We write the term, which contains X,

R—Rg

/0 " G (X0 (R) o)

ZIZ 2 oo R o0 R .
_ Lady® (/0 i (1) P (r)dr — /R_R iy (T)gb,w(?")d?”)

C
@

R
YA 2 o N
= y© <5n/n5g/g —/ gb;/@/(r)gbng(r)dr> . (B.18)

R R—Rg
«
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Here we use Egs. (2.13) and (B.12). In CDCC Eq. (B.18) is integrated up to 7 = rpax as
follows.

R—Rc
a

Drpr (1) X3 2 (R) e (r)dr
ZoZye? [ [rmx rmax
~ Tye (/() ¢H/Z/(T')¢ng(7")d7" - /RRC ¢n’€’ (T)(Z)ng(r)dT>

ZIZ 2 Tmax e .
~ y© <5n’n5Z’Z _/ ¢n’é’(r)¢nf(r)dr> . (B.19)

0

R R-Rg
«

Note that 7, should be taken as the orthogonal condition Eq. (2.13) can be satisfied. The

second term of Eq. (B.19) appears when 7yax > R_QRC. Thus we obtain the same form as
Eq. (B.17):
C Z Z 62 Tmax e R
faE,n)’E’nZA(R> = ;ERy 5”/”6”5 B ARC (bn’é’ (7")¢ng(7°)d7°9 (Tmax - (R - RC)/O‘)
R—Rg :

T / " G (r) + W (r, R)ne(r)dr
0

4 o ) (X25(R) + W20 B)) 1) (s — (R = R )
+ ﬂ%-&-R CZA)Z’Z’ (T‘) (X;\,I(R) + Wa?\,l(h R)) anf(r)dre (Tmax - (R - RC)/a) )
C
(B.20)
where 6(r; — r2) is the step function defined by
B(ry—rg) =4 O TLET (B.21)
! 2= 1 T > To. )
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C.1 Finite-range Form factor

C.1.1 Gaussian expansion

The form factor defined by Eq. (3.69) with the exact finite-range (FR) integration of
Eq. (3.79) can be rewritten with using Eqs. (3.76) and (3.77) by

fin(rs.ra) = Y Fisr.(rsra) (LgMsLaMa|lm) Y vy, (75) Y], a1, (7a)
LaLsMaM;
= Z <_>L5+LO‘7IFILBLQ (7‘5,7"&) [YLa (To) ® YLB(’IA’/g)] ;m . (C.1)
LaLg

The form factor fi,,, can be also written by definition,

fim(rg,ra) = D (=)™ (Lamaly, =mp|lm) Y4 (r2a) Dap(res),  (C2)

mamy

where,

Dxb(rxb) = be(rxb)¢xb(rxb)- (C3)

Here we assume the interaction V,;(r,5) between x and b is scalar, and 1, is the relative
wave function between x and c.

To express the Eq. (3.65) with the set of coordinates (73, 7,), we expand the radial
part of Eq. (3.65) with Gaussian. Thus 1), 4 and D, can be written as

Q1 (rea) 4,

wa(TxA) - TTIA)/ZAmA (I;’:L‘A)7 (C4)
TrA
dy, (r .
Dyp(rap) = . (l;,mb) T:llfb)/lbmb (Pb)- (C.5)
T

xb
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The radial parts of Eq. (C.4) and Eq. (C.5) are expanded:

LA (rea) Z C;, exp(—vi r24), (C.6)
TCCA

dp, (7
lb rab) Z , exp(—vi,12%). (C.7)

Using Eq. (C.6) and (C.7), we obtain

fim(r6:70) = Giaiy(Tas78) eXD(Yiaiy 75 - Tar)

LA

X (=)™ (Lamaly, —my|im) T Y (Fea)rl Vi, (Pap),  (C.8)
maAamMmy
where
Gini(Ta,78) = Ci,Ci, exp(_aiAisz!) eXp(_ﬁiAibr,%’)v (C.9)

and coordinates are written by 7,4 = sr, + trg and r,, = pr, + qrg with

,=B_o __B ®
T xa+ AT xb4+ DB’
a A a B
p za+ A’ q xb+ B’ ( )

then «, (8, and -y are defined by
Qi g0, = Vigy s% + Vibp2v
BiAib = ViAtZ + Viqua
Yini, = —2(Viyst + v5,pq) > 0. (C.11)
Gaussian, exp(7; 4,73 - T ), can be expanded with modified Bessel function iy,
exp('yiAibrﬁ . ’I“a) =47 Z(—)L[A/iL(’yiAibrﬁT’a) [YL(f‘a) &® YL(’f’g)]OO . (C.12)
L

Since coordinates can be expressed by r,4 = sr, + trg and vy, = pro + grgin
spherical harmonics with #,, 7, the spherical harmonics converts,

YZA ma (Pza) ZhAA Ta,78) [Yia—aa (Pa) ®Y/\A(Tﬁ)]1AmA ) (C.13)
lb

l . X

Yy () = Y (e 78) [V -2 (Fa) @ Yo, (P5)],, 1, (C.14)
Ab

where

vAar _
hy,(ra,rg) = ;\— \/QZA_A'_ICQ)\A(STO[)IA AA(trg))‘A, (C.15)
A
VA _
hy,(ra,rg) = T Vv 21,+1C2x, (pra) b Ab(qrg)A”, (C.16)

b
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and
(20 +1)!
Coy, = C.17
et =22 T 01, £ 1= 200)1(2),)! €17
is the binomial coefficient.
The radial part Fiy,r,, of Eq. (C.1) can be calculated by
Flr,n,(rg,ra) = (—)L‘*H‘”_l/d’“adf‘ﬁ [V () ® Yr,(73)],, fim(rs,Ta)-
(C.18)
Inserting Eq. (C.8), (C.12), (C.13), and (C.14) to Eq. (C.18), we obtain
ELﬁLa Tﬂ,’l“a Zngzb Ta7rﬁ Z h)\A Ta,Tp h)\b Ta,Tp 471—2 LZL 'YzAzbr,Bra)
TATh AAXp
X (—)LB+L&_Z / d’l“adrﬁ Z lAmAlb, mb\lm)
mamy
X [Yiyaa (Pa) @Yo, (Pa)]] 1, (Y=, (Pa) @ Y2, (P5)],, .
X [YL(’IA"Q) X YL(TA’ﬁ)]OO [YLQ (’f‘a) & YLﬁ (’fﬁ)]l (C.19)
Here we convert the spherical harmonics in the vector coupling in order to align its argu-
ments as follows:
D ()™ (amaly, —myllm) [Yi, 3, (Fa) @ Y, (76)]] 1, Y- (Fa) @ Ya, (76)],, 0,
mamy

*

= |WVisaa () © Vau (7)) s © Vi, () © Yoy (7)1, |

la—Xa s la

=Y labjoads{ b= X b
jajﬁ jOé J/B l

x [[YZA_M (Fa) ® Yy, -5, (Pa)]

Ilm

Lo Mg @ @),| o ©20
Jo I81im
Then the angular integration of Eq. (C.19) can be done using the Wigner-Eckart theo-
rem:
/d';‘adﬁﬁ |:D/ZA*)\A ("A’a) ® Yzb*Ab ('f'a)]ja ® [Y/\A ('Fﬁ) ® Y/\b (7%5” ‘ﬁ] m
X [YL(7a) @ YL(75)] g0 [YLa () @ Yi,(75)],

= ([Miaoru(Pa) @ Yiy o, (7)), @ Vo () @ Ya, (s, |

< [[Y2(0) @ Yil#s)log| [Yea (7o) @ Vi, (75)] )

N)‘ —_

(Im00|lm) (jajsl | LLO|| Lo Lgl) . (C.21)
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The reduced matrix element can be calculate with 9-7 and 6-5 symbol

Ja Js l
(jajsl ILLO| LaLgl) = Lo L 1 p (jo |ILll La) (s |IL] Lg)
L L 0
:l“z( )Jﬂ I=La ja jﬂ l
I Lz Lo L

% (Va4 (Pa) @ Vi, (7o), V2 (70l Vo (7))
x (Va4 (79) @ Y, (7)), IV (70)] Y, (75) )
G {ga s z}

LL Lz Lo L
1 lA/—\/\Alb Y ,
X la—24,0,0, — Ny, 0[50
\/1;; ja (‘A A b b |] )
1 >\A>\b
X —— (A40A0[750)
Vi s ’

X (Vi (a) VL (Pa) | YL (Fa) (Yis (76) VL(P8) [ Y1, (P5))

~

:i(_)fjﬁfsz,rL Ja Jp 1
7 Ls Lo L

lA — /\Alb — AN

(la — 24,0,y — Ay, 0[5a0) (Aa0A,0[550)

AT 0l
L]aL L]ﬁL
X 0L0|L,0 30L0|L30
(=)F T= (aOLOILa0) (=) 7= (a0L0|50)
1 ) L - ..
- ) Isl=La=L(_yiatistLatLs [T 17— X Ty — ApAad
(477)2( ) (-) A= Aalp — ApAaNy
X W (jajsLaLg; L) (Ia — Aa, 0,1 — Xp, 0]500) (Aa0A30]550)
X (ja0L0|La0) (750L0| L50) . (C.22)

Inserting Eq. (C.21) to Eq. (C.19) using Eq. (C.22), we obtain following formula with a
few transformations,

ILgLq
F‘lLﬁLa(T,B/'“a) = Z %)\AA;,L(T,BJ“Q)JZ{,\AibLa (C.23)

AadpL

]‘ ~ <
Py (T8:7Ta) = 1 a (Far 7)oy (Tas 78) D Giniy (T 78)iL (YiaiyTs7a),  (C.24)
LAy
ILgLq i —L327 7% % 37 v i v LN
A\ 50 =Y (=Yt LAl jagala — Aaly — MeAady
jajﬁ

X (la = A4,0,1y — Ap, 0]5a0) (A40X0]350) (ja0LO|La0) (j50L0|L50)

lA—Aa Aa la
X W(jangaLﬁ; ZL) lb — /\b >\b lb s (C.25)

ja j,B [
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where we transform the product of Gaussian and the modified Bessel function as follows;

(=) i niy (Ta, T8)IL (Vini,T8Ta) = Finip(Tar78)iL (ViniyTo7a),  (C.26)
Ginip,(Tasm8) = C,Cj, exp [—z/iA (sra + trﬁ)Q] exp [—uib (pro + qrg)Q] , (C.27
i, (Viai,T8Ta) = (—)L exP(—Yini,T87a)iL (Viai, T8 a)- (C.28)

The “reduced” modified Bessel function ZL(% Aibrgra) is calculated by the subroutine
BESSI [171] in our CCBA code FRANTIC. The details of the clculation for EL(’yiAibrgra)
is discussed in Appx. L.

C.1.2 Multipole expansion

If the bound state wave functions are expanded with the multipole expansion method in-
stead of Gaussian, the representation of the form factor will be changed. In this method,

we expand the product of ¢}  (rz4)/ rif;“‘ and dj, (745)/ rlx”b, it means,
¢* (ra:A) d Tr
Q(T$A7 sz) = & Ta b (lb b)
TzA Tzb
= Qu(ra,75)Pe(w), (C.29)
k
. P2 ol
Qk(ra,rs) = 5 / Q(rea, Tab) Pe(w)dw, (C.30)
-1

where w = cos 0,3 with the angle 6,3 between 7, and 7.

Then we can obtain the form factor

fim(rp,ra) =D Qrra,rg)Pe(w) D (=) (lyamazalay, —map|lm)
K

Mg AMgd

l ~ l ~
= T;vxi‘éleZZmA (rxA)rxbinbmb (T‘Z’b)

_ \/117 g Qk(ras 7’5)45<—)k [Yi(7a) © Yi(75)]oo

X Z (=)™ (Lamaly, —mp|lm)

mamy

= Y2 (Fa) @Yo, (Po)l) 1y Yi—2 (Pa) @ Y2, (P5)],,,, (C3D)

Because the term which relates to the sums of m 4 and my is completely same as Eq.
(C.20), we just have to calculate the angular integration same as Eq. (C.21) and (C.22)
except that L in the Gaussian expansion is equivalent to & in the multipole expansion.
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Therefore the radial part of Eq. (C.31) is given by

ILgLy
FlLBLa (rﬁ; Toz) - Z ‘@)\A/\bk(rﬁ7ra)£{)\14§bk ’
AaXpk
1 -
Fanrk(15,7a) = - laa (s )R, (T, 75) Qk(ra, ),
ILgLq i A O e N
dAAibL = Z(_)ja+LalAlb]aJ,BlA — Aaly — ApAap
jajB
X (la —Aa,0,1, — Xp, 0]5a0) (Aa0A0]580)
% (jaOKOL0) (j50K0| L50)
la—Xa da la
X W(jangaLg; lk) lb — )\b )\b lb s (C.32)
jcx j,B l

C.2 Zero-range form factor

In the zero-range (ZR) limit, we do not have to expand the wave functions of the projectile
and the residual nucleus. The form factor with the ZR approximation is given,

flm(rﬂa ra) = w;A("'xA)Da:b(rxb)
~ Yya(rea)Dod(rap)

A

where D,y is defined by Eq. (C.3). We can understand from Fig. C.1 that ;4 becomes
equal to r, and 6(ryp) = 0 ('rg — %ra) because 7., = pro +qrg. Eq. (C.33) means that
Yap(T4p) is the s-wave because so is d-function.

zZero-range

b 1]

Figure C.1: illustration of the ZR approximation.
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The radial part of Eq. (C.33) can be derive with same way as that of Eq. (3.70),

