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On Frobenius Manifolds from Gromov—Witten Theory of Orbifold
Projective Lines with r orbifold points

YUUKI SHIRAISHI

ABSTRACT. We prove that the Frobenius structure constructed from the Gromov-Witten
theory for an orbifold projective line with at most r orbifold points is uniquely determined

by the WDVV equations with certain natural initial conditions.

1. INTRODUCTION

The (formal) Frobenius manifold is a certain complex (formal) manifold endowed
with the Frobenius algebra structure on its tangent sheaf whose product, unit, non—
degenerate bilinear form and grading operator called the Euler vector field satisfy the
special properties (for its definition and important properties, see Section 2). This struc-
ture was originally discovered by K. Saito in his study of primitive forms and their pe-
riod mappings on the deformation theory of isolated hypersurface singularities ([13] and
references therein) and was rediscovered and formulated by Dubrovin [3] in order to
give coordinate—free expression for a solution of the Witten—Dijkgraaf—Verlinde—Verlinde
(WDVV) equations considered in two dimensional topological field theories. Namely the
Frobenius manifold can be also obtained from the Gromov—-Witten theory for manifolds or
orbifolds. Here the Gromov—Witten theory for orbifolds by Abramovich—Graber—Vistoli
[1] and Chen—Ruan [2] is summarized briefly as follows; Let X’ be an orbifold (or a smooth
proper Deligne-Mumford stack over C). Then, for non-negative integers g,n € Zsg
and 3 € Hy(X,Z) where X is the coarse moduli space of X', the moduli space (stack)
M, (X, B) of orbifold (twisted) stable maps of genus g with n-marked points of degree /3
is defined. There exists a virtual fundamental class [M, (X, 6)]Vir and Gromov-Witten
invariants of genus g with n-marked points of degree [ are defined as usual except for
that we have to use the orbifold cohomology group H} ,(X,Q):

(Ao DY = /[M - VIAL A AeviA,, Ar.. A, € HY,(X,Q),

Date: January 8, 2015.



2 YUUKI SHIRAISHI

(X,Q) — H*(M,,(X,3),Q) the induced homomorphism

by the evaluation map. We also consider the generating function (or formal power series)

1
X
R O TN ED 31
n7ﬁ
and call it the genus g potential where {A;} denotes a Q-basis of H} (X, Q). The main

result in [1, 2] tells us that the point axiom, the divisor axiom for a class in H*(X,Q) and

where we denote by ev} : H}

the associativity of the quantum product hold same as the Gromov—Witten theory for a
usual manifold (see [1, 2] for details of these axioms). In particular, the associativity of the
quantum product implies the WDVV equations and it gives a formal Frobenius manifold
M whose structure sheaf O,,, tangent sheaf 7y, and Frobenius potential are defined as the
algebra A[[H} (X, C)]] of formal power series in dual coordinates {t;} of the Q-basis {A;}
of H? ,(X,Q) over the Novikov field A (roughly speaking, A is the C-algebra of formal

orb
Laurent series in ¢”, ..., ¢% where 031, ..., 3, are effective 1-cycles which generate the
Mori cone of X), Ty := H},(X,C) ®c Oy and the genus zero potential F;' respectively.

Let » > 3 be a positive integer. Let A be a multiplet (aj,as,...,a,) of positive
integers such that 2 < a; < ay < -+ < a, and A = (Aq,...,\,) a multiplet of pairwise

distinct elements of P'(C) normalized such that \; = oo, Ay = 0 and A3 = 1. Set
pa=2+,_,(ag—1)and x4 =2+ >, _,(—1+ 1/a;). We shall consider the orbifold
projective line with r—orbifold points at A, ..., A\, whose orders are aq,as,...,a,, which
is denoted by IP’1 A (see Definition 5.2). Here the number u4 is regarded as the total
dimension of the orblfold cohomology group H,, (P} ,,C) and the number y 4 is regarded
as the orbifold Euler number of P! AA- The main purpose of the present paper is to show
that the Frobenius manifold MI%VZ constructed from the Gromov-Witten theory for IP’}LL A
can be determined by the WDVV equations with certain natural initial conditions. Then
we shall show the following uniqueness theorem which is our main result in the present

paper and the natural generalization of the one in our previous paper [6]:

Theorem (Theorem 3.1). There exists a unique Frobenius manifold M of rank pa and
dimension one with flat coordinates (t1,t11,...,tij, .- tra—1,tu,) satisfying the following

conditions:

(i) The unit vector field e and the Euler vector field E are given by

o T alflaz_] P
T at1+;z_: ”at XA

Z
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(ii) The non—degenerate symmetric bilinear form n on Ty satisfies

9 9 N_ (9 9\ _4
MNot o, )~ "o, o) ~

< 0 0 ) ail i1 =1y and jo = a;, — Ji,
N\ a5, | =
atil J1 atiz J2

0 otherwise.
(iii) The Frobenius potential F4 satisfies EF ali,—0 = 2F alt,=o0,
‘FA|t1:O eC Htl,la R ’tl,al—lﬁ S 7ti7ja o 7t7",17 . 7t7‘,a7-—17 Gt”AH .

(iv) Assume the condition (iii). we have

fA’tlzet“AZO == Zgg), QX) - C[ti’l, Ce 7ti,ai—1]7 Z = 1, Lo, T
=1

(v) Assume the condition (iii). In the frame 8%, 8t81,1’...78tr,f7~—17 at‘zA of Tu, the
product o can be extended to the limitt, =t11 = -+ =ty 0.1 = etha = 0. The

C-algebra obtained in this limit is isomorphic to
Clxy, za, .. ., x,] /(Iil’j, a;x] — ajx?)lq;ﬁjq ,

where 0/0t; ; are mapped to z) fori=1,...,r,j=1,...,a;, — 1 and a/ot,, are

T
<H tm) e'ra
i=1

occurs with the coefficient 1 in Fa.

mapped to a;xi".
(vi) The term

Here we have two important results concerning the condition (iv) in Theorem 3.1.
First, the polynomial QX) in the condition (iv) can be expressed by the Frobenius potential
Fa,(t),t's, e"4:) of the Frobenius manifold M. in Theorem 3.1 in [6] where 4; = (1,1, a;)
with a; > 2 and (), ¢'3, ¢, ) :== (81,851, 15.4,1, s, ) 18 the flat coordinate for Ma,:

Proposition (Proposition 3.18). For the polynomial gfj) in the condition (iv) in Theorem
3.1, we have

G\ = F4,(0,,,0),
where t; := (t;1,...,tia—1) is the i—th parts of the flat coordinate in Theorem 3.1.

Second, we can derive the condition (iv) from other conditions if the multiplet A
satisfies 2 < as < a3 (called “general multiplet”) or under some weak condition if the
multiplet A satisfies 2 = a; = ay < a3 (called “semi-general multiplet”). This is a

generalization of Proposition 3.24 in [6]:
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Theorem (Theorem 4.14). Suppose that A is a general multiplet. For a non-negative
B € ZFa=2 we have

3
Cc (B + Zeiwk,()) 7£ 0
k=1
only if iy = iy = i3. Suppose that A is a semi—general multiplet. For a non—negative
B € ZHA~2 we have

3
C (ﬁ + Zeibjk,O) 75 0
k=1

only if i1 = 19 = 13 under the following condition:
(iv’) Ifa;, = a;, for some iy, is € {1,...,r}, then the Frobenius potential F is invariant

under the permutation of parameters t;, ; and t;,; (7 =1,...,a; —1).

As a corollary of Theorem 3.1, the Frobenius structure constructed from the Gromov—

Witten theory for Ph, A can be uniquely reconstructed by the conditions in Theorem 3.1:

Theorem (Theorem 5.5). The conditions in Theorem 3.1 are satisfied by the Frobenius

structure constructed from the Gromov-Witten theory for ]P)}LL A

In the rest of the present paper, we investigate the Frobenius potential which satisfies
the same conditions with Theorem 3.1 except for the condition (vi). In other theory
like the invariant theory of extended cuspidal Weyl groups which is expected as a mirror
partner of P} , ([16]), the representation theoretic meaning of this coefficient is not known
at all and it is hard even to verify whether this coefficient is non—zero or not. If this
coefficient were non—zero, we can apply Theorem 3.1 to showing the isomorphism between
the Frobenius manifold constructed from the invariant theory of an extended cuspidal
Weyl group and MH%V‘//\ This will be a further extention of the works [4, 12, 15]. For this
application, we obtain the following useful proposition which might enable us to derive

the contradiction if the coefficient in the condition (vi) were zero:

Proposition (Proposition 6.1). Assume that a Frobenius manifold M of rank ps and
dimension one with flat coordinates (t1,t11,...,tij, .. tra—1,tu,) satisfies the following

conditions:

(i) The unit vector field e and the Euler vector field E are given by

o r al—laz_‘7 9
_= _t_
ST 10t1+zz @ ’J(‘?t XA

=1 j=1 v
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The non—degenerate symmetric bilinear form n on Ty satisfies

9 9 N_ (9 9\ _4
MNot o, )~ "o, o) ~

< 0 0 ) ail i1 =1y and jo = a;, — Ji,
N\ a5, | =
atil J1 atiz J2

0 otherwise.

The Frobenius potential F satisfies EF |y, —0 = 2F |y =0,
‘F|t1:O eC HtLl? ce 7t1,a1—17 . 7ti,j7 - 7tr,17 . atr,ar—la et“AH .

Assume the condition (iii). we have

f|t1:etu,4:0 = Z g(z)’ g(z) c (C[[ti,l, . ;ti,ai—l]]y 1= 1, o, T
i=1

Assume the condition (iii). In the frame 8%, 831,...,%3_1, at‘zA of Tar, the
product o can be extended to the limit t| = t;1 = -+ = tyq,—1 = €"a = 0. The

C-algebra obtained in this limit is isomorphic to
Clxy, za, .. ., x,] /(Iil’j, a;x] — ajx?)lq;ﬁjq ,

where 0/0t; ; are mapped to z) fori=1,...,r,j=1,...,a;, — 1 and a/ot,, are

T
<H tm) e'ra
i=1

occurs with the coefficient 0 in F.

The term t7,t7, , in F occurs with the coefficient

mapped to a;xi".
The term

—1/96 if a; =2,
—1/4a; if a; > 3.

Then any term t®e™wa for m > 1 occurs with the coefficient 0 in F.
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2. PRELIMINARY

In this section, we recall the definition and three elementary properties of the Frobe-
nius manifold [3]. The definition below is taken from Saito-Takahashi [13].

Definition 2.1. Let M = (M, Oy) be a connected complex manifold or a formal manifold
over C of dimension p whose holomorphic tangent sheaf and cotangent sheaf are denoted
by Tar and Q1 respectively. Set a complex number d. A Frobenius structure of rank
i and dimension d on M is a tuple (1,0, e, E), where we denote by 1 a non—degenerate
Ojr—symmetric bilinear form on 7y, by o an Oy;-bilinear product on 7Tj; of an associative
and commutative Oy—algebra structure with the unit e and by F a holomorphic vector

field on M called the Fuler vector field, satisfying the following axioms:
(i) The product o is self-ajoint with respect to n: that is,
0o, 0")=n(6,0 008", 0,80 € T

(ii) The Levi-Civita connection V/ : Ty ®p,, Ta — Tar with respect to 7 is flat: that

is,
V6, Vs) =5y, 0,0 € T

(iii) The tensor C' : Ty ®o,, Tar — Tur defined by Csd’ := 6 0 &', (6,0" € Tyr) is flat:

that is,
V/C = 0.

(iv) The unit e for the product o is a V/—flat holomorphic vector field: that is,
Ve = 0.

(v) The non—degenerate bilinear form 7 and the product o are homogeneous of degree
2—d and 1 respectively with respect to the Lie derivative Lieg of the Euler vector
field E: that is,

Lieg(n) = (2 —d)n, Lieg(o) =o.

We shall expose, without their proof, three basic properties of the Frobenius manifold
which are necessary to state Theorem 3.1. Let us consider the space of horizontal sections

of the connection V/:
T ={6€ T | Vsd=0forall & € Ty}
Then the axiom (i) implies that 77, is a local system of rank g on M:

Proposition 2.2. At each point of the Frobenius manifold M, there exists a local coor-
dinate (t1,...,t,), called flat coordinates, such that e = 0, T]\J; is spanned by Oy, ...,0,
and n(0;,0;) € C for alli,j =1,..., pn where we denote 0/0t; by 0;.
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The axiom (iii) implies the existence of the Frobenius potential:

Proposition 2.3. At each point of the Frobenius manifold M, there exists the local holo-

morphic function F, called Frobenius potential, satisfying
7](81 o 8]-, 8k) = 77(8@, 8j o) 8k) = &(%ak}“, i,j, k= 1, ey My
for any system of flat coordinates. In particular, we have

nij = (0, 0;) = D10;0,F.

