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GAP THEOREMS FOR COMPACT GRADIENT
SASAKI-RICCI SOLITONS

HOMARE TADANO

Dedicated to the memory of Professor Shoshichi Kobayashi

Abstract. In the present paper, by using estimates for the transverse Ricci curvature
in terms of the Sasaki-Futaki invariant, we shall give some gap theorems for compact
gradient Sasaki-Ricci solitons by showing some necessary and sufficient conditions for
the solitons to be Sasaki-Einstein. Our results may be regarded as a Sasaki geometry
version of recent works by H. Li, and M. Fernández-López and E. Garćıa-Ŕıo.

1. Introduction

A Sasaki manifold is an odd dimensional Riemannian manifold (S, g) such that the
associated cone manifold

(C(S), ḡ) := (R+ × S, dr2 + r2g)

is a Kähler manifold, where r is the standard coordinate on the set R+ = {r > 0}
of positive real numbers. This concept was introduced by Sasaki and Hatakeyama [26]
as a special kind of contact manifolds and studied in 1960s-70s as an odd dimensional
counterpart of the Kähler manifold. Recently, Sasaki-Einstein manifolds have been an
attractive object, not only in mathematics but also in theoretical physics, since they play
an important role in AdS/CFT correspondence stemming from superstring theory [21, 22].
To construct interesting Sasaki-Einstein metrics is one of the most important problems
in Sasaki geometry. Boyer, Galicki and their collaborators [2, 3] produced many quasi-
regular Sasaki-Einstein metrics. An irregular Sasaki-Einstein metric was first discovered
by Gauntlett, Martelli, Sparks and Waldram [14, 15]. We refer the reader to the book [1]
and the survey article [28] for recent developments of Sasaki-Einstein geometry.

In the present paper, we focus on the case where the basic first Chern class is positive
definite. As with the Fano case, there are some obstructions to the existence of Sasaki-
Einstein metrics. For instance, Futaki, Ono and Wang [12] extended the Futaki invariant
[11] to Sasaki geometry, where a similar obstruction was studied by Boyer, Galicki and
Simanca [4] in the case of canonical Sasaki metrics. As to the existence, Cho, Futaki and
Ono [7] gave examples of toric Sasaki-Einstein metrics with suitable uniqueness structures.
Nitta and Sekiya [25] proved a uniqueness theorem for Sasaki-Einstein metrics without
toric assumptions. Recently, Mabuchi and Nakagawa [20] gave some examples of Sasaki-
Einstein manifolds, including non-toric ones. Smoczyk, Wang and Zhang [27] introduced
the Sasaki-Ricci flow, where they extended the results of the Kähler-Ricci flow by Cao
[5] to compact Sasaki manifolds. Collins [9] and He [17] generalized independently the
Perelman’s functional to Sasaki geometry and proved uniformal bounds for the transverse

Date: August 31, 2014, revised; December 11, 2014.
2010 Mathematics Subject Classification. Primary 53C25, Secondary 53C20.
Key words and phrases. Sasaki manifold, Sasaki-Einstein manifold, Gradient Sasaki-Ricci soliton, Gap

theorem.
This work was supported by Moriyasu Graduate Student Scholarship Foundation.

1



scalar curvature and the transverse diameter along the Sasaki-Ricci flow. Futaki, Ono
and Wang [12] defined a Sasaki-Ricci soliton as a counterpart of the Kähler-Ricci soliton
and showed that there exists such a soliton on a suitable compact toric Sasaki manifold
with positive basic first Chern class. As in the Kähler case [29], if the basic first Chern
class is positive definite, one may expect that the Sasaki-Ricci flow will converge to a
soliton under some suitable assumptions. Recently, He [17] proved such a result, if an
initial metric has non-negative transverse holomorphic bisectional curvature.

In the present paper, we study a gradient Sasaki-Ricci soliton. A (2n+ 1)-dimensional
Sasaki manifold (S, g) is a gradient Sasaki-Ricci soliton if there exists some basic function
f ∈ C∞

B (S) on S, called a potential function, satisfying

(1.1) RicT +HessT f = (2n+ 2)gT ,

where RicT and HessT f denote a transverse Ricci curvature and a transverse Hessian
of f , respectively (see Section 2 below). If the potential function is constant, then the
soliton appears as a Sasaki-Einstein manifold. In such a case, we say that the soliton is
trivial.

The aim of the present paper is to give some gap theorems for compact gradient Sasaki-
Ricci solitons by showing necessary and sufficient conditions for the solitons to be trivial.
The same observations were made for the Ricci soliton on Kähler manifolds [18] and
Riemannian manifolds [10]. We remark that all of our results hold both for quasi-regular
and irregular cases. Our main theorem is the following:

Main Theorem (Theorem 3.4). Let (S, g) be a (2n + 1)-dimensional compact gradient
Sasaki-Ricci soliton satisfying (1.1). Then (S, g) is Sasaki-Einstein if and only if

∥RicT −(2n+ 2)gT∥ ⩽ −nF +
√

n2F 2 + 4n(2n− 1)(2n+ 2)F
2(2n− 1)

,

where F = 1
vol(S,g)

∫
S
∥∇Tf∥2 is the Sasaki-Futaki invariant defined by (1.1).