Firyr.(rg,7a) = (—)L‘#L“_l/d’qadf’ﬁ Vi, (Fa) @ YL, (75)],, fin(rs,T0)

- 0 (rg — 47a)
— (_ Lg+La L g » D B
(—) #7,(ra) 07(%%)2
« / dia / 036 (75 — 7a) [Yia () @ Vi, (75)], Yii(a)
_ 0 (s — 57a)
— (_yLs+La=lgs (po B
( ) ¢1A(7” ) 0 (%TQ)Q

« / i [Yi,(Pa) © Vi, (7a)], Yin(Fa)

) (7“5 — Ara) 1 Laﬁg
= ¢} (ra)Do B —~ (Lg0L o|zo)/df= Yim (76) Y, (7a)
A" (%TQ)Z \/E i B e altlm\Ta)Lim\Ta
1) (7“5 — Ara) 1 ﬁaﬁg
= ¢} (ra)Do B —= (Ls0L,0)10) . (C.34)
SIS
Then we can calculate the overlap integral, I?f;fz, , with the assumption, I, = lg) =0,
8
waty _ An U5 o
TLoLy ~ kokg OAm | (£50.0110)

J * 0 (rﬁ - %TQ) J
X [ rodre rﬁdTﬁXLﬁL%lAl’A (kﬁ,?“g)qﬁl% (Ta) 3 Xor (Ko Ta)

A
(B7a
= kakﬁ ZDO Z (L/ﬁOJOUO) / dTO‘XL[aLleAl;‘ (k;ﬁa Bra) gblfq (ra)Xa(kon Ta)'
(C.35)
The strength of the d-function, Dy, can be calculated by definition,
DO = / d"'sza:b('r;tb)- (C.36)

This integration can be done easily if ¥, is the s-wave. Otherwise we have to do a special
treatment to this integration, for example it is mentioned in Ref. [172]. Thus the assump-
tion, [, = lg = 0, requires the alignment of L, and J in Eq. (C.35). It should not, however,
be applied the ZR approximation for the case of the non s-wave projectile, because the
range of D, could be much larger than that of the s-wave function. Therefore the ZR
approximation may be bad for describing the precise form factor.

Note that the wave function of a bound state should be real, it means ¢, = ¢;,. As
for the transfer amplitude and the cross section, we can use same formulae as in the case
of the FR framework. Therefore inserting Eq. (C.35) to Egs. (3.87) and (3.88), we obtain
the transfer amplitude and then can calculate the cross section with Eq. (3.90).
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D.1 FRC formalism with Distorted-wave Born approximation
(DWBA)

D.1.1 Formulation

We consider the transfer reaction, a(x +b) + A — b+ B(x + A). The transition matrix of
the stripping reaction with the distorted-wave Born approximation (DWBA) is given by

TRVEA = (X (ra) | F (ra, ren) XD () (D.1)

Ta,Txb

where the form factor .#, which is not represented by the angular momentum expression,
is defined by

y("’xba "":cA) = w;A(TxA)Dxb(Txb)a (D.2)
Dmb<sz) = Vmb(rxb)l/]xb(rxb)7 (D3)
(+)

with a scalar interaction V() between x and b. x~ ’ is the distorted wave corresponds
to -y channel. And also we ignore intrinsic spins so as to simplify the discussion. Arguments
of the distorted waves shown in Fig. 3.2, can be written as

Ta =TzA — OTgh, (D.4)

Te =T 'TpA —Tup, (D.5)
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with 0 = b/a and 7 = B/A. Here we will rewrite distorted waves X, and x g with Taylor
expansion around o, = 7,4 and Trg = 7, 4, respectively, that is,

X&Jr) (TxA - O'Txb) = eiaVTa.rmbX((;j) (TxA)7 (D6)
X(f)*(TflrzA — ) = e_Tv’"ﬁ”bxg)*(TflrxA). (D.7)

Then Eq. (D.1) becomes
<[ draa A (o), (D3)

where we use dr, = dr 4.
Since the r,; integration part of Eq. (D.8) has a short range function, D,;, we expand
the exponential of this term as follows:

/drl"bD:Bb(rxb)e_(TvT3+Uvr").TZb
1
= /drbexb(rxb) [1 + é(rvrﬁ +0oVe )12 4. . (D.9)

This expansion is based on Ref. [2, 172], where it is formulated the expansion of the oper-
ator, exp(r - O), that is,

"0 =4r " cur® MY (#) 0T, (0), (D.10)
nim
(n 4 1)12!

T 2n 2+ 1) @©.11)

In Eq. (D.10) the first order of the series can appear, but it will vanish because of the
symmetry of the odd function integration over whole region if we adopt the s-wave as D,,.
The formulation of this kind of the finite-range correction (FRC) for the non s-wave case
is developed in Ref. [172], but I do not mention the detail of that here.

Anyway when we see up to only second order term of Eq. (D.10), in the transition
matrix we have

(TVs + 0V )2 (7 )k (re )X (1)

= |72 = 07)VE, + (6% = a7)VE, + 07 (Vi, + Vi, )?]
<X (T )Y a(rea) xS (rea)
= (72 = o) { V2 x5 T ) s (rea xS (1)
+ (02 = om)x§ (T e A)hA(raa) {Vﬁaxﬁj) (T'xA)}

4 0T(Vay + Vi) 2XS (7 )i A (rea) XS (720). (D.12)
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The part of the first term of Eq. (D.12) can be
VQﬁX(B ) (T_l""a:A) = VZTAXE;)*(T_L’%A)
vT i X5 (T ), (D.13)

because drps = 7d (77 'ry4) and V2 = 1/72V?
(D.12), we can derive

(Ves + Vo) XS (0 a0 (roa) XS (70a)
= {V'I‘IA (X(B_)*(T_l"':cA)Xgi_)(TxA)) w;A(TzA)}
= XS )X (o) {92 i (ren) ) (D.14)

To obtain Eq. (D.14) we perform the partial integration, [(D.14) dr, 4, and use the nature
of wave functions, that is, Xgi)(r,y =0) — 0and ¢} 4(rza = 0o) = 0. Then Eq. (D.12)

can be written by

(012) = (1= D) {V2 1, X ren) }0ialrea)x§) (raa)
)
)§ X

. As for the third term of Eq.

“lrea

(0% —or)xg (T rea)ia(raa { X (raa)}

+ UTX/(B )

$(raa)

o - DT (flm)} YAl ()

(o = e a(rea) { VG (rea) |

+ X (T ) {VE, U a(raa)} x&”(rm)} : (D.15)

(T TzA {V'r‘ waA (TIA

Now we have following relationship,

1 1 a A aB-Ab (b+2)B-(B-—z)b z(b+B) = (D.16)
c 7 b B bB bB - bB g’ '
b B Ab—aB —xz(B+Yb) z(a+ A) x
T A aA aA aA T ( )
B A+z =
TEEI = @ (D.18)

where p is the reduced masses of corresponding systems. If the distorted waves are gener-
ated by potentials U, ! then from the Schrodinger equation we have

2L,

Ve X (rea) = 75 Wa(raa) = Ea] {7 (raa), (D.19)
. 12 e -
V2, X ) = ;;f [Us(r7 raa) = Eg] x5 (17 raa).  (D20)

' This U should consists of the nuclear potential and the Coulomb potential. We can see lately from
Eq. (D.25) that the Coulomb part will be canceled out in the term of V4 + Ug — U, for the (d, p) reaction.
Because the product of the proton numbers of two charged particles might be same, that is, Z1 Z5 in U, equals
to that in Ug for the (d, p) reaction. As for the (d, n) reaction Z;Z> in U, equals to that in V4. Note that,
however, the cancellation will be bad for general transfer reactions, for example (GLi,d) reaction.
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This is corresponded to the local energy approximation (LEA), that is, the operator V, is
replaced by a local momentum or a local energy. As for the wave function of the residual
nucleus, it leads

204 N
V2 aia(rea) = 5 Vealroa) = Boal ¥5a(roa), (d21)

where p, = xb/a is the reduced mass of the projectile a, a = = + b and V. 4 is the binding
potential between x and A (it might be real). So, inserting Eqgs. from (D.16) to (D.21), into
Eq. (D.15), we have

(D.15) = 2;;; [Us(r o) — Ep + Vaa(raa) — Eoa — Ua(raa) + Ea]
XXy (T A i (rea)X ST (2a)
= 2 (Vea(rsa) + Us(r ' r2a) — Unlrea) — (Eaa+ By — Ea)]
< X5 (T ) A (e ) XS (o). (D.22)

From the energy conservation, it is trivial that
Eoa+ Eg — Eo = — By, (D.23)

where B, is the binding energy of «x in the projectile a (positive value). Then we obtain the
transition matrix by inserting Eq. (D.9) and (D.22) to Eq. (D.8),

TRWBA — D, / drx S (T )k (1) Feorn (MXSH (1), (D.24)
2
_ P” 2pa A
Fcorr(r) =1+ E? |:VxA(7‘) + Uﬁ <B7’) — Ua(’l“) + Ba:| (D25)

where
DO = /d'rbe:cb(rxb)

= VAr / dropr2ydap (), (D.26)

with the product of the the projectile wave function, ¢,;, and a scalar interaction between
xand b, Vypy(ryp), that is, dey(re) = Vs (Teb) b (T2p). p, Which is defined by 2

B \/f drmbribDa:b(r:vb)
fd'rbezb(rmb)

Now we can see the pretty important thing that if we include only first term of Fiq,y, it
corresponds to the zero-range (ZR) limit, that is,

Dzb(rxb) = Dod(’l‘xb). (D28)

. (D.27)

Therefore the second term of Fi,,, acts as a correction of the ZR to the exact finite-range
(FR) calculation. So, this framework is the second order correction.

2 p is the input parameter named FNRNG in the computer code RANA developed by Y. Iseri. Please note
that FNRNG = p/+/6. This is due to the difference between the definition of this note and that of RANA.
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D.1.2 Application

We perform the DWBA calculation to see the FR effects on the BC(6Li,d)!70 at 3.6 MeV,
which is analyzed with the ZR approximation in Ref. [106]. In this calculation for the
distorted wave ng) (X(ﬁ_)), we adopt the phenomenological optical potential [173] ( [174,
175)) for the SLi-'3C (d-'170) system. The detail of the numerical settings except for the
optical potentials are given in Ref. [106]. Figure D.1 shows that the transfer cross section
of the 13C(°Li,d)'"0 at 3.6 MeV as a function of the deuteron emitting angle. At backward
angle there is about 32% difference between the results of the FR (solid line) and ZR (dotted
line) calculation. The FRC (dashed line) overestimates the FR result at most region of 6.
This can be understood by looking Fig. D.2 in which F¢.,(7) and the distorted waves, X((;r)
and X(ﬁ_) are plotted. In panel (a) we show the real and imaginary parts Fio by the solid
and dashed lines, respectively. In the interior region F,,, behaves with a nontrivial manner.
However this parts does not affect the cross section since the reaction is peripheral [106].
In panel (b) the real part of the s-wave components of the partial wave for ng—) and X(_)
are respectively plotted as the solid and dashed lines. The distorted waves in the region
lesser than about 5 fm have very small amplitude. Thus it can be understood that the real

part of Fio, increase the cross section.

0.18 ‘
— FR -
——- ZR + FRC Ve

do/dQ (mb/sr)

0 ! I !

0 30 60 90 120 150 180
0 (deg)

Figure D.1: The cross section of the 3C(°Li,d)!’O at 3.6 MeV/nucleon obtained by
DWBA of the FR calculation (solid line), the ZR calculation (dotted line), and the ZR
calculation with the FRC (dashed line).
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1.5

—— Real .
——— Imaginary

’1'50 2 4 6 8 10 12 14

distorted wave (fm)
e
(=]

-0.5
-1.0
-1.5 ‘ ‘ ‘ ‘
0 5 10 15 20 25 30
r (fm)

Figure D.2: (a) The real (imaginary) part of F¢,, is shown by the solid (dashed) line. (b)
The solid (dashed) line corresponds to the real part of the s-wave component of the partial

wave for X,(;r) (X(B_)) in the initial (final) channel.

As another example we choose the 2%(d,p)?°Si reaction discussed in Chap. 3. In fig. D.3
we show the cross section of the transfer reaction at (a) 17.85 MeV and (b) 50.00 MeV. In
each panel the lines correspond to them in Fig. D.1. Note that in panel (a), the calculations
does not reproduce the experimental data [139], because we assume the spectroscopic fac-
tor S = 1 for the n-?8Si configuration. For both the incident energies the FR effects are
very small and the FRCs well reproduce the FR results.

On the 28(al,p)2951 reaction, the FR effects decrease the cross section, which is opposite
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Figure D.3: Same as that in Fig. D.1 but for the the 28(d,p)298i reaction at (a)
17.85 MeV and (b) 50.00 MeV. The available experimental data for 17.85 MeV is taken

from Ref. [139].

on the peripheral 13C(6Li,d)!7O reaction. This indicates that the F.,, at the interior region
affects the cross section since the incident energies are much higher than the Coulomb
barrier height of the d-28Si. The behaviors of two Fio,s for each incident energy are
very similar. This is due to the good cancellation in Eq. (D.25) even though the optical
potentials [140, 176] we adopt have an energy dependence.
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1.2

5; 0.6 — Real (17.85 MeV) 1
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Figure D.4: The real and imaginary parts of Fip, at 18.75 MeV (50.00 MeV) are respec-
tively shown as the solid (dashed) and dotted (dash-dotted) lines.