Furthermore, the associativity of the product o implies that the Frobenius potential
satisfies the WDV'V equations:

Proposition 2.4. The Frobenius potential F satisfies the following equations:

a W
> 0u0b05F 07 - 0,0.0.F — Y 0a0c05F 7" - ;0404 F =0,

o,m=1 o,7=1

where a,b,c,d € {1,...,u}.
3. A UNIQUENESS THEOREM

Let » > 3 be a positive integer. Let A be a multiplet (aj,as,...,a,) of positive
integers such that 2 < a; < as < --- < a, and A = (A,...,\,) a multiplet of pairwise
distinct elements of P!(C) normalized such that A\; = 0o, Ay = 0 and A3 = 1. Set

m ::2—1—2(%—1), (3.1)

1
=2 — -1 3.2
Xa=2+ Z (2-1). (32)
We have the following uniqueness theorem for Frobenius manifolds of rank p4 and

dimension one. The proof of this uniqueness theorem, especially Proposition 3.23, is
inspired by Kontsevich-Manin [7] and E. Mann [10]:

Theorem 3.1. There exists a unique Frobenius manifold M of rank pa and dimension one
with flat coordinates (t1,t11,...,tij, .. tra—1,tu,) satisfying the following conditions:

(i) The unit vector field e and the Euler vector field E are given by

r a;—1

— a _ az_] 8
TR T +ZZ ’Jat T XAG

=1 j=1 @i
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(ii) The non—degenerate symmetric bilinear form n on Ty satisfies

9 9 N_ (9 9\ _4
MNot o, )~ "o, o) ~

< 0 0 ) ail i1 =1y and jo = a;, — Ji,
N\ a5, | =
atil J1 atiz J2

0 otherwise.
(iii) The Frobenius potential F satisfies EF |y -0 = 2F |y =0,
‘FA|t1:O eC Htl,la e ’tl,al—lﬁ Ce 7ti7ja Ce 7t7",17 e 7t7‘,a7-—17 Gt“AH .

(iv) Assume the condition (iii). we have

fA’tlzet“AZO == Zgg), QX) - C[ti’l, Ce 7ti,ai—1]7 Z = 1, Lo, T
=1

(v) Assume the condition (iii). In the frame 8%, 8t81,1’...78tr,f7~—17 at‘zA of Tu, the
product o can be extended to the limitt, =t11 = -+ =ty 0.1 = etha = 0. The

C-algebra obtained in this limit is isomorphic to
Clxy, za, .. ., x,] /(Iil’j, a;x] — ajx?)lq;ﬁjq ,

where 0/0t; ; are mapped to z) fori=1,...,r,j=1,...,a;, — 1 and a/ot,, are

T
<H tm) e'ra
i=1

occurs with the coefficient 1 in Fa.

mapped to a;xi".
(vi) The term

Remark 3.2. The conditions in Theorem 3.1 are satisfied by natural ones for the orbifold
Gromow-Witten theory of P}, ,. The condition (i), (ii) and (v) come from the conditions
for a homogeneous basis of the orbifold cohomology group, the orbifold Poincaré pairing
and the large radius limit for the orbifold Gromov—Witten theory respectively. The con-
dition (ii) and (v) are essential to obtain coefficients corresponding to genus zero three
points degree zero correlators. The condition (iii) comes from the divisor axiom. The
condition (iv) and (vi) come from some geometrical meanings of the orbifold Gromov—
Witten invariants. Namely, the coefficient of the term in the condition (vi) corresponds

to a certain genus zero r—points degree one correlator.

We shall notice different and common points between the present proof of Theorem
3.1 and the one for Theorem 3.1 in [6]. Surprisingly, Theorem 3.1 can be proven by the

parallel way to the one in our previous paper [6]. However, for general cases r > 4,
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we have to modify the arguments in [6] related to the reconstruction of the coefficients
corresponding to the genus zero degree one correlators, e.g., the terms in the WDVV
equations whose coefficients give the recursion relations. In particular, the arguments in
Proposition 3.9 except for Lemma 3.17 are very natural generalizations of the one for
Proposition 3.36 in [6]. In contrast to this, some arguments in [6] can be also applied
without major modifications, e.g., the arguments in [6] related to the reconstruction of
the coefficients corresponding to the genus zero higher degree correlators. From now on,
we will mark with asterisks (%) on propositions, lemmas and sublemmas whose proofs are
(almost) same with the ones in [6] and mark with daggers (1) on them whose proofs need
some modifications. In order to make the proof self-contained, we shall include all details
of arguments even if the arguments are common to the ones in our previous paper [6].
We shall use the same notations with the ones in our previous paper [6]. By the con-

dition (iii) in Theorem 3.1, we can expand the non-trivial part of the Frobenius potential

fA|t1:0 as
r a;—1
a _mt (o ;g
Faln=o0 = g cla,m)te™ra ¢ = | | | | £,
a:(al,lvmzar,arfl) i=1 j=1

Here we note that, by Proposition 2.3, the terms in F4 including ¢; are only cubic terms
t1ti jtia;—; and their coefficients can be determined by the condition (ii).

Consider a free abelian group Z*4~% and denote its standard basis by €;;, i =
1,...,r, 3 =1,...,a; — 1. The element o = Z” aijeij, qij € Z of Z'47% is called
non-negative and is denoted by o > 0 if all ; ; are non-negative integers. We also denote
by c(e1 + €;; + €iq,—,0) the coefficient of t1¢; jt; o,—; in the trivial part of the Frobenius
potential F. For a non-negative o € Z*472, we set

r a;—1

o =3 > e,

i=1 j=1
and call it the length of a. Define the number s, . for a,b, c € Z as follows:
1 if a,b,c are pairwise distinct,
Sape =46 if a=b=c,
2 otherwise.

For a,b,c,d € {1,...,ua}, denote by WDVV (a,b,c,d) the following equation:

BA A
> 000 F 1T 0:0.00F — Y 0,0:0,F 1" - 0,0,00F = 0,

o,r=1 o,7=1

where (7°7) := (n,.)"".
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3.1. Coefficients ¢(«,0) and c(a, 1) can be reconstructed.

Proposition™ 3.3. Coefficients c¢(«,0) with || = 3 are determined by the condition (v)
of Theorem 3.1.

Proof. Note that Cjj, = n(0; o 0;,0) and the non-degenerate bilinear form 7 can be
extended to the limit ¢,e' — 0. We denote by 7/ this extended bilinear form. By the
condition (v), the relation z;z; = 0 if ¢ # j holds in the C-algebra obtained in this limit.

Therefore, we have 0(22:1 €i..jr» 0) # 0 only if 4; = iy = i3. In particular, we have

3

— Jl .72 J3

Sj1,d2.93 * € (E :ei,jkv()) = lim 873187328,]3};4 77( AR )
k=1

t,et—

o Ji+i2 3\ _
= (1 Y y Lj ) - thg alal]1+]2aljs~FA
6

by Proposition 2.3 and

1 3 L
a; if Zk:l Je = i,

0 otherwise.

lim @1& 144205 g F =

tet—
O

Proposition™ 3.4. A coefficient c¢(a, 1) with |a| < r is none—zero if and only if « =

Y oreq €k In particular, we have ¢(3,_, ex1,1) =1 by the condition (vi) of Theorem 3.1.
Proof. We shall split the proof into following two cases.

Lemma* 3.5 (Case 1). Let v € Z*4~2 be a non-negative element satisfying that |y| = r
and v —e; j > 0 for some i,j. If a; > 3 and j > 2, then we have c(v,1) = 0.

Proof. Since deg(t®e'»a) < 2, we have c(a, 1) = 0 if || < r — 1. We shall calculate the
coefficient of the term t7~¢efa in WDVV ((i,1), (4,5 — 1), a, a). Then we have

S1j-1,a—j - c(€i1 +€ij—1 + €iai—j,0) - a; -y - c(v,1) =0.
Hence we have ¢(v,1) = 0. O

Lemma* 3.6 (Case 2). If a non—negative element v € Z*4~2 satisfies that |y| = r and
Y =D ey Vena€ra for some i, ...,y such that []._, vk1 = 0, then we have c¢(y,1) = 0.
Proof. Note that ¢(«,0) = 0 if |a] = 4 and o — e;, 5, — €1y, > 0 for 43 # iy by the
condition (iv) and that ¢(o,1) = 0 if |a] < r — 1 since deg(t®e'a) < 2. Assume that
71 = 0. We shall calculate the coefficient of the term (T ,5')e'a in the WDVV
equation WDVV ((i,1), (¢,a; — 1), a, ta). Then we have

cler + €ia;—1 +€i1,0) - c(y,1) = 0.
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Hence we have ¢(v,1) = 0 and hence Lemma 4.12. O
Therefore we have Proposition 4.11. O
Corollary® 3.7. If a; > 3, then we have

1
C<2€i’1 + 261'7%,1, 0) = —@.

Proof. By the condition (iv), we have ¢(,0) = 0if y—e;, j, —€i, j, > 0 for i; # i5. We shall
calculate the coefficient of the term (J],_, tg1)e™a in WDVV((i,1), (¢,a; — 1), fra, pra).

Then we have

r

cler + €1+ €ig;-1,0) - 1 C(Z er,1, 1)+
k=1

4-c(2e;1 +2€4,-1,0) - a; - C(Z ex1,1) =0.
k=1

We have c(e; + €;1 + €;.4,-1,0) = 1/a; and ¢(>,_, ex1,1) = 1 by the conditions (ii) and
(vi) in Theorem 3.1. Hence we have c(2¢; 1 + 2€;4,-1,0) = —1/4a?. O

Corollary* 3.8. If a; = 2, then we have
1
~ %"
Proof. By the condition (iv), we have ¢(v,0) = 0 if v — e;, j, — €4,4, > 0 for iy # i5. We
shall calculate the coefficient of the term ([[;_, tx1)e™a in WDVV((i,1), (4,1), fra, pra)-

Then we have

c(4e;1,0) =

2c(ey + 2¢;1,0) - C(Z ex1, 1) +24c(2e;1 + 2€;4,-1,0) - 2 - C(Z er1,1) =0.
k=1 k=1
We have c(e; + 2€;1,0) = 1/4 and ¢(d,_, €i1,1) = 1 by the conditions (ii) and (vi) in
Theorem 3.1. Hence we have ¢(4e;1,0) = —1/96. O

Proposition' 3.9. Assume that c(a,0) and c(o/, 1) are reconstructed if |a| < k + 3 and
/| < k+1r for some k € Zsy. Then coefficients c(v,0) with |v| < k+4 and c¢(v', 1) with
Y| < k+r+1 are reconstructed from coefficients c(c,0) with |a| < k+ 3 and ¢(a/, 1)
with || < k+r.

Proof. We shall split the proof of Proposition 3.9 into following four steps.

Lemma' 3.10 (Step 1). If a non-negative element B € ZFA~2 satisfies that |B| = k + 1,
then the coefficient c(5 + €;; + €i j + €;0,-1,0) for some i, 3,7’ can be reconstructed from
coefficients c(a, 0) with |o| < k+ 3 and c(a/, 1) with |o/| < k+r.



12 YUUKI SHIRAISHI

Proof. Without loss of generality, we can assume ¢ = 1. First we shall show that the
coefficient ¢(8 + €11 + €1,j457—1 + €1,4,-1,0) can be reconstructed from coefficients ¢(«, 0)
with || < k + 3 and ¢(o/,1) with |o/| < k + 7. We have deg(t’t; ;1) = 1. By the
condition (iv), there exist ey, ey such that

o B+ej1—ey—ey >0,

o deg(t1) +deg(tiy) < 1.
We put ' := B+e11+e14-1—e1;— ey . We shall calculate the coefficient of the term
% (ITry tra)eta in the WDVV equation WDVV((1,1), (1,1'), pua, pta). Then we have

r

B+ DBy + D(Biay 1+ 1) c(B+ e+ eyt + era-1,0)-ar-c()_er 1)
k=1

+(known terms) = 0.
By the condition (vi) in Theorem 3.1, the coefficient ¢(8 + €11 + €1 j45-1 + €1,4,-1,0) can
be reconstructed from coefficients ¢(a, 0) with |o| < k + 3 and ¢(o/, 1) with |o/| < k + 7.
Next we shall show that the coefficient ¢(8 + (3,_,€xr1) + €1,j+5,1) can be re-
constructed from coefficients ¢(«,0) with |o| < k + 3 and ¢(o/,1) with |o/| < k4 r.
We shall calculate the coefficient of the term t*([],_, tx1)e'4 in the WDVV equation
WDVV((1,1),(1,j+5 —1),(2,1),(3,1)). Then we have

S1j4i'—tar—j—j - c(ern + €11+ era—jj1,0) - ar-

(Brjeir + 1) (Bea + D)(Bsa + 1) - c(B+ (O exn) + erjigs 1)
k=2

+(known terms)

+(Br1 + 1) (Brjrj—1 + 1)(Bra—1+ 1) -c(B+e11+e1jr5-1 +€14-1,0) - ag -

C(Z ex1,1) =0.
k=1

By the previous argument and Proposition 3.3, the coefficient c(5+ (D", _, ex.1) €145, 1)
can be reconstructed from c(a, 0) with |o| < k+ 3 and ¢(o/, 1) with |[o/| <k +7.

