<table>
<thead>
<tr>
<th>Title</th>
<th>FORMATION OF FUNCTIONAL SUPRAMOLECULAR MATERIALS BASED ON STIMULI-RESPONSIVE MOLECULAR RECOGNITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>中畑, 雅樹</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>ETD</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/52304</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/52304</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
論文内容の要旨

【目的】生体内では分子同士が超分子的な相互作用（分子認識）によって寄り集まることで階層的に組織が形成され、それを通して生命活動に必要な機能が発現される。特に、DNAやタンパク質を始めとする生体高分子では、その側鎖における多重での認識が重要で役割を果たしている。人工系では、分子認識の概念と高分子科学を融合することことで、生体系を模し、あるいは生体系では見つけられない機能を発現する材料の創製が期待される。

【方法】本論文では分子認識部位として、食品添加物としても広く用いられている環状オリゴ糖（シクロデキストリン(CD)）やオリゴヌクレオチド、核酸塩基等を用いた。CDは様々な親水性のゲスト分子を認識してその空孔の中に取り込み、可逆的に複合体を形成する。CDに取り込まれるゲスト分子は、酸化還元という誘発するフェロセン(Fe)という分子を選択した。CDと還元状態のFe（電気的に中性的な分子）はホスト-ゲスト相互作用により複合体を形成するが、Feが酸化された状態（一個のカチオン）では形成されないことがこれまでに明らかになっている。一方でDNAでは、相補的な核酸塩基同士の相互作用を介して二重らせん構造が形成される。これらの分子認識部位を様々な高分子の側鎖に修飾し、複合体の形成と解離を外部からの刺激によってスイッチすることで、材料全体として微視的なスケールでどのような応答が観測されるかを研究した。

【結果】①CDを修飾した高分子とFeを修飾した高分子を水溶液中で混合すると、発光性が失われ物性（ゲル化）したこと。外部刺激によって流れないゲル（ゲル）と流れる状態（ソル）をスイッチすることができた。②(1)のゲルは、切断してその空港を修復できる（自己修復）ことが分かり、自己修復を刺激によってオン・オフ制御することができた。③CD-Feからなる可逆的な複合体による架橋点と安定で非可逆的な架橋点を同時に導入すると、酸化還元刺激に応答してパンのようにヒブリッド鍋を得ることができた。④CDおよびFeを別々に修飾したゲル同士は表面での相互作用により接着し、酸化還元刺激によって接着性を制御することができた。さらに様々な分子認識を組み合わせることで、生体系のような配列が割裂された組織化体の極微的なスケールでの構築や、核酸塩基配列を介した接着システムの構築にも成功した。

【考察】本論文では分子認識の科学と高分子科学との融合により、高分子側鎖での分子認識を介した超分子材料の設計指針を示した。構築要素は同じでも、材料の設計に応じて視覚的なスケールで多種多様な応答を観測することができた。このような超分子材料は、例えば異種物質間の接着、耐久性と自己修復性を兼ね備えたコーティング材料、生体分子のセンサー等、幅広い応用が期待される。

論文審査の結果の要旨及び担当者

<table>
<thead>
<tr>
<th>氏名 (中 畑 植樹)</th>
<th>氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>田中 喜光 (教授)</td>
<td>原田 明</td>
</tr>
<tr>
<td>副 喜光 (教授)</td>
<td>井上 正志</td>
</tr>
<tr>
<td>副 喜光 (教授)</td>
<td>山口 浩靖</td>
</tr>
</tbody>
</table>

論文審査の結果の要旨

生体内では分子同士が超分子的な相互作用（分子認識）によって寄り集まることで階層的に組織が形成され、それを通じて生命活動に必要機能が発現される。特に DNA やタンパク質を始めとする生体高分子では、その側鎖における多点での認識が重要な役割を果たしている。人工系では、分子認識の概念と高分子科学を融合することで、生体系を模した、あるいは生体系では無いが機能発現する材料が期待される。

本論文では分子認識の応用として、食品添加物としても広く用いられる壁状オリゴ糖（シクロガキストリン (CD)）やオリゴスケレオチド、核酸塩基類を用いた。CD は様々な酸性性のゲスト分子を認識してその空孔の中に取り込み、可逆的に複合体を形成する。CD に取り込まれるゲスト分子としては、酸化還元という刺激に応答するフェロセン (Fc) という分子を選択した。CD と還元状態の Fe (電気的に中性な分子) はホスト・ゲスト相互作用により複合体を形成するが、Fc が酸化された状態（一価のカチオン）では形成されないことがこれまでに分かっている。一方で DNA では、相互的な核酸塩基同士の相互作用を介して二重らせん構造が形成される。これらの分子認識部位を様々な高分子の側鎖に修飾し、複合体の形成と解離を外部からの刺激によってスイッチすることで、材料全体として超視的なスケールでの様々な応答が観測されるかを研究した。

1) CD を修飾した高分子と Fe を修飾した高分子を水溶液中で混合すると、流動性が失われ固化（ゲル化）した。外部刺激によって流れない状態（ゲル）と流れる状態（ゾル）をスイッチすることができた。2) のゲルは切断してもその構造を修復できる（自己修復）ことが分かっており、自己修復を刺激によってオン・オフ制御することができる。3) CD-Fc からなる可逆的な複合体による架橋点と安定で非可逆的な架橋点を同時に導入すると、酸化還元刺激に応答してゼミのように伸縮するゲルを得ることが分かった。4) CD および Fe を別々に修飾したゲル同士は表面での相互作用により接着し、酸化還元刺激によって接着性を制御することができた。さらに様々な分子認識を組み合わせることで、生体系のような配列が制御された組織化体の巨視的なスケールでの構築や、核酸塩基対形成を介した接着システムの構築にも成功した。

本論文では分子認識の科学と高分子科学との融合により、高分子側鎖での分子認識を介した超分子材料の設計指針を示した。構成要素は同じでも、材料の設計に応じて巨視的なスケールで多種多様な応答を観測することができた。このような超分子材料は、例えば特定物質間の接着、耐久性と自己修復性を兼ね備えたコーティング材料、生体分子のセンサー等、幅広い応用が期待される。