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On Frobenius Manifolds from Gromov–Witten Theory of Orbifold
Projective Lines with r orbifold points

YUUKI SHIRAISHI

Abstract. We prove that the Frobenius structure constructed from the Gromov-Witten

theory for an orbifold projective line with at most r orbifold points is uniquely determined

by the WDVV equations with certain natural initial conditions.

1. Introduction

The (formal) Frobenius manifold is a certain complex (formal) manifold endowed

with the Frobenius algebra structure on its tangent sheaf whose product, unit, non–

degenerate bilinear form and grading operator called the Euler vector field satisfy the

special properties (for its definition and important properties, see Section 2). This struc-

ture was originally discovered by K. Saito in his study of primitive forms and their pe-

riod mappings on the deformation theory of isolated hypersurface singularities ([13] and

references therein) and was rediscovered and formulated by Dubrovin [3] in order to

give coordinate–free expression for a solution of the Witten–Dijkgraaf–Verlinde–Verlinde

(WDVV) equations considered in two dimensional topological field theories. Namely the

Frobenius manifold can be also obtained from the Gromov–Witten theory for manifolds or

orbifolds. Here the Gromov–Witten theory for orbifolds by Abramovich–Graber–Vistoli

[1] and Chen–Ruan [2] is summarized briefly as follows; Let X be an orbifold (or a smooth

proper Deligne–Mumford stack over C). Then, for non–negative integers g, n ∈ Z≥0

and β ∈ H2(X,Z) where X is the coarse moduli space of X , the moduli space (stack)

Mg,n(X , β) of orbifold (twisted) stable maps of genus g with n-marked points of degree β

is defined. There exists a virtual fundamental class
[
Mg,n(X , β)

]vir
and Gromov–Witten

invariants of genus g with n-marked points of degree β are defined as usual except for

that we have to use the orbifold cohomology group H∗orb(X ,Q):

〈∆1, . . . ,∆n〉Xg,n,β :=

∫
[Mg,n(X ,β)]

vir
ev∗1∆1 ∧ · · · ∧ ev∗n∆n, ∆1, . . . ,∆n ∈ H∗orb(X ,Q),
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2 YUUKI SHIRAISHI

where we denote by ev∗i : H∗orb(X ,Q) −→ H∗(Mg,n(X , β),Q) the induced homomorphism

by the evaluation map. We also consider the generating function (or formal power series)

FXg :=
∑
n,β

1

n!
〈t, . . . , t〉Xg,n,β q

β, t =
∑
i

ti∆i

and call it the genus g potential where {∆i} denotes a Q-basis of H∗orb(X ,Q). The main

result in [1, 2] tells us that the point axiom, the divisor axiom for a class in H2(X ,Q) and

the associativity of the quantum product hold same as the Gromov–Witten theory for a

usual manifold (see [1, 2] for details of these axioms). In particular, the associativity of the

quantum product implies the WDVV equations and it gives a formal Frobenius manifold

M whose structure sheaf OM , tangent sheaf TM and Frobenius potential are defined as the

algebra Λ[[H∗orb(X ,C)]] of formal power series in dual coordinates {ti} of the Q-basis {∆i}
of H∗orb(X ,Q) over the Novikov field Λ (roughly speaking, Λ is the C-algebra of formal

Laurent series in qβ1 , . . . , qβρ where β1, . . . , βρ are effective 1-cycles which generate the

Mori cone of X), TM := H∗orb(X ,C)⊗COM and the genus zero potential FX0 respectively.

Let r ≥ 3 be a positive integer. Let A be a multiplet (a1, a2, . . . , ar) of positive

integers such that 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar and Λ = (λ1, . . . , λr) a multiplet of pairwise

distinct elements of P1(C) normalized such that λ1 = ∞, λ2 = 0 and λ3 = 1. Set

µA = 2 +
∑r

k=1(ak − 1) and χA := 2 +
∑r

k=1(−1 + 1/ak). We shall consider the orbifold

projective line with r–orbifold points at λ1, . . . , λr whose orders are a1, a2, . . . , ar, which

is denoted by P1
A,Λ (see Definition 5.2). Here the number µA is regarded as the total

dimension of the orbifold cohomology group H∗orb(P1
A,Λ,C) and the number χA is regarded

as the orbifold Euler number of P1
A,Λ. The main purpose of the present paper is to show

that the Frobenius manifold MGW
P1
A,Λ

constructed from the Gromov–Witten theory for P1
A,Λ

can be determined by the WDVV equations with certain natural initial conditions. Then

we shall show the following uniqueness theorem which is our main result in the present

paper and the natural generalization of the one in our previous paper [6]:

Theorem (Theorem 3.1). There exists a unique Frobenius manifold M of rank µA and

dimension one with flat coordinates (t1, t1,1, . . . , ti,j, . . . , tr,ar−1, tµA) satisfying the following

conditions:

(i) The unit vector field e and the Euler vector field E are given by

e =
∂

∂t1
, E = t1

∂

∂t1
+

r∑
i=1

ai−1∑
j=1

ai − j
ai

ti,j
∂

∂ti,j
+ χA

∂

∂tµA
.
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(ii) The non–degenerate symmetric bilinear form η on TM satisfies

η

(
∂

∂t1
,
∂

∂tµA

)
= η

(
∂

∂tµA
,
∂

∂t1

)
= 1,

η

(
∂

∂ti1,j1
,

∂

∂ti2,j2

)
=

 1
ai1

i1 = i2 and j2 = ai1 − j1,

0 otherwise.

(iii) The Frobenius potential FA satisfies EFA|t1=0 = 2FA|t1=0,

FA|t1=0 ∈ C
[
[t1,1, . . . , t1,a1−1, . . . , ti,j, . . . , tr,1, . . . , tr,ar−1, e

tµA ]
]
.

(iv) Assume the condition (iii). we have

FA|t1=etµA=0 =
r∑
i=1

G(i)
A , G(i)

A ∈ C[ti,1, . . . , ti,ai−1], i = 1, . . . , r.

(v) Assume the condition (iii). In the frame ∂
∂t1
, ∂
∂t1,1

, . . . , ∂
∂tr,ar−1

, ∂
∂tµA

of TM , the

product ◦ can be extended to the limit t1 = t1,1 = · · · = tr,ar−1 = etµA = 0. The

C-algebra obtained in this limit is isomorphic to

C[x1, x2, . . . , xr]
/(
xixj, aix

ai
i − ajx

aj
j

)
1≤i 6=j≤r ,

where ∂/∂ti,j are mapped to xji for i = 1, . . . , r, j = 1, . . . , ai − 1 and ∂/∂tµA are

mapped to a1x
a1
1 .

(vi) The term (
r∏
i=1

ti,1

)
etµA

occurs with the coefficient 1 in FA.

Here we have two important results concerning the condition (iv) in Theorem 3.1.

First, the polynomial G(i)
A in the condition (iv) can be expressed by the Frobenius potential

FAi(t′1, t′3, e
tµAi ) of the Frobenius manifold MAi in Theorem 3.1 in [6] where Ai = (1, 1, ai)

with ai ≥ 2 and (t′1, t
′
3, tµAi ) := (t′1, t

′
3,1, . . . , t

′
3,ai−1, tµAi ) is the flat coordinate for MAi :

Proposition (Proposition 3.18). For the polynomial G(i)
A in the condition (iv) in Theorem

3.1, we have

G(i)
A = FAi(0, ti, 0),

where ti := (ti,1, . . . , ti,ai−1) is the i–th parts of the flat coordinate in Theorem 3.1.

Second, we can derive the condition (iv) from other conditions if the multiplet A

satisfies 2 ≤ a2 < a3 (called “general multiplet”) or under some weak condition if the

multiplet A satisfies 2 = a1 = a2 < a3 (called “semi–general multiplet”). This is a

generalization of Proposition 3.24 in [6]:
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Theorem (Theorem 4.14). Suppose that A is a general multiplet. For a non–negative

β ∈ ZµA−2, we have

c

(
β +

3∑
k=1

eik,jk , 0

)
6= 0

only if i1 = i2 = i3. Suppose that A is a semi–general multiplet. For a non–negative

β ∈ ZµA−2, we have

c

(
β +

3∑
k=1

eik,jk , 0

)
6= 0

only if i1 = i2 = i3 under the following condition:

(iv’) If ai1 = ai2 for some i1, i2 ∈ {1, . . . , r}, then the Frobenius potential F is invariant

under the permutation of parameters ti1,j and ti2,j (j = 1, . . . , ai1 − 1).

As a corollary of Theorem 3.1, the Frobenius structure constructed from the Gromov–

Witten theory for P1
A,Λ can be uniquely reconstructed by the conditions in Theorem 3.1:

Theorem (Theorem 5.5). The conditions in Theorem 3.1 are satisfied by the Frobenius

structure constructed from the Gromov–Witten theory for P1
A,Λ.

In the rest of the present paper, we investigate the Frobenius potential which satisfies

the same conditions with Theorem 3.1 except for the condition (vi). In other theory

like the invariant theory of extended cuspidal Weyl groups which is expected as a mirror

partner of P1
A,Λ ([16]), the representation theoretic meaning of this coefficient is not known

at all and it is hard even to verify whether this coefficient is non–zero or not. If this

coefficient were non–zero, we can apply Theorem 3.1 to showing the isomorphism between

the Frobenius manifold constructed from the invariant theory of an extended cuspidal

Weyl group and MGW
P1
A,Λ

. This will be a further extention of the works [4, 12, 15]. For this

application, we obtain the following useful proposition which might enable us to derive

the contradiction if the coefficient in the condition (vi) were zero:

Proposition (Proposition 6.1). Assume that a Frobenius manifold M of rank µA and

dimension one with flat coordinates (t1, t1,1, . . . , ti,j, . . . , tr,ar−1, tµA) satisfies the following

conditions:

(i) The unit vector field e and the Euler vector field E are given by

e =
∂

∂t1
, E = t1

∂

∂t1
+

r∑
i=1

ai−1∑
j=1

ai − j
ai

ti,j
∂

∂ti,j
+ χA

∂

∂tµA
.
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(ii) The non–degenerate symmetric bilinear form η on TM satisfies

η

(
∂

∂t1
,
∂

∂tµA

)
= η

(
∂

∂tµA
,
∂

∂t1

)
= 1,

η

(
∂

∂ti1,j1
,

∂

∂ti2,j2

)
=

 1
ai1

i1 = i2 and j2 = ai1 − j1,

0 otherwise.

(iii) The Frobenius potential F satisfies EF|t1=0 = 2F|t1=0,

F|t1=0 ∈ C
[
[t1,1, . . . , t1,a1−1, . . . , ti,j, . . . , tr,1, . . . , tr,ar−1, e

tµA ]
]
.

(iv) Assume the condition (iii). we have

F|t1=etµA=0 =
r∑
i=1

G(i), G(i) ∈ C[[ti,1, . . . , ti,ai−1]], i = 1, . . . , r.

(v) Assume the condition (iii). In the frame ∂
∂t1
, ∂
∂t1,1

, . . . , ∂
∂tr,ar−1

, ∂
∂tµA

of TM , the

product ◦ can be extended to the limit t1 = t1,1 = · · · = tr,ar−1 = etµA = 0. The

C-algebra obtained in this limit is isomorphic to

C[x1, x2, . . . , xr]
/(
xixj, aix

ai
i − ajx

aj
j

)
1≤i 6=j≤r ,

where ∂/∂ti,j are mapped to xji for i = 1, . . . , r, j = 1, . . . , ai − 1 and ∂/∂tµA are

mapped to a1x
a1
1 .

(vi) The term (
r∏
i=1

ti,1

)
etµA

occurs with the coefficient 0 in F .

(vii) The term t2i,1t
2
i,ai−1 in F occurs with the coefficient−1/96 if ai = 2,

−1/4a2
i if ai ≥ 3.

Then any term tαemtµA for m ≥ 1 occurs with the coefficient 0 in F .

Acknowledgement
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2. Preliminary

In this section, we recall the definition and three elementary properties of the Frobe-

nius manifold [3]. The definition below is taken from Saito–Takahashi [13].

Definition 2.1. Let M = (M,OM) be a connected complex manifold or a formal manifold

over C of dimension µ whose holomorphic tangent sheaf and cotangent sheaf are denoted

by TM and Ω1
M respectively. Set a complex number d. A Frobenius structure of rank

µ and dimension d on M is a tuple (η, ◦, e, E), where we denote by η a non–degenerate

OM–symmetric bilinear form on TM , by ◦ an OM -bilinear product on TM of an associative

and commutative OM–algebra structure with the unit e and by E a holomorphic vector

field on M called the Euler vector field, satisfying the following axioms:

(i) The product ◦ is self–ajoint with respect to η: that is,

η(δ ◦ δ′, δ′′) = η(δ, δ′ ◦ δ′′), δ, δ′, δ′′ ∈ TM .

(ii) The Levi–Civita connection ∇/ : TM ⊗OM TM → TM with respect to η is flat: that

is,

[∇/δ,∇/δ′ ] = ∇/[δ,δ′], δ, δ′ ∈ TM .

(iii) The tensor C : TM ⊗OM TM → TM defined by Cδδ
′ := δ ◦ δ′, (δ, δ′ ∈ TM) is flat:

that is,

∇/C = 0.

(iv) The unit e for the product ◦ is a ∇/–flat holomorphic vector field: that is,

∇/e = 0.

(v) The non–degenerate bilinear form η and the product ◦ are homogeneous of degree

2−d and 1 respectively with respect to the Lie derivative LieE of the Euler vector

field E: that is,

LieE(η) = (2− d)η, LieE(◦) = ◦.

We shall expose, without their proof, three basic properties of the Frobenius manifold

which are necessary to state Theorem 3.1. Let us consider the space of horizontal sections

of the connection ∇/:

T fM := {δ ∈ TM | ∇/δ′δ = 0 for all δ′ ∈ TM}.

