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MEASURES WITH MAXIMUM TOTAL EXPONENT

OF ¢! DIFFEOMORPHISMS WITH BASIC SETS

YUSUKE TOKUNAGA

Abstract. We show that any C'-diffeomorphism with a basic set has a
C'-neighborhood satisfying the following properties. A generic element in the
neighborhood has a unique measure with maximum total exponent which is of
zero entropy and fully supported on the continuation of the basic set. To the
contrary, we show that for r > 2 any C"-diffeomorphism with a basic set does not

have a C"-neighborhood satisfying the above properties.

1 Introduction

This paper is a continuation of the research in [15]. We begin with stating
the background of our study. In 2001, G. Contreras, A. O. Lopes and Ph.

Thieullen [5] introduced Lyapunov minimizing (resp. maximizing) measures
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Diffeomorphism.
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of an expanding map on the circle as invariant Borel probability measures
minimizing (resp. maximizing) the integral of the Lyapunov exponent. A
Lyapunov maximizing measure is a kind of maximizing measures for a given
function, which are invariant Borel probability measures (with respect to a
fixed dynamical system) maximizing the integral of the function. Maximizing
measures are mainly considered in ergodic optimization formulated by O.
Jenkinson [9], and have been studied in various references (e.g., see [1], [4],
8], [10], [11], [12], [13], [17], [18], [22], [23]). In particular, O. Jenkinson and
I. D. Morris [13] proved that a generic C'-expanding map on the circle has
a unique Lyapunov maximizing measure with zero entropy and full support.
However such a measure can be defined only for maps on the circle, and
their argument works only on the circle. So it is natural to ask whether the
result is extended to expanding maps on a general compact manifold or not.
To consider the question, in [15], we introduced the notion of measures with
maximum total exponent including naturally Lyapunov maximizing measures
as a special case, and gave an affirmative answer. That is, we proved that
a generic Cl-expanding map on a compact manifold has a unique measure
with maximum total exponent, which is of zero entropy and fully supported.

Our work in this paper is also related to measures with maximum total ex-
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ponent, which are defined not only for expanding maps but also for C'-maps
with nonvanishing Jacobian. If a class of those maps is given, the following
is a natural and interesting question: Which properties about measures with
maximum total exponent are generic in the class? Moreover, if we consider
diffeomorphisms with hyperbolic structure, then an answer to the following

problem raised by O. Jenkinson (see [9] Problem 4.4) may be obtained:

Problem Let T': X — X be any transitive hyperbolic map on a compact
metrizable space X with local product structure. Find an explicit example

of a continuous function with a unique maximizing measure of full support.

Therefore we shall investigate diffeomorphisms with hyperbolic structure.
Now let us recall the definition of measures with maximum total exponent.
In order to study diffeomorphisms, we introduce a slightly generalized defini-
tion. Let M be a compact smooth Riemannian manifold without boundary.
It is also assumed to be connected throughout the paper. Let d(-,-) denote
the distance function on M induced by the Riemannian metric on M. Con-
sider a C!-diffeomorphism 7' : M — M and a compact T-invariant set A.
We denote by M (T, A) the space of all T-invariant Borel probability mea-

sures supported on A equipped with the weak-x topology. Let DT(x) be
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the derivative of T at x € M. We denote by J(T')(x) the Jacobian of T' at
x € M, i.e., J(T)(x) is the absolute value of the determinant of DT'(x). For

we M(T,A), we define

AT, p) = / log J(T)d,

and put A(T,A) = sup A(T,v). We call p a measure with maximum
veM(T,A)
total exponent on A for T if A(T,u) = A(T,A) holds. By virtue of the
Oseledec theorem, A (7T, u) is equal to the integral of the total Lyapunov
exponents of T" with respect to pu. Therefore we see that a measure with
maximum total exponent for 7' is a T-invariant Borel probability measure
maximizing the integral of the total Lyapunov exponents of T. Let L (T, A)
be the set of all measures with maximum total exponent on A for 7. Since T
is a C''-diffeomorphism and M (T, A) is compact, we see that £ (T, A) is not
empty. In our previous work [15], it was enough to consider only measures
with maximum total exponent on M since any expanding map can not be
decomposed into smaller parts because of its topological transitivity on M.
To study maps without the property, we need the notion of measures with
maximum total exponent not only on M but also on a compact invariant set

(especially, on a basic set mentioned below).

Next, we summarize terminology and notation about hyperbolic sets. Let
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A be an isolated compact T-invariant set with an isolating neighborhood U,

i.e., A = () TYU) holds. We assume further that A is hyperbolic for T,

1E€EL

i.e., there exists a DT-invariant splitting ThaM = E* @& E" of the tangent

bundle over A, satisfying || DT™(z)

gl < A" and || DT "(x)|pu|| < cA™, for

any * € A,n > 0, with constants ¢ > 1 and A € (0,1). Such a constant A is

called a skewness of T on A. We call A a basic set for T if T'|p : A — A is

topologically transitive. From Theorem 9.7.4 in [20], if S is close enough to T

in the C''-topology then ﬂZ SY(U) is isolated and hyperbolic for S. Moreover
ic

there exists a conjugacy map from () S*(U) to A. Therefore, in particular,
i€z,

we see that if A is a basic set for T then () S*(U) is a basic set for S. We
i€z

use Ag to denote the set ﬂZSi(U). Ag is called the continuation of A for S.
ic
As usual, for r > 1, let C"(M, M) denote the space of all C"-maps from
M to M equipped with the C"-topology and let Diff" (M) denote the set of
all C"-diffeomorphisms on M.

The following two theorems are our main results.

Theorem 1.1 Let T : M — M be a C-diffeomorphism with a basic set A.
Then there exists an open neighborhood U C Diff (M) of T such that each
of the following properties is generic in U.