D.2 FRC formalism with coupled-channels Born approxima-
tion (CCBA)

D.2.1 Formulation

We work with the three-body (x + b + A) model to formulate the FRC under the coupled-
channels Born Approximation (CCBA). The general expression of the transition matrix
based on the post form can be written by

Tpo = (W5 ‘ Vi ’ (")

Ta,Tzb

— [ drandra o ) Vaslra W (), (D.29)

where \Ilf(j) (\Il/(;)) is the exact three-body wave function in the initial (final) channel.
These wave functions satisfy following Schodinger equations:

Ko+ U (1) + UL (1) + hap — B| 95D (rp, m0) = 0, (D.30)
[Km + U (rpp) + han — E} V) (rpa,75) = 0. (D.31)
Here we ignore the intrinsic spins of each particles. K, is the kinetic operator related to

the coordinate 7., and hy, is the internal Hamiltonian for the x-c system.
For the final channel, we adopt the countinuum-discretized coupled channels (CDCC)
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method [3, 5, 6]:
U (1o, mp) Zwm rea)Xs" " (rs), (D.32)
[hx a egﬁ)} Wi, = 0. (D.33)

Pl » 4 stands for the x-A relative wave function, and the distorted wave of ejectile b is rep-

tio(+)

resented by X3 . Here we use ¢ as the energy index specifying a discretized continuum

io(+)

state of B, and 7g corresponds to the ground state of 5. One may obtain X
standard CDCC equations [3,5, 6].

Arguments of the final state wave functions, 7,4 and 75 shown in Fig. 3.2, can be
written as

by solving

TyeA =Tq + 0Tgp, (D.34)
Tg = Tﬁl’l“xA — Ty
=7 lry +Ery, (D.35)

()

with £ = o/7 — 1. Then we will rewrite wi 4 and XZO with Taylor expansion around

T:A = To and TTg = 7, respectively, that is,

AP+ 0rgy) = €TV rea Tl (1), (D.36)

X?O(ﬂ (77 o+ Erg) = evarﬁ'T”bxiﬁiO(ﬂ (t7'ra), (D.37)

where V,._, and V., operates to only Yt , and X ()

becomes

, respectively. Then Eq. (D.29)

= Z/drxbdrae(av’“m+va’“ﬂ)"‘1b
i

X" ) (ra) Vi (rap) UL (). (D38)

As similar way to that of DWBA case, we adopt the LEA for the final and the initial
channels, respectively;

e R oo ito(=)*(_—1 i
Z ﬂvT*ra—i_ﬂv"'M X3 (17 ra)¥ia(ra)

= [T 0e) + UL () — B x5 (v (ra), (039)

2Ha

Vaa \I/gf) (’T’mb, rOé) - 72

[Uii)(r;m) + Ulfj) (rpa) + hap — E} \I/&+)(r$b, To)-
(D.40)

Here we used K, = —712V?,W /(2p1y). To obtain Egs. (D.39) and (D.40) we perform the
partial integration, which corresponds to the r,-integration of Eq. (D.14) in DWBA, and
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use the nature of wave functions, that is, ngo(f)*(rﬂ =0) — 0and ¥ (rya = o00) —
0°.
Then the transition matrix becomes

= / g 50 (7 ) () Vi (1)

1 2 a (03 (03
(1 +or2 752 [Uiﬁ) (ran) + U (rya) = U (700) — UL (rpa) — hsz
X ‘If&”(mb,ra)- (D.41)

Let’s focus on the potentials U, () 4 (rza) and U, 1521) (rpa). These can be written by fol-

lowings with Taylor expansion around TyA = To and rp4 = T, rEspectively,

U (rpa) = U (o + o)

2
Ty
= U ra) + [Ve U ()] o + [V2,U0) (r0) ] - oras)”

2
(D.42)
USY (roa) = U} (ra = nran)
2
Nrzy
= Ulfjl)(ra) - [VTQUISX)(TQ)} “NTgh + [V?.QUEE;;)(TQ)] . ( 5 ) + ...,
(D.43)
where n = z/a and weuse V., = V,, , = V,. . If Upy satisfies
b
UbA(TOc) ~ ;U:EA(T'&)
o
= zA(Ta), (D.44)

the first order term of r,; in Eqs. (D.42) and (D.43) can be canceled out. The term larger
than second order of r,; may be negligible because the product of rib in Eq. (D.42) or
Eq. (D.43) and that of Eq. (D.41), 7%,, might be very small. Therefore Eq. (D.41) trans-
forms

b’

Tga = /drwbd”’aXZO()*(T1Ta)7/’iﬁj4("'a)vxb(r$b)

1 2“@ «@ [e%
< (14 g2 [0 ) + 0 r0) - U8 0) - U (1)~ )

x U (p . 70). (D.45)
Next we apply the CDCC framework also for fofj), that is,

U (rap, 7a) wab rap) X" (r4), (D.46)

3 In principle %% must oscillate even in the asymptotic region. However in the frame work of the CDCC
we can reduce this oscillation with the concept that we see only the observables that is affected by 1%* with a
certain finite range of 7 4.
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The z-b wave function ¢fcb satisfies

(h . ) vl = (D.47)
Using Egs. (D.46) and (D.47), we obtain
Thn = 35 [ drid N ) P ), (0.4
Flalr) =1+ 228 [0 ) —0fr) 4 015 )~ U ) <], D49
where
D = / drgpDiy (1), (D.50)
with
Dy (ra) = Vap(rap) ¥y (ra)- (D.51)

The integration of Eq. (D.50) can be done easily if ¢ib is the s-wave. Otherwise we have
to do a special treatment to this integration, for example it is mentioned in Ref. [172]. p;,
which is defined by

\/f dr 213, Dy ()
pi = ‘ . (D.52)
fd’l‘be;b(Tmb)
11U =) and U3 = U, Fi | becomes
2
7 pz 2/’1/0,
Flo(r) =115 (D.53)

We can see from Eq. (D.53) that the elastic transfer (transfer process form the ground state
of a, that is, ¢ = %¢) increases the cross section because €;, < 0. On the other hand, the
breakup transfer (transfer process from continuum states of a) decreases it since ;£;, > 0
(in general). It should be noted that the correction factor 2 depends only on 4, the energy

index of the initial channel, not on j, that of the final channel.

In summarize the approximations to the potentials which we use in this framework.

L U (ra) ~ (/) U (ra)
This is the assumption that the optical potential is proportional to the mass ratio.

2. U(i) — U(i)

Ifwwe adogt the same x-A interaction for both initial and finial channel, the optical
potential of initial channel U ii) might be real which is due to be consistent with
the final channel binding potential U, (8 ). Therefore U, B ) - U, (a) is canceled out
in Eq. (D.49). However if U 75 U A)’ it is not tr1V1a1 that the assumption of

Eq. (D.44) is reasonable or not.
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D.2.2 Application

We chose the transfer reaction ®B(d,n)?C at 14.4 MeV/nucleon, which is analyzed in
Chap. 3 to see the FR effects on the cross section. Numerical settings are mentioned in
Chap. 3.4.2. We show in Fig. D.5 the results obtained by the FR calculation (solid line), the
ZR calculation (dotted line), and the ZR calculation with the FRC described by Egs. (D.48)
and (D.49) (dashed line). One finds the FR effect gives about 20% increase in the cross sec-
tion at # = 0°. The FRC works well qualitatively but not sufficient to get good agreement
with the solid line. This suggests the FR effect found in ®B(d,n)°C at 14.4 MeV/nucleon
contains a higher-order component that cannot be included in the present procedure.

The correction function FﬁE A of Eq. (D.49) is plotted in Fig. D.6; panel (a) and (b)
correspond to the real and imaginary parts of FﬁE A respectively. It is found that FﬁE A
has a nontrivial behavior in the interior region, say, r, < 6 fm. As clarified in Chap. 3,
however, the ®B(d,n)?C reaction at 14.4 MeV/nucleon is peripheral with respect to TpB
that is the same as r,, in the ZR limit. Thus, the contribution of FﬁE A in the interior region
to the 7" matrix is expected to be very small. In this case, a simple estimation of the FR
effect based on Eq. (D.53) works well. At higher incident energies, where we have less
peripherality, the FR effect can change significantly.

—
n

— FR

—_ —_
(@)} o] S [\

do/dQ (mb/sr)

~

0 5 10 15 20 25 30 35
6 (deg)

Figure D.5: Same as them in Fig. D.1 but for the ®B(d,n)°C at 14.4 MeV/nucleon de-
scribed with CCBA.
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Figure D.6: Panels (a) and (b) are respectively the real and imaginary parts of the cor-
rection function FﬁE A defined by Eq. (D.49). Each lines correspond to the result with eém
specified in the legends.






APPENDIX E
Treatment of Spins for Transfer
Cross Section

Let’s consider the transfer reaction, a(x+b)+A — b+ B(xz+ A). The transfer cross section
which does not specify the z-components of particles’ spins in question must be taken an
average over the initial spin orientations and a sum over their final things. Therefore the
cross section is given by

do 1 Hatts kg 9

— = — E — |7 (E.1)
R 2\2 ‘ 9

dQ) ngi MM (2mh?)? kg

where ji, (113) and k,, (kg) are the reduced mass and the wave number for the initial (final)
channel, respectively. s. or J. is the intrinsic spins of particle ¢ and its z-component is m,
or M,. The transition matrix 7" is defined by

T = <\If§;) ‘ 1% ‘ q/g+>> . (E.2)
Here we don’t mind whether 7' is the post or prior form. The total wave functions \I!Sr) for
the initial channel and \I/E;r) for the final channel can be written by
A
Ui = ol o5 A (kasma), (E3)
—)* * B)x* —)*
v = e @5 g (ks o), (E4)

where ®(©) is the wave function of particle c and Xgi) is the distorted wave of the « channel.

The coordinates r,, and r g are shown in Fig. 3.2. ®(®) and ®(B) can be expanded with the
relative wave function of consisting particles, 1(*) or 1)(B), respectively, that is,

CD(SZZna = Z (Sxmmsbmb|sbexb) (bebela:bma:b|3ama)

mezbmzb
XU O, B (E.5)
(I)c(]?;)MB - Z (SxmmjAMA’SzAMmA> (SmAMzAlemmA|JBMB)
m(L'MzAmzA
A
xyil) o, o, (E.6)

where Sy (I5.) and M. (my.) are the channel spins (relative angular momenta) between
z and ¢, and its z-component.
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We assume that the transition interaction V dose not operate onto ®(©), it means V is
commutable to ®(¢). Using this assumption, we obtain the transition matrix by inserting
Egs. from (E.3) to (E.6) into Eq. (E.2) as

T= Z < z/]lggAmagA

MagpMay A

1 ‘ wff:mmbx&+)>

X Z (Szmxsbmb|sbexb) (beMwblxbmxb‘Sama)

Mg Mgy
i
mg My A

X (samiy JaMa|SpaMya) (SeaMyalzamaalJpMp)
x (o), o0, @, o), o), ol )

Spmp = JaMp SxMg ~ SpMy

= > Togmes >, (amasymp|SepMap) (Sab MaplapMap|samma)

MypMg A My Mgy My A
X (SmmeAMA|SmAMmA) (SscAMmAlemzA’JBMB) s
E. 7
where

Tonpymon = <x5 %Mmm ( ‘ ¢§f§mwbxa )> ; (E.8)

and we used

(z) b (A) b (A) _

<(I)S ml, q)gb)rnb‘I)JAMA QgL%L ®‘(9b)7nb¢)JAMA> - 57?’7@’!7121c . (E9)

In order to insert Eq. (E.7) to Eq. (E.1), we have to calculate following z-component
summation,

2
DITE= 20 > ToameaDor i,

maqM A maqM A mxbmzA
myMp mpMp MM, 4

X Z (SxmgSpmp| SepMap) (smm;sbmb|Smng’cb)

X (bebelmbmmb‘sama) (beMgiblmbmlxb‘Sama)
X (SszEJAMA‘SxAMxA> (Sxm;JAMA|SIAM;A)
X (SeAaMyalzamqaa|JpMp) (SzAM;AZmAm;A|JBMB) . (E.10)

For simplicity we assume [, = my, = m;b = (. This would be reasonable for the case
of the s-wave dominant projectile, such as the deuteron induced transfer reaction. Then we
have

(SzoMp00[samq) = 08,582 OMyma s
(Sb Mz 00(501m4) = 65,5, 0017 - (E.11)



Therefore

2.

mamy My M’

119

_a
_A2

Sz MaMmp

(522550 Sut Map) (82m0ysump|Seb M) 05,80 00, pma 017 m,
A2
> (50, —maspmp|se, =) (S0, —masymi|se,
a2

S

fészbsaémzm

T

mgf}) 6Szbsa
Using Eq. (E.12) we obtain

(E.12)
Z (Sxm:pJAMA|SxAMmA) (Sxm;JAMA|SxAM ) 5mzm’ = 5M aAM!
mgml, M4

Then we can sum over remaining components

" (E.13)
Z (SeaMyalyamaa|lJpMp) (S loamia|JBMB) 65,5, 00M,yma 001, 4 01
M, aM! Mg
I3
~ Z (SxAMa:AJBa MB”CEA) mrA) (SLEAM{L'AJBa MB“zAv_m;A)
l.’L‘A MyoaMp
j2
= ZQB moam’, , (E.14)
TA
Finally Eq. (E.10) becomes
L
S = g 3 ( Y (E.15)
maeMamyMp xlg;A My A
and we obtain the cross section formula
do _ , patis ks )
dQ 271?12 2k, Z Madl]
S = T

(E.16)
J3s22,

(E.17)
Eq. (E.16) means that we only have to multiply the “spinless™ cross section , which is
calculated with T, ,, by the spin factor .