Roughly speaking, the above result shows that if the transverse Ricci curvature of a
compact gradient Sasaki-Ricci soliton is sufficiently close to that of a Sasaki-Einstein
manifold, then the soliton must be trivial. Hence, this result gives us a gap phenomenon
between Sasaki-Einstein manifolds and non-trivial gradient Sasaki-Ricci solitons.

This paper is organized as follows: In Section 2, by introducing notations, we summarize
basic facts about transverse geometry on Sasaki manifolds. Ending with Section 3, a proof
for the main theorem will be given.

Acknowledgements. I would like to thank Professors Toshiki Mabuchi and Kimio Miyajima
for their encouragements. I also thank Professors Akito Futaki, Eduardo Garćıa-Ŕıo and
Ryushi Goto for their interest in the present work. A part of this paper was written while
the author was visiting The University of New Mexico. I wish to thank Professor Charles
P. Boyer for his hospitality.

2. Sasaki Geometry

In this section, we give a brief review of transverse geometry on Sasaki manifolds.
Throughout this paper, we assume that all manifolds are orientable, connected and have
no boundary. We refer the reader to [1, 28] for an introduction to Sasaki geometry and
[1, 30] for a brief review of theory of transverse geometry. We denote by ∇ the Levi-Civita
connection for a Riemannian manifold (S, g) and R(·, ·) the curvature tensor for (S, g).
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2.1. Sasaki manifolds.

Definition 2.1. A Sasaki manifold is an odd dimensional Riemannian manifold (S, g) such
that the associated cone manifold

(C(S), ḡ) := (R+ × S, dr2 + r2g)

is a Kähler manifold, where r is the standard coordinate on the set R+ = {r > 0} of
positive real numbers.

Note that any Sasaki manifold (S, g) is naturally isometrically embedded in the Kähler
cone (C(S), ḡ) via the inclusion S ≃ {r = 1} ⊂ C(S). Throughout this paper, we identify
(S, g) with the submanifold {r = 1} of (C(S), ḡ) and set dimS = 2n + 1. For a Sasaki
manifold (S, g), we can define a Reeb vector field ξ on S and a contact form η on S by

ξ :=

(
J
∂

∂r

)∣∣∣∣
r=1

and η := g(ξ, ·),

respectively. Here, J denotes the complex structure of the Kähler cone (C(S), ḡ). Then,
we can see that

• ξ is a Killing vector field on S and satisfies LξJ = 0,
• ∇ξξ = 0, i.e., the integral curve of ξ is a geodesic,
• η(ξ) = 1 and iξdη = 0,
• η ∧ (1

2
dη)n ̸= 0, in particular, η ∧ (1

2
dη)n is a volume form on S.

The 1-dimensional foliation Fξ generated by ξ is called a Reeb foliation. A Sasaki
manifold is said to be quasi-regular if all leaves of Fξ are compact and irregular otherwise.
The η above induces a 2n-dimensional subbundle D of the tangent bundle TS, called a
contact bundle, where at each point p ∈ S the fiber Dp of D is defined by

Dp := Ker ηp.

Then, the tangent bundle TS admits the following orthogonal decomposition:

(2.2) TS = D ⊕ Rξ,

where Rξ is a line bundle spanned by the Reeb vector field ξ. Next, we define an endo-
morphism Φ of the tangent bundle TS by setting Φ|D = J |D and Φ|Rξ = 0. Φ satisfies

(2.3) Φ2 = − id+η ⊗ ξ and g(ΦX,ΦY ) = g(X, Y )− η(X)η(Y )

for any X, Y ∈ Γ (TS). We can see that Φ may also be defined by Φ(X) = ∇Xξ. In view
of (2.3), the pair (g|D×D,Φ|D) defines a Hermite structure on D. Then, the Sasaki metric
g is written as

(2.4) g(X, Y ) =
1

2
dη(X,Φ(Y )) + η(X)η(Y )

for any X, Y ∈ Γ (TS). We see that 1
2
(dη)|D×D is a symplectic form on D associated to

the Hermitian metric g|D×D. Moreover, D admits a transverse Kähler structure, as we
will describe in the next subsection. We call the quadruple {g, ξ, η,Φ} a Sasaki structure
of S. We conclude this subsection by summarizing well-known facts on Sasaki geometry
that may be used as a definition of Sasaki manifolds.