Finally we shall show that the coefficient ¢(8 + ey ; + €1, + €1,4,-1,0) can be recon-
structed from coefficients ¢(«, 0) with |a| < k+ 3 and ¢(o/, 1) with |o/| < k+r. We shall
calculate the coefficient of the term t°([],_,tr1)e™a in WDVV((1,7),(1,5), pa, pa).



ON FROBENIUS MANIFOLDS FORM GROMOV-WITTEN THEORY 13

Then we have

r

(1) By + D(Bry + D(Bra1 + 1) - c(B+erj+ery+era1,0)-ar- (Y epn,1)
k=1

+(known terms)

+8j.4 a1 —j—j' * (€15 + €1y + €ra—jjr,0) -

ar- (Brjay + 1) - c(B+ (O ern) +erjpy, 1) =0
k=2

if ag—j+a—75 >a1+1,

(i1) (Bry + DBy + D) (Bra1+ 1) - c(B+erj+ery+era1,0) - ar- (Y ers, 1)
+(known terms)
+c(erj+erjy+e,0)-1-¢(B+ (Z €k1),1) =0
k=2
if a—j+a—j =a,
(i) (Bry + DBy + 1) (Bra1+ 1) - c(B+erj+ery+e1a,-1,0) - ar- (Y e, 1)
k=1
+(known terms) =0
if aj—j4+a—7 <a.

By the second argument and Proposition 3.3, the coefficient ¢(8+e1 ;+€1 j+€1,4,-1,0) can
be reconstructed from coefficients ¢(«, 0) with || < k+3 and ¢(¢/, 1) with |o/| < k+r. O

Lemma' 3.11 (Step 2). For a non-negative v € Z*4=2 with |y| = k+7 41, a coefficient
c(v,1) can be reconstructed from coefficients c(a,0) with |a] < k+ 3 and c(o/,1) with
/| < k+r.

Proof. We shall split the proof of Lemma 3.11 into following three cases.

Sublemma’ 3.12 (Step 2-Case 1). If a non-negative element v € Z*4=2 satisfies that
7| = k+r+1 and y—e;; > 0 for some i,j such that j > 2, then the coefficient c(y,1) can
be reconstructed from coefficients c(a, 0) with || < k + 3 and c(a/, 1) with |o/| < k+7r.
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Proof. Put v := v —eij — (D _jz€r1) + €1 + €ij1 + €iq1. We shall calculate the
coefficient of the term ¢7~“Jefva in WDVV ((i,1), (i, — 1), ua, a). Then we have

S1,j—1,ai—7 ° cleir + €ij—1 1 €ia;—js 0)-a;- Yir,gr c(v,1)

+(known terms)

T

+7£,17£,j—17£,ai—1 ) 0(7,7 0) - a; - C(Z er1,1) =0
k=1

By Lemma 3.10, the coefficient ¢(v',0) can be reconstructed from ¢(«, 0) and ¢(a/, 1) with
la] < k4 3 and |o/| < k + r. Hence the coefficient ¢(,1) can be reconstructed from
coefficients ¢(a, 0) with || < k+ 3 and ¢(o/, 1) with |o/| < k+r. O

Sublemma® 3.13 (Step 2-Case 2). If a non—negative element v € ZFA~2 satisfies that
Y =k+r+1andy=>_,Yk1ek1 for some vi1,..., Y1 such that [[,_, ve1 # 0, then
we have ¢(vy,1) = 0.

Proof. By counting the degree of the term t7e'#a, we have

deg(tVe'a) > deg((H tr1)ea) = 2.

k=1
Then we have ¢(v,1) = 0. O

Sublemma’ 3.14 (Step2-Case 3). If a non-negative element v € ZMA-2 satisfies that
V| =k+r+1andy=>_, Yki€r1 for some yi1,..., V1 such that [[,_, k1 =0, then
the coefficient ¢(v,1) can be reconstructed from coefficients c(a,0) with |o| < k + 3 and
c(a; 1) with /| < k+r.

Proof. Assume that 7,7 = 0 and put v = v — (Z;;éz ek1) + €i1 + €ig—1 + €igi—1.
We shall calculate the coefficient of the term (], tpi)ea in the WDVV equation
WDVV((i,1),(i,a; — 1), pa, pra). Then we have

cleir +e14,-1 +€1,0) - c(y,1) + (known terms)

r

+/yz{,171{,ai—172{,ai—1 ’ C(W/’ 0) s Qg C(Z €k,1, 1) =0
k=1

We have 7/ — e > 0 for some k # i. Then we have ¢(7/,0) = 0 by the condition (iv).
Hence the coefficient ¢(y, 1) can be reconstructed from coefficients ¢(a, 0) with |a] < k43
and c(a/,1) with |o/| < k + r. Therefore a coefficient ¢(, 1) can be reconstructed from
coefficients ¢(«, 0) with |o| < k4 3 and ¢(o/, 1) with |o/| < k+ 7. O

Then we have Lemma 3.11. O
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Lemma' 3.15. If a; > 3, then we have

r 1 VA
= if ai—j#FJ+1,

c(eij1 + €ia;—j + Z ek, 1) = ; , S

i 3o fa—j=J5+1

Proof. We shall calculate the coefficient of the term ([,; t,1)e'4 in the WDVV equation
WDVV((i,a; —j5—1),(i,1),(¢,7 + 1), ua). Then we have

1 T
(i) — ;- cleiji1 + €iamj + Z er1,1)

a; ,
k#1i
—1-1-c(er + €ja—j—1 + €ij+1,0) =0
if a;—j#j+1, ai—j—1#j+1,
1 -
(ii) o c(eijy1 + €ia—j + Z ek, 1)
t k#iq

—-1-1-2- C(€1 + €ia;—j—1 —+ €ij+1, O) =0
L1 -
(iii) el a; - 2-c(ej41+ €ia—j + Z ek, 1)
ki1
—1-1- 6(61 + €ia;—j—1 + €ij+1, 0) =0
if aj—j7=7+1.
Hence we have Lemma 3.15. O

Lemma' 3.16 (Step 3). If a non-negative element v € ZFA=2 satisfies that |y| = k+4 and
v —e;1 > 0 for some i, then the coefficient c(v,0) can be reconstructed from coefficients
c(a,0) with |o) < k+ 3 and c(o/, 1) with |o/| < k+r.

Proof. We will show this claim by the induction on the degree of parameter ¢; ;. By Lemma
3.10, the coefficient ¢(8+e; j+€; s +€;q4,-1,0) with |5] = k+1 can be reconstructed from
coefficients ¢(«, 0) with || < k+ 3 and c(a/, 1) with |o/| < k + r. Assume that ¢(v/,0)
with [7'| = k44 is known if 7/ —e;1 —e€;, > 0, n > L.

We shall show that a coefficient ¢(-y,0) can be reconstructed from coefficients ¢(«, 0)
with |o| < k+3 and ¢(o/, 1) with |o/| <k +7rif |y =k+4and vy —e;1 —e;;-1 > 0. We
have deg(t7¢1~¢1-1) = [/a,;. By the condition (iv), there exist €; ,, ;s such that

® Y —€i1— €1~ €m— Eim =0,

o deg(tim) + deg(tim) <l/a,.
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Note that deg(t;.,) + deg(t;;) < 1 and a coefficient ¢(a, 1) with || = k 4+ r + 1 can be
reconstructed by Lemma 3.11. We put 8 := v — €;;-1 — €im — €in. We shall calculate
the coefficient of the term tﬁ(H;# tr1)et a in WDVV((i,m), (i,m'), (i1,1), pa). Then we

have

Vi Vi Vid—1 - €(7,0) - @; - (€ a,41-1 + €ig + Z ex1,1) + (known terms) = 0.

kti
By Lemma 3.15, the coefficient ¢(7,0) can be reconstructed from coefficients c¢(a, 0) with
la| < k+3and c¢(o/,1) with |[o/| < k+rif y—e;1 > 0. O

Lemma* 3.17 (Step 4). A coefficient ¢(,0) with |y| = k 4+ 4 can be reconstructed from
c(a, 0) with || < k+3 and c(a/,1) with |/| < k +r.

Proof. We will show this claim by the induction on the degree of parameter ¢;;. By
Lemma 3.16, a coefficient ¢(y,0) can be reconstructed from c¢(«,0) with |a] < k + 3 and
c(a/,1) with |o/| < k4 rif v —e;1 > 0. Assume that ¢(v/,0) with |7/| = k + 4 is known
if v —e;,, > 0 for n <. We shall show a coefficient ¢(7,0) can be reconstructed from
coefficients ¢(«, 0) with |a] < k+3 and ¢(o/, 1) with |o/| < k+7if y—e;541 > 0. We shall
calculate the coefficient of the term ¢7~¢ =%’ =% in WDV V((i,1), (i,1), (i,7), (i, 7).

Then we have
St tai—1-1 " C(€i1 + €51+ €iam1-1,0) - @i - i Vi Viger - (7, 0) + (known  terms) = 0.
Hence a coefficient ¢(7,0) can be reconstructed from coefficients ¢(a, 0) with || < k+ 3
and c(a/, 1) with |o/| <k + 7. O
Therefore we have Proposition 3.9 0

By Proposition 3.3, Proposition 4.11 and Proposition 3.9, coefficients ¢(,0) and
¢(7,1) can be reconstructed from ¢(g,0) with |G| = 3.

Let Fyu,(t),t's,e"4) be the Frobenius potential for the Frobenius manifold My, in
Theorem 3.1 in [6] where a multiplet of positive integers A; is (1, 1, a;) such that a; > 2 and
we denote by (1, t'3,t,, ) == (¢1, %51, ..+, 54,1, s, ) the flat coordinate for the Frobenius
manifold My,,. Inspired by Proposition 3.3, Corollary 3.7, Corollary 3.8 and Lemma 3.15,

we have the following Proposition 3.18.
Proposition 3.18. For the polynomial gﬁf) in the condition (iv) in Theorem 3.1, we have
GV = Fa,(0,t,,0)

where t; := (t;1,...,tia—1) is the i—th parts of the flat coordinate in Theorem 3.1.
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Proof. We can expand the Frobenius potential Fy, (0, t's, et“Ai) uniquely as follows:

a;—1

F4,(0,t'3, et”Ai) = Z d(a,m)t'"e Mg H t’a”.

a=(,1,-,Qi,a;—1)
The coefficients ¢(a,m) are uniquely determined by Theorem 3.1 in [6]. We already
proved c(a,0) = (a,0) if |af = 3 and c(a/ + 3°) ex1,1) = ¢(/,1) if o] = 1 in
Proposition 3.3 and Proposition 3.4. We shall show the proposition by the induction

concerning the length and split the proof into the following four steps.

Lemma 3.19 (Step 1). Assume that c(a,0) = ¢(a,0) and c(a’ + ) ex1,1) = (e, 1)
if |a| < k+2 and |o| <k for some k € N. Then we have c(8+ 3 ex1,1) = (B, 1) if
18] = k+ 1.

Proof. If  — e;; > 0, then we have ¢(8 + ZZ;@ er1,1) = d(B,1) = 0 since both
deg(t? [Tz traea) and deg(tPe"4:) are greater than 2. Hence we have 8 — e;; > 0
for some j > 2. The coefficient of the term 7= (]], sitra)ea in the WDVV equation
WDVV((i,1),(i,j — 1), ua, a) for Fa gives the same recursion relation with the one
provided by the coefficient of the term t°~¢e"™4i in WDVV ((i,1), (i, — 1), jua,, pra,) for

F4, by the assumption and elementary calculation. ([l

Lemma 3.20 (Step 2). Assume that c(a,0) = c/(,0) and c(a’ + 37, ex1,1) = (', 1)
if || < k+2 and || <k for some k € N. Then we have ¢( + e, j + €;j + €ia,-1,0) =
(B +e€ij+ €iy + €ia-1,0) for some i, j,j" if |B] = k.

