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1. GENERAL INTRODUCTION 

1.1 Intracellular signaling 

The cell activation molecules (ligand) such as hormones bind to the specific 

receptor. The receptors for some ligands are inside the cell, but many ligands receptors 

are located on the surface of the cell. A series of chain reaction occurs to induce 

stimulation into a cell from the receptor as the starting-point. As a result, metabolically 

changes, morphological changes and electrical changes take place in cells.  

The process that the enzymatic reaction products of each stage activate the next 

stage is continually caused, which is referred to as cascade reaction (Figure 1-1). As the 

effect of a first-order reaction is enhanced largely or instantaneously with the several 

steps of enzymatic reaction, this amplification mechanism responses to weak 

environmental change in cells. In the "cascade reaction" of an intracellular signal 

transduction, the protein phosphorylation and G protein have important work in cell. 

 

1.2 Effect of the phosphorylation 

The protein phosphorylation has remarkable influence for target proteins and is one 

type of post-translational modification. Recent phosphoproteomic studies have 

suggested that the majority of proteins in a mammalian cell are phosphorylated (1). 

Phosphorylation induces an allosteric conformational change and can activate or inhibit 

enzyme activity. Additionally, phosphorylation lead to recognition site for other protein 

molecules. The protein phosphorylation reaction is caused instantly and reversibly and 

is one of the basic processes of the intracellular signal transduction as a main manner of 

active control. 
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In prokaryotic phosphorylation occurs on the serine, threonine and tyrosine 

residues and in prokaryotes histidine and aspartic acid are phosphorylated. The 

phosphoryl group (pKa of ~6.7) is dianionic at physiological pH (Figure 1-2). 

Phosphorylated residues can make the hydrogen-bond network and the salt bridge with 

basic amino acid residues for the property of a double negative charge and the capacity 

of the phosphoryl oxygen (Figure 1-3). Thereby, adding or removing a dianionic 

phosphate group in a protein induce the change of a local physicochemical properties, 

stability, kinetics and dynamics (2). 

Two types predominate in interaction of the phosphate group. First, the interaction 

of the phosphate group with main-chain nitrogens often observed at the start of an 

a-helix. The phosphate group utilizes the positive charge of the helix dipole for charge 

neutralization (3). Secondly, at the tight binding sites using to stabilize a conformational 

site, phosphoryl group can form hydrogen bond and salt bridge with side-chain of 

arginine or lysine (Figure 1-4). Arginine usually forms stronger salt bridges with 

phosphorylated side chains than lysine. On one hand, phosphoserine (pSer) 

hydrogen-bond acceptor makes more stable interaction compared to phosphoasparyate 

(pAsp) acceptor (4).  

As well as the protein phosphorylation, it is the important that proteins bind to 

guanosine triphosphate (GTP) and guanosine diphosphate (GDP). GTP and GDP are 

nucleotides and they exist in intracellular. The GDP is dianionic and GTP is trianionic.  

G proteins bind to GTP and GDP and regulate the intracellular signal transduction by 

inducing conformational change of G proteins (Figure 1-5).  

 

1.3 Nucleotide triphosphate binding and hydrolyzing proteins 
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Nucleotide triphosphate (NTP) binding and hydrolyzing proteins are important in 

almost all facets of life. The mononucleotide-binding fold (P-loop NTPase fold) is the 

most prevalent domain of the several distinct nucleotide-binding protein folds. The 

P-loop NTPase proteins are α-β proteins that contain regularly recurring α-β units with 

the five β-strands (β1–β5). A central core is formed by the β-strands arranged in the 

order β(5-1-4-3-2) or β(5-1-3-4-2) and these β-strands were sandwiched by α-helices on 

both sides (5, 6). The P-loop NTPase fold as the most common reaction has the 

hydrolysis activity of the β-γ phosphate bond of a bound NTP.  

The energy of NTP hydrolysis is utilized to induce conformational changes of 

P-loop NTPase proteins so that P-loop NTPase proteins play an important role in a 

variety of biochemical function.  

 

1.4 Trimeric G protein 

There are two classes of G proteins. The first is known as trimeric G proteins while 

the second is known as small GTPases. The trimeric G proteins play an important role 

on signal transduction in cells. The trimeric G proteins transmit signals from many 

hormones, neurotransmitters, smell, taste, light and extracellular other signaling factors 

to the intracellular. The trimeric G protein is comprised of Gα (39-52 kDa), Gβ (35-39 

kDa), Gγ (6-8 kDa) and binds to guanosine triphosphate (GTP) or guanosine 

diphosphate (GDP) (7). In the steady state, GDP binds to the Gα and Gα exists as 

heterotrimer of the inactivated form with Gβ and Gγ (Figure 1-5 A). When the 

extracellular ligands bind to a domain of the G protein-coupled receptor (GPCR) 

located outside the cell, an intracellular GPCR domain is caused the structural change 

and GDP is dissociated from Gα. Then GTP binds to the Gα, and the trimeric G protein 
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dissociates in Gα and Gβγ subunits (Figure 1-5 B). GTP-bound form Gα and Gβγ 

subunits each transmit signals to the intercellular. Thereafter, GTP which bound to the 

Ga is hydrolyzed by the GTPase activity of Ga and Ga is returned to GDP bound form. 

GDP bound form Gα tightly associats with Gβγ subunits. Gα and Gβγ are returned to 

the trimeric G protein of the inactivated form.  

 

1.5 Small GTPase (Small G protein) 

Small GTPases (Small G proteins) are homologous to the Gα of trimeric G protein 

and also bind to GTP or GDP. They are small proteins (20-kDa to 25-kDa) and exist as 

monomers. Small GTPases play an important role in regulating the variety of 

biochemical function. Small GTPases exist in eukaryotes from yeast to human and 

constitute a super-family with at least five families (Ras, Rho, Rab, Sar / Arf and Ran) 

including more than 100 members (Figure 1-6) (8).  

Ras protein plays an important role on signal transduction in cells. GDP-bound Ras 

protein exists as inactive states. When the extracellular ligands bind to a receptor 

located on the cell membrane, Ras protein is converted from GDP bound form to GTP 

bound form and becomes active. Activated Ras has emerged as a key of the 

phosphorylation reaction of proteins and activates the protein kinase activity (Figure 

1-7) (9). The Rho family includes Cdc42, Rac and Rho proteins and regulates many 

fundamental cellular processes, including cell division, polarization, morphogenesis, 

and directionality (10).  

Plants have only four of five families of small GTPase with lack of the Ras family. 

Plants have a plant-specific group of Rho family known as Rops (Rho-like GTPases 

from plants) (11, 12), which are sometimes called Racs in order to the high sequence 
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similarity with human Rac proteins (13). In plants, the Rops have attracted recent 

interest due to their function as molecular switches in the regulation of various cellular 

responses including cytoskeletal organization and dynamics, pollen tube growth and 

development, and vesicle traffic (Figure 1-8) (14). In recent years, evidence is 

accumulating that Rops/Racs also play an important role in the regulation of disease 

resistance. 

 

1.6 The architecture of the G domain 

The GTP binding and hydrolysis takes place in the highly conserved G domain 

common to all small GTPases. The conserved functional G domain has a universal 

structure and a universal switch mechanism. The human Ras (H-Ras) has done most of 

the biochemical and structural studies (15, 16). H-Ras consists of 189 amino acid 

residues and the G domain of H-Ras consists of 166 amino acid residues. The G domain 

of H-Ras folds into a central, curved six-stranded mixed ß-sheet, surrounded on both 

sides by five a-helices (Figure 1-9 A) (17, 18). This fold is conserved in GTP binding 

domains of bacterial elongation factor Tu (EF-Tu) and Gα subunit of the heterotrimeric 

G-proteins.  

For nucleotide binding and GTP hydrolysis, the G proteins contain five 

polypeptide loops (G1-G5) and these sequence motifs are highly conserved (Figure 

1-9B and Figure 1-10) (19). The G1 between the strand ß1 and the helices α1, also 

called phosphate binding loop (p-loop) is responsible for the binding of the phosphate 

groups. The G2 is located at switch I and contains a conserved threonine residue 

responsible for γ-phosphate and Mg2+ ion binding. The G3 provides residues for Mg2+ 

ion and phosphate groups binding and is contained just before the Switch II. The G4 
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contains the consensus sequence NKxD. The asparagine residue and the lysine residue 

have hydrogen bonds to guanine. The G5, although important for binding to the guanine 

base and often with the sequence motif SAK, is only weakly conserved. Especially, the 

loop region containing G2 between the helices α1 helix and the strand ß2 and the other 

loop region containing helices α2 between the strand ß3 and the strand ß4 are important 

for the conformational switch and are called switch I and switch II, respectively (20).  

 

1.7 The mechanism of G domain switch and GTPase-catalyzed GTP hydrolysis 

The small GTPases act as regulatory switches which cycle between ON and OFF 

states (Figure 1-11) (21). The switching between their ON and OFF states is determined 

by nucleotide binding and hydrolysis. The small GTPase is inactive when bound to 

GDP (Figure 1-11 a), but when the GDP is exchanged for GTP, the small GTPase 

switches to the ON-state until the endogenous GTPase activity hydrolyses GTP to GDP.  

Although the mechanism of GTPase-catalyzed GTP hydrolysis is still 

controversially discussed, it is generally accepted that a water molecule acts as 

nucleophile and attacks the γ-phosphate of GTP in-line (22-24). The typical 

nucleophilic substitution reaction is caused by reaction mechanism of either SN1 or 

SN2. In small GTPase, it is thought that the hydrolysis of the GTP is caused by SN2 

mechanism (Figure 1-12) (22, 23). For nucleophilic attack, the hydroxyl ion 

(nucleophilic reagent) is essential in GTPase-catalyzed GTP hydrolysis. The hydroxyl 

ion approaches phosphate group from backside of the GDP (leaving group), and the 

transition state is formed. Thereafter, GDP dissociates from phosphate group and GTP 

hydrolysis is finished.  

It differs with enzymes how the hydroxyl ion is produced, and two mechanisms are 
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proposed. In first opinion, it is thought the hydroxyl ion is generated when a proton is 

pulled off from water molecules by the specific amino acid (Asp or Glu) (Figure 1-13). 

In this opinion, it is thought a specific amino acid (Asp or Glu) acts as the base. 

Previous studies have shown that one water molecule in the crystal structures of F1 of 

ATPase is close enough to the phosphate to perform the nucleophilic attack (25-27). 

This water molecule forms hydrogen bond with Glu188 on crystal structure (Figure 

1-14). It is thought that Glu188 of F1 pulls off proton from water molecule and the 

produced hydroxyl ion attacks the γ-phosphate of ATP (28). In second opinion, 

γ-phosphate acid acts as a catalytic base (Figure 1-15). There are no glutamic acid 

residue and the aspartate residue which act as a catalytic base on the catalytic part in 

Ras and the Rho family of the small GTPase. Therefore, the oxygen of γ-phosphoric 

acid of the GTP attracts the proton of water molecule (22, 29). The water molecule 

which is deprived of a proton becomes the hydroxyl ion, and attacks the γ-phosphate, 

the transition state is formed (Figure 1-15). Thereafter, GDP dissociates from opposite 

sides of the hydroxyl ion, and GDP and phosphate group are produced, and GTP 

hydrolysis is finished (Figure 1-15). 

 

1.8 Regulator of small GTPases  

The release of GDP is intrinsically very slow, therefore small GTPases are 

activated by Guanine Nucleotide Exchange Factors (GEFs). GEFs which increase the 

dissociation rate of nucleotides accelerates the exchange of the bound GDP (Figure 1-11 

b). In animal, most of GEFs contain Diffuse B-cell lymphoma-homology (DH) domain 

and Pleckstrin-homology (PH) domain, which referred to as DH-PH type GEF (30). 

However, plants lack DH-PH type GEFs. Therefore, different type GEFs have been 
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considered to regulate the activity of Rops. 

The intrinsic rate of GTP hydrolysis is also intrinsically very slow, therefore small 

GTPases require the action of GTPase activating proteins (GAPs) to switch off rapidly 

when cellular conditions impose. GAPs accelerate the slow intrinsic rate of GTP 

hydrolysis (31).  