(1) S has a unique measure with mazimum total exponent on the continuation
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Ag of A for S.
(2) Any measure with mazximum total exponent on Ag for S has zero entropy.
(3) Any measure with maximum total exponent on Ag for S is fully supported
on Ag.
In particular, for a generic element S in U, the measure with mazximum total

exponent on Ng is unique, ergodic, of zero entropy and fully supported on Ag.

For diffeomorphisms with higher regularity, we have the following result.

Theorem 1.2 Let r > 2. Consider a C"-diffeomorphism T : M — M with
a basic set A. Then for any sufficiently small neighborhood U C Diff" (M) of
T, any measure with mazimum total exponent on the continuation Ag of A
for a generic element S in U is not fully supported on Ag unless A\ itself is a

periodic orbit of T

From Theorem 1.2, we see that any C"-diffeomorphism with a basic set
never has a C"-neighborhood in which the properties in Theorem 1.1 are
generic. In order to prove Theorems 1.1 and 1.2, we modify the arguments
used in [13] and [15]. An advantage of our proofs is that we can deal with
a class of maps in which the continuations of a basic set are not constant.

In the proofs, conjugacy maps mentioned above play a more important role.
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So we give a precise construction of conjugacy maps. To do this, unlike that
in [15], we use not Contraction Principle but the shadowing lemma.

Next, we state two results obtained as applications of Theorems 1.1 and
1.2. Consider a diffeomorphism 7" on M. T is said to be C'-Q-stable if for
any element S in some C'-neighborhood of T', there exists a conjugacy map
from Q(S) to Q(T"), where ©(7') is the nonwandering set of 7. We say that T’
satisfies Axiom A if Q(7") is hyperbolic and the totality of periodic points of T’
is dense in Q(T'). It is known that every C'-Q-stable diffeomorphism satisfies
Axiom A (see [14] and [19]). So, by virtue of Smale’s spectral decomposition
theorem (see Theorem 3.5 in [3]), the nonwandering set for an C'-Q-stable
diffeomorphism is written as the union of finitely many disjoint basic sets. In
addition, from the definition, the totality of C'*-Q-stable C"-diffeomorphisms
is open in Diff"(M). Therefore we easily see that our proofs of Theorems
1.1 and 1.2, following O. Jenkinson and I. D. Morris’ idea, provide local
properties about measures with maximum total exponent in C*-Q-stable C"-
diffeomorphisms. Furthermore, by using another method, we can prove the

following two stronger theorems.

Theorem 1.3 FEach of the following properties is generic in C'-Q-stable O -

diffeomorphisms:
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(1) There exists a unique measure with mazimum total exponent on M.

(2) Any measure with mazimum total exponent on M has zero entropy.

(3) Any measure with mazimum total exponent on M is fully supported on
one of the basic sets in the spectral decomposition.

In particular, a generic C*-Q-stable C*-diffeomorphism has a unique measure

with maximum total exponent on M, which is ergodic, of zero entropy and

fully supported on one of its basic sets in the spectral decomposition.

Theorem 1.4 Let r > 2. Then any measure with mazimum total exponent
on each basic set in the spectral decomposition for a generic C1-Q)-stable C-
diffeomorphism is not fully supported on the basic set unless the basic set itself
1s a pertodic orbit. In particular, any measure with maximum total exponent
on M for a generic C*-Q-stable CT-diffeomorphism is not fully supported on

any basic set unless the basic set itself is a periodic orbit.

We see that Theorem 1.3 gives a partial answer to Problem. Indeed,
measures with maximum total exponent for 7" are maximizing measures for
the function log J(7T'). Moreover, the totality of Anosov diffecomorphisms with
topological transitivity is open in the space of C'-Q-stable C'!-diffeomorphisms.
Therefore, if X is a compact manifold, we obtain the following result (see

also Remark after the proof of Theorem 1.4).
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Corollary 1.1 For a generic Anosov diffeomorphism T : X — X with topo-

logical transitivity, log J(T') is a function required in Problem.

This paper is organized as follows. In Section 2, we summarize some
fundamental results on uniform hyperbolic dynamical systems. Section 3
is devoted to the proofs of Theorems 1.1 and 1.2. In Section 4, we prove

Theorems 1.3 and 1.4.
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The author would like to thank Professor Takehiko Morita and the anony-

mous referee for valuable comments and suggestions.

2 Preliminaries

We summarize some properties of hyperbolic dynamical systems needed in

this paper. Let T : M — M be a Cl-diffeomorphism. Let 3 be a positive

n
=m

number. Consider a sequence of points {x; contained in M (we admit

the case of m = —oo or n = 00). If

d(Tz;,xiv1) < B for any i € {mym+1,...,n—1},
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then {z;}7_,, is called a [-pseudo-orbit of T'. For a pseudo-orbit {z;}2 ___,

if there exists n € N such that x;,, = z; for any ¢ € Z, then we say that

{z;}52 is periodic. Moreover, let o be a positive number. For y € M, if

d(T'y,z;) <o for any i € {m,m+1,...,n},

then we say that y a-shadows {z;}!, by T. We treat only the case of
m = —oo and n = oo in this paper. So we write as {z;} instead of {z;}3°___

for the sake of simplicity. We need the following lemma (see Theorem 9.3.1

in [20] for the proof).

Lemma 2.1 Let T : M — M be a C'-diffeomorphism with a basic set A.
For any o > 0 there exist f > 0 and n > 0 such that if {x;} is a B-pseudo-
orbit of T satisfying d(z;, A) < n for any i € Z then there exists a unique
point y in A which a-shadows {x;} by T. Moreover, if a 3-pseudo-orbit {z;}

of T is periodic, the a-shadowing point of {x;} is a periodic point of T'.

Consider a C!-diffeomorphism 7' : M — M with a basic set A. Then it is
well-known that there exists an open neighborhood U of T' in the C''-topology
satisfying the following properties (see [7] and [20]):

(1) For any S € U, the continuation Ag of A for S is a basic set for S.

