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Abstract

In three dimensional quantum field theory, it is known that there is a non-
trivial duality called 3d mirror symmetry. To check the duality, the so-called
superconformal index is known to be a powerful tool. It was originally defined by
the field theory on S? x S!, and computed by using supersymmetric localization
technique. In this thesis, we derive new formulas for the superconformal index
on RP? x S! by introducing supersymmetric Zy parity conditions on S x S'. The
parity transformation causes non-trivial effects and the final formula becomes
different from the known superconformal index. We also apply our result to the
check of the 3d mirror symmetry, and give a new evidence for the duality by

using quantum binomial theorem.
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1 Introduction and Summary

Quantum Field Theory (QFT) has been a useful and fundamental tool for studying
physics of large degrees of freedom like particle physics or condensed matter physics.
In particle physics, the theory is described by a Lagrangian with the Poincaré sym-
metry generated by translations and rotations in order to make it compatible with
special relativity. (See [M] for a good explanation.) One of the generalizations of the
Poincaré symmetry, supersymmetry (SUSY), was discovered in 1971 in the context of
string theory [, B, B]. After that, it was applied to the usual QFT in [B, B]. The study
of SUSY gauge theories has been providing many interesting results including various
non-perturbative effects and un-expected relationships with mathematics since 1990’s
(@ B8, 9. SUSY has a generator Q with the fermionic statistics. One can show that
the SUSY algebra is a unique extension of the Poincaré algebra under the existence
of a non-trivial S-matrix [[]. If we loosen this condition, there is another extension
of the Poincaré symmetry. This is called Conformal symmetry generated by transla-
tions, rotations, dilatation and conformal boosts. The Conformal symmetry naturally
emarges in the study of IR fixed points for renormalization group [[]. Around each
IR fixed point, there is no scale, and this scale invariance enhances to the Conformal
symmetry in many cases. See for example [[@]. Once we start with supersymmetric
UV Lagrangian and flow the renormalization group with preserving supersymmetry,
the symmetry of the IR theory is expected to enhance to Superconformal symmetry.
The possible superconformal algebras are classified in [[3], and according to it, we can
define superconformal theories only within (2,) 3,4, 5,6 dimensions. 2d is in a special
case because the algebra becomes infinite dimensional one. 3d is the lowest dimension
with the finite dimensional superconformal algebra, and we focus on the 3d SUSY
QFTs from now on.

SUSY QFTs in 3d have many interesting features. Our main interest is a non-trivial
dynamics of U(1) gauge theory in 3d, called three-dimensional mirror symmetry. It
is originally proposed in [[@] with N' = 4 SUSY QFT, and after that in [[E] with
N = 2 SUSY case. The simplest case for the duality is an equivalence between the
moduli space® for Supersymmetric Quantum FElectroDynamics (SQED), and the mod-
uli space for a SUSY matter theory called XYZ-model. Branches for the moduli space
of SQED, so-called Coulomb branches are deformed by the quantum effect [[G] but the

conjectured dual moduli space branches, called Higgs branches are not because of the

L Tt corresponds to the space of possible vacuum expectation values.



non-renormalization theorem [[2, [¥]. In other words, the quantum effect in one side
is realized by the classical effect in the other side, so it means the full quantum effects
is inevitable for the duality. This proposal is reformulated in the context of the string
theory [[4, E0], and 3d mirror symmetry was explained as one of the consequences of
the SL(2,Z) duality in type IIB superstring theory. In addition to it, this proposal has
been checked by utilizing the parity anomaly [IH]. It is an analog of 't Hooft anomaly
matching condition in 4d duality [@].

Of course, these results are quite non-trivial and guarantee the validity of the
proposal of 3d mirror symmetry. However, it is disireble to establish more straightfor-
ward checks including full quantum calculation. For example, the following equality

is expected naively.

Zxyz = ZSQED, (1.1)

where Z represents the partition function for each theory. At a first glance, the exact
check for (M) looks very hard because of the existence of the interaction. Recently,
however, so-called supersymmetric localization techniques have been developed within
2,3,4,5 dimensional SUSY QFTs?. It provides us a way to perform exact path integral
calculations even there are interactions. One of the interesting features for these
developments is that the techniques can be applied to the theories on a curved space.
The curved space, called manifold in mathematics, is not arbitrary because we have
to guarantee the existence of SUSY and it exists if and only if the manifold has a
simple structure. In 3d, the structure has been identified to so-called almost integrable
contact structure [, and the exact calculations were performed on manifolds with
such a structure, product space S* x S! [28, @0, B2, €3], D? x S* [B0, B3], three sphere S?
|22, B4, 13, B0, B2, B8, @9, b0, B and its orbifold S*/Z, [B2]. In each case, the equality
(D) has been verified by using mathematically rigorous formulas®. In particular, the
supersymmetric partition functions on M? x S' where M? is a 2d manifold is known

to be equivalent to the following object

Tony (7. 00) = Tergey ((~1) 2@ @02 45 T afe), (1.2)

Theory

called SuperConformal Index (SCI). 5 and fa are an orbital angular momentum and
flavor charges respectively. As reviewed in Section B, this quantity is an analog of usual
2 The reader can find resultsof the localization tequniques for 2d QFTs in [21, 22, 23, 24, B3, B8],
for 3d QFTs in B3, B8, 29, B0, B1, B3, B3] for 4d QFTs in [B4, B3, BH] for 5d QFTs in [B2, B, BY|.
3 The check or proof of the equality (1) by utilizing supersymmetric partition function on S? x S,
D? x S1, 3 and S?/Z,, can be found in [E2, 3, B3, B, B4, B2] respectively.
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thermal partition function. It is expected to satisfy the following equality similar to
the one in () :

2 2 _
I)I\leZ(x7O‘) :I%ED(%(Y 1)- (1.3)

As explained in Section B, thanks to the localization techniques, the structure of
exact SCI on S? x S? for SQED is known to be constructed by a summation over the
Dirac monopoles labelled by B € Z. As reviewed in the first subsection of Appendix
0, we have to combine these contributions and utilize fancy mathematical formulas,
Ramanujan’s summation formula and quantum binomial formula, in order to deform

its infinite summation to the XYZ side contribution:

s2 quantum binomial formula +
Ixvz(z, @)

2 _
ISQED(%OC 1)- (1-4>

Ramanujan’s summation formula

This proof was originally perfomed in [B3], and it provides an explicit evidence for the
3d mirror symmetry. We can observe a mechanism for the agreement through this
proof. The infinitely many terms coming from Dirac monopoles combines into one

contribution in XYZ-model via the mathematical formulas.

Our main results We get the following new results.

e We define a new SCI by using M? = RP? in (I32).
e We derive formulas for the SCI based on localization for U(1) gauge theories.

e We observe the equality (I=3) and prove it in our context.

RP? is called real projective plene, topologically, one can construct this curved surface
by combining the Mdbius strip and the hemisphere D? along the boundary. RP? is
not isomorphic to neither S? nor D?. RP? is an example for unorientable manifold,
and the field theory on it sounds somewhat exotic in usual sense. We define SUSY
gauge theories on RP? x S' by introducing sets of supersymmetric parity condition
on S? x S'. The SCI for gauge theory on RP? x S consists of a summation over
contributions of +holonomy sector and —holonomy sector, and there is no infinitely
many terms but just 2 terms, and differ from the SCI on S? x S1. The equality (I=3)
is checked numerically in Section B, and we exhibit its exact proof by using quantum

binomial formula and unnamed formula () in Appendix Q.

2 t bi ial f la + 2 _
IEEZ(ZL‘, ) quantum binomial formula ISSED(ZL‘,OZ 1). (15)

un-named formula (7.1)



Compared with the proof of (IA), we can observe that the agreement in () is
guaranteed not by the Ramanujan’s formula but another, un-named formula (IZ).
We can easily understand its difference because there is no Dirac monopole on RIP?
but + holonomies as noted above. The use of the un-named formula () is an
algebraic representation of the £+ holonomies. As one can see, the use of quantum
binomial formula is in common. This is also easy to understand because as a common
factor, we have Wilson line phase along the thermal S!'. The use of quantum binomial
formula is, therefore, an algebraic representation of the Wilson line phase along the
thermal S?.

The organization of this paper is as follows. In Section B, we review some basics
of the Quantum Mechanics (QM). This section is important because we calculate
SCI (I22) by utilizing this section’s method. In Section B, we summarize some basic
facts on the 3d N/ = 2 supersymmetry and review the supersymmetric localization
techniques. In Section B, we review the exact calculation for the SCI with M? = S?
by localization method from the many-body QM point of view. And in Section B, we
turn to the calculation with M? = RP? and get new results. Finally, in Section B, we
check the simplest 3d mirror symmetry, equivalence between XYZ-model and SQED
numerically. If one wants to know how to prove it analytically, see Appendix Q. In

Section [, we summarize this thesis and comment on some ongoing projects.



2 Preliminary - Quantum Mechanics (QM)

We begin our consideration from Quantum Mechanics (QM). First, we review some
representation theory for boson and fermion. Second, we turn to consider the partition

function
Z = Tr(e H). (2.1)
Third, we generalize it by turning on a insertion of (—l)ﬁ into the trace :
I= Tr((—nﬁe—ﬁﬁ). (2.2)

This is called Witten index, a prototype of the superconformal index in later discussion.
F' is called fermion number operator which counts the number of fermions. And in
the final subsection, we generalize it and the generalized index gives the basis for the

next section.

2.1 Representation theory

We briefly review the basics of boson and fermion in QM. We emphasis the relationship

between operator formalism and path integral formalism for later use.

2.1.1 Boson

Classical prescription Bosonic Lagrangian typically takes the following form:
L, = -1 —V(x). (2.3)

The conjugate momentum of x is defined by

aLbos
= ) 2.4
p=—5 (2.4)
The Hamiltonian is defined by the Legendre transformation of Ly,,:
Hb = p$ - Lbos
1
= §p2 +V(z). (2.5)



Canonical quantization We start with the representation of the bosonic algebra,

Heisenberg algebra:

[h, 2] = —i, (2.6)

where p and 2 are momentum and position operators correspondingly. In principle, we
do not need to stick on the definition of + sign in (E8) if we treat it in self consistent

way [B4]. As a basis of the Hilbert space, we can take

|z) or |p) (2.7)

These states are defined by

+o0
T|z) = z|z), / dz |x)(z| =1, (2.8)

[e.e]

o =sln), [ " )l = 1. (2.9

oo

There are two important facts. First fact is that e~ generates translation®of |z) :
e P ) = |z + a). (2.10)

Second fact is the explicit form of the inner product®
1
p\r) =
(o) = ——
The integration constant is determined by requireing the orthonormality condition
(@'|x) = 6(x — 2').

4Tt can be proved by utilizing Baker-Campbell-Hausdorff (BCH) formula:

e P (2.11)

Fe Pl g) = 7P o FiPA G A | 1) — PO (x + [ipa, z] + ... >|ac>

BCH

= e~ iPa (ic + a) lz) = (z + a)e”P|x).

a 0

5The simplest way to prove this is to use the differential equation. For example,

9 _ i (plr+a) — (plx)
ax <p|x> - ili}% a
—ipa _
o () — (o)
a—0 a
—ipa _
Pl — (pla)
a—0 a
= —ip(p|z)



2.1.2 Fermion

Classical prescription Fermionic Lagrangian typically takes the following form :

Ly = ipap — V(). (2.12)

Here we treat ¥, ,1_ as independent Grassmann numbers :

G0, Y2 =0, $ib = —v . (2.13)
The (left®) conjugate momentum of 1_ is defined by
In_ = i.Lf. (2.14)
oY_
The Hamiltonian is defined by the Legendre transformation of L :
Hi=T_4¢_ — L
= V(). (2.15)

Canonical quantization We start with the representation of the fermionic algebra,
Clifford algebra? :

{9} =+1. (2.16)

In contrast to the bosonic case, the sign of (rhs) in (EZI8) is important to get the

unitary representation[bd]. As an orthonormal basis of the Hilbert space, we can take

{10, 11)}. (2.17)

These states are defined by

P-10) =0, 4. [0) = 1),

J-|1) =10), P4]1) =0,

10)(0] + [1)(1| = 1. (2.18)
One can regard |0) as a hole-state, and |1) as an occupied state. We cannot make

12) := 4|1) because it is automatically zero. This is the famous Pauli exclusion

principle.

5Because of the fermionic character (ZZI3), we have to be careful about the order of the 1, and

v

7 In order to derive this relation from the usual canonical quantization method, we need to consider

not Poisson bracket but Dirac bracket.



