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Abstract

In this thesis we discuss the superconformal quantum mechanics arising from
the M2-branes. We begin with a comprehensive review of the superconformal
quantum mechanics and emphasize that conformal symmetry and supersymmetry
in quantum mechanics contain a number of exotic and enlightening properties
which do not occur in higher dimensional field theories. We see that superfield and
superspace formalism is available for N ≤ 8 superconformal mechanical models.
We then discuss the M2-branes with a focus on the world-volume descriptions
of the multiple M2-branes which are superconformal three-dimensional Chern-
Simons matter theories. Finally we argue that the two topics are connected in M-
theoretical construction by considering the multiple M2-branes wrapped around
a compact Riemann surface and study the emerging IR quantum mechanics. We
establish that the resulting quantum mechanics realizes a set of novel N ≥ 8
superconformal quantum mechanical models which have not been reached so far.
Also we discuss possible applications of the superconformal quantum mechanics
to mathematical physics.
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Chapter 1

Introduction and Overview

1.1 Historical background

The pursue of Theory of Everything that describes our nature and achieves uni-
fication of all fundamental interactions, i.e. electroweak, strong and gravitational
interactions has been a mission agitating theoretical physicists. Historically much
of significant developments in theoretical physics were achieved by overcoming
the inconsistency between existing concepts. The special relativity was established
from the crisis between classical mechanics and electrodynamics, the general rel-
ativity was proposed by reconciling the special relativity and Newtonian gravity
and quantum field theory was acquired by combining quantum mechanics and the
special relativity. However, we are now confronting another contradiction between
quantum field theory and the general relativity. Although a quantum field theory
as the standard model successfully describes and predicts almost all phenomena
controlled by electroweak and strong forces, the general relativity describing the
gravity that is the remaining fundamental interaction seriously disagrees with the
quantum field theory. This indicates that quantum field theory cannot lead to the
correct quantization of gravity. Therefore it is expected that the standard model is
regarded as the low-energy effective theory of a more fundamental theory.

String theory has been proposed as the promising candidate for such a fun-
damental theory since it can naturally describe all fundamental interactions. In
string theory all particles are recognized as various vibrational modes of only two
different types of fundamental strings; the open strings which have two endpoints
and the the closed strings which have no endpoint. One of the most beautiful
structures in string theory is that Yang-Mills gauge theories which govern the elec-
troweak and strong interactions as the standard model arise from the vibrations of
the open strings while the general relativity that describes the gravitational inter-
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action appears from the vibrations of the closed string. Among the massless states
of the open string there are spin-one particles which behave as gauge bosons while
among the massless states of the closed string there is a spin-two particle which
can be identified with graviton [1, 2].

However, the bosonic string theory is not realistic since the vibrations of the
bosonic strings yield only bosonic particles. The lack of fermionic particles can be
resolved by introducing supersymmetry in string theory, i.e. the superstring the-
ory. The spectrums of superstrings contain both bosonic and fermionic particles.
Hence string theory supports the existence of the supersymmetry.

One of the most fascinating predictions in superstring theory is the existence of
the extra dimension in space-time. It turns out that the unitarity and the Lorentz
invariance of space-time in which the superstrings live are guaranteed only for ten-
dimensional space-time. In other words, flat space superstrings can only exist in
ten dimensions. In order to reconcile the difference between the ten-dimensional
space-time in string theory and the four-dimensional space-time in our instinctive
knowing physics, the notion of compactification has been proposed. The idea is
that since the six extra dimensional compact spatial directions are much smaller
than the four-dimensional space-time, the original (1 + 9)-dimensional space-time
effectively looks like (1 + 3)-dimensional space-time. For the six-dimensional
spaces Calabi-Yau manifolds are known to possess phenomenologically promis-
ing properties.

Ten-dimensional superstring theory is not a single theory but rather a set of
possible five theories; (i) type IIA, (ii) type IIB, (iii) type I (iv) SO(32) heterotic
(v) E8 × E8 heterotic. When the both left-moving and right-moving modes are
taken as superstrings, there are two possibilities; opposite handedness or the same
handedness. The former theory is called type IIA while the latter is called type IIB.
Type I superstring theory is obtained by the orientifold projection that mods out
left-right symmetry of type IIB superstring theory. When the left-moving mode
is chosen as the bosonic string and the right-moving mode is taken as the super-
string, consistency allows only two different theories; SO(32) heterotic and E8× E8

heterotic superstring theories. The type II superstring theories have d = 10, N = 2
supersymmetry and the type I and heterotic superstring theories possess d = 10,
N = 1 supersymmetry 1.

It has been argued that the five superstring theories are connected with each
other. T-duality relates a pair of the two type II superstring theories and also a pair

1For d = 10, N = 1 supersymmetry a consistent local gauge symmetry group is characterized
by the Lie algebras so(32) and E8 × E8.
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of the two heterotic superstring theories. S-duality relates the type I superstring
theory to the SO(32) heterotic superstring theory and the type IIB superstring the-
ory to itself. T-dualities and S-dualities generates a discrete non-abelian group, the
so-called U-duality group [3, 4]. Remarkably the U-duality groups are recognized
as discretization of global symmetry groups of supergravity. In fact it is known
that type IIA and IIB superstring theories are the ultraviolet (UV) completions of
d = 10 type IIA and IIB supergravities 2 whereas type I and heterotic superstring
theories are the UV completions of d = 10 type I supergravities.

From the supergravity point of view, it is interesting to note that d = 10 type
IIA supergravity arises by dimensional reduction of d = 11 supergravity [8, 9, 10].
d = 11 supergravity [11] is furnished with a particular interest since d = 11 is the
highest space-time dimension which realizes a consistent supersymmetric theory
containing particles with spins ≥ 2 [12]. d = 11 supergravity possesses a single
32-component spinor supercharge and its Lagrangian is unique if we require that
the theory contains at most two-derivative interactions. Therefore the relation be-
tween superstring theory and d = 10 supergravity indicates the existence of the
UV completion of d = 11 supergravity. It has been argued that in the strong string
coupling limit an eleventh direction arises in type IIA superstring theory and the
resulting eleven-dimensional theory is referred to as M-theory [13, 4, 14] 3. Con-
versely M-theory reduces to type IIA superstring theory upon the compactification
on a spatial circle. Up until now M-theory is the most prospective candidate for
the fundamental theory in that it may explain the origin of strings and unify the
five superstring theory. However, a familiar perturbative method in string theory
is not applicable because M-theory describes the strong coupling region of string
theory.

As the fundamental string is a fundamental object in ten-dimensional super-
string theory, the membrane appears to play a fundamental role in M-theory. This
membrane is called M2-brane. Indeed d = 11 supergravity contains a three-form
gauge field, which leads to two stable extended objects as solitonic solutions; elec-
tric membrane and magnetic five-brane. Moreover it has been pointed out [15]
that the M2-brane is identified with the fundamental string when M-theory is
compactified on a circle and reduces to type IIA superstring theory. In spite of the
prospective importance for the membranes in M-theory a number of attempts for
the quantization of the membranes does not work well hitherto.

2Originally type IIB supergravity was discovered [5] and constructed [6, 7] as the low-energy
limit of type IIB superstring theory.

3The letter “M” proposed by E. Witten embodies several possible meanings; membrane, matrix,
magic and mother.
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Although M-theory is much less understood than string theory due to the diffi-
culty of the quantization of the membranes, we can still obtain several insights and
clues from string theory and supergravity. In addition to the fundamental string,
string theory also contains extended objects, the so-called D-branes on which open
strings can end [16]. In fact ten-dimensional supergravities possess the solutions
describing the geometries around such branes. There is a remarkable conjecture,
the so-called AdS/CFT correspondence [17, 18, 19] which states that there is the
correspondence between string/M-theory on certain supergravity geometries with
anti-de-Sitter (AdS) factors and certain conformally invariant quantum field theo-
ries. The most basic evidence for the AdS/CFT correspondence is the equivalence
between type IIB superstring theory on the AdS5 × S5 supergravity geometry con-
structed as a set of N coincident D3-branes and the d = 4, N = 4 superconformal
U(N) Yang-Mills gauge theory. Namely the low-energy dynamics for the world-
volume of the planar N D3-branes in flat space-time can be effectively described
by (1 + 3)-dimensional maximally supersymmetric U(N) Yang-Mills gauge theory
[20].

Similarly, in the near-horizon limit d = 11 supergravity solutions describing
planar M2-branes in flat space-time contain the AdS4 factors and the low-energy
dynamics of the M2-branes are expected to be described by the (1 + 2)-dimensional
conformal field theories. As the eleven-dimensional flat background geometry can
possess 32 space-time supercharges, the world-volume effective field theory of
planar M2-branes should preserve half of the supersymmetry. Also the gauge
degrees of freedom are needed to describe the internal degrees of freedom of
multiple M2-branes. Thus the low-energy effective field theories of planar M2-
branes are d = 3, N = 8 superconformal gauge theories. The candidates for such
effective field theories of world-volume dynamics of multiple M2-branes have been
proposed as three-dimensional superconformal Chern-Simons matter theories, the
so-called BLG-model [21, 22, 23, 24, 25] and the ABJM model [26].

In order to obtain new AdS/CFT examples it is desirable to consider more
general supergravity solutions describing the wrapped branes around certain cy-
cles which may be curved. However, in the generic setup where the branes are
wrapping an arbitrary manifold, all of the supersymmetries are destined to break
down. In other words, specific background geometries of branes and specific cycles
wrapped by branes must be chosen to preserve supersymmetry. Mathematically
the supersymmetric cycles are characterized by the calibration [27]. There is a re-
markable observation [28] that topologically twisted field theories may give rise to
the world-volume theories of wrapped branes. For the Euclidean D3-branes wrap-
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ping four-manifold there are three calibrated cycles embedded in special holon-
omy manifolds; (i) special Lagrangian submanifold in Calabi-Yau four-fold, (ii)
coassociative submanifold in G2 manifold and (iii) Cayley submanifold in Spin(7)
manifold. Each of them corresponds to three distinct topological twisting proce-
dures 4; (i) geometric Langlands (GL) twist [33, 34, 35, 36], (ii) Vafa-Witten twist
[37] and (iii) Donaldson-Witten twist [38]. The world-volume of D3-branes can be
put on the product of two Riemann surfaces C × Σg. For the compact Riemann
surface Σg of genus g > 1 the field theories on the D3-branes are partially twisted
on the curved Riemann surface to preserve supersymmetry. Since the compact
manifold wrapped by branes introduces into the theory the typical energy scale as
its volume, one can consider an additional limit where the energy is much smaller
than the inverse size of the cycles. The resulting effective field theories then reduce
to the two-dimensional topological sigma-models whose target space is specified
by the BPS equations [28, 39, 40, 36, 41, 42, 43, 44].

When the Euclidean M2-branes wrap a compact curved three-manifold, the
three-dimensional effective theories on the branes are fully twisted [45]. The SO(3)
Euclidean symmetry on the world-volume is topologically twisted in terms of
the SO(3) subgroup of the R-symmetry. For the M2-branes wrapping compact
Riemann surface Σg of genus g supersymmetry is unbroken if the Riemann sur-
face is chosen as holomorphic curve in Calabi-Yau manifold, which are the only
known supersymmetric two-cycles. From the supergravity point of view, the so-
lutions which describe the M2-branes wrapping compact Riemann surfaces have
been studied [46, 47, 48] by using the gauged supergravity method [40]. The ba-
sic observation [49, 50] is that the dimensional reduction of d = 11 supergravity
on a seven-sphere can be truncated to give rise to the four-dimensional SO(8)
gauged supergravity where SO(8) gauge symmetry corresponds to the isometry
of the seven-sphere. Since the planar M2-branes take the form of AdS4 × S7, the
non-trivial coupling of the external SO(8) gauge field which is nothing but an
R-symmetry of the world-volume theory of the planar M2-branes may realize the
curved geometries of the form AdS2 × Σg instead of AdS4. Thus the uplift of the
four-dimensional SO(8) supergravity solutions can be used to construct the d = 11
supergravity solutions describing the M2-branes wrapped on holomorphic curves.
Correspondingly the three-dimensional effective superconformal field theories are
partially twisted for g 6= 0 [51]. The SO(2) Euclidean symmetry on the curved
Riemann surface is topologically twisted in terms of the SO(2) subgroup of the

4Also see [29, 30, 31, 32] for interesting applications of the topological twisted N = 4 super
Yang-Mills theories.
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R-symmetry. Furthermore it is shown [51] that in the limit where the size of the
Riemann surface goes to zero, superconformal quantum mechanical models arise
as the low-energy effective theories. This thesis explores the new connection be-
tween the M2-branes and the superconformal quantum mechanics.

We should note that conformal symmetry and supersymmetry in one-dimensional
field theory, i.e. quantum mechanics, contain a bunch of intriguing properties
which do not appear in higher dimensional field theories, as we will discuss in
this thesis.

Although supersymmetric quantum mechanics was originally studied as the
simple testing model for non-perturbative breaking of supersymmetry [52, 53], su-
persymmetric quantum mechanics is much more interesting itself. Supersymmetry
is closely related to the translational symmetry as the square of the supercharges
generates the momentum. However, in one dimension there are no spatial di-
rections and the translational symmety generator is just the Hamiltonian, which
reflects the reduced Poincaré symmetry in one-dimension. The reduced Poincaré
symmetry looses the constraints for supersymmetry in one dimension and leads
to richer structures than higher dimensional field theories. Indeed there exist su-
persymmetric quantum mechanical models which cannot reached via naive di-
mensional reductions from higher dimensional field theories. In parallel with that,
there may be a large number of supermultiplets in one-dimension (see Table 3.4)
and there is no relationship between the physical bosonic degrees of freedom and
fermionic degrees of freedom in supersymmetric quantum mechanics. These prop-
erties are special in one dimension.