• The associated cone manifold

(C(S), ḡ) := (R+ × S, dr2 + r2g)

of (S, g) is a Kähler manifold.
3



• There exists a unit Killing vector field ξ on S such that the (1, 1)-type tensor field Φ as
defined by Φ(X) = ∇Xξ satisfies

(2.5) (∇XΦ)(Y ) = η(Y )X − g(X, Y )ξ

for any X, Y ∈ Γ (TS).
• There exists a unit Killing vector field ξ on S such that the curvature tensor satisfies

R(X, ξ)Y = η(Y )X − g(X, Y )ξ

for any X, Y ∈ Γ (TS).
• There exists a unit Killing vector field ξ on S such that any sectional curvature con-
taining ξ equals one.

2.2. Transverse geometry. Let (S, g) be a (2n + 1)-dimensional Sasaki manifold with
a Sasaki structure {g, ξ, η,Φ}. First, note that the Sasaki metric g is bundle-like with
respect to the Reeb foliation Fξ, since ξ is a Killing vector field. We identify the normal
bundle ν(Fξ) of Fξ with D. Recall that the contact bundle D has the metric gT := g|D×D

with the associated symplectic form 1
2
(dη)|D×D. We call gT a transverse metric. To section

X ∈ Γ (TS), Y ∈ Γ (D), we associate a transverse Levi-Civita connection ∇T by

∇T
XY :=

{
π(∇XY ) if X is a section of D,

π([X, Y ]) if X is a section of Rξ,

where π : TS → D is the natural projection to the first factor in (2.2). Note that ∇T is
a unique connection on D satisfying

(2.6) ∇T
XY −∇T

YX = π([X, Y ]) and XgT (Y, Z) = gT (∇T
XY, Z) + gT (Y,∇T

XZ)

for any X, Y, Z ∈ Γ (D). A transverse curvature, a transverse Riemannian curvature, a
transverse Ricci curvature and a transverse scalar curvature are defined by

RT (X,Y )Z := ∇T
X∇T

YZ −∇T
Y∇T

XZ −∇T
[X,Y ]Z,

RicT (X,Y ) :=
2n∑
i=1

RmT (ei, X, Y, ei) and

RmT (X, Y, Z,W ) := gT (RT (X,Y )Z,W ),

RT :=
2n∑
i=1

RicT (ei, ei),

respectively. Here, {ei}2ni=1 is an orthonormal basis of D. By a direct calculation, we easily
see that the first two curvatures satisfy the following identities:

Proposition 2.7 ([1]). For any X, Y, Z,W ∈ Γ (D),

(1) RT (X, Y )Z +RT (Y, Z)X +RT (Z,X)Y = 0,
(2) RmT (Y,X,Z,W ) = −RmT (X,Y, Z,W ), RmT (X, Y,W,Z) = −RmT (X,Y, Z,W ),
(3) RmT (X, Y, Z,W ) = RmT (Z,W,X, Y ),
(4) (∇T

XR
T )(Y, Z)W + (∇T

YR
T )(Z,X)W + (∇T

ZR
T )(X, Y )W = 0.

We call (1) and (4) above the first and the second transverse Bianchi identity, respec-
tively. Moreover, Sasaki manifolds may admit the following Myers type theorem:

Theorem 2.8 (Hasegawa-Seino [16], Nitta [24]). Let (S, g) be a (2n + 1)-dimensional
complete Sasaki manifold. If RicT ⩾ KgT for some positive constant K > 0, then (S, g)
is compact and the fundamental group of S is finite. Moreover,

(2.9) diam(S, g) ⩽ 2π

√
2n− 1

K
.

4



Furthermore, from (2.5) and (2.6), we obtain

∇TΦ = 0.

Hence, the triple (D, gT ,Φ|D) gives a transverse Kähler structure [23] for the Reeb foliation
Fξ with the transverse Käher form 1

2
(dη)|D×D.

2.3. Transverse Hodge theory. Let (S, g) be a (2n + 1)-dimensional Sasaki manifold
with a Sasaki structure {g, ξ, η,Φ}. In this subsection, we suppose that (S, g) is compact
unless otherwise specified.

Definition 2.10. A p-form ω ∈ Ωp(S) on S is called basic if

iξω = 0 and Lξω = 0,

where iξ and Lξ denote the inner product and the Lie derivative given by ξ, respectively.
Let Λp

B be the sheaf of germs of basic p-forms on S and Ωp
B(S) = Γ (S,Λp

B) the set of all
global sections of Λp

B. A smooth function f ∈ C∞(S) on S is called basic if and only if
ξf = 0. We denote by C∞

B (S) the set of all basic functions on S.

It is clear that the exterior derivative d : Λp → Λp+1 preserves basic forms and induces
a well-defined operator dB : Λp

B → Λp+1
B . As in Riemannian geometry, we obtain the

following basic de Rham complex :

0 −→ C∞
B (S)

dB−→ Ω1
B(S)

dB−→ · · · dB−→ Ω2n
B (S)

dB−→ 0.