(2) There exists X' € (0,1) which is a skewness of S on Ag for any S € U.
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A number 8 > 0 as in Lemma 2.1 is obtained depending on a > 0 and a
skewness of T" on A. Therefore, by simple modification, we can generalize

Lemma 2.1 as follows.

Lemma 2.2 Let T : M — M be a C'-diffeomorphism with a basic set A.
Then there exists an open neighborhood U of T in the Ct-topology satisfying
the following property. For any o > 0 there ezist 3 > 0 and n > 0 such that
for any S € U if {z;} is a B-pseudo-orbit of S satisfying d(z;, As) < n for
any i € 7 then there ezists a unique point y in Ag which a-shadows {x;}
by S. Moreover, if a B-pseudo-orbit {z;} of S is periodic, the a-shadowing

point of {z;} is a periodic point of S.

Let T : M — M be a C'-diffeomorphism with a basic set A. By the
shadowing lemma and topological transitivity of 7" on A, we see that the set
of all periodic points of 7" is dense in A. It is well-known that a hyperbolic
set 2 for T is isolated if and only if €2 has local product structure, i.e., there

exists r > 0 such that W*(p) N W;(q) C Q for any p,q € 2, where
Wi (p) ={x € M|d(T"p, T "x) <r for any n >0}
is the local unstable manifold at p and

W (q) = {x € M|d(T"q, T"x) <r for any n > 0}
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is the local stable manifold at ¢q. This fact enable us to obtain the spectral
decomposition of A in the sense of Smale in the same way as in the proof
of Theorem 3.5 in [3]. More precisely, A can be written as X; U --- U X,
where the X; are pairwise disjoint closed sets such that 7'(X;) = X, for any
ie{l,...,n—1} and T(X,) = X;. Moreover, each T"|x, is topologically
mixing and C-dense, i.e., W"(p) N X; is dense in X; for any periodic point

p € X; of T", where
W(p) = {x € M[d((T")""(p),(T")""(x)) — 0 as m — oo}

is the global unstable manifold at p. Therefore we can show the following

lemma in the same way as the proof of Lemma 1 and Lemma 2 in [21].

Lemma 2.3 Let T : M — M be a C*-diffeomorphism with a basic set A.

Then we have the following.

(1) Let M,(T,A) be the set of all T-invariant measures supported on a
periodic orbit in A. Then M,(T,A) is dense in M(T,A) in the weak-x
topology.

(2) Let Y be a proper closed subset of A. Then for any p € M(T, A) with
supp(p) C Y, there exists a sequence p, € M,(T,A) such that y,
converges to pu in the weak-x topology and supp(i,) N (ﬁo T"Y) =10

for any n.
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Next, we show that basic sets are stable (see [7] and Theorem 9.7.4 in [20]).

Lemma 2.4 Let T : M — M be a C*-diffeomorphism with a basic set A.
If S is a Cl-diffeomorphism close enough to T in the C*-topology, then S is

hyperbolic on As and there exists a homeomorphism hs : Ag — A such that

Tohg = hgoS on Ag. Furthermore both sup d(hs(z), ) and sup d(hg'(z), x)
r€EAg zEA

go to 0 if S is in some neighborhood of T in the Cl-topology and S goes to

T in the C°-topology.

Proof. As mentioned above, if S is close enough to T in the C''-topology,
then Ag is a basic set for S. We just construct a homeomorphism hg : Ag — A
as desired.

Since A is a basic set for T', as shown in [16], there exist a neighborhood
U, of T in the C'-topology and a positive number « such that each element
S € U, is expansive on Ag with expansive constant «, i.e., x,y € Ag and
r # y yields that d(S'z, S'y) > « for some i € Z. Moreover, by Lemma
2.2, we see that there exist a neighborhood Us C U; of T independent of
a,0 < [ < «a/2 and n > 0 such that if S € Uy then any [-pseudo-orbit of
S contained in an n-neighborhood of Ag is a/2-shadowed by S by a unique

point in Ag. Now we take an isolating neighborhood U of A such that
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N
T'(U) C B(A,n) :=={x € M|d(x,A) <n} for some N; € N.
Ny

Then we can take a neighborhood U C U, of T in the C*-topology such that

it S € U then
N1 )
N sw)cB@

and sup d(Sz,Tz) < 3. For any z € Ag, {S‘z} is a S-pseudo-orbit of T
zeM

contained in an n-neighborhood of A. Therefore there exists a unique point
hs(x) in A such that d(T%(hs(x)),S'z) < a/2 for any ¢ € Z. This means
that
—i i &
{hs()} =T <B (s z, 5)) .
€L
We define the map hg : Ag — A in this way.

Next, we verify that hg : Ag — A is continuous. For any ~ > 0, there

exists Ny € N with

) 7 (8 (s05)) 8 (1. 3).

Therefore, if y € Ag is close enough to x then we have

Na

thswic () 77 (B(S'.3)) € Blhs(a).).

i=—Np
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Thus, we see that hg : Ag — A is continuous. Moreover, for any =z € Ag,
we obtain that d(T%(hg(Sz)), S"(Sz)) < /2 for any i € Z. This means that
d(TH (T~ (hg(Sz))), S 'z) < a/2 for any ¢ € Z. From the uniqueness of
the shadowing point hg(z), we have T'o hg = hgo S on Ag.

