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Abstract

Focusing on the analogy between the electron system in graphene and the staggered
fermion in lattice gauge theory, we consider an alternative formulation in position space
for Dirac fermion on the honeycomb lattice, which can be regarded as a counterpart of
the conventional momentum space formulation. In this formulation, we find a hidden
exact symmetry on the lattice, which protects the masslessness of Dirac fermion, and
show that the symmetry remains exact even if we consider interlayer hopping interac-
tion in bilayer graphene. In lattice gauge theory, our formulation can also be regarded
as one of the lattice fermion formalisms, and will present a new direction for studying
a construction of lattice fermion.
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1 Introduction

In particle physics, lattice gauge theory has been regarded as a unique method to
strictly define quantum field theory without perturbation theory, and significantly
contributed to study quantum field theory non-perturbatively. However, as is well
known, there is the so-called fermion doubling problem in defining massless Dirac
fermion on the lattice, and it is needed to present a formalism which does not conflict
the doubling problem, and enables a faster numerical simulation for studying non-
perturbative dynamics in quantum field theory. To achieve this, there are a lot of
studies of constructing lattice fermions. In condensed matter physics, the emergence
of massless Dirac fermion has been observed in some materials recently. The emergence
mechanism of Dirac fermion may provide a new hint for constructing lattice fermions.
Especially, here we focus on the graphene electron system and introduce an alternative
formulation for Dirac fermion on honeycomb lattice in position space based on Ref.[1].

Graphene is a genuine two-dimensional crystal of carbon atoms with a hexagonal
lattice [2, 3, 4, 5, 6]. In a theoretical point of view, such low dimensional crystal
has been expected to be unstable to thermal fluctuations, and commonly regarded as
merely an ideal object for a long time. However, contrary to this expectation, in 2004,
K. S. Novoselov, A. K. Geim, et al. have succeeded in isolating a monatomic layer of
graphene from highly oriented pyrolytic graphite (HOPG) [2]. This discovery became
a breakthrough of recent great progress in graphene physics (also in low dimensional
condensed matter physics), and now, graphene attracts much interest in condensed
matter physics as well as high energy physics for its remarkable features [8, 9, 10].

One of the most important features of graphene is that the quasiparticle behaves
like massless Dirac fermion in the relativistic quantum field theory [3, 4, 5, 6]. The
observations of linear dispersion relation [3, 4], and anomalous quantum hall effect [5]
imply that the quasiparticle of graphene obeys massless Dirac equation, and this is
also consistent with other experimental result [6]. Why does massless Dirac fermion
emerge in such non-relativistic many body system? The specific features of graphene
had already been studied theoretically before its discovery [11, 12, 13, 14, 15], while
the conventional explanation to the above question is presented in Refs.[14, 15]. Par-
ticularly, in Ref.[15], starting from the tight-binding model on honeycomb lattice, it
is shown that the four component spinor field composed of the low energy excitations
around two different Dirac points is regarded as massless Dirac fermion field.

The conventional model gives a clear understanding of the specific electronic struc-
ture of graphene. However, this is not the first case in which massless Dirac fermion
field is constructed on the lattice. In lattice gauge theory, several types of lattice
fermion formalisms to define Dirac fermion formulation on the lattice are known.
In particular, the graphene model seems closely analogous to the staggered fermion
formalism [18], in which the 2[d/2] flavor Dirac fermions are constructed from the
Hamiltonian describing the nearest neighbor hopping of single spinless fermion on
the (d− 1)-dimensional hypercubic space lattice. In the staggered fermion formalism,
the construction of Dirac fermion formulation has been studied in momentum space
[19, 20, 21] as well as position space [22]. In the momentum space formulation, Bril-
louin Zone (BZ) is cut into 2d regions, and each region is reinterpreted as spin-flavor
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degrees of freedom of 2[(d+1)/2] flavor Dirac fermions. In the position space formulation,
the single fermion field is redefined on the fundamental lattice composed of centers of
d-dimensional hypercubic unit cells, and the 2d sites in each unit cell are reinterpreted
as spin-flavor degrees of freedom of 2[(d+1)/2] flavor Dirac fermions.

In the conventional graphene model in momentum space, Dirac fermion field is de-
fined as four component spinor field composed of the low energy excitations around two
different Dirac points which are spatially separated in BZ [15]. Comparing this formu-
lation to the staggered fermion formalism, we notice that the conventional graphene
model is analogous to the momentum space formulation in the staggered fermion
formalism. Thus, we expect that it may be possible to construct Dirac fermion for-
mulation in position space for graphene.

In this thesis, focusing on the analogy between the electron system in graphene and
the staggered fermion in lattice gauge theory, we consider an alternative formulation
in position space for Dirac fermion on the honeycomb lattice, which can be regarded as
a counterpart of the conventional momentum space formulation [1]. Furthermore, we
also present an explicit formulation of exact symmetry, which protects the masslessness
of Dirac fermion [1]. This formulation may be useful for studying a non-perturbative
dynamics in condensed matter physics such as spontaneous chiral symmetry breaking
in suspended graphene [7, 25, 26, 27, 28, 29]. In a point of view of lattice gauge theory,
our formulation can also be regarded as one of the lattice fermion formalisms on two-
dimensional space lattice. This will be a fist step for extending the graphene model
to a four-dimensional hyperdianmond lattice fermion formalism, and may be widely
useful for studying other lattice regularization methods on non-hypercubic lattices.

This thesis is organized as follows. In section 2, we introduce a basic review of
graphene, and explain the conventional derivation of Dirac fermion formulation on
honeycomb lattice in momentum space [15]. In section 3, we present our formulation
in position space, and discuss Dirac point and physical modes at the next-leading order
of tight-binding approximation. In section 4, we show that massless Dirac fermion
appears in the continuum limit after integrating out an unphysical mode. In section
5, we also show that there is a hidden exact symmetry on the lattice, which protects
the masslessness of Dirac fermion. In section 6, we extend our formulation to the
AB-stacked bilayer graphene system, and show that the symmetry remains exact even
if interlayer hopping interaction exists. In the last section, we present the summary
and discussion.
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Figure 1: Honeycomb lattice

2 Review of graphene

2.1 Lattice structure

In this section, we introduce a basic review of conventional formulation for Dirac
fermion on honeycomb lattice in momentum space [15]. Before that, here we briefly
review the lattice structure of graphene.

Graphene is a genuine two-dimensional crystal of carbon atoms with a hexagonal
lattice, and it attracts much interest for its remarkable features. In the graphene
electron system, four valence electrons of each carbon atom are used for three σ orbitals
and one π orbital, and electron career (π electron) hops on the lattice formed by those σ
electrons covalent bonding. The lattice structure is seen in carbon allotrope (graphite,
carbon nanotube, fullerene), and other two-dimensional condensed matter systems
such as silicene, and characterizes the specific electronic structures of those materials
as well as graphene.

The honeycomb lattice is constituted of two triangular sublattices A and B (Figure
1). The lattice structure is invariant under 2π/3 rotation in the plane (C3 symme-
try), and also under space inversion in which two sublattice sites A and B can be
interchanged (inversion symmetry). The vectors s⃗i(i = 1, 2, 3) in Figure 1 denote the
position vectors for three nearest neighbor sites and given as follows;

s⃗1 = a0

(
1, 0

)
, s⃗2 = a0

(
−1/2,

√
3/2

)
, s⃗3 = a0

(
−1/2, −

√
3/2

)
, (1)

where a0 is the lattice spacing between the nearest neighbor sites, and, in the graphene
system, a0 ≅ 1.42 Å [10]. The vectors b⃗j (j = 1, · · · , 6) in Figure 1 denote the
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Figure 2: Fundamental lattice

fundamental vectors of honeycomb lattice, and given as follows a;

b⃗1 = a0

(
3/2,

√
3/2

)
, b⃗2 = a0

(
−3/2,

√
3/2

)
, b⃗3 = a0

(
0, −

√
3

)
, (4)

b⃗4 = a0

(
−3/2, −

√
3/2

)
, b⃗5 = a0

(
3/2, −

√
3/2

)
, b⃗6 = a0

(
0,

√
3

)
. (5)

From the Figure 1, one can see that the sublattices A and B are shifted by s⃗1 (or s⃗2, s⃗3),
and it is unable to overlap them each other by any translations which are generated by
the fundamental vectors b⃗j (j = 1, · · · , 6). Therefore, there are two independent sites
A and B in each unit cell of fundamental lattice (Figure 2). The sublattice degrees
of freedom A and B in the unit cell will be reinterpreted as spin degrees of freedom
(pseudospin), and plays an important role for understanding the specific features of
electron system on the honeycomb lattice.