The catalytic mechanism by GAP were first studied with RasGAP domain of 

p120GAP in complex with H-Ras-GDP- AlF4 (32) and the RhoGAP domain of 

p50-RhoGAP in complex with RhoA-GDP-AlF4 (33). They revealed each GAP of 

H-Ras and RhoA interacts with switch I and switch II in these structures.  

The rate acceleration of GTP hydrolysis should be regulated not only by 

stabilization of the structure of switch I, switch II but by insertion of arginine residue of 

GAP (also called Arg finger) into the active site of GTPase (Arg finger model) (Figure 

1-16) (34). This mechanism of GTP hydrolysis by arginine finger of GAP are as 

follows : (i) a positively charged arginine residue of GAP at the binding interface inserts 

into the active site of GTPase and neutralizes the developing negative charge in the 

transition state of GTP hydrolysis. (ii) Gln residues of GTPase, also called the catalytic 

glutamine (Q61 of Ras) forms hydrogen bond with the arginine finger of the GAP. This 

hydrogen bond stabilizes the catalytic glutamine. This Gln is thought to be important for 

GTP hydrolysis by positioning a water molecule which in turn acts as nucleophile and 

attacks the γ-phosphate (35). Thus, small GTPase inactivation is accelerated by GAPs. 

 

1.9 Plant guanine exchange factors for ROP GTPases 

Recently, a new type GEF has been identified in Arabidopsis (36). The GEF 

contains highly conserved region in the center, referred to as PRONE domain 
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(plant-specific Rop nucleotide exchanger). Rice contains 11 members of PRONE type 

GEF whereas 14 members are found in Arabidopsis (36, 37). It is known that PRONE 

type GEFs regulate Rop-dependent the morphogenesis of plant (38-41). This PRONE 

domain is plants specific, is not found in animals and yeasts. 

 

1.10 Plant GTPase activating protein for Rop 

RopGAPs are GTPase-activating proteins (GAPs) for plant Rho proteins (42). In 

Arabidopsis, 9 RopGAPs exist, which show about 27 % sequence homology to 

RhoGAPs in yeasts and animals (42). AtRop1-6 has Cdc42/Rac interactive binding 

domain (CRIB domain) in N-terminal and GAP domain in C-terminal (Figure 1-17) 

(42). Although CRIB domain is not found in RhoGAPs of yeasts or animals, GAP 

domain itself is very similar to RhoGAP of yeasts and animals. Because the catalytic 

arginine residue (the Arg finger) is conserved between plants and animals, it is thought 

that the RopGAP domain is functionally similar to RhoGAPs from yeast and animals. 

 

1.11 Regulation of NADPH oxidase by small GTPase 

NADPH oxidases (NOXes) plays a key role in the production of Reactive oxygen 

specie (ROS). Recent numerous studies have shown that ROS play an important role in 

many physiological functions including host defense, hormone biosynthesis and 

cellular signaling as a messenger (43- 45). In animals, gp91phox as known NADPH 

oxidase forms a complex with H-Rac1/2 and H-Rac1/2 play an essential role in 

activation of gp91phox (Figure 1-18 A) (46-49).  

In plants, plant NADPH oxidase (Rboh, for respiratory burst oxidase homolog) has 
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been identified as the first homolog of gp91phox from many plant species including rice, 

Arabidopsis, tobacco, and potato (46, 50-54). All plant Rboh proteins have a cytosolic 

N-terminal region with two EF-hands that bind Ca2+ (46, 55). Rop is known to interact 

with N-terminal region of Rboh localized on the plasma membrane and Rop binding to 

Rboh is required for activation of ROS production (Figure 1-18 B) (56).  

 

1.12 In Plant, defense response system 

Plants possess a highly efficient two-line in innate immune system that renders 

them resistant against most microbial pathogens (57-59). The first line of plant 

immunity is triggered by recognition of conserved microbial epitopes knows as 

pathogen-associated molecular patterns (PAMPs) (Figure 1-19 A) (60). PAMPs are 

recognized by pattern recognition receptors (PRRs) on their plasma membranes and this 

detection leads to PAMP-triggered immunity (PTI). PTI is the primary immune 

response, which effectively prevents colonization of plant tissues by non-pathogens (57). 

The second line of plant immunity is triggered by recognition of pathogen effectors and 

produced effector-triggered immunity (ETI) (Figure 1-19 B) (61). In ETI, plants 

recognize the pathogen effectors by resistance protein (R protein) and induce the 

programmed cell death (PCD) known as the hypersensitive response (HR) (57, 62). HR 

leads to rapid local cell death at the site in the local region surrounding an infection. In 

HR, plants produce superoxide anions and hydrogen peroxide known as ROS (43). The 

generation of ROS is a ubiquitous early part of the resistance mechanisms of plant cells 

(63). The increment in the ROS levels leads to inhibit the growth and spread of 
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pathogens to other parts of the plant. Therefore, plants resist pathogen invasion through 

a two innate immune system: PTI and ETI.  

 

1.13 The roles of OsRac1 in rice innate immunity 

Rice small GTPase OsRac1 is composed of 214 amino acids and has about masses 

of 25 kDa. OsRac1 is known that it plays important role in rice innate immunity (64-70). 

Transgenic rice expressing constitutively active OsRac1 (CA-OsRac1, OsRac1-G19V), 

but not transgenic rice expressing the dominant negative OsRac1 (DN-OsRac1, 

OsRac1-T24N), caused HR-like responses, enhanced resistance against blast fungus and 

bacterial blight (65). Further experiments demonstrate that transgenic rice expressing 

CA-OsRac1induced ROS production by fungal sphingolipid elicitor (SE) treatment as 

well. In contrast, transgenic rice expressing DN-OsRac1 blocked ROS production (71). 

Recent studies also have shown that CA-OsRac1, but not DN-Rac1, interacted with the 

N-terminus of rice NADPH oxidase OsRbohB (56, 72). These results indicate that 

OsRac1 are required for activation of ROS production in plant innate immunity and 

direct Rac–Rboh interaction may activate NADPH oxidase activity in plants.  

 

1.14 Aim to this study 

OsRac1 is the Rop family of plant small GTPases and has emerged as a key 

activator of downstream defense processes. Numerous studies suggest OsRac1 plays an 

important role as a molecular switch in plant innate immunity. However, the molecular 

mechanisms by which OsRac1 is activated in innate immunity remain largely unknown. 

Therefore, the aim of the present doctoral thesis is to investigate the basic biochemical 
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and structural features of OsRac1. Based on these findings, the work should create the 

molecular basis for further in vivo and in vitro studies of OsRac1 as a first step for 

better understanding the molecular mechanisms of defense in plants. 
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 Figure 1-1. Signal transduction pathways. 
 

 

 

 

 

 

 

 
 

Figure 1-2. Phosphoryl group. P, O, H indicates phosphorus, nitrogen, oxygen atoms, 

respectively. 
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Figure 1-3. Conformation changes caused by phosphorylation. P indicates the 

phosphorylation. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-4. Conformation changes caused by GDP/GTP exchange. 
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Figure 1-5. Schematic illustrations of a G protein-coupled receptor (GPCR). A 

trimeric GTP-binding protein (G protein) consisting of three subunits called α, β and γ 

is associated with GPCR (A) When no ligand is present, the α subunit of G protein 

binds to GDP and the trimeric G protein is inactive. (B) When ligands interact with the 

receptor of GPCR, a conformational change of the GPCR occurs. This leads the α 

subunit to exchange its bound GDP to GTP. This causes the βγ subunit to dissociate and 

activates the α subunit and the βγ subunit. Figure is adapted from (73). 
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Figure 1-6. Positioning of the paraseptin clade in the P-loop NTPase superclass. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1-7. Activated phosphorylation cascade by Ras. P shows the phosphorylation. 

Activation of proteins are represented by arcs with spokes.  

 
 

 

 

 



 26 

  

 
Figure 1-8. The role of small GTPases in plant. 
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Figure 1-9. Schematic representations of the G domain fold. (A) Cartoon 

representation of the H-ras p21 (PDB code: 5P21). The nucleotide analog is shown in 

ball-and-stick representation and colored according to atom types. Carbon atoms are 

colored white, nitrogen blue, oxygen red and phosphorous orange. The magnesium ion 

is shown as orange sphere. (B) Topology of the G domain fold. Secondary structure 

elements are shown and colored as in A. conserved motifs and their amino acid residues 

are indicated.  
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Figure 1-10. Detailed view of the H-Ras p21 nucleotide-binding site (see also Figure 

1-3). Loops involved in GMP-PNP-binding are shown as green tubes, and selected 

amino acid residues are represented as sticks with carbon atoms colored green, nitrogen 

blue and oxygen red. The nucleotide analog is shown as in Figure 1-3. 

Protein-GMPPNP interactions are indicated as dotted. 
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Figure 1-11. Schematic view of the G domain switch mechanism of small GTPases. 

The GDP-bound OFF-state is indicated as black ellipse, the GTP-bound ON-state as red 

rectangle. The events a-d are described in the text. GEF-guanine nucleotide exchange 

factor, GAP-GTPase-activating protein. 
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Figure 1-12. Mechanistic principle of phosphoryl transfer in GTPases. (A) Ground 

state of the reaction. (B) Transition state of the reaction, where bond lengths for a fully 

dissociative or fully associative state are given (see text). (C) Reaction products. 

 

 

 

Figure 1-13. The Glu and Asp of amino acid acts as a catalytic base 
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Figure 1-14. Catalytic Nucleotide Binding Site of F1. β-Glu188 makes H-bonds to a 

water molecule and has it ready to attack theMg2+ γ-phosphate of ATP. α-Arg 373 helps 

stabilize the negative charge. The nucleotide analog is shown in stick representation and 

colored according to atom types. The magnesium ion is shown as grey sphere. Water 

molecule is shown as red sphere. 
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Figure 1-15. The γ-phosphate acid of GTP acts as a catalytic base. 
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Figure 1-16. The mechanism of GTPase-activation for Ras. Only the P-loop, switch 

I and switch II of the GTPase is shown in cartoon, as well as the GAP loops which 

provide the arginine fingers. The remainder of the proteins is indicated schematically. 

Ras is colored cyan, RasGAP red. Structure has been solved in the presence of GDP, 

magnesium and aluminum fluoride, which is a mimic of the transition state during GTP 

hydrolysis (indicated as AlF3). The catalytic water is indicated as W. The arginine 

fingers and catalytic glutamines are indicated as Arg and Gln, respectively. Figure is 

adapted from (21).
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Figure 1-17. Domain architecture of RopGAP1 containing the CRIB domain 

(yellow) and GAP domain (orange). 
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Figure 1-18. Small GTPases control NADPH oxidase. (A) NADPH oxidase activity 

requires p22 phox, p47 phox and the small GTPase Rac. Activation of the enzyme occurs 

after translocation of HsRac and p47phox to the membrane-bound the gp91phox. (B) 

NADPH oxidase activity requires the small GTPase OsRac1. Activation of the enzyme 

occurs after interaction of OsRac1 with N-terminal of OsRbohB. 
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Figure 1-19. (A) On pathogen attack, pathogen-associated molecular patterns (PAMPs) 

are recognized by pattern recognition receptors (PRRs) on their plasma membranes and 

this detection leads to PAMP-triggered immunity (PTI). (B) When Resistance (R) 

proteins recognize specific effectors in intracellular, a secondary immune response 

called effector-triggered immunity (ETI) is induced in plants. Figure is adapted from 

(74).
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CHAPTER 2 
Purification, crystallization and preliminary X-ray 

crystallographic analysis of a rice Rac/Rop GTPase, OsRac1 
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2.1 Introduction 
The Ras superfamily of small GTPases (20–30 kDa) comprises five functional 

families of GTPases referred to as Ras, Ran, Rab, Arf and Rho/Rac. The 

interconversion between GDP-bound (inactive) and GTP-bound (active) forms allows 

Ras superfamily members to regulate a number of cellular processes by means of a 

molecular switch mechanism for extracellular signals in eukaryotes. Although plants 

lack Ras family and typical animal Rho family members, they contain the Rho-related 

Rac/Rop GTPases (1, 2). Like other small GTPases, Rac/Rop family members function 

as molecular switches by interconversion between inactive GDP-bound and active 

GTP-bound forms in cells, and are an important regulator of signal transduction (1, 3, 

4). 