Next, we verify that hg : Ag — A is a homeomorphism. Note that we
may assume that for any S € U, A is contained in B(Ag,n) (see Theo-
rem 7.3 in [7]). For any z € A, {T"z} is a (B-pseudo-orbit of S contained
in an n-neighborhood of Ag. Therefore, there exists a unique point gg(x)
in Ag such that d(S%(gs(z)),T'z) < /2 for any i € Z. We define the
map gs : A — Ag in this way. Since gs(z) € Ag for any x € A, we have
d(T"(hs(gs(x))), S(g9s(z))) < a/2 for any i € Z. Therefore we obtain that
d(T(hs(gs(z))), T?x) < « for any ¢ € Z. Thus, from the property of a, we
have hg(gs(x)) = x for any x € A. Similarly we have that gs(hs(z)) = @
for any x € Ag. Hence we see that hg : Ag — A is a homeomorphism and
hg' = gs. Moreover, by Lemma 2.2, we see that if S € ¢ and sup d(Sxz, Tx)

zeM

goes to 0 then both sup d(hs(z),z) and supd(hg'(z), ) go to 0. Therefore
r€EAg TEA

we see that the last assertion is valid. [J
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Next, we summarize some facts on invariant measures and entropy. As
usual, A(T, i) denotes the metric entropy of 7' with respect to the T-invariant

measure [.

Lemma 2.5 Let T : M — M be a C*-diffeomorphism with a basic set A.

Let {T;,} be a sequence of C-diffeomorphisms close enough to T in the C*-

topology and converging to T in the C°-topology. Then we have the following.

(1) Any u € M(T,A) is the weak-x limit of a sequence of measures {j,}
satisfying p, € M(T,,, Az, for any n.

(2) If {pn} is a sequence of measures satisfying p, € M(T,, Ar,) for any n,
then any weak-x accumulation point of {u,} belongs to M(T, A).

(3) If {pn} is a sequence of measures satisfying p, € M(T,,Ar,) for any n

converging to p in the weak-x topology, then we have

limsup h(Ty, pin) < W(T, ).

n—oo

Proof. For each n € N, let h,, : Ay, — A be the homeomorphism as in
Lemma 2.4.

(1) For each n € N, put u,, = proh,,. Then we see that pu,, is in M(T,,, Ar,).
Moreover we can show that {u,} converges to u in the weak-* topology in

the same way as the proof of the assertion (a) of Lemma 3 in [13].
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(2) Without loss of generality, we may assume that {y,} converges in the
weak- topology. For each n € N, put v, = u, o h'. Then we see that v, is
in M(T,A). Furthermore we can show that {u,} and {v,} converge to the
same measure in the weak-* topology in the same way as the proof of the
assertion (b) of Lemma 3 in [13]. Since M(T, A) is compact, we see that the
limit of {u,} belongs to M(T,A).

(3) Since T is expansive on A as mentioned in the proof of Lemma 2.4, the
entropy map M(T,A) — R; u — h(T, ) is upper semi-continuous as shown
in Theorem 8.2 in [24]. For each n € N, we have that p, o h, ! is in M(T, A)
and (T, pn) = W(T, p, o h't). Moreover, since {u, o h'} converges to u in

the weak-* topology, we obtain

lim sup A(T},, pn) = limsup h(T, pt,, 0 h,') < W(T, ). O

n—oo n—0o0

Finally, we state a fact on measures with maximum total exponent.

Lemma 2.6 Let T : M — M be a Cl-diffeomorphism with a basic set A. If
{T,} is a sequence of C*-diffeomorphisms converging to T in the C*-topology
and {p,} is a sequence of measures satisfying p, € L(T,,Ar,) for any n,

then any weak-* accumulation point of {u,} belongs to L(T, A).
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Proof. For any sufficiently large n, T, satisfies the condition of Lemma
2.4. Without loss of generality, we may assume that {u,} converges to a
measure p in the weak-+ topology. By the assertion (2) of Lemma 2.5, we
have that p is in M(T, A). Take any v € M(T, A). Since {T,,} converges to
T in the C*-topology, {J(T,)} converges to J(T') uniformly on M. Thus, by
using the assertion (1) of Lemma 2.5, we can show A\(T, ) > AT, v) in the

same way as the proof of Lemma 5 in [13]. O

3 Proofs of Theorems 1.1 and 1.2

In this section, we shall prove Theorem 1.1 and Theorem 1.2. We need a
theorem on perturbation of C*-diffeomorphisms to prove these two theorems.
We prepare a special fundamental neighborhood system in the C'-topology

to state the theorem. Consider a C*-map T': M — M. Let {(¢;,U;)}/_; be a

j=1
J

C>-atlas of M. Let C; C U, be a compact subset with |J C; = M. For each
j=1

j€{1,...,J}, there exists a family {Cj,l}lL:jl of compact subsets such that

L;
we have that |J C}; = C; and T(C};) C Uy, for some k(j,1) € {1,...,J}.
=1



MEASURES WITH MAXIMUM TOTAL EXPONENT 19
For € > 0, we define

N(T,e):={S € CY(M,M) | S(C};) C Uxpy for any j€{1,...,J} and

le{l,...,L;},supd(S(z),T(x)) < € and

xeM

. (e,
2% B, 1 1P © 5o 2 )6

— D(prp o T o ') (p(@))ll < e}
It is well-known that {N (T, €)|e > 0} is a fundamental neighborhood system
of T' composed of open sets in the C!'-topology. Now we state a perturbation

theorem which we need to prove Theorem 1.1 and Theorem 1.2.

Theorem 3.1 Let T : M — M be a C'-diffeomorphism. Let xy € M be a
periodic point of T with least period p. Then there exists g > 0 depending
only on T such that for 0 < e < €y and v > 0, there exists 9 > 0 such that
for 0 < & < &, there exist neighborhood U} of Tz for any 0 <i <p—1 and
a Cl-diffeomorphism Ty satisfying the following properties:

(1) Tizg = T'zy for any i € Z.