The reciprocal vectors d⃗1, d⃗2 are given as follows;

d⃗1 = 2π/a0

(
1/3, 1/

√
3

)
, d⃗2 = 2π/a0

(
−1/3, 1/

√
3

)
, (6)

where vectors b⃗i and d⃗j satisfy the following orthogonal relation,

b⃗i · d⃗j = 2πδij (i, j = 1, 2). (7)

aWe note that, using s⃗i(i = 1, 2, 3), the fundamental lattice vectors b⃗j (j = 1, · · · , 6) is rewritten
as follows

b⃗1 = s⃗1 − s⃗3, b⃗2 = s⃗2 − s⃗1, b⃗3 = s⃗3 − s⃗2, (2)

b⃗4 = s⃗3 − s⃗1, b⃗5 = s⃗1 − s⃗2, b⃗6 = s⃗2 − s⃗3. (3)
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There are six edge points in BZ, which are related to K, K ′ under the C3 symmetry.
The position vectors for K, K ′ are given as follows;

K⃗ = 2π/3a0

(
1, 1/

√
3

)
, K⃗ ′ = 2π/3a0

(
1, −1/

√
3

)
. (8)

In the graphene system, there is one π electron per site on average, and a half of
energy eigenstates is occupied (half-filled electron system). In the next section, we
show that starting from the tight-binding model on the honeycomb lattice, π electron
behaves like massless Dirac fermion in low energy regime [15].

2.2 Conventional derivation of Dirac fermion formulation

2.2.1 Tight-binding model

In this section, we review the conventional formulation for Dirac fermion on honeycomb
lattice in momentum space [15]. First, we start from the tight-binding model on the
honeycomb lattice. Defining creation (annihilation) operators of quasiparticles on A
and B sublattices as a†

σ(r⃗) (aσ(r⃗)), b†σ(r⃗) (bσ(r⃗)), the tight-binding Hamiltonian at the
next-leading order is given as follows;

H = − t
∑
r⃗

∑
σ=±

[
a†

σ(r⃗)bσ(r⃗) + b†σ(r⃗)aσ(r⃗) + a†
σ(r⃗ + b⃗1)bσ(r⃗)

+ b†σ(r⃗ − b⃗1)aσ(r⃗) + a†
σ(r⃗ − b⃗2)bσ(r⃗) + b†σ(r⃗ + b⃗2)aσ(r⃗)

]
− t′

∑
r⃗

6∑
j=1

∑
σ=±

[
a†

σ(r⃗ + b⃗j)aσ(r⃗) + b†σ(r⃗)bσ(r⃗ + b⃗j)
]
, (9)

where the first and second lines correspond to the nearest neighbor hopping term, and
the third line corresponds to the next-nearest neighbor hopping term. The argument
of fermionic operators r⃗ denotes a center coordinate of unit cell, and σ denotes a spin
index (σ = ±). Here, the hopping amplitudes t, t′ are given as t ≅ 2.8 eV, and t′ ≅ 0.1
eV in the graphene system [32]. In the following, we neglect the next-nearest neighbor
hopping term, and also omit the spin index σ for convenience.

2.2.2 Dispersion relation

Next, in order to show Dirac points, and derive a low energy effective theory, we take
the following Fourier representations of a(r⃗), b(r⃗);

a(r⃗) =
∫

BZ

d2k

(2π)2
ã(k⃗)eik⃗·r⃗, b(r⃗) =

∫
BZ

d2k

(2π)2
b̃(k⃗)eik⃗·r⃗. (10)

In momentum space, the Hamiltonian at the leading order of tight-binding approxi-
mation is represented as follows;

H = −t
∫

BZ

d2k

(2π)2

(
ã(k⃗)

b̃(k⃗)

)† (
0 D(k⃗)

D∗(k⃗) 0

) (
ã(k⃗)

b̃(k⃗)

)
(11)
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with

D(k⃗) = 1 + e−ik⃗·⃗b1 + eik⃗·⃗b2 . (12)

Here, the energy spectrum of Hamiltonian (11) is given as follows;

E(k⃗) = ±t|D(k⃗)|. (13)

In the half-filled electron system, the all negative energy eigenstates are occupied
(Dirac’s sea), and the negative and positive energy eigenvalues in Eq.(13) correspond
to the valence and conduction band respectively. Thus, Dirac point should appear at
zero energy level. The condition, which a wave vector on the Fermi surface fulfills, is
given by

D(k⃗) = 1 + e−ik⃗·⃗b1 + eik⃗·⃗b2 = 0. (14)

The above equation is fulfilled when e−ik⃗·⃗b1 ,eik⃗·⃗b2 equal to ω, ω∗ or ω∗, ω, and there
appear two independent Dirac points K and K ′ at the edge of BZ.

Expanding E(k⃗) around each Dirac point with respect to the momentum, and
denoting p as the momentum from each Dirac point, we see

E ≅ ±vF |p⃗|, (15)

where vF = 3/2a0t is the Fermi velocity. Since the above equation is analogous to the
dispersion relation of massless Dirac fermion, these points K, K ′ are often called as
Dirac points, and also the conical dispersion relations are called as Dirac cones. At the
Dirac points, the valence band is in touch with conduction band, so that the electron
system is gapless.

This specific band structure around Dirac points was originally predicted in Ref.[11]
before the discovery of graphene. The appearance of Dirac points is deeply related to
some symmetries, and it is known that, under the inversion and C3 symmetry, Dirac
points should appear at K, and K ′ in BZ [12, 13], and, the inversion and time reversal
symmetries protect the stability of Dirac points to small deviations [31].

In some literature in condensed matter physics, an appearance mechanism of Dirac
point in other material has been discussed. For instance, in Ref.[17], the relation
between Dirac points and symmetries mentioned above is extended to more general
cases, and an appearance mechanism of Dirac point in two-dimensional lattices is
generally discussed.

2.2.3 Derivation of Dirac fermion formulation

The low energy effective Hamiltonian is derived by expanding D(k⃗) in Eq.(11) around
the Dirac points with respect to the momentum. In the low energy regime, there
appear two low energy excitations around the Dirac points. Here, if we introduce the
four component spinor field ξ̃(p⃗), which is composed of the two low energy excitations,
as

ξ̃(p⃗) =
(

ã(K⃗ + p⃗), b̃(K⃗ + p⃗), b̃(K⃗ ′ + p⃗), ã(K⃗ ′ + p⃗)
)T

, (16)
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in the continuum limit, the low energy effective Hamiltonian is derived as follows;

H0 = vF

∫ d2p

(2π)2
ξ̃(p⃗)†γ̂0[γ̂1px + γ̂2py]ξ̃(p⃗) (17)

where px, py are components of momentum in Cartesian coordinate, and the matrices
γ̂µ (µ = 0, 1, 2) are defined as

γ̂0 =

(
σ3 0
0 −σ3

)
, γ̂1 =

(
−iσ1 0

0 iσ1

)
, γ̂2 =

(
−iσ2 0

0 iσ2

)
. (18)

We note that the coefficients matrices γ̂µ (µ = 0, 1, 2) in Eq.(17) satisfy Clifford algebra
{γ̂µ, γ̂ν} = 2gµν ·14×4, where gµν is the metric in (2+1)−dimensional space-time. Thus,
starting from the tight-binding model on the honeycomb lattice, we show that the
low energy effective Hamiltonian is consistent with the massless Dirac Hamiltonian in
(2+1)−dimensional space-time, except for the Fermi velocity vF . Here, if we introduce
an additional matrix γ̂3 anti-commuting with γ̂0, γ̂1, γ̂2, where we have the following
two choices for γ̂3 as(

0 12×2

−12×2 0

)
,

(
0 −i 12×2

−i 12×2 0

)
, (19)

and define

γ̂5 = iγ̂0γ̂1γ̂2γ̂3, (20)

we also derive the flavor-chiral symmetry, which protects the masslessness of Dirac
fermion [1, 16]. In Eq.(17), the four components spinor is decomposed into two Weyl
spinors, so that the Dirac fermion is also regarded as two Weyl fermions with opposite
chiralities. This is known as the so-called fermion doubling in lattice gauge theory, and,
in the graphene system, those fermion doublers are regarded as the physical modes of
system.