Let δB : Λp+1
B → Λp

B be the adjoint operator of dB : Λp
B → Λp+1

B . A basic Laplacian ∆B

on forms is defined by
−∆B := dBδB + δBdB.

We can see that the basic Laplacian on functions coincides with the restriction of the
ordinary Laplacian on the space of basic functions. We can check that

(2.11) ∆|C∞
B (S) = ∆B = (gT )ij∇i∇j.

Next, we consider the complexified bundle D ⊗ C. The complex structure Φ|D on D
induces the decomposition of the bundle D ⊗ C into two subbundles:

D ⊗ C = D1,0 ⊕D0,1,

where

D1,0 := {X ∈ D ⊗ C : Φ(X) =
√
−1X} and D0,1 := {X ∈ D ⊗ C : Φ(X) = −

√
−1X}.

According to this decomposition, the set of all basic forms on S splits as

Λr
B ⊗ C =

⊕
p+q=r

Λp,q
B ,

where Λp,q
B denotes the sheaf of germs of basic forms of type (p, q). Then we can define

operators

∂B : Λp,q
B → Λp+1,q

B and ∂̄B : Λp,q
B → Λp,q+1

B

satisfying dB = ∂B+∂̄B. We further consider the form defined by ρT (X, Y ) = RicT (Φ(X), Y )
for any X, Y ∈ Γ (D). As in the Kähler case, we can see that

ρT = −
√
−1∂B∂̄B log det(gT ),

and hence, ρT defines a basic cohomology class [ 1
2π
ρT ]B. This class is called a basic first

Chern class and denoted by cB1 (S). We say that the basic first Chern class cB1 (S) is
positive, null and negative if it contains a positive, a null and a negative representation,

5



respectively. We denote these conditions by cB1 (S) > 0, cB1 (S) = 0 and cB1 (S) < 0,
respectively. A transverse metric gT is called a transverse Kähler-Einstein metric if

RicT = τgT

for some constant τ .

Definition 2.12. A (2n+1)-dimensional Sasaki manifold (S, g) is called a Sasaki-Einstein
manifold if the Ricci curvature satisfies Ric = 2ng.

The Einstein condition of Sasaki manifolds can be translated into those of the Käher
cone and the transverse Käher structure:

Proposition 2.13 ([1]). Let (S, g) be a (2n+ 1)-dimensional Sasaki manifold. Then the
following three conditions are equivalent:

• The Sasaki manifold (S, g) is a Sasaki-Einstein manifold,
• The cone manifold (C(S), ḡ) of (S, g) is a Calabi-Yau manifold, i.e., Ricḡ = 0,
• (D, gT ,Φ|D) satisfies the transverse Kähler-Einstein equation RicT = (2n+ 2)gT .

Note that by definition, any Sasaki-Einstein manifold is necessarily Ricci positive and
has positive basic first Chern class. It is known that there is a further necessary condition
for the existence of transverse Kähler-Einstein metrics:

Proposition 2.14 (Futaki-Ono-Wang [12]). The basic first Chern class is represented by
τdη for some constant τ if and only if c1(D) = 0.

A transverse gradient vector field ∇Tf of a basic function f ∈ C∞
B (S) is defined by

(2.15) gT (∇Tf,X) := dBf(X), X ∈ Γ (D).

A transverse Hessian HessT f(·, ·) of a basic function f ∈ C∞
B (S) is defined by

(2.16) HessT (X, Y ) := gT (∇T
X∇Tf, Y ), X, Y ∈ Γ (D).

Then, as in the Riemannian case, we have the following transverse Bochner formula:

(2.17)
1

2
∆B∥∇Tf∥2 = ∥HessT f∥2 + gT (∇Tf,∇T∆Bf) + RicT (∇Tf,∇Tf).

2.4. Eigenvalue problems. Let (S, g) be a compact (2n+ 1)-dimensional Sasaki mani-
fold. We here consider the eigenvalue problem for the basic Laplacian on compact Sasaki
manifolds. We refer the reader to [6, 8] for basic facts about the ordinary eigenvalue
problem. The following description can be found in the book [30]:

Definition 2.18. A non-zero basic function 0 ̸= f ∈ C∞
B (S) is called an eigenfunction for

the basic Laplacian ∆B associated with an eigenvalue λ ∈ R if

(2.19) ∆Bf + λf = 0.

Theorem 2.20. The eigenvalue is non-negative and discrete. Moreover, by counting
multiplicities, the positive eigenvalue can be arranged such that

0 < λ1 ⩽ λ2 ⩽ · · · ⩽ λk ⩽ · · · .

Furthermore, there exists a complete orthonormal basis for L2
B(C∞

B (S)) consisting of smooth
eigenfunctions of the basic Laplacian.
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Proposition 2.21. The first non-zero eigenvalue λ1 satisfies

(2.22) λ1

∫
S

∥∇Tf∥2 ⩽
∫
S

(∆Bf)
2

for any basic function f ∈ C∞
B (S) on S. Moreover, the equality is attained if and only if

f ∈ C∞
B (S) is an eigenfunction of the basic Laplacian associated with λ1.