Q) UiNnUl =0 ifi#j, U, CUif0< & <8, and () Ui={T'z}.
0<6<do
p—1

(3) Tsx =Tz for any x € M\ |J U}
i=0

(4) sup d(Ts(x), T(z)) < Koo and Ts € N (T, Kq€), where Ky and K, are
xeM

constants independent of €,y and d.
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(5) Define Gs : M — R;x — log(J(Ts)(z)/J(T)(x)). Then Gs(Tizo) = € for
any i € 7.

(6) sup Gs(z) < e+ 1.
zeM

Such a kind of perturbation theorem for C'-maps with nonvanishing Ja-
cobian is proved in Section 3 in [15] with ¢¢ = 1. As a corollary to the
theorem we also obtain the corresponding result for C'-expanding maps (see
Corollary 1 in Section 3 in [15]). The corollary is proved by applying the
perturbation theorem with ¢, so small that the perturbed map can be ex-
panding. In the present situation, it suffices to apply the same perturbation
theorem to a C'-diffeomorphism with €, so small that the perturbed C'-map
can be a diffeomorphism. Thus we see that Theorem 3.1 is an easy con-
sequence of the perturbation theorem in Section 3 in [15]. So we omit the
proof.

Theorem 3.1 might remind us of the Franks lemma (see Lemma 1.1 in [6]).
Like Theorem 3.1, the Franks lemma is a theorem on perturbation of C*-
diffeomorphisms on a finite set (not necessary a periodic orbit different from
Theorem 3.1). But the Franks lemma does not insist that we can take a
sequence of Cl-diffeomorphisms converging to given C'-diffeomorphism in

the C°-topology keeping the property (5) in Theorem 3.1. Therefore our
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Theorem 3.1 is more useful for us than the Franks lemma in this sense.

Now we prove Theorem 1.1. Fix a OC'-diffeomorphism 7 : M — M with
a basic set A. As in the proof of Lemma 2.4, there exist a C''-neighborhood
U, C Diff (M) of T and a > 0 such that each element S € U, is expansive on
As with expansive constant a. By Lemma 2.2, there exist a neighborhood
Uy C Uy of T independent of o, 0 < [ < a/4 and n > 0 such that if
S € Uy then any [-pseudo-orbit of S contained in 7-neighborhood of Ag
is a/4-shadowed by S by a unique point in Ag. Then we construct a C*-
neighborhood U C Uy of T as in the proof of Lemma 2.4.

Let p be a metric on the space M(M) of all Borel probability measures
on M not necessary invariant inducing the weak-* topology such that for any

w,v € M(M) and any A € [0, 1], we have

plp, (L =N+ Av) <A (3.1)

It is well-known that such a metric p exists. We prove the following proposi-
tion to show that a generic element in U satisfies the properties (1) and (2)

of Theorem 1.1.
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Proposition 3.1 For x > 0, put

R, ={S eU | diam,(L(S,As)) < K},

Se=A{SeU| sup (T ) < Khiop(S|as)},
/'LEE(S7AS)

where hiop(S|ag) is the topological entropy of S|ag. Then both R, and S, are

open and dense in U.

Proof. First, we show that R, is open inU. Let S,, € U\ R, be a sequence
converging to S € U in the C'-topology. Then by compactness of £(S,, Ag,)
there exist p,, vy, € L(Sy, Ag,) with p(u,, ) > k. Taking subsequences, we
may assume that u, and v, converge to p and v, respectively. By Lemma
2.6, we obtain that p and v are in £(.S, Ag). Thus we have that p(u,v) > &,
consequently R, is open in U.

Next, we show that S, is open in 4. By Lemma 2.4, we see that for
any S € U, S|a, is topologically conjugate to T'|y. Therefore we have that
hiop(S|ag) = hiop(T'|a) for any S € U. Let S,, € U\ S, be a sequence converg-
ing to S € U in the C'-topology. Then, by compactness of £(S,,Ag,) and
upper semi-continuity of the entropy map M(S,,As,) — R; u +— h(S,, p),
there exists p, € L(Sn,Ag,) with (S, p,) = sup  h(Sp, ). Taking

HEL(Sn,As,)

a subsequence, we may assume that p, converges to p. By Lemma 2.6, we
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obtain that u is in £(S, Ag). By the assertion (3) of Lemma 2.5, we have

Khtop(S|ag) < limsup h(Sy, pn) < (S, p).

n—oo

Thus we see that S, is open in U.

Finally, we show that R, and S, are dense in . Take any S € U and
any 0 < € < €y, where ¢y > 0 is as in Theorem 3.1 for S. By the assertion
(1) of Lemma 2.3, we have a periodic point xzy € Ag for S with least period

p such that

K€

/log J(S)dpo > A(S, Ag) — 3 (3.2)

where po = (1/p) 3:: iz, 1s a periodic measure of S. Applying Theorem 3.1
to S and xy with v = (ke)/8, we have a perturbation Ss along the orbit of
for S. By the assertion (1) of Theorem 3.1, we see that i is in M(Ss, Ag,).
Moreover for any sufficiently small 0 < € < €, we see that Ss is in U. By the

assertion (5) of Theorem 3.1 and the inequality (3.2), we obtain

(S, As,) > /log J(S5)dyo = /log J(S)dpo + /G(;d,uo > (S, Ag) + (1 - g) c.
(3.3)

Take any strictly decreasing sequence 0 < 9,, < dy converging to 0 and any

pn € L(Ss,,As; ), where g > 0 is as in Theorem 3.1 for S, e and 7. By
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the assertion (4) of Theorem 3.1, we see that Ss, converges to S in the C°-
topology. Taking a subsequence, we may assume that pu, converges to u. By
the assertion (2) of Lemma 2.5, we see that u is in M(S, Ag). Therefore for

any sufficiently large n, we have

/Gandﬂn — /log J(Ss, )dptn — /1°g J(S)dpin (3.4)

K
> A(Ss,, Mgy, ) — (A(S, As) + §E> .