In this conventional formulation, the four component Dirac fermion field (16), is
composed of the two low energy excitations around two different Dirac points which
are spatially separated in BZ, so that the locality of the theory is not manifest. From
a lattice point of view, this is quite analogous to the staggered fermion formalism in
momentum space, In the next section, focusing on the analogy between the electron
system of graphene and the staggered fermion formalism in lattice gauge theory, we
show an alternative formulation in position space for Dirac fermion on the honeycomb
lattice with manifest locality [1].
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Figure 3: Fundamental lattice. The honeycomb lattice colored by red is a new fun-
damental lattice. The fundamental lattice involves hexagonal unit cells, and we label
the vertices of each unit cell by Iρ (I = A,B; ρ = 0, 1, 2). The red points are cen-
ters of unit cells of fundamental lattice. e⃗ρ (ρ = 0, 1, 2) colored with light blue are
fundamental vectors.

3 Position space forumulation for Dirac fermion on

honeycomb lattice

3.1 Reformulation of tight-binding model in position space
formulation

In this section, using the idea of the staggered fermion formalism in position space
[22], we present a novel formulation of tight-binding model on honeycomb lattice [1].

In the position space formulation, the d dimensional hypercubic lattice sites are
relabeled. Following the experience, first of all, we introduce a new labeling of hon-
eycomb lattice sites. As shown in Figure 3, we introduce the fundamental lattice
composed of centers of hexagonal unit cells. Here, each site in the unit cell is labeled
by two indices I, ρ, where I denotes sublattice degrees of freedom A, B, and ρ denotes
three vertex degrees of freedom 0, 1, 2, so that there is six internal degrees of freedom
in each unit cell. The centers of hexagonal unit cells are connected by the fundamental
lattice vectors given by

e⃗0 = a
(

1, 0
)
, e⃗1 = a

(
−1/2,

√
3/2

)
, e⃗2 = a

(
−1/2, −

√
3/2

)
, (21)

where, a is a lattice spacing of the fundamental lattice.
In this new site-arrangement, we define χ†

Iρ(x⃗) (χIρ(x⃗)) as the creation (annihi-
lation) operator of quasiparticles on the fundamental lattice. The argument of the
operator is the central coordinate of hexagonal unit cell of fundamental lattice. The
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internal degrees of freedom associated with two indices I, ρ, is reinterpreted as spin-
flavor degrees of freedom later.

Using this new labeling of field, we rewrite the tight-binding Hamiltonian at the
next leading order as follows;

H =
∑
x⃗,y⃗

∑
ρ,ρ′

(
χAρ(x⃗)
χBρ(x⃗)

)† (
t′Π(x⃗, y⃗)ρρ′ tΦ(x⃗, y⃗)ρρ′

tΦ(x⃗, y⃗)†ρρ′ t′Π(y⃗, x⃗)ρρ′

) (
χAρ′(y⃗)
χBρ′(y⃗)

)
, (22)

where

Φ(x⃗, y⃗) =

 T0 1 1
1 T1 1
1 1 T2


x⃗,y⃗

, (23)

Π(x⃗, y⃗) =

 0 1 + T0 + T †
1 1 + T0 + T †

2

1 + T †
0 + T1 0 1 + T1 + T †

2

1 + T †
0 + T2 1 + T †

1 + T2 0


x⃗,y⃗

, (24)

with (1)x⃗,y⃗ = δx⃗,y⃗, and (Tρ)x⃗,y⃗ = δx⃗,y⃗+e⃗ρ . In Eq.(22), the off-diagonal and diagonal
parts represent the nearest neighbor hopping term and next-nearest neighbor hop-
ping term respectively, and t, t′ are hopping amplitudes. The next-nearest hopping
term is expressed by the nearest neighbor hopping term, and the Hamiltonian (22) is
represented as follows;

H =
∑
x⃗,y⃗

χ(x⃗)†
[
tH(x⃗, y⃗) + t′H2(x⃗, y⃗) − 3t′

]
χ(y⃗), (25)

where

H(x⃗, y⃗) =

(
0 Φ(x⃗, y⃗)

Φ(x⃗, y⃗)† 0

)
, (26)

and χ†(x⃗), χ(y⃗) are the fermion fields with six components χ†
Iρ(x⃗), χ(y⃗)Iρ (I =

A,B; ρ = 0, 1, 2). In Eq.(25), the third term is proportional to the unit matrix, so
that, in the following discussion, we omit such shift of origin of energy.

In Eq.(25), the Hamiltonian is written by 6×6 matrix H(x⃗, y⃗) (26). Next, following
the case of staggered fermion formalism, we introduce a tensor product expression for
the Hamiltonian. Identifying the indices I, ρ as spin-flavor indices, we introduce the
following tensor product form for an arbitrary 6 × 6 matrix as

AIρ,I′ρ′ =
3∑

a=0

(τa)I,I′ ⊗ (Ba)ρ,ρ′ , (27)

where τ0 is 2 × 2 unit matrix, and τi (i = 1, 2, 3) are Pauli matrices, and Ba (a =
0, 1, 2, 3) are 3 × 3 Hermitian matrices. In this tensor product expression, the former
acts on sublattice space I = A,B (pseudospin space), while the latter acts on flavor
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space ρ = 0, 1, 2. Using this tensor product expression, it is shown that H(x⃗, y⃗) is
rewritten as follows [1];

H(x⃗, y⃗) = (τ1 ⊗ M)δx⃗,y⃗ − i
∑
ρ

(τ2 ⊗ Γρ)∇ρ(x⃗, y⃗) +
1

2

∑
ρ

(τ1 ⊗ Γρ)∆ρ(x⃗, y⃗), (28)

where

M =

 1 1 1
1 1 1
1 1 1

 , (29)

Γ0 =

 1 0 0
0 0 0
0 0 0

 , Γ1 =

 0 0 0
0 1 0
0 0 0

 , Γ2 =

 0 0 0
0 0 0
0 0 1

 . (30)

In Eq.(28), the difference operators ∇ρ(x⃗, y⃗) and ∆ρ(x⃗, y⃗) are defined as follows;

∇ρ(x⃗, y⃗) ≡ 1

2
[T †

ρ − Tρ]x⃗,y⃗, (31)

∆ρ(x⃗, y⃗) ≡ 1

2
[Tρ + T †

ρ − 2]x⃗,y⃗. (32)

Substituting Eq.(28) into the Hamiltonian in Eq.(25), the tight-binding Hamilto-
nian in the nearest neighbor hopping approximation (t′ = 0) reads

H = t
∑
x⃗

χ†(x⃗)
[
(τ1 ⊗ M)χ(x⃗) − i

∑
ρ

(τ2 ⊗ Γρ)(∇ρχ(x⃗)) +
1

2

∑
ρ

(τ1 ⊗ Γρ)(∆ρ(x⃗))
]
, (33)

where

∇ρχ(x⃗) =
1

2
[χ(x⃗ + e⃗ρ) − χ(x⃗ − e⃗ρ)], (34)

∆ρχ(x⃗) =
1

2
[χ(x⃗ + e⃗ρ) + χ(x⃗ − e⃗ρ) − 2χ(x⃗)]. (35)

In Eq.(33), the first term corresponds to the mass term, and the second and third
term are the first and second derivative terms on the fundamental lattice. The first
derivative term corresponds to the kinetic term of three flavor fermions, while the third
term vanishes in the continuum limit.