Coherent state basis In later discussion, we convert our formalism to the path
integral formalism. In order to do so, there is a more useful basis than the basis in
(212), the coherent state basis:

W) = e "+)0), (] = (0]e™?-. (2.19)
We should take ¥ as a Grassmann valuable, therefore U2 = 0 and
U) = (1= W )[0). (2:20)
These states satisfy the following relations.
Po|W) = W), (Ul = (U] (2.21)
After a direct calculation, one can get the inner product formula
(U |W_) = e¥+¥-, (2.22)
and the complete relation

/d\11+d\11_|111_>e“1’+“1’<\11+| =1 (2.23)

2.2 Partition function

One of the most interesting object to study in quantum mechanics is the partition

function :
7 = Tr(e 7). (2.24)

It contains all informations of the energy spectrum because we can extract each energy

by taking following process®:

1. Taking 3 — oo of Z, then Z ~ e P where Ej, is the ground state energy.
2. Subtracting e #%° from Z, and rename it Z;, and

taking 3 — oo of 7, then Z; ~ e PP where F; is the 1st exited state energy.
3. Repeating this procedure.

8 This is valid if there is no degeneracy.

10



2.2.1 Boson sector

Partition function of the bosonic degrees of freedom is described by the Hamiltonian

operator defined in (E3) classically :

. . . 1
H=H, H,= 5;32 + V(). (2.25)
( Operator formalism description of harmonic oscillator’s Z ~
The simplest example is
. L 5.
V(z) = quo. (2.26)

In this case, as well known, once we define G and a' so that
Hy=w(@'a+ ), (2.27)
and by constructing a basis
{|0>b, 115,12, - . } aln) = valn — 1), alln) = v+ In+1), (2.28)

then, we can diagonalize the Hamiltonian : Hy|n) = w(n + 1)|n). By using this

basis, the partition function can be computed by utilizing the formula of power

series
Tr(e—ﬁflb) _ Z o Pw(n+3)
n=0
_Bw
e 2
1 —e P
1
= —. 2.29
2sinh 2 (2:29)
The zero energy which corresponds to n = 0 is often called Casimir energy. )

Path integral formalism By Inserting the complete set (Z8) and (E9) into the

trace in (EZ2), we can re-express it as

“= /x(0)=r(ﬁ) < 11 dm(t)dg—s)>e_ & dt(ip“%pzw(“)

t€[0,5]

_ d{t(t) ffég dt(%x@fﬂﬂ»\/(x)) 9 30
/x(o):x(ﬁ) <t€1[}m m)e . (2.30)

11



-~ Path integral description of harmonic oscillator’s Z
We have the following action
B -1 1 /P8
—/ at( i+ V() = —5/ dt 2(=2 + o)z, (2.31)
0 0

Thanks to the Gaussian integral formula (AT3), we get formally,
1

Ty = ) 2.32
" etuo)—a(a) (— 07 + <7 (232)
The “matrix” 0;’s eigenvectors are x,,(t) = e%m, n € 7 because
o
o, = %nwn (2.33)

det (=07 +w?) = ﬁ (<27T)2n2+w2>

z(0)=z(8)

ﬁ%nr x w?}‘[ (1 + g‘%if. (2.34)

Obviously, the first factor diverges. We regularize it by using zeta-function regu-

larization. (See Appendix @ for ¢(0),¢’(0) values’ derivation.):

[T1250] = o (13- 10 2m) = e (4100~ 10s )
= exp <4[ - (—% log 27) — (—%) log ﬁ])
) (2.35)

Then, by using the infinite product formula (AT),

e = [ [ (+ 2] = e Z) )

n=1
It reproduces the result (2229) :

1 1

Zy = = )
. v/ detz(o) —02+w?) 2sinh 22
I(B) t 2

(2.37)

12



2.2.2 Fermion sector

Partition function of the fermionic degrees of freedom is described by the Hamiltonian

operator defined in (EZ13) classically :

H=Hy Hp=V(js). (2.38)
- Operator formalism description of harmonic oscillator’s Z ~
The simplest example is
- PN 1
V() = w(ii — ) (2.39)

Then, the basis (EI8) diagonalizes this Hamiltonian:
A 1
H¢ln) = w(n — §)|n), n=0,1. (2.40)

The partition function is, therefore,

1
Tr(e_ﬁﬁf) = Z e~ Pwn=3)
n=0
Bw _ Bw
= ¢ 2 —|— e 2

= 2 cosh %d (2.41)

There are two important discrepancies compared with the bosonic harmonic oscil-

lator.

e The absolute value of Casimir energy is same but the sign is different.

e cosh function appears, unlike the sinh in bosonic case.

As we will see later, if we insert (—1)¢+¢* into the trace, we get sinh not cosh.

N J

Path integral formalism When we derive fermion’s path integral representation

of the partition function, we have to be careful about the periodicity.

Z; = Tr(e 1)

- / AU, dV_ e+ (W |e PV b |y ), (2.42)

13



Now, we divide [ into N pieces : € = %, then, we can write, say N=2
(Z32) = / AV, d_ / AN dA_ "+ (W eV e | A Y M A (A eV b))
= /d\Ij+d\I/_/dA+dA_ €\Il+\p7€_EV(W)(\I}+7A7)<\Ij+|A_>€_A+A7<A+|\Ij_>€_EV(A+7‘117)

:/d\I[+d\I/_/dA+dA_ 6\11+\IJ,+\II+A,—A+A,+A+\II,e—eV(\Ile,A,)—eV(AjL,\I/,).
(2.43)

We rename fermionic valuables:
U, =02, A =02 A =Vl TV =Vl (2.44)
then we get

2 gl 202 ol w2 Lwl ol ey (W) (w2 w2 ) (W)l gl
(Mﬂ):/dlllid\lf%dlllid\lll_ PR VLU0 0l 02 0l Wl eV (W03 02 ) V(W) (v 0l )

(2.45)
Now, we regard each U as W, (¢,) = V', where t,, = en. In this N=2 case,
LAAVAIE R Gk G A G i
—w L) W) U (L) - vm)( Y(b) ~v()
S~—— S——
U_(0)+e¥_(0) U (t1)+e¥_(t1)
_ \IJ+(t2)<e\i/_(O) + [U_(0) + U_(ty)] ) — UL () (e\i/_(tl) + [ W_(t)) — \1;_<t1)/])
we have to ;Irlake it zero. ‘0,
As we can see above, in order to drop the O(€®) term, we have to take
() = W_(8) = —¥_(0). (2.46)

Therefore, corresponding fermionic field U (¢) are anti-periodic? under the translation

t — t+ 3. By using

¥(0) = % (t) = —% L (E+5) = —U(ty), (2.47)

t=0

and taking N— oo limit, we arrive at

(223) :[p (0)=—+(8) < 11 d\I’Jr(t)d‘I’(t>)e_f0ﬁdt<qj+¢j+V(W)(W+7W)>' (2.48)

t€[0,8]

9We have checked it only with W_, but we can understand the case for ¥ in similar way.

14



-~ Path integral description of harmonic oscillator’s Z ~

Tr(e_ﬁﬁf) :/ < H d\I’+(t)d\I/_(t))e_f0Bdt Vi (O tw)¥—
‘I’i(o):*q’i(ﬁ) tE[O,ﬁ]

= det (O +w). (2.49)
Vi (0)=—Vx(0)

We used the Gaussian integral formula for fermionic variables (BAd). In this anti-
periodic sector, the eigenvectors of 0; are ¥, (t) = ¢ " with n € Z. Therefore,

det (O +w)= ﬁ <@(n—%)+w>

V1 (0)=—-V+(8)

1
/N
o
Qw‘i
[\&]
P
|
DN | —
N—
[\
+
[\
N————

_ [ﬁ%ﬂ(n_%)r xﬁ(lJr%)- (2.50)

The first factor diverges, so we have to regularize it.One might think that the zeta-

function regularization works, however in this case, we should calculate carefully:

Tor o 192 1oy 2m 12 iy a3
15 0= =TT 50] < (1T
ey 2m 12 = 5(2n —1)q2
- Eﬁ" Xu:[l = (2n) ]
> or 12 > Z(2n—1) x Z(2n+1)
\T/ A ‘2, v
-2, (2.51)

where we used Wallis’ formula. And, of course, another part of (EZ20) can be

calculated by using infinite product formula for cosh (E3) :

1 (Bw)? B
1+ ) = cosh 2. (2.52)
}_[1 < (27[n — %])2> 2
Gathering all, we recover the result (221)
—BH 600
Tr(e 7%4) = 2 cosh —. (2.53)

2
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2.3 Witten index

As we have surveyed briefly, the partition function of the harmonic oscillator can be
calculated easily. However, once we turn on the cubic or more higher interaction in
V', we cannot hope for the possibility of the exact calculation. In addition to it, naive
zeta-function regularization does not work in the fermionic sector as we have observed

in previous page. However, we can overcome such a situation by considering
I= Tr((—l)Fe_ﬁﬁ), where F' is a fermion number operator, (2.54)

instead of Z. This is called Witten index [B3].

Fermion number operator F'is an operator which counts the number of fermion

excitation, 0 or 1. Explicitly, we can write it as

F =1 (2.55)
As one can check easily,

(_DF _ { +1 Dbosonic state | (2.56)

—1 fermionic state

Therefore, within only bosonic sector, I and Z are identical :

I, = Tr,,((—nﬁe—ﬁﬁb) = Try(e=%) = 7, (2.57)
and nothing different happens compared with the partition function. However, the
fermion sector’s behavior changes drastically.

2.3.1 Fermion sector

Let us see what happens in the operator formalism first by using the harmonic oscillator

example.

e Operator formalism description of harmonic oscillator’s ~

Let us remind the calculation in (2Z1). We can get [ as

Tr((—1)F€—ﬁHf> = i(_l)ne—ﬁw(n—é)

n=0
Bw _Bw
= e 2 —e 2
= 2sinh %ﬂ (2.58)
N J
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Path integral formalism After a simple calculation, one can verify that
I= Tr((—l)ﬁe_’gﬁf>
= / AV, dV_ e~ "7 (U, |e Py ). (2.59)

Compering with the partition function (E232), one can see that the sign of the expo-
nential factor is different. This insertion causes periodic boundary conditions of the
fermionic field W, (¢) under t — t + [ because the sign in the first term in (2Z20)

changes. In summary,

-1 (\If+at%+v<w><\lf+,%)>

I = / (d\Iur(t)d\If,(t))e (2.60)
V1 (0)=V+(B)
In this case, we can recover the result (Z53) as follows.
~ Path integral description of harmonic oscillator’s I ~

= / (d\I"f‘(t)d\Ij—(t))e_ J5 O (Or+w) W
V£ (0)=9+(8)

= det (0+4w)
U1 (0)=V+(8)

I (5'n+w)

= wjjl (QZ—Z)Q + w2>. (2.61)

The same infinite product in the bosonic partition function (E234) emerges. There-

fore, by repeating zeta-function regularization procedure, we arrive at

I; = 2sinh %u (2.62)
N J

2.3.2 Supersymmetric quantum mechanics

What happens when we consider the Witten index

[= Tr((—l)ﬁe—ﬁﬁ), (2.63)
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with harmonic oscillator Hamiltonians H = H,+ H #7 The answer is extremely simple;

]'::]b X ]f

ZZZZ,X [f
1

"~ 2ginh %‘"

= 1. (2.64)

X 2sinh %J

Note that if we turn on different frequencies wy, wy for boson and fermion respectively,
we get

sinh ﬂ%

B sinh % ’

and it does depend on 3. Therefore, the 3 independence is equivalent to the condition

(2.65)

wy = wy. It is strongly related to the concept of supersymmetry. In other words, the

Hamiltonian

H=uwata+ %) +w(iyh — %) = w(dfa+ ) (2.66)

defines supersymmetric quantum mechanics. The physical meaning is also extremely
simple : the state |0) only contributes. The numerics I = 1 means that there is one
unique vacuum in the system. We can learn other facts of supersymmetry from this

extremely simple example by defining

Q:=vwal_, Q= way,. (2.67)
These operators are called supercharges which satisfy the following equation.
1 ={Q.Q"}. (2.68)

By using this expression, the reason for 4 independence of the supersymmetric Witten

index becomes clear because the differential of the index with respect to # becomes

Z€eTro:
%Tr(—l)ﬁe_ﬂH = %Tr(—l)ﬁe_ﬁ{é’@}
= ~Tr(-1)7(QQ" + QQ)e 12"
= —Tr(-1)(QQ" — QQNe P12 = o, (2.69)

We can construct a somewhat more non-trivial Hamiltonian (e.g. [B3, b8, B4]) which
contains interaction terms. In such case, supersymmetric Witten index counts the
number of degeneracy of ground states, or more technically speaking, it counts the
number of BPS states.
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2.3.3 Generalized index

In (Z319), we use the following facts:

[H,Q) = [H,Q = 0. (2.70)
It means Q and QT generate symmetry of the system. Suppose there is another gen-
erator .J which commutes with the supercharges:

@ J]=0, [Q,J]=0, (2.71)

then following trace
Tr((—1)ﬁe—ﬁ{@»@*}e—wf ) (2.72)

also does not depend on . In later section, we introduce the concept of Super Confor-

mal Index (SCI). SCI can be regarded such a generalized index. e~/ insertion makes

x(t) and WL (t) not periodic but as follows.