APPENDIX F
Plane Wave Limit on Transfer
Reaction

Contents
F.1  Case for transfer angular momentum =0 . . . . . .. ... ... ..... 121
F.1.1  Integration over coordinates of bound state nuclei . . . . . . . .. 121
F.1.2  Integration over coordinates of plane waves . . . . . ... .. .. 123
F2 Case for transfer angular momentum? =0 . . . . .. ... ... ..... 125
F2.1  Integration over coordinates of bound state nuclei . . . . . . . .. 125
F3 Zero-range approximation . . . . . . . ... ... L. 126

The formulation of the transfer cross section in the plane wave limit is useful to check
the coding. In this note the projectile is assumed to be an s-wave nucleus. The degree of
spins is neglected.

F.1 Case for transfer angular momentum /=0

F.1.1 Integration over coordinates of bound state nuclei

First let’s consider the transfer angular momentum [ is equal to zero. It means that the
residual nucleus B in the transfer reaction a(x + b) + A — b+ B(x + A) is an s-wave
state. In the plane wave limit the transition matrix for this reaction can be written by

TPW = /dra:bdr:vAe_ikﬁ.rﬁwa(T':rA)be(rxb)wxb(rmweika.Tav (Fl)

where we assume the interaction V,;(7,;) between x and b is scalar, and 1), is the relative
wave function between x and c. Coordinates are shown in Fig. 3.2. k, (kp) is the relative
wave number for the a-A (b-B) system.

If the radial parts of 1/, 4 and D,y = V1), are respectively expressed with Gaussian;

Dyp(ra) = (E2)

—Cb exp(—v r2 )

Var v
C

Yoa(ran) = éexp(—wm (F.3)
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Eq. (F.1) can be written as

™

TPW = 72 A /drmb exp(—ybrib)equb'”b/drxA exp(—VAr%A)e*’qM“A, (F4)

q., = c1ky — dokg,
q.A = Cgka — dgkﬁ.

Here we use
Toq = C1Tzp + C2TzA,

rg = di7ep + dorpa,

t q
Ccl1 = 0257,
qs —pt

Cgs—pt’
5 & = p

gs—pt’ 0T qs—pt
Coordinates Eq. (F.9) are defined by

TeA = STq +1rg,
Tgb = PTa +qT3,

B a B b
S ia+rA T zb+ B
_a A _a B
“rzat A 1T b+ B

By using the formula for the Fourier transformation of the Gaussian,

ot o« ot ittt (5 e
a
the integration in Eq. (F.4) can be done. Thus we obtain

3/2 3/2
pPw _ GoCa (N7 g2 sy (TN a2
47 Vp VA

If D,y and v, 4 is expanded by the superposition of many Gaussian bases,

Ci 2
Dxb('rzb) = E b eXp(—I/ibTxb),
" Var

C’i 2
wa(’rxA) = Z = eXp(_ViATzA%
iA vam
Eq. (F.14) can be written as

1 T 3/2 2 s 3/2 2
N
i

p iA A

(ES)
(F.6)

FE7)
(F.8)

(F.9)

(F.10)
(F.11)

(F.12)

(F.13)

(F.14)

(F.15)

(F.16)

(F.17)
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F.1.2 Integration over coordinates of plane waves

Let’s convert the integration variables (7, 7,4) into (r4,73) in Eq. (F.1). Eq. (F1) is
now

TPW = 7 /dradrgeikﬁ'rﬁf(ra, rg)eik“'”‘, (F.18)
f(ra,r8) = Yea(rz4)Daop(rap)
= %e—arie*&%ewwm. (F.19)
4
Here we use Egs. (F.2) and (F.3) in Eq. (F.19) and then «, 3, and -y are defined by

a = vys? + vpp?, (F.20)

B = vat® + g, (E21)

v = —=2(vast + vppq) > 0. (F22)

¥ is the Jacobian of the transformation from the variables (74, 74) to the (rq, 7). The
ro-integration in Eq. (F.18) can be done by the following procedure;

2 . 2.2 2
/drae—araefyra-r@ezka.ra T /drae—a(ra—erg) elka~’!‘a

— eOéEQ’I‘% (E)S/Q efki/(4a)ei6ka-'r‘57 (F23)
(67

€ (F.24)

0
200"
To obtain Eq. (F.23) we use Eq. (F.13). Then we have

TPW _ %CbCA <Z>3/2 K2/ (40) /drﬂei(eka—k[;)-rﬁe(ﬁgQQ)r%
T
_ 7 N2 e (TN ks
= I CyCa (a) e 5 e , (F.25)
K =k, — kg, (F.26)
B=pB-¢ea. (F27)

If we adopt Egs. (F.15) and (F.16) instead of Eqgs. (F.2) and (F.3), Eq. (F.25) leads to

rw_ T\ e T\ k2 4B
TPW — EZC“ZC"A ( > e~ ha/(dai i) <5) e A/ AN
i in ity

Qi 4y,

(F28)
Ki i, = €iqiyka — kg, (F.29)
Binin = Binip — € aiy Qi ain» (F.30)

_ Yiadp
aiy = F31
Ei g S (F.31)
Qi giy = Vigs® + viyD?, (F.32)
Binin = Vial” + i@’ (F.33)

Yini, = —2(Viyst + vi,pq) > 0. (F.34)
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To prove that Egs. (F.17) and (F.25) are equivalent to each other, we transform some
variables. First, from the definition of /3, Eq. (F.27), we obtain

4o
vast + v 2
:VAt2+Vbq2— (va . bpq2)
VAS® + pp

qs — pt)?vav,
= %, (F.35)
VAS? + P

and then

af = (gs — pt)*vawy. (F.36)
Second, the argument of the exponential function in Eq. (F.25) can be rewritten by
Fo K2 _

R 1 €
SR I S ity " ) Bty T 0
o 3 <a + ) o T 5 E 3 COS

B B

. vat? + ug® vas® +upp®
" (gs —pt)2vavy ¢ (gs — pt)2vavy ©
—2(vas® + vpp®) —2(vast + vpq)

(gs — pt)2vavy  2(vas? + vp?)
1
= oF (ﬁki + ak% — vkokg cosb) . (F.37)

kokg cost

By inserting Eqgs. (F.36) and (F.37) into Eq. (F.25) we get

C,C 72\ /2 1
Pw _ “blYA _ 2 2
% = in CyCy <VAVb> exp { —4@5 (ﬁk;a + aki — vkakg cos 9)] . (E38)

Here we use the property of ¢, a 6 x 6 matrix, indicated symbolically by,

Orpa  Org|d 3 3
O(rea, Tep) B;A arJub s p 3 [ aB }
= — L = o « = =(sq—pt)" = | ——— s (F39)
L s | G| e o TS [

where we do not care about sign of _# because the cross section contains the only square

of 7.
Next, we focus on the argument of the exponential function in Eq. (F.14). It can be
rewritten by

2 2 2 2 2 2
1 t t
ECE Y S — Y k2 + ELE k3 +2 Ly kokg cost
vy va  (gs—pt)? vy VA vy va vy VA
1
= a5
By inserting Eq. (F.40) into Eq. (F.14), we get Eq. (F.38).

(Bk:g + ak‘% — vka kg cos «9) . (F.40)
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F.2 Case for transfer angular momentum [ # (

F.2.1 Integration over coordinates of bound state nuclei

Eq. (F.14) can be easily extended in the case with a finite value of . Now we assume that
the projectile is an s-wave, and hence, the orbital angular momentum of the partial wave of
1z 4 1s aligned to I. Thus 1, 4 is expanded by

VYea(rea) = or(r24)Yim(Pra), (F41)
$i(rza) =) Ciyripa oxp(—vi ria), (F.42)

iA

where m is the z-component of I. For 7, 4-integration in Eq. (F.1), the following formula
is useful:

. l
/ da ePTe = 1Y, (&) = (3)3/2 (”’) Yim (D)- (F43)

a 2a

Inserting Egs. (F.15) and from (F.41) to (F.43) into Eq. (F.1),

‘ 3/2
7w _ N Ci (”) o2,/ (i)
m i V 47 Vi,
XZC, T i —q2, /() [ WA ly (@ur) (F.44)
A Vi, € 27/1'A im\gzA)- .

The unpolarized cross section is given by

do Mkt kg TPW)2
dQ 27Th2 2k, Z| |
patis kg 12

(27h2)2 ko A7
2

32 2, /(4vy,) T\ J(v; ) [ deA :
X —4y Viy, CZ _ —4xA Vi g AzAa ,
S () e San() et ()
(F.45)
j 2
=2 |, (F.46)
J a8l

where /1, (1) is the reduced mass of the a-A (b-B) system. In Eq. (F.45) we use

- P 2
2 Yial@0a)Yim(8,4) = - Pilc0s0) = . (F47)

7
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F.3 Zero-range approximation
If we adopt the zero-range (ZR) approximation,

Db (rap) ~ Dod(rap), (F.48)
the r,p-integration of Eq. (F.43) can be easily done:

/drmexb(rmb)eiqzb‘rzb = Dy. (F.49)

Here we still assume that v, is an s-wave state. Then Eq. (F.44) and Eq.(F.45), respec-
tively, become

3/2 . l
v _ v 14y N
TTI:LW =Dy Z CiA <V) e aral(4 ig) <2qVA> Ylm(qu)a (F50)
A ‘A A
2
do _ o, pops ks I* ZC Zefin/MwA) oa ) (F.51)
s (27h2)2 ky 4T A\ vy wis) | '

In the ZR approximation if we formulate the 7' matrix by integrating over only the
angular part of r, 4, it is useful to estimate the numerical convergence of the radial integra-
tion of the overlap function such as Eq. (C.35). In the ZR limit the transition matrix with
remaining the r, 4-integration is given by

TEW =Dy / drga Z C'iAréA exp(fl/mAr?EA)Ylm(f‘xA)e_iqu'”A. (F.52)

i
By expanding the plane wave e %94 "=4 with Rayleigh formula,

e oA TzA — fpr Z Lj ]L QxATxA)YLM("’xA)YLM( 2A)s (F.53)

we can easily derive the formula. Here j; (¢, 4724) is the spherical Bessel function. From
Egs. (F.53) and (F.52), we have

T,rl:LW =Dy /0 deA’r‘xA Z ia mA 6Xp VxATxA 47T Z fL jL(q:vATxA)YEM(QxA)
LM

X /d"%xAYEM('f'xA)}/lm(’f.wA)
— 47 Dy(— llZCZA/ dryart e exp(—vears a)in(@earea) Vi (@oa)-
(F.54)

To obtain Eq. (F.55) we use the orthogonal condition of the spherical harmonics,
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Thus the cross section is given by

2

do Hakis kg »
dQ :7( h2ﬁ2 k‘ﬁl DO ZCZA/ dTIATxA eXp( VIAT:%A)]L(QxArmA)

(F.56)

As an example, we compare the cross sections calculated by Eqgs. (F.51) and (F.56) for
the 8B(d,n)”C reaction at 14.4 MeV/nucleon. In fig. F.1 the thick solid line shows the cross
section calculated with Eq. (F.51). The dashed and the dotted lines correspond the result
obtained from Eq. (F.56) by integrating over 7,4 up to 25.0 and 15.0 fm, respectively. The
dashed line reproduces well the thick solid line. However the difference between the thick
solid line and the dotted line is appreciable at forward angle in the linear scale. While
one sees the oscillation of the dotted line at backward angle in the logarithmic scale. This
suggests that the radial integration of Eq. (F.56) converge with the maximum value of 7, 4

350 T T T T T T T T " ‘I " ‘I : I‘ " I‘

_ 10°
300"“‘ 10° i
P 10"
C 250 B 10()7 7
Q . 107"t
‘é 200} .
~ - 107}
S 150} I O
\b | 0 20 KO 610 %%O 100 120 140 160 180_
—— Analyvtic
= 100} Y

--- Semi-analytic (25 fm) |
----- Semi-analytic (15 fm) |
— Numerical (25 fm)

N
)

(=

0 20 40 60 80 100 120 140 160 180
0 (deg)

Figure F.1: The transfer cross section of 8B(d,n)°C reaction at 14.4 MeV/nucleon when
we switch off any distorting potentials in the ZR limit. Thick solid line is the result obtained
from Eq. (F.51). The dashed (dotted) line shows the cross section calculated with Eq. (F.56)
by integrating over r;4 up to 25.0 (15.0) fm. If we numerically integrate the overlap
function of Eq. (C.35), the thick solid line is obtained. In the small window the results in
the logarithmic scale are shown.
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of 25.0 fm. If we calculate the cross section from Eq. (C.35), where it is integrated over
24 Up to 25.0 fm without any distorted potentials, the thin solid line is obtained, which
is identical with the thick solid line. Thus, Eq. (F.56) is useful to naively understand how
large the model space describes the system.
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G.1 Formulation

Let us consider the stripping reaction a(z + b) + A — b+ B(x + A). For simplicity we
ignore all of the intrinsic spins of each particle and all of the Coulomb interactions for the
subsystems z-A, b-A, and b-B. Here we discuss the adiabatic (AD) approximation to the
wave function \II(BH in the final channel on the reaction. Following Ref. [177], \If(;) with

the AD approximation, that is, \IJ?D(H can be described by
A ~A .
WP (rpn,m5) = X570 (roa) v a(ren) exp (—ioks - 704) (G.1)
o= G2)
mp

where the coordinates are shown in Fig. 3.2 and the relative wave number kg is calculated
from the outgoing energy of the system. The wave function 1,4 describes the relative
motion of the x-A system and m x is the mass of the particle X. The b-B distorted wave