The mass term, in Eq.(33), is diagonalized by the following unitary transformation

χIρ(x⃗) =
1√
3

∑
ρ′=0,1,2

ei2πρρ′/3ψIρ′(x⃗). (36)

Using the above transformation, the mass term is diagonalized as follows;

M = t
∑
x⃗

ψ†(x⃗)(τ1 ⊗ Mdiag)ψ(x⃗), (37)

11



with

Mdiag =

 3 0 0
0 0 0
0 0 0

 . (38)

Thus, it is shown that there appear two massless zero modes and one massive mode
from the tight-binding Hamiltonian (33).

We notice that, the coefficients matrices Γρ (ρ = 0, 1, 2) in Eq.(33) does not form
Clifford algebra, so that the lattice Hamiltonian does not correspond to three flavor
Dirac Hamiltonian in (2+1)−dimensional space-time completely. However, as we will
see later, it is shown that, after integrating out the extra massive mode, the low energy
effective Hamiltonian is consistent with massless Dirac Hamiltonian in the continuum
limit.

3.2 Energy spectrum of tight-binding Hamiltonian

Next, we discuss the Dirac point, and physical modes from the energy spectrum anal-
ysis of the Hamiltonian (25) [1]. In momentum space, the Hamiltonian (25) is repre-
sented as

H =
∫

BZ

d2k

(2π)2
χ̃†(k⃗)[tH̃(k⃗) + t′H̃2(k⃗)]χ̃(k⃗), (39)

where χ̃†
Iρ(k⃗), χ̃Iρ(k⃗) denote Fourier representations of χ†

Iρ(x⃗), χIρ(x⃗),

χ†
Iρ(x⃗) =

∫
BZ

d2k

(2π)2
e−ik⃗·x⃗χ̃†

Iρ(k⃗), χIρ(x⃗) =
∫

BZ

d2k

(2π)2
eik⃗·x⃗χ̃Iρ(k⃗), (40)

and

H̃(k⃗) = τ1 ⊗ M +
∑
ρ

(τ2 ⊗ Γρ) sin kρ +
∑
ρ

(τ1 ⊗ Γρ)(cos kρ − 1), (41)

H̃2(k⃗) = 12×2 ⊗
[
3M +

∑
ρ

{M, Γρ}(cos kρ − 1) − 2
∑
ρ

Γρ(cos kρ − 1)
]

+iτ3 ⊗
∑
ρ

[M, Γρ] sin kρ, (42)

with kρ = k⃗ · e⃗ρ (ρ = 0, 1, 2).

3.2.1 Dirac point and physical modes

First, we consider the energy spectrum of Hamiltonian (39) at the leading order of the
tight-binding approximation [1]. We set t′ = 0 in Eq.(39), and discuss the Dirac point
and physical modes.

The eigenvalue equation is given by

det(λ · 16×6 − H̃(k⃗)) = λ6 − 9λ4 − 3(zk + z∗k − 6)λ2 − |zk − 3|2 = 0 (43)

12



with

zk = e−ik⃗·e⃗0 + e−ik⃗·e⃗1 + e−ik⃗·e⃗2 . (44)

Here, the above eigenvalue equation is a cubic equation of λ2. Thus, denoting three
solutions of the cubic equation as φ2

1(k⃗), φ2
2(k⃗), φ2

3(k⃗), where

0 ≤ φ1(k⃗) ≤ φ2(k⃗) ≤ φ3(k⃗) ≤ 3, (45)

the solution of the eigenvalue equation (43) is written as ±φi(k⃗) (i = 1, 2, 3), and the
energy eigenvalues of Hamiltonian (33) are given by

E±(φi) = ±tφi(k⃗) (i = 1, 2, 3). (46)

In the half-filled electron system, the all negative eigenstates are occupied, so that the
Dirac point on Fermi surface appears at zero energy level same as in the conventional
formulation. From the eigenvalue equation (43), the Dirac point appears when

|zk − 3| = 0. (47)

The above condition is fulfilled only for k⃗ = 0, so that, in this formulation, the Dirac
point appears only at the origin of BZ.

In Figure 4, we show the dispersion relation for the quasiparticles at the leading
order of the tight-binding approximation. In our formulation, the quasiparticle field
has six degrees of freedom, and there appear two massless zero modes and one massive
mode. From this figure, it is shown that, of the six degrees of freedom of quasiparticle
field, there remains four physical degrees of freedom of two massless zero modes near
the Dirac point. In the next section, we show that, after integrating out the massive
mode which is unphysical near the Dirac point, the effective Hamiltonian is consistent
with the conventional formulation in momentum space.

3.2.2 Effect of next-nearest neighboring term

Next, we take account of the next-nearest neighbor hopping term, and discuss the
effect on the Dirac point [1].

Using φi(k⃗), the energy eigenvalues of Hamiltonian at the next-leading order of the
tight-binding approximation are given as follows;

E ′
±(φi) = ±tφi(k⃗) + t′φ2

i (k⃗). (48)

In Eq.(48) if we set t′ = 0, as mentioned above, in the half-filled electron system the
Dirac point on Fermi surface appears at zero energy level since the number of posi-
tive energy eigenstates is consistent with the number of negative energy eigenstates.
However, if we take account of the next-nearest neighbor hopping term, the situation
becomes altered.

In order to investigate the effect, we express Eq.(48) as

E ′
±(φi) = t′φ2

cf±(|φi/φc|) (49)

13



Figure 4: Dispersion relation at the leading order of the tight-binding approximation.
From the top, the first, second , and third graphs show λ1 = ±φ1(k⃗), λ2 = ±φ2(k⃗),

and λ3 = ±φ3(k⃗) respectively, where horizontal axes are k1 = e⃗1 · k⃗, k2 = e⃗2 · k⃗. (The
source of this Figure is Fig.3 in AAM (Accepted Author Manuscript) of Ref.[1].)
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Figure 5: x axis denotes |φi/φc|, and y axis denotes energy eigenvalues divided by
t′φ2

c . The dashed lines colored with red and blue are E+(φi)/t
′φ2

c = |φi/φc| and
E−(φi)/t

′φ2
c = −|φi/φc| respectively. The solid lines colored with red and blue are

E ′
+(φi)/t

′φ2
c = f+(|φi/φc|) and E ′

−(φi)/t
′φ2

c = f−(|φi/φc|). (The source of this Figure
is Fig.4 in AAM (Accepted Author Manuscript) of Ref.[1].)

with φc = t/t′ and f±(x) = x2±x. Dividing both sides in Eq.(46), Eq.(49) by t′φ2
c , and

plotting E±(φi)/t
′φ2

c , E ′
±(φi)/t

′φ2
c as functions of |φi/φc|, we derive Figure 5. In Figure

5, we see that the eigenvalues E ′
−(φi) remain in negative values unless φi exceeds |φc|,

while the eigenvalues E ′
+(φi) stay in positive values at arbitrary φi. Thus, if φi does

not exceed the threshold, the number of positive energy eigenstates is consistent with
the negative energy eigenstates, so that, in the half-filled electron system, the Fermi
surface remains in zero energy level, and the Dirac point appears only at k⃗ = 0 in BZ.
On the other hand, if φi exceeds the threshold, the Fermi surface no longer stays in
the same energy level.