Conformal symmetry in one-dimension also exhibits unique features. The re-
duced Poincaré symmetry identifies the generator of a translation with the Hamil-
tonian H and does not allow for the generator of a rotational symmetry. There-
fore the one-dimensional conformal symmetry is generated by the Hamiltonian H,
the dilatation generator D and the conformal boost generator K, all of which to-
gether form the sl(2, R) algebra. Therefore the one-dimensional conformal group
is SL(2, R) ∼= SO(1, 2). The first detailed analysis of conformal mechanics ap-
peared in [54]. The conformal mechanical models are typically characterized by
the inverse-square potential 5. Inverse-square potential in quantum mechanics
is a jewellery box in theoretical physics and mathematics containing black hole
physics [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77], AdS2/CFT1 correspondence
[78, 79, 80, 81, 82, 83, 84, 85, 86, 87], QCD [88, 89], quantum Hall effect [90, 91],

5The treatment of the inverse-square potential in quantum mechanics was discussed in [55, 56,
57, 58, 59, 60, 61, 62, 63, 64].
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Tomonaga-Luttinger liquid [92], string theory [93, 94, 95, 96, 97, 98], spin chains
[99, 100, 101, 102, 103, 104, 105, 106], Efimov effect [107, 108, 109, 110], mesoscopic
physics [111, 112], quantum dot [113], quantum chaos [114], fractional exclusion
statistics [115, 116], random matrix model [117, 118, 119, 120], Seiberg-Witten the-
ory [121, 122], Jack polynomial [123, 124, 125, 126, 127, 128, 129], and relevant
algebraic and integrable structures [130, 131, 132, 133]. One of the well-known
such quantum mechanical models is the Calogero model [134, 135] which is the
multi-particle system with the pairwise inverse-square interaction 6. It was firstly
proven in [148, 149] that the Calogero model has the SL(2, R) conformal symme-
try. The Calogero model and its generalizations can be viewed as a system of
free indistinguishable particles [145]. The indistinguishableness implies that the
permutation group acting on the configuration of the particles is treated as a dis-
crete gauge symmetry in the system and therefore the Calogero model and its
generalized models can be obtained from gauged matrix models [150, 151]. This
observation is used to find new conformal mechanical systems by starting gauged
matrix models or gauged quantum mechanical models and reducing the systems
via Hamiltonian reduction [152, 137].

Since the appearance of the seminal works [153, 154] on superconformal quan-
tum mechanics (SCQM), there has been a great deal of efforts to construct super-
conformal quantum mechanics. The superconformal quantum mechanical models
are characterized by the superconformal group, i.e. the Lie supergroup which
contains one-dimensional conformal group SL(2, R) and R-symmetry group as
factored bosonic subgroups. One of the most powerful methods to build up su-
perconformal mechanical systems is the superspace and superfield formalism. In
fact for N ≤ 8 supersymmetric cases it does work and several superconformal
quantum mechanical systems are constructed. For N = 1 supersymmetric case,
the superconformal group is OSp(1|2) and there is no non-trivial one particle su-
perconformal quantum mechanics. For N = 2 supersymmetric case, the supercon-
formal group is OSp(2|2) ∼= SU(1, 1|1) and the simplest one particle model is the
pioneering work of [153, 154]. For N = 4 supersymmetric case, the generic super-
conformal group is D(2, 1; α) which is a one-parameter family of supergroup. The
superspace and superfield formalism keeping track of the exceptional supergroup
can be derived by the non-linearlizations technique [155, 156, 157] and several
models have been constructed. In the case of N = 8 there exist four different
superconformal groups; SU(1, 1|4), OSp(8|2), OSp(4∗|4) and F(4). Such several

6See [136, 137, 138] for the enlightening reviews on (super)conformal mechanics and also see
[139, 140, 141, 142, 143, 144, 145, 146, 147] for excellent reviews on the Calogero model.
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choices of superconformal group cannot occur in higher dimensional field theories
and thus present a various families of N = 8 superconformal quantum mechanics.
However, forN > 8 the superspace and superfield formalism is not unrealistic and
unsuccessful. One of the signals for such difficulty is that the number of bosonic
and fermionic component fields in the supermultiplets typically becomes greater
than the number of supersymmetry when N is larger than eight (see Table 3.4). In
spite of the depression of the superspace and superfield formalism, several N > 8
superconformal quantum mechanical models have been constructed via reduction
of the three-dimensional quiver type superconformal Chern-Simons matter theo-
ries [51]. As mentioned before, these superconformal quantum mechanical models
may capture the low-energy dynamics of the multiple M2-braens wrapped on a
compact Riemann surface. We will spell out the details of these superconformal
quantum mechanical models in this thesis.

1.2 What I did

The organization of this thesis consists of three parts. In part I and II we will review
two main subjects; the superconformal quantum mechanics and the M2-branes.
The original part of the author’s work based on [51] is part III, in which we will
discuss the new connection between the two subjects, that is the superconformal
quantum mechanics emerging from M2-branes.

Part I contains two chapters; chapter 2 and 3. In chapter 2 we will discuss
various aspects of conformal quantum mechanics. We will start with section 2.1
by studying the DFF-model [54] and its SL(2, R) conformal symmetry and then in
section 2.2 we will explore the quantum properties of the system. In section 2.5 we
will see that the conformal mechanical models can be derived from the gauged me-
chanical system via Hamiltonian reduction or Routh reduction. In section 2.6 we
will review the observation [65] that in the near horizon of the extreme Reissner-
Nordström black hole the motion of the charged particle can be described by the
conformal mechanics (2.6.10). In section 2.7 we will present the non-linear realiza-
tion technique which is useful to construct (super)conformal quantum mechanical
models and then review the statement in [74] that DFF-model (2.1.2) is equivalent
to the black hole conformal mechanics (2.6.10) in [65]. We will extend the anal-
ysis to the multi-particle models, i.e. the sigma-models in section 2.8. We will
review the discussion in [69] that the target space of the conformal sigma-model
possesses a homothety vector field whose associated one-form is closed. We will
argue that the gauging procedure for the multi-particle model, the matrix model
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yield the Calogero model in section 2.9. In chapter 3 we will turn to the discussion
on the superconformal quantum mechanics. We will recall the Lie superalgebra
and Lie supergroup and then discuss the one-dimensional superconformal group
(see in Table 3.2) in section 3.1. In section 3.2 we will explain the exisotic struc-
tures of supersymmetry in one-dimension, which allows us to construct various
supermultiplets.

Part II, which is comprised of two chapters; chapter4 and 5, is devoted to the
low-energy effective field theories of the M2-branes. We will review the BLG-
model in chapter 4 and the ABJM-model in chapter 5. We will present our no-
tations and conventions and also the several conjectural statements for the BLG-
model and the ABJM-model in these chapters.

Part III is the most important part of this thesis. It is based on the author’s
work of [51], in which we will engage in the superconformal quantum mechani-
cal models arising from the M2-branes. We consider the multiple membranes on
a compact Riemann surface and study the IR quantum mechanics by taking the
limit where the energy scale is much lower than the inverse size of the Riemann
surface. In chapter 6 we will demonstrate that the resulting quantum mechan-
ics from the BLG-model compactified on a torus is the N = 16 superconformal
gauged quantum mechanics. Furthermore we will find the OSp(16|2) supercon-
formal quantum mechanics from the reduced system. Similarly in chapter 7 we
will investigate the IR quantum mechanics from the ABJM-model compactified on
a torus, which turns out to be the N = 12 superconformal gauged quantum me-
chanics. By the Hamiltonian reduction, or the Routh reduction we will also find
the SU(1, 1|6) superconformal quantum mechanics from the gauged quantum me-
chanics. In chapter 8 we will present various examples of the topological twisting,
which is the important concept to describe curved branes in string theory and M-
theory. In chapter 9 we will survey the M2-branes wrapped on a curved Riemann
surface which is taken as a holomorphic curve in a Calabi-Yau manifold to pre-
serve supersymmetry. We will present a prescription of the topological twisting
for the case where the Calabi-Yau space is constructed as the direct sum of the line
bundles over the Riemann surface. In chapter 10 we will complete the analysis of
the M2-branes wrapped around the holomorphic Riemann surface in a K3 surface.
We will find the N = 8 superconformal gauged quantum mechanics which may
describe the motion of the two M2-branes wrapping holomorphic curve in a K3

surface. Finally in chapter 11 we will present conclusion and discuss the future
directions.
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Part I

Superconformal Mechanics
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Chapter 2

Conformal Mechanics

In this chapter we will review the conformal quantum mechanics. The simplest
model is the so-called DFF model [54]. In section 2.1, 2.2, 2.3 and 2.4 we will learn
from the DFF model several remarkable features of the conformal symmetry in
one-dimension, which cannot occur in higher dimensional field theories. Then in
section 2.5 we will argue the alternative formulation of the conformal mechanical
models as the gauged mechanical models. As an interesting application of the con-
formal quantum mechanics we will discuss the relationship between the conformal
mechanics and black hole in section 2.6 and introduce the non-linear realization
method to construct (super)conformal quantum mechanics in section 2.7. Finally
we will extend the analysis to the multi-particle conformal mechanical models in
section 2.8 and 2.9.

2.1 SL(2, R) conformal symmetry

In d-dimensions a scale invariant Lagrangian for a scalar field φ has the form

L =
1
2

∂µφ∂µφ− γφ
2d

d−2 (2.1.1)

where γ is a dimensionless coupling constant. In one-dimensional case we get the
Lagrangian

L =
1
2

(
ẋ2 − γ

x2

)
. (2.1.2)

This simple quantum mechanical model is the so-called DFF-model [54]. To keep
particles from falling into the origin, the coupling constant γ should be positive
classically. As we will see in the following discussion, quantum mechanically
the uncertain principle gives rise to the minimum value γ = −1

4 , however, the
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normalizability of the wavefunction of the ground state requires that γ is positive.
So we will denote γ = g2 for convenience. The Lagrangian (2.1.2) leads to the
equation of motion

ẍ =
g2

x3 . (2.1.3)

The action

S =
∫

L dt =
1
2

∫
dt
(

ẋ2 − g2

x2

)
(2.1.4)

is invariant under the transformations

t′ =
αt + β

γt + δ
, (2.1.5)

x′(t′) =
1

γt + δ
x(t) (2.1.6)

where the real numbers α, β, γ and δ form a real 2× 2 matrix with determinant
one

A =

(
α γ

β δ

)
, det A = 1. (2.1.7)

1. translation

The subgroup of the matrix (2.1.7)(
1 0
a 1

)
(2.1.8)

with α = 1, β = a, γ = 0, δ = 1 yields

t′ = t + a,

x′(t′) = x(t). (2.1.9)

This corresponds to the translation.

2. dilatation

The subgroup of the matrix (2.1.7)(
e

b
2 0

0 e−
b
2

)
(2.1.10)

with α = e
b
2 , β = 0, γ = 0, δ = e−

b
2 generates the transformations

t′ = ebt,

x′(t′) = e
b
2 x(t). (2.1.11)

This is the dilatation.
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3. conformal boost

The subgroup of the matrix (2.1.7)(
1 −c
0 1

)
(2.1.12)

with α = 1, β = 0, γ = −c, δ = 1 corresponds to the transformations

t′ =
t

−ct + 1
,

x′(t′) =
x(t)

−ct + 1
. (2.1.13)

This is the conformal boost transformation.

From a set of finite transformations (2.1.9), (2.1.11) and (2.1.13) we see that the
action (2.1.4) is invariant under the infinitesimal one-dimensional conformal trans-
formations

δt = f (t) = a + bt + ct2, (2.1.14)

δx =
1
2

ḟ x =
1
2
(b + 2ct)x. (2.1.15)

The passive transformations (2.1.14) and (2.1.15) lead to the active transformations

δt = 0, (2.1.16)

δx =
1
2

ḟ x− f ẋ. (2.1.17)

Noting that a, b and c are the infinitesimal parameters of the translation, the di-
latation and the conformal boost, we can compute the Noether charges, i.e. the
Hamiltonian H, the dilatation operator D and the conformal boost operator K

H =
p2

2
+

g2

2x2 , (2.1.18)

D = tH − 1
4

(xp + px) , (2.1.19)

K = t2H − 1
2

t(xp + px) +
1
2

x2 (2.1.20)

where p = ẋ is the canonical momentum. The operators D and K are the constants
of motion in the sense that

∂D
∂t

+ [H, D] = 0,
∂K
∂t

+ [H, K] = 0. (2.1.21)
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One can carry out the canonical quantization by establishing the equal time
commutation relation

[x, p] = i. (2.1.22)

Using the commutation relation (2.1.22), we can show that

[H, D] = iH, (2.1.23)

[K, D] = −iK, (2.1.24)

[H, K] = 2iD (2.1.25)

and

i[H, x(t)] = ẋ(t), (2.1.26)

i[D, x(t)] = tẋ(t)− 1
2

x(t), (2.1.27)

i[K, x(t)] = t2ẋ(t)− tx(t). (2.1.28)

If we express the time independent part of D and K as

D0 := −1
4

(xp + px) , (2.1.29)

K0 :=
1
2

x2, (2.1.30)

then the equations (2.1.26), (2.1.27) and (2.1.28) are rewritten as

i[H, x(t)] = ẋ(t), (2.1.31)

i[D0, x(t)] = −1
2

x(t), (2.1.32)

i[K0, x(t)] = 0. (2.1.33)

These equations are regarded as the Heisenberg equations. The equation (2.1.31)
is familiar for general quantum mechanical systems and yields the variation of
the operator with respect to time while the equation (2.1.32) gives rise to the scale
dimension of the operator.