Then the axiom (ii) implies that T fM is a local system of rank µ on M :

Proposition 2.2. At each point of the Frobenius manifold M , there exists a local coor-

dinate (t1, . . . , tµ), called flat coordinates, such that e = ∂1, T fM is spanned by ∂1, . . . , ∂µ

and η(∂i, ∂j) ∈ C for all i, j = 1, . . . , µ where we denote ∂/∂ti by ∂i.
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The axiom (iii) implies the existence of the Frobenius potential:

Proposition 2.3. At each point of the Frobenius manifold M , there exists the local holo-

morphic function F , called Frobenius potential, satisfying

η(∂i ◦ ∂j, ∂k) = η(∂i, ∂j ◦ ∂k) = ∂i∂j∂kF , i, j, k = 1, . . . , µ,

for any system of flat coordinates. In particular, we have

ηij := η(∂i, ∂j) = ∂1∂i∂jF .

Furthermore, the associativity of the product ◦ implies that the Frobenius potential

satisfies the WDVV equations:

Proposition 2.4. The Frobenius potential F satisfies the following equations:
µ∑

σ,τ=1

∂a∂b∂σF · ηστ · ∂τ∂c∂dF −
µ∑

σ,τ=1

∂a∂c∂σF · ηστ · ∂τ∂b∂dF = 0,

where a, b, c, d ∈ {1, . . . , µ}.

3. A Uniqueness Theorem

Let r ≥ 3 be a positive integer. Let A be a multiplet (a1, a2, . . . , ar) of positive

integers such that 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar and Λ = (λ1, . . . , λr) a multiplet of pairwise

distinct elements of P1(C) normalized such that λ1 =∞, λ2 = 0 and λ3 = 1. Set

µA := 2 +
r∑

k=1

(ak − 1) , (3.1)

χA := 2 +
r∑

k=1

(
1

ak
− 1

)
. (3.2)

We have the following uniqueness theorem for Frobenius manifolds of rank µA and

dimension one. The proof of this uniqueness theorem, especially Proposition 3.23, is

inspired by Kontsevich–Manin [7] and E. Mann [10]:

Theorem 3.1. There exists a unique Frobenius manifold M of rank µA and dimension one

with flat coordinates (t1, t1,1, . . . , ti,j, . . . , tr,ar−1, tµA) satisfying the following conditions:

(i) The unit vector field e and the Euler vector field E are given by

e =
∂

∂t1
, E = t1

∂

∂t1
+

r∑
i=1

ai−1∑
j=1

ai − j
ai

ti,j
∂

∂ti,j
+ χA

∂

∂tµA
.
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(ii) The non–degenerate symmetric bilinear form η on TM satisfies

η

(
∂

∂t1
,
∂

∂tµA

)
= η

(
∂

∂tµA
,
∂

∂t1

)
= 1,

η

(
∂

∂ti1,j1
,

∂

∂ti2,j2

)
=

 1
ai1

i1 = i2 and j2 = ai1 − j1,

0 otherwise.

(iii) The Frobenius potential F satisfies EF|t1=0 = 2F|t1=0,

FA|t1=0 ∈ C
[
[t1,1, . . . , t1,a1−1, . . . , ti,j, . . . , tr,1, . . . , tr,ar−1, e

tµA ]
]
.

(iv) Assume the condition (iii). we have

FA|t1=etµA=0 =
r∑
i=1

G(i)
A , G(i)

A ∈ C[ti,1, . . . , ti,ai−1], i = 1, . . . , r.

(v) Assume the condition (iii). In the frame ∂
∂t1
, ∂
∂t1,1

, . . . , ∂
∂tr,ar−1

, ∂
∂tµA

of TM , the

product ◦ can be extended to the limit t1 = t1,1 = · · · = tr,ar−1 = etµA = 0. The

C-algebra obtained in this limit is isomorphic to

C[x1, x2, . . . , xr]
/(
xixj, aix

ai
i − ajx

aj
j

)
1≤i 6=j≤r ,

where ∂/∂ti,j are mapped to xji for i = 1, . . . , r, j = 1, . . . , ai − 1 and ∂/∂tµA are

mapped to a1x
a1
1 .

(vi) The term (
r∏
i=1

ti,1

)
etµA

occurs with the coefficient 1 in FA.

Remark 3.2. The conditions in Theorem 3.1 are satisfied by natural ones for the orbifold

Gromow–Witten theory of P1
A,Λ. The condition (i), (ii) and (v) come from the conditions

for a homogeneous basis of the orbifold cohomology group, the orbifold Poincaré pairing

and the large radius limit for the orbifold Gromov–Witten theory respectively. The con-

dition (ii) and (v) are essential to obtain coefficients corresponding to genus zero three

points degree zero correlators. The condition (iii) comes from the divisor axiom. The

condition (iv) and (vi) come from some geometrical meanings of the orbifold Gromov–

Witten invariants. Namely, the coefficient of the term in the condition (vi) corresponds

to a certain genus zero r–points degree one correlator.

We shall notice different and common points between the present proof of Theorem

3.1 and the one for Theorem 3.1 in [6]. Surprisingly, Theorem 3.1 can be proven by the

parallel way to the one in our previous paper [6]. However, for general cases r ≥ 4,
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we have to modify the arguments in [6] related to the reconstruction of the coefficients

corresponding to the genus zero degree one correlators, e.g., the terms in the WDVV

equations whose coefficients give the recursion relations. In particular, the arguments in

Proposition 3.9 except for Lemma 3.17 are very natural generalizations of the one for

Proposition 3.36 in [6]. In contrast to this, some arguments in [6] can be also applied

without major modifications, e.g., the arguments in [6] related to the reconstruction of

the coefficients corresponding to the genus zero higher degree correlators. From now on,

we will mark with asterisks (∗) on propositions, lemmas and sublemmas whose proofs are

(almost) same with the ones in [6] and mark with daggers (†) on them whose proofs need

some modifications. In order to make the proof self–contained, we shall include all details

of arguments even if the arguments are common to the ones in our previous paper [6].

We shall use the same notations with the ones in our previous paper [6]. By the con-

dition (iii) in Theorem 3.1, we can expand the non–trivial part of the Frobenius potential

FA|t1=0 as

FA|t1=0 =
∑

α=(α1,1,...,αr,ar−1)

c(α,m)tαemtµA , tα =
r∏
i=1

ai−1∏
j=1

t
αi,j
i,j .

Here we note that, by Proposition 2.3, the terms in FA including t1 are only cubic terms

t1ti,jti,ai−j and their coefficients can be determined by the condition (ii).

Consider a free abelian group ZµA−2 and denote its standard basis by ei,j, i =

1, . . . , r, j = 1, . . . , ai − 1. The element α =
∑

i,j αi,jei,j, αi,j ∈ Z of ZµA−2 is called

non–negative and is denoted by α ≥ 0 if all αi,j are non–negative integers. We also denote

by c(e1 + ei,j + ei,ai−j, 0) the coefficient of t1ti,jti,ai−j in the trivial part of the Frobenius

potential F . For a non–negative α ∈ ZµA−2, we set

|α| :=
r∑
i=1

ai−1∑
j=1

αi,j,

and call it the length of α. Define the number sa,b,c for a, b, c ∈ Z as follows:

sa,b,c =


1 if a, b, c are pairwise distinct,

6 if a = b = c,

2 otherwise.

For a, b, c, d ∈ {1, . . . , µA}, denote by WDV V (a, b, c, d) the following equation:
µA∑

σ,τ=1

∂a∂b∂σF · ηστ · ∂τ∂c∂dF −
µA∑

σ,τ=1

∂a∂c∂σF · ηστ · ∂τ∂b∂dF = 0,

where (ηστ ) := (ηστ )
−1.
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3.1. Coefficients c(α, 0) and c(α, 1) can be reconstructed.

Proposition∗ 3.3. Coefficients c(α, 0) with |α| = 3 are determined by the condition (v)

of Theorem 3.1.

Proof. Note that Cijk = η(∂i ◦ ∂j, ∂k) and the non–degenerate bilinear form η can be

extended to the limit t, et → 0. We denote by η′ this extended bilinear form. By the

condition (v), the relation xixj = 0 if i 6= j holds in the C–algebra obtained in this limit.

Therefore, we have c(
∑3

k=1 eik,jk , 0) 6= 0 only if i1 = i2 = i3. In particular, we have

sj1,j2,j3 · c

(
3∑

k=1

ei,jk , 0

)
= lim

t,et→0
∂i,j1∂i,j2∂i,j3FA = η′(xj1i · x

j2
i , x

j3
i )

= η′(1 · xj1+j2
i , xj3i ) = lim

t,et→0
∂1∂i,j1+j2∂i,j3FA

by Proposition 2.3 and

lim
t,et→0

∂1∂i,j1+j2∂i,j3F =

 1
ai

if
∑3

k=1 jk = ai,

0 otherwise.

�

Proposition∗ 3.4. A coefficient c(α, 1) with |α| ≤ r is none–zero if and only if α =∑r
k=1 ek,1. In particular, we have c(

∑r
k=1 ek,1, 1) = 1 by the condition (vi) of Theorem 3.1.

Proof. We shall split the proof into following two cases.

Lemma∗ 3.5 (Case 1). Let γ ∈ ZµA−2 be a non–negative element satisfying that |γ| = r

and γ − ei,j ≥ 0 for some i, j. If ai ≥ 3 and j ≥ 2, then we have c(γ, 1) = 0.

Proof. Since deg(tαetµA ) < 2, we have c(α, 1) = 0 if |α| ≤ r − 1. We shall calculate the

coefficient of the term tγ−ei,jetµA in WDV V ((i, 1), (i, j − 1), µA, µA). Then we have

s1,j−1,ai−j · c(ei,1 + ei,j−1 + ei,ai−j, 0) · ai · γi,j · c(γ, 1) = 0.

Hence we have c(γ, 1) = 0. �

Lemma∗ 3.6 (Case 2). If a non–negative element γ ∈ ZµA−2 satisfies that |γ| = r and

γ =
∑r

k=1 γk,1ek,1 for some γ1,1, . . . , γr,1 such that
∏r

k=1 γk,1 = 0, then we have c(γ, 1) = 0.

Proof. Note that c(α, 0) = 0 if |α| = 4 and α − ei1,j1 − ei2,j2 ≥ 0 for i1 6= i2 by the

condition (iv) and that c(α, 1) = 0 if |α| ≤ r − 1 since deg(tαetµA ) < 2. Assume that

γi,1 = 0. We shall calculate the coefficient of the term (
∏r

k 6=i t
γk,1
k,1 )etµA in the WDVV

equation WDV V ((i, 1), (i, ai − 1), µA, µA). Then we have

c(e1 + ei,ai−1 + ei,1, 0) · c(γ, 1) = 0.
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Hence we have c(γ, 1) = 0 and hence Lemma 4.12. �

Therefore we have Proposition 4.11. �

Corollary∗ 3.7. If ai ≥ 3, then we have

c(2ei,1 + 2ei,ai−1, 0) = − 1

4a2
i

.

Proof. By the condition (iv), we have c(γ, 0) = 0 if γ−ei1,j1−ei2,j2 ≥ 0 for i1 6= i2. We shall

calculate the coefficient of the term (
∏r

k=1 tk,1)etµA in WDV V ((i, 1), (i, ai − 1), µA, µA).

Then we have

c(e1 + ei,1 + ei,ai−1, 0) · 1 · c(
r∑

k=1

ek,1, 1)+

4 · c(2ei,1 + 2ei,ai−1, 0) · ai · c(
r∑

k=1

ek,1, 1) = 0.

We have c(e1 + ei,1 + ei,ai−1, 0) = 1/ai and c(
∑r

k=1 ek,1, 1) = 1 by the conditions (ii) and

(vi) in Theorem 3.1. Hence we have c(2ei,1 + 2ei,ai−1, 0) = −1/4a2
i . �

Corollary∗ 3.8. If ai = 2, then we have

c(4ei,1, 0) = − 1

96
.

Proof. By the condition (iv), we have c(γ, 0) = 0 if γ − ei1,j1 − ei2,j2 ≥ 0 for i1 6= i2. We

shall calculate the coefficient of the term (
∏r

k=1 tk,1)etµA in WDV V ((i, 1), (i, 1), µA, µA).

Then we have

2c(e1 + 2ei,1, 0) · c(
r∑

k=1

ek,1, 1) + 24c(2ei,1 + 2ei,ai−1, 0) · 2 · c(
r∑

k=1

ek,1, 1) = 0.

We have c(e1 + 2ei,1, 0) = 1/4 and c(
∑r

k=1 ei,1, 1) = 1 by the conditions (ii) and (vi) in

Theorem 3.1. Hence we have c(4ei,1, 0) = −1/96. �

Proposition† 3.9. Assume that c(α, 0) and c(α′, 1) are reconstructed if |α| ≤ k + 3 and

|α′| ≤ k + r for some k ∈ Z≥0. Then coefficients c(γ, 0) with |γ| ≤ k + 4 and c(γ′, 1) with

|γ′| ≤ k + r + 1 are reconstructed from coefficients c(α, 0) with |α| ≤ k + 3 and c(α′, 1)

with |α′| ≤ k + r.

Proof. We shall split the proof of Proposition 3.9 into following four steps.

Lemma† 3.10 (Step 1). If a non–negative element β ∈ ZµA−2 satisfies that |β| = k + 1,

then the coefficient c(β + ei,j + ei,j′ + ei,ai−1, 0) for some i, j, j′ can be reconstructed from

coefficients c(α, 0) with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r.
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Proof. Without loss of generality, we can assume i = 1. First we shall show that the

coefficient c(β + e1,1 + e1,j+j′−1 + e1,a1−1, 0) can be reconstructed from coefficients c(α, 0)

with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r. We have deg(tβt1,j+j′−1) = 1. By the

condition (iv), there exist e1,l, e1,l′ such that

• β + e1,j+j′−1 − e1,l − e1,l′ ≥ 0,

• deg(t1,l) + deg(t1,l′) ≤ 1.

We put β′ := β+ e1,1 + e1,j+j′−1− e1,l− e1,l′ . We shall calculate the coefficient of the term

tβ
′
(
∏r

k=2 tk,1)etµA in the WDVV equation WDV V ((1, l), (1, l′), µA, µA). Then we have

(β′1,l + 1)(β′1,l′ + 1)(β′1,a1−1 + 1) · c(β + e1,1 + e1,j+j′−1 + e1,a1−1, 0) · a1 · c(
r∑

k=1

ek,1, 1)

+(known terms) = 0.