Proof. The coefficient of the term ¢*([],_, tx1)e*a in WDVV((1,5),(1,5'), pta, jra) for
F 4 gives the same recursion relation with the one provided by the coefficient of the term
tPetra in the WDVV equation WDVV ((1,75), (1,4'), pa,, ta,) for Fa, by the assumption
and Lemma 3.19. O

Lemma 3.21 (Step 3). Assume that c(a,0) = (,0) and c(a’ + 37, ex1,1) = (', 1)
if la] <k +2 and || <k for some k € N. Then we have ¢(~,0) = /(v,0) if |y|=k+3
and v —e;; > 0.

Proof. We will show this claim by the induction on the degree of parameter ¢; ;. By
Lemma 3.20, we have c(f+e;; + € +€ia-1,0) = (B+e€;;+€ij+€iq—1,0) if |5] = k.
Assume that ¢(7',0) = ¢/(7/,0) if |[¥'| =k +3 and v —e;1 —e;, > 0 for n > [. Then
we shall show that ¢(v,0) = /(v,0) for |y/| = k+ 3 and v —e;1 — €;;—1 > 0. We have
deg (¢t ~¢1-1) = [/q,;. By the condition (iv), there exist €;,, €;, such that

® Y —€i1— €1 Cim— Cinm =0,
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o deg(tim) + deg(tim) <l/a;.
Note that deg(t; m)+deg(t;;) < 1. We put 5 := y—e;1-1—€;m—€im. Then the coefficient
of the term tﬂ(Hk# tr1)ea in the WDVV equation WDV V ((i,m), (i,m'),1, ua) for Fyu
gives the same recursion relation with the one provided by the coefficient of the term
tPe"4:i in the WDVV equation WDVV((i,m),(i,m'),l, ua,) for Fa, by the assumption
and Lemma 3.19. ([l

Lemma 3.22 (Step 4). Assume that c(a,0) = c/(,0) and c(a’ + 37, ex1,1) = (', 1)
if |a] < k+2 and |o/| < k for some k € N. Then we have ¢(,0) = ¢/(v,0) with |y| = k+3.

Proof. We will show this claim by the induction on the degree of parameter ¢; ;. By
Lemma 3.21, we have ¢(v,0) = /(7,0) if v —e;1 > 0. Assume that ¢(7,0) = ¢(v/,0)
with |7/| = k+ 3 and 7' —e;,, > 0 for n < [. We shall show that ¢(v,0) = ¢/(v,0) with
|v] < k+ 3 and v — e;;41 > 0. The coefficient of the term 7% =%’ ~%41 in the WDVV
equation WDV'V((i, 1), (¢,1), (4,7), (¢,7")) for Fa gives the same recursion relation with
the one provided by the coefficient of the term ¢~ %7 =%’ ~%+1 in the WDVV equation
WDVV((i,1),(i,1),(i,7),(i,5")) for Fa, by the assumption. O

Therefore we have Proposition 3.18. O

3.2. Coefficients c(a,m) can be reconstructed. In Subsection 3.1, we showed that
c(a,0) and c¢(a, 1) can be reconstructed from ¢(/3,0) with |5| = 3. We define the total
order < on Z%, as follows:

o (Jaf,m) < (|8],n) if m < n.

o (Jal,m) < (I8],m) if |af < 5]
We shall prove that ¢(«, m) can be reconstructed from ¢(3, 0) with |3| = 3 by the induction

on the well order < on Z2,,.

Proposition™ 3.23. A coefficient c(y,m) with m > 2 can be reconstructed from coeffi-
cients ¢(3,0) with || = 3.

Proof. Assume that ¢(o,n) can be reconstructed from coefficients ¢(3,0) with |3| = 3
if (Ja|,n) < (0,m — 1). First, we shall show that ¢(0,m) can be reconstructed. This
coefficient must be zero for the case x4 < 0. For the case that x4 > 0, we have the

following Lemma 3.24:

Lemma® 3.24. A coefficient c(0,m) can be reconstructed from coefficients c(c,n) with

(laf,m) < (0,m).
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Proof. We shall calculate the coefficient of e™#a in WDV V ((i,1), (¢,a;—1), a, ta). Then
we have

cleiq + €ia 1 +e1,0) - 1-m? - c(0,m) + (known terms) = 0.

Therefore, the cofficient ¢(0,m) can be reconstructed from coefficients c¢(a, n) satisfying
(laf,n) < (0,m). O
Next, we shall split the second step of the induction into following three cases.
Lemma® 3.25 (Case 1). If a non-negative element y € Z"4~2% satisfies that |y] = k + 1

and y—e; ; > 0 for some j such that j > 2, then the coefficient c¢(y, m) can be reconstructed
from coefficients c(a,n) with (|a|,n) < (k+ 1,m).

Proof. We shall calculate the coefficient of the term 7 ¢se™*ra in the WDVV equation
WDVV((i,1),(i,j — 1), pta, ta). Then we have

$1j 1.a;—j (€1 + €ijo1 + €iaij,0) - a;-m* ;- c(y,m) + (known terms) =0,
Therefore, the coefficient ¢(y, m) can be reconstructed from coefficients c(a, n) satisfying
(laf,n) < (k+1,m). 0

Lemma* 3.26 (Case 2). If a non—negative element v € ZH4~% satisfies that |y| = k + 1
and v = Ezzl Yeaeka for some yiq1, ..., V1 such that szl Yea 7 0, then the coefficient

c(y,m) can be reconstructed from coefficients c(a,n) with (a|,n) < (k+ 1,m).

Proof. We shall calculate the coefficient of the term ([T;_, £,5')e™*4 in the WDVV equa-
tion WDVV ((i,1), (i,a; — 1), wa, pra). Then we have
(i) {c(eiq + €ia;1 +€1,0) - m® +4 - (21 + 2€5.0,-1,0) - a; - m* - 31} - c(y, m)
+(known terms) =0
if a; > 3,
(ii) {2c(2e;1 +€1,0) - m* + 24 - c(4e;1,0) - 2-m* - 31} - c(y, m)
+(known terms) =0
if a; =2.
If 7,1 # m for some 4, the coefficient ¢(y,m) can be reconstructed from c(a,n) with

(a,n) < (k+1,m). If 53 = m for all i, we have deg(([T;_, ¢, )e™*a) = 2m > 2 and

hence ¢(y, m) = 0 except for the case m = 1. O

Lemma* 3.27 (Case 3). If a non—negative element v € ZH4~% satisfies that |y| = k + 1
and v = Zzzl Yeaexa for some yiq1,..., V1 such that szl k1 = 0, then the coefficient

c(y,m) can be reconstructed from coefficients c(a,n) with (a|,n) < (k+ 1,m).
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Proof. Assume that 7;; = 0. We shall calculate the coefficient of the term ([T;_, £} )e™a
in the WDVV equation WDV V((i,1), (i,a; — 1), pa, ta). Then we have

cler + €ia;1 +€i1,0) - m* - c(y,m) + (known terms) = 0.

Therefore, the coefficient ¢(y, m) can be reconstructed from coefficients c¢(a, n) satisfying
(lal;n) < (k+1,m). B

Hence, we have Proposition 3.23. 0
We finish the proof of Theorem 3.1.

4. THE CONDITION (iv)

In the previous paper [6], we showed Theorem 3.1 for the case that r = 3 and derived
the condition (iv) by other conditions if A satisfies ay > 3. For the cases A = (2,2, a3)
with ag > 3, we also derived the condition (iv) under the weaker condition than (iv):

o If a;, = a;, for some iy,iy € {1,2,3}, then the Frobenius potential F is invariant

under the permutation of parameters ¢;, ; and ¢;,; (7 =1,...,a;, — 1).
For the case A = (2,2,2), we have to assume the condition (iv) since, even under the
weaker condition above, we can obtain a different Frobenius potential which satisfies the
conditions in Theorem 3.1 except for the condition (iv).

In the present paper, we can also obtain the similar result as in Proposition of [6].

Definition 4.1. We classify a multiplet of positive integers A as follows and call it

(i) a general multiplet if a; > 2 and ay > 3,
(ii) a semi-general multiplet if a; = as = 2 and ag > 3,

(iii) a non—general multiplet if a; = ay = ag = 2.

Under the above classification, the following Theorem 4.14 is the main result in this
section. All steps of the proof for Theorem 4.14 except for Sublemma 4.13 are common
to the ones in our previous paper [6]. In order to make the proof self-contained, we shall

include all details of arguments even if the arguments are common to the ones in [6].

Theorem (Theorem 4.14). Suppose that A is a general multiplet. For a non-negative
B € ZFa=2 we have

3
C (B + Zeiwk,()) 7é 0
k=1
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only if iy = iy = i3. Suppose that A is a semi—general multiplet. For a non—negative
B € ZFa=2 we have

3
Cc (B + Zeiwk,()) 7£ 0
k=1

only if i1 = 19 = i3 under the following condition:
(iv’) If a;, = a;, for some iy, is € {1,...,r}, then the Frobenius potential F is invariant

under the permutation of parameters t;, j and t;,; (7 =1,...,a;; — 1).

Remark 4.2. Before going to the proof of Theorem 4.14, we shall explain why the condition
(iv) implies the condition (iv’). We shall consider the permutation of index (iy,7) and
(i9,7) (j =1,...,a;, — 1) and denote it by p. Moreover, we shall take four non—negative
elements o = >y, je;, 5 and o = 3 af, se;, ; such that «;, ; = «f, ; for all j, and
8= Z” Bijei, B = E” i i€ij such that 8,5 = fB;; for all 4,j. Then, in the proof
of Theorem 3.1 under the condition (iv), one can sees, inductively, that the quadratic
equation in front of t’e™*a in WDVV (a,b,c,d) is exactly same with the one in front
of t¥e™ua in WDVV (p(a), p(b), p(c), p(d)) since the coefficients of the trivial part for
the Frobenius potential F are invariant under the permutations in the condition (iv’)
(Proposition 3.3). Therefore one can have c¢(a, m) = ¢(a/, m) inductively in the proof of

Theorem 3.1 under the condition (iv).

The following Lemma 4.3 is a part of the condition (iv) in Theorem 3.1 and Theorem
4.14. However, for the later convenience, we shall show that Lemma 4.3 is derived from

other conditions in Theorem 3.1.

Lemma* 4.3. Let v € Z"47% be a non-negative element satisfying that |y| = 4 and

Y = €iyjy — €injy > 0 for some iy, iy such that iy # is. If a;; > 3, then we have c(v,0) = 0.

Proof. Note that ¢(5,0) = 0 if |3] = 3 and 8 — e;, j, — €4y, > 0 for some iy, 15 such that
11 # 1o by Proposition 3.3. We shall split the proof into the following two steps:

Step 1: We shall consider the case that the term ¢7 has, as a factor, t;, ;, for some ¢; and

J1 such that a;, > 3 and j; > 2. We shall split, moreover, Step 1 into following four cases:

(i) The term ¢” has t;, j,, i, j», s js as factors for some ji, jo, j3 where iy, 4o, 15 are
pairwise distinct.
(ii) The term ¢” has t;; and ¢, as factors for each ¢ = 1,4, and some j, j' where
i # is.
(iii) The term ¢ has ¢, j,,t;, jz, i, j» and only t;, ;, as factors for some 7y, 72, j1, j1, J7, Jo

where iy # 1.
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(iv) The term ¢ has, as factors, t;, j, and t;, j, ¢, 7, ti, j» for some iy, s, j1, Jo, jb, 75

where i1 # 1.

Step 2: We shall consider the case that ¢7 does not have, as factors, ¢;; for any ¢ and j
such that 7 > 2.

Step 1-(1). The term t7 has t;, j,,tiy o tis.js aS factors for some ji, ja, .

Sublemma* 4.4 (Step 1-(i)). Let v € Z"472 be a non-negative element such that || = 4
and 7y — €, j, — €iyjy — €igjy = 0 for distinct i1, is, i3 and some ji, ja2, J3. If a;; > 3 and
Jj1 > 2, then we have c¢(vy,0) = 0.

Proof. We shall calculate the coefficient of the term t7Y~¢1717%2.427%3.33 in the WDVV
equation WDVV ((is, j3), (i2, j2), (11,71 — 1), (41, 1)). Then we have

YViv,g1 Viz,ge Vis,gs 6(77 0) " @iyt Sag —jii—1,1 " C(eihail—h + €igji—1 1 €1, 0) =0.