Note that the explicit time dependence of D and K can be absorbed into the
similarity transformations

D = eitHD0e−itH, K = eitHK0e−itH (2.1.34)

So we will use the time independent parts as the explicit expressions for D and K
and drop off the subscripts.
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Defining

T0 =
1
2

(
K
a

+ aH
)

, (2.1.35)

T1 = D, (2.1.36)

T2 =
1
2

(
K
a
− aH

)
(2.1.37)

where a is a constant with dimension of length, we find from (2.1.23)-(2.1.25) the
explicit representation of the so(1, 2) algebra

[Ti, Tj] = iεijkTk (2.1.38)

where εijk is a three-index anti-symmetric tensor with ε012 = 1 and gij = diag(1,−1,−1).
If we introduce

L0 =
1
2

(
K
a

+ aH
)

= T0, (2.1.39)

L± =
1
2

(
K
a
− aH ± 2iD

)
= T2 ± iT1, (2.1.40)

then we get the explicit representation of the sl(2, R) algebra in the Virasoro form

[Ln, Lm] = (m− n)Lm+n (2.1.41)

with m, n = 0,±. Note that

H =
1
a

[
L0 −

1
2

(L+ + L−)
]

, (2.1.42)

D =
1
2i

(L+ − L−) , (2.1.43)

K = a
[

L0 +
1
2

(L+ + L−)
]

. (2.1.44)

Recall that in the representation theory the Casimir invariants play an impor-
tant role since their eigenvalues may characterize the representations. The one-
dimensional conformal group SL(2, R) is of rank one and therefore possesses one
independent second-order Casimir invariant. The second-order Casimir operator
C2 of the sl(2, R) algebra is given by

C2 = T2
0 − T2

1 − T2
2

= L0(L0 − 1)− L+L−

=
1
2
(HK + KH)− D2

=
g2

4
− 3

16
. (2.1.45)
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2.2 Spectrum

It is known that the quantum formalism based on the Hamiltonian H is awkward
to describe the conformal quantum mechanics. The spectrum of H is continuous
due to the existence of D 1. This is because if |E〉 is an eigenstate of energy E, then
eiαD|E〉 is that of energy e2αE with α being an arbitrary real parameter. Thus the
spectrum contains all E > 0 eigenvalues of H.

The corresponding wave functions are given by

ψE(x) = C
√

xJ√
g2+ 1

4

(√
2Ex

)
(2.2.1)

where C is a normalization factor and Jα is the Bessel function of the first kind.
For each of the eigenstates with the eigenvalues E > 0 there exists a normalizable
plane wave.

On the other hand, the wavefunction of the zero energy state is given by 2

ψ0(x) = Cx−
1
2 +

√
1+4g2

2 (2.2.2)

where C is a constant value. To make matters worse, this eigenfunction is not even
plane wave normalizable and this makes it difficult for us to regard the state with
E = 0 as the ground state.

However. it is important to note that [54] any combination

G = uH + vD + wK (2.2.3)

of the three conformal generators is a constant of motion in the sense that

∂G
∂t

+ i[H, G] = 0. (2.2.4)

This implies that the transformations generated by G leave the action invariant.
Hence we may use the operator G as the new Hamiltonian to study the evolution
of the system.

The switching from H to the new evolution operator G can be interpreted as a
redefinition of the time and the coordinate. Let us introduce a new time parameter

dτ =
dt

u + vt + wt2 (2.2.5)

1 For the DFF-model (2.1.2) this can be readily seen from the behavior of the inverse-square
potential as x → ∞ (Figure 2.2).

2 Due to the infinite repulsive potential at the origin, we here consider the solution ψ0(x) satis-
fying the boundary condition ψ0(x)|x=0 = 0.

21



and a new variable

q(τ) =
x(t)√

u + vt + wt2
. (2.2.6)

Then we find the action of G on the operator and on the state given by

dq(τ)
dτ

= i[G, q(τ)], (2.2.7)

G|Ψ(τ)〉 = i
d

dτ
|Ψ(τ)〉 (2.2.8)

as required. Although the operator G may describe the evolution in the new time
τ, it is not yet complete to justify the passing to the new description. We need to
examine whether the new Hamiltonian and the new coordinates cover the whole
evolution in time from t = −∞ to +∞. From (2.2.5) we can express the new time
parameter as

τ =
∫ t

t0

dt′

u + vt′ + wt′2
+ τ0. (2.2.9)

This integral depends on the zeros of the denominater and the result is classified
by the discriminant

∆ = v2 − 4uw. (2.2.10)

We find

τ =



1√
∆

(
ln
∣∣∣2wt+v−

√
∆

2wt+v+
√

∆

∣∣∣− ln
∣∣∣ v−

√
∆

v+
√

∆

∣∣∣) for ∆ > 0

2√
|∆|

(
tan−1 2wt+v√

|∆|
− tan−1 v√

|∆|

)
for ∆ < 0

−
( 2

2wt+v −
2
v
)

for ∆ = 0

(2.2.11)

where we normalize as τ0 = 0. For ∆ > 0, the parameter τ cannot sweep the
whole time region −∞ ≤ t ≤ ∞. This unpleasant feature is associated with the
fact that the corresponding operators are non-compact and their spectrums are
physically unacceptable. The dilatation operator D belongs to this class. When
∆ < 0, τ can be defined over the whole time interval −∞ ≤ t ≤ ∞. The corre-
sponding operators in this case generate a compact rotation and their spectrums
have physically satisfactory characteristics. In the case of ∆ = 0, the whole time
interval −∞ ≤ t ≤ ∞ can be described over −∞ ≤ τ ≤ ∞, however, there exists
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Figure 2.1: The new time parameter τ as a function of the original time t. The red
curve represents the non-compact case ∆ > 0, which cannot sweep over the whole
time t. The blue curve corresponds to the compact case ∆ < 0 covering all the time
region. Green curve denotes the case ∆ = 0, which contains one singular point in
τ.
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one singular point in τ at t = − v
2w . This is the case for the Hamiltonian H and the

conformal boost operator K. These three cases are illustrated in Figure 2.1.
In terms of the new set of coordinates (2.2.5) and (2.2.6), we can rewrite the

action (2.1.4) as

S =
∫

dτ

[
1
2

q̇2 − g2

2q2 +
1
2

(v
2

+ wt
)2

q2 +
1
2
(v + 2wt)qq̇

]
=
∫

dτ

[
1
2

q̇2 − g2

2q2 +
∆
8

q2 +
1
2

d
dτ

{(v
2

+ wt
)

q2
}]

=
∫

dτ

[
1
2

q̇2 − g2

2q2 +
∆
8

q2
]

=
∫

dτLτ (2.2.12)

up to the total τ derivative. Note that the dot denotes τ derivative in (2.2.12). The
new Lagrangian Lτ leads to the new Hamiltonian

Hτ = q̇
∂Lτ

∂q̇
− Lτ

=
1
2

(
q̇2 +

g2

q2 −
∆
4

q2
)

(2.2.13)

with

G(x(t), ẋ(t)) = Hτ(q(τ, )q̇(τ)). (2.2.14)

Note that L0 = T0 is the compact generator satisfying ∆ = −1 < 0. Qualita-
tively one can see that the potential energy of this new Hamiltonian L0 acquires
the minimum and assymptotes to infinity (Figure 2.2). The new time coordinate τ

and variable q(τ) associated with the generator L0 are given by

τ = 2 tan−1
(

t
a

)
, (2.2.15)

q(τ) =
√

2
a

x(t)√
1 +

( t
a
)2

. (2.2.16)

As we will discuss in section 2.6, in the black hole interpretation τ can be identified
with the proper time of the test particle near the horizon of the extremal black hole
[65].

The fact that the operator L0 is regarded as the new Hamiltonian of the system
can be paraphrased as the group theoretical statement that infinite dimensional
unitary representations in terms of Hermitian operators of the non-compact group
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Figure 2.2: The potentials for the original Hamiltonian H and the new Hamilto-
nian L0. The red line is the potential for H and the blue one is for L0.

SL(2, R) are characterized by the discrete eigenvalues of the Casimir operator C2

and of the compact generator L0
3.

We now look for the eigenvalues and eigenstates of L0. Let us denote the
eigenvalues and eigenstates of L0 by rn and |n〉

L0|n〉 = rn|n〉. (2.2.17)

From the sl(2, R) algebra (2.1.41) one can show that

L0L−|rn〉 = (rn − 1)L−|rn〉, (2.2.18)

L0L+|rn〉 = (rn + 1)L+|rn〉, (2.2.19)

L−L+ = −C2 + L0(L0 + 1), (2.2.20)

L+L− = −C2 + L0(L0 − 1). (2.2.21)

The relations (2.2.18) and (2.2.19) imply that the operators L− and L+ play the role
of the annihilation and creation operators respectively. Since the norm of the states
L±|rn〉 must be positive or zero, we require that

0 ≤ |L±|rn〉|2

= −C2 + rn(rn ± 1). (2.2.22)

Assuming that there exists one positive eigenvalue rn among the allowed eigen-
values, the creation operator L+ yields the infinite chain of states

|rn〉, |rn + 1〉, |rn + 2〉, · · · . (2.2.23)

3The diagonalization of the non-compact operator requires the continuous basis [158, 159, 160,
161].
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Figure 2.3: The L0 spectrum. The ground state has eigenvalue r0 and the excited
states generated by L+ are equally spaced with unit one.

If we require the existence of the ground state, the spectrum need to be bounded
below and the chain must terminate. This means that

L−|r0〉 = 0 (2.2.24)

and

L+L−|r0〉 = [−C2 + r0(r0 − 1)] |r0〉 = 0. (2.2.25)

Therefore the eigenvalues of L0 are given by a discrete series (see Figure 2.3)

rn = r0 + n, n = 0, 1, 2, · · · (2.2.26)

C2 = r0(r0 − 1). (2.2.27)

In the following discussion we will thus simplify the expression as |n〉 = |rn〉.
Combining the relation (2.2.27) and the expression (2.1.45), we find two possible

values for r0 as the choice of the positive or negative signs for the square root.
However, it turns out that only the positive sign for the square root should be
selected.

r0 =
1
2

(
1 +

√
g2 +

1
4

)
. (2.2.28)

To see this let us determine the lowest eigenfunction ψ0(x). From the equation
(2.2.24) and the explicit expressions for L±

L− = L0 −
x2

2a
− 1

2
x

d
dx
− 1

4
, (2.2.29)

L+ = L0 −
x2

2a
+

1
2

x
d

dx
+

1
4

, (2.2.30)
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we see that ψ0(x) satisfies the equation[
x

d
dx

+
x2

a
−
(

2r0 −
1
2

)]
ψ0(x) = 0. (2.2.31)

Let us choose our units so that a = 1. The generic solution is given by

ψ0(x) = Ce−
x2
2 x2r0− 1

2 (2.2.32)

where C is the constant of integration. The presence of the infinitely repulsive
potential barrier at the origin and the confinement property of the wavefunction
requires that

lim
x→0

ψ0(x) = 0, (2.2.33)

lim
x→0

ψ′0(x) = 0. (2.2.34)

These conditions lead to

r0 >
3
4

(2.2.35)

which is only satisfied by the positive root solution. Note that (2.2.35) is equivalent
to the condition γ > 0 for the coupling constant as we mentioned. Also one can
determine C by the normalization condition

∫ ∞
0 |ψ0(x)|2 dx = 1 as

C =

√
2

Γ(2r0)
. (2.2.36)

Therefore the eigenfunction of the ground state is given by

ψ0(x) =

√
2

Γ(2r0)
e−

x2
2 x

1
2 +
√

g2+ 1
4 . (2.2.37)

This is illustrated in Figure 2.4. Curiously a particle in the L0 ground state has
zero probability of existing at x = 0.

From (2.2.22) and (2.2.27) one can see that the raising and lowering operators
L± act as

L±|n〉 =
√

rn(rn ± 1)− r0(r0 − 1)|n± 1〉, (2.2.38)

which leads to the relation

|n〉 =

√
Γ(2r0)

n!Γ(2r0 + n)
(L+)n|0〉. (2.2.39)
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Figure 2.4: Wavefunction ψ0(x) of the L0 ground state.

Upon the repeated application of the creation operator L+ on the ground state |0〉,
the eigenfunctions of the excited states found to be [54]

ψn(x) =

√
Γ(n + 1)

2Γ(n + 2r0)
x−

1
2

(
x2

a

)r0

e−
x2
2a L2r0−1

n

(
x2

a

)
(2.2.40)

where L2r0−1
n is the associated Laguerre polynomial.

Now consider the thermodynamical aspect of the DFF-model. As we have
been discussing, it has been proposed that L0 = 1

2(aH + K
a ) is treated as the new

Hamiltonian instead of the original Hamiltonian H in the DFF-model. The surface
of the constant value of L0 in the classical phase space is given by

p = ±
√

2L0 −
g
x2 − a2x2 (2.2.41)

and illustrated in Figure 2.5 4.
Thus the volume of the phase space with the “energy” below L0 can be evalu-

ated to be

Γ(L0) = 2
∫ ∞

0
dx
√

2L0 −
g
x2 − a2x2

= π

(
L0

a
− g
)

. (2.2.42)

4 Note that the phase space is restricted to either x > 0 or x < 0 region due to the infinite
potential at the origin.
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(a) L0 = 10, 50, 100; g = 1, a = 1. (b) g2 = 1, 100, 500; L0 = 50, a = 1.