In rice, OsRac1 (Rop of Oryza sativa) initiates defence responses through 

activation of the NADPH-mediated production of reactive oxygen species (ROS) by 

direct binding to the plant NADPH oxidase OsRbohB (Rboh; respiratory burst oxidase 

homologue; 5, 6, 7). OsRac1-induced immune responses result in cell death as well as 

disease resistance against riceblast fungus, rice bacterial blight and Tobacco mosaic 

virus (5, 8, 9). Moreover, the constitutively active form of OsRac1 interacts strongly 

with the nucleotide-binding (NB) domain of the rice intracellular immune receptor Pit, 

and OsRac1 regulates downstream of Pit in the signaling pathways (10). Although it is 

known that OsRac1 plays important roles as a molecular switch in the innate immunity 

of rice, details concerning the molecular-switch mechanism involved remain largely 

unknown. 

Here, the purification, crystallization and preliminary crystallographic study of 

activated OsRac1 are reported. A specific mutation (Gln68 to Leu) of the protein was 
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employed and this mutant was co-crystallized with the GTP analogue 

Guanosine-5’-[β,γ-imido]triphosphate (GMPPNP) in order to maintain OsRac1 in the 

active form. 
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2.2 Materials and Methods 

2.2.1 Protein expression  

The O. sativa Rac1 gene (OsRac1; residues 8–183) was cloned into the pGEX6P-3 

vector (GE Health-care) using BamHI and XhoI restriction-enzyme sites. Point 

mutations (C32S, G19Vand Q68L) were performed using the QuikChange site-directed 

mutagenesis kit (Stratagene). The nonconserved surface cysteine residue (Cys32) was 

substituted to serine to increase the protein stability. The OsRac1(8–183) C32S/Q68L 

(referred to as OsRac1-Q68L) or C32S/G19V (referred to as OsRac1-G19V) proteins 

were expressed in Escherichia coli Rosetta (DE3) cells (Novagen) using M9 minimal 

medium and were induced with 1 mM isopropyl -d-1-thiogalactopyranoside (IPTG) at 

an optical density (OD600) of 0.5. Following incubation at 288 K for 12 h, the cells 

were harvested by centrifugation at 4000g for 20 min at 277 K. 

 

2.2.2 Purification 

The cells were suspended in lysis buffer (50 mM Tris–HCl pH 7.5, 400 mM NaCl, 

5 mM MgCl2, 2mM DTT) and lysed by sonication on ice. The supernatant was 

collected by ultracentrifugation (110 000g for 30 min at 277 K) and then applied onto a 

Glutathione Sepharose 4B column (GE Healthcare). The column was washed with lysis 

buffer and the glutathione S-transferase tag was removed by on-column digestion at 277 

K overnight with HRV3C protease. The cleaved protein was eluted and purified by 

gel-filtration chromatography using a HiLoad 26/600 Superdex 75 column (GE 

Healthcare) pre-equilibrated with buffer A (50 mM Tris–HCl pH 7.5, 150 mM NaCl, 10 

mM EDTA, 2 mM DTT). Under denaturing and reducing conditions, the SDS–PAGE 

showed a single band at about 20 kDa for OsRac1-Q68L. 
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2.2.3 Crystalization  

For nucleotide exchange, purified OsRac1 (1–2 mg ml-1) was incubated with a 

25-fold excess of GMPPNP (Sigma) in buffer A for 12 h at 277 K. Following the 

addition of 10 mM MgCl2, excess GMPPNP was removed by passage through a HiLoad 

26/600 Superdex 75 column (GE Healthcare) using buffer B (10 mM Tris– HCl pH 7.5, 

50 mM NaCl, 5 mM MgCl2, 2mM DTT). The protein was then concentrated to 4 mg 

ml-1 by ultrafiltration (10 kDa molecular-weight cutoff; Amicon Ultra, Millipore) in 

buffer B. The homogeneity of the purified protein was confirmed by AutoFlex 

MALDI–TOF MS (Bruker Daltonics) or SDS–PAGE using buffer consisting of 40 mM 

Tris–HCl pH 6.8, 0.4% SDS, 0.4% -mercaptoethanol, 0.2% bromophenol blue, 20% 

glycerol, 9 M urea, 50 mM DTT, 10 mM EDTA. 

Initial crystallization screening was carried out at 277 K by the sitting-drop 

vapour-diffusion method in a 96-well crystallization plate (Hampton) using commercial 

screening kits including Crystal Screen, Crystal Screen 2, PEG/Ion, Index, Grid Screen 

PEG 6000, Grid Screen Ammonium Sulfate (Hampton Research) and The JCSG Core 

Suites (Qiagen). Crystals of OsRac1-Q68L in complex with GMPPNP were grown at 

293 K by the sitting-drop vapour-diffusion method by mixing 0.7 ml of a 4mgml-1 

protein solution in buffer B with 0.7 ml reservoir solution consisting of 100 mM MES 

buffer pH 6.0, 10–30% PEG 6000. 

 

2.2.4 Data collection and processing 

For the X-ray diffraction experiments, crystals were flash-cooled in a 100 K dry 

nitrogen stream using reservoir solution supplemented with 25%(v/v) glycerol as a 
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cryoprotectant. Diffraction data were collected from native crystals of OsRac1 using a 

Rayonix MX225HE CCD detector installed on the BL44 beam-line at SPring-8, Harima, 

Japan. The oscillation width was 1.5° per image and 160 images were collected. All 

data were processed and scaled using the HKL-2000 program suite (11). Data-collection 

and scaling statistics are given in Table 2-1. 
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2.3 Results and discussion 

2.3.1 Preparation 

In order to characterize the structure of OsRac1 in the GTP-bound active state, we 

introduced a specific mutation (Gln68 to Leu) as reported for the human small GTPase 

RhoA (12). In the RhoA protein, the single mutation Q63L (Q68 in OsRac1) results in a 

marked decrease in GTP hydrolysis activity, thereby maintaining the protein in a 

constitutively active form (12). The OsRac1-Q68L protein was prepared from bacterial 

cultures and purified chromatographically (Figure 2-1A). The nucleotide bound to the 

purified protein was exchanged for the nonhydrolyzable GTP analogue GMPPNP. In 

the gel-filtration analysis, OsRac1-Q68L containing GMPPNP eluted at a similar 

volume as myoglobin (~17 kDa; Figure 2-1b, marked D), suggesting that OsRac1-Q68L 

is a monomer in solution. 

 OsRac1-G19V and wild-type OsRac1 proteins were also prepared to compare 

these with OsRac1-Q68L. The G19V (Gly19 to Val) mutation was introduced into 

OsRac1 since it has been shown that a G14V (Gly19 in OsRac1) mutation in RhoA 

results in a marked decrease in GTP hydrolysis activity (12), thereby maintaining the 

protein in a constitutively active form in rice (5). Although both OsRac1-G19V and 

wild-type OsRac1 proteins were successfully purified and converted to 

GMPPNP-bound forms, crystals of these proteins have yet to be obtained. 

 
2.3.2 Data collection and phase determination  

The asymmetric unit of the crystal (Figure 2-2) contained one OsRac1 molecule, 

corresponding to a Matthews coefficient VM of 1.75 Å3 Da-1 (13). Since OsRac1 shows 

76% sequence identity to Arabidopsis thaliana Rac7 (AtRac7), the structure of 
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AtRac7-GDP (PDB entry 2j0v; 14) is considered to be a suitable search model for use 

in the molecular-replacement approach. Our study should be helpful in obtaining the 

structure of the active form of OsRac1, thereby contributing towards efforts to delineate 

the mechanism of immunity responses facilitated by OsRac1 activation. 
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Table 2-1. Data-collection statistics. 

----------------------------------------------------------------------------------------------- 

Wavelength (Å)    0.9000 

Space group    P212121 

Unit-cell parameters a, b, c (Å)   36.8, 59.1, 64.4 

Resolution range (Å)    50.0 - 1.9 (1.97-1.90) 

No. of observed reflections   93,928 

No. of unique reflections   11,521 

Completeness (%)    99.8 (100.0) 

Redundancy    8.2 (8.3) 

I /σ (I)           19.7 (7.7) 

Rmerge 
a     0.095 (0.284) 

------------------------------------------------------------------------------------------------ 

Values in parentheses refer to data in the highest resolution shell in each data set.  

a Rmerge = Σhkl Σi |Ii (hkl) - <Ii (hkl)>| /Σhkl Σi Ii (hkl), where Ii (hkl) is the observed intensity 

and <Ii (hkl)> is the average intensity obtained from multiple observations of 

symmetry-related reflections. 
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Figure 2-1. (A) 15% SDS–PAGE stained with Coomassie Brilliant Blue. Lanes 1 and 2 

contain molecular-weight marker (labelled in kDa) and purified OsRac1Q68L, 

respectively. (B) Elution profile of gel filtration of OsRac1Q68L. The inset shows the 

calibration curve. The open rectangles correspond to the following marker proteins: A, 

thyroglobulin, 670.0 kDa; B, γ-globulin, 158.0 kDa; C, ovalbumin, 44.0 kDa; D, 

myoglobin, 17.0 kDa; E, vitamin B12, 1.4 kDa. The cross represents the peak-top 

position of OsRac1, assuming the molecular weight of the monomeric form containing 

GMPPNP and Mg2+ ion. MALDI–TOF MS analysis gave a single peak at 19 905.8 Da 

corresponding to the calculated molecular mass of OsRac1Q68L (19 963.9 Da). 
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Figure 2-2. Crystals of OsRac1Q68L in complex with GMPPNP. The scale bar 

represents 0.2 mm. 
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CHAPTER 3 
The crystal structure of the plant small GTPase OsRac1 

reveals its mode of binding to NADPH oxidase 
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3.1 Introduction 

Small GTP-binding proteins (small G proteins or small GTPase) act as molecular 

switches and regulate a wide variety of important physiological functions in cells. 

Plants possess a specific subfamily of small GTPase, called Rac/Rop (Rho-related 

GTPases from plants) (1, 2), which have attracted recent interest due to their function as 

molecular switches in the regulation of various cellular responses (3-6). For example, 

OsRac1, a Rac/Rop of Oryza sativa, plays an important role in the regulation of rice 

immunity (7-15), and Nicotiana tabacum NtRac5 regulates ROS production in pollen 

tubes (16). The AtRop members AtRop1, AtRop3 and AtRop5 redundantly regulate 

pollen tube growth in Arabidopsis thaliana (17), while AtRop2, AtRop4 and AtRop6 

regulate root hair development (17). Recently, the activation of AtRop2 and AtRop6 by 

auxin has been reported to regulate the subcellular distribution of auxin transporters 

PIN1 and PIN2, which control PIN-mediated pattern formation and morphogenesis in 

leaves and roots (18-20). AtRop10 and AtRop11, meanwhile, are specific negative 

regulators of abscisic acid (ABA) responses (21, 22). In addition, AtRop9 functions as a 

signal integrator of auxin and ABA signaling and plays an important role in embryo 

development and lateral root formation in A. thaliana (23). 

Rac/Rops are composed of about 200 amino acids and have masses of 20 - 24 kDa, 

similar to the animal small GTPases. They are inactive in the GDP-bound form, and are 

activated by the binding of GTP. Several Rac/Rop structures have been reported, 

including AtRop5 (GDP-bound form), AtRop9 (GDP-bound form) (24), the AtRop4 

(GDP-bound form)-GEF complex (25) and the AtRop7 (apo)-GEF complex (26), but all 

of these structures are of inactive forms. Structural analysis of active-form animal small 

GTPases has revealed the biological processes associated with carcinogenic mutations 
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and the biochemical mechanisms of carcinogenesis (27). Hence, the structural 

determination of plant Rac/Rops in their active form should be an important step in 

clarifying the mechanism of activation of target effectors. 

A constitutively activated mutant of OsRac1 (OsRac1 G19V, denoted as 

CA-OsRac1) has been reported to increase resistance to rice bacterial blight disease and 

subsequent cell death (7, 8). Conversely, a dominant-negative mutant (OsRac1 T24N, 

denoted as DN-OsRac1) was found to decrease the resistance reaction. Transgenic rice 

lines expressing CA-OsRac1, but not DN-OsRac1, displayed increased production of a 

phytoalexin, and altered expression of defense-related genes (8). Furthermore, 

overexpression of CA-OsRac1 induced ROS production in cultured rice cells (7). These 

data clearly show that OsRac1 acts as a molecular switch during plant innate immunity. 