By the condition (vi) in Theorem 3.1, the coefficient c(β + e1,1 + e1,j+j′−1 + e1,a1−1, 0) can

be reconstructed from coefficients c(α, 0) with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r.

Next we shall show that the coefficient c(β + (
∑r

k=2 ek,1) + e1,j+j′ , 1) can be re-

constructed from coefficients c(α, 0) with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r.

We shall calculate the coefficient of the term tβ(
∏r

k=4 tk,1)etµA in the WDVV equation

WDV V ((1, 1), (1, j + j′ − 1), (2, 1), (3, 1)). Then we have

s1,j+j′−1,a1−j−j′ · c(e1,1 + e1,j+j′−1 + e1,a1−j−j′ , 0) · a1·

(β1,j+j′ + 1)(β2,1 + 1)(β3,1 + 1) · c(β + (
r∑

k=2

ek,1) + e1,j+j′ , 1)

+(known terms)

+(β1,1 + 1)(β1,j+j′−1 + 1)(β1,a1−1 + 1) · c(β + e1,1 + e1,j+j′−1 + e1,a1−1, 0) · a1 ·

c(
r∑

k=1

ek,1, 1) = 0.

By the previous argument and Proposition 3.3, the coefficient c(β+(
∑r

k=2 ek,1)+e1,j+j′ , 1)

can be reconstructed from c(α, 0) with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r.

Finally we shall show that the coefficient c(β + e1,j + e1,j′ + e1,a1−1, 0) can be recon-

structed from coefficients c(α, 0) with |α| ≤ k+ 3 and c(α′, 1) with |α′| ≤ k+ r. We shall

calculate the coefficient of the term tβ(
∏r

k=2 tk,1)etµA in WDV V ((1, j), (1, j′), µA, µA).
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Then we have

(i) (β1,j + 1)(β1,j′ + 1)(β1,a1−1 + 1) · c(β + e1,j + e1,j′ + e1,a1−1, 0) · a1 · c(
r∑

k=1

ek,1, 1)

+(known terms)

+sj,j′′,a1−j−j′ · c(e1,j + e1,j′ + e1,a1−j−j′ , 0) ·

a1 · (β1,j+j′ + 1) · c(β + (
r∑

k=2

ek,1) + e1,j+j′ , 1) = 0

if a1 − j + a1 − j′ ≥ a1 + 1,

(ii) (β1,j + 1)(β1,j′ + 1)(β1,a1−1 + 1) · c(β + e1,j + e1,j′ + e1,a1−1, 0) · a1 · c(
r∑

k=1

ek,1, 1)

+(known terms)

+c(e1,j + e1,j′ + e1, 0) · 1 · c(β + (
r∑

k=2

ek,1), 1) = 0

if a1 − j + a1 − j′ = a1,

(iii) (β1,j + 1)(β1,j′ + 1)(β1,a1−1 + 1) · c(β + e1,j + e1,j′ + e1,a1−1, 0) · a1 · c(
r∑

k=1

ek,1, 1)

+(known terms) = 0

if a1 − j + a1 − j′ < a1.

By the second argument and Proposition 3.3, the coefficient c(β+e1,j+e1,j′+e1,a1−1, 0) can

be reconstructed from coefficients c(α, 0) with |α| ≤ k+3 and c(α′, 1) with |α′| ≤ k+r. �

Lemma† 3.11 (Step 2). For a non–negative γ ∈ ZµA−2 with |γ| = k+ r+ 1, a coefficient

c(γ, 1) can be reconstructed from coefficients c(α, 0) with |α| ≤ k + 3 and c(α′, 1) with

|α′| ≤ k + r.

Proof. We shall split the proof of Lemma 3.11 into following three cases.

Sublemma† 3.12 (Step 2–Case 1). If a non–negative element γ ∈ ZµA−2 satisfies that

|γ| = k+r+1 and γ−ei,j ≥ 0 for some i, j such that j ≥ 2, then the coefficient c(γ, 1) can

be reconstructed from coefficients c(α, 0) with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r.
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Proof. Put γ′ := γ − ei.j − (
∑r

k 6=i ek,1) + ei,1 + ei,j−1 + ei,ai−1. We shall calculate the

coefficient of the term tγ−ei,jetµA in WDV V ((i, 1), (i, j − 1), µA, µA). Then we have

s1,j−1,ai−j · c(ei,1 + ei,j−1 + ei,ai−j, 0) · ai · γi1,j1 · c(γ, 1)

+(known terms)

+γ′i,1γ
′
i,j−1γ

′
i,ai−1 · c(γ′, 0) · ai · c(

r∑
k=1

ek,1, 1) = 0

By Lemma 3.10, the coefficient c(γ′, 0) can be reconstructed from c(α, 0) and c(α′, 1) with

|α| ≤ k + 3 and |α′| ≤ k + r. Hence the coefficient c(γ, 1) can be reconstructed from

coefficients c(α, 0) with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r. �

Sublemma∗ 3.13 (Step 2–Case 2). If a non–negative element γ ∈ ZµA−2 satisfies that

|γ| = k+ r+ 1 and γ =
∑r

k=1 γk,1ek,1 for some γ1,1, . . . , γr,1 such that
∏r

k=1 γk,1 6= 0, then

we have c(γ, 1) = 0.

Proof. By counting the degree of the term tγetµA , we have

deg(tγetµA ) > deg((
r∏

k=1

tk,1)etµA ) = 2.

Then we have c(γ, 1) = 0. �

Sublemma† 3.14 (Step2–Case 3). If a non–negative element γ ∈ ZµA−2 satisfies that

|γ| = k+ r+ 1 and γ =
∑r

k=1 γk,1ek,1 for some γ1,1, . . . , γr,1 such that
∏r

k=1 γk,1 = 0, then

the coefficient c(γ, 1) can be reconstructed from coefficients c(α, 0) with |α| ≤ k + 3 and

c(α′, 1) with |α′| ≤ k + r.

Proof. Assume that γi,1 = 0 and put γ′ := γ − (
∑r

k 6=i ek,1) + ei,1 + ei,ai−1 + ei,ai−1.

We shall calculate the coefficient of the term (
∏r

k 6=i t
γk,1
k,1 )etµA in the WDVV equation

WDV V ((i, 1), (i, ai − 1), µA, µA). Then we have

c(ei,1 + e1,ai−1 + e1, 0) · c(γ, 1) + (known terms)

+γ′i,1γ
′
i,ai−1γ

′
i,ai−1 · c(γ′, 0) · ai · c(

r∑
k=1

ek,1, 1) = 0

We have γ′ − ek,1 ≥ 0 for some k 6= i. Then we have c(γ′, 0) = 0 by the condition (iv).

Hence the coefficient c(γ, 1) can be reconstructed from coefficients c(α, 0) with |α| ≤ k+3

and c(α′, 1) with |α′| ≤ k + r. Therefore a coefficient c(γ, 1) can be reconstructed from

coefficients c(α, 0) with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r. �

Then we have Lemma 3.11. �
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Lemma† 3.15. If ai ≥ 3, then we have

c(ei,j+1 + ei,ai−j +
r∑
k 6=i

ek,1, 1) =

 1
ai

if ai − j 6= j + 1,

1
2ai

if ai − j = j + 1.

Proof. We shall calculate the coefficient of the term (
∏r

k 6=i tk,1)etµA in the WDVV equation

WDV V ((i, ai − j − 1), (i, 1), (i, j + 1), µA). Then we have

(i)
1

ai
· ai · c(ei,j+1 + ei,ai−j +

r∑
k 6=i

ek,1, 1)

−1 · 1 · c(e1 + ei,ai−j−1 + ei,j+1, 0) = 0

if ai − j 6= j + 1, ai − j − 1 6= j + 1,

(ii)
1

ai
· ai · c(ei,j+1 + ei,ai−j +

r∑
k 6=i1

ek,1, 1)

−1 · 1 · 2 · c(e1 + ei,ai−j−1 + ei,j+1, 0) = 0

if ai − j 6= j + 1, ai − j − 1 = j + 1,

(iii)
1

ai
· ai · 2 · c(ei,j+1 + ei,ai−j +

r∑
k 6=i1

ek,1, 1)

−1 · 1 · c(e1 + ei,ai−j−1 + ei,j+1, 0) = 0

if ai − j = j + 1.

Hence we have Lemma 3.15. �

Lemma† 3.16 (Step 3). If a non–negative element γ ∈ ZµA−2 satisfies that |γ| = k+4 and

γ − ei,1 ≥ 0 for some i, then the coefficient c(γ, 0) can be reconstructed from coefficients

c(α, 0) with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r.

Proof. We will show this claim by the induction on the degree of parameter ti,j. By Lemma

3.10, the coefficient c(β+ ei,j + ei,j′ + ei,ai−1, 0) with |β| = k+ 1 can be reconstructed from

coefficients c(α, 0) with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r. Assume that c(γ′, 0)

with |γ′| = k + 4 is known if γ′ − ei,1 − ei,n ≥ 0, n ≥ l.

We shall show that a coefficient c(γ, 0) can be reconstructed from coefficients c(α, 0)

with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r if |γ| = k + 4 and γ − ei,1 − ei,l−1 ≥ 0. We

have deg(tγ−ei,1−ei,l−1) = l/ai. By the condition (iv), there exist ei,m, ei,m′ such that

• γ − ei,1 − ei,l−1 − ei,m − ei,m′ ≥ 0,

• deg(ti,m) + deg(ti,m′) ≤ l/ai.
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Note that deg(ti,m) + deg(ti,l) < 1 and a coefficient c(α, 1) with |α| = k + r + 1 can be

reconstructed by Lemma 3.11. We put β := γ − ei,l−1 − ei,m − ei,m′ . We shall calculate

the coefficient of the term tβ(
∏r

k 6=i tk,1)etµA in WDV V ((i,m), (i,m′), (i1, l), µA). Then we

have

γi,mγi,m′γi,l−1 · c(γ, 0) · ai · c(ei,ai+1−l + ei,l +
r∑
k 6=i

ek,1, 1) + (known terms) = 0.

By Lemma 3.15, the coefficient c(γ, 0) can be reconstructed from coefficients c(α, 0) with

|α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r if γ − ei,1 ≥ 0. �

Lemma∗ 3.17 (Step 4). A coefficient c(γ, 0) with |γ| = k + 4 can be reconstructed from

c(α, 0) with |α| ≤ k + 3 and c(α′, 1) with |α′| ≤ k + r.

Proof. We will show this claim by the induction on the degree of parameter ti,j. By

Lemma 3.16, a coefficient c(γ, 0) can be reconstructed from c(α, 0) with |α| ≤ k + 3 and

c(α′, 1) with |α′| ≤ k + r if γ − ei,1 ≥ 0. Assume that c(γ′, 0) with |γ′| = k + 4 is known

if γ′ − ei,n ≥ 0 for n ≤ l. We shall show a coefficient c(γ, 0) can be reconstructed from

coefficients c(α, 0) with |α| ≤ k+3 and c(α′, 1) with |α′| ≤ k+r if γ−ei,l+1 ≥ 0. We shall

calculate the coefficient of the term tγ−ei,j−ei,j′−ei,l+1 in WDV V ((i, 1), (i, l), (i, j), (i, j′)).

Then we have

s1,l,ai−1−l · c(ei,1 + ei,l + ei,ai−1−l, 0) · ai · γi,jγi,j′γi,l+1 · c(γ, 0) + (known terms) = 0.

Hence a coefficient c(γ, 0) can be reconstructed from coefficients c(α, 0) with |α| ≤ k + 3

and c(α′, 1) with |α′| ≤ k + r. �

Therefore we have Proposition 3.9 �

By Proposition 3.3, Proposition 4.11 and Proposition 3.9, coefficients c(γ, 0) and

c(γ, 1) can be reconstructed from c(β, 0) with |β| = 3.

Let FAi(t′1, t′3, e
tµAi ) be the Frobenius potential for the Frobenius manifold MAi in

Theorem 3.1 in [6] where a multiplet of positive integers Ai is (1, 1, ai) such that ai ≥ 2 and

we denote by (t′1, t
′
3, tµAi ) := (t′1, t

′
3,1, . . . , t

′
3,ai−1, tµAi ) the flat coordinate for the Frobenius

manifold MAi . Inspired by Proposition 3.3, Corollary 3.7, Corollary 3.8 and Lemma 3.15,

we have the following Proposition 3.18.

Proposition 3.18. For the polynomial G(i)
A in the condition (iv) in Theorem 3.1, we have

G(i)
A = FAi(0, ti, 0)

where ti := (ti,1, . . . , ti,ai−1) is the i–th parts of the flat coordinate in Theorem 3.1.
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Proof. We can expand the Frobenius potential FAi(0, t′3, e
tµAi ) uniquely as follows:

FAi(0, t′3, e
tµAi ) =

∑
α=(αi,1,...,αi,ai−1)

c′(α,m)t′
α
e
mtµAi , t′

α
=

ai−1∏
j=1

t′
αi,j
3,j .

The coefficients c′(α,m) are uniquely determined by Theorem 3.1 in [6]. We already

proved c(α, 0) = c′(α, 0) if |α| = 3 and c(α′ +
∑r

k 6=i ek,1, 1) = c′(α′, 1) if |α| = 1 in

Proposition 3.3 and Proposition 3.4. We shall show the proposition by the induction

concerning the length and split the proof into the following four steps.

Lemma 3.19 (Step 1). Assume that c(α, 0) = c′(α, 0) and c(α′ +
∑r

k 6=i ek,1, 1) = c′(α′, 1)

if |α| ≤ k + 2 and |α′| ≤ k for some k ∈ N. Then we have c(β +
∑r

k 6=i ek,1, 1) = c′(β, 1) if

|β| = k + 1.