(c) a2 = 1, 5, 25; L0 = 50, g = 1.

Figure 2.5: The surface of the constant value of L0 in the classical phase space. The
horizontal axis denotes the canonical variable x while the vertical axis represents
the canonical momentum p. The volume of the phase space with “the energy”
below L0 decrease with increase in the coupling constant g and the deformation
parameter a. Qualitatively g keeps a particle away from the origin whereas a sucks
it into the origin.
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According to the additional term −πg, the result is slightly modified from a simple
harmonic oscillator. This corresponds to the fact that the L0-ground state of the
DFF-model is raised by the increase of the coupling constant g as in (2.2.28). As
seen form Figure 2.5, the volume of the phase space with “the energy” below L0

decrease with increase in the coupling constant g and the deformation parameter a.
Therefore qualitatively g keeps a particle away from the origin whereas a sucks it
into the origin. These features are in accord with the behavior of the wavefunction
ψ0(x) of the ground state given in (2.2.37) (see also Figure 2.4).

In quantum mechanics the L0-spectrum is the discrete value given in (2.2.26).
By summing over the spectrum one obtains the partition function

Z =
∞

∑
n=0

e−βL0 =
e−βr0

1− e−β
. (2.2.43)

2.3 Time evolution

So far the DFF-model (2.1.2) has been studied in the x space, i.e. the stationary
problem at t = 0. Now let us consider the state |t〉 which is characterized by the
time t. Let us define the time-dependent function

βn := 〈t|n〉, (2.3.1)

on which the action of the Hamiltonian is realized with the time derivative

H = i
d
dt

. (2.3.2)

Combining the expression (2.3.2) with the sl(2, R) algebra (2.1.23) and the form of
the Casimir operator (2.1.45), one finds the action of the dilatation operator D and
the conformal boost operator K on βn as

D =
(

it
d
dt

+ ir0

)
, (2.3.3)

K =
(

it2 d
dt

+ 2ir0t
)

. (2.3.4)

Thus the compact operator L0 acts on βn(t) as

L0 =
i
2

[(
a +

t2

a

)
d
dt

+ 2r0
t
a

]
. (2.3.5)
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From the expressions (2.3.2)-(2.3.5) we can write the actions of the corresponding
operators on the state |t〉 as

H|t〉 = −i
d
dt
|t〉, (2.3.6)

D|t〉 = −i
(

t
d
dt

+ r0

)
|t〉, (2.3.7)

K|t〉 = −i
(

t2 d
dt

+ 2r0t
)
|t〉, (2.3.8)

L0|t〉 = − i
2

[(
a +

t2

a

)
d
dt

+ 2r0
t
a

]
|t〉. (2.3.9)

Then the explicit expression (2.3.5) for the operator L0 leads to the differential
equation

i
2

[(
a +

t2

a

)
d
dt

+ 2r0
t
a

]
βn = rnβn. (2.3.10)

and its solution is given by

βn(t) = (−1)n
[

Γ(2r0 + n)
n!

] 1
2
(

a− it
a + it

)rn 1(
1 + t2

a2

)r0
. (2.3.11)

Using the above solution (2.3.11) one finds 2-point function [54]

F2(t1, t2) = 〈t1|t2〉
= ∑

n
βn(t1)β∗n(t2)

=
Γ(2r0)a2r0

[2i(t1 − t2)]2r0
∝

1

(t1 − t2)
2r0

. (2.3.12)

The expression (2.3.12) indicates that the 2-point function is the value of two op-
erators whose effective dimensions are r0. Note that the 2-point function satisfies
the set of conditions (

∂

∂t1
+

∂

∂t2

)
F2(t1, t2) = 0, (2.3.13)(

t1
∂

∂t1
+ t2

∂

∂t2
+ 2r0

)
F2(t1, t2) = 0, (2.3.14)(

t2
1

∂

∂t1
+ t2

2
∂

∂t2
+ 2r0(t1 + t2)

)
F2(t1, t2) = 0. (2.3.15)

Now we want to consider the E space. The eigenstate |E〉 is defined by

H|E〉 = E|E〉 (2.3.16)
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and we can expand the eigenstate |n〉 of the compact operator L0 as

|n〉 =
∫

dECn(E)|E〉 (2.3.17)

where we have defined

Cn(E) := 〈E|n〉. (2.3.18)

Note that the eigenvalue E of the original Hamiltonian H is continuous as we have
already mentioned. Requiring the sl(2, R) algebra (2.1.23) and the realization of
the Casimir operator (2.1.45), we get

D|E〉 = −i
(

E
d

dE
+

1
2

)
|E〉, (2.3.19)

K|E〉 =

[
−E

d2

dE2 −
d

dE
+
(

r0 −
1
2

)2 1
E

]
|E〉. (2.3.20)

Then we can write the compact operator L0 as

L0 =
1
2

[
−E

d2

dE2 −
d

dE
+ E +

(
r0 −

1
2

)2 1
E

]
(2.3.21)

and the explicit expression for Cn(E) can be found by solving the equation

1
2

[
−E

d2

dE2 −
d

dE
+ E +

(
r0 −

1
2

)2 1
E

]
Cn(E) = rnCn(E). (2.3.22)

If we set

Cn = 2r0 Er0− 1
2 e−E ϕn(E), (2.3.23)

then we see that the function ϕn satisfies the differential equation 5

ηϕ′′n + (2r0 − η)ϕ′n + nϕn = 0 (2.3.24)

of the associated Laguerre polynomial L2r0−1
n . Putting all together we obtain

Cn(E) = 2r0

√
Γ(n + 1)

Γ(n + 2r0)
(aE)r0
√

E
e−aEL2r0−1

n (2aE). (2.3.25)

5The associated Laguerre polynomials Lk
n(x) are defined by the solution of the differential equa-

tion [
x

dk+2

dxk+2 + (k + 1− x)
dk+1

dxk+1 + n
dk

dxk

]
Lk

n(x) = 0

with 0 ≤ k ≤ n.
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Figure 2.6: The probability density ρ0(E) of the ground state in E space. The
blue, red and brown lines denote the cases with r0 = 3

2 , 3 and 10. They have the
maximum values at E = r0 − 1

2 .

Note that the function Cn(E) has the following properties:

∑
n

Cn(E)C∗n(E′) = δ(E− E′), (2.3.26)∫ ∞

0
dECn(E)C∗n′(E) = δnn′ , (2.3.27)

Cn(E) = 2r0 E
1
2−r0

∫ ∞

−∞

dt
2π

eiEtβn(t). (2.3.28)

Let us discuss the probability density ρn(E) in E space defined by

ρn(E) := |Cn(E)|2 . (2.3.29)

For n = 0, i.e. for the ground state of L0, the probability density ρ0(E) is given by

ρ0(E) =
4rr0

Γ(2r0)
E2r0−1e−2E

[
L2r0−1(2E)

]2
(2.3.30)

with a = 1. This is shown in Figure 2.6.
The distribution of E of the ground state is peaked at

E0 = r0 −
1
2

(2.3.31)
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Figure 2.7: The probability densities ρn(E) of the excited states for r0 = 3
2 in E

space. The red, blue and green lines correspond to the densities with n = 10, 20
and 30. The number of peaks increases with the increase of the excited levels.

and its effective width is 6

Γ = 2
√

E0 = 2

√
r0 −

1
2

. (2.3.32)

(2.3.31) shows that the peak of the distribution of E increases with the increase of
r0 or g. (2.3.32) implies that the width grow and the probability dense spread in E
space with r0.

The expectation values for the ground state |0〉 can be evaluated and we find

〈H〉0 = 〈0|H|0〉 = r0 (2.3.33)

(∆E)2 := 〈H2〉0 − 〈H〉20 =
r2

0
2

. (2.3.34)

For n > 0 the probability density ρn(E) with r0 = 3
2 is illustrated in Figure 2.7.

The red, blue and green lines represent the case with n = 10, 20 and 30 respectively.
In this case several peaks appear due to the presence of the n-th order polynomial.
The expectation value of H in the excited state |n〉 is calculated to be [54]

〈H〉n = 〈n|H|n〉 = rn. (2.3.35)

The state |E〉 provides us with the further properties of the state |t〉. From
the expression (2.3.12) ant the relation (2.3.28) with the use of the Hankel integral

6The effective width Γ is defined by 8
Γ := − ρ0(E0)′′

ρ0(E0)
.
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representation of the gamma function

1
Γ(z)

=
i

2π

∫
C

dt(−t)−ze−t, (2.3.36)

we can show that

〈t|E〉 = 2−r0
(aE)r0
√

E
e−iEt. (2.3.37)

Using the two relations (2.3.28) and (2.3.37) we see that∫ ∞

−∞

dt
2π
|t〉〈t| = 1

H

(
aH
2

)2r0

. (2.3.38)

This indicates the incompleteness of the state |t〉.

2.4 Operator

Now consider the tensor operator B(t) with the mass dimension ∆. As seen from
the set of the Heisenberg equations (2.1.31)-(2.1.33), the sl(2, R) invariance of the
operator implies that

i[H, B(t)] =
d
dt

B(t), (2.4.1)

i[D, B(t)] = t
d
dt

B(t) + ∆B(t), (2.4.2)

i[K, B(t)] = t2 d
dt

B(t) + 2t∆B(t) (2.4.3)

where D = tH + D0 and K = t2H − 1
2 {x, p} + K0. This is the SO(1, 2) Wigner-

Eckart theorem. We now want to compute the 3-point function

F3(t; t2, t1) = 〈t2|B(t)|t1〉
= ∑

n1,n2

βn2(t2)β∗n1
(t1)〈n2|B(t)|n1〉. (2.4.4)

In analogy with (2.2.15) and (2.2.16) it is convenient to introduce the new variables

τ = 2 tan−1 t, (2.4.5)

b(τ) = B(t)(1 + t2)∆ (2.4.6)

with the relations

db(τ)
dτ

= i[L0, b(τ)], (2.4.7)

b(τ) = eiL0τb(0)e−iL0τ. (2.4.8)

35



By using the above expressions we can show that

〈n2|B(t)|n1〉 =
1

(1 + t2)∆

(
1− it
1 + it

)n1−n2

〈n2|B(0)|n1〉. (2.4.9)

The equation (2.4.9) enables us to rewrite the 3-point function (2.4.4) as

F3(t; t2, t1) = ∑
n1,n2

(−1)n1+n2

√
Γ(n1 + 2r0)Γ(n2 + 2r0)

n1!n2!

× z−n1
1 zn2

2
(1 + z1)2r0(1 + z2)2r0

24r0z2r0
1

× 2−2∆
∣∣∣∣1 + z

z

∣∣∣∣2∆

zn1−n2〈n2|B(0)|n1〉 (2.4.10)

where we have defined

z :=
1− it
1 + it

= e−iτ, zi :=
1− iti

1 + iti
= e−iτi . (2.4.11)

On the other hand, the one-dimensional conformal sl(2, R) covariance of the
3-point function implies that (

∂

∂t
+

∂

∂t1
+

∂

∂t2

)
F3(t; t2, t1) = 0, (2.4.12)(

t
∂

∂t
+ t1

∂

∂t1
+ t2

∂

∂t2
+ 2∆t + 2r0(t1 + t2)

)
F3(t; t2, t1) = 0, (2.4.13)(

t2 ∂

∂t
+ t2

1
∂

∂t1
+ t2

2
∂

∂t2
+ 2∆t + 2r0(t1 + t2)

)
F3(t; t2, t1) = 0. (2.4.14)

As the first condition (2.4.12) says that F3(t; t2, t1) = F3(t − t1, t − t2, t1 − t2), we
impose the ansatz F3 = f (t − t1)α1(t − t2)α2(t1 − t2)α3 with f being an arbitrary
constant value. Then the remaining two conditions (2.4.13) and (2.4.14) restrict to
the form of the 3-point function as

F3(t; t2, t1) = f i2r0+∆ 1
(t− t1)∆(t2 − t)∆(t1 − t2)−∆+2r0

= 2−∆−2r0 f
(1 + z)2∆(1 + z1)2r0(1 + z2)2r0

(z− z1)∆(z2 − z)∆(z1 − z2)−∆+2r0
. (2.4.15)

Combining the two expressions (2.4.10) and (2.4.15) for the 3-point function, we
obtain the relation

∑
n1,n2

(−1)n1+n2

√
Γ(n1 + 2r0)Γ(n2 + 2r0)

n1!n2!
z−n1

1 zn2
2 2−∆

∣∣∣∣1 + z
z

∣∣∣∣2∆

zn1−n2〈n2|B(0)|n1〉

= 2r0 f z2r0
1

(1 + z)2∆

(z− z1)∆(z2 − z)∆(z1 − z2)−∆+2r0
.

(2.4.16)
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By redefining the variables zi → zzi, we can factor out the time t dependence and
thus we shall take t = 0 or equivalently z = 1 in the following discussion. Then
the left hand side can be regarded as the double Taylor series expansions and one
can write the quantity 〈n2|B(0)|n1〉 as the coefficients of the expansions as

〈n2|B(0)|n1〉 =
f

(2πi)2

√
n1!n2!

Γ(n1 + 2r0)Γ(n2 + 2r0)
(−1)n1+n222r0+∆

×
∮

C1

dz1

∮
C2

dz2
z2r0+n1−1

1 z−(n2+1)
2

(1− z1)∆(z2 − 1)∆(z1 − z2)−∆+2r0
(2.4.17)

where C1 is the suitable anti-clockwise contour for the coordinates z1 = ∞ and C0

is for z2. Changing the pair of the variables z1 = 1
w1

and z2 = w2, we find the
expression

〈n2|B(0)|n1〉 =
f

(2πi)2

√
n1!n2!