CA-OsRac1, but not DN-OsRac1, was also shown to interact directly with an NADPH 

oxidase, O. sativa respiratory burst oxidase homolog (OsRboh) B (11). Transient 

co-expression of OsRac1 and OsRbohB in leaves of N. benthamiana enhanced ROS 

production, supporting the notion that direct OsRac1-OsRbohB interactions activate 

NADPH oxidase in plants (11). Although the crystal structure of the N-terminal domain 

of OsRbohB has been reported (28, 29), the molecular mechanism by which OsRac1 

activates OsRbohB for ROS production remains largely unknown. 

In this report, the crystal structure of OsRac1 in the active form (GMPPNP-bound 

form) was determined in an effort to elucidate the molecular mechanism of ROS 

production in rice. Based on the structural information obtained, the OsRbohB binding 

site on OsRac1 was predicted, and OsRbohB-binding-deficient mutants of OsRac1 were 

designed. The OsRbohB binding activity of these mutants was evaluated by in vitro 

pull-down assays and NMR measurements, and the mutants also underwent ROS 
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production assays using rice cells. This study, together with our previous reports (11, 

29), demonstrates that OsRac1 regulates ROS production through direct interactions 

with OsRbohB. 
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3.2 Materials and Methods  

3.2.1 Expression and purification of recombinant OsRac1  

cDNA encoding OsRac18–183, C32S/Q68L (denoted as OsRac1; see Results and 

Discussion) was cloned into the multiple cloning site of pGEX-6P3 vector (GE 

Healthcare), and several mutations were introduced using the QuikChange site-directed 

mutagenesis kit (Stratagene). The resulting plasmids were used to transform 

Escherichia coli Rosetta (DE3) cells (Novagen), which were then grown in M9 medium 

until the cell suspension reached the appropriate turbidity. Chimeric proteins comprising 

glutathione S-transferase (GST) fused to the N-terminus of OsRac1 or its mutants were 

then overexpressed by the addition of 1 mM isopropyl 1-thio-β-D-galactopyranoside for 

12 h at 15 °C, after which the cells were harvested by centrifugation. To obtain target 

proteins for NMR measurements, 0.5 g /l 15N-ammonium chloride (99 atom % of 15N) 

was used as the sole nitrogen source in M9 medium. The overexpressed GST-fused 

OsRac1 proteins were initially purified by affinity chromatography using Glutathione 

Sepharose 4B resin (GE Healthcare). After enzymatic cleavage of the GST tag from 

target proteins using GST-HRV 3C protease, digestion products were passed through 

Glutathione Sepharose 4B resin, and the OsRac1 and mutant proteins were further 

purified by size exclusion column chromatography using Superdex 75 (GE Healthcare).  

To exchange nucleotide, OsRac1 proteins were incubated with a 25-fold molar 

excess of GMPPNP (Sigma) in buffer A (50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10 

mM EDTA, 2 mM DTT) for 12 h at 4 °C. After the addition of 10 mM MgCl2, excess 

unbound nucleotides were removed using Superdex 75 column.  

For crystallization and NMR measurements, purified proteins were concentrated 

by ultrafiltration using Amicon Ultra-10 (Amicon) to 4 mg/ml with buffer B (10 mM 
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Tris-HCl (pH 7.5), 50 mM NaCl, 5 mM MgCl2, 2 mM DTT) and to 0.1 mg/ml with 

buffer C (50 mM Bis-Tris (pH 6.8), 50 mM NaCl, 5 mM MgCl2, 2 mM CaCl2, 2 mM 

DTT), respectively.  

For the prey protein in a GST pull-down assay, cDNA encoding OsRbohB (amino 

acids 138 to 313, denoted as OsRbohB138-313) was cloned into pET32c (Novagen). 

Following overexpression of the chimeric thioredoxin (Trx)-His6-OsRbohB138-313 in E. 

coli Rosetta (DE3), protein was purified by affinity chromatography using Ni-NTA 

agarose resin (QIAGEN). After enzymatic cleavage of the Trx-His6 tag from the target 

protein using recombinant enterokinase (Novagen), OsRbohB138-313 was further purified 

by anion exchange and size exclusion chromatography using Superdex 75 in buffer C. 

For GST pull-down assays, purified OsRbohB138-313 was concentrated to 0.6 mM by 

ultrafiltration using Ultra-10 with buffer C. 

  

3.2.2 Crystallization and X-ray data collection   

OsRac1 complexed with the GTP analog GMPPNP was crystallized as described 

(30). In brief, OsRac1 crystals were obtained at 20 °C using the sitting-drop 

vapor-diffusion method by mixing 0.7 µl of 4 mg/ml purified protein with 0.7 µl of 

reservoir solution consisting of 100 mM MES buffer (pH 6.0), 10-30% PEG 6000. For 

the X-ray diffraction experiments, crystals in a reservoir solution supplemented with 

25% (v/v) glycerol as a cryoprotectant were mounted in nylon loops (Hampton 

Research), flash-cooled using a 100 K dry nitrogen stream, and then kept under the 

nitrogen stream during data collection. X-ray diffraction data were collected from 

OsRac1(GMPPNP) crystals using a Rayonix MX225HE CCD detector installed on the 

BL44XU beamline at SPring-8 (Harima, Japan). The camera was fixed at a distance of 
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260 mm from the crystal sample using an X-ray wavelength of 0.9000 Å. Data 

collection for native crystals was performed using an angular range of 240°, an 

oscillation step of 1.5° and an exposure time of 1.0 s for each image. All data were 

integrated and scaled using HKL-2000 (31). Diffraction and intensity data-collection 

statistics are summarized in Table 3-1. 

 

3.2.3 Structure determination and refinement  

The crystal structure was solved by the molecular replacement method using 

PHASER (32). The tertiary structure coordinates of A. thaliana RAC7/ROP9 (PDB 

code: 2J0V) (24) were used as a search model for OsRac1. Crystal structures of OsRac1 

were rebuilt using COOT (33), and refined using REFMAC5 (34) and CNS (35). 

Ramachandran plot analysis was performed using Rampage (36). Final refinement 

statistics are summarized in Table 3-1. The solvent accessibility of each amino acid was 

analyzed using NACCESS (S. Hubbard, J. M. Thornton, NACCESS, University 

College London, 1993). Coordinates of the final model and structure factors of OsRac1 

have been deposited in the Protein Data Bank (PDB code: 4U5X). All structures in the 

figures were generated using PyMOL (http://www.pymol.org/).  

 

3.2.4 GST pull-down assays  

Following immobilization of each GST-tagged protein onto 50 µl gel volume of 

Glutathione Sepharose 4B resin, 20 µl of solution containing 0.6 mM purified 

OsRbohB138-313 was added and the mixture incubated at 4 °C for 12 h. After washing the 

resin several times with fresh buffer solution (50 mM Bis-Tris (pH 6.8), 50 mM KCl, 5 

mM MgCl2, 2 mM CaCl2, 1 mM phenylmethylsulfonyl fluoride, 3% [v/v] dimethyl 
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sulfoxide), bound proteins were eluted and analyzed by SDS-PAGE. The SDS-PAGE 

gels were stained with Coomassie Brilliant Blue. 

  

3.2.5 NMR measurements  

All NMR spectra were measured using a Bruker AVANCE 800 spectrometer 

equipped with a TXI cryogenic probe at 303 K, and the collected data were processed 

and analyzed using NMRPipe (37) and Sparky (Goddard & Kneller, SPARKY 3-NMR 

Assignment and Integration Software, University of California, San Francisco), 

respectively. All of the 2D 1H-15N HSQC experiments were performed using 0.1 mM of 

uniformly 15N-labeled OsRac1 in 50 mM Bis-Tris (pH 6.8), 50 mM KCl, 5 mM MgCl2, 

1 mM DTT, in 90%/10% H2O/D2O. 

  

3.2.6 Rice cell cultures  

To generate rice suspension cells (Kinmaze) expressing CA-OsRac1, CA-OsRac1 

Y39A, or CA-OsRac1 D45A, the coding regions of mutated OsRac1 were introduced 

into the p2K-GW binary vector (for transgenic plants expressing genes under the maize 

ubiquitin promoter) using the Gateway system (Invitrogen). Agrobacterium 

tumefaciens-mediated transformation of rice calli was performed according to Hiei et al. 

(38). Transformants selected by hygromycin resistance were subcultured in 22 ml R2S 

medium every week and incubated on a rotary shaker (90 rpm) at 30 °C. 

 

3.2.7 RT-PCR   

Total RNA was extracted from rice suspension cultures using the RNeasy Plant 

Mini Kit (QIAGEN) and 1 µg was used as a template for reverse transcription using an 
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oligo dT primer and SuperScript II (Invitrogen). PCR analyses used specific primers for 

OsRac1 (5’- AGATAGGGCCTATCTTGCTGATCATC-3’ and 5’- 

CTAGAAGTTTCCTCCTAGCTGCAAGC-3’), HPT (5’- 

GAGCCTGACCTATTGCATCTCC-3’ and 5’- 

GGCCTCCAGAAGAAGATGTTGG-3’) and ACT1 

(5’-CAATCGTGAGAAGATGACCC -3’ and 

5’-GTCCATCAGGAAGCTCGTAGC-3’). 

  

3.2.8 Measurement of ROS production  

Rice suspension cells were subcultured for 4 days in fresh medium, and 

approximately 20 mg of cells was placed into each well of white 96-well plates (Greiner 

Bio-One). Two hundred microliters of 500 µM L-012 (Wako Chemicals) dissolved in 

medium was added to each well and chemiluminescence was detected using an 

LAS-4000 mini luminescent image analyzer (FUJIFILM) at 180 min. Emission 

intensity from each well was measured using ImageJ (http://rsbweb.nih.gov/ij/) and the 

following formula: (intensity of each well – intensity of background) / weight of 

suspension cells in each well. 
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3.3 Results and discussion  

3.3.1 Structure determination of OsRac1 in active form  

For the crystallization of active-form OsRac1, an OsRac1 mutant and the GTP 

analog GMPPNP were used to prevent GTP hydrolysis. GTPase activity of the human 

small GTPase HsRhoA is significantly attenuated by substitution of glutamine to 

leucine at position 63 (39). In this study, the corresponding OsRac1 mutant comprising 

the substitution Q68L was used. To increase the stability of the OsRac1 protein, Cys32 

was substituted to serine and the N and C termini were truncated. Hereafter, 'OsRac1' 

refers to this truncated mutant OsRac18-183, C32S/Q68L.  

The OsRac1-GMPPNP-Mg2+ complex, designated as OsRac1(GMPPNP), was 

crystallized as previously described (30). The crystals gave strong and high-resolution 

X-ray diffraction. The diffraction data were collected to 1.9 Å resolution from one 

crystal (Table 3-1), and displayed orthorhombic P212121 symmetry with an estimated 

mosaicity of 0.41-0.62° and a Wilson B factor of 12.7 Å2. The unit cell (a = 36.8, b = 

59.1, c = 64.4 Å) contains one molecule of OsRac1(GMPPNP) per asymmetric unit. 

The crystal structure of OsRac1(GMPPNP) was determined at 1.9 Å resolution with 

clear electron density for all atoms with Rwork 15.7% and Rfree 20.3% (Figure 3-1A). 

OsRac1(GMPPNP) comprised a half-β-barrel-shaped structure formed by six β-strands 

(β1-β6). These β-strands were sandwiched between five α-helices (α1-α5), where two 

α-helices (α1, α5) were wrapped inside and three α-helices (α2-α4) were located 

outside.  