Proof. If β − ei,1 ≥ 0, then we have c(β +
∑r

k 6=i ek,1, 1) = c′(β, 1) = 0 since both

deg(tβ
∏

k 6=i tk,1e
tµA ) and deg(tβe

tµAi ) are greater than 2. Hence we have β − ei,j ≥ 0

for some j ≥ 2. The coefficient of the term tβ−ei,j(
∏

k 6=i tk,1)etµA in the WDVV equation

WDV V ((i, 1), (i, j − 1), µA, µA) for FA gives the same recursion relation with the one

provided by the coefficient of the term tβ−ei,je
tµAi in WDV V ((i, 1), (i, j− 1), µAi , µAi) for

FAi by the assumption and elementary calculation. �

Lemma 3.20 (Step 2). Assume that c(α, 0) = c′(α, 0) and c(α′ +
∑r

k 6=i ek,1, 1) = c′(α′, 1)

if |α| ≤ k + 2 and |α′| ≤ k for some k ∈ N. Then we have c(β + ei,j + ei,j′ + ei,ai−1, 0) =

c′(β + ei,j + ei,j′ + ei,ai−1, 0) for some i, j, j′ if |β| = k.

Proof. The coefficient of the term tβ(
∏r

k=2 tk,1)etµA in WDV V ((1, j), (1, j′), µA, µA) for

FA gives the same recursion relation with the one provided by the coefficient of the term

tβetµA in the WDVV equation WDV V ((1, j), (1, j′), µAi , µAi) for FAi by the assumption

and Lemma 3.19. �

Lemma 3.21 (Step 3). Assume that c(α, 0) = c′(α, 0) and c(α′ +
∑r

k 6=i ek,1, 1) = c′(α′, 1)

if |α| ≤ k + 2 and |α′| ≤ k for some k ∈ N. Then we have c(γ, 0) = c′(γ, 0) if |γ| = k + 3

and γ − ei,1 ≥ 0.

Proof. We will show this claim by the induction on the degree of parameter ti,j. By

Lemma 3.20, we have c(β+ ei,j + ei,j′ + ei,ai−1, 0) = c′(β+ ei,j + ei,j′ + ei,ai−1, 0) if |β| = k.

Assume that c(γ′, 0) = c′(γ′, 0) if |γ′| = k + 3 and γ′ − ei,1 − ei,n ≥ 0 for n ≥ l. Then

we shall show that c(γ, 0) = c′(γ, 0) for |γ′| = k + 3 and γ′ − ei,1 − ei,l−1 ≥ 0. We have

deg(tγ−ei,1−ei,l−1) = l/ai. By the condition (iv), there exist ei,m, ei,m′ such that

• γ − ei,1 − ei,l−1 − ei,m − ei,m′ ≥ 0,
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• deg(ti,m) + deg(ti,m′) ≤ l/ai.

Note that deg(ti,m)+deg(ti,l) < 1. We put β := γ−ei,l−1−ei,m−ei,m′ . Then the coefficient

of the term tβ(
∏

k 6=i tk,1)etµA in the WDVV equation WDV V ((i,m), (i,m′), l, µA) for FA
gives the same recursion relation with the one provided by the coefficient of the term

tβe
tµAi in the WDVV equation WDV V ((i,m), (i,m′), l, µAi) for FAi by the assumption

and Lemma 3.19. �

Lemma 3.22 (Step 4). Assume that c(α, 0) = c′(α, 0) and c(α′ +
∑r

k 6=i ek,1, 1) = c′(α′, 1)

if |α| ≤ k+2 and |α′| ≤ k for some k ∈ N. Then we have c(γ, 0) = c′(γ, 0) with |γ| = k+3.

Proof. We will show this claim by the induction on the degree of parameter ti,j. By

Lemma 3.21, we have c(γ, 0) = c′(γ, 0) if γ − ei,1 ≥ 0. Assume that c(γ′, 0) = c′(γ′, 0)

with |γ′| = k + 3 and γ′ − ei,n ≥ 0 for n ≤ l. We shall show that c(γ, 0) = c′(γ, 0) with

|γ| ≤ k + 3 and γ − ei,l+1 ≥ 0. The coefficient of the term tγ−ei,j−ei,j′−ei,l+1 in the WDVV

equation WDV V ((i, 1), (i, l), (i, j), (i, j′)) for FA gives the same recursion relation with

the one provided by the coefficient of the term tγ−ei,j−ei,j′−ei,l+1 in the WDVV equation

WDV V ((i, 1), (i, l), (i, j), (i, j′)) for FAi by the assumption. �

Therefore we have Proposition 3.18. �

3.2. Coefficients c(α,m) can be reconstructed. In Subsection 3.1, we showed that

c(α, 0) and c(α, 1) can be reconstructed from c(β, 0) with |β| = 3. We define the total

order ≺ on Z2
≥0 as follows:

• (|α|,m) ≺ (|β|, n) if m < n.

• (|α|,m) ≺ (|β|,m) if |α| < |β|.

We shall prove that c(α,m) can be reconstructed from c(β, 0) with |β| = 3 by the induction

on the well order ≺ on Z2
≥0.

Proposition∗ 3.23. A coefficient c(γ,m) with m ≥ 2 can be reconstructed from coeffi-

cients c(β, 0) with |β| = 3.

Proof. Assume that c(α, n) can be reconstructed from coefficients c(β, 0) with |β| = 3

if (|α|, n) ≺ (0,m − 1). First, we shall show that c(0,m) can be reconstructed. This

coefficient must be zero for the case χA ≤ 0. For the case that χA > 0, we have the

following Lemma 3.24:

Lemma∗ 3.24. A coefficient c(0,m) can be reconstructed from coefficients c(α, n) with

(|α|, n) ≺ (0,m).
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Proof. We shall calculate the coefficient of emtµA in WDV V ((i, 1), (i, ai−1), µA, µA). Then

we have

c(ei,1 + ei,ai−1 + e1, 0) · 1 ·m3 · c(0,m) + (known terms) = 0.

Therefore, the cofficient c(0,m) can be reconstructed from coefficients c(α, n) satisfying

(|α|, n) ≺ (0,m). �

Next, we shall split the second step of the induction into following three cases.

Lemma∗ 3.25 (Case 1). If a non–negative element γ ∈ ZµA−2 satisfies that |γ| = k + 1

and γ−ei,j ≥ 0 for some j such that j ≥ 2, then the coefficient c(γ,m) can be reconstructed

from coefficients c(α, n) with (|α|, n) ≺ (k + 1,m).

Proof. We shall calculate the coefficient of the term tγ−ei,jemtµA in the WDVV equation

WDV V ((i, 1), (i, j − 1), µA, µA). Then we have

s1,j−1,ai−j · c(ei,1 + ei,j−1 + ei,ai−j, 0) · ai ·m2 · γi,j · c(γ,m) + (known terms) = 0,

Therefore, the coefficient c(γ,m) can be reconstructed from coefficients c(α, n) satisfying

(|α|, n) ≺ (k + 1,m). �

Lemma∗ 3.26 (Case 2). If a non–negative element γ ∈ ZµA−2 satisfies that |γ| = k + 1

and γ =
∑r

k=1 γk,1ek,1 for some γ1,1, . . . , γr,1 such that
∏r

k=1 γk,1 6= 0, then the coefficient

c(γ,m) can be reconstructed from coefficients c(α, n) with (|α|, n) ≺ (k + 1,m).

Proof. We shall calculate the coefficient of the term (
∏r

k=1 t
γk,1
k,1 )emtµA in the WDVV equa-

tion WDV V ((i, 1), (i, ai − 1), µA, µA). Then we have

(i) {c(ei,1 + ei,ai−1 + e1, 0) ·m3 + 4 · c(2ei,1 + 2ei,ai−1, 0) · ai ·m2 · γi,1} · c(γ,m)

+(known terms) = 0

if ai ≥ 3,

(ii) {2c(2ei,1 + e1, 0) ·m3 + 24 · c(4ei,1, 0) · 2 ·m2 · γi,1} · c(γ,m)

+(known terms) = 0

if ai = 2.

If γi,1 6= m for some i, the coefficient c(γ,m) can be reconstructed from c(α, n) with

(α, n) ≺ (k + 1,m). If γi,1 = m for all i, we have deg((
∏r

k=1 t
γk,1
k,1 )emtµA ) = 2m ≥ 2 and

hence c(γ,m) = 0 except for the case m = 1. �

Lemma∗ 3.27 (Case 3). If a non–negative element γ ∈ ZµA−2 satisfies that |γ| = k + 1

and γ =
∑r

k=1 γk,1ek,1 for some γ1,1, . . . , γr,1 such that
∏r

k=1 γk,1 = 0, then the coefficient

c(γ,m) can be reconstructed from coefficients c(α, n) with (|α|, n) ≺ (k + 1,m).
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Proof. Assume that γi,1 = 0. We shall calculate the coefficient of the term (
∏r

k=1 t
γk,1
k,1 )emtµA

in the WDVV equation WDV V ((i, 1), (i, ai − 1), µA, µA). Then we have

c(e1 + ei,ai−1 + ei,1, 0) ·m3 · c(γ,m) + (known terms) = 0.

Therefore, the coefficient c(γ,m) can be reconstructed from coefficients c(α, n) satisfying

(|α|, n) ≺ (k + 1,m). �

Hence, we have Proposition 3.23. �

We finish the proof of Theorem 3.1.

4. The condition (iv)

In the previous paper [6], we showed Theorem 3.1 for the case that r = 3 and derived

the condition (iv) by other conditions if A satisfies a2 ≥ 3. For the cases A = (2, 2, a3)

with a3 ≥ 3, we also derived the condition (iv) under the weaker condition than (iv):

• If ai1 = ai2 for some i1, i2 ∈ {1, 2, 3}, then the Frobenius potential F is invariant

under the permutation of parameters ti1,j and ti2,j (j = 1, . . . , ai1 − 1).

For the case A = (2, 2, 2), we have to assume the condition (iv) since, even under the

weaker condition above, we can obtain a different Frobenius potential which satisfies the

conditions in Theorem 3.1 except for the condition (iv).

In the present paper, we can also obtain the similar result as in Proposition of [6].

Definition 4.1. We classify a multiplet of positive integers A as follows and call it

(i) a general multiplet if a1 ≥ 2 and a2 ≥ 3,

(ii) a semi–general multiplet if a1 = a2 = 2 and a3 ≥ 3,

(iii) a non–general multiplet if a1 = a2 = a3 = 2.

Under the above classification, the following Theorem 4.14 is the main result in this

section. All steps of the proof for Theorem 4.14 except for Sublemma 4.13 are common

to the ones in our previous paper [6]. In order to make the proof self–contained, we shall

include all details of arguments even if the arguments are common to the ones in [6].

Theorem (Theorem 4.14). Suppose that A is a general multiplet. For a non–negative

β ∈ ZµA−2, we have

c

(
β +

3∑
k=1

eik,jk , 0

)
6= 0
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only if i1 = i2 = i3. Suppose that A is a semi–general multiplet. For a non–negative

β ∈ ZµA−2, we have

c

(
β +

3∑
k=1

eik,jk , 0

)
6= 0

only if i1 = i2 = i3 under the following condition:

(iv’) If ai1 = ai2 for some i1, i2 ∈ {1, . . . , r}, then the Frobenius potential F is invariant

under the permutation of parameters ti1,j and ti2,j (j = 1, . . . , ai1 − 1).

Remark 4.2. Before going to the proof of Theorem 4.14, we shall explain why the condition

(iv) implies the condition (iv’). We shall consider the permutation of index (i1, j) and

(i2, j) (j = 1, . . . , ai1 − 1) and denote it by ρ. Moreover, we shall take four non–negative

elements α =
∑

j αi1,jei1,j and α′ =
∑

j α
′
i2,j
ei2,j such that αi1,j = α′i2,j for all j, and

β =
∑

i,j βi,jei,j, β
′ =

∑
i,j β

′
i,jei,j such that βρ(i,j) = β′i,j for all i, j. Then, in the proof

of Theorem 3.1 under the condition (iv), one can sees, inductively, that the quadratic

equation in front of tβemtµA in WDV V (a, b, c, d) is exactly same with the one in front

of tβ
′
emtµA in WDV V (ρ(a), ρ(b), ρ(c), ρ(d)) since the coefficients of the trivial part for

the Frobenius potential F are invariant under the permutations in the condition (iv’)

(Proposition 3.3). Therefore one can have c(α,m) = c(α′,m) inductively in the proof of

Theorem 3.1 under the condition (iv).

The following Lemma 4.3 is a part of the condition (iv) in Theorem 3.1 and Theorem

4.14. However, for the later convenience, we shall show that Lemma 4.3 is derived from

other conditions in Theorem 3.1.

Lemma∗ 4.3. Let γ ∈ ZµA−2 be a non–negative element satisfying that |γ| = 4 and

γ− ei1,j1 − ei2,j2 ≥ 0 for some i1, i2 such that i1 6= i2. If ai1 ≥ 3, then we have c(γ, 0) = 0.

Proof. Note that c(β, 0) = 0 if |β| = 3 and β − ei1,j1 − ei2,j2 ≥ 0 for some i1, i2 such that

i1 6= i2 by Proposition 3.3. We shall split the proof into the following two steps:

Step 1: We shall consider the case that the term tγ has, as a factor, ti1,j1 for some i1 and

j1 such that ai1 ≥ 3 and j1 ≥ 2. We shall split, moreover, Step 1 into following four cases:

(i) The term tγ has ti1,j1 , ti2,j2 , ti3,j3 as factors for some j1, j2, j3 where i1, i2, i3 are

pairwise distinct.

(ii) The term tγ has ti,j and ti,j′ as factors for each i = i1, i2 and some j, j′ where

i1 6= i2.

(iii) The term tγ has ti1,j1 , ti1,j′1 , ti1,j′′1 and only ti2,j2 as factors for some i1, i2, j1, j
′
1, j
′′
1 , j2

where i1 6= i2.
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(iv) The term tγ has, as factors, ti1,j1 and ti2,j, ti2,j′ , ti2,j′′ for some i1, i2, j1, j2, j
′
2, j
′′
2

where i1 6= i2.

Step 2: We shall consider the case that tγ does not have, as factors, ti,j for any i and j

such that j ≥ 2.

Step 1–(i). The term tγ has ti1,j1 , ti2,j2 , ti3,j3 as factors for some j1, j2, j3.