Hence we have ¢(v,0) = 0. O

Step 1-(ii). The term t7 has t;; and t; ; as factors for each i = iy,iy and some j,j'.

Sublemma® 4.5 (Step 1-(ii)). Let v € Z"47% be e;,j, + €;, 1 + €ipjy + €y 3y for some
i1,12, 1, J1, Jj2, Jy such that iy # is. If a;, > 3 and ji; > 2, then we have c(y,0) = 0.

Proof. We calculate the coefficient of t;, j; in WDV'V((ia, j2), (i1, 1), (i1, 1), (i1, 51 — 1))-
Then we have
(1) Yirja Viz g Yin gy - (V5 0) - @iy = 81,441,005 - (€1 + € g1+ €ivai, gy, 0)
~(Yieg T V(g + DOy + 1) e + eia + e o + €0y iy —1,0) - @i -
Sju i —tan +1-j1—3, " C(€irj + €y j1—1 + €105 11515, 0) = 0
if 3<j1+47) <a;, and where 7' = — €, j, — €iyjy — €5 = €iy i
(ii) Vir g1 Yirjo Vir,g, c(7,0) - aj, - 51,41 —L,ai, —j} clei 1+ €i1,ji—1 T Cia;, —ji s 0)=0
it i+ > ai,-
We shall show that (v + €1 + €4, + €5 5,4j-1,0) = 0. We have the inequality

deg(ti, j,tirjy) = (J1 +j1)/as, < 1. We shall calculate the coefficient of the term t;
in the WDVV equation WDV V ((is, ja), (i2, 35), (i1, j1 + j1 — 2), (i1,1)). Then we have

/ !/ / /
(Vigjo T D igjy + D iy jagra + 1) ey + €1 + €65y + €3y ji4j1-1,0) - @iy
Sttt —2an +1-j1—5 " (€1 + €t —2 + €iay 415157, 0) = 0.

By Proposition 3.3, we have c(y'+e4, 1+ €4, j, +€4; jy 4511, 0) = 0 and hence ¢(v,0) = 0. O
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Step 1-(iii). The term t7 has t;, j,,ti, j1,ti, jo and only ti, 5, as factors for

— : :
some 11, %2, J1, J1, J1, J2 such that iy # .

We shall split Step 1-(iii) into Case 1 (j, > 2) and Case 2 (j, = 1).

Sublemma® 4.6 (Step 1-(iii)-Case 1). Let v € ZFA™2 be e;, 5, + €4, j1 + €5y ji + €ayj, for
some iy, 1g, j1, J1, 1, J2 such that iy # is. If a;; > 3, a;, > 3, j5 > 2 and jo > 2, then we
have ¢(7y,0) = 0.

Proof. We calculate the coefficient of t;, j» in WDVV ((ia, j2), (i1, j1), (41, 1), (71,51 — 1))-

Then we have
(1) Vit Visuga YVir g+ €7, 0) = @iy~ S141 1,05, 1 - €0y + €0y ji—1 + €3y 0,47, 0)
_(%{1,1 + 1)(%{2,3‘2 + 1)(721,j1+j;—1 +1) - C(’V/ T €ir1 T iy o T €y it -1, 0) - aj, -
81 gy —Lai, +1—j1—j; * C(€iy o + €iy 11+ €iya; 415155, 0) =0
if 3 <14 7) <a;, and where ' =y — e, 5, — €iyj, — €141 = €y g1,
(ii) Vir g1 Yigrjo Vir,g, c(7,0) - aj, - 51,41 —1,ai, —j} clei 1+ €i1,j—1 T Cia;, —j) s 0)=0
if 1+ 1 > a,;.
We shall show that (v + €1 + €iyj, + €5 54j-1,0) = 0. We have the inequality
deg(ti, jv) < (j1 +j1 — 1)/a;,. We shall calculate the coefficient of the term #; ; in
the WDVV equation WDV'V ((iy, j{), (i1,71 + 75 — 1), (i2,j2 — 1), (2, 1)). Then we have

(%{m{/ + 1)(%{1,3'1“;4 + 1)(%{2,3'2 +1)- 0(7/ + i1t €Ciy gy Tt €iy g4l —1, 0) - Gy
S1ja—Lai,—ja * C€iz1 + €iy o1 + €iy05,—5, 0) = 0.
By Proposition 3.3, we have c(7'+e¢;, 1 +€iy 5+ €0y 1 4i) 15 0) = 0 and hence ¢(,0) =0. O
Sublemma® 4.7 (Step 1-(iii)-Case 2). Let v € ZFA™2 be e;, 5, + €4, j1 + €5, ji + €iy 5, for

some iy,1%9, 71,71, 7%, j2 such that iy # is. If a;; > 3, j; > 2 and jo = 1, then we have
c(v,0) =0.
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Proof. We calculate the coefficient of t;, j» in WDVV ((ia, j2), (i1, 1), (41, 1), (71,51 — 1))-

Then we have

(1) Yirga Vizia Yinig, - €(750) - @iy + 151 —1,00 31 * €31 + €3y i1+ €0y05 57, 0)
/ ! / !
_(’Yz'l,l + 1)(%’2,j2 + 1)(’7i1,j1+j;—1 +1) - e(v + €iy,1 T Ciy o T Ciy 44l —1 0) - aj, -
Sj1dy—Lai, +1—1—j; " €€y + €ir -1 F €iyag +1-51—j5,0) = 0

if 3 <71+ 7 <a; and where ' =~ — Ciy gy — Cigga — €irjl = Ciy g
(ii) Yiv, g1 Viz g2 Vix gy c(v,0) - ay - S1,41—1,as =3, C(ez’l,l + €iyji—1 1 Ciya;, —jl> 0)=0
if 1+ 1 > ag.
We shall show that c(y + €1 + €5, + € j145-1,0) = 0. We have the inequality
deg(ti, jv) < (j1 +j1 — 1)/ai,. We shall calculate the coefficient of the term t; ; in

the WDVV equation WDVV ((iy,37), (i, 32), (i1, 1 + j1 — 2), (i1, 1)). Then we have

(i) (72{1,3'3' + 1)(%{2,3'2 + 1)(%{1,jl+j;—1 +1)- 0(7/ Tt €i1 Tt Ciy o T Ciy 44, —15 0) - a;,-
S1j1+4,~2.a8, +1—j1—} " C(€ir1 + €3y jitsg—2 + €ira; +1-51—j4 0)
- (%{/1,1 + 1)(722,]‘2 + 1)(%{/1,@171 + 1) : 0(7/ + 262‘1,1 - 62’1,]'{’ + €is,jo + 67:17047,‘1*17 0) Ty

Sjri 14,1 * €€y gy —2 + €i gy + €31, 0)
. y
. st —1 I /
if deg(til,ji/) = and where v = +e;, 1 — e, jv = e 1,
1
. / / ’ /
(ii) (’Yil,jf + 1)(%’2,]'2 + 1)(7i1,j1+j171 +1)-c(y" + €i1,1 T Cig gy T €y i 511, 0) - aj,-

S1,1+54 —2,ai, +1—j1—4; C(ez‘l,l t Ciygitg -2 T Ciyai +1—51—j) 0)
S
. Jj1+J1—2
if deg(t;, jr) < NS
(lil
/
If we have (7' + 2ei, 1 — €iy jr + €iy 4y + €iy.a;,-1,0) # 0, we should have

. 1 1
2deg(ti1,1) + deg(th,ail—l) + deg(227]2) S 2 & _ + — > 1.

11 azz
This inequality contradicts the assumption that a;, > 3 and a;, > 2. Then we have
C(")/, + 267;171 — eilvjil + €is 4o + €i17ai1_1, O) =0 and C("}// + €i1,1 + €is.j2 + ei1,j1+ji—17 0) = 0,
and hence ¢(v,0) = 0. O

Step 1-(iv). The tem 7 has, as factors, t;, j, and ti, j,, ts, 5, ti, jn for

— : .
some 11, %2, J1, Jo2, J5, Jo such that i, # is.

If a;, > 3 and some jo > 2, these cases are already dealt with in previous arguments
in Step 1-(iii). If a;, > 3 and j, = ji = j5 = 1, we have deg(t?) > 2. Therefore, we only

have to consider the case a;, = 2:
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Sublemma® 4.8 (Step 1-(iv)). Let v € ZF4~2 be a non-negative element satisfying that
Y| =4, Yigjs = 0 for all js > 1 and v — e;, ;, — 2e,,1 > 0 for pairwise distinct iy, i, 13
and some ji such that j1 > 2. If a;;, > 3 and a;, = 2, then we have ¢(v,0) = 0.

Proof. We shall calculate the coefficient of the term ¢7~¢1.9172¢2.1 in the WDVV equation
WDVV((ZQ, ].), (ig, 1)7 (ilajl — 1), (il, ].)) Then we have

Yiv,g1 Vig,1 (%2,1 - 1)C<77 0) C Qi C<611,j1—1 tei1t Cir,ai, _j170) =0.

Hence we have ¢(v,0) = 0. O

Step 2. The term t7 does not have, as factors, t; ; for any i and j such that j > 2.

We shall split Step 2 into the following two cases:
Case 1: The term ¢7 has t;, 1,%;,1,ti,,1 as factors where 41, i, i3 are pairwise distinct.
Case 2: The term t7 has, as factors, only two parameters t;, 1,%;,1 for some i, such
that le 7é ig.
Sublemma* 4.9 (Step 2-Case 1). Let v € Z*47% be a non-negative element satisfying

that |y| =4 and v = i, 1€i1,1 + Vin,1€in1 + Via,1€is,1 + Vie1€is,1 fOT SOME Y\ 1, Vi 1, Vig1 SUCh
that i, 1%iy1%is1 7 0. If a;; > 3, then we have ¢(y,0) = 0.

Proof. By the assumption that a;, > 3, we have the inequality:

a—1_,

— Y

deg(t) > 4
eg(t”) > o

where a; = min{a;,, a;,, a;,, a;, }. The first equality is attained if and only if a;;, = a;, =

a;, = ai,. Ifa;;, = a;, = a;; = a;,, one also has deg(¢”) > 2. Hence we have ¢(v,0) =0. O

Sublemma* 4.10 (Step 2-Case 2). Let v € Z*472 be a non-negative element satisfying
that |y| = 4 and v = v, 1€i, 1+ Vi 1€in1 for SOMeE i1, 49 such that iy # ia and some i, 1,%iy 1
such that Vi, 17,1 # 0. If a;;, > 3, then we have c(7,0) = 0.

Proof. We have the inequality:

—1
deg(t") > 49—~ > 2,
aj

where a; = min{a;,,a;,}. The first equality is attained if and only if a;, = a;,. We also

have deg(t”) > 2 if a;, = a;,. Hence we have ¢(y,0) = 0. O
Therefore we have Lemma 4.3. O

Proposition' 4.11. If A is a general multiplet, a coefficient ¢(ov, 1) with |a| < 7 is none-

zero if and only if « = >, _ ex1. If A is a semi-general multiplet, we have a coefficient
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c(a, 1) with |a] < 1 is nonezero if and only if & =3, _, ex1 under the condition (iv’). In

particular, we have ¢(3_,_, ex1,1) =1 by the condition (vi) of Theorem 5.1.
Proof. We shall split the proof into following two cases.

Lemma™ 4.12 (Case 1). Suppose that A is a general multiplet. If a non—negative element
v € ZFA7? satisfies that |y| = r and v = > ,_ Yka€r1 for some Yi1,...,71 such that
[T, 71 =0, then we have c(v,1) = 0.

Proof. Note that c(a,0) =0 if |o| =4 and a —e;, j, — €;,, > 0 for iy # iy by Lemma 4.3
and c¢(a,1) = 0 if |a] < r — 1 since deg(t¥e'#a) < 2. Assume that v;,; = 0. We shall
calculate the coefficient of the term (IT;_, t,5')ea in WDVV((i,1), (i,a; — 1), jua, pra)-
Then we have

cler + €g—1 +€i1,0) - c(y,1) = 0.
Hence we have ¢(v,1) = 0 and then Lemma 4.12. O

Lemma' 4.13 (Case 2). Suppose that A is a semi—general multiplet. If a non—negative
element y € ZFA~? satisfies that |y| =1 and v = >, _| Yea€x1 for some yi1, ..., Yr1 such
that []_, 1 = 0, then we have ¢(y,1) = 0.