 

3.3.2 Structural comparison of OsRac1 with HsRac1 and HsRhoA - Rac/Rop proteins 

in GTP form  
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OsRac1 belongs to the Rho family of proteins, which includes HsRac1 and 

HsRhoA. OsRac1 shares 62% amino acid identity with HsRac1 and 49% identity with 

HsRhoA. Since the active-form structures of HsRac1 and HsRhoA have been 

determined (40, 41), these three Rho family protein structures were compared. The 

overall structures of OsRac1(GMPPNP) and the HsRac1-GMPPNP, Mg2+ complex, 

designated as HsRac1(GMPPNP) (PDB code: 1MH1), were similar (Figure 3-1B). The 

root mean square deviation (RMSD) of 141 Cα atoms was approximately 1.4 Å. The 

overall structures of OsRac1(GMPPNP) and the HsRhoA-GTPγS, Mg2+ complex, 

designated as HsRhoA(GTPγS) (PDB code: 1A2B), were also similar (Figure 3-1B), 

and the RMSD value of 140 Cα atoms was approximately 1.6 Å. The geometry of the 

nucleotide- and Mg2+ ion-binding pocket and the hydrogen-bond network pattern are 

essentially the same among these three Rho family proteins. Major structural 

differences between OsRac1(GMPPNP), HsRac1(GMPPNP) and HsRhoA(GTPγS) 

were found in Switch I (35FPTDYIPTVFD45 in OsRac1) and the Insert 

(129DRAYLADHPASSII141 in OsRac1) region.  

Switch I in OsRac1(GMPPNP) forms a loop structure, as it does in 

HsRac1(GMPPNP) and HsRhoA(GTPγS); however, the Switch I structures were not 

superimposed (Figure 3-1B). The RMSD value of OsRac1(GMPPNP) and HsRac1 

(GMPPNP) was approximately 2.5 Å for the 11 Cα atoms located in Switch I, and that 

of OsRac1(GMPPNP) and HsRhoA(GTPγS) was 2.2 Å. Switch I in OsRac1(GMPPNP) 

was located further away from the guanine nucleotide than it was in the other two 

proteins (Figure 3-1B). 

The Insert region is conserved in the Rho family, but not in other small GTPase 

families. HsRac1(GMPPNP) and HsRhoA(GTPγS) contain one α-helix (αi) followed by 
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an extended short loop, while OsRac1(GMPPNP) contains two helices (αi and αi2) in 

this region (Figures 3-1B and 3-2). The Insert region of OsRac1 is relatively short due 

to the absence of two amino acids, and the αi helix is significantly shorter (Figure 3-2). 

The 310-helix αi2 (Ala138-Ser140) is absent in other Rho family proteins, and seems to 

represent unique structural features of OsRac1(GMPPNP) (Figures 3-1 and 3-2).  

 

3.3.3 Structural comparison of OsRac1 with plant Rac/Rop proteins  

In an effort to determine whether unique structural features of OsRac1(GMPPNP) 

are conserved in the plant Rac/Rop protein family, the structure of OsRac1(GMPPNP) 

was compared with the reported structures of Rac/Rop proteins, such as AtRop5(GDP), 

AtRop9(GDP) (24), and the AtRop4(GDP)-GEF (25) and AtRop7(apo)-GEF complexes 

(26). Of these plant Rac/Rop proteins, only OsRac1 is the GTP-bound form. The overall 

structure of OsRac1 was similar to those of the AtRop proteins. However, structural 

differences were observed in the Switch I and Switch II regions of GTP 

(GMPPNP)-bound OsRac1 and the GDP-bound AtRop proteins (Figures 3-3 and 3-4). 

In animal, extensive structural analysis revealed that large conformational changes 

occur between the GDP- and GTP-bound states in two regions, Switch I and Switch II. 

These regions play important roles in interactions with downstream targets to transduce 

signals (41).  

The Switch I region in OsRac1(GMPPNP) and AtRop9(GDP) were well ordered 

and formed similar loop structures. In contrast, in other AtRop proteins, this region was 

partially disordered (Figures 3-3, 3-4 and 3-5). The Switch II region of 

OsRac1(GMPPNP) adopted a long helical conformation (Figures 3-3, 3-4 and 3-5). A 

similar long helical conformation was observed in AtRop5(GDP) and the animal Rho 
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family. However, most AtRop proteins adopted a loop-like structure without a long 

helix. These structural differences in the Switch I and Switch II regions were not 

unexpected, since all of the AtRop protein structures reported were of the inactive form. 

A notable structural difference also occurred in the Insert region. As mentioned above, 

the Insert region of OsRac1 comprised an insert α-helix (αi) and the short 310-helix (αi2) 

(Figures 3-3, 3-4 and 3-5). The αi helix was present in all AtRop proteins, but the αi2 

helix was unique to OsRac1. These structural differences in the Insert region may affect 

the interaction with GEF proteins, since the αi helix within the Insert region of AtRop4 

is known to be involved in the interaction with the plant-specific Rop nucleotide 

exchanger (PRONE) domain of PRONE8 (25, 26). 

 
3.3.4 Interaction of OsRac1 with OsRbohB138-313 

CA-OsRac1, but not DN-OsRac1, interacts directly with OsRbohB138-313 (11). 

From structural comparisons of OsRac1(GMPPNP) with inactive-form AtRop proteins, 

Switch I, Switch II and the Insert region were found to differ. Therefore, the 

OsRbohB138-313-binding site of OsRac1(GMPPNP) is expected to involve Switch I, 

Switch II or the Insert region. Acidic residues in Switch I (Asp38, Tyr39 and Asp45), 

Switch II (Glu69 and Asp70) and the Insert (Asp135) region were found to be located 

on the molecular surface of OsRac1(GMPPNP) (Figures 3-6A and 3-7). The crystal 

structure of OsRbohB138-313 has been solved and it was suggested that Arg273 and 

Tyr277 of OsRbohB138-313 play an essential role in binding to OsRac1 (29). Interestingly, 

Arg273 and Tyr277 and surrounding residues form a positively-charged cluster on the 

molecular surface of OsRbohB138-313 (Figure 3-6B). In view of these features, we 
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anticipated that an electrostatic contribution would be important in the interaction 

between OsRac1(GMPPNP) and OsRbohB138-313.  

To test the importance of the charge interaction, we performed in vitro pull-down 

assays using OsRbohB138-313 and CA-OsRac1 as prey and bait proteins, respectively 

(Figure 3-6C). The acidic residues located on the molecular surface of OsRac1 were 

replaced with alanine. Among the mutants generated, Switch I mutants Y39A and 

D45A showed markedly attenuated binding with OsRbohB138-313 (Figure 3-6C). To 

determine whether the tertiary structures of the Y39A and D45A mutants are disrupted, 

2D 1H-15N heteronuclear single quantum coherence (HSQC) NMR spectra were 

measured. The 1H-15N HSQC spectra of the Y39A and D45A mutants were well 

resolved (Figure 3-6D), and no marked chemical shift changes were observed in 

comparison with the wild-type (11). These NMR data indicated that the tertiary 

structures of the Y39A and D45A mutants are folded and are not substantially altered 

by the mutations. All of these data indicated that the Switch I Tyr39 and Asp45 residues 

of OsRac1 are critical for the direct interaction with OsRbohB138-313.  

 

3.3.5 Disruption of the interaction between OsRac1 and OsRbohB compromises ROS 

production in rice cells 

To establish whether the interaction of OsRac1 Tyr39 and Asp45 residues with 

OsRbohB affects the activation of NADPH oxidase, we examined ROS production in 

transgenic rice suspension cells overexpressing CA-OsRac1 Y39A and D45A under the 

maize ubiquitin promoter. RT-PCR analysis confirmed that the OsRac1 mutants were 

highly expressed in transgenic cells (Figure 3-8A). In these experiments, we used L-012, 

a luminol derivative, to detect ROS (42). When suspension cells were treated with 0.5 
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mM L-012 and the chemifluorescence examined using an LAS-4000 image analyzer, all 

CA-OsRac1 lines generated a large amount of ROS, as reported by Kawasaki et al. (7) 

(Figures 3-8B and 3-8C). In contrast, the levels of ROS in all lines of both CA-OsRac1 

Y39A and CA-OsRac1 D45A were markedly lower than that in CA-OsRac1 suspension 

cells (Figure 3-8B and 3-8C). OsRac1 Tyr39 and Asp45 residues therefore play an 

important role in the activation of NADPH oxidase in rice suspension cells. 

 
3.3.6 Important residues in Switch I for OsRbohB binding 

OsRac1 Switch I Tyr39 and Asp45 residues are necessary for the direct interaction 

of OsRac1 with OsRbohB138-313, which leads to NADPH oxidase activation and ROS 

production. To identify other residues of Switch I that may also be important, each of 

the 11 residues in OsRac1 Switch I was replaced with alanine, and the mutants were 

subjected to in vitro pull-down assays (Figure 3-9). F35A, Y39A, T42A and D45A 

mutants showed markedly reduced binding with OsRbohB138-313, while V43A and F44A 

mutants also showed moderately reduced binding (Figures 3-9C and 3-9D). The solvent 

accessibility of all residues located in Switch I was calculated using the structure of 

OsRac1(GMPPNP) (Figure 3-9E). The solvent accessibility values for Phe35, Tyr39, 

Thr42, Val43, Phe44 and Asp45 residues were 16%, 100%, 55%, 54%, 54% and 69%, 

respectively. The side chains of Phe35 and Thr42 interacted with GMPPNP (Figure 

3-10), and substitution to alanine destabilized binding to GMPPNP. The Tyr39, Val43, 

Phe44 and Asp45 residues were exposed to the solvent, and were not involved in direct 

binding to GMPPNP or coordination of the Mg2+ ion (Figure 3-10B). Accordingly, we 

conclude that Switch I Tyr39, Val43, Phe44 and Asp45 residues are involved in the 

OsRbohB138-313-binding site (Figure 3-10B). 



 75 

GTP-bound OsRac1 binds much more strongly than GDP-bound OsRac1 with 

OsRbohB (11). To elucidate the differences of GTP- and GDP-bound OsRac1, we used 

AtRop9, which showed the highest sequence similarity to OsRac1 in PDB, as a model 

of GDP-bound OsRac1. A structural comparison of OsRac1 (GTP form) with AtRop9 

(GDP form) showed a difference in their Rboh-binding sites. In OsRac1, the 

OsRbohB-binding site formed an acidic pocket-like surface centered on Asp45 (Figure 

6A), but this feature was not observed in AtRop9 (Figure 3-11B). The acidic surface in 

OsRac1 was well stabilized by a hydrogen bond network among GMPPNP:Mg2+ and 

residues in α1, β2, β3 and the C-terminal portion of Switch I. The main chain of the 

Mg2+ ion-coordinating residue Asp64 in β3 contacted the side chain of the Switch I 

residue Asp45, and the side chain of the neighboring residue Asn46 was held by 

hydrogen bonds from Leu27/Thr31 in α1 (Figure 3-11C). In the AtRop9-GDP complex, 

these hydrogen bonds did not form, and the position of the Asp41 side chain was largely 

different from that of Asp45 in OsRac1 (6 Å apart at the Cγ atom positions in 

superposed structures) so that the acidic pocket-like surface was covered (Figures 3-11B 

and 3-11D). We note that all of these important residues in OsRac1 - Leu27, Thr31, 

Asp45, Asn46 and Asp64 - are conserved in AtRop9. The GDP to GTP exchange in 

OsRac1 may induce a conformational change and increases the stability of the 

C-terminal acidic region of Switch I, so that OsRac1 associates more strongly with the 

basic surface of OsRbohB.  

 

3.3.7 Interaction site of HsRac1 with p67phox, an essential component of the NADPH 

oxidase complex  
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As described above, OsRac1 Switch I Tyr39, Val43, Phe44 and Asp45 residues 

interact with OsRbohB138-313, with at least Tyr39 and Asp45 playing a key role in the 

activation of NADPH oxidase in rice cells (Figure 3-12). Switch I of HsRac1/HsRac2 

has been reported to be important for the activation of NADPH oxidase (43, 44). For 

example, substitutions of Phe28, Thr35, Val36 and Asp38 of HsRac2, which correspond 

respectively to Phe35, Thr42, Val43 and Asp45 of OsRac1, resulted in a significant 

reduction in activation ability (43), and alanine substitutions at Thr35 and Asp38 in 

HsRac2 abolished it completely. In animals, phagocytic NOX2 is the best characterized 

NADPH oxidase, and its activation process is relatively well understood. Unlike 

NADPH oxidase of plants (Rboh), NOX2 does not interact directly with 

HsRac1/HsRac2 (44), and NOX2 activation requires the formation of a 

multi-component complex (45, 46). One essential component is the direct interaction of 

p67phox with NOX2 and HsRac1/HsRac2 (45, 47). The crystal structure of the 

HsRac1-p67phox complex showed that HsRac1 binds to p67phox via α1, Switch I, and the 

loop connecting β6 to α5 (Figures 3-12 and 3-13) (48). Although the Switch I region is 

therefore critical for the activation of NADPH oxidase in both plants and animals, 

molecular details of the interacting regions differ between plants and animals (Figures 

3-12 and 3-13). 
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3.4 Conclusion  

OsRac1 Switch I was identified as the region that binds OsRbohB138-313, and four 

residues in this region (Tyr39, Val43, Phe44 and Asp45), especially Tyr39 and Asp45, 

were found to be critical for the interaction and for ROS production in rice cells. 