Sublemma∗ 4.4 (Step 1–(i)). Let γ ∈ ZµA−2 be a non–negative element such that |γ| = 4

and γ − ei1,j1 − ei2,j2 − ei3,j3 ≥ 0 for distinct i1, i2, i3 and some j1, j2, j3. If ai1 ≥ 3 and

j1 ≥ 2, then we have c(γ, 0) = 0.

Proof. We shall calculate the coefficient of the term tγ−ei1,j1−ei2,j2−ei3,j3 in the WDVV

equation WDV V ((i3, j3), (i2, j2), (i1, j1 − 1), (i1, 1)). Then we have

γi1,j1γi2,j2γi3,j3 · c(γ, 0) · ai1 · sai1−j1,j1−1,1 · c(ei1,ai1−j1 + ei1,j1−1 + ei1,1, 0) = 0.

Hence we have c(γ, 0) = 0. �

Step 1–(ii). The term tγ has ti,j and ti,j′ as factors for each i = i1, i2 and some j, j′.

Sublemma∗ 4.5 (Step 1–(ii)). Let γ ∈ ZµA−2 be ei1,j1 + ei1,j′1 + ei2,j2 + ei2,j′2 for some

i1, i2, j1, j
′
1, j2, j

′
2 such that i1 6= i2. If ai1 ≥ 3 and j′1 ≥ 2, then we have c(γ, 0) = 0.

Proof. We calculate the coefficient of ti2,j′2 in WDV V ((i2, j2), (i1, j1), (i1, 1), (i1, j
′
1 − 1)).

Then we have

(i) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0)

−(γ′i1,1 + 1)(γ′i2,j2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1 ·

sj1,j′1−1,ai1+1−j1−j′1 · c(ei1,j1 + ei1,j′1−1 + ei1,ai1+1−j1−j′1 , 0) = 0

if 3 ≤ j1 + j′1 ≤ ai1 and where γ′ = γ − ei1,j1 − ei2,j2 − ei1,j′1 = ei2,j′2 ,

(ii) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0) = 0

if j1 + j′1 > ai1 .

We shall show that c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) = 0. We have the inequality

deg(ti2,j2ti2,j′2) = (j1 + j′1)/ai1 ≤ 1. We shall calculate the coefficient of the term ti1,1

in the WDVV equation WDV V ((i2, j2), (i2, j
′
2), (i1, j1 + j′1 − 2), (i1, 1)). Then we have

(γ′i2,j2 + 1)(γ′i2,j′2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1·

s1,j1+j′1−2,ai1+1−j1−j′1 · c(ei1,1 + ei1,j1+j′1−2 + ei1,ai1+1−j1−j′1 , 0) = 0.

By Proposition 3.3, we have c(γ′+ei1,1+ei2,j2 +ei1,j1+j′1−1, 0) = 0 and hence c(γ, 0) = 0. �
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Step 1–(iii). The term tγ has ti1,j1 , ti1,j′1 , ti1,j′′1 and only ti2,j2 as factors for

some i1, i2, j1, j
′
1, j
′′
1 , j2 such that i1 6= i2.

We shall split Step 1–(iii) into Case 1 (j2 ≥ 2) and Case 2 (j2 = 1).

Sublemma∗ 4.6 (Step 1–(iii)–Case 1). Let γ ∈ ZµA−2 be ei1,j1 + ei1,j′1 + ei1,j′′1 + ei2,j2 for

some i1, i2, j1, j
′
1, j
′′
1 , j2 such that i1 6= i2. If ai1 ≥ 3, ai2 ≥ 3, j′1 ≥ 2 and j2 ≥ 2, then we

have c(γ, 0) = 0.

Proof. We calculate the coefficient of ti1,j′′1 in WDV V ((i2, j2), (i1, j1), (i1, 1), (i1, j
′
1 − 1)).

Then we have

(i) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0)

−(γ′i1,1 + 1)(γ′i2,j2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1 ·

sj1,j′1−1,ai1+1−j1−j′1 · c(ei1,j1 + ei1,j′1−1 + ei1,ai1+1−j1−j′1 , 0) = 0

if 3 ≤ j1 + j′1 ≤ ai1 and where γ′ = γ − ei1,j1 − ei2,j2 − ei1,j′1 = ei1,j′′1 ,

(ii) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0) = 0

if j1 + j′1 > ai1 .

We shall show that c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) = 0. We have the inequality

deg(ti1,j′′1 ) ≤ (j1 + j′1 − 1)/ai1 . We shall calculate the coefficient of the term ti1,1 in

the WDVV equation WDV V ((i1, j
′′
1 ), (i1, j1 + j′1 − 1), (i2, j2 − 1), (i2, 1)). Then we have

(γ′i1,j′′1 + 1)(γ′i1,j1+j′1−1 + 1)(γ′i2,j2 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai2 ·

s1,j2−1,ai2−j2 · c(ei2,1 + ei2,j2−1 + ei2,ai2−j2 , 0) = 0.

By Proposition 3.3, we have c(γ′+ei1,1+ei2,j2 +ei1,j1+j′1−1, 0) = 0 and hence c(γ, 0) = 0. �

Sublemma∗ 4.7 (Step 1–(iii)–Case 2). Let γ ∈ ZµA−2 be ei1,j1 + ei1,j′1 + ei1,j′′1 + ei2,j2 for

some i1, i2, j1, j
′
1, j
′′
1 , j2 such that i1 6= i2. If ai1 ≥ 3, j′1 ≥ 2 and j2 = 1, then we have

c(γ, 0) = 0.
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Proof. We calculate the coefficient of ti1,j′′1 in WDV V ((i2, j2), (i1, j1), (i1, 1), (i1, j
′
1 − 1)).

Then we have

(i) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0)

−(γ′i1,1 + 1)(γ′i2,j2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1 ·

sj1,j′1−1,ai1+1−j1−j′1 · c(ei1,j1 + ei1,j′1−1 + ei1,ai1+1−j1−j′1 , 0) = 0

if 3 ≤ j1 + j′1 ≤ ai1 and where γ′ = γ − ei1,j1 − ei2,j2 − ei1,j′1 = ei1,j′′1 ,

(ii) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0) = 0

if j1 + j′1 > ai1 .

We shall show that c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) = 0. We have the inequality

deg(ti1,j′′1 ) ≤ (j1 + j′1 − 1)/ai1 . We shall calculate the coefficient of the term ti1,1 in

the WDVV equation WDV V ((i1, j
′′
1 ), (i2, j2), (i1, j1 + j′1 − 2), (i1, 1)). Then we have

(i) (γ′i1,j′′1 + 1)(γ′i2,j2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1·

s1,j1+j′1−2,ai1+1−j1−j′1 · c(ei1,1 + ei1,j1+j′1−2 + ei1,ai1+1−j1−j′1 , 0)

− (γ′′i1,1 + 1)(γ′′i2,j2 + 1)(γ′′i1,ai1−1 + 1) · c(γ′ + 2ei1,1 − ei1,j′′1 + ei2,j2 + ei1,ai1−1, 0) · ai1 ·

sj1+j′1−1,j′′1 ,1
· c(ei1,j1+j′1−2 + ei1,j′′1 + ei1,1, 0)

if deg(ti1,j′′1 ) =
j1 + j′1 − 1

ai1
and where γ′′ = γ′ + ei1,1 − ei1,j′′1 = ei1,1,

(ii) (γ′i1,j′′1 + 1)(γ′i2,j2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1·

s1,j1+j′1−2,ai1+1−j1−j′1 · c(ei1,1 + ei1,j1+j′1−2 + ei1,ai1+1−j1−j′1 , 0)

if deg(ti1,j′′1 ) ≤ j1 + j′1 − 2

ai1
.

If we have c(γ′ + 2ei1,1 − ei1,j′′1 + ei2,j2 + ei1,ai1−1, 0) 6= 0, we should have

2 deg(ti1,1) + deg(ti1,ai1−1) + deg(i2, j2) ≤ 2⇔ 1

ai1
+

1

ai2
≥ 1.

This inequality contradicts the assumption that ai1 ≥ 3 and ai2 ≥ 2. Then we have

c(γ′ + 2ei1,1 − ei1,j′′1 + ei2,j2 + ei1,ai1−1, 0) = 0 and c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) = 0,

and hence c(γ, 0) = 0. �

Step 1–(iv). The tem tγ has, as factors, ti1,j1 and ti2,j2 , ti2,j′2 , ti2,j′′2 for

some i1, i2, j1, j2, j
′
2, j
′′
2 such that i1 6= i2.

If ai2 ≥ 3 and some j2 ≥ 2, these cases are already dealt with in previous arguments

in Step 1–(iii). If ai2 ≥ 3 and j2 = j′2 = j′′2 = 1, we have deg(tγ) > 2. Therefore, we only

have to consider the case ai2 = 2:
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Sublemma∗ 4.8 (Step 1–(iv)). Let γ ∈ ZµA−2 be a non–negative element satisfying that

|γ| = 4, γi3,j3 = 0 for all j3 ≥ 1 and γ − ei1,j1 − 2ei2,1 ≥ 0 for pairwise distinct i1, i2, i3

and some j1 such that j1 ≥ 2. If ai1 ≥ 3 and ai2 = 2, then we have c(γ, 0) = 0.

Proof. We shall calculate the coefficient of the term tγ−ei1,j1−2ei2,1 in the WDVV equation

WDV V ((i2, 1), (i2, 1), (i1, j1 − 1), (i1, 1)). Then we have

γi1,j1γi2,1 · (γi2,1 − 1)c(γ, 0) · ai1 · c(ei1,j1−1 + ei1,1 + ei1,ai1−j1 , 0) = 0.

Hence we have c(γ, 0) = 0. �

Step 2. The term tγ does not have, as factors, ti,j for any i and j such that j ≥ 2.

We shall split Step 2 into the following two cases:

Case 1: The term tγ has ti1,1, ti2,1, ti3,1 as factors where i1, i2, i3 are pairwise distinct.

Case 2: The term tγ has, as factors, only two parameters ti1,1, ti2,1 for some i1, i2 such

that i1 6= i2.

Sublemma∗ 4.9 (Step 2–Case 1). Let γ ∈ ZµA−2 be a non–negative element satisfying

that |γ| = 4 and γ = γi1,1ei1,1 + γi2,1ei2,1 + γi3,1ei3,1 + γi4,1ei4,1 for some γi1,1, γi2,1, γi3,1 such

that γi1,1γi2,1γi3,1 6= 0. If ai1 ≥ 3, then we have c(γ, 0) = 0.

Proof. By the assumption that ai1 ≥ 3, we have the inequality:

deg(tγ) ≥ 4
al − 1

al
≥ 2,

where al = min{ai1 , ai2 , ai3 , ai4}. The first equality is attained if and only if ai1 = ai2 =

ai3 = ai4 . If ai1 = ai2 = ai3 = ai4 , one also has deg(tγ) > 2. Hence we have c(γ, 0) = 0. �

Sublemma∗ 4.10 (Step 2–Case 2). Let γ ∈ ZµA−2 be a non–negative element satisfying

that |γ| = 4 and γ = γi1,1ei1,1+γi2,1ei2,1 for some i1, i2 such that i1 6= i2 and some γi1,1, γi2,1

such that γi1,1γi2,1 6= 0. If ai1 ≥ 3, then we have c(γ, 0) = 0.

Proof. We have the inequality:

deg(tγ) ≥ 4
al − 1

al
≥ 2,

where al = min{ai1 , ai2}. The first equality is attained if and only if ai1 = ai2 . We also

have deg(tγ) > 2 if ai1 = ai2 . Hence we have c(γ, 0) = 0. �

Therefore we have Lemma 4.3. �

Proposition† 4.11. If A is a general multiplet, a coefficient c(α, 1) with |α| ≤ r is none-

zero if and only if α =
∑r

k=1 ek,1. If A is a semi–general multiplet, we have a coefficient
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c(α, 1) with |α| ≤ r is nonezero if and only if α =
∑r

k=1 ek,1 under the condition (iv’). In

particular, we have c(
∑r

k=1 ek,1, 1) = 1 by the condition (vi) of Theorem 3.1.

Proof. We shall split the proof into following two cases.

Lemma∗ 4.12 (Case 1). Suppose that A is a general multiplet. If a non–negative element

γ ∈ ZµA−2 satisfies that |γ| = r and γ =
∑r

k=1 γk,1ek,1 for some γ1,1, . . . , γr,1 such that∏r
k=1 γk,1 = 0, then we have c(γ, 1) = 0.

Proof. Note that c(α, 0) = 0 if |α| = 4 and α− ei1,j1 − ei2,j2 ≥ 0 for i1 6= i2 by Lemma 4.3

and c(α, 1) = 0 if |α| ≤ r − 1 since deg(tαetµA ) < 2. Assume that γi,1 = 0. We shall

calculate the coefficient of the term (
∏r

k=1 t
γk,1
k,1 )etµA in WDV V ((i, 1), (i, ai − 1), µA, µA).

Then we have

c(e1 + ei,ai−1 + ei,1, 0) · c(γ, 1) = 0.

Hence we have c(γ, 1) = 0 and then Lemma 4.12. �

Lemma† 4.13 (Case 2). Suppose that A is a semi–general multiplet. If a non–negative

element γ ∈ ZµA−2 satisfies that |γ| = r and γ =
∑r

k=1 γk,1ek,1 for some γ1,1, . . . , γr,1 such

that
∏r

k=1 γk,1 = 0, then we have c(γ, 1) = 0.

Proof. Note that c(α, 0) = 0 if |α| = 4, α − ei,1 − ei3,j3 ≥ 0 for 1 ≤ j3 ≤ ai3 − 1, i = 1, 2

and i3 ≥ 3 by Lemma 4.3, and that c(α, 1) = 0 if |α| ≤ 2 since deg(tαetµA ) < 2. If γi3 = 0

for i3 ≥ 3, we have c(γ, 1) = 0 by the same argument in Lemma 4.12. Then it is enough

to consider the following two cases:

(i) γi3,1 = 1 for all i3 ≥ 3, i.e., γ = 2e1,1 +
∑r

i=3 ei,1 or γ = 2e2,1 +
∑r

i=3 ei,1,

(ii) otherwise.