Twisted boundary conditions

z(t+ B) = een(t), Vi(t+ B) = UL(t), (2.73)

where J,, J, are eigenvalues of J operator. The reason is as follows. For bosonic

degrees of freedom, (2Z72) can be expressed
Tr((—l)ﬁe_B{Q’QT}e‘i“j) = /dm<x|(—1)Fe‘ﬁ{Q’QT}e_i“j|x>
:/da:@:\e_ﬁﬁ\e_w‘]z@

_ / dedpday (x]e~CH |2y) (m1]e=H|p) (ple~#z),

S\
e a"'e

e*5H<T1 ,p)+ipzq efipe_il’“]m x

(2.74)
and at the edge, we have
e—eH(m,P)-I—ipzl—ipe_“”zz' (2'75>
In order to get rid of O(e°) term,
+ipxy — ipe gy = ip(xy — e o)
= ip(a:(t =€) —e eyt = ﬁ))
- ip(ex'(()) Falt=0) — e "t = ) ) (2.76)

vV
we have to make it zero.

This is the origin of the twisted boundary condition in (EZZ3).
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3 3d Superconformal indeces on M? x Sé

In this section, we review basics for the recent calculations of the 3d superconformal

index

Theory

Tifrony (2. 00) = Trrgey (=) 2@ Q0255 T afe), (3.1)

based on supersymmetric localization principle. In 3.1, we give the physical meaning
for the SCI (BO), and represent it in the path integral formalism. In 3.2, we turn to
define the SUSY QFT on M2 x S é where 3 corresponds to the inverse temperature. It
gives the precise definition for the SCI in the path integral formalism. In 3.3, we explain
the supersymmetric localization principle. We will perform the exact calculations in

later sections based on this principle.

3.1 Superconformal index

First, we consider the physical meaning of the SCI (Bl) in operator formalism. After
that, we turn to the path integral representation of SCI by quoting the results in

Section B.
3.1.1 Operator formalism description
As one can find in [B8, B9, £8], the following operators
H+Js, faya=1,....N; (3.2)

commute™ with both of Q and QT, therefore, each operator can play a role of J in
(2Z0) and SCI turns to one of the generalized indices and does not depends on z’. It

means that states which satisfy

{Q,Q"}phys) = 0 (3.4)

10 One may wonder why H alone does not commute with Q and Qf. For example, we can find the

same SUSY algebra in [B0]:

1 1
[Pa, Qa] = *er(’Ya)gQﬁv (M, Qa] = *5(73)&@/17 (3-3)
where 7 represents S? radius which we take r = 1. Our operators H . j5 correspond to Ps, —M

respectively. Therefore, the combination H+ J3 is a consequence of the curvature, and if we recover
the r, we should write it as H+ %53 The character [Q, fa} = 0 is easily understood because the
supercharges act only operators with Lorentz indices, spacetime vector, spinor, R-symmetry etc, and

the flavor index a is not in the class.
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called BPS states [El, B2] only contribute to the SCI. Now, we define subspace of the
Hilbert space H:

7S = {[phys) € H|{Q, Q"}phys) = 0 }. (3.5)

Then, we can rewrite SCI as follows
T(x,0,) = Tryprs ((—1)F | a£“> . (3.6)

For simplicity, we suppose here the index a runs for a = 1 only, and omit this index,
then SCI reduces to

I(z,a) = Tryses ((—1)Fxﬁ+33af). (3.7)

HBPS

H + j3 and f are conserved charges so we can divide into more basic ingredients

H + j3)|BPS) = J|BPS
HEPS = S |BPS) € HPPS U+ 3a)|BPS) = JIBPS) | (3.8)
’ fIBPS) = f|BPS)
Then, SCI can be represented by each Witten index of (J, f) sector I(;y) :
I(r,a) = Z:p‘]af X Tnguf—?s(—l)F. (3.9)
Jf —_—

Iiag)

Therefore, once we know the exact form of the Z(z,a), we can extract the number
I 55y by expanding it around x = a = 0. Compared with the usual Witten index,
SCI gives us finer informations of the theory because this is not just a number but a

polynomial (or function) with respect to fugacities x, a.

3.1.2 Path integral description

In order to convert the path integral description, it is useful to introduce (31, (2, 3, tta

as follows.
=P x=e aq,=e, [=0+ o (3.10)
By utilizing the N' = 2 SUSY algebra [BR, B9, B8, B0], we get the relation

{Q.Q"y = H+ R —js, (3.11)
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where R is called R-charge. We will assign R-charge to each field. (See Table 0 in

later discussion.) Then we can rewrite the SCI as follows:
I(SB, a/a) = Try ((_1)F6—5ﬁ . e—ﬁl(R—j3)e—/@253e— > iuafa) ) (312)

As we have already mentioned in Section B, the e=BH generates translation along the
[ circle, (—1)F makes the all sets of degrees of freedom periodic, and other insertions
e~ P1(R=is)g=B2iseXaitale define twisted boundary condition for each field. (See also

z(t+ 0) = eP1(R=js) oP2ja g3, i““f“m(t), for boson, (3.13)
U, (t+p0) = ef1(R=js) gf2is ¢ i““f“\lfi(t), for fermion. (3.14)

Therefore, by repeating the derivation of the path integral descriptions of the Witten

index, or generalized index, we arrive at the path integral definition of SCI:

I(x, aq) = / ( I] dm(t)d\ll+(t)d\11_(t)>e‘Sb‘Sf, (3.15)

t€0,4]

with conditions (B13), (B14).

To quantum field theory The above explanation is almost correct, but more pre-
cisely speaking, we should add two spacial dimensions represented by z' (i = 1,2)
which is a set of coordinates for two-dimensional manifold M?, and consider not quan-

tum mechanical degrees of freedom but quantum field theoretical degrees of freedom:
o(t) = o(a'st),  Wi(t) =¥’ 1), T_(t) = (e’ t). (3.16)
And of course the twisted boundary conditions (B13) and (Bd) are lifted to

oz’ t + 3) = Pr(B=is) P23 oY i"“f“gb(xi, t), for bosons, (3.17)
Y t+B) = g1 (B=js) gf2is o i““f“zb(xi, t), for fermions. (3.18)

Therefore, we get the path integral representation as

I(z,00) = / D¢DyYDe) e 551, (3.19)
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3.2 Supersymmetric field theories on curved manifold M? x Sé

Finally, we can begin to discuss main part of this thesis. Our main interest is to calcu-
late SCI (BdI) by using the path integral formalism (BTd) with the twisted boundary
conditions (BT) and (B3). In order to do so, it is useful to make our discussion of
supersymmetry to the off-shell formalism. We use so-called three-dimensional N' = 2
supersymmetries. There are two irreducible representations, called vector multiplet
and matter multiplet. From now on, we take two-dimensional manifold M? as round

sphere S? or real projective space RP? :

0<9<
S? : dsp = d¥? + sin? 0dy?, =v=" (3.20)
0<p<2r
0<9<nr
RP? : dsjp. = di® + sin® ¥d?, 0<ep<2rm . (3.21)

(19790) N(ﬂ-_ﬁvﬂ-_’_@)

As one can see, the difference between S? and RP? is the global information of an-
tipodal identification (¥,¢) ~ (m — ¥, 7 + ¢). Therefore, once we can construct a
supersymmetry on S?, if and only if its representation is based on local Lagrangian
description, we can project it into the theory on RP?. Its projection might looks triv-
ial, however it is not true. For example, in mathematical point of view, we have the

following 2nd homology groups
Hy(S?) =Z, Hy(RP?) = 0. (3.22)

This means that the classical gauge field on S? is labeled by the 1st Chern number,
or equivalently monopole number. In addition to it, the fundamental groups are as

follows.
11(S*) =0, 7 (RP?) = Zs. (3.23)

This fact means that the classical gauge field on RP? is labeled by the Zy-holonomy,
or equivalently (discretized) Wilson line phases.
3.2.1 Our convention for spinors
We consider the following dreibein :

el =dv, e*=sinddp, € =dt. (3.24)
We use alphabets a, b, ¢, for the local Lorentz indices.
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Covariant derivative The 3d covariant derivative is defined by
V,=0,+ }ngbj;b (3.25)
where wgb is the spin connection computed from the dreibein (B=24),
de® +w® Ne? =0, W= —w?® W= wzbdx“. (3.26)
Jap are Lorentz generators of the fields characterized by its spin:

spin 0 = Jop =0,
spin 1/2 = Jup = Yab, (3.27)
spin 1 = (Jap)q = 2(59¢6% — hegod),

where 7y, are antisymmetrized gamma matrices defined in (B=23).

Gamma matrices The gamma matrices 7, are defined by the Pauli matrices

(o1 (0 —i (1 0 L . (328
M= 10 ) T2 = ; 0 ) V3= 0 —1 ) Yab = 9 Ya Vb oVa)- .

Spinor bilinear Our convention is as follows. Let us denote generic spinors by ¢, €,

and A. We take spinor bilinears as

S T 1 s T G ()

Using this convention, one can prove the following formulas:

6)\ — (—1)1+‘6H>\‘)\€, 6711)\ — <_1)|5||)\|)\/7a67 (VQE)A — _Ef)/a)\7
E(eN) + (=) Fle@N) 4+ ()X =0,  (—1)HeHEle(@N) + 2(Ee) A + (—1)H el By, A)y%e = 0,

where |¢| means the spinor €’s statistics such that |¢] = 0 for a bosonic € and |¢] = 1

for a fermonic e.

3.2.2 Killing spinors

Now what we want to do is to construct SUSY QFTs on M?* x S§ with the metric
ds® = dsjp + dit*. (3.29)

As well known, so-called superspace formalism is very useful to construct SUSY the-
ories on flat space [B3]. However, the curved superspace formalism is still under con-

struction. (See [B0, B4] for theories on 2,3 spheres.) So we take an ad-hoc way here.
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One of the sufficient conditions to construct supersymmetry is the existence of Killing

spinors [E]. With our metric (B29) and dreibein (B=24), the following two spinors

9 i ?
€0, p,t) = ex(t+19) (Cos 3) L EW,p 1) = e () (Sm i) (3.30)
3

Sin COS 9

satisfy the following equations

1 -1
V,e= 5’}/“’)/36, V€= 7%736 (3.31)

These spinors are Killing spinors in our case. In later discussion, we use these spinors

€, €.

3.2.3 N =2 vector multiplet

Vector multiplet is constructed from a gauge field A,, an adjoint scalar field o, an

auxiliary field D, and adjoint 2-component spinors \, A:
V= (A, 0,D | \N). (3.32)

N = 2 supersymmetry is defined as follows [E4]:

1~ l

0 A, = 2)\%6, 0cA, = —éEfy#/\, (3.33)
1— 1
0.0 = +§)\e, 0z0 = +§€)\, (3.34)
1 21
S\ = 37" €Fy, — De+i"eD,0 + gzmﬂvue, A =0, (3.35)
— — 1 21

SN =0, 6\ = 3y"eF,, + DE — iy/eD,0 — EZOV“VME, (3.36)

5.D = +%D,}we - %[Xe, o] + %Xfy#v#e, 5.D = —%WDMA + %[a, o] — %vmw.
(3.37)

The covariant derivative is defined as

D, =V, —i[A,, o0 (3.38)
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One can verify the following algebraic structure:
{667 56} = 0, {5€7 5?} = Oa
{0c,0¢}A, = €70, A, + 0,"A, + D, A,
{0c, 0z} = €100 + i[A, o],
1
{0c, 0c} A = €O\ + L—l@wﬁ“”)\ +i[A, Al + a,
— _ 1 — — _
{0c, 0} A = 1O\ + Z@’“”YW)\ +i[A, A] — a,
{0c,0¢}D = &0, D +i[A, D).
(840) - (B24A) relations mean
{567 5€} = 6%‘ranslation + 6gotation + 5/C\}auge transformation + 51?{-symmetry7
where each parameter is defined as follows.
¢ = ey,
or = Vgl 4 Ak
A= —A,8" + o€,

a= %(V,ﬁ'y“e — &Y'V €).

3.2.4 N =2 matter multiplet

(3.43)

(3.44)

Matter multiplet is constructed from scalar fields ¢, ¢, spinor fields v, ¢, and auxiliary

fields F, F:
© = (0, F | ¥), :=(4,F|v)

(3.50)

We can couple these fields to the vector multiplet (BZ32) in supersymmetric way. In

addition to it, we can assign arbitrary conformal dimension A to the matter multiplet

(B30). N = 2 supersymmetry is defined as follows [E4l:
00 =0, e = ¢,
665 - 6@7 5?5 = 07
A AV _
0 = iy"eD; ¢ + ieod + =7 Ve o, o =F€F,
_ — - - YAy
Sb =Te, 6 = in'eDAG + igoe + ?Zmﬂv,@
5 F = e(in" DMy — io) — iAg) + %(QA —)Vaey'),  6:F =0,

5F =0, 6.F =&in" D — ivpo + igph) + %(m — 1)V, .
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We define the covariant derivative D;‘ as
D0 =D, 0 —id,®, D/P=D,P+iPA,.
One can verify the following relations:
{5& 56} = 07 {5E7 5?} = Oa
{0c,0c 10 = £"0u0 + iAd — A,
{06,010 = €"0,0 — i9A + Aag,
1
{0e, 0 }p = "0 0 + 7 Ow b+ Ay + (1= A)ay,
_ _ 1 _ _
{66 55}770 = f“@,,g/} + Z@uu'ylww - Z¢A + (A - 1)a¢7
{0z, 0} F = 10, F +iAF + (2 — A)aF,
{6c,0}F = E"0,F —iFA + (A — 2)aF.

