<table>
<thead>
<tr>
<th>Title</th>
<th>Measurement of the CsI calorimeter performance and KL momentum spectrum for the J-PARC KOTO experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>佐藤, 和史</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>ETD</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/52303</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/52303</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
論文内容の要旨

J-PARC KOTO実験は、K_L中間子がπ中間子と2つのニュートリノに崩壊する反応（$K_L \rightarrow \pi^0 \nu \bar{\nu}$崩壊）の分岐比を測定し、それを通じて素粒子標準理論を越える新物理を探求する実験である。この実験ではπ中間子から発生する2つの光子をCsI結晶電磁カロリメータで観測し、この崩壊を同定する。ここで測定される2光子のエネルギーと入射位置および電磁シャワーの形状は、シグナル事象を背景事象から識別するために重要な情報である。しかしこの実験では、KOTO実験のエネルギースケールに係るCsIカロリメータのエネルギー及位置分解能は実測されていなかった。また、電磁シャワーの形状についてはモンテカルロ法によるシミュレーションで研究が進められていたものの、そのシミュレーションと実際のデータとの整合性は確認されていなかった。

私は2012年に行われたビームテストにおいて、荷電粒子の軌跡と運動量を測定する装置（スペクトロメータ）を使用してK_L中間子の崩壊で発生する電子を観測し、それを参照として用いることによりカロリメータの分解能とシャワー形状を測定した。これらは、カロリメータ実機を用いて行われた初の実測結果である。

また、このビームテストは荷電粒子と光子の両方を測定できる機会である。私は、$K_L \rightarrow \pi^+ \pi^- \pi^0$崩壊及び$K_L \rightarrow \pi^+ \nu \bar{\nu}$崩壊を測定することにより、KOTO実験に用いられるビーム中のK_L中間子の運動量分布を測定した。これまで測定されていなかった、K_L中間子の4GeV/c以上での運動量分布を明らかにした。
論文審査の結果の要旨及び担当者

<table>
<thead>
<tr>
<th>氏名</th>
<th>(佐藤和史)</th>
</tr>
</thead>
<tbody>
<tr>
<td>主査</td>
<td>教授</td>
</tr>
<tr>
<td>副査</td>
<td>教授</td>
</tr>
<tr>
<td>副査</td>
<td>教授</td>
</tr>
<tr>
<td>副査</td>
<td>准教授</td>
</tr>
<tr>
<td>副査</td>
<td>准教授</td>
</tr>
</tbody>
</table>

論文審査の結果の要旨

佐藤和史氏は、J-PARC 大強度陽子加速器を用いた中性 K 中間子実験 (KOTO 実験) のための電磁カロリメータの性能と、K 中間子の運動量分布を測定した。電磁カロリメータは、ガンマ線のエネルギーと入射位置を測定するために CsI の結晶約 1700 本を直径 2m の円筒内に積み重ねたものである。佐藤氏はこれらの測定のために、カロリメータの上流に電磁石と飛跡検出器を設置し、運動量が測定された電子を用いてカロリメータのエネルギー分解能と位置分解能をエネルギーの関数として測定した。また、電磁シャワーの広がりの形がデータとモンテカルロシミュレーションの間で異なることを発見し、それが制動放射のシミュレーションの違いによることを示した。シャワーの広がりの形の理解は、KOTO 実験において背景事象を抑制するために重要である。また、中性 K 中間子から 2 つの荷電パイオンへの崩壊、および 2 つの荷電パイオンと中性パイオンへの崩壊を用いて、幅広い運動量領域で K 中間子の運動量分布を測定した。また、カロリメータの分解能と K 中間子の運動量分布の測定精度が、KOTO 実験に対して十分であることを示した。

これらの、本番実験前の試験によって、KOTO 実験が信頼できる物理解析用のデータを収集できることを実証するとともに、シャワーの形の再現性の問題を指摘した。

よって、本論文は博士 (理学) の学位論文として十分価値あるものと認める。