For the case (ii), we have deg(tγetµA ) > 2 by easy argument. Then we only have to consider

the case (i). Without loss of generality, We assume that γ = 2e1,1 +
∑r

i=3 ei,1. we shall

calculate the coefficient of the term (
∏r

i=3 ti,1)etµA in WDV V ((1, 1), (1, 1), (2, 1), (2, 1)).

Then we have

2c(2e1,1 + e1, 0) · 1 · 2c(2e2,1 +
r∑
i=3

ei,1, 1) + 2c(2e2,1 + e1, 0) · 1 · 2c(2e1,1 +
r∑
i=3

ei,1, 1) = 0.

we have c(2e1,1+
∑r

i=3 ei,1, 1) = c(2e2,1+
∑r

i=3 ei,1, 1) by the condition (iv’) in Theorem 3.1.

Hence we have c(2e1,1 +
∑r

i=3 ei,1, 1) = c(2e2,1 +
∑r

i=3 ei,1, 1) = 0. �

Therefore we have Proposition 4.11. �
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Theorem 4.14. Suppose that A is a general multiplet. For a non–negative β ∈ ZµA−2,

we have

c

(
β +

3∑
k=1

eik,jk , 0

)
6= 0

only if i1 = i2 = i3. Suppose that A is a semi–general multiplet. For a non–negative

β ∈ ZµA−2, we have

c

(
β +

3∑
k=1

eik,jk , 0

)
6= 0

only if i1 = i2 = i3 under the following condition:

(iv’) If ai1 = ai2 for some i1, i2 ∈ {1, . . . , r}, then the Frobenius potential F is invariant

under the permutation of parameters ti1,j and ti2,j (j = 1, . . . , ai1 − 1).

Proof. We will prove Theorem 4.14 by the induction on the length. By Proposition 3.3,

we have c(α, 0) = 0 if |α| = 3 and α−ei1,j1−ei2,j2 ≥ 0 for i1 6= i2. Assume that c(α, 0) = 0

if |α| ≤ k + 3 and α− ei1,j1 − ei2,j2 ≥ 0 for i1 6= i2. Under this assumption, we will prove

that c(γ, 0) = 0 if |γ| = k + 4 and γ − ei1,j1 − ei2,j2 ≥ 0 for i1 6= i2.

We shall split the proof into the following four steps:

Step 1: We shall consider the case that the term tγ has, as a factor, ti1,j1 for some i1 and

j1 such that ai1 ≥ 3 and j1 ≥ 2. We shall split, moreover, Step 1 into following four cases:

(i) The term tγ has ti1,j1 , ti2,j2 , ti3,j3 as factors for some j1, j2, j3 where i1, i2, i3 are

pairwise distinct.

(ii) The term tγ has ti,j and ti,j′ as factors for each i = i1, i2 and some j, j′ where

i1 6= i2.

(iii) The term tγ has ti1,j1 , ti1,j′1 , ti1,j′′1 and only ti2,j2 as factors for some i1, i2, j1, j
′
1, j
′′
1 , j2

where i1 6= i2.

(iv) The term tγ has, as factors, ti1,j1 and ti2,j, ti2,j′ , ti2,j′′ for some i1, i2, j1, j2, j
′
2, j
′′
2

where i1 6= i2.

Step 2: We shall consider the case that ai1 ≥ 3 and tγ does not have, as factors, ti,j for

any i and j such that j ≥ 2.

Step 3: We shall consider the case that a1 = a2 = 2 and a3 ≥ 3, i.e., A is a semi–general

multiplet.

Step 1–(i). The term tγ has ti1,j1 , ti2,j2 , ti3,j3 as factors for some j1, j2, j3.

Sublemma∗ 4.15 (Step 1–(i)). Assume that ai1 ≥ 3 and c(α, 0) = 0 if |α| ≤ k + 3 and

α−ei,j−ei′,j′ ≥ 0 for some i, i′, j, j′ such that i 6= i′. If a non–negative element γ ∈ ZµA−2
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satisfies that |γ| = k + 4, γ − ei1,j1 − ei2,j2 − ei3,j3 ≥ 0 for pairwise distinct i1, i2, i3 and

some j1 such that j1 ≥ 2, then we have c(γ, 0) = 0.

Proof. We shall calculate the coefficient of the term tγ−ei1,j1−ei2,j2−ei3,j3 in the WDVV

equation WDV V ((i3, j3), (i2, j2), (i1, j1 − 1), (i1, 1)). Then we have

γi1,j1γi2,j2γi3,j3 · c(γ, 0) · ai1 · sai1−j1,j1−1,1 · c(ei1,ai1−j1 + ei1,j1−1 + ei1,1, 0) = 0.

Hence we have c(γ, 0) = 0. �

Step 1–(ii). The term tγ has ti,j and ti,j′ as factors for each i = i1, i2 and some j, j′.

Sublemma∗ 4.16 (Step 1–(ii)). Assume that ai1 ≥ 3 and c(α, 0) = 0 if |α| ≤ k + 3

and α − ei,j − ei′,j′ ≥ 0 for some i, i′, j, j′ such that i 6= i′. If a non–negative element

γ ∈ ZµA−2 satisfies that |γ| = k + 4, γi3,j3 = 0 for all i3 6= i1, i2 and all j3 ≥ 1 and that

γ− ei1,j1 − ei1,j′1 − ei2,j2 − ei2,j′2 ≥ 0 for some i1, i2, j1, j
′
1, j2, j

′
2 such that i1 6= i2 and j′1 ≥ 2,

then we have c(γ, 0) = 0.

Proof. We shall calculate the coefficient of the term t
γ−ei1,j1−ei2,j2−ei1,j′1 in the WDVV

equation WDV V ((i2, j2), (i1, j1), (i1, 1), (i1, j
′
1 − 1)). Then we have

(i) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0)

−(γ′i1,1 + 1)(γ′i2,j2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1 ·

sj1,j′1−1,ai1+1−j1−j′1 · c(ei1,j1 + ei1,j′1−1 + ei1,ai1+1−j1−j′1 , 0) = 0

if 3 ≤ j1 + j′1 ≤ ai1 and where γ′ = γ − ei1,j1 − ei2,j2 − ei1,j′1 ,

(ii) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0) = 0

if j1 + j′1 > ai1 .

We shall show that c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) = 0. we have the inequality

deg(tγ
′
ti2,j2) = (j1 + j′1)/ai1 , i.e, deg(ti2,j2ti2,j′2) ≤ (j1 + j′1)/ai1 ≤ 1. We shall calculate

the coefficient of the term t
γ′+ei1,1−ei2,j′2 in WDV V ((i2, j2), (i2, j

′
2), (i1, j1 + j′1− 2), (i1, 1)).

Then we have

(γ′i2,j2 + 1)(γ′i2,j′2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1·

s1,j1+j′1−2,ai1+1−j1−j′1 · c(ei1,1 + ei1,j1+j′1−2 + ei1,ai1+1−j1−j′1 , 0) = 0.

By Proposition 3.3, c(γ′+ ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) = 0. Hence we have c(γ, 0) = 0. �

Step 1–(iii). The term tγ has ti1,j1 , ti1,j′1 , ti1,j′′1 and ti2,j2 as factors for

some i1, i2, j1, j
′
1, j
′′
1 , j2 such that i1 6= i2.
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We shall split Step 1–(iii) into Case 1 (j2 ≥ 2) and Case 2 (j2 = 1).

Sublemma∗ 4.17 (Step 1–(iii)–Case 1). Assume that ai1 ≥ 3, ai2 ≥ 3 and c(α, 0) = 0 if

|α| ≤ k + 3 and α − ei,j − ei′,j′ ≥ 0 for some i, i′, j, j′ such that i 6= i′. If a non–negative

element γ ∈ ZµA−2 satisfies that |γ| = k + 4, γi3,j3 = 0 for all i3 6= i1, i2 and all j3 ≥ 1

and that γ − ei1,j1 − ei1,j′1 − ei1,j′′1 − ei2,j2 ≥ 0 for some i1, i2, j1, j
′
1, j
′′
1 , j2 such that j′1 ≥ 2

and j2 ≥ 2, then we have c(γ, 0) = 0.

Proof. We shall calculate the coefficient of the term t
γ−ei1,j1−ei2,j2−ei1,j′1 in the WDVV

equation WDV V ((i2, j2), (i1, j1), (i1, 1), (i1, j
′
1 − 1)). Then we have

(i) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0)

−(γ′i1,1 + 1)(γ′i2,j2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1 ·

sj1,j′1−1,ai1+1−j1−j′1 · c(ei1,j1 + ei1,j′1−1 + ei1,ai1+1−j1−j′1 , 0) = 0

if 3 ≤ j1 + j′1 ≤ ai1 and where γ′ = γ − ei1,j1 − ei2,j2 − ei1,j′1 ,

(ii) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0) = 0

if j1 + j′1 > ai1 .

We shall show that c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) = 0. We have the inequality

deg(ti1,j′′1 ) ≤ (j1 + j′1 − 1)/ai1 . We shall calculate the coefficient of the term t
γ′+ei1,1−ei1,j′′1

in the WDVV equation WDV V ((i1, j
′′
1 ), (i1, j1 + j′1−1), (i2, j2−1), (i2, 1)). Then we have

(γ′i1,j′′1 + 1)(γ′i1,j1+j′1−1 + 1)(γ′i2,j2 + 1) · c(γ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai2 ·

s1,j2−1,ai2−j2 · c(ei2,1 + ei2,j2−1 + ei2,ai2−j2 , 0) = 0.

By Proposition 3.3, we have c(γ′+ei1,1+ei2,j2 +ei1,j1+j′1−1, 0) = 0 and hence c(γ, 0) = 0. �

Sublemma∗ 4.18 (Step 1–(iii)–Case 2). Assume that ai1 ≥ 3 and c(α, 0) = 0 if |α| ≤ k+3

and α − ei,j − ei′,j′ ≥ 0 for some i, i′, j, j′ such that i 6= i′. If a non–negative element

γ ∈ ZµA−2 satisfies that |γ| = k + 4, γi3,j3 = 0 for all i3 6= i1, i2 and all j3 ≥ 1 and that

γ− ei1,j1 − ei1,j′1 − ei1,j′′1 − ei2,j2 ≥ 0 for some i1, i2, j1, j
′
1, j
′′
1 , j2 such that j′1 ≥ 2 and j2 = 1,

then we have c(γ, 0) = 0.
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Proof. We shall calculate the coefficient of the term t
γ−ei1,j1−ei2,j2−ei1,j′1 in the WDVV

equation WDV V ((i2, j2), (i1, j1), (i1, 1), (i1, j
′
1 − 1)). Then we have

(i) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0)

−(γ′i1,1 + 1)(γ′i2,j2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1 ·

sj1,j′1−1,ai1+1−j1−j′1 · c(ei1,j1 + ei1,j′1−1 + ei1,ai1+1−j1−j′1 , 0) = 0

if 3 ≤ j1 + j′1 ≤ ai1 and where γ′ = γ − ei1,j1 − ei2,j2 − ei1,j′1 ,

(ii) γi1,j1γi2,j2γi1,j′1 · c(γ, 0) · ai1 · s1,j′1−1,ai1−j
′
1
· c(ei1,1 + ei1,j′1−1 + ei1,ai1−j′1 , 0) = 0

if j1 + j′1 > ai1 .

We shall show that c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) = 0. We have the inequality

deg(ti1,j′′1 ) ≤ (j1 + j′1 − 1)/ai1 . We shall calculate the coefficient of the term t
γ′+ei1,1−ei1,j′′1

in the WDVV equation WDV V ((i1, j
′′
1 ), (i2, j2), (i1, j1 + j′1 − 2), (i1, 1)). Then we have

(i) (γ′i1,j′′1 + 1)(γ′i2,j2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1·

s1,j1+j′1−2,ai1+1−j1−j′1 · c(ei1,1 + ei1,j1+j′1−2 + ei1,ai1+1−j1−j′1 , 0)

− (γ′′i1,1 + 1)(γ′′i2,j2 + 1)(γ′′i1,ai1−1 + 1) · c(γ′ + 2ei1,1 − ei1,j′′1 + ei2,j2 + ei1,ai1−1, 0) · ai1 ·

sj1+j′1−1,j′′1 ,1
· c(ei1,j1+j′1−2 + ei1,j′′1 + ei1,1, 0) = 0

if deg(ti1,j′′1 ) =
j1 + j′1 − 1

ai1
and where γ′′ = γ′ + ei1,1 − ei1,j′′1 ,

(ii) (γ′i1,j′′1 + 1)(γ′i2,j2 + 1)(γ′i1,j1+j′1−1 + 1) · c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) · ai1·

s1,j1+j′1−2,ai1+1−j1−j′1 · c(ei1,1 + ei1,j1+j′1−2 + ei1,ai1+1−j1−j′1 , 0) = 0

if deg(ti1,j′′1 ) ≤ j1 + j′1 − 2

ai1
.

If c(γ′ + 2ei1,1 − ei1,j′′1 + ei2,j2 + ei1,ai1−1, 0) 6= 0, we should have

2 deg(ti1,1) + deg(ti1,ai1−1) + deg(i2, j2) ≤ 2⇔ 1

ai1
+

1

ai2
≥ 1.

This inequality contradicts the assumption that ai1 ≥ 3 and ai2 = 2. Then we have

c(γ′ + 2ei1,1 − ei1,j′′1 + ei2,j2 + ei1,ai1−1, 0) = 0 and c(γ′ + ei1,1 + ei2,j2 + ei1,j1+j′1−1, 0) = 0.

Hence we have c(γ, 0) = 0. �

Step 1–(iv). The tem tγ has, as factors, ti1,j1 and ti2,j2 , ti2,j′2 , ti2,j′′2 for

some i1, i2, j1, j2, j
′
2, j
′′
2 such that i1 6= i2.
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If ai2 ≥ 3 and some j ≥ 2, these cases are already dealt with in previous arguments

in Step 1–(iii). If ai2 ≥ 3 and j2 = j′2 = j′′2 = 1, we have deg(tγ) > 2. Therefore, we only

have to consider the case ai2 = 2:

Sublemma∗ 4.19 (Step 1–(iv)). Assume that ai1 ≥ 3, ai2 = 2 and c(α, 0) = 0 if |α| ≤
k + 3 and α − ei1,j1 − ei2,j2 ≥ 0 for some i1, i2, j1, j2 such that i1 6= i2. If a non–negative

element γ ∈ ZµA−2 satisfies that |γ| = k+ 4, γi3,j3 = 0 for all i3 6= i1, i2 and all j3 ≥ 1 and

that γ − ei1,j1 − 2ei2,1 ≥ 0 for some i1, i2, j1 such that j1 ≥ 2, then we have c(γ, 0) = 0.