Since Sasaki manifolds are transversally Riemannian, by using the same way as in [19],
we can obtain the following transverse version of the Lichnerowicz estimate:

Lemma 2.23. Let λ be an eigenvalue of the basic Laplacian satisfying (2.19). If the
transverse Ricci curvature has the lower bound RicT ⩾ KgT for some constant K ⩾ 0,
then λ has the lower bound

λ ⩾ 2n

2n− 1
K.

2.5. Gradient Sasaki-Ricci solitons. Let (S, g) be a (2n+1)-dimensional Sasaki mani-
fold with a Sasaki structure {g, ξ, η,Φ}. We here introduce a gradient Sasaki-Ricci soliton
and provide some formulas that are useful to prove the main theorem. We refer the reader
to [8, 13] for basic calculations on the Ricci soliton of Riemannian manifolds.

Definition 2.24. A (2n+ 1)-dimensional Sasaki manifold (S, g) is a gradient Sasaki-Ricci
soliton if there exists a basic function f ∈ C∞

B (S) satisfying

(2.25) RicT +HessT f = (2n+ 2)gT .

The function f ∈ C∞
B (S) is referred to as a potential function. If the potential function is

constant, then the gradient Sasaki-Ricci soliton is a Sasaki-Einstein manifold. In such a
case, we say that the soliton is trivial.

Remark 2.26. Any compact gradient Sasaki-Ricci soliton (S, g) has the positive basic first
Chern class and satisfies c1(D) = 0. Then, the Sasaki-Futaki invariant F [12] is given by

F :=
1

vol(S, g)

∫
S

∥∇Tf∥2.

Of course, if the Sasaki-Futaki invariant vanishes, then the soliton must be trivial.

By taking the trace of both sides of the equation (2.25), we have

(2.27) RT +∆Bf = 2n(2n+ 2).

Recall from Proposition 2.7 that any Sasaki manifold admits the transverse Bianchi iden-
tity. Hence, as in the Riemannian Ricci soliton [13, (8)], from (2.25) and the contracted
transverse second Bianchi identity, we obtain

(2.28) gT (∇TRT ,∇Tf) = 2RicT (∇Tf,∇Tf).

Since the transverse scalar curvature RT and the norm of the gradient vector field ∥∇Tf∥
are basic functions, in view of [13, (9)], we have

(2.29) RT − 2(2n+ 2)f + ∥∇Tf∥2 = C

for some real constant C. Then, by taking the difference of (2.27) and (2.29), we obtain

(2.30) ∆Bf + 2(2n+ 2)f − ∥∇Tf∥2 = C ′,

where C ′ := 2n(2n+ 2)− C. The following lemma plays a crucial role in this paper:
7



Lemma 2.31. Let (S, g) be a (2n+1)-dimensional compact gradient Sasaki-Ricci soliton
satisfying (2.25). Then the following holds:

(2.32)

∫
S

(∆Bf)
2 = 2

∫
S

∥HessTf∥2 = 2

∫
S

RicT (∇Tf,∇Tf),

(2.33)

∫
S

(∆Bf)
2 =

∫
S

((2n+ 2)2 −RT )∥∇Tf∥2, and

(2.34) ∥∇Tf∥2 ⩽ RT
max −RT ,

where RT
max denotes the maximum value of the transverse scalar curvature on the soliton.

Proof. First, we have

1

2
∆B∥∇Tf∥2 = ∥HessTf∥2 + gT (∇Tf,∇T∆Bf) + RicT (∇Tf,∇Tf) (cf. (2.17))

= ∥HessTf∥2 − gT (∇Tf,∇TRT ) + RicT (∇Tf,∇Tf) (cf. (2.27))

= ∥HessTf∥2 − RicT (∇Tf,∇Tf). (cf. (2.28))

By integrating both sides of the last equality and by using (2.11), we have∫
S

∥HessTf∥2 =
∫
S

RicT (∇Tf,∇Tf).

Then ∫
S

(∆Bf)
2 = −

∫
S

RT∆Bf (cf. (2.27))

=

∫
S

gT (∇TRT ,∇Tf) = 2

∫
S

RicT (∇Tf,∇Tf), (cf. (2.28))

which proves (2.32). Secondly, we have∫
S

(∆Bf)
2 = 2

∫
S

RicT (∇Tf,∇Tf) (cf. (2.32))

= 2(2n+ 2)

∫
S

∥∇Tf∥2 − 2

∫
S

HessT f(∇Tf,∇Tf) (cf. (2.25))

= 2(2n+ 2)

∫
S

∥∇Tf∥2 −
∫
S

gT (∇Tf,∇T∥∇Tf∥2)

= 2(2n+ 2)