Γ(n1 + 2r0)Γ(n2 + 2r0)
(−1)n1+n222r0+∆

×
∮

C2

dw2

wn2+1
2

∮
C1

dw1

wn1+1
1

(1− w1w2)∆−2r0

(1− w1)∆(w2 − 1)∆ (2.4.18)

where the integral are carried out around the contours C1 for w1 and C2 for w2.
Applying the Cauchy theorem, the integration (2.4.18) can be calculated to be [54]

〈n2|B(0)|n1〉 = 22r0+∆ f

√
n1!n2!

Γ(2r0 + n1)Γ(2r0 + n2)

×
min[n1,n2]

∑
k=0

(−1)k

(
∆− 2r0

k

)(
−∆

n1 − k

)(
−∆

n2 − k

)
. (2.4.19)

For n1 = n2 = 0 we can read off the explicit formula for the constant f as

f = 2−∆−2r0Γ(2r0)〈0|B(0)|0〉. (2.4.20)

Inserting (2.4.20) into (2.4.15) and reviving the constant factor a, we finally get the
formula for the 3-point function

F3(t, ; t2, t1) = 〈0|B(0)|0〉
(

i
2

)2r0+∆ Γ(2r0)a2r0

(t− t1)∆(t2 − t)∆(t1 − t2)−∆+2r0

∝
1

(t− t1)∆(t2 − t)∆(t1 − t2)−∆+2r0
. (2.4.21)

From the above form (2.4.21) we see that the 3-point function F3 consists of the
two operators with the same mass dimension r0 and the third operator B with the
mass dimension ∆.
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As seen from (2.3.12) and (2.4.21), the structures of the 2- and 3-point functions
suggest that there exists the averaging state and the corresponding operator with
the mass dimension r0. Let us define the operator O(t) which acts on the L0-
vacuum to create the state |t〉:

|t〉 = O(t)|0〉. (2.4.22)

Making use of the formulae (2.3.11) and (2.2.39), we can write 7

O(t) = N(t) exp [−z(t)L+] (2.4.23)

where

N(t) =
√

Γ(2r0)
(

z(t) + 1
2

)2r0

. (2.4.24)

Then the 2- and 3-point functions are given by

F2(t1, t2) = 〈t1|t2〉 = 〈0|O†(t1)O(t2)|0〉, (2.4.25)

F3(t; t2, t1) = 〈t2|B(t)|t1〉 = 〈0|O†(t1)B(t)O(t2)|0〉. (2.4.26)

Therefore the averaging state is the L0 ground state |0〉 and the corresponding
operators are O†(t) and O(t). We should note that the conformal invariant corre-
lation functions can be built up although the averaging state |0〉 is not conformally
invariant and the operators O(t) and O†(t) are not primary operators. This is
the significant difference from other higher dimensional conformal field theories
where one can assume the existence of the normalizable and invariant vacuum
states. For quantum field theories we generally treat with the Fock spaces which
are underlying on the empty no-particle vacuum states. However, in quantum
mechanics we deal with the Hilbert space which is the subspace of the Fock space
with the fixed number of the particle. This fact prevents us from constructing the
normalizable and invariant empty vacuum state in conformal quantum mechanics.

Noting that

[L−, e−z(t)L+ ] = e−z(t)L+
(
−2z(t)L0 + z2(t)L+

)
, (2.4.27)

[L0, e−z(t)L+ ] = −e−zL+z(t)L+, (2.4.28)

we see that the state |t〉 is the eigenstate of the operator L− + z(t)L0

(L− + z(t)L0) |t〉 = −r0z(t)|t〉 (2.4.29)

7Such construction of the state |t〉 has also been considered in [162, 163, 164]
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with the eigenvalue −r0z(t). We see that the state |t〉 is similar to the coherent
state |a〉 which satisfies L−|a〉 = a|a〉, however, the additional term z(t)L0 deviates
from it. In fact the coherent state |a〉 can be constructed as

|a〉 =
√

Γ(2r0) ∑
n

an√
n!Γ(2r0 + n)

|n〉

= Γ(2r0) ∑
n

an

n!Γ(2r0 + n)
(L+)n|0〉. (2.4.30)

Let us define the state

|Ψ〉 := e−Ha|t = 0〉 = e−Hae−L+ |0〉. (2.4.31)

By using the relations

L0e−Ha = e−Ha
(

K
2a

+ iD
)

, (2.4.32)(
K
2a

+ iD
)

e−L+ = e−L+

(
L0 −

1
4

L−

)
, (2.4.33)

one finds that

L0|Ψ〉 = r0|Ψ〉. (2.4.34)

Thus the state |Ψ〉 defined by (2.4.31) is proportional to the L0 vacuum state |0〉

|Ψ〉 = C|0〉 (2.4.35)

where the proportional constant C can be determined by noting the relation (2.3.37)
as

C =
√

Γ(2r0)
22r0

(2.4.36)

up to a phase factor. Then we obtain the alternative description for the state |t〉

|t〉 = eiHt|t = 0〉
= eiHteHa (C|0〉)

=
√

Γ(2r0)2−2r0e(a+it)H|0〉. (2.4.37)

Let us consider the 4-point function

F4(t1, t2, t3, t4) = 〈t1|B(t2)B̃(t3)|t4〉
= 〈0|O†(t1)B(t2)B(t3)O(t4)|0〉 (2.4.38)
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where the two different fields B(t) and B̃(t) carry the mass dimension ∆ and ∆̃
respectively. It is calculated to be [87]

F4(t1, t2, t3, t4) = 〈0|B(0)|0〉〈0|B̃(0)|0〉 Γ(2r0)
2∆+∆̃+2r0

× 1
(t13)∆−r0(t24)∆̃−r0(t12)∆̃+r0(t34)∆+r0(t14)2r0−∆−∆̃

xr0 2F1(∆, ∆̃; 2r0; x)

= p(t1, t2, t3, t4)xr0 2F1(∆, ∆̃; 2r0; x) (2.4.39)

where the parameter a set to be one and we have introduced the expressions tij :=
ti − tj and x := t12t34

t13t24
. 2F1(∆, ∆̃; 2r0; x) is the hypergeometric function that possesses

the Mellin-Barnes representation

2F1(a, b; c; x) =
Γ(c)

Γ(a)Γ(b)
1

2πi

∫ +i∞

−i∞
ds

Γ(a + s)Γ(b + s)Γ(−s)
Γ(c + s)

(−x)s. (2.4.40)

Note that the single Mellin integral appears in the formula of the 4-point function
(2.4.39). This reflects the fact that four points lead to a single invariant in one-
dimension in contrast to the two invariants in higher dimensions.

It is known that 4-point functions F4 can be expressed by the superposition of
the conformal blocks, or the conformal partial waves G in higher dimensional con-
formal field theories [165]. The conformal block G can be determined by requiring
that it is the eigenfunction of the quadratic Casimir of the conformal group. As
seen from the formula (2.4.39), we can easily read off a single conformal block as
[87] 8

G = xr0
2 F1(∆, ∆̃; 2r0; x), (2.4.41)

which satisfies the differential equation

C2 [p(t1, t2, t3, t4)G] = r0(r0 − 1)p(t1, t2, t3, t4)G. (2.4.42)

2.5 Gauged conformal mechanics

It has been pointed out [137] that the DFF-model (2.1.2) can be obtained by the
gauged quantum mechanics. Let us consider a simple complex free particle La-
grangian

L =
1
2

żż (2.5.1)

8 For higher dimensional field theories, the conformal block can be obtained through the oper-
ator product expansion.
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where z is a complex one-dimensional field. The system (2.5.1) is invariant under
the following U(1) transformations

z′ = e−iλz, z′ = eiλz (2.5.2)

where λ is a real parameter. Let us gauge this symmetry by promoting λ → λ(t).
Then the gauge invariant Lagrangian is given by

L =
1
2

D0zD0z + cA0

=
1
2

(ż + iA0z)
(
ż− iA0z

)
+ cA0 (2.5.3)

where A0(t) is the one-dimensional U(1) gauge field. The term cA0 is a Fayet-
Iliopoulos (FI) term with c being a constant. This term is gauge invariant itself up
to total derivative.

The action (2.5.3) is invariant under the one-dimensional conformal transfor-
mations

δt = f (t) = a + bt + ct2, (2.5.4)

δx =
1
2

ḟ x, (2.5.5)

δA0 = − ḟ A0. (2.5.6)

Here the transformation of the gauge field A0(t) is the same as that of the time
derivative ∂0.

Note that the Lagrangian (2.5.3) is quadratic in the U(1) gauge field A0 and
contains no time derivative of A0. This immediately implies that the gauge field
A0 is identified with the auxiliary gauge field. Hence we attempt to integrate out
the auxiliary gauge field. However, we should be careful of the exclusion of the
auxiliary field because it is a gauge field. We need to integrate out the auxiliary
gauge field in two steps; firstly we fix a gauge to eliminate residual degrees of
freedom and then solve the equation of motion of the auxiliary gauge field or
impose the resulting Gauss law constraint to ensure the consistency of the gauge
fixing. Let us choose the gauge such that

z(t) = z(t) = x(t). (2.5.7)

Then the Lagrangian (2.5.3) becomes

L =
1
2

ẋ2 +
1
2

A2
0x2 + cA0. (2.5.8)
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Using the algebraic equation of motion for the auxiliary gauge field A0

A0 = − c
x2 , (2.5.9)

we can integrate out gauge field and obtain the reduce Lagrangian

L =
1
2

(
ẋ2 − c2

x2

)
. (2.5.10)

This is nothing but (2.5.2), the DFF-model Lagrangian. Thus the conformal invari-
ance is preserved under the gauging procedure. This procedure, i.e. the integra-
tion of the auxiliary gauge field can be interpreted as the reduction process for the
mechanical systems with symmetry. Let us summarize the basic concepts of the
classical theory of Hamiltonian dynamical systems.

A manifold M is said to be endowed with a Poisson structure if there is
an operation assigning to every pair of functions F, G ∈ F (M) a new function
{F, G} ∈ F (M) which is linear in F and G and has the following properties

1. skew symmetry

{F, G} = −{G, F} (2.5.11)

2. Jacobi identity

{F, {G, H}}+ {G, {H, F}}+ {H, {F, G}} = 0 (2.5.12)

3. Leibniz rule

{F, GH} = {F, G}H + {F, H}G. (2.5.13)

As the above three identities (2.5.11)-(2.5.13) are the axioms of the Lie algebra, the
space F (M) is nothing but an infinite dimensional Lie algebra. Then a dynamical
system on M, the so-called Hamiltonian dynamical system can be introduced as

ẋi =
{

H(x), xi
}

= Xi
H (2.5.14)

where xi are local coordinates on M, H(x) is the Hamiltonian of the dynamical
system and the vector field Xi

H is referred to as a Hamiltonian vector field. For
such system we have

Ḟ = {H, x} (2.5.15)
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and the functions which satisfy {H, F} = 0 are conserved quantities, i.e. the
integrals of motion.

The important class of phase spaces is known as a symplectic manifold (M, ω),
which possesses closed nondegenerate differential two-form ω, i.e. symplectic
forms and their Poisson structures are given by

{F(x), G(x)} = ωij∂iF∂jG

= ω(XF, XG). (2.5.16)

Suppose that a Lie group G acts on M. Then one can represent the correspond-
ing Lie algebra g of G in the Lie algebra of vector fields on M. In other words there
is a vector field Xξ on M to each ξ ∈ g. If one can associate a function Hξ on M
to each Xξ obeying the conditions

Xi
ξ =

{
Hξ , xi

}
, (2.5.17)

Hξ+η = Hξ + Hη, (2.5.18)

H[ξ,η] =
{

Hξ , Hη

}
, (2.5.19)

the action of G is called Hamiltonian and Hξ the Hamiltonian function. Namely
an action of G on M is called Hamiltonian if the map ξ 7→ Hξ is a homomorphism
of the Lie algebra g into the Lie algebra F (M). It is known that any symplectic
action of Lie group G is Hamiltonian if H2(g, R) = 0.

Since the Hamiltonian function Hξ of G depends on ξ ∈ g linearly we may
write it as

Hξ(x) = 〈µ(x), ξ〉 (2.5.20)

where the notation 〈 f , ξ〉 denotes the value of f at ξ ∈ g and µ(x) belongs to g∗,
the dual of the Lie algebra g. Therefore there is a map

µ : M 7→ g∗ (2.5.21)

for any Hamiltonian action of G on M. This is called the moment map .
If we have the Hamiltonian action of a Lie group G on M which leaves the

Hamiltonian H(x) invariant, the quadruple

{M, { , } , H, G} (2.5.22)

is called a Hamiltonian system with G-symmetry. There is an important property
of Hamiltonian system with G-symmetry [166]

43



If the Hamiltonian H(x) is invariant under a Hamiltonian action of a
Lie group G on M, then the moment map µ(x) is an integral of motion.