Here, the range of φi is defined as 0 ≤ φi ≤ 3 in Eq.(45), so that even if we consider
the next-nearest neighbor hopping interaction, the Dirac point remains at the origin
of BZ when 3 < φc. Especially in the graphene system, the Fermi surface does not
change since φc ≅ 28.
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4 Effective theory in continuum limit

In this section, we present the derivation of the low energy effective theory from the
tight-binding Hamiltonian (25), and show that, in the continuum limit, it is consistent
with conventional Dirac fermion formulation in momentum space [1]. After integrating
out the massive mode, the effects of the next-nearest neighbor hopping term only
contributes as O(k2) and O(a), so that here we employ the leading order of the tight-
binding approximation (t′ = 0).

In momentum space, the tight-binding Hamiltonian in the mass basis is given as
follows;

H = t
∫

BZ

d2k

(2π)2
ψ̃†(k⃗)[τ+ ⊗ Φ̃′(k⃗) + τ− ⊗ Φ̃′†(k⃗)]ψ̃(k⃗), (50)

where ψ̃Iρ(k⃗) is the Fourier representation of ψIρ(x⃗),

ψIρ(x⃗) =
∫

BZ

d2k

(2π)2
eik⃗·x⃗ψ̃Iρ(k⃗), (51)

and

Φ̃′(k⃗) =
1

3

 b0 + b1 + b2 + 6 b0 + ω2b1 + ωb2 b0 + ωb1 + ω2b2

b0 + ωb1 + ω2b2 b0 + b1 + b2 − 3 b0 + ω2b1 + ωb2

b0 + ω2b1 + ωb2 b0 + ωb1 + ω2b2 b0 + b1 + b2 − 3

 (52)

with bρ = exp(−i⃗k · e⃗ρ) (ρ = 0, 1, 2).

In order to derive the effective theory, we expand Φ̃′(k⃗) in Eq.(50) around the Dirac

point k⃗ = 0 with respect to the momentum as

Φ̃′(k⃗) =

 3 0 0
0 0 0
0 0 0

 − a

2
ikx

 0 1 1
1 0 1
1 1 0

 − a

2
iky

 0 −i i
i 0 −i
−i i 0



− a2

4

 k2
x + k2

y (kx + iky)
2/2 (kx − iky)

2/2
(kx − iky)

2/2 k2
x + k2

y (kx + iky)
2/2

(kx + iky)
2/2 (kx − iky)

2/2 k2
x + k2

y

 + O(k3),

(53)

where kx, ky are components of k⃗ in Cartesian coordinates, and integrate out the

massive mode ψ̃I0(k⃗) using its equation of motion(
0 Φ̃′(k⃗)00

Φ̃′†(k⃗)00 0

) (
ψ̃A0(k⃗)

ψ̃B0(k⃗)

)
= −

∑
a=1,2

(
0 Φ̃′(k⃗)0a

Φ̃′†(k⃗)0a 0

) (
ψ̃Aa(k⃗)

ψ̃Ba(k⃗)

)
. (54)

Then, we derive the effective Hamiltonian for physical modes as follows;

Heff = vF

∫
BZ

d2k

(2π)2
ψ̃†(k⃗)[H1(k⃗) + (a/12)H2(k⃗) + O(k⃗3)]ψ̃(k⃗), (55)

ψ̃(k⃗) =
(

ψ̃A1(k⃗) ψ̃A2(k⃗) ψ̃B1(k⃗) ψ̃B2(k⃗)
)T

, (56)
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where H1(k⃗) and H2(k⃗) are defined as follows;

H1(k⃗) = kx (τ2 ⊗ σ1) + ky (τ2 ⊗ σ2), (57)

H2(k⃗) = 4(k2
x + k2

y)(τ1 ⊗ 12×2) + (k2
x − k2

y)(τ1 ⊗ σ1) − 2(kxky)(τ1 ⊗ σ2). (58)

Here, vF = at/2 is the Fermi velocity, and in the above tensor product form, the former
acts on sublattice space I = A,B, while the latter acts on flavor space a = 1, 2. We
note that, taking the continuum limit in the above effective Hamiltonian, the higher
derivative terms below H2(k⃗) all vanish, and massless Dirac Hamiltonian with four
component spinor is derived. This is consistent with the conventional Dirac fermion
formulation in momentum space.

The Dirac Hamiltonian has four global symmetries generated by the following
generators

12×2 ⊗ 12×2, τ1 ⊗ σ3, τ2 ⊗ 12×2, τ3 ⊗ σ3, (59)

which commute the Hamiltonian in Eq.(57). In Eq.(59), the last two generators cor-
respond to the generators of flavor-chiral symmetries which forbid the parity invariant
mass term. In our formulation [1], this mass term is defined as follows;

mψ̃†(k⃗)(τ1 ⊗ 12×2)ψ̃(k⃗). (60)

This mass term preserves the global symmetries generated by 12×2⊗12×2, τ1⊗σ3. On
the other hand, this mass term breaks the global symmetries generated by τ2 ⊗ 12×2,
τ3 ⊗ σ3. Therefore, we identify the symmetries generated by τ2 ⊗ 12×2, τ3 ⊗ σ3 as
flavor-chiral symmetry. In the continuum theory, these global symmetries forbid the
parity invariant mass term (60).

However, at finite lattice spacing, we note that the higher derivative terms, such
as H2(k⃗) in Eq.(58), break these flavor-chiral symmetries like in the case of Wilson
fermion formalism. In the next section, we consider a possibility of exact flavor-chiral
symmetry deformed by lattice artifacts like in the case of overlap fermion formalism
in lattice gauge theory.

We note that, in the continuum limit, the Lagarangian corresponding to the effec-
tive Hamiltonian (55) is given as follows [1];

L = iψ̄(t, x⃗)
[
∂0γ0 − v

∑
i=1,2

γi∂i

]
ψ(t, x⃗) (61)

where ψ̄ = ψ†γ0 and gamma matrices γ0, γ1, γ2 are,

γ0 =

(
0 1
1 0

)
, γ1 =

(
−iσ1 0

0 iσ1

)
, γ2 =

(
−iσ2 0

0 iσ2

)
. (62)

Apparently, these gamma matrices γ0, γ1, γ2 satisfy Clifford algebra {γµ, γν} = 2gµν ·
14×4, where gµν is a metric in (2 + 1)-dimensional space-time (see Appendix A).
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5 Exact symmetry on honeycomb lattice

5.1 Explicit formulation of exact symmetry

In this section, based on our formulation, we show an exact symmetry of Hamiltonian
(25) even on a finite lattice [1].

Generally, there are 4 possibilities for such exact symmetry (see in Appendix B).
However, we take the following ansatz for the exact symmetry;

δχ(x⃗) = iθ[Γ5]χ(x⃗)

= iθ
[
(τ3 ⊗ X)χ(x⃗) +

1

2

∑
ρ

(τ3 ⊗ Yρ)(∆ρχ(x⃗) + 2χ(x⃗)) +
1

i

∑
ρ

(1 ⊗ Zρ)(∇ρχ(x⃗))
]
,

(63)

where X,Yρ, and Zρ (ρ = 0, 1, 2) are undetermined 3 × 3 Hermitian matrices. In the
above equation, the first and second derivative terms correspond to O(a) terms, and
Γ5 is expected to conform to the global flavor-chiral symmetry generated by τ3 ⊗ σ3

in the continuum limit.
In order to determine the coefficient matrices X,Yρ, and Zρ, we perform the Fourier

transformation of χ(x⃗), χ†(x⃗), and then impose [H̃, Γ̃5] = 0 on Γ̃5 which is a Fourier
representation of Γ5 in Eq.(63). From this condition, we derive a system of equations
for X,Yρ, and Zρ (see in Appendix C). Solving the equations, we derive the following
unique solution for X, Yρ, and Zρ (ρ = 0, 1, 2);

X =

 0 −i i
i 0 −i
−i i 0

 , (64)

Y0 =

 0 −i i
i 0 0
−i 0 0

 , Y1 =

 0 −i 0
i 0 −i
0 i 0

 , Y2 =

 0 0 i
0 0 −i
−i i 0

 , (65)

Z0 =

 0 −1 1
−1 0 0
1 0 0

 , Z1 =

 0 1 0
1 0 −1
0 −1 0

 , Z2 =

 0 0 −1
0 0 1
−1 1 0

 . (66)