∫
S

∥∇Tf∥2 +
∫
S

∥∇Tf∥2∆Bf

= (2n+ 2)2
∫
S

∥∇Tf∥2 −
∫
S

RT∥∇Tf∥2 (cf. (2.27))

and (2.33) follows. Here, in the last third equality above, we have used the second property
of the transverse Levi-Civita connection in (2.6). Finally, in order to prove (2.34), recall
from (2.29) that 2(2n+2)f = RT +∥∇Tf∥2−C for some real constant C. By compactness
of the manifold S, there exists some global maximum point p ∈ S of the potential function.
Then, it follows from (2.29) that for any point x ∈ S,

2(2n+ 2)f(p) = RT (p)− C ⩾ 2(2n+ 2)f(x) = RT (x) + ∥∇Tf∥2(x)− C,

and hence, RT (p) ⩾ RT (x). Therefore, the transverse scalar curvature also attains its
maximum at p, and we obtain (2.34). □
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3. Gap Theorems

In this section, we extend gap theorems for compact Kähler-Ricci solitons [18] and for
compact gradient Ricci solitons [10] to the case of compact gradient Sasaki-Ricci solitons.
First, note that if a (2n + 1)-dimensional gradient Sasaki-Ricci soliton (S, g) is trivial,
then the transverse scalar curvature on (S, g) satisfies

RT = 2n(2n+ 2), therefore, RT
max = 2n(2n+ 2).

The following result characterizes triviality for a compact gradient Sasaki-Ricci soliton by
using an upper bound for RT

max − 2n(2n+ 2) in terms of the Sasaki-Futaki invariant:

Theorem 3.1. Let (S, g) be a (2n+1)-dimensional compact gradient Sasaki-Ricci soliton
satisfying (2.25). Then (S, g) is Sasaki-Einstein if and only if

RT
max − 2n(2n+ 2) ⩽

(
1 +

1

n

)
F ,

where F = 1
vol(S,g)

∫
S
∥∇Tf∥2 is the Sasaki-Futaki invariant defined by (2.25).

Proof. The result is obvious if the soliton is trivial, since in such a case the potential
function is constant. Conversely, we have∫

S

(∆Bf)
2 = (2n+ 2)2

∫
S

∥∇Tf∥2 −
∫
S

RT∥∇Tf∥2 (cf. (2.33))

⩾ (2n+ 2)2
∫
S

∥∇Tf∥2 −RT
max

∫
S

RT +

∫
S

(RT )2 (cf. (2.34))

= (2n+ 2)2
∫
S

∥∇Tf∥2 − 2n(2n+ 2)RT
maxvol(S, g) (cf. (2.27))

+ 4n2(2n+ 2)2vol(S, g) +

∫
S

(∆Bf)
2,

which yields

RT
max − 2n(2n+ 2) ⩾

(
1 +

1

n

)
F .

Hence, by the assumption in the theorem, the equality just above must be achieved. This
shows that the equality in (2.34) must also attain. Therefore, we have

2(2n+ 2)f −RT + C = ∥∇Tf∥2 = RT
max −RT ,

equivalently, 2(2n + 2)f = RT
max − C. Hence, the potential function is constant and the

soliton is trivial. □

In view of (2.25) and (2.32), on any compact gradient Sasaki-Ricci soliton (S, g), we
have ∫

S

∥RicT −(2n+ 2)gT∥2 =
∫
S

RicT (∇Tf,∇Tf).

Hence, if
∫
S
RicT (∇Tf,∇Tf) ⩽ 0, then the soliton must be trivial. Therefore, the quantity∫

S
RicT (∇Tf,∇Tf) measures the difference of the soliton from being Sasaki-Einstein. The

following result characterizes triviality of the soliton by giving an upper bound of this
quantity:
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Theorem 3.2. Let (S, g) be a (2n+1)-dimensional compact gradient Sasaki-Ricci soliton
satisfying (2.25). Then (S, g) is Sasaki-Einstein if and only if∫

S

RicT (∇Tf,∇Tf) ⩽ λ1

2

∫
S

∥∇Tf∥2,

where λ1 denotes the first non-zero eigenvalue of the basic Laplacian.

Proof. The result is obvious if the soliton is trivial. To prove that the soliton is trivial,
note that any basic function f ∈ C∞

B (S) satisfies (2.22). By (2.32) and the assumption in
the theorem, we see that the potential function f satisfies

(3.3) λ1

∫
S

∥∇Tf∥2 =
∫
S

(∆Bf)
2,

and hence, the function f is an eigenfunction of the basic Laplacian associated with λ1.
Then, it follows from (2.30) that (2(2n + 2) − λ1)f = ∥∇Tf∥2 + C ′. In the case that
2(2n+ 2)− λ1 ̸= 0, since ∇Tf vanishes at any local extrema of f , we have

fmax = fmin =
C ′

2(2n+ 2)− λ1

,

which shows that the potential function is constant and the soliton is trivial. In the case
that 2(2n + 2) − λ1 = 0, since we have 0 = ∥∇Tf∥2 + C ′, the same argument as in the
previous case allows us to obtain C ′ = 0, which shows that the potential function is also
constant and the soliton is trivial. □

The following result shows that if the transverse Ricci curvature of a compact gradient
Sasaki-Ricci soliton is sufficiently close to that of a Sasaki-Einstein manifold, then the
soliton must be trivial. See [18, 10] for the same gap theorems on compact Kähler-Ricci
solitons and on compact Riemannian Ricci solitons, respectively.