Proof. We shall calculate the coefficient of the term tγ−ei1,j1−2ei2,1 in the WDVV equation

WDV V ((i2, 1), (i2, 1), (i1, j1 − 1), (i1, 1)). Then we have

γi1,j1γi2,1 · (γi2,1 − 1)c(γ, 0) · ai1 · c(ei1,j1−1 + ei1,1 + ei1,ai1−j1 , 0) = 0.

Hence we have c(γ, 0) = 0. �

Step 2. ai1 ≥ 3 and tγ does not have, as factors, ti,j for any i and j such that j ≥ 2.

We shall split Step 2 into the following two cases:

Case 1: The term tγ has ti1,1, ti2,1, ti3,1 as factors where i1, i2, i3 are pairwise distinct.

Case 2: The term tγ has, as factors, only two parameters ti1,1, ti2,1 for some i1, i2 such

that i1 6= i2.

Sublemma∗ 4.20 (Step 2–Case 1). Assume that ai1 ≥ 3 and c(α, 0) = 0 if |α| ≤ k + 3

and α − ei,j − ei′,j′ ≥ 0 for some i, i′, j, j′ such that i 6= i′. If a non–negative element

γ ∈ ZµA−2 satisfies that |γ| = k+ 4 and γ =
∑r

i=1 γi,1ei,1 such that γi1,1γi2,1γi3,1 6= 0 where

i1, i2, i3 are pairwise distinct, then we have c(γ, 0) = 0.

Proof. We have

deg(tγ) ≥ (k + 4)
al − 1

al
> 2,

where al = min{a1, . . . , ar}. Hence we have c(γ, 0) = 0. �

Sublemma∗ 4.21 (Step 2–Case 2). Assume that ai1 ≥ 3 and c(α, 0) = 0 if |α| ≤ k + 3

and α − ei,j − ei′,j′ ≥ 0 for some i, i′, j, j′ such that i 6= i′. If a non–negative element

γ ∈ ZµA−2 satisfies that |γ| = k + 4 and γ = γi1,1ei1,1 + γi2,1ei2,1 such that i1 6= i2 and

γi1,1γi2,1 6= 0, then we have c(γ, 0) = 0.

Proof. We have

deg(tγ) ≥ (k + 4)
al − 1

al
> 2,

where al = min{ai1 , ai2}. Hence we have c(γ, 0) = 0. �
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Step 3. a1 = a2 = 2 and a3 ≥ 3, i.e., A is a semi–general multiplet.

If tγ has, as a factor, ti3,j3 for i3 ≥ 3 and j3 ≥ 1, we have c(γ, 0) = 0 by pre-

vious arguments in Step 1 and Step 2. Therefore we only have to show the following

Sublemma 4.22.

Sublemma† 4.22 (Step 3). Suppose that A is a smi–general multiplet. Then we have(i) c(2e1,1 + 2e2,1, 0) = 0,

(ii) c(3e1,1 + e2,1, 0) = c(3e2,1 + e1,1, 0) = 0.

Proof. Note that c(γ, 1) 6= 0 with |γ| = 3 if and only if γ =
∑r

i=1 ei,1 by Proposition 4.11,

and that c(γ, 0) = 0 if γ ∈ ZµA−2 is a non–negative element such that |γ| = 4 and

γ − ei1,j1 − ei3,j3 ≥ 0 for i1 = 1, 2 and i3 ≥ 3 by Lemma 4.3.

First, we shall show that c(2e1,1 + 2e2,1, 0) = 0. We shall calculate the coefficient of

the term t22,1(
∏r

i=3 ti,1)etµA in WDV V ((1, 1), (2, 1), µA, µA). Then we have

4 · c(2e1,1 + 2e2,1, 0) · 2 · 1 = 0.

Hence we have c(2e1,1 + 2e2,1, 0) = 0.

Next, we shall show that c(3e1,1 + e2,1, 0) = c(3e2,1 + e1,1, 0) = 0. We shall calculate

the coefficient of the term t21,1(
∏r

i=3 ti,1)etµA in WDV V ((1, 1), (1, 1), µA, µA). Then we

have

6 · c(3e1,1 + e2,1, 0) · a2 · c(e1,1 + e2,1 + e3,1, 1) = 0.

Thus we have c(3e1,1 + e2,1, 0) = 0. The same argument shows c(3e2,1 + e1,1, 0) = 0. �

Therefore we have Theorem 4.14. �

For a non–general multiplet A, we have the following conjecture:

Conjecture 4.23. For each non–general multiplet A, there exsists a Frobenius structure

which satisfies the conditions (i), (ii), (iii), (v), (vi) in Theorem 3.1 and does not satisfy

the condition (iv).

As we remarked at the former part of this section, forA = (2, 2, 2), one can obtain the

Frobenius potential which satisfies the conditions in Theorem 3.1 except for the condition

(iv) by easy calculation.

5. The Gromov-Witten Theory for Orbifold Projective Lines

Let r ≥ 3 be a positive integer. Let A = (a1, . . . , ar) be a multiplet of positive

integers and Λ = (λ1, . . . , λr) a multiplet of pairwise distinct elements of P1(C) normalized

such that λ1 =∞, λ2 = 0 and λ3 = 1.
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Following Geigle–Lenzing (cf. Section 1.1 in [5]), we shall introduce an orbifold

projective line. First, we prepare some notations.

Definition 5.1. Let r, A and Λ be as above.

(i) Define a ring RA,Λ by

RA,Λ := C[X1, . . . , Xr] /IΛ , (5.1a)

where IΛ is an ideal generated by r − 2 homogeneous polynomials

Xai
i −X

a2
2 + λiX

a1
1 , i = 3, . . . , r. (5.1b)

(ii) Denote by LA an abelian group generated by r-letters ~Xi, i = 1, . . . , r defined as

the quotient

LA :=
r⊕
i=1

Z ~Xi /MA , (5.2a)

where MA is the subgroup generated by the elements

ai ~Xi − aj ~Xj, 1 ≤ i < j ≤ r. (5.2b)

We then consider the following quotient stack:

Definition 5.2. Let r, A and Λ be as above. Define a stack P1
A,Λ by

P1
A,Λ := [(Spec(RA,Λ)\{0}) /Spec(CLA)] , (5.3)

which is called the orbifold projective line of type (A,Λ).

An orbifold projective line of type (A,Λ) is a Deligne–Mumford stack whose coarse

moduli space is a smooth projective line P1. The orbifold cohomology group of P1
A,Λ is,

as a vector space, just the singular cohomology group of the inertia orbifold:

IP1
A,Λ = P1

A,Λ

⊔ ⊔
1≤i≤r

(
ai−1⊔
j=1

(B(Z/aiZ))j

)
where (B(Z/aiZ))j := B(Z/aiZ). The age associated to the component P1

A,Λ is 0 and the

age associated to (B(Z/aiZ))j is j/ai. The orbifold Poincaré pairing is given by twisting

the usual Poincaré pairing: ∫
P1
A,Λ

α ∪orb β :=

∫
IP1

A,Λ

α ∪ Iβ,

where I is the involution defined in [1, 2]. Then we have the following:
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Lemma∗ 5.3. We can choose a Q-basis 1 = ∆1,∆1,1, . . . ,∆i,j, . . . ,∆r,ar−1,∆µA of the

orbifold cohomology group H∗orb(P1
A,Λ,Q) such that

H0
orb(P1

A,Λ,Q) ' Q∆1, ∆i,j ∈ H
2 j
ai

orb (P1
A,Λ,Q), H2

orb(P1
A,Λ,Q) ' Q∆µA

and ∫
P1
A,Λ

∆1 ∪orb ∆µA = 1,

∫
P1
A,Λ

∆i,j ∪orb ∆k,l =

 1
ai

if k = i, l = ai − j

0 otherwise.

Proof. The decomposition of H∗orb(P1
A,Λ,C) follows from the decomposition of the inertia

orbifold IP1
A,Λ. The latter assertion immediately follows from the definition of the orbifold

Poincaré pairing. �

Denote by t1, t1,1, . . . , ti,j, . . . , tr,ar−1, tµA the dual coordinates of the Q-basis ∆1,

∆1,1, . . . ,∆i,j, . . . ,∆r,ar−1,∆µA of H∗orb(P1
A,Λ,Q) in Lemma 5.3. Consider a formal manifold

M whose structure sheaf OM and tangent sheaf TM are given by

OM := C((etµA ))[[t1, t1,1, . . . , ti,j, . . . , tr,ar−1]], TM := H∗orb(P1
A,Λ,C)⊗C OM , (5.4)

where C((etµA )) denotes the C-algebra of formal Laurent series in etµA .

The Gromov–Witten theory for orbifolds developed by Abramovich–Graber–Vistoli

[1] and Chen–Ruan [2] gives us the following proposition. Note here that, by using

the divisor axiom, it turns out that third derivatives of the genus zero Gromov–Witten

potential FP1
A,Λ

0 are elements of C[[t1,1, . . . , ti,j, . . . , tr,ar−1, q
[P1]etµA ]] and hence they can be

considered as elements of OM by formally setting q[P1] = 1.

Proposition 5.4 ([1, 2]). There exists a structure of a formal Frobenius manifold of rank

µA and dimension one on M whose non–degenerate symmetric OM–bilinear form η on

TM is given by the orbifold Poincaré pairing.

Proof. See Theorem 6.2.1 of [1] and Theorem 3.4.3 of [2]. �

The following theorem is the main result in this section:

Theorem 5.5. The conditions in Theorem 3.1 are satisfied by the Frobenius structure

constructed from the Gromov–Witten theory for P1
A,Λ.

We shall check the conditions in Theorem 3.1 one by one.
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5.1. Condition (i). It follows from Lemma 5.3 that the unit vector field e ∈ TM and the

Euler vector field E ∈ TM are given as

e =
∂

∂t1
, E = t1

∂

∂t1
+

r∑
i=1

ai−1∑
j=1

ai − j
ai

ti,j
∂

∂ti,j
+ χA

∂

∂tµA
,

which is the condition (i).

5.2. Condition (ii). It is obvious from Lemma 5.3.

5.3. Condition (iii). The condition (iii) follows from the divisor axiom and the definition

of the genus zero potential FP1
A,Λ

0 .

5.4. Condition (iv). The condition (iv) is satisfied since the image of degree zero orbifold

map with marked points on orbifold points on the source must be one of orbifold points

on the target P1
A,Λ.

5.5. Condition (v). The orbifold cup product is the specialization of the quantum prod-

uct at t1 = t1,1 = · · · = tr,ar−1 = etµA = 0. Therefore, it turns out that the orbifold cup

product can be determined by the degree zero three point Gromov-Witten invariants.

Lemma∗ 5.6. There is a C-algebra isomorphism between the orbifold cohomology ring

H∗orb(P1
A,Λ,C) and C[x1, x2, . . . , xr]

/(
xixj, aix

ai
i − ajx

aj
j

)
1≤i 6=j≤r , where ∂/∂ti,j are mapped

to xji for i = 1, . . . , r, j = 1, . . . , ai − 1 and ∂/∂tµA are mapped to a1x
a1
1 .

Proof. Under the same notation in Lemma 5.3, the orbifold cup product is given as follows:

∆α ∪orb ∆β =
∑
δ

〈∆α,∆β,∆γ〉
P1
A,Λ

0,3,0 η
γδ∆δ,

where we set ηγδ as follows:

(ηγδ) = (

∫
P1
A,Λ

∆γ ∪orb ∆δ)
−1.

By the previous argument in Subsection 5.4, we have

∆i1,j1 ∪orb ∆i2,j2 = 0 if i1 6= i2.

By the formula∫
P1
A,Λ

∆i1,j1 ∪orb ∆i1,j′1
∪orb ∆i1,j′′1

=
1

|Z/ai1Z|

∫
pt

ev∗1(∆i1,j1) ∪ ev∗2(∆i1,j′1
) ∪ ev∗3(∆i1,j′′1

)

=

 1
ai1

if j1 + j′1 + j′′1 = ai1 ,

0 otherwise,



36 YUUKI SHIRAISHI

we have

∆i1,j1 ∪orb ∆i1,j′1
= ∆i1,j1+j′1

if j1 + j′1 ≤ ai1 − 1,

and hence

∆p
i1,1

:= ∆i1,1 ∪orb · · · ∪orb ∆i1,1︸ ︷︷ ︸
ai1 times

=
1

ai1
∆µA .

Therefore we have Lemma 5.6. �

Lemma∗ 5.7. The term (
r∏
i=1

ti,1

)
etµA

occurs with the coefficient 1 in the FP1
A,Λ

0 .

Proof. This lemma follows from the fact that the Gromov-Witten invariant counts the

number of orbifold maps from P1
A,Λ to P1

A,Λ of degree 1 fixing r marked (orbifold) points,

which is exactly the identity map. �

6. Vanishing of higher degree correlators

As we see in Subsection 3.2, the coefficients c(ei,1 + ei,ai−1 + e1, 0), c(ei,1 + ei,j−1 +

ei,ai−j, 0), c(
∑r

i=1 ei,1, 1) or c(2ei,1 + 2ei,ai−1, 0) play important roles to reconstruct the

Frobenius potential. Indeed, in the works of Krawitz–Shen ([8]) and Li–Li–Saito–Shen

([9]), the similar type reconstuction theorems were proved and the authors also used

them as the initial data in order to reconstruct the Frobenius potential. The coeffi-

cient c(
∑r

i=1 ei,1, 1) corresponds to a certain degree one r-points correlator in the orbifold

Gromov–Witten theory of P1
A,Λ and hence can be determined easily by considering its

geometric meaning. However, in other theory like the invariant theory of extended cusp-

idal Weyl groups which is expected as a mirror partner of P1
A,Λ ([16]), the representation

theoretic meaning of this coefficient is not known at all and it is hard even to verify

whether this coefficient is non–zero or not. On the other hand, it seems we are able to

check other conditions in Theorem 3.1 one way or another. Therefore it is very interesting

and important to investigate what happens on the Frobenius potential which satisfies the

conditions in Theorem 3.1 except for the condition (vi).