Here, if we represent Eq.(63) in terms of χAρ(x⃗), χBρ(x⃗), the above exact symmetry is
represented as follows;

δχAρ(x⃗) = θ[χAρ+1(x⃗ + e⃗ρ+1) − χAρ−1(x⃗ − e⃗ρ)

+χAρ+1(x⃗ − e⃗ρ) − χAρ−1(x⃗ + e⃗ρ−1) + χAρ+1(x⃗) − χAρ−1(x⃗)], (67)

δχBρ(x⃗) = θ[ − χBρ+1(x⃗ − e⃗ρ+1) + χBρ−1(x⃗ + e⃗ρ)

−χBρ+1(x⃗ + e⃗ρ) + χBρ−1(x⃗ − e⃗ρ−1) − χBρ+1(x⃗) + χBρ−1(x⃗)]. (68)

Eqs.(67), (68) show that the exact symmetry Eq.(63) includes only the next-nearest
neighbor sites (see Figure 6), and, if we take the conventional labeling of quasiparticle
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Figure 6: Geometrical picture of Eq.(67), (68). Left and right panels show the trans-
formation for χA0(x⃗) and one for χB0(x⃗) respectively. The transformation for χA0(x⃗)
(χB0(x⃗)) involves χAρ(x⃗) (χBρ(x⃗)) surrounded by red (blue) square, where sign de-
notes its overall factor. (The source of this Figure is Fig.5 in AAM (Accepted Author
Manuscript) of Ref.[1].)

fields a(x⃗), b(x⃗), the exact symmetry (63) is also represented as follows;

δa(x⃗) = θ[a(x⃗ + s⃗2 − s⃗3) − a(x⃗ − s⃗1 + s⃗2) + a(x⃗ + s⃗3 − s⃗1)

−a(x⃗ − s⃗2 + s⃗3) + a(x⃗ + s⃗1 − s⃗2) − a(x⃗ − s⃗3 + s⃗1)] (69)

δb(x⃗) = θ[b(x⃗ + s⃗2 − s⃗3) − b(x⃗ − s⃗1 + s⃗2) + b(x⃗ + s⃗3 − s⃗1)

−b(x⃗ − s⃗2 + s⃗3) + b(x⃗ + s⃗1 − s⃗2) − b(x⃗ − s⃗3 + s⃗1)] (70)

In Eq.(63), if we take the continuum limit a → 0, the transformation (63) becomes

δχ(x⃗) = iθ
[
τ3 ⊗ (X +

∑
ρ

Yρ)
]
χ(x⃗) = 3iθ[τ3 ⊗ X]χ(x⃗). (71)

In the mass basis, X is transformed to the following form, 0 0 0
0 1 0
0 0 −1

 , (72)

except for the overall factor. Thus, in the continuum limit, the exact symmetry con-
forms to the global flavor-chiral symmetry generated by τ3 ⊗ σ3.

We note that the exact symmetry can explain the gapless nature of non-interacting
graphene system. Under the parity symmetry, Z3 symmetry, the time reversal sym-
metry, as well as the exact U(1) symmetry, it is shown that the gapless modes should
appear in the monolayer graphene system [33]. In the next section, we present the
explanation.
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5.2 Gapless modes in monolayer graphene

In this section, we show that the gaplessness in the non-interacting monolayer graphene
system can be explained from the parity symmetry, Z3 symmetry, the time reversal
symmetry, as well as the exact U(1) symmetry [33].

To achieve this, we consider the Hamiltonian of constant mode. In the limit kρ → 0,
the Hamiltonian of constant mode is generally written as the following form;

Hlow = χ̃†
[
(12×2 ⊗ F ) + (τ1 ⊗ C1) + (τ2 ⊗ C2) + (τ3 ⊗ C3)

]
χ̃, (73)

where χ̃ denotes the constant mode of χ̃(k⃗), and F , Ci (i = 1, 2, 3) are arbitrary 3× 3
Hermitian matrices. Under the Z3 symmetry, F , and Ci (i = 1, 2, 3) take the following
forms;

F =

 c c + if c − if
c − if c c + if
c + if c − if c

 , Ci =

 ci qi q∗i
q∗i ci qi

qi q∗i ci

 , (74)

where c, f , ci (i = 1, 2, 3) are arbitrary real numbers, and qi is an arbitrary complex
number. Furthermore, if we impose the parity symmetry, the time reversal symmetry
as well as the global exact symmetry on the Hamiltonian Hlow in Eq.(73) b, it should
be the following form;

Hlow = χ̃†
[
c(12×2 ⊗ M) + c1(τ1 ⊗ M)

]
χ̃, (79)

with

M =

 1 1 1
1 1 1
1 1 1

 . (80)

Here, Eq.(79) can be easily diagonalized by the unitary transformation (36) as follows;

Hlow = ψ̃†
[
c(12×2 ⊗ Mdiag) + c1(τ1 ⊗ Mdiag)

]
ψ̃, (81)

bThe parity symmetry and time reversal symmetry on the Hamiltonian K are represented in this
formulation as follows;

(τ1 ⊗ 13×3)K̃(k⃗)(τ1 ⊗ 13×3) = K̃(−k⃗) (75)

K̃∗(k⃗) = K̃(−k⃗), (76)

where K̃(k⃗) is defined in

K =
∫

d2k

(2π)2
χ̃(k⃗)[K̃(k⃗)]χ̃(k⃗). (77)

The transformation of the exact symmetry for constant mode χ̃ is generated by τ3 ⊗ X, where

X =

 0 −i i
i 0 −i
−i i 0

 . (78)
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where ψ̃ denotes the constant mode of ψ̃(k⃗), and Mdiag is given as

Mdiag =

 3 0 0
0 0 0
0 0 0

 . (82)

Thus, it is shown that the gapless modes should appear in the system.
In condensed matter physics, the gaplessness in the monolayer graphene system

is conventionally understood by the inversion and C3 symmetries [12, 13]. The exact
symmetry presented here gives another explanation for the gaplessness in the mono-
layer graphene system, while it is a future task to study whether our symmetry is
related to those symmetries or not.

In the next section, we present an extension of our formulation to the AB-stacked
bilayer graphene system [33]. In the experiments, gapless modes are also observed
in bilayer graphene, armchair/zigzag graphene nano ribbons, and non-chiral carbon
nanotubes. Our formulation may be useful to understand those gapless modes.
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Figure 7: Lattice structure of bilayer graphene (viewed from the above). Two honey-
comb lattice sheets presented in black solid and gray dashed lines are upper and lower
layer in AB-stacked bilayer graphene. The black and white circles denote the centers
of the unit cells of that fundamental lattice, which are introduced in the monolayer
graphene system. The six vertices of hexagonal unit cell in upper and lower layers are
labeled as Iuρ and Idρ (I = A,B; ρ = 0, 1, 2) respectively. The blue circles denote the
points where A sites in upper layer and B sites in lower layer overlap.

6 Exact symmetry of bilayer graphene

In this section, we present the extension of the position space formulation to the AB-
stacked bilayer graphene system, as well as the formulation of exact symmetry [33].

The Figure 7 shows how two honeycomb lattice sheets are stacked in the position
space formulation. Here, the layers are shifted by 1/3e⃗0 (or 1/3e⃗1, 1/3e⃗2) in the plane,
and the distance between two layers is given as 3.34 Å [34].

In Figure 7, the leading order of interlayer hopping interaction between two layers
occurs at the points colored with blue. Thus, defining the creation (annihilation)
operators on upper and lower layer as χ†

u,Iρ(x⃗)(χu,Iρ(x⃗)), χ†
d,Iρ(x⃗)(χd,Iρ(x⃗)), where the

indices u, d denote upper and lower layer respectively, the tight binding Hamiltonian
of AB-stacked bilayer graphene is given as follows;

HB = − t
∑

l=u,d

∑
x⃗

χ†
l (x⃗)

[
(τ1 ⊗ M)χl(x⃗) − i

∑
ρ

(τ2 ⊗ Γρ)(∇ρχl(x⃗))

+
1

2

∑
ρ

(τ1 ⊗ Γρ)(∆ρχl(x⃗))
]

− γ
∑
x⃗

χ†
u(x⃗)

[
(τ+ ⊗ Γ0)χd(x⃗ − 2/3e⃗0) + (τ+ ⊗ V )χd(x⃗ + 1/3e⃗0) + h.c.