Theorem 3.4. Let (S, g) be a (2n+1)-dimensional compact gradient Sasaki-Ricci soliton
satisfying (2.25). Then (S, g) is Sasaki-Einstein if and only if

∥RicT −(2n+ 2)gT∥ ⩽ −nF +
√

n2F 2 + 4n(2n− 1)(2n+ 2)F
2(2n− 1)

,

where F = 1
vol(S,g)

∫
S
∥∇Tf∥2 is the Sasaki-Futaki invariant defined by (2.25).

Proof. The result is obvious if the soliton is trivial. For simplicity, put

c :=
−nF +

√
n2F 2 + 4n(2n− 1)(2n+ 2)F

2(2n− 1)
.

We easily see that 2n+2 ⩾ c. To prove that the soliton is trivial, note that the transverse
Ricci curvature satisfies (2n + 2 − c)gT ⩽ RicT ⩽ (2n + 2 + c)gT . Then, by Lemma
2.23, we see that the first eigenvalue of the basic Laplacian has the lower bound λ1 ⩾
2n

2n−1
(2n + 2 − c). It follows from the assumption in the theorem that ∥HessT f∥2 ⩽ c2.

Hence, we have

(3.5)

c2 ⩾ 1

vol(S, g)

∫
S

∥HessT f∥2 = 1

2
· 1

vol(S, g)

∫
S

(∆Bf)
2 (cf. (2.32))

⩾ 1

2
· λ1

vol(S, g)

∫
S

∥∇Tf∥2 ⩾ 1

2
· 2n

2n− 1
(2n+ 2− c) · F . (cf. (2.22))
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On the other hand, by definition of c, we have

c2 =
1

2
· 2n

2n− 1
(2n+ 2− c) · F ,

which shows the third equality in (3.5) must be achieved. Hence, as we have seen in the
previous theorem, the function f is an eigenfunction of the basic Laplacian associated
with λ1, and hence, the potential function is constant and the soliton is trivial. □

We say that a compact gradient Sasaki-Ricci soliton (S, g) is normalized if its potential
function f ∈ C∞

B (S) satisfies

(3.6)

∫
S

f = 0.

The following gap theorem is regarded as a Sasaki geometry version of that in [18]:

Theorem 3.7. Let (S, g) be a (2n+1)-dimensional compact gradient Sasaki-Ricci soliton
satisfying (2.25). Suppose that the soliton is normalized in sense of (3.6). Then, there
exists a non-negative constant δ ≪ 1 such that if

RicT ⩾ (2n+ 2− δ)gT ,

then (S, g) is Sasaki-Einstein.

Remark 3.8. In Theorem 3.7 above, δ ⩾ 0 depends only on n and the Sasaki-Futaki
invariant F = 1

vol(S,g)

∫
S
∥∇Tf∥2 defined by (2.25). Moreover, the proof shows that δ can

be expressed explicitly in terms of n and the Sasaki-Futaki invariant F .

Proof. We here assume that the soliton is non-trivial. By (2.30) and the normalization
(3.6), we have

(3.9) ∆Bf + 2(2n+ 2)f − ∥∇Tf∥2 = −F .

We assume that RicT ⩾ KgT for some positive constant K > 0. Then, the transverse
scalar curvature satisfies RT ⩾ 2nK and by Theorem 2.8, the diameter of (S, g) has the
upper bound (2.9).

Lemma 3.10. The transverse scalar curvature is uniformly bounded from above, i.e.,

(3.11) RT < Λ(n,K,F),

where Λ = Λ(n,K,F) is a constant depending only on the numbers n,K and F . Moreover,

lim
K→2n+2−0

Λ(n,K,F) < +∞.

Proof of Lemma 3.10. We first observe that

∥∇Tf∥2 = ∆Bf + 2(2n+ 2)f + F (cf. (3.9))

= 2n(2n+ 2)−RT + 2(2n+ 2)f + F (cf. (2.27))

⩽ 2n(2n+ 2)− 2nK + 2(2n+ 2)f + F .