Of course, we can interpret these relations in (BZ3) way.
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3.2.5 SUSY invariant Lagrangians
We summarize here the SUSY invariant Lagrangians which will be relevant in later

discussion of this thesis.

Supersymmetric Yang-Mills term This action is automatically SUSY invariant
because of the fact that it can be rewrite as Sy = 0.V = 8-V for certain Vy, Vy,
and thanks to the nilpotent character of d., dz (B239).

1
Syu = /d?’x\/g Tr( + §FWF’“W +D?+ D,o-Dl'o + egpganU + 02
MDA — NN, o] — %Xm) (3.65)
Supersymmatric matter kinetic term This action is automatically SUSY in-

variant because of the fact that it can be rewrite as Spma; = 0. Var = 0:Vys for certain
Var, Var, and thanks to the nilpotent character of 6., d- (B5S).

_ — _ (2 — _ —_ _
Suar = [ @/ (=i D0) + iGow) — B03) — L= ) + FF iGN
+DFDY + B0 + i3D6 — (28— 1)EDg0 — 22V 1 2 r5s)
(3.66)

Superpotential term We do not know how to construct superpotential terms on
the curved space systematically. However, it must be possible in a certain way. For
example, such a construction can be found in [E0, B4]. In later discussion, we will use
this term, however the result does not depends on this term thanks to the powerful

calculation method, localization.

ol

Killing spinor || €

spin 1/2 | 1/2

R +1 | -1
Field | A, |o| X | X |D| ¢ | ¢ 0 P F F
spin | 1 [0 [1/2/1/2{ 01 0 |0 1/2 1/2 0 0

~

R | 0 |0]+1|-1]0]|-A

g

—A-D|A-1]-(a-2)|A-2

Table 1: Charge assignments for each field. R is the R-charge appeared in (B).
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3.3 Supersymmetric localization techniques

The mirror symmetry conjecture predicts an equivalence between two theories with
non-trivial interactions. Therefore, the exact check sounds impossible in usual sense.
However, a very interesting method had been introduced in [B3] which provides an
exact calculation method for path integrals of interacting SUSY theories on flat 4d
space. This method is called supersymmetric localization techniques. After the discov-
ery of it, this technique had been extended to the SUSY theories on four-sphere [32],
three-sphere |22, B3, @], and deformed spheres [@4, B8, B0}, and other various dimen-
sional manifolds. We utilize this method on M? x Sé [ER, 2, 29] which give SCI. M?
represents two-sphere S? or real projective plane RP?. The lower index 3 corresponds

to the inverse temperature. The localization technique is applicable if there are

A SUSY : 6§, A functional : V,
0S =0

A SUSY exact action : S =0V, such that
Sboson Z 0

Note that the actions defined in (BB3) and (BTH) satisfy this condition. Then, the
path integral

/ DDy e~ 510V (3.67)

can be computed from
110 = [ Dopy 5o (3.68)

because I(t) does not depend on ¢. One can derive this fact as follows.

dI(t) —t
= :/DgzﬁDw(—S) e '®
_ / DED(—5V) e’
— /D¢Dq/) §(Ve ) = 0. (3.69)

In order to perform the path integral (BBR), we can take the ultimate limit ¢ — oo

because I(t) does not depend on ¢! Then, the field configurations ¢q, 1)y which give

as o5
0

S[¢07w0] = a¢

[$0, Yo] = —w[%ﬂ?o] =0, (3.70)
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dominate. We call them locus in the context of localization. Therefore, we can expand

each field around the locus :

¢ = qu + iqga ’ ¢ = %ZJO + %7757 (371)

\/Z

then the action becomes

[, v = 2¢ 5 ¢>a 560 vl + P wa 500, Yold +O(2). (3.72)

1=5[¢0,¢0;¢,¢]

By taking ¢ — oo, only the first two parts contribute. We define it as S|[¢o, 1ho; ¢, 1]
After taking into account the cancellation of ¢ in the measure D¢D, the original path

integral can be calculated by summing up all Gaussian contributions around the locus.

/ngpw e Slod] — /D¢D1/J o~ S1b0,1030.9] (3.73)
$0,%0

Roughly speaking, this is the analog of the steepest decent method in usual integral
on complex plane. We will utilize this method, and perform the exact check of (I=3).
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4 Localization calculous of SCI with M? = §?

In this section, we mainly review the calculations performed in [ER, &1, B2, £3]. If we
consider the U(1) gauge theory, the action (BGH) defines free theory. It may sound not
so interesting, however we can turn on the matter gauge coupling in (B358) like usual
QED, this is very nontrivial theory. Once we turn on the non-commutativity, there
exist some different points in the argument, however the essence is same. Therefore,

we focus on the gauge theory with abelian gauge field for simplicity.

4.1 Vector multiplet

Locus Now, let us remind that the Lagrangian (BB3), SUSY exact Lagrangian for
vector multiplet. One can easily check that the Lagrangian defined in (BTH) can be
deformed to
Lyy = FuF" + D* + iAy" D\ — %X%A,
1
FH = §€“p"FpU + o + o5 o. (4.1)
The bosonic terms are obviously positive definite. Therefore, we can use this action as

the S = 0V term in (BZ3), and the localization locus, which corresponds to the pair
of configurations ¢g, ¢ in (BZ), is determined by the following equations:

0=F"=D. (4.2)

We can solve this BPS equation by taking

0 B
A= Amon + Bdt, g = _E, (43)

where Ao, is defined as

B 1 for0<d <
Apon = 2 (5 —cos9)dp, r=14 - OrUSUST (4.4)
2 -1 forO<v<nm

Thanks to the gauge symmetry, the parameters B, 6 are constrained as™

BeZ, 6¢€l0,2n]. (4.5)

11 The reason for B € Z is explained in the Appendix B. The condition for the # can be also derived
by the gauge symmetry.
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As explained in the introduction, in the context of the supersymmetric localization,

we expand field V' around the locus Vj which is parametrized by B, 0 :

where V represents fluctuation. It means that the path integral is composed from the

summation over B € Z, integral over 6 € [0, 27|, and path integral over the fluctuation

V:

2T
/DV@ Sym[V] _ Z/ dp /DV SYM[V] (4.7)

BeZ

Action for the fluctuation V'~ We show here the action Sy y[V] explicitly.
. 1. - - .
S = / dt / sin ﬁdﬂdap<§[8uz4,, — A2 + (8,6)2 + 3[04, — 9,4, + 5—2),
(4.8)
~ . = ~ 1=~
Stermion = / dt / sin ﬁdﬂdgp(z)ry“vﬂ)\ - 5»@). (4.9)

For later simplicity, we will omit ~ from now on, and divide the 3d gauge field A, to the

Sﬂ component A, and 1-form on S* Ay = Aydd + A,dp then the bosonic Lagrangian

reduces to
— kg dy *9 doy — af Opdy — %9 dy
Shoson = /dt/ A | A* O *9 da*sy — kg dg *3 dy 0
*ng 0 —*ng*gdg—ag‘i‘l
(4.10)

where *, is the Hodge star operator 68, £2, B8] on S* defined by
kol = sinId A dip, *odV = sinddy, xodp = —d}, *osinddd Ndp =1, (4.11)

and ds is the exterior derivative along S%:
0 0
dy = —di+ —d 4.12
2= 59 Dy ¥ ( )
Gauge fixing procedure In order to calculate the path integral, even it is Gaussian,
gauge fixing procedure is necessary. In usual procedure, one introduces Fadeev-Popov
ghost fields, and construct BRST symmetry, etc. Here, we take more simpler root

performed in [E@, B9, 2Z3]. The gauge orbit can be represented as follows.
Gauge mode : ? )| = Bl (4.13)
Atn z@m
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It gives zero modes for the fluctuation integral. We have to get rid of the mode from

the path integral. It can be achieved by inserting
§( A(n))_
into the path integral. However, the precise insertion is

6(n)

where 7 is the generator of the gauge transformation mode in (EI3).

Popov determinant is the factor recovering its discrepancy:
5(n) = App §(A™).
The easiest way to calculate App is as follows.
1= /DA LA Aty AFP/DH LeAG) At

—App [ Dy et

_ AFP/D"? 6—7 (n,d¥dn)
where the inner product for the gauge fields are defined by

(A, B) = /dt/sinﬁdﬁdgp A'DB,,.

Now, the precise measure for the gauge theory is

App 0(AYDAMDA, = App DA,

where A represents the modes perpendicular to the gauge mode A™:

(AL, Ay = 0.

As such mode, we can construct

Ay 0,d
(A?w)> = ( g 2w> s where AO = — %9 d2 *9 dg.
¢ ow

This mode gives Sposon = %(A(‘”), dfdA®), and it gives

1
DA(W) e_’sboson — .
/ AFP
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(4.14)

(4.15)

The Fadeev-

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)



Therefore, if we can identify the remaining modes which are perpendicular to both
of (A13) and (E=2), we can forget complicated effects of the gauge fixing procedure.

And the modes are represented as follows.
Ay =0,  sody %9 Ay = 0. (4.23)
The second condition is equivalent to the Coulomb gauge condition
VA" =0, (4.24)

where ¢ runs for 9, . In summary, what we have to consider is the path integral over
(A;, 0 | X\, \) weighted by the following actions.

r Actions for the fluctuation fields ~
A ! dy *9 dy — O? d A
Sé’i;on /dt/ 2) Ak, — %9 dg *g dy — O} — %9 do 2]
o *ng —*2d2*2d2—3t2+1 o
(4.25)
. ~( . 1
Stormion = / dt / sin 9dddp A(WVZ- iy (0, — 5)) A (4.26)
constrained by (E=24).
J
4.1.1 QFT on §* x S; — QM on S}
Now, we take the following eigenfunction expansion:
o j
AW,0,8) = ) Vi (0,0)Ajm(t), (4.27)
j=1 m=—j
oo
o, 0,t) = D YVim(@,90)05m(t), (4.28)
j=0 m=—j

AW, @, 1) Z Z > “n(®), (4.29)
= Z Z‘ZT%T(Q?, @)X (1), (4.30)

where Vj"m,ij, Y%, are spherical harmonics with zero monopole B = 0 explained

in the Appendix B. Then, the actions (E223) and (E=8) gives many-body quantum
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mechanics :

%gm=§3§:/ﬁtﬁ%moﬁJ(_&+jU+” iG+D) )(Am)

== jU+1) =0+ +D)+1) \ojm
+ /dt oo(—07 + 1)oy, (4.31)
S i i /dt (X* PW ) ( Sty A %)) (A;m> (4.32)
fermion — im im . ) .
j=1/2m=—j ’ ! (0 — %) -+ %) )‘;rm

The periodicities for each set factor can be read from the definition of SCI (BII) and
Table O, then,

Ajm(t+ 8) = e~ Cr=8m A (1) g (t + B) = e=Br=Bmg. (1), (4.33)

N (t 4 B) = eTImmPrmBye (), XS, (t+ B) = elPImmitmizne (1) (4.34)

€
Jm

Then, we can calculate the contributions explicitly as follows.

f Bosonic part ~

0 J

[ Paspo estien = [ ] (don® ] TT dAm(don(t))eSter

t€[0,6] j=lm=—j

o0

. “im
j=lm=—j 2

N y

where

Jj—1 1
B H H (2 sinh ﬁwﬂ%) (2 sinh g ) 7 (4.35)

L _B=b
Jm 6

Note that the 7 in resulting product runs for (—j) ~ (j — 1) not (—j) ~ (j). One

m+ J. (4.36)

can derive this results as follows. For simplicity let us denote (m,j) = [T,z ([%’n +

2 ~
Z%m} + j2>, then the denominator of (Z33) is a square root of products of the
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following towers:

(0,1)
(71,1),(0,1)
(0,2),(£1,2)
(¥2,2), (¥1,2),(0,2)
(0,3), (£1,3), (+,2,3)
(F3,3), (F2,3), (F1,3)(0,3)
(4.37)
Easily noticed, (=, j) = (1, j), so we get the result after the zeta-function regular-
ization.
-~ Fermionic part N

[ on esonen = [ T (TT TT a5 (003500085,

tGOB] j= 1/2m——]
W ~
)(2 sinh 2””), (4.38)

—ﬁ H <2smh

Lm=—j

where ws are same ones in (E230).

N J

Therefore, the numerator and the denominator in (E=33) and (E=38) cancel out, and

we get somewhat trivial 1-loop determinant.

s Total ~

/DAQDO'DXD)\ eis‘gc{sonfsfermion

=1. (4.39)
N J

In later section, we will see non-trivial contribution emerges when we consider the

theory not on S? but RP?.