From the inequalities (3.3) and (3.4), for any sufficiently large n, we obtain

/ngdun > (1 . Z) c. (3.5)

Now for any 0 < § < &y and any 0 < ¢ < p—1, let U} be the neighborhood of

. p—1 )
S'zg as in Theorem 3.1. Put Us = |J U}. Since {6, } is a strictly decreasing
i=0

sequence, by the assertion (2) of Theorem 3.1, we have that U, , C Us, for

n+1

any n, and [ Us, = Os(xg), where Og(xo) is the orbit of zo for S. Then by

n=1

the assertions (6) and (3) of Theorem 3.1 together with the inequality (3.5),

we obtain

1a(Us,) > (H%)_l e! /U G, din = (H%)_l e—lfGandun

n

>(1+“)_1(1 “)>1 3K
8 1 g
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Note that p,,,(Us,) > pm(Us,, ) for any n < m. Since p, converges to p in

the weak-* topology, for any n, we have

_ - 3
1(T5,) = limsup i (T5,) > 1 - =

m—00 8

Since () Us, = Os(wp), we have u(Og(zo)) > 1 — (3x)/8. Therefore we see
n=1

that u = (1 — (3x)/8) o + ((3)/8)j1, where 1 € M(S, Ag). Thus, from the

property (3.1) of p, we have

. 3K
Qi p(yen, po) = s o) < -
Hence we obtain that S5 € R, for any sufficiently small 6 > 0. Moreover,

from the assertion (3) of Lemma 2.5, we have

) 3K B 3K
lim sup h(Ss, ) < A(S, 1) = Z0(S, 1) L huop(Sa)

n—oo

Hence we obtain that S5 € S, for any sufficiently small 6 > 0. By the
assertion (4) of Theorem 3.1 and the arbitrariness of € > 0, we see that R,

and S, are dense in U. I

Next we give a proposition which implies that a generic element in U/
satisfies the property (3) of Theorem 1.1. For S € U, let hg : Ag — A be
the homeomorphism constructed in Lemma 2.4. Then we have the following

proposition.
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Proposition 3.2 For a nonempty proper closed subset Y of A, put

MY Y)={S el | supp(p) C hg'(Y) for some p € L(S,As)}.
Then MY (Y) is closed and nowhere dense in U.

Proof. First, we show that M'(Y) is closed in U. Let S, € M (Y) be a
sequence converging to S € U in the C'-topology. Let u, € L£(S,,As,) be
a sequence with supp(u,) C hgj (Y). Then, by Lemma 2.6, we see that any
weak-+ accumulation point p of {u,} is in £(S, Ag). Taking a subsequence,
we may assume that p, converges to p. Since hgl ohg, : Ag, — Ag is a
unique homeomorphism such that S o hgl ohg, = hgl ohg, oS, on Ag, and
d(S'(hg' o hs, (7)), Si(z)) < /2 for any x € Ag, and any i € Z, we have
that hgj converges to hgl on A in the C%topology. Therefore we see that
JTe hgj converges to p o hgl in the weak-* topology. Since Y is closed, we

have

p(hs' (V) > limsup pu, (hg' (V) = 1.

n—oo

Thus M(Y) is closed in U.
Next, we show that M*(Y') is nowhere dense in Y. Take any S € M*(Y)
and any 0 < € < €y, where ¢y > 0 is as in Theorem 3.1 for S. Let u be a

measure in £(5, Ag) with supp(p) C hg'(Y). By the assertion (2) of Lemma
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2.3, we have a periodic point o € Ag for S with least period p such that

Os(x) N (Fjo s—i(hsl(Y))) — 0 and

/ log J(S)djio > A(S, Ag) — e, (3.6)

p—1
where py = (1/p) > dgiz,. Applying Theorem 3.1 to S and o with v = 1, we
i=0
have a perturbation S5 along the orbit of z( for S. By the assertions (1) and
(4) of Theorem 3.1, we see that yg is in M(Ss, Ag,) and sup d(Ss(z), S(x)) <
xzeM

Ky6, where Ky > 0 is as in Theorem 3.1 for S. Moreover, for any sufficiently

small 0 < € < ¢, we see that S5 is in . Now take a positive integer

Ny with Og(zo) N (E]; S‘i(hSI(Y))> = (. Put Yy, = ;(j S=i(hg'(Y)) and

No
Y5 = U N R(hz'(Y)), where dy(R, S) = sup d(R(z), S(x)).
ReU:do(R,S)<Kob i=0 weM
Note that Yy, = [ Yaye. Take 0 < ¢’ < 0 < dy such that
6>0

inf  d(Og(xo),y) > Ky,

YE€YNy,6

Ul C B(S'xg, Kod) for any 0<i<p-—1,

where § > 0 is as in Theorem 3.1 for S, e and v, and U}, is the neighborhood
of S'zg as in Theorem 3.1. Then, by the assertion (3) of Theorem 3.1, we see
that Sy = S on Yy, s. Therefore, by continuity, we obtain that Sy = S on

Y5 We see that if 1 € M(Ss, Ag,) and pu(hg!(Y)) = 1 then u(Yy,s) = 1.
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Therefore for any measure p with (Y, 5) = 1, we see that p is Sy-invariant if
and only if y is S-invariant. Since Sy = .S on Yy, s, for any u € M(Ss/, Asg,, )

with ,u(hgéll(Y)) =1, we have

/log J(Ss)dp = /log J(S)du < A(S, Ag). (3.7)

From the inequality (3.6) and the assertion (5) of Theorem 3.1, we have

A(S,Ag) < /10g J(S)dpo + € = /log J(Ss)d - (3.8)

Therefore, from the inequalities (3.7) and (3.8), we obtain

/ log J(Sy)dyt < / log J(Sy ) dyio.