Proof. Note that ¢(a,0) =01if || =4, a —e;; — €455, > 0for 1 < js <a;y —1,i=1,2
and i3 > 3 by Lemma 4.3, and that ¢(«, 1) = 0 if |o| < 2 since deg(t®e'#a) < 2. If v, =0
for i3 > 3, we have ¢(v,1) = 0 by the same argument in Lemma 4.12. Then it is enough
to consider the following two cases:

(1) 7ig1 =1 forall iz > 3,ie,y=2e11+ > . €100y =21+ . _s€1,

(ii) otherwise.
For the case (ii), we have deg(t7e'#a) > 2 by easy argument. Then we only have to consider
the case (i). Without loss of generality, We assume that v = 2e11 4+ >;_5€;1. we shall
calculate the coefficient of the term ([[;_;t;1)e’*a in WDVV((1,1),(1,1),(2,1),(2,1)).
Then we have
2¢(2e11 + €1,0) - 1-2¢(2eq; + Z ei1,1) +2¢(2e21 +€1,0) - 1-2¢(2e11 + Z ei1,1) = 0.

i=3 =3

we have ¢(2e1 1+ :_se;1,1) = c(2e21+Y ;_5 €1, 1) by the condition (iv’) in Theorem 3.1.
Hence we have ¢(2e11 4+ > ,_s€i1,1) =c(2ea1 + Y _se;1,1) =0. O

Therefore we have Proposition 4.11. O
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Theorem 4.14. Suppose that A is a general multiplet. For a mon-negative 3 € ZHFA~2,

3
C (B + Zeik7jk,0) 7é 0
k=1
only if iy = iy = i3. Suppose that A is a semi—general multiplet. For a non—negative
B € ZFa=2 we have

we have

3
Cc (B + Zeiwk,O) ?é 0
k=1

only if i1 = 19 = i3 under the following condition:
(iv’) If a;, = a;, for some iy, is € {1,...,r}, then the Frobenius potential F is invariant

under the permutation of parameters t;, j and t;,; (j =1,...,a;, —1).

Proof. We will prove Theorem 4.14 by the induction on the length. By Proposition 3.3,
we have ¢(a,0) = 01if |a| = 3 and a—e;, j, — €4y, > 0 for iy # is. Assume that ¢(a,0) =0
if |of <k+3and o — e, , — €;,,4, > 0 for iy # i5. Under this assumption, we will prove
that ¢(7,0) =01if |y| =k +4 and v — e;, j, — €4y, > 0 for iy # is.

We shall split the proof into the following four steps:

Step 1: We shall consider the case that the term ¢ has, as a factor, ¢;, ;, for some ¢; and
J1 such that a;;, > 3 and j; > 2. We shall split, moreover, Step 1 into following four cases:
(i) The term t” has t;, j,, i, j», tis.js a8 factors for some ji, jo, js where iy, 1y, i3 are
pairwise distinct.
(ii) The term ¢7 has ¢;; and ¢; j as factors for each ¢ = 4,4y and some j,j' where
iy 7 s,
(iii) The term ¢ has ¢;, j,, t;, ji, ti, j» and only t;, ;, as factors for some i1, ia, j1, j1, J1, Jo
where i1 # 1.
(iv) The term t” has, as factors, t;, j, and ¢, ;,ti, 7, ti, j» for some iy, 49, j1, j2, j5, J5

where i1 # 1.

Step 2: We shall consider the case that a;, > 3 and t” does not have, as factors, ¢, ; for

any ¢ and j such that j > 2.

Step 3: We shall consider the case that a; = ay = 2 and a3 > 3, i.e., A is a semi—general

multiplet.

Step 1-(i). The term t7 has t;, j,,tiy o, tis.js aS factors for some ji, ja, Js.

Sublemma® 4.15 (Step 1-(i)). Assume that a;; > 3 and c¢(a,0) =0 if |o| < k+ 3 and

a—e;;—eypy >0 for somei, i, j,7 such thati # . If a non-negative element v € ZH4~2



28 YUUKI SHIRAISHI

satisfies that |y| =k +4, v — €i,j; — €iyjo — €isjs > 0 for pairwise distinct iy, is, i3 and

some jy such that j; > 2, then we have ¢(v,0) = 0.

Proof. We shall calculate the coefficient of the term ¢7~¢1.917%2.02"%345 in the WDVV
equation WDVV ((is, j3), (i2, j2), (11,71 — 1), (41, 1)). Then we have

Yiv,g1 Viz,ge Vis,gs 6(77 0) “ @iyt Sag —jii—1,1" C<€i17ai1 —j1 T i ji—1 T €ip 1, 0) = 0.

Hence we have ¢(v,0) = 0. O

Step 1-(ii). The term t¥ has t;; and t; j as factors for each i = iy,iy and some j,j'.

Sublemma® 4.16 (Step 1-(ii)). Assume that a;; > 3 and c(a,0) = 0 if || < k+ 3
and o — e;; — ey y > 0 for some i,7, 5,7 such that i # i'. If a non-negative element
v € ZFA72 satisfies that |y| = k + 4, iy j, = 0 for all i3 # 41,42 and all j3 > 1 and that
Y = iy gy — €irjl — Cingy — Cigjy = 0 for some iy, g, J1, J1, J2, Jo such that iy # iy and jj > 2,

then we have c(v,0) = 0.

Proof. We shall calculate the coefficient of the term ¢ 17172727 %.31 in the WDVV
equation WDV'V ((is, j2), (i1, j1), (41, 1), (41,1 — 1)). Then we have
(1) 7i1,j17i2,j27i1,ji : 0(77 0) © Ay Sl,jiflﬂz‘l -1 c<€i1,1 + eil,jifl + e'h,ail —ji 0)
—(%{1,1 + 1)(%{2,3'2 + 1)(%{1,3'1“;71 +1) - C(’Y’ + i1t €Cig o+ €iy il —15 0) - a;, -
S 1.4y —Lai, +1—1—; " C(€ir 1 T €iy -1 + €iyay, +1-41—j5,0) = 0
if 3<j1+J) <a; and where v/ =~ —€;, j, — €ipj — Cirjl»
(i) Vir s Vizgo Vir,gy = €7 0) + @y = 8141105, —j5 - C(€31,1 + €3y jr—1 + €410, —j1,0) = 0
if 7 +]1 > Qg -
We shall show that c(y' + e 1 + €, + €i5,4j-1,0) = 0. we have the inequality
deg(t"ti50) = (1 + J1)/ai,, i-e, deg(ti, ptinz) < (1 + j1)/a;, < 1. We shall calculate
the coefficient of the term ¢’ T %234 in WDVV ((iz, j2), (i2, J3), (i, 1 + ji — 2), (i, 1))

Then we have

iz T D iy ¥ Dy jigje—1 1) (v + €1 + iz gy + €3 jyvj—150) - agy-
Uit —2as, +1—j1—, " C(€i1 + €y jigg—2 + €y ag, 41—, -1, 0) = 0.
By Proposition 3.3, e(y' + €i,,1 + €4y, + €, j1 4511, 0) = 0. Hence we have c(v,0) =0. O

Step 1-(iii). The term t7 has t;, j,,t

— —
some i1, 92, j1, J1, J1, J2 such that i; # 5.

tiy g and ty, j, as factors for

.,
11,J17
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We shall split Step 1—(iii) into Case 1 (j, > 2) and Case 2 (jo = 1).
Sublemma® 4.17 (Step 1-(iii)-Case 1). Assume that a;, > 3, a;, > 3 and c¢(«,0) = 0 if
la| <k+3and a—e;; —eyjy >0 for some i, i, j, 5" such that i # . If a non-negative
element v € ZFA~? satisfies that |y| = k+ 4, iy 4, = 0 for all i3 # 41,42 and all jz3 > 1
and that v — e, j, — €i, ji — €iy 51 — €ip 4y = 0 for some iy, iy, j1, J1, 1 J2 such that j; > 2
and jy > 2, then we have c¢(vy,0) = 0.

Proof. We shall calculate the coefficient of the term ¢’ “1 7“2 %31 in the WDVV
equation WDVV ((ig, j2), (i1, 1), (i1,1), (41, 57 — 1)). Then we have
(1) Yirjr Vi Yir gt - €(7,0) - @iy - S1,4—V,as, —j} (i1 + ey -1+ 62‘17%—]’3,0)
— (Vg T Do + D giagior + 1) e + eia + €y + €0y iy -1,0) - @i -
S 1.4y —Lai, +1—1—j; " C(€ir gy + €ir -1 + €iyay +1-51—j5, 0) = 0
if 3 <1+ <a; and where ' = v — e, 5, — €ipjy — €t
(ii) Vi1 Via,ge Vivng, C(% O) " @iyt 81,5 —1ai, —5) C(eil,l + €y -1 T €iy,ai —31 > 0) =0
if g1+ 71 > ai,.
We shall show that c(y + e;,,1 + €5, + € j145-1,0) = 0. We have the inequality

1

deg(t;, jv) < (j1 +j1 — 1)/a;,. We shall calculate the coefficient of the term {7 e
in the WDVV equation WDV'V ((iy, ji), (i1, 51 + 51 — 1), (i2, j2 — 1), (42, 1)). Then we have

(%{1%/ + 1)(71{1,j1+j171 + 1)(’71{2,3'2 + 1) ' C(’y + €i1,1 + Ciz, 52 + €iy,g1+45—1> O) * Ay
81ja—Liaiy—ja * C(€in1 + €injo—1 + €i asy—jp, 0) = 0.
By Proposition 3.3, we have c(y'+e;, 1+ €4, j, +€4; j, +51—1,0) = 0 and hence ¢(,0) = 0. O

Sublemma® 4.18 (Step 1-(iii)—Case 2). Assume that a;, > 3 and c¢(c,0) = 0 if || < k+3
and o — e;; — ey y > 0 for some 1,7, 5,7 such that i # i'. If a non-negative element
v € Z+47% satisfies that |y| = k + 4, Vi, j, = 0 for all i3 # i1, and all j3 > 1 and that
Y = iy gy — €iyjl — iy gl — Ciggy = 0 for some iy, g, j1, 31, 15 J2 such that j; > 2 and j, = 1,

then we have c¢(~,0) = 0.
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Proof. We shall calculate the coefficient of the term ¢’ “171~“2927 %31 in the WDVV
equation WDV'V ((is, j2), (i1, j1), (41, 1), (41, j1 — 1)). Then we have

(i) Vi1 g1 Viarjo Vir,d, c(7,0) - a - 51,4 —l,as, —j} clei 1+ €iy 0 —1 T €i1,ai1—jg70)
—(Yipa F D (v, + 1)(%{1,]'14”'1—1 +1) (v + i+ €y T €y girji—1,0) - ay, -
Sj1.dy—Lai, +1—1—; " C(€ir s T €iy -1 + €iyay +1-51—j5, 0) = 0
if 3 <1471 <a;, and where 7' =y — e, j, — €iy 5, — €4, 51,
(1) Yiy o Vinoio Virgy = €(750) = @iy = 151,05y = C(€ir1 + €3y gy 1 + €3y 0; —55,0) =0
if j1+ 1 > a;.
We shall show that c(y' + €1 + €5, + € j145-1,0) = 0. We have the inequality
deg(t;, jv) < (j1 +ji — 1)/a;,. We shall calculate the coefficient of the term 7 e e gy
in the WDVV equation WDV'V ((i1, j1), (i2, J2), (i1, j1 + j1 — 2), (i1,1)). Then we have

(1> (72{1,_]'3/ + 1)(’}/1/2,j2 + 1)(77{1,]'1#’]'171 + 1) ’ C(’}/ + €i171 + eiQ:jZ + €i17j1+j1_17 O) ’ ail.
81144, —2ai, +1—gu—g) * C(€i 1+ €iy jiagi—2 + €iya; 41411, 0)
- (72”1,1 + 1)(7;;,% + 1)(71{/1,%1—1 + 1) : 6(7/ + 26il,l = €y 51 + P €i1,a:, —1; 0) “ @y

Syl —1,1 C(eil,j1+j£*2 + €ir + €51, 0) =0
. y
. atg—1 7 ’
if deg(t;, jv) = — and where 7" ="+ ¢e;, 1 — €, jv,
i1

(ii) (%{m‘g + 1)(%{2,9‘2 + 1)(%{1,]'1+j;—1 + 1) ) 0(7, T i1t Ciy gy T Ciy g4l —1, 0) * Qg
81,5144, —2,ai, +1—j1—3} cei 1+ Cirji+i;—2 T Ciras, +1—ji—j} 0)=0
. i+ — 2
if deg(t, 1) < NTh 2
Ay
If c(y' + 2e5, 1 — €y 0 + €y gy + Cit.ai, 15 0) # 0, we should have

o 1 1
2deg(ti 1) + deg(tiya;, 1) + deg(iz, jo) <24 —+ — > 1.

a;,  a,
This inequality contradicts the assumption that a;; > 3 and a;, = 2. Then we have
c(y 4 2€ei10 — €y gy F g + €iray-1,0) = 0 and (Y + €51 + €i gy + €4y, 4j1-1,0) = 0.
Hence we have ¢(~,0) = 0. O

Step 1-(iv). The tem t7 has, as factors, t;, j, and ti, j,, i, j5, s, s for

— : :
some i1, 42, J1, Jo, Jy, jo such that iy # is.
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If a;, > 3 and some j > 2, these cases are already dealt with in previous arguments
in Step 1-(iii). If a;, > 3 and j, = j5 = ji = 1, we have deg(t?) > 2. Therefore, we only
have to consider the case a;, = 2:
Sublemma® 4.19 (Step 1-(iv)). Assume that a;; > 3, a;, = 2 and c(a,0) = 0 if |a| <
k+3 and o — e, j, — €5y, > 0 for some iy,19, ji1, jo such that iy # iy. If a non—negative
element v € ZFA~2 satisfies that |y| = k+4, iy, = 0 for all i3 # 41,42 and all j3 > 1 and
that v — e;, j, — 2€i,1 > 0 for some iy, 12, j1 such that j; > 2, then we have ¢(7,0) = 0.