)Z?D(Jr) satisfies

h? -
Vi, + Upa(rpa) — (E — £24) X?DH)(

rp4) =0, (G.3)
2pp )

with the boundary condition

~AD(H(rbA) 2T, exp (iakg - Tp4) + (outgoing wave). (G4
Here pug is the reduced mass of the b-B system and the optical potential U4 between b
and A describes the distortion of the system. Owing to the AD approximation, the internal
Hamiltonian h, 4 in the Schrodinger equation is replaced by the ground state energy €, 4
of the residual nucleus B. The total energy is expressed by F.
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If we adopt the zero-range (ZR) approximation expressed by Chap. 3 and Appx.D, the
coordinates become

Toa 22 po g, (G.5)
ZR
N (G.6)

wherey, = m 4/mp. Thus, within the ZR limit, we have

WP (o, r5) 25 150 (Poa) o (ran) exp (—iaks - 74a)
_ IR ) G.7)

One easily finds that the AD wave function with the ZR approximation has the proper
asymptotic form, i.e., the plane wave regarding the coordinate 7 g;

ZRAD
\I/B +) ('rxA)
2P exp (tkg - T2A) Yua(Tra) exp (—iaks - T;4) + (outgoing wave),
= exp (ipkg - T2A) Ypa(rza) + (outgoing wave). (G.8)
From here, we discuss the partial wave expansion of \IJERADH). First, we expand the
AD(+)

distorted wave y 3 as

- 47 oA N .
OGP (ra) = Fory 2 Ixa b o) Vi (ks) @ Yi(ran)] - (G9)
L

Similarly the plane wave in Eq. (G.7) is expanded by following the Rayleigh’s relation as
exp (—iakg 7o) = 4m > iV Ljps(akgroa) [YL, (%) ® Vi (m)] Lo (G10)
L/
where j;/ is the spherical Bessel function. Thus we obtain

ZRAD(+) _ 4 C\LiL} . A
VP ra) = ealren) T S ) Vi (ks ) @ Y2 (Pan)]

4 iYL (akgrea) | Yoo (K Yy (P
X ﬂ';l Jr (akgr A){ T ( 5)@ (7 A)}oo
47 . Iag .
’L/JIA(TIA)]{:BTAZ(_)LzL+L LQLIQXL(kIB7TIA)]L’(ak:BTIA)
4 L

1
x> 3 (X, —pA]00) (LOL'0[A0) (LOL'0|A0)
Ap

X Vo (K ) Yag () (G.11)
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Here we used the following relations;
[YL (kﬁ) ©Yr (%A)]oo [YLI (i%) © Yy (TA,"BA)}OO

= [ (k) o 5], 1 () 7 001

0400
0
:ZA:P U I)/\’ 8 HYL (@)@YL/ (@)L@[YL (F2a) © Y1 (o)l |

= ﬁﬁ (A, — | 00) [YL (kg) ® Vi (I%MA Y2 () © Y ()l
Al

,—

(G.12)
[YL (1%5) QYL (kﬁ)} _ L (LOL'0]X0) Yx,_, (kﬁ) : (G.13)
Av_u \/E)\ ’
) ) L A
YL (724) ® Y (F24)]y, = i (LOL'0|A0) Yy, (Pz4) - (G.14)
Now we have the relation
A —_ A A
(A, =1 00) Vi _, (k:g) _ ! ; Y5, (k:g) (G.15)

the wave function becomes

4 L2172
‘IJSRAD(JF)(%A) = PzA(TeA) ? Z Z( yiAAglrl (oL 0’/\0)
BleA T e

X X1 lhig, )i (Okarea) Y, (Ks ) Yau (Faa).

(G.16)
When the arguments \, u, L, and L’ regarding the summations are replaced into
(A1) = (L, M), (G.17)
L' — (G.18)
L— L, (G.19)
Eq. (G.16) can be written as
WERAD() (1 o ( Am Z S (o) A L2)? (L/0A0|20)?
8 TzA A TzA L
karea 73150
X xXr(kgs rua)ia(aksrea) Yoy (kﬁ) Yo (Pza) .
(G.20)

ZRAD(+)

Meanwhile, \I' can be straightforwardly expanded as

VIR (1 4) = pa(70a)

4 T " « .
> i ks rea) Yin (kﬁ) Yiur (fga). (G21)
BTzA M
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Therefore, by comparing Egs. (G.20) and (G.21), the partial wave xr/, which should be
adopted in the AD approximation, is explicitly written down by
S L+L' A+L'—L ﬁ/25‘2 / 2 .
Xulkg,rea) = (=) 2 (L'0X0|L0)” x 1/ (kg, T2a)jx(ckpraa)
AL
=) ()RR (LOXOIL'0)? x 1 (Kg, roa)jn(ckgrea)
AL
fo . T 2
= Nja(akgrea) > (=) N2 (LONO|L'0)" XL (kg m2a),
A I
(G.22)

where we used the property that L+ A+ L’ is even, which is ensured by the Clebsch-Gordan
coefficient. The maximum value of L’ is determined from L if the maximum value of \ is
given. Thus the range of the summation over A has to be determined from the convergence
of the cross section.

Note that, in Eq. (G.22), one finds the argument (kg,r;4) of X7, and x- is different
from that in the usual ZR approximation, (kg, jir;4) as shown in Eq. (3.93). Due to this
vanishing of the factor p from the argument, x'7, must be normalized with multiplying by
w so that it has a proper asymptotic form.

Also it should be noted that, if there is the Coulomb interaction, in order to obtain
Eq. (G.22), the Coulomb interaction between x and b has to be replaced by that between
b and A. Because the validity of this prescription is not ensured, we have to be careful
to adopt the present procedure for the charged particle system. If there is no Coulomb
interaction in the final channel, for instance, the (d, n) reaction, it is expected to work well
within the ZR approximation.

G.2 Application

As an application, we chose the 8B(d,n)°C reaction at 14.4 MeV/nucleon. The numerical
setups are same as that mentioned in Sec. 3.4.2. In this calculation we adopt the ZR approx-
imation. The breakup effects of d in the initial channel are explicitly taken into account
by means of CDCC as described in Chap. 3. On the other hand, them of °C in the final
channel are treated with some procedures. The solid line in Fig. G.1 is the ZR-CCBA result
with adopting CDCC as well as the initial channel. This result is same as the dotted line
in Fig. D.5. The dashed line is the result obtained from the conventional AD approxima-
tion, or so-called the Johnson-Soper (JS) approximation [128-132]. The good agreement
between the solid and dashed lines are already mentioned in Chap. 3 even though it is the
finite-range (FR) case there. On the other hand, the dotted line, which is obtained from
the AD approximation proposed by Timofeyuk and Johnson [177], i.e., formulated in this
Appendix, is about 50% larger than the solid line at 0°. For the calculate Eq. (G.22), A
is taken up to 11. Though more detailed analysis is needed to clarify this discrepancy, it
can be said that the Timofeyuk-Johnson AD approximation seems to excessively take into
account the breakup effects of ?C in the transfer reaction compared to the conventional AD
approximation.
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Figure G.1: Comparison of the cross section of the ®B(d,n)°C at 14.4 MeV/nucleon ob-
tained by adopting CDCC (solid line), the conventional AD approximation (dashed line),
and the new AD approximation described this section (dotted line) for the calculation of
the wave function in the final channel. See the text for more detail.
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H.1 Energy shift

In usual theoretical approach with the three-body (p—+mn+ A) model for the transfer reaction
A(d,p)B, the d-A optical potential is assumed as a sum of neutron and proton optical
potentials taken at energy
Eq
En = 5
Here Ej is the energy of a nucleon optical potential in the c.m. frame and Ej is the
deuteron incident energy in the c.m. frame. Equation (H.1) stands for that the nucleons
in deuteron are equally sharing the energy. However, the legitimacy of this assumption
has not yet been ensured. Instead of explicitly treating the energy dependence of nucleon
optical potentials, a non-local N-A potential can be alternative.
It is not easy to use non-local potentials, the prescription of the treatment of the non-
locality was proposed [124—-126] for the so-called equivalent local potential. Following
Refs. [124-126], the non-locality can be easily treated by taking the energy En as

(H.1)

E
EN:§+AE (H2)

where the energy shift AFE is defined by

AE:%@M, (H3)

2
(T = ]\ZN drén (r)V 2o (r). (H4)
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Here the My is the nucleon mass and ¢ is the p-n relative wave function in the ground
state of deuteron. The relative distance between nucleons is represented by r and ¢; is
defined with the p-n interaction V},,,;

Von(r)¢o(r)

o1(r) = . (H.5)
)= (60 Vol 00
The wave function ¢ satisfies the Schrodinger equation

h2

@vz + Von(r) — €0 | ¢o(r) =0, (H.6)

where 1 = M%/(2My) and g9 = —2.22 MeV is the ground state energy of deuteron.
Equation (H.4) stands for the expectation value of the p-n kinetic energy T}, = %V%
averaged over the range of Vj,,. The energy shift AF must be positive that is ensured by
Eq. (H.3). It means that the nucleon energy E always becomes higher than original one.
Therefore the real part of nucleon optical potentials goes shallow and it effectively contains
the effect that the potential becomes shallower due to the non-locality.

By using Eqs. (H.5) and (H.6), (T},) becomes

2
(Tm) = 11 [ drér(r) 5 leo = Vin(r)] n(r)

_ 20 | (0lVinldo) _ (90 [Viu| o)
My | (D0 [Vpnl d0) (0 [Vpnl d0)
=c0— (Vo) (H.7)
(V2) = (61 Vpnl b0)

(90| V| #0)

=-——7 = <0. (H.8)
(¢0 [Vpnl d0)
Here we used J\Q/l—“ = %ﬁﬂ/m) = 1. One sees, from Eqs. (H.7) and (H.8), that the

energy shift AE can be calculated if the deuteron model, i.e., V},, and ¢y, is determined.

H.2 Specific model of deuteron

H.2.1 Hultén potential

As a simple model of deuteron, the Hultén potential [178] is often used. In this model V},
is given by

VO(H)
Von(r) = == (H.9)
2

24
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where £ = 0.232 fm~! and v = 6.255x. Using this potential, the wave function ¢y is
analytically obtained as

uo(r)

¢o(r) = — =Yoo (), (H.11)
up(r) =N (e™ —e "), (H.12)
LS GE) i

Then the energy shift can be analytically calculated;
(00 V| 0) =47 [ v n(r) Vo (r)0(r)

— [ arad(e)Vimtr)

h2
= g (s ), (H.14)
_ [ drug(n)Va(r)

2
(Von) = (@0 [Vpn| ¢0)
AVEN
— ( 0 ) / dre—2’yr
(00 [Vpnl o) Jo

—E(+>2 (H.15)
—2M'ym, .

ﬁ2
(Typn) = €0 — % (v + k)2 (H.16)

Thus we have

1 h? 9
AE == (eg— =
2(50 2M('y+f<c))

~ 57 MeV. (H.17)

H.2.2 Ohmura potential and Gaussian basis functions

If we adopt the Ohmura potential [122],

2
Vin(r) = —Vo(o)e_(%) , (H.18)
VO(O) = 72.15 MeV, g = 1.484 fm, it is convenient to expand ¢¢ in terms of the Gaussian
basis functions;
_uo(r)y, o
o(r) = — Yoo (7). (H.19)

uo(r) =y _ Cire ™M, (H.20)
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Figure H.1: Nucleon optical potential of the d-®B system for (a) the real and (b) imaginary
parts at 29.3 MeV for proton (solid line) and neutron (dashed line), and 11.5 MeV for
proton (dotted line) and neutron (dash-dotted line).

where we assumed that ¢ is the s-wave. How to calculate the expansion coefficients Cj is
shown in Appx. J.

Now, because every functions are written with Gaussian functions, the energy shift can
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be calculated analytically;
(00 Vil 0) = 47 [ drr60(r) Vi ()0
_ / dru3(r) Vo ()
= —VO(O) Z C;C; /Ooo drr? exp [— <Mz‘ + py + :0> 7‘2:|
]

CiC;
- _\fvo(mz L (H.21)
ij (m+uj+%)
vz - LAndnve)
e (90 |Vpnl ¢0)

(Vb( )) 5
¢0\V}m|¢>0 ZCC/ drr? exp[ <Mi+ﬂj+r0>7'2:|

(0)
- (VO ) > GiCs (H.22)
TRVl G (s s 2)

When we use setups shown in Sec. 3.4.2, the energy shift A F is calculated to be 17.8 MeV.
The effects of this energy shift on the potential is shown in Fig. H.1 for the

16
14 MEil,, — Timofeyuk and Johnson
. TR, ——- Perey

—
S
T

do/dQ (mb/sr)
oo

05 3 10 15 20 25 30 35

0 (deg)

Figure H.2:  Non-locality of the nucleon-°B potential for the ®B(d,n)?C reaction at
14.4 MeV/nucleon. The cross section calculated with the equivalent local potential ob-
tained from the present prescription (solid line), the conventional procedure (dashed line),
and the local potential without the non-local correction (dotted line) are shown.
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nucleon-®B system at 14.4 MeV/nucleon in the laboratory frame, which corresponds to
11.5 MeV/nucleon in the c.m. frame. The parameters of the local optical potential are
taken from Ref. [123]. As we can see in Fig. H.1(a), the real parts of the energy-shifted po-
tentials for proton (solid line) and neutron (dashed line) are going to be shallow compared
to them at original energy of 11.5 MeV of the former (dotted line) and the latter (dash-
dotted line). Whereas the behavior of the imaginary parts of them shown in Fig. H.1(b) is
opposite.