Put B := 2n(2n+ 2)− 2nK +F + 1. Note that B is constant. Then, it follows from the
last inequality just above that 2(2n+ 2)f +B ⩾ 1, and hence,

(3.12)
∥∇Tf∥2

2(2n+ 2)f +B
⩽ 1− 1

2(2n+ 2)f +B
< 1.
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By compactness of the manifold S, there exists some global minimum point q ∈ S of the
potential function. By the normalized condition (3.6), we see that f(q) ⩽ 0. Therefore,
for any point x ∈ S,√

2(2n+ 2)f +B(x)−
√

2(2n+ 2)f +B(q)

⩽
(
max

S

∥∥∥∇T
√

2(2n+ 2)f +B
∥∥∥) · diam(S, g)

= (2n+ 2) ·

(
max

S

∥∇Tf∥√
2(2n+ 2)f +B

)
· diam(S, g)

< (2n+ 2) · 2π
√

2n− 1

K
. (cf. (2.9) and (3.12))

For simplicity, we put cn := 2π(2n+ 2)
√
2n− 1. Then, it follows from the above that

(3.13) 2(2n+ 2)f(x) <
(cn)

2

K
+ 2cn

√
B

K
.

Therefore,

RT = 2n(2n+ 2)−∆Bf (cf. (2.27))

= 2n(2n+ 2) + 2(2n+ 2)f − ∥∇Tf∥2 + F (cf. (3.9))

< 2n(2n+ 2) +
(cn)

2

K
+ 2cn

√
B

K
+ F . (cf. (3.13))

Hence, we can take the last number just above as Λ(n,K,F). □
Now, we can finish the proof of Theorem 3.7. For simplicity, we put

Ω+ := {x ∈ S : RT (x) > 2n(2n+ 2)} and Ω− := {x ∈ S : RT (x) < 2n(2n+ 2)},
respectively. Then, we have

1

vol(S, g)

∫
S

∥HessTf∥2

=
1

2
· 1

vol(S, g)

∫
S

(∆Bf)
2 =

1

2
· 1

vol(S, g)

∫
S

(RT − 2n(2n+ 2))2 (cf. (2.32) and (2.27))

=
1

2
· 1

vol(S, g)

∫
Ω+

(RT − 2n(2n+ 2))2 +
1

2
· 1

vol(S, g)

∫
Ω−

(RT − 2n(2n+ 2))2

<
1

2
· 1

vol(S, g)
(Λ− 2n(2n+ 2))

∫
Ω+

(RT − 2n(2n+ 2)) +
1

2
· 4n2 · (2n+ 2−K)2.

On the other hand, by integrating both sides of (2.27) and by using (2.11), we have

0 =

∫
Ω+

(RT − 2n(2n+ 2)) +

∫
Ω−

(RT − 2n(2n+ 2)).

Therefore,

1

vol(S, g)

∫
S

∥HessT f∥2

<
1

2
· 1

vol(S, g)
(Λ− 2n(2n+ 2))

∫
Ω−

(2n(2n+ 2)−RT ) +
1

2
· 4n2 · (2n+ 2−K)2

⩽ 1

2
· (Λ− 2n(2n+ 2)) · 2n · (2n+ 2−K) +

1

2
· 4n2 · (2n+ 2−K)2,
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and hence,

(3.14)
1

vol(S, g)

∫
S

∥HessT f∥2 → 0 as K → 2n+ 2− 0.

However, we have

1

vol(S, g)

∫
S

∥HessT f∥2 = 1

vol(S, g)

∫
S

RicT (∇Tf,∇Tf) (cf. (2.32))

⩾ KF > 0,

which contradicts (3.14) when K is sufficiently close to 2n + 2. This proves Theorem
3.7. □

References

[1] C. P. Boyer and K. Galicki, “Sasakian geometry”, Oxford Mathematical Monographs, Oxford Uni-
versity Press, New York, 2008.

[2] , Sasakian geometry, hypersurface singularities, and Einstein metrics, Rend. Circ. Mat.
Palermo (2) Suppl. 75 (2005), 57-87.

[3] C. P. Boyer, K. Galicki and J. Kollár, Einstein metrics on spheres, Ann. of Math. (2) 162 (2005),
557-580.

[4] C. P. Boyer, K. Galicki and S. R. Simanca, Canonical Sasakian metrics, Comm. Math. Phys. 279
(2008), 705-733.

[5] H.-D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds,
Invent. Math. 81 (1985), 359-372.

[6] I. Chavel, “Eigenvalues in Riemannian geometry”, Pure and Applied Mathematics, Vol. 115, Aca-
demic Press, Orland, 1984.

[7] K. Cho, A. Futaki and H. Ono, Uniqueness and examples of compact toric Sasaki-Einstein metrics,
Comm. Math. Phys. 277 (2008), 439-458.

[8] B. Chow, P. Lu and L. Ni, “Hamilton’s Ricci flow”, Graduate Studies in Mathematics, Vol. 77,
Amer. Math. Soc., Providence, RI; Science Press, New York, 2006.

[9] T. C. Collins, The transverse entropy functional and the Sasaki-Ricci flow, Trans. Amer. Math. Soc.
365 (2013), 1277-1303.
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