]
,

(83)
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where

V =

 0 0 0
0 0 1
0 1 0

 . (84)

In Eq.(83), the first and second lines are the nearest neighbor hopping term in each
layer, and the third line is the leading order of interlayer hopping interaction between
two layers. t, γ are hopping amplitudes. We note that, in the AB-stacked bilayer
graphene system, t ≅ 3 eV, and γ ≅ 0.4 eV [35].

In Eq.(83), if we neglect the interlayer hopping term and set γ = 0, the Hamiltonian
is invariant under the following infinitesimal transformations for χu(x⃗), χd(x⃗) as

δχu(x⃗) = iθ
[
(τ3 ⊗ X)χu(x⃗) +

1

2

∑
ρ

(τ3 ⊗ Yρ)(∆ρχu(x⃗) + 2χu(x⃗))

+
1

i

∑
ρ

(1 ⊗ Zρ)(∇ρχu(x⃗))
]
, (85)

δχd(x⃗) = iθ′
[
(τ3 ⊗ X)χd(x⃗) +

1

2

∑
ρ

(τ3 ⊗ Yρ)(∆ρχd(x⃗) + 2χd(x⃗))

+
1

i

∑
ρ

(1 ⊗ Zρ)(∇ρχd(x⃗))
]
, (86)

where the coefficients matrices X, Yρ, Zρ (ρ = 0, 1, 2) are same as in monolayer, and
given as

X =

 0 −i i
i 0 −i
−i i 0

 , (87)

Y0 =

 0 −i i
i 0 0
−i 0 0

 , Y1 =

 0 −i 0
i 0 −i
0 i 0

 , Y2 =

 0 0 i
0 0 −i
−i i 0

 , (88)

Z0 =

 0 −1 1
−1 0 0
1 0 0

 , Z1 =

 0 1 0
1 0 −1
0 −1 0

 , Z2 =

 0 0 −1
0 0 1
−1 1 0

 . (89)

However, we note that even if we take account of the interlayer hopping interaction in
Eq.(83), it is shown that the Hamiltonian HB is invariant under the above transfor-
mation with θ = θ′, so that the symmetry remains exact. The details of calculation is
given in Appendix D.
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7 Summary and discussion

In this thesis, we showed the novel formulation for the construction of Dirac fermion
formulation on honeycomb lattice in position space, which could be regarded as the
counterpart of the conventional formulation in momentum space, as well as the explicit
formulation of exact symmetry on honeycomb lattice [1]. Besides, we extended this
formulation to the AB-stacked bilayer graphene system [33].

In this formulation, we first considered the new labelling of degrees of freedom
of the honeycomb lattice sites, and introduced the quasiparticle field defined on the
fundamental lattice with hexagonal unit cells. In this site-arrangement, the honeycomb
lattice sites were labelled by a center coordinate of unit cell, and indices I, ρ in a unit
cell. Using this relabelling of field, we reformulated the tight-binding Hamiltonian, and
showed that the Hamiltonian was constructed by kinetic term and second derivative
term, which were written in the tensor product form associated with A, B sublattice
and three vertex degrees of freedom in a hexagonal unit cell, and besides there appeared
two massless zero modes and one massive mode.

In this formulation, it was shown that the Dirac point appeared only at the origin
of BZ, and was stable to the next nearest neighbor hopping interaction. From the
analysis of energy spectrum, it was also shown that, of the six degrees of freedom of
quasiparticle field, there remained four physical degrees of freedom of two massless zero
modes near the Dirac point. In the derivation of the effective theory, we integrated out
the massive mode, which was unphysical near the Dirac point, and showed that, in the
continuum limit, the effective theory was consistent with the conventional formulation
in momentum space.

We found an exact U(1) symmetry at finite lattice spacing, which protected the
masslessness of Dirac fermion, and showed that the symmetry remained exact even
if we considered the interlayer hopping interaction in bilayer graphene system. We
showed that our new U(1) symmetry could play a crucial role in preserving the gap-
lessness in monolayer graphene. Although conventionally the gaplessness is understood
by discrete symmetries, i.e. the inversion and C3 symmetries, whether these discrete
symmetries are related to our U(1) symmetry or not is an open problem. This is a
subject which should be studied further.

This formulation may be useful for studying some non-perturbative dynamics in
condensed matter physics such as spontaneous chiral symmetry breaking in suspended
graphene [7, 25, 26, 27, 28, 29], while, in a point of view of lattice gauge theory,
our formulation can also be regarded as one of the lattice fermion formalisms on two
dimensional space lattice.

In lattice gauge theory, as is well known, there is the fermion doubling problem to
define massless Dirac fermion on the lattice, and it is needed to present a formalism
which does not conflict the doubling problem, and enables a faster numerical simulation
for studying non-perturbative dynamics in quantum field theory. To achieve this, in
some literature, it has been studied to extend the lattice structure to non-hypercubic
lattices. For instance, in Ref.[30], a new lattice fermion formalism on four dimensional
hyperdiamond lattice was proposed as an extension of the graphene model on the
honeycomb lattice. This regularization method has some advantages for studying
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non-perturbative dynamics in quantum field theory. However, it seems possible to
present another extensions in more general forms. Our formulation will be a first
step for such study, and may be widely useful for studying other lattice regularization
methods on non-hypercubic lattices.
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A Model in Lagrange formulation

Here, the model in Lagrange formulation is explained [1]. If we add a mass term to
the effective theory, Hamiltonian is written as follows;

H =
∫ d2k

(2π)2
ψ̃†(k⃗)[α1k1 + α2k2 + mβ]ψ̃(k⃗), (90)

where

α1 =

(
0 −iσ1

iσ1 0

)
, α2 =

(
0 −iσ2

iσ2 0

)
. (91)

β is a Hermitian matrix and we may take following choices;(
0 1
1 0

)
,

(
1 0
0 −1

)
. (92)

Here the first gives parity even mass term while the second gives parity odd mass term.
However the parity odd mass term is forbidden by parity symmetry, thus we choose
the parity even mass term here. Then transforming above Hamiltonian to Lagrangian
in real space, we obtain the following Dirac Lagrangian.

L = iψ†(t, x⃗)
[
∂0 + v

∑
i=1,2

αi∂i − mβ
]
ψ(t, x⃗) (93)

= iψ̄(t, x⃗)
[
∂0γ0 − v

∑
i=1,2

γi∂i − m
]
ψ(t, x⃗) (94)

where ψ̄ = ψ†β and γ0 = β, γ1 = −βα1, γ2 = −βα2. Evidently, the gamma matrices
γ0, γ1, γ2 satisfy Clifford algebra {γµ, γν} = 2gµν ·14×4, where gµν is a metric in (2+1)-
dimensional space-time.