For the Frobeius potential above, we have the following two cases analysis:

c(
r∑
i=1

ei,1, 1) =

(i) a 6= 0,

(ii) 0.
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For the case (i), we can obtain the following Frobenius potential F ′A:

F ′A =
∑
α

c(α, 0)tα +
∑
α

amc(α,m)tαemtµA , (6.1)

where coefficients c(α, 0) and c(α,m) are same ones of the Frobenius potential in Theo-

rem 3.1. This result can be shown easily by checking the each procedure in the proof of

Theorem 3.1 carefully. In particular, the Frobenius potential F ′A can be transformed to

the one in Theorem 3.1 by the (invertible) coordinate change tµA 7→ tµA − log(a).

The second case (ii) is much more serious since the condition (vi) is heavily used for

determining all other coefficients except for c(α, 0) with |α| = 3. Actually, a Frobenius

potential under the case (ii) is no longer determined uniquely even if A is of type ADE. For

this problem, we have to consider another reasonable initial amount, i.e., the coefficient

c(2ei,1 + 2ei,ai−1, 0) which corresponds to a degree zero 4-points correlator in the orbifold

Gromov–Witten theory. By this reason, we shall consider the following two cases:

c(2ei,1 + 2ei,ai−1, 0) =

(i) − 1/4a2
i if ai ≥ 3, −1/96 if ai = 2,

(ii) otherwise.
(6.2)

For the first case (i), we have the following proposition:

Proposition 6.1. Assume that a Frobenius manifold M of rank µA and dimension one

with flat coordinates (t1, t1,1, . . . , ti,j, . . . , tr,ar−1, tµA) satisfies the following conditions:

(i) The unit vector field e and the Euler vector field E are given by

e =
∂

∂t1
, E = t1

∂

∂t1
+

r∑
i=1

ai−1∑
j=1

ai − j
ai

ti,j
∂

∂ti,j
+ χA

∂

∂tµA
.

(ii) The non–degenerate symmetric bilinear form η on TM satisfies

η

(
∂

∂t1
,
∂

∂tµA

)
= η

(
∂

∂tµA
,
∂

∂t1

)
= 1,

η

(
∂

∂ti1,j1
,

∂

∂ti2,j2

)
=

 1
ai1

i1 = i2 and j2 = ai1 − j1,

0 otherwise.

(iii) The Frobenius potential F satisfies EF|t1=0 = 2F|t1=0,

F|t1=0 ∈ C
[
[t1,1, . . . , t1,a1−1, . . . , ti,j, . . . , tr,1, . . . , tr,ar−1, e

tµA ]
]
.

(iv) Assume the condition (iii). we have

F|t1=etµA=0 =
r∑
i=1

G(i), G(i) ∈ C[[ti,1, . . . , ti,ai−1]], i = 1, . . . , r.
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(v) Assume the condition (iii). In the frame ∂
∂t1
, ∂
∂t1,1

, . . . , ∂
∂tr,ar−1

, ∂
∂tµA

of TM , the

product ◦ can be extended to the limit t1 = t1,1 = · · · = tr,ar−1 = etµA = 0. The

C-algebra obtained in this limit is isomorphic to

C[x1, x2, . . . , xr]
/(
xixj, aix

ai
i − ajx

aj
j

)
1≤i 6=j≤r ,

where ∂/∂ti,j are mapped to xji for i = 1, . . . , r, j = 1, . . . , ai − 1 and ∂/∂tµA are

mapped to a1x
a1
1 .

(vi) The term (
r∏
i=1

ti,1

)
etµA

occurs with the coefficient 0 in F .

(vii) The term t2i,1t
2
i,ai−1 in F occurs with the coefficient−1/96 if ai = 2,

−1/4a2
i if ai ≥ 3.

Then any term tαemtµA for m ≥ 1 occurs with the coefficient 0 in F .

Proof. By the same argument in Lemma 3.5 and Lemma 4.12, we have c(γ, 1) = 0 for

|γ| ≤ r. We shall show Proposition 6.1 by the induction on the total oreder defined in

Subsection 3.2.

Lemma 6.2. Assume that c(α, n) = 0 for (|α|, n) ≺ (0,m). Then we have c(0,m) = 0

Proof. We shall calculate the coefficient of the term emtµA inWDV V ((i, 1), (i, ai−1), µA, µA).

Then we have

c(ei,1 + ei,ai−1 + e1, 0) · 1 ·m3 · c(0,m) = 0

since c(α, n) = 0 for (|α|, n) ≺ (0,m). Therefore we have c(0,m) = 0. �

Next, we shall split the second step of the induction into following three cases.

Lemma 6.3 (Case 1). Assume that c(α, n) = 0 for (|α|, n) ≺ (k+1,m). If a non–negative

element γ ∈ ZµA−2 satisfies that |γ| = k + 1 and γ − ei,j ≥ 0 for some j such that j ≥ 2,

then we have c(γ,m) = 0.

Proof. We shall calculate the coefficient of the term tγ−ei,jemtµA in the WDVV equation

WDV V ((i, 1), (i, j − 1), µA, µA). Then we have

s1,j−1,ai−j · c(ei,1 + ei,j−1 + ei,ai−j, 0) · ai ·m2 · γi,j · c(γ,m) = 0

since we have c(α, n) = 0 for (|α|, n) ≺ (k + 1,m). Hence we have c(γ,m) = 0. �
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Lemma 6.4 (Case 2). Assume that c(α, n) = 0 for (|α|, n) ≺ (k+1,m). If a non–negative

element γ ∈ ZµA−2 satisfies that |γ| = k + 1 and γ =
∑r

k=1 γk,1ek,1 for some γ1,1, . . . , γr,1

such that
∏r

k=1 γk,1 6= 0, then we have c(γ,m) = 0.

Proof. We shall calculate the coefficient of the term (
∏r

k=1 t
γk,1
k,1 )emtµA in the WDVV equa-

tion WDV V ((i, 1), (i, ai − 1), µA, µA). Then we have, if ai ≥ 3,

{c(ei,1 + ei,ai−1 + e1, 0) ·m3 + 4 · c(2ei,1 + 2ei,ai−1, 0) · ai ·m2 · γi,1} · c(γ,m) = 0

and, if ai = 2,

{2c(2ei,1 + e1, 0) ·m3 + 24 · c(4ei,1, 0) · 2 ·m2 · γi,1} · c(γ,m) = 0

since we have c(α, n) = 0 for (α, n) ≺ (k+ 1,m). If γi,1 6= m for some i, this lemma holds.

If γi,1 = m for all i, the degree deg((
∏r

k=1 t
γk,1
k,1 )emtµA ) is greater than 2 except for the case

m = 1 and hence this lemma also holds for this case. �

Lemma 6.5 (Case 3). Assume that c(α, n) = 0 for (|α|, n) ≺ (k+1,m). If a non–negative

element γ ∈ ZµA−2 satisfies that |γ| = k + 1 and γ =
∑r

k=1 γk,1ek,1 for some γ1,1, . . . , γr,1

such that
∏r

k=1 γk,1 = 0, then we have c(γ,m) = 0 with (|α|, n) ≺ (k + 1,m).

Proof. Assume that γi,1 = 0. We shall calculate the coefficient of the term (
∏r

k=1 t
γk,1
k,1 )emtµA

in the equation WDV V ((i, 1), (i, ai − 1), µA, µA). Then we have

c(e1 + ei,ai−1 + ei,1, 0) ·m3 · c(γ,m) = 0

since c(α, n) = 0 for (|α|, n) ≺ (k + 1,m). Then we have c(γ,m) = 0 �

We have finished the proof of this proposition. �

Remark 6.6. Proposition 6.1 would have an application to show the uniqueness of the

Frobenius manifold MŴA
constructed from the invariant theory of an extended cuspi-

dal Weyl group in a further joint work [16] and an isomorphism of Frobenius manifolds

between MŴA
and MGW

P1
A,Λ

.

For the case (ii), we have the following proposition:

Proposition 6.7. Assume that χA ≥ 0 and a Frobenius manifold M of rank µA and

dimension one with flat coordinates (t1, t1,1, . . . , ti,j, . . . , tr,ar−1, tµA) satisfies the following

conditions:

(i) The unit vector field e and the Euler vector field E are given by

e =
∂

∂t1
, E = t1

∂

∂t1
+

r∑
i=1

ai−1∑
j=1

ai − j
ai

ti,j
∂

∂ti,j
+ χA

∂

∂tµA
.
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(ii) The non–degenerate symmetric bilinear form η on TM satisfies

η

(
∂

∂t1
,
∂

∂tµA

)
= η

(
∂

∂tµA
,
∂

∂t1

)
= 1,

η

(
∂

∂ti1,j1
,

∂

∂ti2,j2

)
=

 1
ai1

i1 = i2 and j2 = ai1 − j1,

0 otherwise.

(iii) The Frobenius potential F satisfies EF|t1=0 = 2F|t1=0,

F|t1=0 ∈ C
[
[t1,1, . . . , t1,a1−1, . . . , ti,j, . . . , tr,1, . . . , tr,ar−1, e

tµA ]
]
.

(iv) Assume the condition (iii). we have

F|t1=etµA=0 =
r∑
i=1

G(i), G(i) ∈ C[[ti,1, . . . , ti,ai−1]], i = 1, . . . , r.

(v) Assume the condition (iii). In the frame ∂
∂t1
, ∂
∂t1,1

, . . . , ∂
∂tr,ar−1

, ∂
∂tµA

of TM , the

product ◦ can be extended to the limit t1 = t1,1 = · · · = tr,ar−1 = etµA = 0. The

C-algebra obtained in this limit is isomorphic to

C[x1, x2, . . . , xr]
/(
xixj, aix

ai
i − ajx

aj
j

)
1≤i 6=j≤r ,

where ∂/∂ti,j are mapped to xji for i = 1, . . . , r, j = 1, . . . , ai − 1 and ∂/∂tµA are

mapped to a1x
a1
1 .

(vi) The term (
r∏
i=1

ti,1

)
etµA

occurs with the coefficient 0 in F .

Then any term tαemtµA for m ≥ 1 occurs with the coefficient 0 in F .

Proof. Put γ :=
∑r

k=1 γk,1ek,1 for some γ1,1, . . . , γr,1 such that
∏r

k=1 γk,1 6= 0. If m ≥ 2,

then we have c(γ,m) = 0 since we have χA ≥ 0 and the following inequation:

deg(tγemtµA ) =
r∑
i=1

γi,1
ai − 1

ai
+mχA >

r∑
i=1

ai − 1

ai
+ χA = 2. (6.3)

Same arguments in Lemma 6.2, Lemma 6.3 and Lemma 6.5 shows this proposition. �

Same statement as in Proposition 6.7 would hold for χA < 0 by the exactly the

same arguments if there were not positive integers m and γi,1 (i = 1, . . . , r) satisfying the

following equations:

c(ei,1 + ei,ai−1 + e1, 0) ·m3 + 4 · c(2ei,1 + 2ei,ai−1, 0) · ai ·m2 · γi,1 = 0 if ai ≥ 3, (6.4)

2c(2ei,1 + e1, 0) ·m3 + 24 · c(4ei,1, 0) · 2 ·m2 · γi,1 = 0 if ai = 2, (6.5)
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r∑
i=1

γi,1
ai − 1

ai
+mχA = 2. (6.6)

However, for the cases χA < 0, one can choose 4-points correlators c(2ei,1+2ei,ai−1, 0) such

that there exist positive integers m and γi,1 (i = 1, . . . , r) satisfying the above equations.

By the computer experiment, we conjecture the following:

Conjecture 6.8. There exists a Frobenius manifold M of rank µA and dimension one

with flat coordinates (t1, t1,1, . . . , ti,j, . . . , tr,ar−1, tµA) satisfies the following conditions:

(i) The unit vector field e and the Euler vector field E are given by

e =
∂

∂t1
, E = t1

∂

∂t1
+

r∑
i=1

ai−1∑
j=1

ai − j
ai

ti,j
∂

∂ti,j
+ χA

∂

∂tµA
.

(ii) The non–degenerate symmetric bilinear form η on TM satisfies

η

(
∂

∂t1
,
∂

∂tµA

)
= η

(
∂

∂tµA
,
∂

∂t1

)
= 1,

η

(
∂

∂ti1,j1
,

∂

∂ti2,j2

)
=

 1
ai1

i1 = i2 and j2 = ai1 − j1,

0 otherwise.

(iii) The Frobenius potential F satisfies EF|t1=0 = 2F|t1=0,

F|t1=0 ∈ C
[
[t1,1, . . . , t1,a1−1, . . . , ti,j, . . . , tr,1, . . . , tr,ar−1, e

tµA ]
]
.

(iv) Assume the condition (iii). we have

F|t1=etµA=0 =
r∑
i=1

G(i), G(i) ∈ C[[ti,1, . . . , ti,ai−1]], i = 1, . . . , r.

(v) Assume the condition (iii). In the frame ∂
∂t1
, ∂
∂t1,1

, . . . , ∂
∂tr,ar−1

, ∂
∂tµA

of TM , the

product ◦ can be extended to the limit t1 = t1,1 = · · · = tr,ar−1 = etµA = 0. The

C-algebra obtained in this limit is isomorphic to

C[x1, x2, . . . , xr]
/(
xixj, aix

ai
i − ajx

aj
j

)
1≤i 6=j≤r ,

where ∂/∂ti,j are mapped to xji for i = 1, . . . , r, j = 1, . . . , ai − 1 and ∂/∂tµA are

mapped to a1x
a1
1 .

(vi) The term (
r∏
i=1

ti,1

)
etµA

occurs with the coefficient 0 in F .
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(vii) A term

tγemtµA

occurs a non–zero coefficient in F for some non–negative γ and m ≥ 2.
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