Previous studies have shown that ROS production by NADPH oxidase is regulated by 

Rac/Rop proteins (11, 16, 49). Our data, combined with our previous results (11, 13, 16, 

29), assist in delineating the mechanism of rice immunity. In particular, OsCERK1, the 

receptor for pathogen-associated molecular patterns such as chitin, phosphorylates and 

activates OsRacGEF1, and activated OsRacGEF1 subsequently activates OsRac1 by the 

guanine nucleotide exchange process. Finally, OsRac1 activates ROS production via 

direct interaction with the NADPH oxidase OsRbohB (Figures 3-12 and 3-13). Our 

results have also contributed towards delineation of the molecular mechanisms 

associated with various plant cellular responses, such as pollen tube growth and root 

hair development, that are influenced by Rac/Rop proteins. 
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Table 3-1 
 
Data collection and refinement statistics of the OsRac1-GMPPNP-Mg2+ complex 
(OsRac1(GMPPNP)) a 

------------------------------------------------------------------------------------------------- 
     OsRac1(GMPPNP) 
------------------------------------------------------------------------------------------------- 
Data Collection 
 Space group    P212121 
 Cell constants a, b, c (Å)  36.8, 59.1, 64.4 
 Resolution (Å)    50-1.9 (1.97-1.9) 
 Redundancy    8.2 (8.3) 
 Completeness (%)   99.8 (100) 
 I/σ(I)     19.7 (7.7) 
 Rmerge (%)b    9.5 (28.4) 
 
Refinement 
 Resolution range (Å)  50-1.9 
 No. reflections    10901 
 Rwork (%)c     15.7 
 Rfree (%)c     20.3 
 No. atoms 
  Protein    1384 
  Ligand and ion  51 
  Solvent    90 
 Average B-factor (Å2)  16.1 
 R.m.s. deviations 
  Bond length (Å)  0.019 
  Bond angles (°)  2.2 
 Ramachandran analysis 
  Favored (%)   98.9 
  Allowed (%)   1.1 
  Disallowed (%)  0 
------------------------------------------------------------------------------------------------- 
aValues in parentheses refer to the highest resolution shell. 
bRmerge = Σh Σi |I(h)i - <I(h)>|/Σh Σi I(h)i, where I(h) is the intensity of reflection h, Σh is 
the sum of all measured reflections and Σi is the sum of i measurements of reflection. 
cRwork and Rfree = (Σhkl ||Fo| - |Fc||)/Σhkl |Fo|), where the free reflections (5% of the total 
used) were held aside for Rfree throughout refinement. 
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Figure 3-1. Overall structure of OsRac1. (A) Ribbon representation of overall 

structure of OsRac1 in its GMPPNP, Mg2+-bound form. Switch I, Switch II and Insert 

regions are colored in green. GMPPNP is shown in the stick model (red, oxygen; blue, 

nitrogen; orange, phosphorus). The Mg2+ ion is shown as an orange sphere. (B) 

Superimposition of the crystal structures of OsRac1(GMPPNP), HsRac1(GMPPNP) 

(PDB code: 1MH1) and HsRhoA(GTPγS) (PDB code: 1A2B). Switch I, II and Insert 

regions are colored as indicated in the protein labels. Models were generated using 

PyMOL. 
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Figure 3-2. Comparison of primary sequences of OsRac1, HsRac1 and HsRhoA by 

multiple sequence alignment. Secondary structural elements are calculated from 

structures in Protein Data Bank (HsRac1: 1MH1; HsRhoA: 1A2B) and indicated under 

the amino acid sequences (β-strand: green; α-helix: cyan; 310-helix: blue). The 

sequences of the Switch I, Switch II and Insert regions are boxed by dashed black lines, 

and secondary structure of the Insert regions are boxed by black dashed-line. Conserved 

motifs which are important for GTP hydrolysis are highlighted by white letters on a 

black background. The dotted line indicates disordered region. 
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Figure 3-3. Comparison of the overall structures of OsRac1(GMPPNP) and 

AtRop9(GDP). Main chains of OsRac1(GMPPNP) and AtRop9(GDP) (PDB code: 

2J0V, chain B) were superimposed using PyMOL. Switch I, Switch II and Insert 

regions of the OsRac1 and AtRop9 proteins, respectively, are colored in green and pink. 

Side-chains of four key Switch I residues in OsRac1 (Val43, Phe44, Asp45 and Tyr39) 

and equivalent residues in AtRop9 (Val39, Phe40, Asp41 and Tyr35) are shown as stick 

representations.  
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Figure 3-4. Comparison of the structures of OsRac1(GMPPNP), AtRop5(GDP) 

(PDB code: 3BWD), AtRop9(GDP) (PDB code: 2J0V, chain B), the 

AtRop4(GDP)-GEF(PRONE) complex (PDB code: 2NTY, chain B) and the 

AtRop7(apo)-GEF(PRONE) complex (PDB code: 2WBL, chain C). Switch I, Switch 

II and the Insert region are in non-gray colors. GMPPNP and GDP are shown as stick 

models (red, deep blue, and orange indicate O, N and P atoms, respectively). The Mg2+ 

ion is shown as an orange sphere.	 Models were generated using PyMOL. 
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Figure 3-5. Comparison of primary sequences of plant Rac/Rops by multiple 

sequence alignment. Secondary structural elements calculated from structures of 

OsRac1, AtRop4(PDB code: 2NTY), AtRop5(PDB code: 3BWD), AtRop7(PDB code: 

2WBL) and AtRop9(PDB code: 2J0V) are drawn under the amino acid sequences 

(β-strand: green; α-helix: cyan; 310-helix: blue). The sequence of the Switch I, Switch II 

and Insert regions are boxed by thin black lines, and secondary structures of the Insert 

regions are indicated by dashed black lines. Conserved motifs which are important for 

GTP hydrolysis are highlighted by white letters on a black background. The dotted lines 

indicate disordered regions. 
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Figure 3-6. Mode of binding between OsRac1 and OsRbohB138-313. Electrostatic 

potential of the molecular surface of OsRac1(GMPPNP) (A) and OsRbohB138-313 (PDB 

code: 3A8R) (B) Amino acid residues labeled with the single-letter code are putative 

key residues involved in the OsRac1-OsRbohB138-313 interaction. Positively and 

negatively charged sites are colored in blue and red, respectively. The surface potential 

was generated using PyMOL with APBS tools (±3 kT). (C) GST pull-down binding 

assay between the full-length CA-OsRac1 and OsRbohB138-313. Alanine substitutions 

were introduced in place of Asp38, Tyr39, Asp45 (in Switch I), Glu69, Asp70 (in 

Switch II), and Asp135 (in the Insert region) of GST-fused full-length CA-OsRac1. 

Each mutant was overexpressed in E. coli, purified, and equal amounts of each 

GST-fused protein were used as bait for the OsRbohB138-313 pull-down. The amount of 

OsRbohB138-313 pulled down was quantitated by densitometric analysis. Numerical 

values below the panel indicate the ratio of OsRbohB138-313 binding to OsRac1 mutants 

compared with wild-type OsRac1(WT). (D) 2D 1H-15N HSQC spectra of 

CA-OsRac1wild-type (left),Y39A (center) and D45A (right). 
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Figure 3-7. Mapping of electrostatic potential of OsRac1-GMPPNP. Positive and 

negative charges on the molecular surface are colored blue and red, respectively. 

GMPPNP is shown in the stick model and the Mg2+ ion is shown as an orange sphere. 

The surface potential was calculated using APBS tools. 
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Figure 3-8. Biological significance of Tyr39 and Asp45 residues in ROS production 

in rice cells. CA-OsRac1 Y39A and D45A mutants were overexpressed in rice cells and 

their effect on OsRbohB NADPH oxidase activity was evaluated by quantifying ROS 

production. (A) Expression of endogenous OsRac1(WT) as well as exogenous 

CA-OsRac1 and its Y39A and D45A mutants, hygromycin phosphotransferase (HPT) 

and Actin1 (ACT1) in these transgenic rice cells was confirmed by RT-PCR. (B) 

Example of ROS detection in WT, CA-OsRac1 #5, CA-OsRac1 Y39A #5 and 

CA-OsRac1 D45A #2 rice suspension cells using the L-012 reagent. (C) Quantification 

of ROS production in WT, CA-OsRac1, CA-OsRac1 Y39A and CA-OsRac1 D45A 

lines. The luminescence intensity recorded from each well was measured by ImageJ. 

Data are mean ± SE of four biological replicates. 
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Figure 3-9. Effects of mutations in OsRac1 Switch I residues on OsRbohB138-313 

binding. (A) The alanine-substituted residues in CA-OsRac1 are mapped on the 

OsRac1 crystal structure as red spheres. (B) Surface representation of the 

OsRbohB138-313-binding interface on OsRac1. OsRac1 mutations that markedly affected 

(red) or had no effect on binding (blue) are distinguished. Mutation of residues colored 

pink was shown to moderately affect OsRbohB138-313 binding. (C) Pull-down assay 

using OsRac1 mutants. Single alanine substitutions in Switch I were introduced in the 

full-length CA-OsRac1 background of the GST fusion construct. Equal amounts of each 

GST-fused OsRac1 protein were used as bait for OsRbohB138-313 (middle panel). (D) 

Quantification by densitometric analysis of the amount of OsRbohB138-313 pulled down 

in the in vitro pull-down assay using CA-OsRac1 mutants and OsRbohB138-313. The 

relative binding activities were assessed by comparison with the value of 

GST-CA-OsRac1(WT) binding activity to OsRbohB138-313, which was set to 100%. 
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Binding level of each mutant was categorized by the value as markedly reduced (below 

40%), moderately reduced (between 40 and 60%) and weak or no effect on binding 

(above 60%). Average and error values were determined from three independent 

experiments. (E) Analysis of solvent accessibility for each amino acid of Switch I. The 

calculation was performed using NACCESS (S. Hubbard, J. M. Thornton, NACCESS, 

University College London, 1993). 
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FIGURE 3-10. Interaction between OsRac1 and GMPPNP. (A) 2D scheme of 

interaction between OsRac1 and GMPPNP. OsRac1 residues, which contact with 

GMPPNP or the Mg2+ ion, and the GMPPNP molecule are shown in the ball-and-stick 

model (red, oxygen; blue, nitrogen; orange, phosphorus; gray, carbon; yellow, sulfur). 