B Possibilities for exact symmetry

In general, there are 4 candidates for an exact symmetry Γ5, involving O(a) lattice
artifacts as follows;

12×2 ⊗ A5 + O(a), τ1 ⊗ B5 + O(a), τ2 ⊗ C5 + O(a), τ3 ⊗ D5 + O(a), (95)

where A5, B5, C5, D5 are 3 × 3 Hermitian matrices. Since Γ5 involves O(a) lattice
artifacts, in the Fourier representation, such transformation is momentum dependent
and written as

δχ̃(k⃗) = iθΓ̃5(k⃗)χ̃(k⃗), (96)

where Γ̃5(k⃗) is the Fourier representation of Γ5. In order to derive an exact symmetry,

we expand Γ̃5(k⃗) with respect to k, and consider to determine the expansion coefficients
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by imposing [H̃(k⃗), Γ̃5(k⃗)] = 0 on Γ̃5(k⃗) order by order. The Taylor expansion of Γ̃5(k⃗)
around k = 0 with respect to k is written as follows;

Γ̃5(k⃗) = Γ̃5 + (Γ̃5kk + Γ̃†
5kk

∗) − 1

2
(Γ̃5kkk

2 + Γ̃†
5kkk

2 + Γ̃5kk∗kk∗)

− 1

6
(Γ̃5kkkk

3 + Γ̃†
5kkkk

∗3 + 3Γ̃5kkk∗k2k∗ + 3Γ̃†
5kkk∗kk∗2) + · · · , (97)

where k is defined as k = (kx + iky)/2, and Γ̃5, Γ̃5kk∗ are 6×6 Hermitian matrices, and
Γ̃5k, Γ̃5kkk, Γ̃5kkk∗ are 6×6 complex matrices. Here, the coefficients matrices of momen-
tum expansion are determined order by order from the condition [H̃(k⃗), Γ̃5(k⃗)] = 0.

For instance, if we consider the case of τ3 ⊗D +O(a) in Eq.(95), which is expected
to conform to the global flavor-chiral symmetry generated by τ3⊗σ3 in the continuum
limit, it is shown that, at the third order of momentum expansion, the coefficients in
Eq.(97) should satisfy the following equations;

Γ̃5 = τ3 ⊗ D5, (98)

Γ̃5k = 12×2 ⊗ D5k, (99)

Γ̃5kk = τ3 ⊗ D5kk, Γ̃5kk∗ = τ3 ⊗ D5kk∗ , (100)

Γ̃5kkk = 12×2 ⊗ D5kkk, Γ̃5kkk∗ = 12×2 ⊗ D5kkk∗ , (101)

{M,D5} = 0, (102)

{Ω†, D5} + [M,D5k] = 0 (103)

i{M,D5kk} + i{Ω, D5} + 2[Ω†, D5k] = 0 (104)

2iD5 + i{M,D5kk∗+}[Ω, D5k] + [Ω†, D†
5k] = 0, (105)

2iD5 + 3i{Ω†, D5kk} + 3[Ω, D5k] + [M,D5kkk] = 0, (106)

i{Ω†, D5} + i{Ω, D5kk} + 2i{Ω†, D5kk∗} + [Ω, D5k∗ ]

+[M,D5kkk∗ ] = 0, (107)

where D5, D5kk∗ are 3× 3 Hermitian matrices, and D5k, D5kk, D5kkk, D5kkk∗ are 3× 3
complex matrices, and Ω is defined as

Ω =

 1 0 0
0 ω 0
0 0 ω2

 . (108)

In this way, we considered the all candidates in Eq.(95). In the result, it was
found that τ1 ⊗ B + O(a), and τ2 ⊗ C + O(a) were denied, while 12×2 ⊗ A + O(a),
and τ3 ⊗ D + O(a) were fine at the third order of expansion. Following the result, in
section 5, we take the following ansatz for the exact symmetry as

δχ(x⃗) = iθ
[
(τ3 ⊗ X)χ(x⃗) +

1

2

∑
ρ

(τ3 ⊗ Yρ)(∆ρχ(x⃗) + 2χ(x⃗))

+
1

i

∑
ρ

(1 ⊗ Zρ)(∇ρχ(x⃗))
]
. (109)
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C Derivation of exact symmetry

Here, we show the derivation of exact symmetry [1]. In order to determine X, Yρ,
and Zρ, we take the Fourier representations of χ(x⃗), χ†(x⃗). In momentum space, the
Hamiltonian at the leading order of tight-binding approximation is represented as
follows;

H =
∫ d2k

(2π)2
χ̃†(k⃗)

[
(τ1 ⊗ Λ) +

∑
ρ

eikρ(τ− ⊗ Γρ) +
∑
ρ

e−ikρ(τ+ ⊗ Γρ)
]
χ̃(k⃗)(110)

with τ± ≡ (τ1 ± iτ2)/2 and Λ ≡ M − 1. Besides, Γ̃5(k⃗) is also represented as follows;

Γ̃5(k⃗) = (τ3 ⊗ X) +
∑
ρ

eikργρ +
∑
ρ

e−ikργ†
ρ, (111)

where

γρ =
τ3 + 1

2
⊗ W †

ρ +
τ3 − 1

2
⊗ Wρ, (112)

with Wρ = 1
2
(Yρ + iZρ).

Then, imposing [H̃(k⃗), Γ̃5(k⃗)] = 0 on Γ̃5(k⃗), we obtain the following equations;

{Λ, X} +
∑
ρ

(ΓρWρ + W †
ρΓρ) = 0 (113)

{Γρ, X} + ΛW †
ρ + WρΛ = 0 (114)

ΛWρ + W †
ρΛ +

∑
σ ̸=λ(σ,λ̸=ρ)

(ΓσW
†
λ + WλΓσ) = 0 (115)

ΓρW
†
ρ + WρΓρ = 0 (116)

ΓρWσ + W †
σΓρ = 0 (ρ ̸= σ). (117)

Solving these equation for X and Wρ(ρ = 0, 1, 2), the unique solution is found as
follows;

X =

 0 −i i
i 0 −i
−i i 0

 , (118)

W0 =

 0 −i i
0 0 0
0 0 0

 , W1 =

 0 0 0
i 0 −i
0 0 0

 , W2 =

 0 0 0
0 0 0
−i i 0

 , (119)

The coefficients matrices Yρ, Zρ are determined by Yρ = Wρ + W †
ρ , Zρ = (Wρ −W †

ρ )/i
respectively.
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D Derivation of exact symmetry in bilayer graphene

Here, we show the derivation of exact symmetry in bilayer graphene [33]. The infinites-
imal transformations of exact symmetry for χl(x⃗) (l = u, d) are written as follows;

δχu(x⃗) = iθ
[
(τ3 ⊗ X)χu(x⃗) +

1

2

∑
ρ

(τ3 ⊗ Yρ)(∆ρχu(x⃗) + 2χu(x⃗))

+
1

i

∑
ρ

(1 ⊗ Zρ)(∇ρχu(x⃗))
]
, (120)

δχd(x⃗) = iθ
[
(τ3 ⊗ X)χd(x⃗) +

1

2

∑
ρ

(τ3 ⊗ Yρ)(∆ρχd(x⃗) + 2χd(x⃗))

+
1

i

∑
ρ

(1 ⊗ Zρ)(∇ρχd(x⃗))
]
, (121)

where the coefficients matrices X, Yρ, Zρ, (ρ = 0, 1, 2) are 6 × 6 Hermitian matrices.
Expressing Yρ, Zρ as Yρ = Wρ+W †

ρ , Zρ = (Wρ−W †
ρ )/i, where Wρ are complex matrices,

and assuming that the Hamiltonian does not change under the above transformations,
the condition is given as follows;

{X,V } + W †
0Γ0 + Γ0W0 = 0, (122)

W †
0V + V W0 = 0, (123)

W †
1V + V W1 + W2Γ0 + Γ0W

†
2 = 0, (124)

W †
2V + V W2 + W1Γ0 + Γ0W

†
1 = 0, (125)

{X, Γ0} + W0V + V W †
0 = 0, (126)

W1V + V W †
1 = 0, (127)

W2V + V W †
2 = 0, (128)

W †
0Γ0 + Γ0W0 = 0, (129)

W †
1Γ0 + Γ0W1 = 0, (130)

W †
2Γ0 + Γ0W2 = 0. (131)

Here, supposing

X =

 0 −i i
i 0 −i
−i i 0

 , (132)

W0 =

 0 −i i
0 0 0
0 0 0

 , W1 =

 0 0 0
i 0 −i
0 0 0

 , W2 =

 0 0 0
0 0 0
−i i 0

 , (133)

and substituting these X, Wρ into the above conditions, it is shown that all conditions
are satisfied.
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