Thus these tendency of the potentials is expected to decrease the elastic cross section
and also the transfer cross section since the amplitude of the distorted wave, which is gener-
ated by these energy-shifted potentials, become smaller compared with that by the default
ones. In fact, as shown in Fig. H.2, the transfer cross section of the ®B(d,n)?C reaction
calculated with the equivalent local potential obtained from the present prescription (solid
line) is about 12% smaller than the result without the non-local correction (dotted line), in
which no energy-shift is adopted. Note that these calculation is based on CCBA described
in Chap. 3, i.e., the breakup effects of d and C are explicitly taken into account by means
of the CDCC method.

Conventionally the Perey factor fn1, [127] defined by

/82 -1/2

fan(ra) = [1 - ‘;hQUL(m)} (H.23)
has been used for the non-local correction by multiplying distorted waves by fnr. Here
Uy, is the energy-dependent local potential and the non-local parameter 5 = 0.85 fm for
nucleon and 0.54 fm for deuteron is often used. The coordinate r,, is the relative distance
between d and ®B. Since, fxy, is less than unity only in the range of Uy, the amplitude
of distorted waves with fn1, becomes small in the interior region. In CDCC, there has
not been established well how to calculate the Perey factor, that is, it is not trivial what
we should adopt as Ur,. In the present work, fni, is calculated with U, assumed by the
coupling potential in the ground state of d;

UL(Toc) ~ <¢0 ‘Up + Un| ¢0> ; (H-24)

where we adopt the N-8B optical potential [123] as Uy and 8 = 0.54 fm. The cross
section calculated with the Perey factor is shown by the dashed line in Fig. H.2. In the
present system, the non-local effects described by the Perey factor is found to be small.
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I.1 Reduced modified Bessel function

Let us consider a Gaussian function f(r) defined by

f(ry=e"", (I.1)
where v is the range of Gaussian. If the argument r is expressed by

r = ax + by, 1.2)

Eq. (I.1) is rewritten as

(1) = e o our?

222 o p2.2 .
— gvatT vb7y e 2yabmy. (13)

The factor e ~2/*=Y can be expanded by using the modified Bessel function iy, as follows,

e~ 2vabry _ Z(—)LﬁQiL(Z)PL(w)y (14)
L
z = 2vabxy, (L5)

where Py, is the Legendre polynomial and w = cos(6) with the angle 6 between x and y.
Egs. (I.3) and (I.4) correspond to Egs. (C.8) and (C.12), respectively.

In the subroutine BESSI [171], the “reduced” modified Bessel function 7y, is calculated
instead of 77, in order to eliminate divergence, which appears in a process of calculation of
i1,. Here %L is defined by

in(z) = (—)lig(2)e > (1.6)
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Then Eq. (I1.4) becomes

e~ vabry _ o2 Z L?i(2)Pr(w). (L.7)
L

Thus we have

flr) = e e e N 12 (2) Pr(w)

L
= eV N ]2 (2) Pr(w). (1.8)
L

.2 Asymptotic form

The modified Bessel function iy, is defined by

ir(z) = (=)ljL(iz) for z€R, (1.9)

where jy, is the spherical Bessel function, which has the asymptotic form,

1 mL
j — —si —— . I.10
Jjr(z) ~sin <z 5 ) (1.10)
We extend this asymptotic form to the complex value:
jn(z) = — [el’(z—%) - e_i(z_%)} . L11)
221

Thus we obtain
1 [ oo ar o
ir(z) = (_)L@ [6“”77) — eil(ufT)}
1 -z
=5 [eF = (). L12)

For the reduced modified Bessel function, its asymptotic form is given by

~ 1
ir(z) = (—)LQ* [ = (=) Fe?]e®
z
_ 1 [
22
One sees that in Eq. (I.13), L only acts as the parity factor (—)*.
Note that by a numerical test it is found that the accuracy of the asymptotic form of

Eq. (I.13) depends on L and it goes worse as L increases. For example when L = 10 and
z = 2000, the ambiguity of Eq. (I.13) is about 3%. In Eq. (C.24) we calculate

(- —e . (1.13)

ir(2) = ip(yrars) (1.14)

by using the definition Eq. (I1.6) up to z < 1000, and for z greater than 1000, Eq. (I.13)
is adopted in our CCBA code named FRANTIC. It should be noted that typically ~y has a
value in the range of 0.1 fm? < v < 100 fm?. We evaluate the accuracy of Eq. (I.13) on
the cross section of the 28Si(d,p)?°Si reaction at 18.75 MeV is at most less than 1% at 0° of
the emitting angle of p. For this reaction, the integration in for the 7" matrix is performed
over both r,, and 75 up to 15.0 fm. The maximum value 15 % of L is adopted. Therefore
for the cross section, it does not matter the accuracy of the asymptotic form Eq. (I.13).
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Gaussian Expansion Method

As discussed in Chaps. 2 and 3, a wave function is expanded with Gaussian basis functions.
Here the details of the procedure for the expansion are given. We consider any function
f(r) defined for » > 0, and expand it with the real Gaussian basis of n the number of the
bases;

fr) = ZCiNi?”l exp [—vir?] . d.1

Here v; = 1/ p? and the range p; of the Gaussian is given by the geometric series,

Pi = pminai_la J.2)
1)
a= <p ma") : 1.3)
Pmin

where pmin (Pmax) stands for the first (final) term of the series. If f(r) is the radial function
of a partial wave with an orbital angular momentum I, f(r) behaves f(r) ~ ! around
r ~ 0. The factor 7 is introduced so that the behavior of f(r) around r ~ 0 is reproduced.
Each ith basis function is normalized to unity as

/ (Nirl exp [—1/1'7“2])2 r2dr = 1. J.4)

The integration in the left-hand-side of Eq. (J.4) can be done by using the Gauss integration;

/ <Nirl exp [—uﬂﬂf ridr = NE/,Q(H—I) exp [—wir?] ridr

_ N2 20+ 1! T
=N o (20,) 258

d.5)

Thus the normalization coefficient N; is given by

1/4
9l+2 (2Vi)2l+3
Ni = (20 4+ 1) ( o ‘ J.6)
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The expansion coefficient c; is obtained as follows. If we integrate Eq. (J.1) with mul-
tiplied by N jrl exp [—1/]-7“2] over r, we have

/f(r)erl exp [—vr?] ridr = ZciNiNj /TQ(ZH) exp [~ (v; + ;) r?]

20+ 1! s
= CiNiN‘
; J 21+2 (Vi + Vj)2l+3
2. U (21+3)/2
:§:q<J+;> . (1.7)
i v J

Thus ¢; is obtained as a solution of the simultaneous equation

where A;; and B; are given by

9 U (2143)/2
AU:<VV%> 1.9)

Ui+Vj

B; = /f(r)NZ-Tl exp [—I/ﬂ“2] r2dr. (J.10)
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Angular momentum algebra is summarized here. Reference [179] is helpful for the
algebra.

K.1 Spherical harmonics and related functions

K.1.1 Definition

The spherical harmonics Y, (6, ¢), which are components of some irreducible tensor of
rank [, are defined by the commutation relations

Ly Yim (8, 8)] = VI + 1) (ImLull,m + 1) Yim (6, ), K1)

where L, (1 = %1, 0) is a spherical component of the angular momentum operator L and
it is defined by

1 . 0 0
= — Kb —_— ) —_—
Ly \/ie {89+Z60t98¢}’ (K.2)
.0
Lo= =iz, (K.3)
1 . 0 0
= — 7’¢ - 9
L_4 ﬁe {89 i cot 08¢} . (K.4)

Three commutation relations for each p generate

LirYim(60,6) = q:\/ W+l _2’”(’” =Dy, i(0,9) (K.5)

LoYim (0, 8) = mYi (0, 6) (K.6)
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K.1.2 Deferential equations

The spherical harmonics Y}, (6, ¢) is the eigenfunction of the operators L and L, as fol-
lows;

LY (0, 0) = 1l + 1)E*Yi (6, 0), (K.7)
Thus, Y, (0, ¢) satisfies
1 0 0 1 92
[sin@@@ <s1n 9(’9«9) + 209 + I+ 1)] Yim(0,¢) =0, (K.9)
E—F Yim(0,6) =0 (K.10)
za¢ m| Yim = 0. .
K.1.3 Orthonormality
2 T
/ d¢/ df sin 9%:1(9, gf))Yi/m/(Q, ¢) = 5ll’6mm’a (K.ll)
0
ZYlm (0, 8')Yim (6, 6) = 5(6' — 0)3(¢' — ¢). (K.12)

K.1.4 Phase

In this thesis, we chose the phase of Y} (6, ¢) as !

l*m(ea ¢) = Y2m<07 _¢> = (_)mY’l,fm(a (b) (K.15)

K.1.5 Symmetric properties

1. Replacement — 7w —fand ¢ =7 + ¢

Yim(m = 0,6) = (=) " Y (6, 6), (K.16)
}/lm(ea T+ qb) = (_)mnm(ea ¢)a (K-17)
Yim(m = 0,7 + ¢) = (=) Yim(0, 9). (K.18)

! Note that another phase convention is sometimes adopted in other paper;

Yim (0, ¢) = i'Yim (0, 9), (K.13)
Vi (0,0) = ()Y (0, 9). (K.14)
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2. Change of argument sign

3. The periodicity in 6 and ¢
)Y (6 if n is odd
Yim (0, ¢) if n is even,
Vi (0, 6 + ) — (=)™Y1n(0,¢) if nisodd, (K.23)
Yim (0, ¢) if n is even.
K.1.6 Useful relations
1 Iyl
/ AQY 1y, () Yigims ()Y, () = \/T?}Tj (lymalama|lsms) (110150]130) . (K.24)
Vi, (2) @ Vi (D) = Y (imalama| LM) Yiyny () Yigm, ()
mimse
1 by
/dQ [1/11 (Q) ® Y, (Q)]LM = (_)llilélllz(sLOéMO‘ (K.26)
4 1
Y ()Y () = 1'010|k0) (I'm/lml|k, m’ + =Y +m (92).
(K.27)
Yu(Q) = (-) 5 S]] sin Gme . (K.28)
[
Yim(0,¢) = —dm K.29
l ( (b) \/ZE 0 ( )
! A : Viam 1=\ A . N
rYim () =) 3 Va+1Cax(az) ™" (by)” [Yi-a(@) @ YA(9)]} » (K.30)
A=0
r = ax + by, (K.31)
B (20 +1)!
211021 = (20+1— 202\ (K.32)

where 2 = 7 = (0, ¢). Note that, in this thesis, the “hat” on the angular momentum stands

~

L =v2L + 1. (K.33)
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K.1.7 Relations with other functions
1. Legendre polynomial P;(w) (w = cos )
Yio(©) = ——Pi(w) (K.34)
10 Vi ! .
1
2
/ Pi(w)Pu(w)dw = = (K35)
-1
72
Z —P(w)P(w') = §(w—w'), w =cost, (K.36)
!
47 % a .
Pi(wiz2) = = Y Vi (#1)Yim (#2)
47 . . n
- % D Yin(#1) Y5, (72)
47 1 N ~
= S () ) @ Yilra)lo. (K.37)
where w12 = cos #12 with the angle 615 between two vectors 71 and 7.
2. Legendre function P, (w)
2 (L= |m])! :
Vi (Q) = (=)ml+m)/2, [~ P, ime, K.38
(@) = () T (5 (e (K.38)
dml
Pp(w) = (1 — w?)ImI’2 Py(w). (K.39)
dw!ml
P —m(w) = le(w) (K.40)
Pio(w) = P(w) (K.41)
' 2 (I—m])!
Py, (w) Pyrydw = = S K.42
/_11(w)z w 2 fm (K.42)
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K.1.8 Explicit forms

1. The spherical harmonics

Yoo(€2) = f (K.43)
3 3 :i:zqﬁ
Y10(9> = —_— 0089 Yl:l:l = F sin fe (K.44)
4 8
1 1
Y20(Q2) = 165 (3 cos® 0 — 1) Yor1(Q $”875 sin 6 cos feT?,
T T
15 . 9 42
Yo10(2) = T sin“ fe . (K.45)
T
7 2
Y30(Q2) = Tom cosf (5cos”f — 3cosb),
Y311(Q) = F @Smﬁ (5 cos? ) — ) ,
1 .
Y342(2) = 325 sin? 0 cos e Y315(Q) = F/ 6375 sin® e (K .46)
0 T

2. The Legendre polynomial

3 1 5 3
Py(w) =1, Pi(w)=w, Py(w)= 5w? — 5 Ps(w)= §w3 - S (K47)
P(1)=1, P(-w)=(-)'R(w). (K.48)
Py, 1(0)=0, n=1,2,3,---, (K.49)

o (2n — 1)l B
Py, (0) = (—) o " 1,2,3, (K.50)
3. The Legendre function

1(w) (1- )1/ 2. (K.52)
Py (w) =3(1 —w?)Y?w, Pyp(w) =3(1 —w?). (K.53)

Py (w) = ;(1 — w2 (5w — 1), Psp(w) = 15(1 — w?)w,
Pas3(w) = 15(1 — w?)3/2, (K.54)
Po(£1) =0 (m > 0), (K.55)
Py (0) = 0 (m > 0and ! — m is odd), (K.56)

tm (—)=m)/2 (l(t"]\;)l!)!” (m > 0and [ — m is even). '



K.2. Clebsch-Gordan coefficients 151

K.2 Clebsch-Gordan coefficients

K.2.1 Definition

Let us consider a coupling of angular momenta. When the total angular momentum
J = (ju»Jy,J=) is produced by the linear combination of the angular momenta j; =