The Mg2+ ion and water molecules (WAT) are shown in sphere colored green and cyan, 

respectively. Hydrogen bonds are indicated by dashed green lines and the OsRac1 

residues which form hydrophobic interactions with GMPPNP are represented by arcs 

with spokes. The figure was generated by LIGPLOT software (Wallace et al., Protein 

Eng., 1995). (B) Critical residues in Switch I for OsRbohB138-313 binding are shown as a 

stick representation colored with yellow (Tyr39, Val43, Phe44 and Asp45). Other 

Switch I residues which form direct interactions with GMPPNP are colored cyan (Thr42 

(hydrogen bond) and Phe35 (hydrophobic contact)). The Mg2+ ion and the water 

molecule (WAT) are shown as an orange sphere and small red sphere, respectively. The 

hydrogen bond is indicated by dashed black line. 
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Figure 3-11. Surface charge difference between OsRac1 (GTP form) and AtRop9 

(GDP form). The surface electrostatic potential (± 3  kT) and the hydrogen bond 

network around the C-terminal portions of Switch I of OsRac1(GMPPNP) (A, C) and 

AtRop9-GDP (B, D) are shown. AtRop9 shows the highest sequence similarity to 

OsRac1 in PDB. The surface representations and ribbon cartoons are rotated by 50° 

about the horizontal axis compared with the depiction in Figure 3A. The acidic 

pocket-like structure of OsRac1 is demarcated by the red dashed circle (A). Critical 

residues in OsRac1 for OsRbohB138-313 binding are shown as a stick representation 

(Tyr39, Val43, Asp45 and Phe44; colored yellow with red label). Other residues which 

that form the hydrogen bonds with these critical residues, and with GMPPNP/GDP and 

the Mg2+ ions, are colored cyan (C,D). 
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Figure 3-12. Binding modes of plant and animal Rac/Rop proteins to NADPH 

oxidase. (A) Surface representation of OsRac1(GMPPNP). Four residues that are 

critical for the recognition and activation of the plant NADPH oxidase OsRbohB138-313, 

revealed in this study, are shown in red. (B) X-ray structure of the HsRac1-p67phox 

complex (PDB code: 1E96). HsRac1 and p67phox are shown in surface (gray) and ribbon 

(green) representations, respectively. The p67phox-binding interface on HsRac1 is 

colored red. Activated OsRac1 interacts directly with the N-terminal domain of 

OsRbohB through Tyr39 and Asp45, and induces ROS production by OsRbohB, 

leading to an immune response in plant cells. Although Switch I is critical for the 

activation of NADPH oxidase in both plant and animal Rac/Rop proteins, details of 

their binding regions are different.  
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Figure 3-13. Differences in the NADPH oxidase-binding sites in plant and animal. 

OsRac1(GMPPNP) (A) and HsRac1(GTP) (B) are shown in ribbon representation. Side 

chains of amino acid residues that are important for the interaction with the NADPH 

oxidases (OsRbohB138-313 or p67phox) are shown in the stick model (magenta) and 

demarcated by the orange dashed circles. Switch I regions are colored in cyan. Although 

the Switch I regions are critical for the activation of NADPH oxidase in both plant and 

animal, molecular details of the interacting regions are slightly different. 
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4. GENERAL DISCUSSION 

4.1 The conformational change of OsRac1 

GDP/GTP exchange induces a conformational change in Small G proteins. As 

mentioned in Chapter 1, it is thought that this conformational change is leaded by 

interaction between phosphoryl group of GTP and basic residues of small G proteins. In 

HsRac1(GMPPNP), γ-phosphate of GTP can form hydrogen bond with main-chains of 

Thr35 and Gly60 and this interaction leads to conformational change (Figure 4-1 A). In 

OsRac1, γ-phosphate of GMPNP forms water-mediated hydrogen bond with side-chain 

of Thr41, instead of main chain of Thr35 in HsRac1(GMPPNP). Furthermore, the 

main-chain of Gly67 of switch II in OsRac1 direct hydrogen bond to γ-phosphate. 

These interactions pull switch I and switch II regions to GMPPNP and induce the 

conformational change of OsRac1 (Figure 4-1 B). Lys22 of p-loop also forms hydrogen 

bond with γ-phosphate and this Lys residues has also hydrogen bond with main-chains 

of Gly17 and Asp18. Therefore, the interaction between Lys residues and γ-phosphate 

may increase the stability of GTP binding-site. In the AtRop9-GDP complex, these 

hydrogen bonds did not form (Figure 4-1 C). 

 

4.2 The open conformation of switch I region of OsRac1 

In Chapter 3, compared with RhoA(GTPγS) (PDB code: 1A2B) and 

HsRac1(GMPPNP) (PDB code: 1MH1), the large deviations are primarily due to 

differences in switch I region. In the crystal structure of HsRac1(GMPPNP) and 

RhoA(GTPγS), switch I region is in “closed” conformations, whereas that of in 

OsRac1(GMPPNP) is in “opened” conformation (Figure 3-1 B). It is surprising that 

RhoA(GDP) (PDB code: 1FTN) and AtRop9(GDP) (PDB code: 2J0V) also show the 
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opened conformation in switch I region (Figure 4-2). 

The conformational change in switch I region is induced by GDP/GTP exchange 

but the critical GTP interacting sites of OsRac1(GMPPNP) appear similar to that of 

RhoA(GTPγS) and HsRac1(GMPPNP) with some unique distinctions. The 

conformational difference in switch I region may be induced by interaction between Tyr 

residue in switch I region (Tyr39 in OsRac1, Tyr34 in HsRhoA) and the guanine 

nucleotide. Tyr residue in switch I region is highly conserved between animal and 

plants (Figure 3-2, Figure 3-5). Tyr34 of RhoA(GMPPNP) (PDB code: 1KMQ) 

interacts with O1G atom of γ-phosphate of GMPPNP (Figure 4-2) however these Tyr 

residues in OsRac1(GMPPNP), HsRhoA (GDP) and AtRop7(GDP) were exposed to the 

molecular surface (Figure 4-2). Additionally, as mentioned, although Thr resides of 

switch I in HsRac1 directly interacts with the γ-phosphate of GMPPNP, Thr resides of 

OsRac1 interacts with the γ-phosphate of GMPPNP through water molecule.  

Thereby, the conformation change in switch I region between animals and plants 

may be induced by interaction between the Tyr/Thr residue in switch I region and the 

guanine nucleotide.  

 

4.3 The long helical conformation of switch II region 

The overall structure of OsRac1(GMPPNP) was similar to the structures AtRop 

proteins. However, structural differences were observed in the switch I, switch II, and 

Insert region between OsRac1(GMPPNP) and the AtRop proteins. In comparison 

switch I with switch II region of AtRop proteins(GDP or GEF complex), 

OsRac1(GMPPNP) adopted a long helical conformation (Figure 4-3 and Figure 4-4A). 

On the other hand, most AtRop proteins(GDP or GEF complex) adopted a loop 
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structure (Figure 4-3 and Figure 4-4) (1). In N-terminal of switch II region, Thr65 of 

OsRac1 has water-mediated hydrogen bonds to β- and γ-phosphates and Gly67 of 

OsRac1 has direct hydrogen bonds to γ-phosphate and R75 of OsRac1 has hydrogen 

bonds to E103 of OsRac1 (Figure 4-4 A). These hydrogen bonds were not observed in 

AtRop proteins except for AtRop5 (Figure 4-4 B-E). These hydrogen bonds probability 

stabilize the long helical conformation in switch II region. 

 

4.4 Effect of Q68L mutation on the GTPase activity  

In this thesis, we introduced a specific mutation (Gln68 to Leu) to attenuate the 

GTPase activity of OsRac1. This glutamine residue, adjacent to DXXG motif in switch 

II/G3 is a key player in hydrolyzing GTP to GDP. The mutation at this glutamine 

residue remains in the active GTP-bund state much longer than the wild type in many 

small GTPases. In this thesis, OsRac1Q68L mutant markedly inhibited intrinsic GTPase 

activity. What kind of influence does the single mutation have on the structure of 

OsRac1? To answer this question, the structure of RasQ61L was compared with the 

structures of wild type Ras.  

The overall structures of Ras(GMPPNP) (PDB code: 3K8Y) and the 

RasQ61L(GppNHp) (PDB code: 3OIU) were very similar. The root mean square 

deviation (RMSD) of 133 Cα atoms was approximately 0.07 Å. Thus, it is thought 

overall structure of small GTPase was not highly influenced by Gln to Lue mutation.  

The role of this Gln is to stabilize the transition state by orienting the relative 

positions of the nucleophilic water and the γ-phosphate. The crystal structure of 

Ras(GMPPNP) (PDB code: 3K8Y) has two water molecules which can form the 

hydrogen bond with oxygen atom of γ-phosphate (Figure 4-5 A). The first water 
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molecule (Wat175 in Ras) is the so-called pre-catalytic water molecule proposed to be 

the nucleophile in the hydrolysis reaction. It is positioned at a distance of 2.8 Å from 

oxygen atom (O1G) of γ-phosphate and at a distance of 3.1 Å from main-chain of Q61. 

The main chain of Q61 forms hydrogen bond with pre-catalytic water molecule (Figure 

4-5 A). The second water molecule (Wat189 in Ras) is the so-called bridging water. It is 

positioned at 2.6 Å from the oxygen atom (O1G) of γ-phosphate atom and at a distance 

of 2.6 Å from the hydroxyl group of Y32, bridging between the two groups (Figure 4-5 

A). The γ-phosphate of GTP abstracts a proton from the bridging water molecule 

(Wat189 in Ras), which in turn activates the catalytic water molecule (Wat175 in Ras) 

for nucleophilic attack on the γ-phosphate during the hydrolysis reaction (2).  

These two water molecules were found in the same location as in the 

HsRac1(GMPPNP) (PDB code: 1MH1) (Figure 4-5 B). However, the crystal structure 

of the the RhoAQ63L(GMPPNP) (PDB code: 1KMQ) and OsRac1(GMPPNP) reveal 

somewhat different water arrangement. First, the bridging water molecule (Wat189 in 

Ras) is completely absent in theses RhoAQ63	 and OsRac1Q68L mutant structures (Figure 

4-5 C, D). Second, the pre-catalytic water molecules of the RhoAQ63L(GMPPNP) are 

observed in the same location as in Ras(GMPPNP), with nearly ideal hydrogen-bonds 

to the O1G atom of the γ-phosphate and to the carbonyl oxygen atom of Thr (T35 of 

Ras and T37 of RhoA) (Figure 4-5 C). The position of water molecule in the 

OsRac1(GMPPNP) active site is different from RhoAQ63L(GMPPNP). In structure of 

OsRac1(GMPPNP), the water molecule was absent in the same location of active site, 

however a water molecule was observed around active site with hydrogen-bonds to the 

O1G atom of the γ-phosphate and to the carbonyl oxygen atom of Thr (T42 of OsRac1) 

(Figure 4-5 D). We postulate that the pre-catalytic water molecule was shifted by Q68L 
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mutation in OsRac1. Shift of this pre-catalytic water molecule is possible mean of 

inhibiting GTP hydrolysis by the constitutively active mutation Q68L of OsRac1. The 

mechanism of constitutively active by Q68L mutation of OsRac1 may be almost the 

same as that of RhoAQ63L(GMPPNP). 

 

4.5 GEF binding 

Recently, a new type of GEF has been identified in plants (3). The GEF contains 

highly conserved region, referred to as PRONE (Plant specific Rop nucleotide 

exchanger). Rops are activated by PRONE domain and OsRac1 is activated by PRONE 

domain of OsRacGEF1 (4). 

In the crystal structure of AtRop4–PRONE8, PRONE domain of RopGEF 

interactions with switch I region, switch II region and insert region of AtRop4 (5). 

Therefore, the conformational change of switch I region and switch II region in GTP 

bound form may influence Rops binding to PRONE domain. However, it could be 

imagined that the switch I region and switch II region of OsRac1(GMPPNP) fit into 

binding pocket of PRONE domain of AtRop4-PRONE8 complex (PDB code: 2NTY) 

(Figure 4-6). This observation is consistent with previous results that PRONE domain 

of OsGEF1 interacts with GTP- and GDP-bound forms of OsRac1 (4). These results 

suggest that Rops binding to PRONE domain is not influenced by conformational 

change of switch I region and switch II region between GTP and GDP GDP-bound 

forms.  

 

4.6 GAP binding 
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RhoGAPs play the key roles in the control of Rho GTPase activity and cellular 

processes. Mammalian Rho proteins in complex with the RhoGAP domain are well 

characterized in structural and biochemical studies. The sequences alignment for the 

RopGAPs shows conserved structural domains (Figure 4-7 A). The central region 

containing GAP-like domain shares 70% amino acid identity among RopGAPs and 

about 27% identity with RhoGAP domains from animals and yeast (Figure 4-7 B).  

In crystal structure of Rho-GAP complex (PDB code: 1TX4), RhoGAP domain 

interacts with switch I region and switch II region of Rho proteins (6). In this thesis, 

comparison of OsRac1(GMPPNP) structure with AtRop9(GDP) structure showed the 

significant structural difference in switch I and switch II (Figure 3-3, Figure 3-4), 

therefore Rops binding to GAP domain of RopGAP may be influenced by 

conformational change of switch I and switch II region. 