Thus we have that p is not in £(Sy, As,, ), consequently Sy is not in M*(Y').
By the assertion (4) of Theorem 3.1 and the arbitrariness of € > 0, we see

that M*(Y) is nowhere dense in U. OJ

Now we are in a position to finish the proof of Theorem 1.1. By Propo-
sition 3.1, ) Ry /n and N S /n are residual subsets of U and any elements
n=1 n=1
in () Riyn and () Si/n satisfy the property (1) and (2) of Theorem 1.1,
n=1 n=1

respectively. This completes the proof that a generic element in U satisfies

(1) and (2) of Theorem 1.1.
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Next let {B,} be a countable open basis of A. We may assume that

B, # 0 for any n. Put Y, = A\ B,. By Proposition 3.2, we see that

N U\ M(Y,))is aresidual subset of U/ and any element in () (U \ M'(Y},))
n=1 n=1

satisfies the property (3) of Theorem 1.1. This completes the proof that a
generic element in U satisfies (3) of Theorem 1.1.

In order to verify the second assertion in Theorem 1.1, it suffices to show
that the unique measure with maximum total exponent on Ag for S satisfying
(1) of Theorem 1.1 is ergodic with respect to S. To this end, let x be the
unique measure with maximum total exponent on Ag for S. Then by virtue
of the ergodic decomposition theorem, we see that there exists a probability
measure 7 on the set € (S, Ag) of all ergodic measures with respect to S|,

such that

/log J(S)du = /S(S,AS) (/ log J(S)dy) dr(v).

Since p is a measure with maximum total exponent on Ag for S, we see that
T-a.e. v must be a measure with maximum total exponent on Ag for S.

Therefore we can easily see that the uniqueness of p yields its ergodicity.

Finally, we prove Theorem 1.2. We need the following lemma (see Theo-

rem 4.7 in [9]).
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Lemma 3.1 Let T : M — M be a C'-diffeomorphism with a basic set A.
Then for any Holder continuous function f : A — R, there exists a continu-

ous function ¢ : A — R such that

f+ro—poT < sup /fdu on A.
neM(T,A)

We omit the proof (for the proof, see [2]).

Proof of Theorem 1.2. If A consists of a periodic orbit of T', then The-
orem 1.2 follows by Lemma 2.4. We assume that A is not a periodic orbit
of T. Since T is C" (r > 2), J(T) is a Lipschitz continuous function on A.
Therefore, by Lemma 3.1, there exists a continuous function ¢ : A — R such

that
JT)+¢p—poT <XNT,A) on A.

If there exists a u € L(T, A) such that supp(u) = A then we must have
JT)+¢p—poT =XNT,A) on A.

Therefore we obtain £(T,A) = M(T,A). Since A is not a periodic orbit of
T, there exist two distinct periodic orbits of T" contained in A. Therefore,

by perturbing along a periodic orbit, we can construct a C"-diffeomorphism
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S close enough to T in the C"-topology satisfying £(S,As) # M(S,Ag).
Moreover, for any sufficiently small neighborhood U C Diff" (M) of T, the
set of all C"-diffeomorphisms S € U such that supp(u) = Ag for some p €

L(S,Ag) is closed in U. Thus, we see that this set is closed and nowhere

dense in 4.

4 Proofs of Theorems 1.3 and 1.4

In this section, we show Theorems 1.3 and 1.4. Consider a C!-diffeomorphism
T : M — M. For simplicity, we write A\(T"), £(T') instead of (T, M),
L (T, M), respectively. We say that a point x € M is nonwandering for T if
for any open neighborhood U of z there exists n > 1 with T-"(U) N U # (.
Note that €(7") as in Section 1 is the set of all points which are nonwandering
for T. Tt is well-known that Q(T") # 0, T(T)) = Q(T) and Q(T) is closed.
Recall that a C'-diffecomorphism 7' : M — M is C'-Q-stable if there exists
a neighborhood U of T in the C'-topology such that for any S € U there
exists a homeomorphism A : Q(S) — Q(T') such that T oh = ho S on Q(S).
For r > 1, we denote by 7" the totality of C'-Q-stable C"-diffeomorphisms.

From the definition, we see that the set 7" is open in Diff "(M). It is known
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that every element in 7' satisfies Axiom A (see [14] and [19]). Moreover,
by Smale’s spectral decomposition theorem (see Theorem 3.5 in [3]), for any
Axiom A diffeomorphism 7', its nonwandering set Q(7") can be written as
A1 U --- U Ay, where each A; is a basic set for T in our sense. Note that
some authors use the term ‘basic set” only for the basic set appearing in the
spectral decomposition. Let T be an element in 7. Since T satisfies Axiom
A, it has the spectral decomposition Q(T) = Ay U---UAN;,. If S € T!is
sufficiently close to T', then we have the following:
(1) By definition, there exists a homeomorphism h : Q(S) — Q(7T) such that
Toh=hoS on§S).
(2) By Lemma 2.4, we can consider the continuation A; ¢ of A; for S and a
homeomorphism h; s : Aj s — A; satisfying T'o h; s = h; g0 S on A; g for

each i € {1,...,k}.

In particular, h|a, ; = his for each i € {1,... k} and Q(S) = Ay sU---UAy g
is the spectral decomposition for S. Therefore we can apply Theorem 1.1 to
the space 7.

Proof of Theorem 1.3. Consider the subset 7;' of 7' consisting of all

elements 7" such that there exists a basic set A satisfying A (T") = A (T, A) >
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A (T, A') for the other basic sets A’ in the spectral decomposition, i.e.,

Ty ={T €T"| L(T) = L(T,A)holds for some basic set A in the spectral
decomposition}.

Obviously such a basic set A is determined uniquely by T € 7;'. So we denote
it by A(T) in the sequel.