(j1m7j1y7jlz) ande = (j2x7j2y7j22)’ that is

J=7J1+7J2 (K.57)
the eigenvalue j of j is in the range
1 — 2l <5 < 1+ Je, (K.58)
and its z-component m satisfies
m = mq + ma, (K.59)

where m (my2) is the eigenvalue of ji, (j2,). When the simultaneous eigenfunction of j;
and j1, (J5 and ja.) is expressed by 11 (j1m1) (12(j2mz)) and they form the simultaneous
eigenfunction ¢ (jm) of j and j,, the probability amplitude (j1m1joma|jm) is called the
Clebsch-Gordan coefficient, that is

B(im) = Y (jimajamalim) i (jima) e (joms). (K.60)

mima2

K.2.2 Orthogonality

> (imagamalim) (jimajama|j'm') = 6,5 6mm’, (K.61)
mimsa
> Gimagamalim) (jim}j2mb|im) = S m Smyms, - (K.62)
j(m)

From these orthogonalities, we obtain

G1(Gim e (fame) = ) (jrmagamaljm) (jm). (K.63)
i(m)

K.2.3 Symmetric properties

(jrmagamelim) = (=) 277 (jomgjima|jm)

= (=) (1, —maja, —ma|j, —m)

= (—)jl_mlg (jimaj, —mlja, —ma)
J2

= (=)L (, —mjamalji, —mi) . (K.64)
J1
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K.2.4 Special values

> (10jmlim) = > (jmji0ljm) = 55j0. (K.65)
(j1m100|jm) = 5j1j5m1m- (K66)
) ) (_)jl—nn
(]1m1]2m2’00) = 5j1j25m1m2 } (K.67)
1
_)itg5 g!
(Y e o
(72020150) = { x |Gl O g Getd S 5 Gif y 4y + = 29),
0, (ifjr+je+j=29+1),
(K.68)
where ¢ is a positive integer.
K.2.5 Relation with 3-5 symbol
JaoJ2 ()t , .
_ _ _ _ K.
<m1 e m) ; (J1, —maj2, —ma|jm) (K.69)
K.2.6 Explicit forms
(j1m1jamaljm)
- 5m,m1+m2A(jlj2j)
X [(G1 4 ma)!(Gn = m)!(a +me2)!(jz — m2)!(j + m)(G — m)!(2] + 1)/
«3 (=)®
— 21+ J2 — 5 — ) —ma — 2)!(2 —me — )G — o + 1 + 2)(J —j1 — o + )V
(K.70)
o [GeE g2 = )G — g2+ )N =1+ g2 + )
A = , K.71

where the summation index z assumes integer values for which all the factorial arguments
are non-negative.
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) 1 )
<J1m1 2m2!Jm>

N[
N[

._i_l j1+m+% jl_m+%
JLT 3 PITES e

1 _[aimmtg jitm+3
J1—3 21 +1 251 +1

(jimilmalim)

N ~1 0 1
J
. (j1+m) (jr1+m+1) (j1=m)(G1+m) (J1—m)(J1—m+1)
Ji—1 \/ ) 2j1(2j11+1) _\/ 1j1(2j1i1) \/ : 2j1(2j11+1)
; (1=m)(r1+m+1) _m_ _ [ Uitm)(Gi—m+1)
J1 \/ 2j1(J1+1) Ji(1+1) \/ 2n(1itl)
ji+1 \/<j1—m><j1—m+1> (1=m+1)(j1+m-+1) Gtm)(jyrm+1)
! Ch+1D)(251+2) Chat+D)Gi+D) 21 +1)(2j112)

K.2.7 Sums involving products of three Clebsch-Gordan coefficients

%(aabﬁlcv) (d6bB)ee) (aafsod6>=péd<cvfso|es>{j ;Z fl}, (K.72)

%(bﬂcv\aa) (bBee|do) (aafwdé)—p&f (C’yfwles){g ; ;}, (K.73)
(" (bl (o) (d5a,—a|f<p)=péf(cvf<ples){: ; ;}, K74
S ()" (aabBley) (b, —ec|dd) (aaf¢|d5)=péf (cvfw\ef){z ji ;},

afd

5 ()" (aac, =2 159) a8, ) (aa ldd) = i cxfolee) {51,

afBd

C

b
here p = (—)"*+e+4+f and the factor {
where p = (—) , and the factor § | fod

} is the Wigner 6-j symbol.
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K.2.8 Sums involving products of four Clebsch-Gordan coefficients

> (bBevlaa) (es feldS) (esbBlgn) (focylin)

Byep
. . . b b
= (e tag S (asolim ol {75 G L)
= c b a
= adgi S (gnjulkn) <d6aalm>{f e d}, K.77)
kk j q k
> (bBaaley) (feiuley) (bBgnles) (fedd|ee)
Byep
c b a
= (—)“_Hf_jéQézz (gnjplkr) (ddackk) {f e d} , (K.78)
ke i gk

> (aabBley) (gnee|bB) (db feolee) (jucy|fe)

Byep

= (=)"eebeef Y (—)* " (gnjplk, —r) (déaalkr) {
kk

e )
@ o o
oS WS

} ,  (K79)

> (bBa, —aley) (eed, —6| f) (gnb, —Blee) (juc, =71 f)

Brep
c b a
= (=)'mermenee 2y | (gnj, —plkn) (doaalkr) {f e d} : (K.80)
ke j gk
> (b8e, —7laa) (ee fe|dd) (e, —egn|bB) (feipley)
Brep
c b a
= ()" =97%bed Y~ (gng, —plkk) (ddac|kk) {f e d} : (K.81)
kk 79 k
> (bBeraa) (e foldd) (esgn|bB) (Feinley)
Byep
a b ¢
l;écfZI%(gnjukm)(dék/{aa){d e f}, (K.82)
kk k g J
> (bBe, —7laa) (e f, —pldd) (gnb, —Blee) (juf, —pley)
Bryep

c b a
= (—)terotitetnadeey " (gnj, —plkk) (ddac|kk) { f e d} , (K.83)
kk ]
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> (bBery|aa) (bBgnles) (feddlee) (focylin)

Brep
c b a
()j‘”é”&éQ}Z(gm’,ukn)(dda,ak/ﬁ){ f e d}, (K.84)
kk j g k
> (bBevlaa) (gnee|bB) (feddles) (focylip)
Brep
c b a
= (=) 9 Ghej Z (9, —nj, —plkr) (déa, —a|kk) {f e d} ,  (K.85)
kr j g k
D (2)TTE (aabBle) (dS fiolee) (eebBlgn) (evfelin)
Byep
c b a
(>“+d“éégjz<gnj,ukn)(déa,alm){f e d}, (K.86)
kk j g k
c b a
where the factor { f e d} is the Wigner 9-j symbol.
j gk

K.2.9 Sums involving products of the Clebsch-Gordan coefficients and one

6-7 symbol

S ed s (Feerles) {1 6 = (aabilen) (afilds). KD

Z( yetdtiee (ecaal fo) (docy|fo) { } (aabB|cy) (débp|ee) , (K.88)

fe

S bl e —alen) {51 ! = wsastes) (Foasiac).
(K.89)

b

S0 aaben) , gecken) {00 o} =arcan 0. ~seslan),
(K.90)

St eéd aabpien) el {00 o} —osaiee) asom. ko

S ef vsablse) agelen {§ oL = Gsaatee) @ieclen). kom

fe
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K.2.10 Sums involving products of the Clebsch-Gordan coefficients and one

9-5 symbol
o c b a
> _adgj (bperlacy) (gnjulkr) (ddaclkr) { f e d
ak i g k
= (ecfp|dd) (ecbBlgn) (feclin) , (K.93)
L C a
> adgj (gnjplke) (eebBlgn) (fecylim)  f e d
93 J k
= (ddacalkk) (e fo|dd) (bBcy|aa) , (K.94)
c b a
Z(—)Hf—g_‘sdi)éa?(bﬁc,—fy\aa)(egfgo\dé)(déaa\k/i) f e d
9i J g k
= (gnj, —plkr) (e, —egn[bB) (feiuley) . (K.95)

K.3 6-7 symbols and the Racah coefficients

K.3.1 Definition

We consider the vector coupling of the three angular momenta, j;, j,, and j3, which
reproduce the total angular momentum 35 and its projection m. The combination of the
couplings for these vectors can be categorized as follows;

(D) j1+3Jd2=1J12, Ji2+3ds=17, (K.96)
(I1) Jo+Js=2Jdos, J1+Joz =13, (K.97)
(III) jy+3J3 =413, Jiz+J2 =17 (K.98)

For the scheme (I), the eigenstate of the operators j %, J %, J %, J %2, 42, and j , can be written
as

‘ [[jl ® jali, ®j3] , > = Y (imajamaljiamiz) (jramazgsmaljm)
Jm mimams
x |jima) |jama) |jsms) , (K.99)

where |j,m,,) is the simultaneous eigenstate for the operators 52 and j,,.. Similarly one
can define the eigenstate for the schemes (II) and (III), respectively;

[jl ® [j2 ®j3]j23] , > = > (jamagsmaljasmas) (jimajasmas|im)
im

mimams

X [jima) [jama) |jsms) , (K.100)

[[jl ® J3l 4 ®j2] , > = Y (jimajsmaljismiz) (jismasjamalim)
jm

mimams3

X |jima) |jama) [jams) . (K.101)
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The Wigner 6-7 symbols {]1 j_2 j.12} is the coefficient for the overlap of two eigenstates
J3 7 J23

o], Yoo o, )

<[U‘1 @l @) ’ 1@ L2 ®j3]j23L,m/>

= 5jj’5mm'(—)j1+j2+j3+jj12523 {jl /2 ‘712} . (K.102)

Js J Jos

One can also define the 6-5 symbol from other overlaps as

(00051, 03],

= 81Oy (—) P2 T8I HI3 515 G g {‘72 I ]12} , (K.103)

J3 J 3
< |:]1 ® []2 ®j3]j23}jm ’ |:[Jl ®j3]j13 ®j2:| j/m/>

= 0 Oy (=) 7925 1350 {‘7.1 I3 *7.13} . (K.104)
J2J  J23
The 6-5 symbol can be written with the Clebsch-Gordan coefficients;

> (Jrzmazjsms|jm) (jimajame|jramiz)

mi1,Mm2,Mm3,mi2,m23
X (jimagagmas)i'm’) (jamagsmaljzzmas)

itjatiatis o i1 J2 J12
= 0t Oy (=) 729377 193 {j 20 } (K.105)
J3 J  J23

where m and m’ are fixed. In the 6-j symbol, the following triangular conditions are
satisfied;

11 — Jl < j12 < j1+ Jo, (K.106)
lj12 — g3| < J < ji2 + J3. (K.107)
|72 — Js| < jog < g2 + Js, (K.108)
2z — j1] < J < joaz + J1. (K.109)

If, at least, one of these triangular conditions is not satisfied, the 6-;5 symbol vanishes.

K.3.2 Racah coefficient

The Racah coefficient W (abed; cf) differs from the 6-j symbols only by a phase factor;

{Z 2 ]Cc} = (_)a+b+d+ew(ab€d; Cf) (K.110)
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K.3.3 Orthonormality

Ji J2 Ji12
Z]m]%?,{ j o }{

J12

J1
S i {

J23

K.3.4 Symmetric properties

1. Classical symmetries

Il
= QO S Q9
~ O o o
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0 o
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1
— = = A A AN
S O

IS
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ST
ST

QU
A~ 0O > =0

J23
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a e

QU % O

~

QU Q2 - 0
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~ O
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S

- 2
I
SR )

e
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Q Q O %% 2 Q w0
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These relations involve 3! x 4 = 24 different 6-j symbols.

2. Regge symmetries

a b c| _
d e f|
_[s3—a s3—0b
\lsz3—d sz—e

_ [s3—d s1—e

lss—a s;—b
where

b+c+e+f

51 = “““‘Ei“““77

a s1—b
d s1—e

s1—¢

S1
c|l  [s2—d s3—e
fl \sa—a s3—0
s2— f
so—c|’
_atct+d+f

)

S1

.y
J23723°

12715

N AU O

o

QU

Q, = O

Q

~

o

S

IS

sg9—a b

—f}:{SQ—d e so9— f
_ j’}

S1 —C

_a—|—b—|—d+e

(K.111)

(K.112)

(K.113)

(K.114)

(K.115)
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Combining the classical symmetries and the Regge symmetries, it reproduces totally

144 symmetry relations.

3. “Mirror” symmetries

The arguments of the 6-5 symbols can be extended to negative integer or half-integer

values. For

we have

with

@1:b_c_e+f7 @2:2(a+d)7

p3=c+d+e+2f, @ps=a+b+c,

K.3.5 Special values

O Q QU &L Qo

QL
O O O > O > 0O O o o

—_—N — = A~ =

Q2

T=-r—1 (xza,b,c,d,e, OI‘f), (K.116)
b ¢ _ fa b e
e ff \ld e f
b C}:(_)wlﬂ{a b C}
e f d e f
b c}:(_)wﬂ{a b c_}
e f d e f
b ¢ s Ja b ¢
e f}zz(_)w {J e f}
b ¢ L Ja b oc
e f}zz(_)w {J e f}
5 & _(_\ps+l a b ¢
. f}—( )? {d - f}’ (K.117)
o5 =2(c+ f)+ 1. (K.118)
_\b+e+d
;} = <I;é5bc5ef, (K.119)
_\a+d+e
Jcc} = ()ddfsmﬁdf, (K.120)
_\atetf
?} = ()dd‘sabédm (K.121)
_\a+d+e
;} = ()Z;é(sbffscea (K.122)
a+b+d
;}:( )dé SafOeds (K.123)
a+b+c
S}Z( )ai) OacObd (K.124)
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K.3.6 Useful relations

ZXQ{Z z )C(}=(—)207 (K.125)
X
arbrx g2 Ja b X s
;( ) XX {a ) C}—abéco, (K.126)
Ctrx g2 fa b X\ Ja b X| _Ja ¢ ¢
;( e {C d p}{d c q}_{b d p}’ (K127
a [ r
_yex g2 fa b X}{c d X}{e f X}: p K18
;() {c d p e [ ¢ a b r ) Z Z ’ ( )
\R+xyp2Ja b X\ fe d X\ Je f X\ _Jp g r\fp q r
3 I L I AR A S A S S

(K.129)

where R=a+b+c+d+e+ f+p+qg+r.