4.2 Matter multiplet

First of all, the matter field in gauge theory is defined by assigning a certain represen-
tation of the gauge group. With U(1) gauge group, the matter representation becomes
the U(1) charge q € R.
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Locus The matter Lagrangian (BTG0) defines the trivial locus.

So, there is no need for summation for matter sector. And we get the following actions

for the fluctuation fields. We omit~and integrate out the auxiliary fields for simplicity.

s Actions for the fluctuation fields ~
o . TRV (qB)Q_ . 1\ A . 1\ A

Shoson = [ dt [ sinddddp(D,¢D"P + o PP — (2A — 1)9Dp — A(A = 1)¢¢ ),

(4.41)

: T qB — 2A —1
Seemion [t [ sinvaito( = iGir2,0) 1% o) - L= ),

(4.42)
N J
where ©,, represent the covariant derivative with respect to the locus gauge field (E=3):
D, =V, —iqA™", (i=17,¢) (4.43)

0

The charge g must be in integers in order to make the gauge transformation of the

matter fields as single valued function.

4.2.1 QFT on §* x S; — QM on S}

As performed in the previous subsection, we expand the component fields as follows:

o] J
0,0, 0) = D Y Vignl (9. 9)0m(1) (4.45)
j=1aBl m==j
00 J 1971172
by = D DY Tiaw, W+ Y T (0.0)U0(0)
j=198l41/gm==J ¢ m=1/2—1951
(4.46)
oW )= D D Yiw , (9,9)85(t) (4.47)
j=1a2l m==j
laBl_1/2
e > Y% R S (A T O R S S R CAD I )
j=1aBlp1jpm==J € m=1/2-1481
(4.48)
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where Y, jm, T¢ ;,, are monopole harmonics explained in the Appendix B. Then, the

action (B=33) and (B334) gives many-body quantum mechanics :

Soon= 3 Z/dmgmﬁAm)(aH—A D)0 (4.49)
j= \q2B\ m=—j
00 J (2j+1)2—(gB)? 4B . 9A—1 +
_ _ e LA EL AR —1, — 15— :
Sboson = Z Z /dt <w+m wm> ? ? ; 2_ 22 ( j—m)
|‘IB| 1/2
B
m=1/2- 1951

The periodicities for each det factor can be read from the definition of SCI (BI) and
Table @

Ojm(t + ) = el ATty (¢) (4.51)
7vbjm (t + 6) = 6(_A+1_m)/81+m52+wwjm(t) (452)

Then each factor becomes as follows.

Bosonic pert

J
_ 1
DPDp e Svoson = | | | | - — (4.53)
/ . — (2 sinh ﬂw%) (2 sinh Be; >

where

Bw), = —iq0 + (j — m)By + (j + A +m) By +ip, (4.54)
Bw?, =—igd — (j +1+m)B — (j + 1 — A —m)By +ip. (4.55)

Fermionic part

/D@Dw e~ Stermion — H ( H 2s1nh )( H 2smhﬁ

327“123‘ m——j m——] 1

), (4.56)

First term in fermionic term looks similar to the first factors of bosonic term in (E53),
but lacking the contribution of m = j. So this fermionic contribution cancels almost

half of the bosonic contributions. Second term in fermionic part looks similar to the
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second factors in (E33), there is contributions of m = —j — 1 in surplus. So this
fermionic contribution cancels almost half of the bosonic contributions. Therefore, we

get the following total contribution.
Total

2
Pwi—j—1

_ 2sinh
/ DIDGDID ¢ Sroen=Sermion — [ Z—_2— . (4.57)
> laB] QSinh%
= 2

Another representation In later section, we will use more useful representation of

(EZx2). We can shift the product with respect to j by defining

. |gB]

J =] 5 (4.58)

then

)
2 sinh —£
@) = [[ — 5 (4.59)

J=0 2sinh ﬂwa

where we define ﬁwgc‘]), ﬁwlg‘]) as follows

Bl =i(qh — p) + 252(J +14 @ —~ %) (4.60)
Bl A
Bt = —i(qh — 1) + 26, (J + "12—| + 5) (4.61)

Here we ignore the overall sign. Now, after simple deformations, we get the following
representation.

Another representation of (EZx1)

laBl ( —iqf . —1,2—A+|qB|. .2
(x(l—A)e—iqea—l> 2 (6 o X | |,l‘ )oo

(1900 A HaBT, 22) (4.62)

where (2, q)s is called quantum Pochhammer symbol or q-shifted factorial [0 :

[e.e]

(A q)es = [ (1~ A¢"). (4.63)

J=0
We used zeta function regularization to get the prefactor here. As one can noticed
by comparing it to the calculation of free harmonic oscillator in Section B, this part

corresponds to the Casimir energy.
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4.3 Result

We summarize here a toolkit for making SCI of our SUSY theories on S? x Sé.

4.3.1 Non gauge theory

In this case, we assume that there are dynamical fields,

Dy = (¢a, Fultha), ®u= (¢, Fultt,), a=1,...Ny. (4.64)

We assign each multiplet with dimension A, and flavor charge f,. Our method can

be applied to the theories with the following type of action:

Z SV, B,] + W[D] + W[D], (4.65)
where S2_7 is the action (BBB) with ¢ = 0. We can take arbitrary superpotential W

The only restriction is that the flavor charge assignments f, have to preserve W.

- SCI for non gauge theory on §* x S N
In this case, the SCI is simple:

Ny

a—Fag2—Da. 2
I(zr,0) = ][ ( 2 oo, (4.66)

S MR

N y

4.3.2 Gauge theory

For simplicity, we consider the U(1) gauge theory with single gauge field (vector mul-
tiplet):

V = (A,,0,D|)\N). (4.67)

Of course, we can add charged matter multiplets :

(I)a - (¢aaFa|¢a)7 6a = (¢aaFa|¢a)7 a = 17-~-aNf7 (468)
with A, f, and U(1) charges q,. We assume action as follows.

S[V;®, ] = Syn[V ZS% [V; @, @] + W[D] + W[D], (4.69)

mat

where Sy is the action (BBH) with U(1) gauge group. See [ER, B2] for more detail.
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- SCI for gauge theory on §* x S}

We should sum up B € Z and integrate 6 € [0, 27]:

194 B|

4 o . ;
I(z,a) = Z/O o I1 (xu—Aa)e—zqaea—fa)
a=1

BeZ

<€_ZQa6a_fax2_Aa+|an|; xz)oo

(eiqu9a+fuan+‘QaB| ; $2)oo

(4.70)
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5 Localization calculous of SCI with M? = RP?

In this section, we explain our main results on new SCI by taking M? = RP?. The

curved space RP? x S}a can be constructed from S? x Sé by taking the identification
(71'—19,7T—|—g0,t) ~ (19750775) (51)

And the QFT on RP? x S é is defined by imposing a boundary condition, we will call
it parity condition, under the antipodal identification (E) on S? x Sé. However, we
cannot take arbitrary parity condition because most of them break the supersymmetry
and it spoils the validity for using supersymmetric localization techniques. Therefore,
we start our argument from the discussion of the possible supersymmetric parity con-
dition which preserves supersymmetry under the antipodal identification (B). This
a very simple operation causes very non-trivial effects, for example the localization
locus for vector multiplet drastically changes, and the resulting SCIs differ from the

ones in Section H.

5.1 Supersymmetric parity conditions

We can define field theories on RP? x Sé by imposing appropriate parity condition
under (63) on S* x Sj. Of course, in order to use the localization method, we have to
preserve supersymmetry. As studied in [Z3] in the context of 2d supersymmetric field
theory, we can find such parity conditions compatible with the antipodal identification

() for component fields. Our guiding principles are as follows.
e The squared parity transformation becomes +1 for bosons and —1 for fermions.
e SUSY exact Lagrangians, (B63) and (BH0), must be invariant under the parity.
e Supersymmetries, 6. and dz, must be consistent with the parity.

Let us comment on the second assumption. This requirement is too strong because
one should assume parity invariance of not (B63) or (B6H) alone, but full Lagrangian,

e.g. (EBY). We will comment on this generic case in Section [@.
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Vector multiplet We find a set of parity conditions for the vector multiplet as

follows.
Ag(m =0, m+ @, t) = =Ap(0,¢,t), Ap(m—0,m+ ¢, t) =+A,.(9,0,1),
o(r =19, 7+ ¢, t) = —o(¥,p,t),
M — 0,74 @, t) = +Him A, 0,t), Mrx—0,7+p,t) = =i\, ¢,t),
D(mr — 9,7+ p,t) = +D(V, p, t).

(5.2)

One flavor matter multiplet The one flavor matter multiplet has two choices:
(=0, 7+ ¢,t) = +6(0,0,1),  d(r =0, w4+ @, t) = £o(9, 0, 1),
b — 0,7+ ¢,t) = Finp(9,0,t), O(r =0, 7+ ¢,t) = xinpd, ¢,t),  (5.3)
F(r =9, m+ p,t) = +F(9,p,1), F(r =9, 74+ @,t) = £F (0, ¢,t).

Many flavors matter multiplets We use a,b, ... as flavor indices a = 1, ..., Ny,
then

Ny Ny
¢a(7T - 797 T+ 2 t) = Z Mabgbb(ﬂa 2 t)a qba(ﬂ- - 197 T+ ©s t) - Z Nab(bb(ﬁ’ ® t)’
b=1 b=1
Ny Ny
¢a(77 — 19, T+ @, t) = _Z’Yl Z Mabwb(/ﬂ? ¥, t)) Ea(ﬂ- - 197 T+, t) - @'71 Z Nab@b(ﬁ’ ) t)’
b=1 b=1
Ny Ny
Fa(ﬂ' — 79, ™+ @, t) = Z MabeO?? 2 t>7 F(l<ﬂ- - 197 T+, t) - Z Nabﬁb(ﬂ’ ® t)’
b=1 b=1

(5.4)

,,,,,

by

N'M=1, M’=N?=1. (5.5)

Comments on the parity condition Suppose we have a doublet and the parity

condition described by the 2 x 2 matrices

01
won- (1), -

then we can lift its Lagrangian on RP? x S} to the one on S§? x S} by defining a new
matter multiplet on §* x S} as

@1(19, Spvt)? 19 € [07 g]

O, p,1) = (5.7)

(I)2(797 Spat)7 (UAS [gaﬂ'] |
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The authors of [Z3] also commented on this fact. This is quite similar to the doubling
trick in string theory. In Section B, we use such parity condition exactly in the context

of 3d mirror symmetry.

5.2 Vector multiplet contribution

We focus on the gauge theory with abelian gauge field for simplicity as same as in the

previous section.

Locus Now, let us remind that the Lagrangian (B63) again,
EYM::}wa+aD2+iX¢7%A——%X%A,
1
FH = 56“’”Fp0 + oo + o o. (5.8)

The bosonic terms are obviously positive definite. Therefore, the localization locus is

determined by the following equations:
0=F"=D. (5.9)

However, we cannot take the Dirac monopole configuration A, in (E23) because it
breaks parity invariance under (B32). Instead of it, we can take the flat connection

A on RP?.

flat

0
A:Aﬁ+3ﬁ,a=a (5.10)

where A{(f;g represent holonomies of RP? along the non-contractible cycle [y] # 0 €

71 (RP?). It is also characterized by
6 A
el by A = £1. (5.11)
The constraint on the parameter 6 is invariant.

0 € [0, 2n]. (5.12)

As explained in the introduction, in the context of the supersymmetric localization,

we expand field V' around the locus V{, which is parametrized by +1,6 :

V = Vo[£1,6] + V, (5.13)
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where V represents fluctuation. It means that the path integral is composed from
the summation over +1 and integration over § € [0, 27|, and path integral over the

fluctuation V:

2 ~ ~
/ DSVl = 3 / o / DV e-Srull] (5.14)
+1 V0 g

Note that there is no monopole but £1 holonomies, so the summation is not infinite

summation over the integers but constructed of just 2 terms, +1 sector and —1 sector.

5.2.1 QFT on RP* x S} — QM on S}

The gauge fixing procedure in the previous section also works on RP? x S, so we can

use the Lagrangians

T
A — %o dy %o dy — O? — %9 d A
ngson:/dt/ 2 A % %9 (g %9 do ; *9 (o 2 ’
2 *2d2 —*ng *2d2—83+1 2
(5.15)

L 1
Stermion = / At / sin 9dddy A(WW Vi (0 — 5)) A (5.16)

constrained by (I224). One might think that the expansion of each field with respect to
the harmonics X/jim, Wy Yim works. However it is not. Precisely speaking, the range

of summation for j is constrained because of the parity condition (E2). As one can

find in the Appendix of [Z3], each harmonics behaves as follows™ :

ij (7?_19’71-_‘_@0) = (_1)j)/}m(197 (p)> (517>
\Ij;'tm<7r - 197 T+ 90) = :FZ(_l)J_%’yl\Ij;tm(ﬁv 90)7 (518>
Vil — 0,7+ ) = (15" V(0. ). (5.19)

We have no fermion zero mode, and we take eigenspinor ¥ for a modified Dirac op-
erator —iy3y'®D; rather than T for the Dirac operator —iy'®,. Vj,, is the 1-form
constructed by (Vj,)9dd 4+ (Vjy,),de. The harmonics which preserves supersymmetric

parity conditions in (B32) only contribute to the expansion, then we get the following

12 - 2 . . .
Our Vj, corresponds to C%,, in their notation.
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expansions.