This is a generalization of the well-known Noether’s theorem. Since the symme-
tries give rise to the integrals of motion, one can reduce the dynamical system to
one with fewer degrees of freedom [167, 166, 168, 169]. Suppose we have a Hamil-
tonian action of G on a symplectic manifold M and the corresponding moment
map µ : M 7→ g∗. We consider the inverse image of a point c ∈ g∗ for µ and
represent this set by M̃c

M̃c = µ−1(c). (2.5.23)

We require that c is a regular value of µ. This implies that either the differential of
µ at every point of M̃c maps the tangent space to M onto g∗ or M̃c is empty 9. In
this case M̃c is a smooth submanifold of M. The isotropy subgroup of c consists
of the elements g of G for which

Ad∗gc = c. (2.5.24)

Put in another way, the isotropy subgroup is the subgroup relative to the coadjoint
action which leaves M̃c invariant. Let us denote this isotropy subgroup by

Gc =
{

g : Ad∗gc = c
}

. (2.5.25)

Now that the space M̃c decomposes into orbits of the action of G, we can define
the reduced phase space by

Mc = M̃c/Gc. (2.5.26)

It has been shown in [166, 168] that if the isotropy subgroup Gc is compact and
acts on M̃c without fixed points, the reduced phase space (2.5.26) is shown to
symplectic manifold and that the reduced field, the vector field on the reduced
phase space Mc remains Hamiltonian vector field on it and the corresponding
Hamiltonian function pulled back to M̃c coincides with the original Hamiltonian
function restricted to M̃c.

An Abelian version of the Lagrangian reduction with the integrals of motion
was firstly proposed by Routh [171]. Recall that there are two formulations for
the classical dynamical system; the Lagrangian formalism and the Hamiltonian
formalism. The Lagrangian is a functional of coordinates and their time deriva-
tives and it leads to the equations of motion as a set of second order differential

9In [170] it has been discussed that almost all c are regular values.
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equations while the Hamiltonian is a functional of coordinates and their canonical
momenta and leads to the equations of motion as a set of first order differential
equations at the cost of the twice number of the equations.

Suppose we have a system whose Lagrangian is independent of some subset
of coordinates. We will refer them as cyclic coordinates and denote by yi and the
remaining non-cyclic ones by xi. The Lagrangian can be written as

L(xi, yi, ẋi, ẏi; t) = L(xi, ẋi, ẏi; t). (2.5.27)

Note that the canonical momenta of the cyclic coordinates yi

pyi =
∂L
∂ẏi (2.5.28)

are conserved quantities. In this case the differential equations associated with
these momenta are trivial and therefore the Hamiltonian formulation is more ad-
vantageous.

The Routhian R is regarded as the new Lagrangian , which is the mixture
of the Lagrangian with the Hamiltonian. More precisely it is defined by setting
pyi = hi = constant and performing a partial Legendre transformation on the
cyclic coordinates yi

R(xi, ẋi, hi; t) := L−∑
i

hiẏi. (2.5.29)

Let us consider the Euler-Lagrange expressions for the Routhian

d
dt

(
∂R
∂ẋi

)
− ∂R

∂xi

=
d
dt

(
∂L
∂ẋi +

∂L
∂ẏi

∂ẏi

∂ẋi

)
− d

dt

(
hi

∂ẏi

∂ẋi

)
−
(

∂L
∂xi +

∂L
∂ẏi

ẏi

∂xi

)
− hi ∂ẏi

∂xi . (2.5.30)

The first and fourth terms cancel by the original Euler-Lagrange equations and the
remaining terms vanish by the definition of the canonical momenta hi = ∂L

∂ẏi .
This shows that the Euler-Lagrange equations for L(x, ẋ, ẏ) together with the

conserved quantities hi = pyi are equivalent to the Euler-Lagrange equations for
the Routhian R(x, ẋ). The Euler-Lagrange equations for the Routhian are called
the reduced Euler-Lagrange equations because the phase space M with variables
{xi, yi} is now reduced to the small phase space M̃ with variables {xi} 10. Note

10In other words the naive substitution of the conserved quantities into the original Lagrangian
spoils the role of the Lagrangian.
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that the Hamilton equations for the cyclic coordinates yield the trivial statement;
the constant property of hi (i.e. ḣi = 0) and the definition of hi (i.e. hi = ∂L

∂ẏi ).
Now let us go back to the gauged mechanical Lagrangian (2.5.3) and apply the

Routh reduction 11. We will parametrize the complex variable z as z = qeiϕ where
q ≥ 0 and 0 ≤ ϕ < 2π are real variables. We then can write the Lagrangian (2.5.3)
as

L =
1
2

q̇2 +
1
2
(qϕ̇)2 + qϕ̇A0 +

1
2

q2A2
0 + cA0. (2.5.31)

By choosing the temporal gauge A0 = 0, we get

L =
1
2

q̇2 +
1
2
(qϕ̇)2 (2.5.32)

and the Gauss law constraint

φ = q2 ϕ̇ + c = 0. (2.5.33)

Note that the conserved quantity h := ∂L
∂ϕ̇ = q2 ϕ̇ appears in the Gauss law. The

Gauss law constraint is the result of fixing the gauge action on the phase space.
Thus it is interpreted as the moment map condition. Since the variable ϕ is cyclic
coordinate, we can now apply the Routh reduction (2.5.29) and derive the reduced
action. We find the new Lagrangian as the Routhian

R =
1
2

(
q̇2 − c2

q2

)
. (2.5.34)

Again this is exactly the DFF-model Lagrangian (2.5.2) (or (2.5.10)) as expected.
Therefore upon the reduction procedure of the gauged mechanical model we get
the conformal mechanics (DFF-model).

2.6 Black hole

An interesting connections between black holes and conformal mechanical mod-
elds have been proposed in [65] 12. Let us consider the d = 4 Einstein-Maxwell
theory which has the action

S =
1

16π

∫
d4x
√
−g
(

R− F2
)

. (2.6.1)

11 The application of the Routh reduction in the gauged mechanical systems was discussed in
[51].

12Also see [66] for the conjectural relation between black holes and the Calogero model.
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The theory admits a single extreme Reissner-Nordström black hole solution with
the metric in isotropic coordinate

ds2 = −
(

1 +
|Q|lp

ρ

)−2

dt2 +
(

1 +
|Q|lp

ρ

)2 (
dρ2 + ρ2dΩ2

)
(2.6.2)

and the gauge field

A =
(

1 +
|Q|lp

ρ

)−1

dt (2.6.3)

where Q is the black hole charge, lp is the Planck length with the black hole mass
M = |Q|

lp
, and dΩ2 = dθ2 + sin2 θdϕ2 is the SO(3) invariant metric on S2. In the

near-horizon limit the metric (2.6.2) becomes the Bertotti-Robinson (BR) metric

ds2 = −
(

ρ

|Q|lp

)2

dt2 +
( |Q|lp

ρ

)2

dρ2 +
(
|Q|lp

)2 dΩ2, (2.6.4)

which is SO(1, 2)× SO(3) invariant conformally flat metric on AdS2× S2. Defining
the horospherical coordinate as (t, φ = ρ

Qlp
) for AdS2 part, we can express the BR

metric (2.6.4) as

ds2 = −φ2dt2 +
(
|Q|lp

)2

φ2 dφ2 +
(
|Q|lp

)2 dΩ2 (2.6.5)

where the quantity |Q|lp is interpreted as the S2 radius and also as the radius
of the curvature of the AdS2 space. To go further, let us introduce a new radial
coordinate r by

φ =
(

2M
r

)2

. (2.6.6)

Putting together the black hole solutions (2.6.2) and (2.4.3) now become

ds2 = −
(

2M
r

)4

dt2 +
(

2M
r

)2

dr2 + M2dΩ2, (2.6.7)

A =
(

2M
r

)2

dt (2.6.8)

where we have chosen the unit so that lp = 1 and M = |Qp|.
Now we consider the test particle with mass m and charge q. The world-line

action of the particle is

S = −m
∫

ds + q
∫

A. (2.6.9)
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Putting the black hole solutions (2.6.7) and (2.6.8) into (2.6.9), we find the action

S =
∫

dt
(

2M
r

)2
q−m

√
1−

(
2M

r

)−2

ṙ2 − M2
(

2M
r

)−4 (
θ̇2 + sin2 θϕ̇2

) .

(2.6.10)

The action is invariant under the conformal transformations [74]

δt = f (t) + c
(

1
M2

)
r4 = a + bt + ct2 + c

(
1

M2

)
r4, (2.6.11)

δr =
1
2

ḟ r =
1
2
(b + 2ct)r, (2.6.12)

δθ = δϕ = 0. (2.6.13)

The corresponding conformal generators, the Hamiltonian H, the dilatation oper-
ator D and the conformal boost operator K are given by

H =
(

2M
r

)2
[√

m2 +
r2p2

r + 4L2

4M2 − q

]

=
p2

r
2 f

+
mγ

2r2 f
, (2.6.14)

D = −1
4

(rpr + prr) , (2.6.15)

K =
1
2

f r2 (2.6.16)

where we have introduced

L2 = p2
θ +

p2
ϕ

sin2 θ
, (2.6.17)

f =
1
2

[√
m2 +

1
4M2 (r2p2

r + 4L2) + q

]
, (2.6.18)

γ = 4M2 m2 − q2

m
+

4L2

m
. (2.6.19)

It can be shown that three generators H, D and K form the one-dimensional con-
formal sl(2, R) algebra under the Poisson brackets.

It has been pointed out [65] that this conformal mechanical model (2.6.10) give
rise to the DFF-model (2.1.2) in the specific limit 13. Considering the limit

M → ∞, (m− q) → 0, M2(m− q) = fixed (2.6.20)

13However, the physical meaning of this particular limit is not clear and we will see that the
mechanical model (2.6.10) and the DFF-model (2.1.2) can be realized as two different non-linear
realizations of the one-dimensional conformal group SL(2, R).
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and noting that f → m in this limit, we obtain the DFF Hamiltonian

H =
p2

r
2m

+
γ

2r2 (2.6.21)

with the coupling constant

γ = 8M2(m− q) +
4l(l + 1)

m
. (2.6.22)

Here l(l + 1), l ∈ Z is the quantum number of the operator L2. Note that this
quantization corresponds to the freezing of the S2 angles, θ, ϕ, i.e. θ = const., ϕ =
const. Therefore the DFF-model (2.6.21) describes the radial motion of the AdS2 ×
S2 particle, i.e. the particle near the horizon of the extreme Reissner-Nordström
black hole in the limit (2.6.20).

Let us discuss the procedure proposed by DFF to cure the problem of the ab-
sence of the ground state for the Hamiltonian H from the perspective of the particle
motion near the black hole horizon. Firstly we see that the metric (2.6.5) is singular
at φ = 0, however, this is just a coordinate singularity and φ = 0 is a non-singular
degenerate Killing horizon of the time-like Killing vector field ∂

∂t . To see this we
recall the definition of the AdS2 space as a Lobachevski-like embedded surface in
a three dimensional Minkowski space (see Figure 2.8)

−(x0)2 + (x1)2 − (x2)2 = −R2. (2.6.23)

Using the hypersurface coordinate (φ, t) defined by

x0 = tφ, (2.6.24)

x+ = x2 + x1 =
R2 − t2φ2

Rφ
, (2.6.25)

x− = x2 − x1 = Rφ, (2.6.26)

we obtain the AdS2 factor of the BR metric (2.6.5) with |Q|lp = R. The horospher-
ical coordinates (t, φ) can only cover the half of the AdS2 region. At φ = 0 the
metric (2.6.5) is singular and φ > 0 or φ < 0 should be chosen. Correspondingly
the coordinate x− is restricted to x− > 0 or x− < 0. Since the coordinate x0, x+

and x− are smooth on the hypersurface, at the horizon φ = 0 the time coordinate
t is ill-defined. To avoid such situation, let us define new coordinates

t1 =
1
2
(x+ + x−), t2 = x0, t = t1 + it2, (2.6.27)

r =
1
2
(x+ − x−). (2.6.28)
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Figure 2.8: AdS2 space viewed as a hyperboloid of one sheet in a three dimensional
Minkowski space.

Then the equation (2.6.23) becomes

−|t|2 + r2 = −R2 (2.6.29)

and thus we can write

t = e
iτ
R
√

R2 + r2 (2.6.30)

with τ ∈ R being a new coordinate. In terms of these coordinates the BR metric
(2.6.5) can be written as

ds2 = −
(

R2 + r2

R2

)
dτ2 +

(
R2

R2 + r2

)
dr2 + R2dΩ2. (2.6.31)

In fact this shows that the horizon is not a true singularity as we mentioned.
Now we want to get further insights of conformal mechanics from black hole

viewpoint. As seen from the expression (2.6.24), the classical analog of an eigen-
state vector of the Hamiltonian H in conformal mechanics is an orbit of a time-like
Killing vector k = ∂

∂t in the AdS2 region outside the horizon (φ 6= 0) and the en-
ergy eigenvalue E is the value of k2. This implies that the ground state |E = 0〉 of
H with E = 0 in conformal mechanics corresponds to the orbit of k with k2 = 0
which is a null geodesic generator of the event horizon. Therefore the absence of
the ground state |E = 0〉 can be interpreted as the fact that the orbit of k2 = 0
cannot be covered by the static coordinate t as we discussed.

In classical general relativity it is a general procedure to demonstrate that the
horizon is not a true singularity by changing the coordinate system. Note that
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the AdS2 isometry SO(1, 2) is linearly realized on the coordinates (x0, x1, x2) as
rotations δxµ = Λµ

νxν whose generators Jµν = ix[µ∂ν] form the so(1, 2) algebra

[Jµν, Jρσ] = i
(

ηµ[ρ Jσ]ν − ην[ρ Jσ]µ
)

(2.6.32)

with ηµν = diag(−1, +1,−1). Then we can find new generators in our new coor-
dinates (t1, t2, r) and the corresponding operators in the DFF-model as follows:

1. rotation: t1 ↔ t2

This rotation is expressed as the U(1) rotation of the complex coordinate t

t = e
iτ′
R
√

R2 + r2 = eiαt (2.6.33)

with α ∈ R being the infinitesimal parameter. and thus yields the time τ

translation

τ′ = τ + Rα. (2.6.34)

Since it generates compact rotation in the non-compact SO(1, 2) symmetry
group, the corresponding generator Jt1t2 is identified with the L0 in the con-
formal mechanics.