First we show that 7' is open and dense in 7'. Let T,, € 7'\ 73 be
a sequence converging to 7' € 7' in the C*-topology. Since T is in 7, we
may assume that any 7T, is topologically conjugate to T on the respective
nonwandering sets. Let Q(7T) = A; U--- U Ay be the spectral decomposition
for T. For n € N, we may assume that 7T, has the spectral decomposition
QT,) = A U---UA, such that for each i € {1,...,k}, A,; is the
continuation of A; for 7,. Taking a subsequence and renumbering, we may
assume further that A (7., An1) = A (Th, An2) = A(T},) for any n € N. For
each n € N, let u, be a measure in £(7,,,A,,1). Then, by Lemma 2.6, we
see that any weak-* accumulation point of {u,} is in £(7T, A;). Therefore we
see that A (T,, A, 1) converges to A (T, Ay). Similarly A (T, A, 2) converges
to A(T,Ay). Since A (T, An1) = AN(Tn,An2) = X(T,) for any n € N, we
obtain that A (T, A;) = A (T, Ay) = A (T). Thus we have that T is not in 7!,

consequently 7' is open in 7.
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Next we take any T € T'. Let Q(T) = A; U--- U A; be the spectral
decomposition for 7. By renumbering if necessary, we may assume that
A(T) = A(T,A;). By Lemma 2.3, for any € > 0 we can find a periodic point
xo of T in Ay such that the T-invariant measure v supported on its orbit
satisfies A (T,v) > A(T) — ¢/2. Consider the positive number €, found in
Theorem 3.1 for T'. Recall that we can apply Theorem 3.1 to T and =z if
€ > 0 is smaller than ¢,. Therefore given any neighborhood & C 7' of T in
the C'-topology, we can choose an € with 0 < € < ¢, a periodic point xy of T
and a C'-diffeomorphism S such that they satisfy the following conditions.
(a) S coincides with T on the periodic orbit Or(z) and an open set

containing Q(T') \ A;.

(b) SeU.
() A(S;A15) > A(S,v) = AX(T,v) +e€ > XN(T) + ¢/2, where Ay g is the

continuation of A; for S.

Note that (a) follows from the assertions (1) and (3) in Theorem 3.1. (b) and
(c) are consequences of the assertions (4) and (5), respectively. Obviously,
the condition (a) implies that v is an S-invariant measure and (S) = Ay U

Ay U -+ UAy is the spectral decomposition for S. In particular, 7" and S
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coincide on Ay U --- U Ay. Thus we have

A(S, Ars) > A(T) + %

@)

= max A\ (T, \;) + =

1<i<k

[\]

> zrg?é)\ (S, A;) + %
This yields that A (S) = A (S, A1 5) > 2n§1iag>§€)\ (S,A;)+¢/2and S € 7;'. Hence
7. is dense in T".

Now we show that the properties (1), (2) and (3) of Theorem 1.3 are
generic in 7'. To this end it suffices to show that the properties (1), (2)
and (3) are generic in 7' since 73 is open and dense in 7'. For each
T € 73, we can apply Theorem 1.1 with A = A(T). Therefore we can
find an open neighborhood Ur C 7;' of T such that the properties (1),
(2) and (3) of Theorem 1.1 are generic in Uy and A (S) is the continua-
tion A(T)g of A(T) for each S € Up. Combining this with the fact that
L(T) = L(T,A(T)) holds for any T € 73, we see that the properties (1),
(2) and (3) of Theorem 1.3 are also generic in Uy. Since Diff'(M) is sec-
ond countable, we can take a countable open base 4. Consider its subfamily
U = {U € 4| U C Uy for some T € 7'}, where U denotes the closure of U in

Diff'(M). Obviously U is a countable family of open sets. Since Diff' (M) is

metrizable and |J Ur = 7', we easily see that |JV = 7!, where the union
TeTy v
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is taken over V € U. Now we put

T' = {T €T, | T satisfies the properties (1), (2) and (3) of Theorem 1.3}.

Then for any T' € 7', we obtain that 7’ N Ur is a residual subset of Ur.
Since for any V € U we have that V C Uy for some T € 7', we see that
(T'NV) U (T,\ V) is a residual subset of 7;'. Since LVJV = 7', we obtain
that

T = (T V) U (T} D)),

where the intersection is taken over V € 2. Thus 7" is a residual subset of
7. Hence we conclude that the properties (1), (2) and (3) of Theorem 1.3
are generic in 7.

In order to verify the second assertion in Theorem 1.3, it suffices to show
that the unique measure with maximum total exponent on M for T € 7
satisfying (1) of Theorem 1.3 is ergodic with respect to 7. But this is done
in the same way as in the proof of the second assertion in Theorem 1.1 by

using the fact that £ (T) = L (T, A (T)) holds for any T € 7;'. O

As in the case of Theorem 1.1, we can apply Theorem 1.2 to the space

77 for r > 2.
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Proof of Theorem 1.4. We proved that the set of all C"-diffeomorphisms
satisfying the property stated in Theorem 1.2 is not only residual but also
open and dense in some open neighborhood of 7" in the C"-topology. There-
fore by applying Theorem 1.2 to each basic set of T"in 7", we can show that
the set of all C"-diffeomorphisms satisfying the property of Theorem 1.4 is
dense in 7". Moreover, we can show that the set is open in 7" in the same

way. [

We close this paper with the following remark.

Remark. A Cl-diffeomorphism T : M — M is structurally stable if there
exists a neighborhood U of T in the C'-topology such that for any S € U
there exists a homeomorphism h : M — M such that Toh = ho S, i.e.,
any S € U is topologically conjugate to T'. From the definition, we see that
the totality of structurally stable C"-diffeomorphisms is open in Diff" (M).
Since a conjugate homeomorphism maps the nonwandering set to the other
one, we have that every structurally stable diffecomorphism is C1-Q-stable.
Therefore it is obvious that Theorems 1.3 and 1.4 hold even if we replace

C1-Q-stability with structural stability.
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