AW oty = ) Z jm(2), (5.20)

j=2k+1m=—j
k>0

> Vi@, 9)osm(t), (5.21)

j=2k+1m=—j
k>0

MO, t)= > Z Vo (0,00, + Y Y UL (09N, (5.22)

j=2k+1/2 m=—j j=2k+3/2 m=—j
k>0 k>0
K= X3 Tl D DI SR AT SUNNCES
j=2k+1/2 m=—j j=2k+3/2m=—j
k>0 k>0

Then, the actions (A22Z3) and (EZ28) give many-body quantum mechanics defined by

the following actions :

Sto= S Z/dt . %)( PG VAT )( ; )
j=2k+1m=—j j(]+1) _at +](]+1)+1 Ojim
k>0

(5.24)

S =1 3D [t % (6+ 5+ @@= )

j=2k+1/2 m=—j
k>0

Z Z /dt )‘Jm 1) (at——>>)\+ (5.25)

j=2k+3/2m=—j
k>0

The periodicity for each field can be read from the definition of SCI (Bd) and Table

M, then it becomes as

Ajn(t 4 8) = e Br=Pm AL (1), oyt + ) = e Pr7BIme. (1) (5.26)
N (t + B) = eTImmBbmBaxe (@), X (E+ B) = eTImftmi e (1), (5.27)

Therefore, we get each contribution as follows.
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I Bosonic part ~

/DAQDU G_Sgg’cson :/ < H ﬁ dAjm<t)dem(t)) e_sgc{son

te[0,8] Jj=2k+1m=—j
k>0

= II 1II ! : (5.28)

. . : Wim : Wi+1,m
j=2k+1 m=—j (2 sinh =5 ) (2 sinh == )

k>0
- J
where
%m:&;@m+1 (5.29)
r Fermionic part N
/DXD)\ 6_Sfermion
[ele] 7 N 0o j N
- H ( H H dA]_m (t)d)\]m(t)> < H H dA;—m(t)dA]m(t)> e_sfermion
te(0,8] j=2k+1/2m=—j =2k b3 /2 M= j
k=0 k>0
J j
1 Bwjm . ﬁwj-‘rl,m
- 1l ((IT zsimn =) (T 2sin=252). (5.30)
j=2k+1  m=—j+1 me——j—1
k>0
h J

Therefore, in contrast to the case of M? = S§? (E23d), we get the following non-trivial

contribution even from the vector multiplet.

e Total ~

/DAQ,DO-DXDA eisggsonfsfermion

92 sinh Bwj+1,2_(]-+1> () s
- H 9 sinh 2% =T (2% %) (5.31)
j=2k+1 S —5— oo
k>0
- J

5.3 Matter multiplet

Locus The matter Lagrangian (BBGH) defines the trivial field contents:

O=¢=¢p=F, O0=¢=1=F. (5.32)
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s Actions for the fluctuation fields ~N

Shoson = / dt / sin Jdddp <DM$]D>“¢ — (28 = )¢y — A(A - 1)5¢), (5.33)
i(2A - 1)

Stermion = [ dt [ sindddde( — i(Py*Dytp) — (Vys1)) ), (5.34)
i -

where D, represent the covariant derivative with respect to the locus gauge field (610):

D; =V, — iquﬁat (i =19, 9), (5.35)

0
]thgt:at—iq—

5 (5.36)

5.3.1 QFT on RP* x S} — QM on S}

Here, for simplicity, we focus on the following two cases.

One-flavor matter multiplet First, we treat the e’ % 9% = 41 case in (E3). In

this case, we have to restrict j as follows:

o9, ¢, 1) Z Z ey (9, 0)dim (1), (5.37)

j=2k m=—j
k>0
Yo t) = Y Z R gl (0, )0, (0 + > Z et g (9, ), (1),
j=2k+1/2m=—j j=2k+3/2m=—]j
k>0 k>0

(5.38)

o9, 0, Z Z 7Y (9, 0) B (L), (5.39)

j=2k m=—j
k>0
D(9, 0, 1) Z Z —i J* qAﬁat\I/ -, Z Z —if* qAﬂat\Ij (197¢)Ej_m(t)7
j=2k+1/2m=—j j=2k+3/2m=—j
k>0 k>0

(5.40)
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where Y, \I/;tm are harmonices explained in the Appendix B. Then, each action (B233),

(B334) gives many-body quantum mechanics :

Sboson - Z Z/dt g_bjm<j + A + gt)(] + 11— A - gt)gbjmu

(5.41)
j=2k m=—j
k>0
J
. — (.1 2A — 1
Shoson = 1 Z Z /dt ¢jm<(] + 5) - (©t + 9 )) ]+m
j=2k+1/2 m=—j
k>0
J
, — o1 2A — 1 _
—i—z‘ Z Z/dt ¢jm<—(j+§)—(©t—i— 5 )) o (5.42)
j=2k+3/2m=—j
k>0
The periodicities can be read from the definition of SCI (B1) and Table O :
¢jm(t + ﬁ) — e(—A—m)51+mﬁ2+iu¢jm(t> 5'43)
Vim(t + ) = e(_A+1—m)ﬁl+m62+ill¢jm(t) (5.44)
Then each contribution becomes as follows.
. Bosonic part ~
[ pos e = [ ] (] 1 d6,u60d6,u(0) e
te[0,8]  j=2k m=—j
k>0
J
1
— H H o IR (5.45)
j=2k m=—j (2 sinh %) (2 sinh %)
k>0
N J
where
Bwjy, = —ig0 + (j —m)B1 + (j + A +m)By + ip, 5.46)
Bl = —ig) — (j+1+m)Bi — (j+1— A —m)Bs +ip. (5.47)
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I Fermionic part ~

/ D%’Dﬂ) e_Sfcrmion

-JIL( T T 5,0 0) ( TTTT 05 (0) S

tel0,8] j=2k+1/2m=-—j j=2k+3/2m=—j
k>0 k>0

= H ﬁ <2smh ) H H <2smh

j=2km=—j—-1 J=2k+2m=—j
k>0 k>0

N J

i ‘ﬁy qAﬂat —

) (5.48)

e Total contribution for e +1 sector ™

1

/DEDQbDEDw e_SbOSOH_Sfermion — ﬁ 2

j—2k 2sinh
k>0

=190~ F £ 2-0). Y
(etiddatfad; 1)
(5.49)
N J

i ﬁy qAﬂat —

A—1 3 1
= erT €+iq904+1f (

Now, we turn to the contribution for e —1 sector. The only difference is the

range for j in bosonic sector. After repeating similar procedure, we get the following

contribution.
e Total contribution for e'% 948 — _1 sector N
. —igh . —f . .(A=A). 4
X )y _Sboson_sfermion J— —a-l —1q9 —lf(e a Q T 73: )OO
/D¢D¢D¢D¢ ¢ —rorettad (etia0 ot Fx+A); o)
(5.50)
- Y

Two-flavor matter multiplets with (E8)-type parity matrix.
In this case, as we have noted in (B4), we can construct one-flavor matter multiplet

on §% x S§ with zero monopole, therefore we easily get the result from (EG3).
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- Total contribution for a doublet with parity condition (B) ~

/ . [Dalpqslpalpf(/}l] [D$2D¢2D%2D¢2] t9_5bosonl —Stermion1 —Sboson2 —~Sfermion2
RP?x 51

— / D$D¢DED¢ e_Sboson_Sfermion
S2x St

—igh, —f.2—A. .2
_ (e e (5.51)
(ezq9a+fl»A; 12)00

N J

5.4 Result

We summarize here the toolkit for making SCI of our SUSY theories on RP? x Sé,
focusing on the multiple of two types matter multiplets discussed in previous sub
subsection.

5.4.1 Non gauge theory

In this case, we assume the following dynamical fields.

Oy = (¢, Fultha), Pu= (4, Falth,), a=1,.. N with +1in (E3),  (5.52)
A A —A ouble : :
CDfQ = (¢f27Ff12|¢ﬁ2)7 CI)12 - (Cbl 29 1,2|¢1,2)a A= L, -o-;N}i Ple with (Eﬁ) m (lﬂ)
(5.53)

We assign each multiplet with dimension A,, A4 and flavor charge f,, f 4. Our method
can be applied to the theories with the following action:

Nsingle Ndouble

Z ST [@a, Ta] + Z SE @, By,) + WO + WE],  (5.54)

where ST27 is the action (BGB) with ¢ = 0. We can take arbitrary superpotential W
off it is invariant under the parity conditions. The flavor charge assignments f, f 4

have to preserve W.

2 1

- SCI for non gauge theory on RP” x 53 ~N

single double

N Aa—l l (aifax@*Aa); l'4>oo Nf (af.fAm(27AA); 'TQ)OO
x (L
e (atfazBa;zt)e 4 (affazB452%)
(5.55)

~ J
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5.4.2 Gauge theory

We consider the U(1) gauge theory with single gauge field (vector multiplet):
V = (A,,0,DI\N). (5.56)

Of course, we can add charged matter multiplets. But for simplicity, we consider

matter singlets only :

Dy = (Ga, Faltha), Pa = (0g, Falth,), a=1,..,N; with +1in (B3), (5.57)
with A, f, and U(1) charges q,. Our assuming action is

S[V;®,®] = Syu[V Zsmt Vi ®,, @] + W[0] + W[P], (5.58)

where Sy, is the action (BBH) with U(1) gauge group. See [Z9] for more detail. We
have to sum up all locus contributions. It means that we should sum up + sector’s

contributions and integrate 6 € [0, 27]:

2 1
- SCI for gauge theory on RP” x Sj ~
.T Oé - b H«T Aa4_1 +4q9 +4.fa( iqgo‘/i ax(Qan)-xél)oo X xi—(ZA,Z[A)OO
(etid o+ Fagda; 24) (2% %)
2 d9 4 igo 1y (e7 0 Fag(t=Ra) g4y i(m‘l;x‘l)oo
6 « (e+z‘q9a+fax(2+Aa);x4)oo Xz (xQ—, x4)00‘
(5.59)
N J
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6 An application : 3d abelian mirror symmetry

In this section, we apply the exact results of SCI to the check of a conjectural duality
called three-dimensional mirror symmetry [, 03, [[D] , duality between two distinct
quantum field theories, SQED and XYZ-model.

6.1 Conjectual Duality between SQED and XYZ-model

First, let us survey each theory’s Lagrangian, global symmetries, etc.

6.1.1 XYZ-model

Degrees of freedom This is a non gauge theory constructed of three matter mul-

tiplets

X = (¢X,FX7 W}X), Y = (¢y, Fy, |¢y)7 7 = <¢Z, FZ7 |’¢Z), and their conjugates.
(6.1)

Dimensions FEach multiplet have the following dimensions:

Ay =Ay=1-A, Ay=2A, (6.2)

Lagrangian Lagrangian is as follows.

Sxvz[X,Y, Z]

— STOX] + SOV + 899(7] + / 02 (XY Z) oo + / (XY D)5 (6.3)

The assignments of the dimension comes from the superpotential XY Z term.

Global symmetries There are two global symmetries called U(1)y and U(1)4. We

denote here the corresponding flavor charges as fy,, f 4. See Table .

X|vy |z
fol+1=1]0
Fal+1]+1]=2

Table 2: Flavor charge assignments
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Parameters of the vacua As well known, scalars can take vacuum expectation
values (VEVs). In this case there are three scalars. Therefore, the parameters of the

vacua are the following three VEVs:

(Ox), (Bv), (92, (6.4)

6.1.2 SQED

Degrees of freedom This is a gauge theory constructed from one vector multiplet

and two charged matter multiplets. Q has a charge +1, and Q has a charge —1.

(Alh g, D|X7 >‘)a (65)

V =
Q= (9q, Fo, [Vq), Q= (65 Fa,1s), and their conjugates. (6.6)
Dimensions FEach multiplet has the following dimensions:

Ag=Ag=A. (6.7)

Dual photon In 3 dimension, d.o.f. of the massless vector is equivalent to the d.o.f.

of a real scalar p through the following equation :

1 1%
§€Wpr: up- (6.8)

The real scalar field p is called dual photon.
Lagrangian Lagrangian is as follows.
SsenlV,Q, Q1 = Syu[V] + ST Vi Q1 + S5 V3 Q). (6.9)

Global symmetries There are two global symmetries called U(1); and U(1)4. We

denote here the corresponding flavor charges as f 75 f 4- See Table B.

eotip | o—(o+ip) Q Q
frl +1 ~1 010
fal 0 0 +1 | +1

Table 3: Flavor charge assignments
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Parameters of the vacua The scalar VEV have to preserve the gauge symmetry,
so the meson field, the latest component of QQ is one of the good coordinates. The

other ones are e”*. Therefore, there are three relevant VEVs.