2. rotation: (t1, t2) ↔ r

In this case the rotations are expressed as two boost operations

δt = β, δr =
1
2

(βt∗ + β∗t) (2.6.35)

where β ∈ C is the infinitesimal parameter. The complexified generator
Jt1r ± i Jt2r can be regarded as L± in the DFF conformal mechanics.

Therefore from the black hole perspective the DFF prescription can be thought
of as the different choice of time coordinates in which the world-lines of static
particles can pass through the black hole horizon.

2.7 Non-linear realization

The non-linear realization [155, 156, 157, 172] is a useful method to construct the
non-linear invariant Lagrangian. The basic idea is the following:

1. Start from the Lie (super)group G that reflects the symmetry in the theory.
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2. Find the invariants under G from the Cartan forms ω belonging to the (su-
per)coset G/H where H is the stability subgroup of G.

3. Construct the invariant Lagrangian under G in terms of the Goldstone fields
associated with the (super)coset Cartan forms ω.

By making use of the non-linear realization, it has been showed [74] that the DFF-
model (2.1.2) and the black hole conformal mechanics (2.6.10) are essentially equiv-
alent modulo redefinition of the time coordinates and the variables at classical
level. Moreover the non-linear realization approach provides us with a powerful
method to construct the irreducible supermultiplets for superconformal mechan-
ical models. Much of the irreducible constraints and transformation laws can be
automatically obtained from the non-linear realization technique.

Let G be a Lie (super)group and H be its subgroup. We call Yi the generator
of H. and Xi the generator of the remaining generators. We assume that the
commutator [Xi, Yj] is a linear combination of Xi alone

[Xi, Yj] = f k
ijXk (2.7.1)

where f k
ij are the structure constants. (2.7.1) implies that the remaining generators

Xi form the representation of the subgroup H, which we will call the stability
subgroup. Then a group element g of G can be represented uniquely by [155, 156,
157, 172]

g = ex·Xh

= g̃h (2.7.2)

where h is an element of H, x · X := ∑i xiXi and xi are the coordinates parametriz-
ing the coset space G/H. The actions of the group G can be realized by left
multiplications on the coset G/H. This fact is the key statement of the non-linear
realization method.

Now we want to apply the basic statement (2.7.2) to find the non-linear realiza-
tion of G symmetry group and to construct the G-invariant Lagrangian. In order
to achieve this, we classify the parameters xi in two classes

xi =

(super)space coordinates if Xi is (super)translation

Goldstone (super)fields otherwise.
(2.7.3)

In other words, the (super)space and time coordinates are the parameters of the
(super)translation generators while the remaining coset parameters are treated as
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the (super)fields. We should note that the number of the Goldstone (super)fields
is not always same as the number of the coset generators. In fact some of the
Goldstone (super)fields may be expressed by other Goldstone (super)fields. This
phenomenon is known as the inverse Higgs effect [173].

For one-dimensional conformal algebra sl(2, R) given by (2.1.23)-(2.1.25), the
stability subgroup H is trivial and thus the coset is parametrized by the coordinates
for all generators

g̃ = eitHeiz(t)Keiu(t)D. (2.7.4)

Since we are now considering one-dimensional field theory, i.e. quantum mechan-
ics, we introduce time coordinate t for the Hamiltonian H. The remaining two
coordinates z(t) for K and u(t) for D are Goldstone fields.

Then we can find the realization of the conformal group in our coset (2.7.4).
The translation H is realized by acting on g by g0 = eiaH from the left

g0 · g̃ = eiaH · eitHeiz(t)Keiu(t)D. (2.7.5)

We thus obtain the translations

δt = a, (2.7.6)

δu = 0, δz = 0. (2.7.7)

The dilatation D is realized by acting on g by g0 = eibD from the left

g0 · g̃ = eibD · eitHeiz(t)Keiu(t)D

= (eibDeitHe−ibD)(eibDeizKe−ibD)eibDeiuD

= ei(t+bt)Hei(z+bz)Kei(u+b)D. (2.7.8)

One finds the dilatations

δt = bt, (2.7.9)

δu = b, δz = −bz. (2.7.10)

The conformal boost K is realized by acting on g by g0 = eicK from the left

g0 · g̃ = eicK · eitHeizKeiuD

= eitH(e−itHeicKeitH)eizKeiuD

= ei(t+ct2)Hei(z+c−2ctz)Kei(u+2ct)D. (2.7.11)
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We get the conformal boost transformations

δt = ct2, (2.7.12)

δu = 2ct, δz = c− 2ctz. (2.7.13)

Let us discuss the construction of the G-invariant expressions. To this end we
introduce the Maurer-Cartan form Ω for the coset G/H defined by

Ω = g̃−1dg̃

= e−x·Xd(ex·X)

= iωiXi + iω̃iYi. (2.7.14)

Then one can show [155, 156, 157, 172] that the forms ωi on the coset transform
homogeneously and therefore any expression constructed with ωi is invariant un-
der G. On the other hand it turns out [155, 156, 157, 172] that the forms ω̃i on
the stability subgroup H transform like connections and can be used to construct
covariant derivatives.

The Maurer-Cartan forms for the coset (2.7.4) is

Ω = g̃−1dg̃ = i (ωH H + ωKK + ωDD) (2.7.15)

where

ωH = e−u, (2.7.16)

ωD = du− 2zdt, (2.7.17)

ωK = eu
(

dz + z2dt
)

. (2.7.18)

Alternatively the Maurer-Cartan forms associated with the generators Ti, i = 0, 1, 2
defined (2.1.35) are given by

ω0 =
1
m

ωK + mωK, (2.7.19)

ω1 =
1
m

ωK −mωH, (2.7.20)

ω2 = ωD (2.7.21)

where m is a constant parameter. Since the form ω1, ω2 are the coset forms,
they transform homogeneously. we can impose the following SL(2, R) invariant
conditions 14

ω1 = 0, (2.7.22)

ω2 = 0. (2.7.23)

14 Although the choice of ω0 = 0 also yields the SL(2, R) invariant constraint, it does not lead to
the good dynamical systems.
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The first condition (2.7.22) turns out to be the equation of motion for the system
and the second condition (2.7.23) leads to the relation

z =
1
2

u̇, (2.7.24)

which implies that the Goldstone field z(t) can be represented by the other Gold-
stone field u(t). This is the inverse Higgs effect [173]. In terms of the remaining
Maurer-Cartan forms ω0, one can construct the SL(2, R) action [174]

S = −c
∫

ω0

= −c
∫

dt
[ c

m
eu
(

ż + z2
)

+ mce−u
]

=
∫

dt
[

x2 − c2

x2

]
(2.7.25)

where we have used the relation (2.7.24) and introduced

x := µ−
1
2 e

u
2 , (2.7.26)

µ =
m
c

(2.7.27)

The action (2.7.25) is just the DFF-model (2.1.4).
Let us introduce

K̂ = mK− 1
m

H, D̂ = mD (2.7.28)

where m is a constant parameter. Then the one-dimensional conformal sl(2, R)
algebra can be written as

[H, D̂] = imH, (2.7.29)

[K̂, D̂] = −2iH − imK̂, (2.7.30)

[H, K̂] = 2iK̂. (2.7.31)

Defining the corresponding coset by

g̃ = eiτHeiφ(τ)D̂eiΩ(τ)K̂ (2.7.32)

and acting the corresponding elements on the coset (2.7.32) from the left, one can
find the SL(2, R) transformations for the new coordianates

δτ = a + b + cτ +
1

m2 ce2mφ, (2.7.33)

δφ =
1
m

(b + 2cτ) , (2.7.34)

δΩ =
1
m

cemφ (2.7.35)
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where a, b, c are infinitesimal constant parameters. Note that the transformation of
the new time coordinate τ contains the additional term 1

m ce2mφ, which is similar to
(2.6.11). We can read the Maurer-Cartan forms for the coset (2.7.32) [74]

ω̂H =
1 + Λ2

1−Λ2 e−mφdτ − 2
Λ

1−Λ2 dφ, (2.7.36)

ω̂D =
1 + Λ2

1−Λ2 dφ− 2
Λ

1−Λ2 e−mφdτ, (2.7.37)

ω̂K = m
Λ

1−Λ2

(
Λe−mφdτ − dφ

)
+

dΛ
1−Λ2 (2.7.38)

where

Λ = tanh Ω. (2.7.39)

Let us impose the SL(2, R) invariant conditions as

ω̂D = 0, (2.7.40)

which results in the inverse Higgs effect [173]

∂τφ = 2e−mφ Λ
1 + Λ2 . (2.7.41)

So the Goldstone field Λ or Ω can be expressed by φ

Λ = ∂τφemφ 1
1 +

√
1− e2mφ(∂τφ)2

. (2.7.42)

Using the non-vanishing Maurer-Cartan forms, one can construct the SL(2, R)
invariant action [74]

S =
∫ [

(q− µ̃)ω̂H −
2
m

qω̂K

]
= −

∫
dτe−mφ

[
µ̃
√

1− e2mφ(∂τφ)2 − q
]

. (2.7.43)

We see that the action (2.7.43) is the conformal mechanical model (2.6.10) which
describes the radial motion of the AdS2 × S2 particle [65].

Therefore we see that the two mechanical model (2.6.10) and the DFF-model
(2.1.2) can be realized as two different non-linear realizations of the one-dimensional
conformal group SL(2, R). From this point of view, we can conclude that the two
conformal mechanical models are equivalent up to the redefinition of the time
coordinate and the physical variable.
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2.8 Multi-particle conformal mechanics

Let us study the conformal mechanical models with many degrees of freedom for
different particles. Generically n-particle quantum mechanics can be viewed as a
sigma-model with an n-dimensional target space M. So we will see the conditions
[69] for the target space M for the existence of conformal operators D and K.

Consider the Hamiltonian

H =
1
2

p†
a gab pb + V(x). (2.8.1)

Here gab(x) is the metric of the target space M where the indices a, b = 1, · · · , n
label the particles.

pa = gab ẋb (2.8.2)

are the canonical momenta obeying

[xa, pb] = iδab, [xa, xb] = 0, [pa, pb] = 0. (2.8.3)

The Hermitian conjugate of pa are

p†
a =

1
√

g
pa
√

g

= pa − iΓb
ba (2.8.4)

where Γc
ab is the Christoffel symbol constructed from gab.

Let us assume that the theory has a dilatational invariance of the form

δt = bt, δxa =
1
2

Da(x)b, (2.8.5)

which is a generalization of (2.1.14) and (2.1.15) with b being an infinitesimal pa-
rameter for the dilatation. Then the dilatation generator D is given by

D =
1
4

(
Da pa + p†

a Da†
)

. (2.8.6)

Under the canonical relations (2.8.3) we find the commutation relation of the
Hamiltonian (2.8.1) and the dilatation generator (2.8.6) as [69]

[H, D] =
i
4

p†
a

(
LDgab

)
pb +

i
2
LDV +

i
8
∇2∇aDa (2.8.7)

where Ld is the Lie derivative

LDgab = Dcgab,c + Dc
,agcb + Dc

,bgac. (2.8.8)
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From the sl(2, R) algebra (2.1.23) and the expressions (2.8.1), (2.8.7), the existence
of the dilatation generator D requires that

LDgab = 2gab, (2.8.9)

LDV(x) = −2V(x), (2.8.10)

∇2∇aDa = 0. (2.8.11)

A vector field D is called homothetic vector field or similarity vector field on M
15. A homothetic vector field generates a similarity transformation group. It is
shown that along any integral curve of a homothetic vector field the space-like,
time-like or null character of the tangent vector does not change and that there
is necessarilly a singularity in each orbit of the similarity transformation group
[175, 176, 177].

Furthermore the remaining commutation relations (2.1.24) and (2.1.25) lead to
[69]

LDK = 2K, (2.8.13)

Dadxa = dK (2.8.14)

respectively. As the solutions to the equations (2.8.13) and (2.8.14), one can express
the conformal boost generator K as the norm of Da

K =
1
2

gabDaDb. (2.8.15)

The equation (2.8.14) means that the one-form D = Dadxa is exact, however, it is
shown [69] that closed homothety vector field D is always exact. So it is enough to
impose the closeness condition for the homothetic vector field D

d (Dadxa) = 0. (2.8.16)

Therefore we can conclude that in order to obtain conformal quantum mechan-
ical sigma-models,

• the target space M must admit a homothety vector field D whose associated
one-form Dadxa is closed 16; (2.8.9) and (2.8.16)

15Note that

X =


conformal Killing field if LX gab = ρ(x)gab

homothetic vector field if LX gab = cgab

Killing vector field if LX gab = 0

(2.8.12)

where ρ(x) is a function on M and c is a constant on M.
16The vector field D with the required properties for conformal mechanical sigma-model is re-

ferred to as a closed homothety vector field in [69]
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• the potential V(x) must satisfy (2.8.10)

• Da must obey the vanishing condition (2.8.11).