Proof. We shall calculate the coefficient of the term ¢7~¢1.31=2¢2.1 in the WDVV equation
WDVV((ig, 1), (i2,1), (i1,71 — 1), (¢1,1)). Then we have

Vivg1 Vg1 (%2,1 - 1)0(/77 0) "t Qi C<€i17j1—1 t €1+ Cir,ai; —jr1> O) =0.

Hence we have ¢(~,0) = 0. O

Step 2. a;;, > 3 and t7 does not have, as factors, t; ; for any i and j such that j > 2.

We shall split Step 2 into the following two cases:
Case 1: The term ¢7 has t;, 1,%;,.1, ;1 as factors where 41, i3, i3 are pairwise distinct.
Case 2: The term t7 has, as factors, only two parameters t;, 1,%;,1 for some i, such
that le 7é ig.
Sublemma® 4.20 (Step 2-Case 1). Assume that a;, > 3 and c¢(«,0) =0 if |a] < k+3
and o — e;; — ey y > 0 for some 1,7, 5,7 such that i # i'. If a non-negative element
v € ZFA~2 satisfies that |y| = k+4 and v =Y ;_, Via€ia such that vi, 1%i,1%is1 7 0 where
i1,12,13 are pairwise distinct, then we have c(v,0) = 0.
Proof. We have

-1
deg(t?) > (k +4) al

> 2,
ap

where @; = min{ay,...,a,}. Hence we have ¢(v,0) = 0. O
Sublemma® 4.21 (Step 2-Case 2). Assume that a;; > 3 and ¢(«,0) =0 if |a] < k+3
and o — e;; — ey y > 0 for some 1,7, 5,7 such that i # i'. If a non-negative element
v € Z+47% satisfies that |y = k + 4 and v = i, 1651 + Vig1€ip1 Such that iy # iy and
Yir1Visn # 0, then we have ¢(v,0) = 0.

Proof. We have

CLl—l

deg(t”) > (k +4) > 2,

ay
where a; = min{a;,, a;,}. Hence we have ¢(v,0) = 0. O
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Step 3. a1 = as =2 and az > 3, i.e., A is a semi—general multiplet.

If ¢7 has, as a factor, ¢, , for i3 > 3 and j3 > 1, we have ¢(y,0) = 0 by pre-
vious arguments in Step 1 and Step 2. Therefore we only have to show the following
Sublemma 4.22.

Sublemma’ 4.22 (Step 3). Suppose that A is a smi—general multiplet. Then we have

(l) 0(26171 + 26271, O) = O,
(ii) 0(36171 + €21, 0) = 6(362,1 + €11, O) = 0.

Proof. Note that ¢(7y,1) # 0 with |y| = 3 if and only if v = >""_, e;1 by Proposition 4.11,
and that c(y,0) = 0 if v € Z*47? is a non-negative element such that |y| = 4 and
Y = €iyjy — €iyjs = 0 for iy = 1,2 and i3 > 3 by Lemma 4.3.

First, we shall show that ¢(2e; 1 + 2e21,0) = 0. We shall calculate the coeflicient of
the term 23, ([]}_3ti1)e™a in WDVV((1,1),(2,1), pta, pra). Then we have

4-¢(2e11 + 2e91,0)-2-1=0.

Hence we have c¢(2e11 + 2e21,0) = 0.

Next, we shall show that ¢(3e; 1 + €21,0) = ¢(3e21 + €1.1,0) = 0. We shall calculate
the coefficient of the term 3, ([]'_;ti1)e™a in WDVV((1,1),(1,1), pta, pra). Then we
have

6-c(3e11+e21,0)-as-clers+ex1+eg1,1) =0.

Thus we have ¢(3e1 1 + e21,0) = 0. The same argument shows ¢(3eg1 +€11,0) =0. O
Therefore we have Theorem 4.14. O
For a non—general multiplet A, we have the following conjecture:

Conjecture 4.23. For each non—general multiplet A, there exsists a Frobenius structure
which satisfies the conditions (i), (ii), (iil), (v), (vi) in Theorem 3.1 and does not satisfy

the condition (iv).

As we remarked at the former part of this section, for A = (2,2, 2), one can obtain the
Frobenius potential which satisfies the conditions in Theorem 3.1 except for the condition

(iv) by easy calculation.

5. THE GROMOV-WITTEN THEORY FOR ORBIFOLD PROJECTIVE LINES

Let » > 3 be a positive integer. Let A = (ay,...,a,) be a multiplet of positive
integers and A = (A, ..., \,) a multiplet of pairwise distinct elements of P*(C) normalized
such that Ay = 0o, Ay =0 and A3 = 1.
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Following Geigle-Lenzing (cf. Section 1.1 in [5]), we shall introduce an orbifold

projective line. First, we prepare some notations.

Definition 5.1. Let r, A and A be as above.
(i) Define a ring R4z by
Ran =ClXy,....X,]/In, (5.1a)
where [, is an ideal generated by » — 2 homogeneous polynomials
X=X+ NX{, i=3,...,r (5.1b)

(ii) Denote by L4 an abelian group generated by r-letters )?i, t=1,...,r defined as
the quotient

La:=EPZX; /My, (5.2a)
=1

where M, is the subgroup generated by the elements
aX; —a;X;, 1<i<j<r. (5.2b)
We then consider the following quotient stack:
Definition 5.2. Let r, A and A be as above. Define a stack P}, , by

Pjx = [(Spec(Ran)\{0}) /Spec(CL4)], (5-3)

which is called the orbifold projective line of type (A, A).

An orbifold projective line of type (A, A) is a Deligne-Mumford stack whose coarse
moduli space is a smooth projective line P'. The orbifold cohomology group of ]P’i‘, A s,

as a vector space, just the singular cohomology group of the inertia orbifold:

IIP,ILLA = P114,A|_| |_| <|__| (B<Z/aiz))j>

1<i<r \ j=1
where (B(Z/a;Z)); := B(Z/a;,Z). The age associated to the component P}, , is 0 and the
age associated to (B(Z/a;Z)); is j/a;. The orbifold Poincaré pairing is given by twisting
the usual Poincaré pairing;:
/ anrbﬂ:: O[UIﬁ,
P a TPy o

where I is the involution defined in [1, 2]. Then we have the following:
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Lemma® 5.3. We can choose a Q-basis 1 = Ay, Aqq, ..., 0, ..., Ava 1,0, of the

orbifold cohomology group H* (thA,Q) such that

orb

2L
ngb(P,léx,Aa Q) ~QA,, Aj;eH,y (P,lal,/\a Q), ngb(P,lél,Aa Q) ~QA,,

J

Proof. The decomposition of H*

orb

and

A1 Uors A,U,A - ]-; / Ai,j Uors Ak,l - %
0

A Pha otherwise.

(P} 5, C) follows from the decomposition of the inertia

orbifold ZP}; . The latter assertion immediately follows from the definition of the orbifold

Poincaré pairing. O

Denote by ti,t11,...,tij,...,tra.—1,tu, the dual coordinates of the Q-basis Ay,
Al,h Ce 7Ai,j7 c. 7AT,CLT*17 AMA of H*

»5(P4 o, Q) in Lemma 5.3. Consider a formal manifold

M whose structure sheaf Oy, and tangent sheaf 7Ty, are given by
OM = C((et”A))[[tl, t171, e ati,j7 e ’tﬁar—l]L TM = :rb(]P)IILX,A7 C) ®(C OM, (54)

where C((e'a)) denotes the C-algebra of formal Laurent series in e'#a.

The Gromov—Witten theory for orbifolds developed by Abramovich—Graber—Vistoli
[1] and Chen—Ruan [2] gives us the following proposition. Note here that, by using
the divisor axiom, it turns out that third derivatives of the genus zero Gromov—Witten
potential }’fh’A are elements of C[[ty1,...,tij, -, tra,1,q" le4]] and hence they can be

considered as elements of @y by formally setting ¢! = 1.

Proposition 5.4 ([1, 2]). There exists a structure of a formal Frobenius manifold of rank
a and dimension one on M whose non—degenerate symmetric Oy—bilinear form n on

T is given by the orbifold Poincaré pairing.
Proof. See Theorem 6.2.1 of [1] and Theorem 3.4.3 of [2]. O
The following theorem is the main result in this section:

Theorem 5.5. The conditions in Theorem 3.1 are satisfied by the Frobenius structure

constructed from the Gromov—Witten theory for ]P’il’ A

We shall check the conditions in Theorem 3.1 one by one.
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5.1. Condition (i). It follows from Lemma 5.3 that the unit vector field e € Tj; and the

Euler vector field F € Ty, are given as

0 & (Zl—j 0
= —t—
°T ot Yot +ZZ ’]875 XA

=1 j=1 a;

which is the condition (i).
5.2. Condition (ii). It is obvious from Lemma 5.3.

5.3. Condition (iii). The condition (iii) follows from the divisor axiom and the definition
1

of the genus zero potential fép A

5.4. Condition (iv). The condition (iv) is satisfied since the image of degree zero orbifold
map with marked points on orbifold points on the source must be one of orbifold points

on the target P ,.

5.5. Condition (v). The orbifold cup product is the specialization of the quantum prod-
uct at t1 =t11 = -+ = tyq,—1 = €"a = 0. Therefore, it turns out that the orbifold cup

product can be determined by the degree zero three point Gromov-Witten invariants.
Lemma* 5.6. There is a C-algebra isomorphism between the orbifold cohomology ring
H} (P A, C) and Clzy, 2o, . . ., z,] /(:L'ixj, a;x]t — ajx;j)lgi#g :

orb where 0/0t; ; are mapped
to xi fori=1,...,r,j=1,...,a;, —1 and 0/0t,, are mapped to a z{".

Proof. Under the same notation in Lemma 5.3, the orbifold cup product is given as follows:

PL
Aq Uorp Aﬁ = Z <Aon A67 A7>03’,3 n76A57
)

where we set 77 as follows:
7% = ([ 8 U 25)
Pl
By the previous argument in Subsection 5.4, we have
Ail7j1 UOTb AiQ,jQ — 0 if Zl # 22.
By the formula

1 . ) )
/P}A,A Ah,jl Uo'r’b Azl,j/ Uo'rb Azl gl = —|Z/a“Z| 601<Az’1,j1) U €Uy (Ail,ji) U €Vq (Ailyji/)

1

0,7;1

if j1 +J1 + 31 = aiy,

0 otherwise,
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we have
. . -/
Agy iy Uors Dy g1 = Ay gy 1+ 77 < aiy — 1,
and hence
1
p R .
Aihl — Ail,l Uorb Tt Uorb Ail,l - _A,uA-
~ ~~ ai1
Qi times
Therefore we have Lemma 5.6. O

Lemma* 5.7. The term

.
(H ti,l) e'ra
i=1

1
occurs with the coefficient 1 in the ]-'ﬁ)PA’A.