(et?), (7T, (dgda). (6.10)

6.2 Check of M? = §? case

At the beginning of the discovery of this duality, there were some indirect checks,
moduli space equivalence, parity anomaly matching, etc [, [T]. After the develop-
ments of the exact calculation of BPS sectors based on localization techniques, we can
see its duality in the form of mathematical formula. For example, through the sphere
partition function Z, the equivalence Zxy 7 = Zsgrp reduces to the identity [E4, I3

1 o ipT
:/ do—> (6.11)

5 :
cosh £ oo coshmx

This is, the Fourier transformation of the cosh™" function. In this section, we review
recent developments of the precision check of the duality by using superconformal
index on S? x Sé. In this section, for simplicity, we turn on only the fugacity for U(1) 4

global symmetries.

6.2.1 SCI of XYZ-model

According to the formula in (EB8) and the charge assignments in Table B, we get

(6.12)

I oy (07T 2 (0220 )
Xyz (T, o) = ((a+1x(1—A);x2)oo> (2222, 12)

For example, we can expand it with respect to = by taking spatial values for A =
1/2,a =1 as follows

I}lg/\?z(l‘, 1)=1+ 2012 4+ 30 + 2%/ + 2% + 2257 + 4P + 427/ — 22972 (6.13)

This means that there are infinitely many BPS states (B4) as summarized in Table .
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H+ 5 0|1/211|3/2]2]5/2(3]7/2|9/2
Hy—#;inBPSstates 1| 2 [3] 2 [1] 2 [4]| 4 | =2

Table 4: (613) indicates these BPS spectrum

6.2.2 SCI of SQED

According to the formula (EZ70) and the charge assignments in Table B, we get™

ISAQED<x7 ah)
002~ AHBl, 42)

_ Z 27rd_9<;13(1_A)a>B (e—z‘eax2—A+|Bl;x2)oo y (e o (6.14)
 J or (e®a—1xA+IBl; 22) (e~ 1xA+IBl 32) :

By using mathematica, we can get numerical value for A = 1/2, e = 1 as follows:

IsléQQED(x, 1) =1+ 222 + 30 + 2232 4+ 2% + 2252  4a® 4 427% — 2292 - ... (6.15)

As one can see, this looks in agreement with (B13). In fact, one can find the analytic

proof of

IRyz(z, ) = ISAQED<5U7 a ), (6.16)

in Appendix C.

6.3 Check of M? = RP? case

We can also check the duality through SCI on RP? x S é This case, we have to identify
supersymmatric parity conditions in each side. The hint for it is the correspondence

of the VEVs [I3].

(0x) = (e7), {dy) = (" "™7), (62) = ($g%0). (6.17)

Now, let us remind our parity conditions for component fields in vector multiplet (B32).

As one can simply check,

o+ip — —(o+ip) (6.18)

13 The reason for taking a~! not o in (EId) is that the sign of the conserved current for U(1) 4 is

reversed under the mirror symmetry [E3].
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under the antipodal identification (BX). And we choose here the parity for matter
fields in SQED as

b — Oq, b5 — Pp, (6.19)
then, (BI7) suggests the following parity conditions for XYZ-model:

bx S v, 9z — oz (6.20)
The parity conditions (EZ0) mean the matter multiplets X and Y form the doublet
with the parity matrix (E8). The condition (E20) means that the matter multiplet Z
is singlet under the antipodal identification.

6.3.1 SCI of XYZ-model

According to the formula in (B53) and the charge assignments in Table 1, we get

2.2(1-A). —1,.(1+A). .2
A _ +28-1 (Od T ;L )OO (CY x ;X )oo
el a) = (:B T > (a~ 255%,334)00 (=2 22) (6.21)
The spatial value for A = 1/2, & = 1 becomes
I;(/Y?Z(ar,l) =142+ 42—t 420 4 2V g — BT
(6.22)
This gives totally different contributions compared with (EL3).
6.3.2 SCI of SQED
According to the formula (B559) and the charge assignments in Table 2, we get
ISAQED<x 0‘_1)
/271' d0< . 71> Gax(ZfA);IA)OO y (Gszl' 4)00 ( 4)00
. (ePa a8, 2%) (efa xA $4)oo (2% %)
2 d6 3 % 710 ( A);J'A)oo (619ax( A),Jf )oo (x4;x4)oo
= ) (00 T2 ) ) . (e Pa 1ot . (oFat)
(6.23)

This gives

Ié(/;ED(x,l) =142 4o+ 42—t 4200 4 V2 — B2 T
(6.24)

The reader can find the exact proof for this equality in Appendix T2
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7 Concluding remarks

In this thesis, we performed exact calculations of the SCI based on the supersymmetric
localization method. We considered supersymmetric QFT on S* x S§ in Section 8,
on RP? x Sé in Section B. By integrating out the degrees of freedom along the 2-
dimensional surface, we got many-body quantum mechanics. The families of many
particles coming from the reduction along the S? are different from the ones along
the RP?. In this sense, we may be able to regard that the difference between the
SCI on S? x Sé and the SCI on RP? x S}, is the difference of the Hilbert space H in
(B). And we also applied these two SCI’s to check the conjectural duality, 3d mirror
symmetry or equivalence between XYZ-model (B3) and SQED (E3). As one can find
in Appendix 0, the equivalence can be recognized by the uses of the mathematical

formulas.

) 1 _ e Ramanujan’s summation formula (C.7)
S7 x S5 case :
e ¢-binomial formula (C.13)

RP? x S} case: e g-binomial formula (CI3)

Naively speaking, the use of Ramanujan’s summation formula is necessary for summing
up the monopole numbers B € Z. And the use of g-binomial formula is necessary for
summing up the contributions from the residue integrals, so it comes from the integral
over § € [0,27]. In later case, as one can notice, the following unnamed formulas are

important.

(A;0)u = (A *)(Ag )i (A @) = (1 — A)(Aq; ¢*)i(Ag?; ¢*)i,  for I € N.
(7.1)

Instead of the existence of the Dirac monopole on S?, this formulas are algebraic rep-
resentations of the & holonomies along RP?. In summary, in the context of the mirror
symmetry, there are the following correspondences between algebraic mathematical

formula and geometric physical object.

Ramanujan’s summation formula < Monopoles on S?, (7.2)
No name formulas in () < Holonomies along RP?, (7.3)
g-binomial formula < Holonomy along S é (7.4)

Thanks to the duality between two QFT's is realized in such way, we can observe how

the duality works in mathematically rigorous way. These kinds of understandings of
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QFT are inevitable for studying the non-perturbative structures of QFT, and con-
versely, the duality provides unexpected relationships between different mathematical
objects. 1 guess, no one can imagine that the above formulas, including (EI1), are
related under the concept of mirror symmetry. Therefore, the study of the dualities

in quantum physics is fruitful and very interesting research area definitely.

One more comment on ongoing project As noted in Section B, there may be
different supersymmetric parity conditions. This is as follows.
Aﬂ(ﬂ - 197 T+ @, t) = +A19(197 @, t)v Atp,t(/ﬂ - 197 T+ P, t) = _Acp,t@?? P, t)a
o(r =19, 7+ ¢, t) = +o(V,p,t),
)‘<7T - 197 T+ ®, t) = _271)\(197 2 t)7 X(ﬂ- - 197 T+ ¥, t) = +271X(Q97 ®, t)?
D(r — 9,7+ ¢, t) = —=D(¥,p,t).
This condition also preserves SUSY and U(1) Yang-Mills action (BTH). However, it

breaks the invariance of the following differential operator.

(7.5)

because under the above transformation, we get
(0 —iA)? — (0 +iA)>. (7.7)

In order to overcome such problem, we have to turn on two matters with + charges
respectively. Happily, we have such mattes in SQED, () and Q. We are now trying to
check our above consideration’s validity based on the check of mirror symmetry. We
seem to be close at the correct understandings, however, we still have not get answer.

According to our calculation, the SCI of XYZ-model becomes

1 2 (a* +2)2%* (o — a4+ 2) 254
ﬁ+<a+a>%+ a? + asd
2 2 2 2 2
+lat+ = —2) 2t ([P = —a—= )2+ [P+ = -2 — = 2]V
at ad o'

afb a?
(7.8)
And the SCI of SQED becomes
1 N 2V/x N (a* 4 2) 2%/4 N 22°/4
Vx o) a? ad
9 2_24 9/4 12 8_24 2 11/4
Q e e

There are many terms in agreement, but still, there are many junks. There seem to

be something missed. We hope this problem to be solved in near future.
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A Some arithmetics for the thesis

In this appendix, we summarize and sometimes derive some mathematical formulas

which are relevant in the thesis.

A.1 Trigonometric functions

As well known, the trigonometric functions can be represented as infinite products :

2

sinmz =7z H (1 - —) sinhmz = 7z H (1 + %) (A.1)
n=1

coswz:ﬁ@—ﬁ), coshﬁz:ﬁ(l%—ﬁ). (A.2)

One interesting application is an infinite product formula for 7:
I S (1)? T r /(2n)? — 1
3I04SR
sing =511 n ) T2 Ul (2n)?
(2n — 1 2 1
:_H( n ”+ )>. (A.3)

This is called Wallis” formula.
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A.2 Zeta function

We use the zeta function regqularization throughout this thesis. This regularization
corresponds to introducing a soft cutoff to the UV momenta [2]. The zeta function
is defined by

((s) = Zn‘s for Re(s) > 1, (A.4)

and is analytically continued to whole complex plane s € C. One can try to calculate

particular value for fixed s by introducing soft UV cutoff for n. For example,

o0 o

(O ~ D18 e
n=1 n=1
= 6_6 = 1 - 1
I—e e —1 6(1 + e+ O(€2>>
_ 1(1 Ly 0(62)) 1 1o (A.5)
€ 2 e 2 ’

in this regularization, the “scale” for the cutoff corresponds to € and UV limit is e — 0.
Obviously, the divergent first term in (BA) represent UV divergence. Now we take

the following regularization:

e—0

¢(0) := lim [ie-m - %] - —%. (A.6)

In fact, it is known that this procedure reproduces the precise analytic continued value
for ¢(0). We would like to derive the value for {'(0). By differentiating (A=) with s,

we can get
((s)=— Zn‘s log n. (A7)
n=1
So the value for s = 0 may be

¢'(0) ~ — ilogn = —log ﬁ n. (A.8)
n=1 n=1
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This divergence can be regularize by using Wallis’ formula and the regularized value

of ¢(0) as follows. 1st, by deforming Wallis’ formula,

= 1 (2n)
71_[1 2n — 1 2n +1) H - (2n)*(2n = 1)(2n+1)

-(II)(11 )(ﬁ@n ) (M o)

n=1 n=1 n=1

= (=) () (I (1T )

n=1 n=1

) - @) o

2nd, by taking /> We arrive at

ﬁ n ~2m. (A.10)

Then, by substituting it to (A=), we get

(o) = —% log 27 (A11)

A.3 Gaussian integrals

The gaussian integral

/ dz e 3 =/2x (A.12)

o0

is the most important integral in this thesis. Here, we summarize basic facts of Gaus-

sian integrals of bosonic degrees of freedom x; and sermonic degrees of freedom ;.

Bosonic case

dx; 1
Real Gaussian : / Lema XywiMim — _— A.13
H vV 27T 1/ det Mij ( )
d zd | T, EM 1
Complex Gaussian : / H e det My, (A.14)

Fermionic case

Real Gaussian : /Hdz/)ieézif vibisi = /det M, (A.15)

Complex Gaussian : /Hd@/}idg@e 2 25 ViMis¥s = det M;; (A.16)
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B Monopole spherical harmonics

As well known in the context of Schodinger equation with spherically symmetric system
and Laplace equation etc, the spherical harmonics Y}, (1, ¢) diagonalizes the Laplacian

on S? :

. 1 1
ViV (9, ) = ( Dy sin 99 + —82>ij(79, o)

sin ¥ sin? 9
= —J(1 + 1Ym0, ¢). (B.1)
This is a consequence of the fact that the Laplacian V;V¢ on S? can be regarded as
the squared orbital angular momentum L2, Here, let us remind the definition for the
orbital angular momentum operators:
Liily = (£ 0y +icotvd,), Ly =—id,. (B.2)
Of course, Ly, Ly, L3 satisfy the SU(2) algebra:
[LA, LB] = iEABch. (B?))
The spectrum of —V,;Vi = [2 = L2 + L2 + L2 is purely determined by this SU(2)
algebraic structure:
LY (9,0) = j(j + DY (9, 9), (B4)

In this appendix, we review extensions of this construction.