K.4 9-5 symbols

K.4.1 Definition

The Wigner 6-5 symbol described above is the coefficient for which one transfers a cou-
pling scheme of three angular momenta to another coupling scheme. The Wigner 9-j
symbol is a same kind of it for not three but four angular momenta. The coupling schemes
of four angular momenta j, j,, j3, and j, can be written down as

(1) J1+J2=1J12s Js+Ja=1Jsas J12tIsa=17, (K.130)
(D) Ji+Jd3=Ji3 Jot+Js=Ju JiztJau=17, (K.131)
() Ji+Js=7Ju Jo+Is=1J23, Juat+ios=17J (K.132)
(V) J1+J2=1Ji2 Ji2tJs=1Ju2s Jizs T I =17, (K.133)

where j is the total angular momentum. For the scheme (I), the eigenstate of the operators
33, 45, 32, 43, 435, 434 32, and j, can be written as

‘ [[]i ® jal;,, ® i3 ®J'4]j34Lm>

mi1mams3

m4m12M34

X |jima1) [jama) |j3m3) |jama) ,

(jimajomel|jizmiz) (jamsjamaljzamsa) (ji2mi2jzamaa|jim)

(K.134)



K.4. 9-5 symbols 161

where |j,m,,) is same as that in Eq. (K.99). Similarly, for the schemes (II), (IIT), and (IV),
the eigenstates are respectively defined by
(@i, @ lewid,] )
= Y (jimajsmaljismas) (jamajamaljaamaa) (jismasjaamaa|jm)
mimaoms

m4m12M34

X |jima) [jama) |jama) |jama) , (K.135)
‘ [[ﬁ ® jalj,, © )2 ®j3]j23i|jm>

= > (imajamaljiamis) (Gamajsms|jasmas) (jramaajasmas|im)

mimoms
m4m14mMm23

X |jima) |jama) jsms) |jama) , (K.136)

‘ HUI ® 2l @3 ®j4] jm>

= Z (Fimajemaljiemaz) (Ji2mizizma|jizsmizs) (Ji23miesjamaljm)

mimeoms
m4mi12M123
X |j1ma) [jama) |jama) |jama) . (K.137)
o J2 g2
The Wigner 9-5 symbol or equivalently the Fano coefficient < js j4 7j34 p is defined
13 J2a

from the overlap of two eigenstates Eqs. (K.134) and (K.134);

(@i, olsoidy)], |[hoi, o kei.),,)

o Ji o J2 J12
= 0jj'Omm’ J12J13J24734  J3  Ja  J3a ¢ - (K.138)
J13 Jea  J

Using this definition one can obtain

<[[j1 ® jal;,, ® s ®j4}j34} ’ [[jl ® jal;,, © 2 ®j3]j23L,m/>

jm
o J1 J2 J12
= 0jjs Oy (— )33 10 g 1403034 S Ja J3 Jsa g s (K.139)
Jia Je2s  J
L J1 J3 J13
= 8 Ommy (—)72 49820 513010994993 % Ju Jo Joa p - (K.140)

Jia Jos  J
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Note that the overlap with the coupling scheme Eq. (K.137) does not lead the 9-5 symbol.
It generate the product of two 6-j symbols.
From Eq. (K.138), we have

Z (jimajame|jiamaz) (Jsmsjamaljzamaa) (ji2mazjsamsa|jm)

x (jimajsms|jismas) (jamaejamaljoamas) (j13masjzamaalj’'m’)

o Ji J2 J12
= 0" Omm J12J13J24J34 § J3  Ja  J34 ¢ (K.141)
J13 Jo4  J

where m; = my, mo, ms, and my and m;, = mqi2, mi3, Mmag, and msy. The triangular
conditions for the angular momenta in the Clebsch-Gordan coefficients in Eq. (K.141) must
be satisfied for the finite value of the 9-5 symbol.

K.4.2 Orthonormality

a b c a b 5.5
Y FPhPqd e fpld e fp= < f;, (K.142)
gh g h j) g h j ef
a b c a b ¢ 5.5
Y &EfPld e fred e fo= Q?QA’;’%. (K.143)
of g h j) g I j gh
K.4.3 Symmetric properties
1. Permutation symmetries
(a) Column permutations
Jin Jiz Jis Ju Jik Ju
Jor Jo2 J23 p = €KX J2 Jok J21 ¢ - (K.144)
Js1 Js2 J33 Jsi J3k J3i
(b) Row permutations
Jin Ji2 13 Jit Ji2 Ji3
Jo1 J22 J23 0 =€ Jk1 Jk2 Jk3 ¢ - (K.145)
J31 J32 J33 Jn o Jiz Ji3
(c) Transposition
Jin Jiz Jis Jin Jo1 Jat
Jo1 Jo2 J23 p = N Ji2 Jo2 J32 ¢ - (K.146)

J31 J32 J33 J13 J23  J33
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Here the phase factor ¢ is defined by

1 for even permutations
cyclic permutations),
£ = (cyclic p ons) (K.147)
(—)®  for odd permutations

(non-cyclic permutations),

R=S ju. (K.148)

These symmetries generate different 3! x 3! x 2 = 72 9-5 symbols. We list up some
of them below when the even permutations are taken;

Jin Jiz2 Ji3 Jo1 Js1 Ju Js1 Jin J21
Jo1 J22 Jes g = NJ22 Js2 Ji2 g = Js2 Jiz J22
Js1 Js2 J33 J2s  J33 J13 J33 J13 J23
Jo1 J22 J23 J31 Js2 J33

=qJ31 J32 J33 ¢ =1<Juu Ji2 J13 ¢ - (K.149)
Jin Ji2 Jis Jo1 J22 J23

2. “Mirror” symmetries
These symmetries correspond to them of the 6-5 symbols. For

T=-r—1 (x=a,b,cd e, f,gh, orj), (K.150)
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we obtain
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—— N — — N —/
[N S L 1N N [ R N [ T A S B e B )

RTINS N < DR N AN < B [ I N < N R < S I N N < I S T R O I DN

IV IO IV I IV I/ ST ™
N et N e e ! e e e e e e
— o 10 o~ 0
= =~ < = <

(K.151)

—— —— —— —— —— —
O %= ' O %'y O %y O Iy 10 ' O I

o0 <IN DI o A IR D N NI DR o A N B I o N« DN
BT"W Y I oo Rk oozt o 8w o 8 &
—— e e e N N —
— ag) 0 o~ o0 _
= i~ < i~ <

— S/ — —/ N/
QI8 1S 0 s Ol 10 Iy 10 S 10 SIS 1O S~ '

(IR < T (NS R <N < S D P N < B S I Y N« T (NS o D N < T S N N < B

R IV I/ IV 3T [T IT >

—_— Y Y Y Y Y= Y=
S g S £ S |
T T T T

—— T —— S —/
O %'y O %y 10 %y Ol ey O %y Qv 'y Ol

0 U I VUl IO VL I Ve I I VLl I Vv

IV I TV I o T o3I kg o’z o
—— N — —— N N —
£ IS
o~
|
Il Il

in2
= 174 {
= i {

(K.152)
(K.153)
(K.154)
(K.155)
(K.156)
(K.157)
(K.158)
(K.159)

)

)
i

)RfdJreferl

(

Ny = (_)c+d—e—g+h
ns = (_)c—f—g-ﬁ-h-i-l

= (-
e = (—)97",

N4 = (_)Rv
N = (_)2(a+e+j)

8
where R is the summation over all components of each 9-5 symbol. When we use

where
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the z-components 9, €, and ¢ of angular momenta d, e, and f, respectively, we have

d—90 e+e fH+o d+8 e+e f+o
{ d e f }z’()ngE“”{ d } (K.160)
g h J g
d+d e—e f+o d+o e—l—s f+90
{ d e f }z’()hﬂ”{ d } (K.161)
g h J g
d+9d e+e f—o d+9d e+e f—i—cp
{ d e f } i(—)*o E{ d } (K.162)
g h J g
d—0 e—¢ f+o 1+6 e+e f+o
{ d e f }( yhte 9“{ d e f } (K.163)
g h J g h J
d—90 e+e f—o d+6 e+e f+o
{ d e f }()ﬁ”“{ d e f } (K.164)
g h J g h J
d+06 e—ec f—o d+6 e+e f+o
{ d e f }( yi+o h“{ d e f } (K.165)
g h J g h J
d—96 e—¢e f—op d+6 e+e f+o
{ d e f }i()9+h+j+6+s+so+1{ d e f }
h J g h J
(K.166)
K.4.4 Special values
a b ¢
{a b C}O ifg+h+j=2k+1, (K.167)
g h j
a a cC
{d d f}o ifct+ f+j=2k+1, (K.168)
9 9 7
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where k is positive integer.

——
Q@ QO o o L ae

——

SO oo o0 To ¢

——

K.4.5 Useful relations

|

Q@ Q.

efahj? o
dep
npv

} = 5df5bh5cf5gh(_)gé,

(7)b+c+d+g a b ¢
¢g e d g

a—b—c

2b

= 5bc5bd5bf5bg5bh;)72-

b ¢
b f} = L3 (aabBley) (ddes f) (o feliv)
B

x (aadd|gn) (bBeelhp) (gnhpljv)

(_)2(c+g)

TYSYT
a=e

J aBy

dep

nuy

> (eybBlac) (gndd|ac) (bBhylee)

x (dé folee) (focp|jv) (hugn|jv),

{a b c} Z im0 d g
d e fp= <—)J’5’{ . }
g h j 7' h J
s
I g
s
7
b
Z()d+e+f()d+b+q62f2{z e f
cf g h j

(K.169)

(K.170)
(K.171)

(K.172)

(K.173)

(K.174)

p
q.(>
J

(K.175)
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C
1
§ = ioh gﬁ;g (aabBley) (dées|fo)
npv

x (aadd|gn) (bBeclhp) (gnhuljv),  (K.176)

(evfeliv)

L Q.

b
e
h

. a b c
S e e = {0 wm
: g N [ el i ¢ oa

J

K.5 Wigner-Eckart theorem

K.5.1 Derivation

When we consider the eigenstate

lm) = Yjm(§), (K.178)

of the square of the angular momentum j and its projection j ., the wave function v,
can be regarded as an irreducible tensor operator which has the rank j, where j(j + 1)h?
and mh are the eigenvalues of 52 and j »» respectively. The internal coordinate £ involves
coordinates both for real space and spin space. The matrix element (j'm’ | Ty, | jm) for an
irreducible tensor operator T’,, with the rank A is given by

<j’m’ ‘ Ty }]m>
- / A ()T () (€)
= [ [ (@] 3 ugml M) (T 0 )

JM

= / de(=)7 " N (= TMIT M) (Agm] TM) [p @ [Th @ 5],] 1a

JJ' MM’
(K.179)
where the wave function ;s is defend by
P (€) = (=Y T o (). (K.180)

From a symmetry of the integration, the spatial integration in Eq. (K.179) is non-zero only
when J’ = M’ = 0. Thus the matrix element becomes
(j'm’ ‘ o |]m>

= / de(=)" =" (5, —m! TM|00) (Apgm| TM) [¢5 @ [Tx @3] 5] o0
JM

= ()% (Augmls'm’) /df(—)j'm’ [soj/ ® [T ®1/Jj]j,}00. (K.181)
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Equation (K.181) can be written as

(ol Do) = (= (2% D) G ).
1
= (FmAuli'm’) (3| Ta ]| 5) (K.182)
T3y = 9 [ [op o mow,] . K18y

Equation (K.182) is called the Wigner-Eckart theorem. The explicit form of the reduced
matrix element (j' || T || ) for the specific T} is shown in the next section. The Wigner-
Eckart theorem means that the matrix element can be divided into two parts: The term
(ymAplg'm’) /j’ is a geometrical factor, which does not depend on a physical meanings of

the operator 7', while the reduced matrix element involves all of the physical contents of
T.

K.5.2 Reduced matrix element

G L) = 505, (K.184)
G 115) = V3G + 125 +1)d;5, (K.185)
YU
Y | YA Y) = (\/4)?1% (I'0xo[0) , (K.186)
(Yp(#) || Vo | V(7)) = I (1010]1'0)
o 1 o 1+1
x Kar - T) S <8r + t) Ml} L KI8T
gL ,
<[7]1/2 ®le/ H /2 ®Y'l] > ( 2)\/7 /)\ <] 2)\0|] ) [1+ (_)H—l +>\} ’
(K.188)
(' N © Uy [15) = (=) “AZ{ L }<J [T | 7) (11U 115)
(K.189)
gy g
(71355 | 1Tx, ® Ungly || d1d2d) = 59'A% g1 g2 5 ¢ Gl T | dn) (G5 || Ung || d2) s
A A A
(K.190)

(31355 || (Tx, - Uxy) || d1d2) = (=) A (513557 || [Ta, @ Unglg || d124)
L
= 5;/6 qitibis JI U2 J}
axg (2 j{]é J1 M
< G| T | 70) €53 || Uns || d2) » (K.191)

where the eigenstate |j1j27) is defined by |j1j27) = ‘le ® %]j> .
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