Proof. This lemma follows from the fact that the Gromov-Witten invariant counts the
number of orbifold maps from P} , to P} 4 of degree 1 fixing r marked (orbifold) points,

which is exactly the identity map. 0

6. VANISHING OF HIGHER DEGREE CORRELATORS

As we see in Subsection 3.2, the coefficients c(e; 1 + €;4,-1 + €1,0), c(e;1 + € -1 +
€iaimjs0), ¢(D°r_ €i1,1) or c(2e;1 + 2e;4,-1,0) play important roles to reconstruct the
Frobenius potential. Indeed, in the works of Krawitz—Shen ([8]) and Li-Li-Saito-Shen
([9]), the similar type reconstuction theorems were proved and the authors also used
them as the initial data in order to reconstruct the Frobenius potential. The coeffi-
cient ¢(>";_, €;1,1) corresponds to a certain degree one r-points correlator in the orbifold
Gromov-Witten theory of Pi, , and hence can be determined easily by considering its
geometric meaning. However, in other theory like the invariant theory of extended cusp-
idal Weyl groups which is expected as a mirror partner of P} , ([16]), the representation
theoretic meaning of this coefficient is not known at all and it is hard even to verify
whether this coefficient is non—zero or not. On the other hand, it seems we are able to
check other conditions in Theorem 3.1 one way or another. Therefore it is very interesting
and important to investigate what happens on the Frobenius potential which satisfies the
conditions in Theorem 3.1 except for the condition (vi).

For the Frobeius potential above, we have the following two cases analysis:

. (i) a#0,
(Y ei1,1)=
; (i) 0.
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For the case (i), we can obtain the following Frobenius potential F:

Fy = Z c(a, 0)t* + Z a™c(o, m)t¥e™a, (6.1)

where coefficients ¢(«, 0) and ¢(a, m) are same ones of the Frobenius potential in Theo-
rem 3.1. This result can be shown easily by checking the each procedure in the proof of
Theorem 3.1 carefully. In particular, the Frobenius potential F’y can be transformed to
the one in Theorem 3.1 by the (invertible) coordinate change t,, — t,, — log(a).

The second case (ii) is much more serious since the condition (vi) is heavily used for
determining all other coefficients except for ¢(«,0) with |a] = 3. Actually, a Frobenius
potential under the case (ii) is no longer determined uniquely even if A is of type ADE. For
this problem, we have to consider another reasonable initial amount, i.e., the coefficient
c(2e;1 + 2 4,-1,0) which corresponds to a degree zero 4-points correlator in the orbifold
Gromov-Witten theory. By this reason, we shall consider the following two cases:

(i) —1/4a? if a; >3, —1/96 if a; =2,

0(261'71 + 2€i,ai717 O) = (62)
(ii) otherwise.

For the first case (i), we have the following proposition:

Proposition 6.1. Assume that a Frobenius manifold M of rank pa and dimension one

with flat coordinates (t1,t171,...,tij, .., tra.—1,tu,) Satisfies the following conditions:
(i) The unit vector field e and the Euler vector field E are given by
r a;—1
0 — a; — j 0
e= =t —|— +
ot "ot 21: JZ_: a0 at X Bt

(ii) The non—degenerate symmetric bilinear form n on Ty satisfies

9 9 N_ (9 9)\_,
Moo, )~ "\ot,, 0t6) ~

( 0 0 )_ ail i1 =12 and jo = a;; — J1,
atil7j1 ’ ati27j2

0 otherwise.
(iii) The Frobenius potential F satisfies EF|;,—o = 2F |4,=0,
f|t1:0 eC [[tl,lu . ,tLal_l, C ;tz’,ja R 7t'r,17 .. JtT,ar—lv €t“AH .

(iv) Assume the condition (iii). we have

F‘tlzetu,q:o = Z g(l), Q(l) € C[[ti’l, RN ,tiyaifl]], 1= 1, o, T
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(v) Assume the condition (iii). In the frame 8%1, 83’1,...,8%‘171, 3;3/; of Tu, the
product o can be extended to the limit t; = t17 = -+ = tyq,—1 = €#a = 0. The

C-algebra obtained in this limit is isomorphic to

Clay, oy ..., 2] /(xixj, a;xdt — ajx?j)lgi#g :

where 0/0t; ; are mapped to :L’f fori=1,...,r,j=1,...,a; —1 and 0/0t,, are

(ﬁ ti,l) elra
=1

occurs with the coefficient 0 in F.

(vii) The term t7,t7, | in F occurs with the coefficient

mapped to axy*.
(vi) The term

—1/96 if a; =2,
—1/4a? if a; > 3.

Then any term t*e™ra for m > 1 occurs with the coefficient 0 in F.

Proof. By the same argument in Lemma 3.5 and Lemma 4.12, we have ¢(vy,1) = 0 for
|v| < r. We shall show Proposition 6.1 by the induction on the total oreder defined in
Subsection 3.2.

Lemma 6.2. Assume that c(o,n) =0 for (Jo|,n) < (0,m). Then we have ¢(0,m) =0

Proof. We shall calculate the coefficient of the term e™a in WDVV ((i, 1), (i,a;—1), jua, f1)-
Then we have
c(ei,l -+ 61',[“_1 + €1, 0) . 1 . m3 . C(O, m) = O

since ¢(a,n) = 0 for (|a],n) < (0,m). Therefore we have ¢(0, m) = 0. O
Next, we shall split the second step of the induction into following three cases.

Lemma 6.3 (Case 1). Assume that c(a,n) =0 for (|a|,n) < (k+1,m). If a non-negative
element y € 742 satisfies that || = k+ 1 and v — e;; > 0 for some j such that j > 2,

then we have c(y,m) = 0.

Proof. We shall calculate the coefficient of the term 7~ ¢e™*ra in the WDVV equation
WDVV((i,1),(i,7 — 1), 44, ta). Then we have

2
S1j-Lai—j - C(€i1 + €ij1 + €ia,—5,0) - @ - m” - 555 - c(y,m) =0

since we have c(a,n) = 0 for (|a|,n) < (k+ 1,m). Hence we have ¢(y,m) = 0. O
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Lemma 6.4 (Case 2). Assume that c(a,n) =0 for (Ja|,n) < (k+1,m). If a non-negative

element v € ZFA~% satisfies that |[y| =k +1 and v =Y, _ Vi€ for some yi1,. .., Y1
such that [T,_; vk1 # 0, then we have c(y,m) = 0.

Proof. We shall calculate the coefficient of the term ([Tj_, £, )e™ 4 in the WDVV equa-
tion WDVV ((i,1), (i,a; — 1), a, pra). Then we have, if a; > 3,

{c(ein + €ia1 +€1,0) - m® +4-c(2e1 +2€;4,-1,0) - a; - m* - yix} - c(y,m) =0
and, if a; = 2,
{2c(2e;1 + €1,0) - m® 4+ 24 - c(de;1,0) - 2-m? - ;1 } - c(y,m) =0

since we have c¢(a,n) = 0 for (a,n) < (k+1,m). If v;; # m for some ¢, this lemma holds.
If v;1 = m for all ¢, the degree deg(([[;_, thil)@mtuA) is greater than 2 except for the case

m = 1 and hence this lemma also holds for this case. O

Lemma 6.5 (Case 3). Assume that c(a,n) = 0 for (|a|,n) < (k+1,m). If a non-negative
element v € Z'4~2 satisfies that |[y| =k + 1 and v =Y\ _, k161 for some Y11, ..., Y1
such that []._; vk1 = 0, then we have c(y,m) = 0 with (Ja|,n) < (k+ 1,m).

Proof. Assume that 7;; = 0. We shall calculate the coefficient of the term ([T, _, £} )e™a
in the equation WDVV((i,1), (i,a; — 1), pta, ta). Then we have

cler + € -1 +€i1,0) - m? - c(y,m) =0

since ¢(a,n) =0 for (|a],n) < (k4 1,m). Then we have ¢(y,m) =0 O
We have finished the proof of this proposition. O

Remark 6.6. Proposition 6.1 would have an application to show the uniqueness of the
Frobenius manifold Mg~ constructed from the invariant theory of an extended cuspi-

dal Weyl group in a further joint work [16] and an isomorphism of Frobenius manifolds
between My, and Mg".

1
PAA

For the case (ii), we have the following proposition:

Proposition 6.7. Assume that x4 > 0 and a Frobenius manifold M of rank pa and
dimension one with flat coordinates (t1,t11,...,tij, - tran—1,tu,) satisfies the following

conditions:

(i) The unit vector field e and the Euler vector field E are given by

0 & a - 0
- —
ST ot 2 Z o at” XA,

i=1 j=1 HA
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(ii) The non—degenerate symmetric bilinear form n on Ty satisfies

9 9 N_ (9 9\ _4
MNot o, )~ "o, o) ~

< 0 0 )_ ail i1 =1y and jo = a;, — Ji,
ati17j1 7 atiz,h

0 otherwise.
(iii) The Frobenius potential F satisfies EF |y -0 = 2F |y =0,
‘F|t1:O eC HtLl? R 7t1,a1—17 R 7ti,j7 R 7tr,17 . ,tr7a7,_1, Gt“AH .

(iv) Assume the condition (iii). we have

f|t1:etu,4:0 = Z g(z)’ g(z) c (C[[ti,l, . ;ti,ai—l]]y 1= 1, o, T

(v) Assume the condition (iii). In the frame 8%, 831,...,%3_1, at‘zA of T, the
product o can be extended to the limit t| = t;1 = -+ = tyq,—1 = €"a = 0. The

C-algebra obtained in this limit is isomorphic to

Clry, m,..., 7] /(lej, ATy — A5 )19#9 '

where 0/0t; ; are mapped to z) fori=1,...,r,j=1,...,a;, — 1 and a/ot,, are

T
<H tm) e'ra
i=1

occurs with the coefficient 0 in F.

mapped to a;xi".
(vi) The term

Then any term t*e™wa for m > 1 occurs with the coefficient 0 in F.

Proof. Put vy := >, | Yk1ek1 for some y11,..., 7.1 such that [[,_, v1 # 0. If m > 2,

then we have ¢(y,m) = 0 since we have y4 > 0 and the following inequation:

deg(t7e™"a) 2%1 %1 | >Z

Same arguments in Lemma 6.2, Lemma 6.3 and Lemma 6.5 shows this proposition. [

— 2. (6.3)

Same statement as in Proposition 6.7 would hold for y4 < 0 by the exactly the
same arguments if there were not positive integers m and v;; (i = 1,...,r) satisfying the

following equations:
clei1 + €ia—1+€1,0) - m?+4- c(2e;1 + 2€;4,-1,0) - a; - m? - via=0 1if a; >3, (6.4)
2¢(2¢;1 +e1,0) - m* +24 - c(de;1,0) - 2-m? -y, =0 if a; =2, (6.5)
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Z’Y’Ll

However, for the cases x4 < 0, one can choose 4-points correlators c¢(2e; 1 +2e; 4,1, 0) such

—|— mya = 2. (6-6>

that there exist positive integers m and ;1 (i = 1,...,r) satisfying the above equations.

By the computer experiment, we conjecture the following:

Conjecture 6.8. There exists a Frobenius manifold M of rank us and dimension one

with flat coordinates (t1,t11,...,tij, .., tra.—1,tu,) satisfies the following conditions:
(i) The unit vector field e and the Euler vector field E are given by
0 S a; — 0
e = =t + +
oty ot Zl ; a th PRSI

(ii) The non—degenerate symmetric bilinear form n on Ty satisfies

9 9N, (29
77 at17 at'uA - 7] at#A7 atl -

( ) 0 )_ L iy =iy and jo = a;, — i,

- - @iy
M)
8ti1 \J1 atiz \J2

0 otherwise.
(iii) The Frobenius potential F satisfies EF|;,—o = 2F|4,=0,
'F|t1=0 € C [[tl,la . 7t1,a1717 . ;ti,j7 . 7t7“,17 . 7t7"7ar*17 €t‘“AH .

(iv) Assume the condition (iii). we have

Floeewao=»_ 6D, GDeCllti, ..., tigall, i=1,...,7

(v) Assume the condition (iii). In the frame 8%1, 8t81,17”'78tr,:1dr717 (%‘ZA of Tu, the
product o can be extended to the limit t; = t17 = -+ = tyq,—1 = €#a = 0. The

C-algebra obtained in this limit is isomorphic to

Clzy, 22, ..., 2] /(xixj, a;x] — ajx?j)lg#jér ,

where 0/0t; ; are mapped to :L’f fori=1,...,r,j=1,...,a; —1 and 0/0t,, are

(ﬁ ti,l) elra
=1

occurs with the coefficient 0 in F.

mapped to axy*.
(vi) The term
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(vii) A term

t7emra
occurs a non—zero coefficient in F for some non-negative v and m > 2.
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