Monopole background Consider a background U(1) gauge field
B
Apon = 5(;@ — cos ¥)dp, (B.6)

where x is +1 when we take a coordinate patch around north pole ; 0 < 9 < m, and
—1 when we take a coordinate patch around south pole ; 0 < ¥ < 7. The gauge field
around north pole, say A", and the gauge field around south pole, say A° are related

by the following gauge transformation:

A" = AS g ldg, g =P (B.7)

mon mon

Now, in order to define the gauge transformation ¢ as single valued function on S2,
we have to take B € Z. This is famous Dirac’s quantization condition for monopole

charge.
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Monopole harmonics By using the background gauge field (B), we can generalize

the orbital angular momentum operators (B32) :

| B B
T tidy = eW< 0y +icot V(0 —iA,) + 5 sinﬂ), Jy=—i0, ¥ 5. (BS)

One may wonder the physical meaning of this definition but it becomes clear when we

represent them by using x; = rsind cos ¢, o = rsind sin ¢, r3 = r cosV:

) .- BF¥
J=7x (—N+Am0n) + ?f‘ (B.9)
T

J is composed of orbital angular momentum under the background gauge field (B8)
and the angular moment of the monopole itself. Note that the value for A, on north
pole patch and south pole patch are different, so J; &+ Jy are not usual differential
operators. Precisely speaking, the operators (BX) act on not functions but sections of

certain non-trivial vector bundle. These operators satisfy
[Ja, Jp] = ieapcdc. (B.10)
In the following sub-subsections, we briefly summarize the eigenstates for J 2 s

Tlj.m) = j(j + 1)|5,m), (B.11)

with spin 0, 1/2, 1, respectively. For later use, we define monopole covariant derivative
@z‘ = Vz — Z'Amoni’ (Bl?))

where V; is defined in (BZ23), the usual covariant derivative with respect to the spin

connection.

B.1 Scalar harmonics Ys

fujm

With a spin 0 field, scalar field, one can verify
) B?
0,9 = —(ﬁ - —). (B.14)

This fact means that we can diagonalize the monopole Laplacian ©;9° on S? with
the state satisfying (B) and (BI2). Let us define the spin zero wave function as
Yg’jm(ﬁ, ©), then we get

DDV (0, ) = = (30 +1) = 57 ) Y2 4 (0, 9) (B.15)
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By repeating well known argument of orthogonality, we can also derive
/sin Jdidp Yéyjm(ﬁ, gp)Y%j,m, (0, ) = i Omm- (B.16)

If and only if j > |2, Yo jp 18 normalizable. See [[Z3] for more details.

Vs

B.2 Spinor harmonics Tg B

Jm? Jm

Spin 1/2 monopole angular momentum operators satisfy the following relation.
- , 1 B\2
T =~ = 1+ (5) B.17
spinor (fy ) 4 + 2 ( )

Therefore, by taking square root of this eigenvalues, we can diagonalize the monopole
Dirac operator —iy'®; on S? with the spin 1/2 state satisfying (B0) and (BI2).

Eigenspinors for —iy'®;

As one can notice, there must be two modes:

w (25 +1)2— B2
—iy Qingm(ﬂ,cp) = iungﬁéjm(ﬁw), pyp = v 5 (B.18)

where the two modes are exchanged by the multiplication of vs:

WTH,0,9) = T5,,(0,9) (8.19)
And the normalizability requires j > |2£‘ — % When j = @ — %, we have one zero
mode:
— z’yi@irt’%jm(ﬁ, @) =0, (B.20)
WY, (0, 0) =sign(B)Y% , (9,¢). (B.21)
\Ifgjin? (9, ¢) are orthonormal:

/ sinddddy Y% (0, ©) 1% o (00) = 08,5+ Ormms - (B.22)
2 2

See the appendix of [[] for more details.
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Eigenspinors for —iv37'®;

One can construct eigenspjnors for —iv3y'®; by taking

\II:E‘ jm(ﬁ’ 90) = (1 - i’YS)Tzédm(ﬁ? 90) (B23)

These spinors give following formula
—iyy Di (0, 9) = Fipp Vs (9, 0) (B.24)
We define corresponding ¥ as

/sin vdidp @%’jm(ﬁ, ©)730% (05 0) = 5851 O - (B.25)
2,

B.3 Vector harmonics V}

f?]m
By repeating procedure similar to the case represented above, we can make vector
harmonics [[[3]. However it is somewhat complicated, so we would like to concentrate

on the case of
B =0, Vﬂ/jzm(ﬁ, ) =0. (B.26)

This vector satisfies the following formulas [ET]:

ViVin (9, 0) = VoV (0, 0) = Vi5(§ + 1)Yjm (9, ), (for j > 1) (B.27)
vl‘/ﬁn(ﬂa 90) - V2V7]’}TL<197 ()0) = 07 (fOI‘ j = _1) (B28)

When j = ‘—5‘, the mode with (BZ28) becomes zero. Orthonormality condition is
[ sin0dide Vi 0,00V 0, = 638 (B.29)
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C Proof of I)A(YZ = ISQED

C.1 M?=S§? case

The following argument is originally found by [B3]. In order to calculate this complex

integral (EId), it is useful to change the integration variable from 6 to z = e¥:

Z]{ L0-2) )IBl(z Lag?=A+IBl: 42y y (zax?=AFIBL 22
2mz (za~1zAFIBl 22) o (2 la1zAHBlL 22)

(C.1)
then, the problem is which poles are chosen. We assume here that
la 1Bl < 1. (C.2)
Then, the relevant residues are located at
g = HAHBl T 1=0,1,2,. .. (C.3)
and the integral becomes
Z Z ( >|B| ( 2(l—1+A); $2)<>o ($2(1+l)+2\B\; CL,2)()@ 1
>< )
2.2 (02220 aHTBD), 32) I N P
(C.4)

where (4;q); = Hf:o(l — Aq"™). Now, we can observe the following fact: the |B| in
the series (C4) can be replaced by B [B3, 3] , and the following formula:

(A;2%) o

A 2B. 2 —
( xz 7‘r)00 (A;.T2)37

(C.5)

where (A;q)_; = [._,(1 — Ag™")~" for [ > 0. Then,

> 2(1-14+A). x) ( 2(1—|-l);l,2)OO 1

Z —2112 (I+A). x2)oo (LE2, x2>oo ($_2l; $2)l

=

—2,.2(144). 4.2

B (q :
> (0 0) " e,
(z ;4%)B

BeZ

N

n'g

‘ 1st key terms‘
(C.6)

Now, we use the following formula in order to deform the ’ 1st key terms‘ :
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Ramanujan’s summation formula [[0]

. b. . q.
Z B B _ <Q7Q>oo<aq; Q)oo((lZ; Q)oo(gzaQ)oo (C?)
o D5 (0;0)00(L5 @)oo (25 @)oo (355 @)oo
In our case (C@),
g=22, 2= (x(l—A)Oé)’ a = (o 2z2H)) | p = 204D, (C.8)

Then,

(2% 2%) oo (a2x2(1 8). g 2) oo~ Lp2A+A+L g )oo(oleiA72l;x2)oo

x2(1+l) - 12) oo (02 x—2(l+A D 22) oo (ax=2; 22) oo (a2 22) o

1st key terms‘ =

(C.9)
By substituting it into (C8), we get
_f: —2(1 1+A) )Oo (=’l72(1+l);$2)oo 1
- — a—212( Z+A ) (x2- x?) (x—zz. $2)l
(:E L ) (a2x2(1 A) ) (a 1$2Z+A+1 T )oo(CVIITI_A_Ql;ZUz)oo
(220D; 22) (a2 —2(Z+A 0, 22) o (arl 2 22) o (azt 8 22) o
o (1)t <a2x_2( 1+A)) (@202 1+8) 22, 42, (a2g =21+, 22) .
— ZZ; (@222, 12)_ [(a—2278; 12); (—1)la— W0+ (22, 22),

_ ) l
(022202, xQ)m(&_lfo;:f;);; (= 1)kt (axl—A) (@ 122122, 22), (az' 2 22)o

I
(1)l (z+1)<a2 2(A— 1)) (a—222(A=Dg2; 22),(a20=2A1); 22)__ (ax1=2; 22) o (az1=2; 22) o

2. —2(—1+A). 1, A+1. O (2,20, 2
_(a fa_;xm;);)i(gl i,;{;?)oo ?)os ; (a(xf; xé)xl )i (axl_Ay (©.10)
’2nd ke; terms‘
Here, we used the following formulas.
(72 22), = (=1)la 2D (22, 22),, (C.11)
(Az=2,2%) o = (—1D)!z7 2D AN A 2% 22))(A; 2%) o (C.12)

The final key is the following formula:
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g-binomial formula [0

i (A i (AZ @) (©.13)
— (Gq) (Z30)
In our case, (C10),
q=1 A=a22* 7Z=oax'"?, (C.14)
so we get
(a 1x1+A )OO
’2nd key terms‘ = (ori 7). (C.15)
Substituting it into (CIM), we finally arrived at
( - (a2x—2(—1+A);x )oo (™ LpAtl o ) (a~ Lpl+a: )OO
e ) N e ¥ N (Y NP
O N N
= . C.16
(osane) @, (C.16)

This is exactly identical to the SCI of XYZ-model (B12).

C.2 M? = RP? case

The following argument is based on our original work [E9]. In order to calculate this

complex integral (B223), it is useful to change the integration variable from 6 to z,w

=e
@) = § 2 () (Tax® Vx| (202 Diat)e | (2o
2miz (za= 122 2%) o (z7la 20 (2% 2%
7{ dw ( 22 %> (w™taz=2); 21) o y (woar=2): 1) (2% 2%) o
x a :
2miz (wa=tzCtA): ) o (wla a8 2 o (2% 2%
(C.17)
We take same assumption (C32) :
la~tz2HBl <1, B=0,2. (C.18)
Then, the relevant residues are
g=a 'z 1=0,1,2,... for upper integral in (CI7), (C.19)
wy = o AT 1=0,1,2,... for lower integral in (CI7). (C.20)
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The residue integral becomes

(C12)
_ i (erm[la%l) <a2x(2—2A—4l); 5E4)oo y (I(2+4l); 174)00 y (IA; 954)00
— (04_2132A+4l; 5E4)oo <$4; x4>oo<x—4l; x4)l (:EQ; x4)oo
. i (m QA[BO(%) (azx(Q—QA—M); $4)oo (x(6+4l); «’L’4)oo (ac4; 1'4)00
= (a‘QI(4+2A+4l); SE4)oo (m4; $4)oo(l’_4l; $4)l (m2; 3?4)00

I
2 (e oy (O Dia™#4D (a i 2A)> (a 2z~ 280 gty (a2 B28) )
; <l‘ « > (04_21’2A; x4)m/(a_2x2A;$4)l
x (2% ) oo/ (2% 2%, (2% 1) o
) () T ), ™ (0.

I
N e <a2x(2—2ﬁ)> (@222 2h), (0?2 P28 )
+l2(;<$ a2> (o 20(+28); ) /(o 20(4+28); g4),
(2% 2%)oo/ (2% 2 (:c4,x )oo
(2% 2%) oo (— 1)1z 40HD) (934,%4)1 (2 7)o
( -2,

_ (J;+2A47_104_71> Q2r2) 1) X (a2 A4, g4, (0252, 24, (a%@_m))z
(02228 24) - (22 24) (% %),
N (q;_%f_:aa%> (a2£(2 2A). )Oo (x6,l.) (0F2I(2+2A);$4)l(a’2$(4+2m;$4)1 (a%@_m))z
(a—2x(4+2A) 1) oo (2% 2%) - (2% 24), (25 %), ’
(C.21)
where we used the following formulas.
(:L”‘”; x4)l = (—1)Zx’4l(l+1)(:c4; x4)l, (C.22)
(Az™ 2?) = (—1)Zx_4l(l+1)Al(A_1x4; 74)(A; 2% . (C.23)

We can deform the pre factor of lower term in (CZ2I) as follows:

sns 1y (022728 g4 (48; 24
(xi . &§> 7T ) oo 7T )oo

(a—22(+28), o0y (22 %) o
_ (x+2A4—1a—Tl>$_4A4—4al (22728 2% o (a7 2222 2% (2% 1Y)

(a 2228 24) o (a22(428); 24) (22 1%) o
—2A). A
= (z" a7 o' 2! (022725, 2% (1 — a0 ) (C.24)
(a—2222; 74) 1 — 22
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Then

(C22m)
_ <x+2A471a771> (?%(22 22AA) Z )OO [ 7(28+2). 74 4(>l(4@i)xm )z(
T v Oo lx y L)1
=0
N (1 a QZEQA)( 2+2A : 4)l o~ x (44+2A4) 7174>l (a x(2 2A)>l]

(
1— a2 ( )1(966, )
02224 ~2,2A.
- <3;+2A4’1a 2 )( 272, 2 [( 0 (aw“myl
(2225, x4 (22; :1:2
(2222, 2%)o111 (a_ay\ 2+
* ($2;£U2)21+1 ( ) ]
= <x+2A4_1a_71> (a?2* 2% )OO [ 2 (ax(l_A)>k].
(04_21'2A7£L‘4 oo (22 $2

=0

Here we used

(A Q) = (A PN(AG ) (Ao = (1= A)(Ag; ¢*)i(Ad ¢

Now, we can use the g-binomial formula (CI3) :

= (A;(Dk k _ %
— (G (Z:q)s

then we arrive at

2A-1 )(Oz x(2 2A) ) (a 1:L‘1+A )oo
(04_256’2A,:L'4)00 (Ozl‘l Any)oo

This is exactly (B220).
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