In RhoA-GAP complex (PDB code:1TX4), E64 amino acid in Switch II region of 

RhoA forms hydrogen binds with side chains of T90, T123 and R126 of RhoGAP, D65 

amino acid in Switch II region of RhoA form hydrogen binds with side chains of K122, 

R126 and N202 of RhoGAP and Y66 amino acid in Switch II region of RhoA form 

hydrogen binds with main chain of V197 and side chains of N220 of RhoGAP. Out of 

these residues of RhoGAP, K122 and R126 of RhoGAP are highly conserved between 

plants and animals (Figure 4-7 B). Therefore, K122 and R126 of RhoGAP may be 

important for binding with Rops.  

The overall structures of OsRac1(GMPPNP) and the RhoA-GAP complex, 

designated as HsRhoA were very similar. It could be imagined that the switch I region 

and switch II region of OsRac1 fit into binding pocket of GAP domain on the structure 

of the RhoA-GAP complex superimposed with OsRac1 (GMPPNP) (Figure 4-8 A). E69 
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of OsRac1 is located at distance of 3.7 Å from the R126 of RhoGAP and are slightly 

distant to form hydrogen bonding with R126 of RhoGAP. D70 of OsRac1 (D65 of 

RhoA) are located at distance of 3.2 Å from the R126 of RhoGAP and enable hydrogen 

bonding (Figure 4-8 C). However, D70 of OsRac1 (D65 of RhoA) are located at 

distance of 5.3 Å from the K122 of RhoGAP and are distant to form hydrogen bonding 

with K122 of RhoGAP (Figure 4-8 C). 

In case of AtRop7 (GDP), the switch I region and switch II region of 

AtRop7(GDP) can also fit into binding pocket of GAP domain of RhoGAP. E65 of 

AtRop9 (E64 of RhoA) are located at distance of 2.9 Å from the R126 of RhoGAP and 

are enable hydrogen bonding with R126 of RhoGAP (Figure 4-8 D). However D66 of 

AtRop9 (D65 of RhoA) are located at the distance of 11.5 Å from the R126 of RhoGAP 

and at the distance of 5.3 Å from the K122 of RhoGAP (Figure 4-8 D). Therefore, D66 

of AtRop9 is unable to hydrogen bonds with K122 and R126 of RhoGAP. Conceivably 

the GDP to GTP exchange in Rops induces a conformational change of Switch II, so 

that Rops may strongly associate with GAP.  

As mentioned in Chapter 1, the GAP inserts the side chain of a positively charged 

arginine residue into the active site of GTPase. This arginine finger neutralizes the 

developing negative charges in the transition state of GTP hydrolysis. In the 

HsRhoA-GAP complex, R85 (arginine finger) of RhoGAP inserts into the active site of 

HsRhoA (Figure 4-9 A). In case of model of OsRac1(GMPPNP)-GAP complex, the 

positively charged arginine residue (R85) also inserts into the active site of OsRac1 

(Figure 4-9 B). R85 of RhoGAP is highly conserved between plants and animals 

(Figure 4-7 B). Therefore, the mechanism of GTP hydrolysis by GAP may be similar to 

plants and animals. 
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4.7 NADPH oxidase activation by small GTPase in animals and plants 

In animals, switch I region of HsRac1/2 has been reported to be important for ROS 

production in the activation of NADPH oxidase (7, 8). Although switch I region is 

critical in the activation of NADPH oxidase in both plants and the animals, details of 

the interaction regions differ between plants and animals. In HsRac1, some of 

N-terminal residues (F28, G30 and E31) of switch I region are involved in HsRac1 

docking with p67phox (9), whereas OsRac1 does not involve N-terminal residues of 

switch I region in interaction with OsRbohB (Figure 3-10 and Figure 3-11). In 

HsRac1-p67 phox complex, the third phosphate of GTP attracts Tyr32 of HsRac1 on the 

switch I region, twisting the adjacent residues into position. This influences the position 

of adjacent G30 and E31 so that HsRac1 may associate with p67 phox. But the Tyr39 of 

OsRac1 does not attract the third phosphate of GMPPNP (Figure 4-2, Figure 4-10). For 

this reason, the large conformational change around N-terminal of switch I region may 

be not caused by GDP/GTP exchange in OsRac1. 
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Figure 4-1. Comparison of the γ-phosphate binding site of small GTPase. (A) 

HsRac1(GMPPNP) (PDB code: 1MH1), (B) OsRac1(GMPPNP) (PDB code: 4U5X) 

and (C) AtRop9(GDP) (PDB code: 2J0V, chain B). The GMPPNP and GDP were 

shown in the stick model (red, deep blue, and orange indicates O, N, and P atoms, 

respectively). The Mg2+ ion and water molecules were shown as green sphere and red 

sphere, respectively. 
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Figure 4-2. Superimposition of the crystal structures of OsRac1(GMPPNP) (PDB 

code: 4U5X), HsRhoA(GMPPNP) (PDB code: 1KMQ), HsRhoA(GDP) (PDB code: 

1FTN) and AtRop9(GDP) (PDB code: 2J0V, chain B). Switch I, II and Insert regions 

are colored as indicated in the protein labels. GDP and GMPPNP are shown in the stick 

model (red, oxygen; blue, nitrogen; orange, phosphorus). The Mg2+ ion is shown as an 

orange sphere. Models were generated using PyMOL. 
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Figure 4-3. Comparison of the overall structures of OsRac1(GMPPNP) and AtRop 

proteins. Main chains of the OsRac1(GMPPNP) (PDB code: 4U5X), AtRop4(GDP) 

(PDB code: 2NTY, chain B), AtRop5(GDP) (PDB code: 3BWD), 

AtRop7(apo)-PRONE complex (PDB code: 2WBL, chain C), and AtRop9(GDP) (PDB 

code:2J0V, chain B) were superimposed by using program PyMOL. The Switch I, 

Switch II, and the Insert region are colored as indicated in the inset legend. The 

GMPPNP and GDP were shown in the stick model (red, deep blue, and orange indicates 

O, N, and P atoms, respectively). The Mg2+ ion was shown as orange sphere. 
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Figure 4-4. Comparison of the structures of plant small GTPase on Switch II. (A) 

Ribbon drawing of OsRac1(GMPPNP) (PDB code: 4U5X). (B) Ribbon drawing of 

AtRop5(GDP) (PDB code: 3BWD). (C) Ribbon drawing of AtRop9(GDP) (pdbPDB 

code:2J0V, chain B). (D) Ribbon drawing of AtRop4(GDP)-PRONE8 complex (PDB 

code: 2NTY, chain B). (E) Ribbon drawing of AtRop7(apo)-PRONE complex (PDB 

code: 2WBL, chain C). The GMPPNP and GDP were shown in the stick model (red, 

deep blue, and orange indicates O, N, and P atoms, respectively). The Mg2+ ion was 

shown as orange sphere. 
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Figure 4-5. Structural difference in active site by Gln to Lue mutation between (A) 

Ras (GMPPNP) (PDB code: 3K8Y), (B) HsRac1(GMPPNP) (PDB code: 1MH1), 

(C) RhoAQ63L(GMPPNP) (PDB code: 1KMQ) and (D) OsRac1 (GMPPNP) (PDB 

code: 4U5X). The GMPPNP and GDP were shown in the stick model (red, deep blue, 

and orange indicates O, N, and P atoms, respectively). The Mg2+ ion and water 

molecules were shown as green sphere and red sphere, respectively. 
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Figure 4-6. Superimposition of the crystal structures of OsRac1(GMPPNP) (PDB 

code: 4U5X) and AtRop4(GDP)-PRONE8 complex (PDB code: 2NTY). Switch I, II 

and Insert regions of OsRac1 and AtRop4(GDP) are colored as green and light blue, 

respectively. GDP and GMPPNP are shown in the stick model (red, oxygen; blue, 

nitrogen; orange, phosphorus). The Mg2+ ion is shown as a green sphere. Models were 

generated using PyMOL. 
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Figure 4-7. Comparison of primary sequences between six RopGAPs and their 

conserved domains. (A) Amino acid alignment of the RopGAPs. (B) Amino acid 

alignment of the GAP-like domain of RopGAPs with various RhoGAPs. O.s., Oryza 

sativa; A.t., Arabidopsis; Sequence alignment was performed by using the Clustal W 

program. 

 

 

 

 

 

 

 

 

 



 117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-8. Structural models of the Osrac1•GAP complex. (A) Superimposition of 

the crystal structures of OsRac1(GMPPNP) (PDB code: 4U5X), HsRhoA-RhoGAP 

complex (PDB code: 1TX4) and AtRop9(GDP) (PDB code: 2J0V, chain B). (B) The 

crystal structure of HsRhoA-RhoGAP domain complex (PDB code: 1TX4). AlFx is 

shown in the stick model. (C) Superimposition of the crystal structures of 

OsRac1(GMPPNP) (PDB code: 4U5X) and HsRhoA-RhoGAP complex (PDB code: 

1TX4). (D) Superimposition of the crystal structures of HsRhoA-RhoGAP complex 

(PDB code: 1TX4) and AtRop9(GDP) (PDB code: 2J0V, chain B). GDP and GMPPNP 

are shown in the stick model (red, oxygen; blue, nitrogen; orange, phosphorus). The 

Mg2+ ion is shown as an orange sphere. Models were generated using PyMOL. 
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Figure 4-9. Structural models of the mechanism of GTP hydrolysis by GAP. 

(A) The crystal structure of HsRhoA-RhoGAP domain complex (PDB code: 1TX4). 

AlFx is shown in the stick model. (B) Superimposition of the crystal structures of 

OsRac1(GMPPNP) (PDB code: 4U5X) and HsRhoA-RhoGAP complex (PDB code: 

1TX4). The ribbon cartoons are rotated by 180° about the Y axis compared with the 

depiction in Figure 4-8.GDP and GMPPNP are shown in the stick model (red, oxygen; 

blue, nitrogen; orange, phosphorus). The Mg2+ ion is shown as an orange sphere. 

Models were generated using PyMOL. 
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Figure 4-10. Structural difference in SwitchI of OsRac1, HsRac1 and AtRop9 for 

the NADPH oxidase interaction. Main chains of the HsRac1-p67 phox complex (PDB 

code: 1E96), OsRac1(GMPPNP) (PDB code: 4U5X) and AtRop9(GDP) (pdbPDB 

code:2J0V, chain B) and were superimposed by using program PyMOL. The Switch I 

are colored as indicated in the inset legend. The GMPPNP and GDP were shown in the 

stick model (red, deep blue, and orange indicates O, N, and P atoms, respectively). The 

Mg2+ ion was shown as orange sphere. 
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5. GENERAL CONCLUSION 

In rice, small GTPase OsRac1 has emerged as a key activator of rice innate 

immunity. OsRac1 plays an important role in regulating the production of reactive 

oxygen species (ROS) by the NADPH oxidase OsRbohB during innate immunity.  

In this thesis, the crystals of OsRac1Q68L mutant was obtained (Chapter 2, Figure 

2-2) and structure of OsRac1 was determined as the first active-form structure of a plant 

small GTPase (Chapter 3, Figure 3-1 A). The structure of OsRac1 had a typical G 

domain fold structure. The overall structure of OsRac1 was similar to the GDP-bound 

form plant small GTPase proteins. However, structural differences were observed in the 

Switch I, Switch II and Insert regions (Chapter 3, Figure 3-2). 

The interaction analysis between OsRac1 and OsRbohB shown Tyr39, Val43, 

Phe44 and Asp45 residues of OsRac1 was important in the interaction with 

OsRbohB138-313	 (Chapter 3, Figure 3-9). Two of these, the Tyr39Ala and Asp45Ala 

mutants were markedly decreased in the levels of ROS (Chapter 3, Figure 3-8). NMR 

data also indicated that the tertiary structures of the Y39A and D45A mutants are folded 

(Chapter 3, Figure 3-6 D). These mutation sites (Tyr39, Val43, Phe44 and Asp45) were 

locating on the C-terminal region of switch I of OsRac1 and these results strongly 

suggest that C-terminal region of switch I of OsRac1 is interaction site with OsRbohB.  
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