2.9 Calogero model

One of the most celebrated multi-particle conformal mechanical models is the
Calogero model, which is the system of multi-particles scattering on the line with
inverse-square potentials [134, 135]. The Hamiltonian is given by

H =
n

∑
i=1

1
2

p2
i + ∑

i<j

γ

(xi − xj)2 (2.9.1)

where the indices i = 1, · · · , n label the particles and γ is a coupling constant.
In what follows we will discuss that the Calogero model and its generalization

can be obtained from gauged matrix models. This formulation not only indicates
the intimite relationship between the conformal quantum mechanical models and
the gauged quantum mechanical models but also provides us with non-trivial
(super)conformal mechanical models.

Let us start with the gauged matrix model action

S =
∫

dt
[

Tr(DXDX) +
i
2
(
ZDZ− DZZ

)
+ cTrA

]
. (2.9.2)

Here Xb
a(t), Xb

a = Xa
b , a = 1, · · · , n are the bosonic Hermitian (n × n) matrices,

Za(t), Za = (Za) are bosonic complex matrices and Ab
a(t), (Ab

a) = Aa
b are the U(n)

gauge fields with n2 component fields. c is a real constant parameter. In the action
(2.9.2) the covariant derivatives are defined as

DX := Ẋ + i[A, X], DZ := Ż + iAZ, DZ := Ż− iZA. (2.9.3)

Note that in the third term, the Fayet-Iliopoulos term the non-abelian traceless part
of the gauge field A drops out and only the U(1) part has contributions.

The action (2.9.2) is invariant under the one-dimensional SL(2, R) conformal
transformations

δt = f (t), δ∂0 = − ḟ ∂0, (2.9.4)

δX =
1
2

ḟ X, δZ = 0, δA = − ḟ A (2.9.5)
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where f (t) = a + bt + ct2 with a, b, c being infinitesimal real parameters. The action
(2.9.3) is invariant under the U(n) gauge transformations

X → gXg−1, (2.9.6)

Z → gZ, Z → Zg−1, (2.9.7)

A → gAg−1 + iġg−1 (2.9.8)

where g ∈ U(n). Let us impose a partial gauge fixing condition

Xb
a = xaδb

a (2.9.9)

where xa are real component fields since X are Hermitian matrices. Then the action
(2.9.3) becomes

S =
∫

dt ∑
a,b

[
ẋa ẋa +

i
2

(
ZaŻa − Ż

a
Za

)
+ (xa − xb)2Ab

a Aa
b − Za Ab

aZb + cAa
a

]
. (2.9.10)

By noting that the action (2.9.10) is invariant under the U(1)n gauge transforma-
tions

xa → xa, (2.9.11)

Za → eiλa Za, Za → e−iλa Za, (2.9.12)

Aa
a → Aa

a − λ̇a (2.9.13)

where λa(t) are local parameters, we further impose the gauge fixing condition as

Za = Za. (2.9.14)

Then the action (2.9.10) reduces to

S =
∫

dt ∑
a,b

[
ẋ2

a + (xa − xb)2Ab
a Aa

b − ZaZb Ab
a + cAa

a

]
. (2.9.15)

At this stage we attempt to integrate out the gauge field A. From the action (2.9.15)
we obtain the equations of motion for Aa

a and for Ab
a,a 6= b as

(Za)2 = c (2.9.16)

Aa
b =

ZaZb
2(xa − xb)2 . (2.9.17)

Substituting the equations (2.9.16) and (2.9.17) into the action (2.9.15) and rescaling
xa appropriately, we obtain the Calogero model action

S =
1
2

∫
dt

[
∑

a
ẋ2

a − ∑
a 6=b

c2

(xa − xb)2

]
. (2.9.18)
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Chapter 3

Superconformal Mechanics

In this chapter we will proceed to the superextension of the conformal quantum
mechanics; the superconformal quantum mechanics. Firstly in section 3.1 we will
recall the basic facts about Lie superalgebra and Lie supergroup and will clarify
the one-dimensional superconformal group. Then in section 3.2 we will stress that
supersymmety in one-dimension possesses many peculiar properties. In section
3.3, 3.4, 3.5 and 3.6 we will review the persistent efforts to construct N = 1, 2,
4 and 8 superconformal quantum mechanics by using the superspace and super-
field formalism and also review the interesting topics which are relevant to those
superconformal mechanical models.

3.1 Superalgebra and supergroup

In d-dimensional superconformal field theories the ordinary supersymmetry and
the conformal symmetry lead to a second supersymmetry. The corresponding
generator Sα with α, β, · · · being spinor indices can be found by taking the com-
mutator of the conformal boost operator Kµ with space-time indices µ, ν, · · · =
0, 1, · · · , d− 1 and the original supersymmetry Qα

[Kµ, Qα] = (Γµ)β
α
Sβ (3.1.1)

where Γµ is a d-dimensional gamma matrix. Additionally the ani-commutator
of supersymmetries Qα and Sα generates the bosonic symmetry, the so-called R-
symmetry. In general these generators form the superconformal algebras which
are isomorphic to the simple Lie superalgebras. Hence it is expected that one
can specify the corresponding Lie superalgebras, i.e. the superconformal algebras
which characterize the superconformal field theories.
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3.1.1 Lie superalgebra

A superalgebra is a Z2-graded algebra g = g0 ⊕ g1. This means that if a ∈ gα,
b ∈ gβ, α, β ∈ Z2 =

{
0, 1
}

, then ab ∈ gα+β. We say that a is of degree α and write
dega = α. g0 is a Lie algebra, which is called the even or bosonic part of g while
g1 is called the odd or fermionic part of g, which is not an algebra.

A Lie superalgebra is the superalgebra endowed with the product operation
[ , ] possessing the following axioms:

1. graded anticommutativity

[a, b] = −(−1)αβ[b, a] (3.1.2)

2. generalized Jacobi identity

[a, [b, c]] = [[a, b], c] + (−1)αβ[b, [a, c]] (3.1.3)

where a ∈ gα, b ∈ gβ. The product [a, b] is referred to as the Lie superbracket or
supercommutator for two elements a, b ∈ g.

Let V = V0 ⊕ V1 be Z2-graded vector space where dim V0 = m and dim V1 =
n. Then the algebra EndV is endowed with a Z2-graded superalgebra structure.
Hence the Lie superbracket [ , ] satisfying (3.1.2) and (3.1.3) turns EndV into a Lie
superalgebra l(m, n). The Lie superalgebra l(V) plays the same role as the general
linear Lie algebra in the theory of Lie algebra. Let e1, · · · , em; em+1, · · · , em+n be
a basis of V, formed by the bases of V0 and V1. In this basis the matrices of an
element a from the Lie superalgebra l(m, n) can be written in the form

a =

(
α β

γ δ

)
(3.1.4)

where α and δ are gl(m) and gl(n) matrices and β and γ are m × n and n × m
rectangular matrices. On the Lie superalgebra gl(m, n) the supertrace is defined by

str(a) = trα− trδ. (3.1.5)

In terms of the supertrace (3.1.5), we can define the bilinear form BR associated
with the representation R of g by

BR(a, b) = str(R(a), R(b)), ∀a, b ∈ g (3.1.6)

where R(a) is the matrix of the elements a ∈ g in the representation R. As a special
case the Killing form K can be defined as the bilinear form on g associated with
the adjoint representation

K(a, b) = str(ad(a), ad(b)), ∀a, b ∈ g. (3.1.7)
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The Lie superalgebra g is called simple if it contains no non-trivial ideal. The
Lie superalgebra g is called semi-simple if it contains no non-trivial solvable ideal.
If a Lie superalgebra g = g0⊕ g1 is simple, the representation of g0 on g1 is faithful
and

{
g1, g1

}
= g0. If the representation of g0 on g1 is irreducible, then g is simple.

Unlike the Lie algebras, semi-simple Lie superalgebra cannot be written as the
direct sum of simple Lie superalgebras. However, there is a construction which
allows us to build finite-dimensional semi-simple Lie superalgebras in terms of
simple ones [178].

It is known that simple Lie superalgebras are classified into two families; the
classical Lie superalgebras and (non-classical) Cartan type superalgebras. The sim-
ple Lie superalgebra is said to be classical the representation of the Lie algebra g0
on g1 is completely reducible.

For the classical Lie superalgebras there are further classifications. Firstly the
representation of g0 on g1 can be either (i) irreducible or (ii) the direct sum of two
irreducible representations of g0. The superalgebra of the case (i) is called the type
I and that of the case (ii) is called type II. In addition, the Lie superalgebra g is
called basic if there is a non-degenerate invariant bilinear form, the Killing form
K on g while strange if it is not basic. The basic Lie superalgebras is divided into
(a) four infinite series: A(m, n), B(m, n), C(n) and D(m, n), that is sl(m + 1|n +
1), osp(2m + 1|2n), osp(2|2n) and osp(2m|2n); (b) three exceptional series: 40-
dimensional F(4), 31-dimensional G(3) and 17-dimensional D(2, 1; α) which is a
one-parameter family of superalgebras. The strange algebras split into two infinite
families P(n) and Q(n).

For the Cartan type superalgebras there are four infinite families W(n), S(n),
H(n) S̃(n), where the first three series are analogous to the corresponding series of
simple infinite-dimensional Lie algebra of Cartan type and S̃(n) is a deformation
of S(n).

Summarizing the above, the classification of simple Lie superalgebra is illus-
trated in Figure 3.1.

3.1.2 Lie supergroup

To begin with, let us introduce a supermatrix. A supermatrix M is defined as the
matrix whose entries valued in a Grassmann algebra Γ = Γ0 ⊕ Γ1 of the form

M =

(
A B
C D

)
(3.1.8)
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Figure 3.1: The classification of simple Lie superalgebra.

where A,B,C and D are m× p, m× q, n× p and n× q matrices respectively. The
supermatrix M is said to be even and of degree 0 if A, D ∈ Γ0 and B, C ∈ Γ1
whereas it is called odd and of degree 1 if A, D ∈ Γ1 and B, C ∈ Γ0.

The general linear supergroup GL(m|n) consists of even invertible supermatri-
ces M and its product is defined by the multiplication rule of the supermatrices:

(MN)ij =
p+q

∑
k=1

MikNkj (3.1.9)

where M and N are two (m + n)× (p + q) and (p + q)× (r + s) supermatrices and
(MN)ij denotes the (i, j) entry of the (m + n)× (r + s) supermatrix MN.

The operations for the supermatrices are defined as follows:
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1. transpose Mt and supertranspose Mst

Mt =

(
At Ct

Bt Dt

)
, (3.1.10)

Mst =

(
At (−1)deg MCt

−(−1)deg MBt Dt

)
=



 At Ct

−Bt Dt

 if M is even At −Ct

Bt Dt

 if M is odd

(3.1.11)

2. supertrace str(M)

str(M) = tr(A)− (−1)deg Mtr(D) =

tr(A)−D if M is even

tr(A) + D if M is odd
(3.1.12)

3. superdeterminant sdet(M)

sdet(M) =
det(A− BD−1C)

det(D)
=

det(A)
det(D− CA−1B)

(3.1.13)

4. adjoint M† and superadjoint M‡

M† = (Mt)∗, (3.1.14)

M‡ = (Mst)∗. (3.1.15)

The relation between the Lie superalgebra g and the corresponding Lie su-
pergroup G is analogous to the theory of the Lie algebra. Consider the complex
Grassmann algebra Γ(n) of order n with n generators 1, θ1, · · · , θn obeying the anti-
commutation relations

{
θi, θj

}
= 0. If in the element η = ∑0≤m ∑i1<···im ηi1···im θi1 · · · θim

each complex coefficient ηi1···im is an even (odd) value of m, the corresponding ele-
ment is called even (odd). In general Γ(n) can be decomposed into even and odd
parts as a vector space; Γ(n) = Γ(n)0 ⊕ Γ(n)1. The Grassmann envelope G(Γ) of
the Lie superalgebra g is constructed as a formal linear combinations ∑i ηiai where
ai is a basis of g and ηi ∈ Γ such that the elements ai and ηi are both even or
odd. The Lie supergroup G associated with the superalgebra g is realized as the
exponential mapping of the Grassmann envelope G(Γ) of g; the even generators
of the superalgebra g corresponds to commuting parameters, i.e. even elements
of the Grassmann algebra and the odd generators of the superalgebra g to anti-
commuting parameters, i.e. odd elements of the Grassmann algebra [179].
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3.1.3 Superconformal algebra

The requirements for the corresponding superconformal algebra have been pro-
posed in [12]:

1. The d-dimensional conformal algebra so(d, 2) should appear as a bosonic
factored subgroup.

2. The fermionic generators should be spinor representations of the conformal
algebra so(d, 2).

First of all we can see that these conditions can be satisfied for the simple classical
Lie superalgebras. The detail list of the classical Lie superalgebras is given in Table
3.1 [180, 181, 182, 183, 184].

The unitary superalgebra A(m− 1, n− 1) or sl(m, n) with m > n > 0 possesses
an even part sl(m)⊕ sl(n)⊕ u(1) and an odd part (m, n)⊕ (m, n) as a representa-
tion of the even part. The unitary superalgbra A(n− 1, n− 1) with n > 1 has an
even part sl(n)⊕ sl(n) and an odd part (n, n)⊕ (n, n).

The orthosymplectic superalgebras consist of three infinite series B(m, n), C(n +
1) and D(m, n). The superalgebra B(m, n) or osp(2m + 1|2n) with m ≥ 0, n ≥ 1
possesses an even part so(2m + 1)⊕ sp(2n) and an odd part (2m + 1, 2n). The su-
peralgebra C(n + 1) or osp(2|2n) with n ≥ 1 contains an even part so(2)⊕ sp(2n)
and an odd part 2n ⊕ 2n as twice the fundamental representation 2n of sp(2n).
The superalgebra D(m, n) or osp(2m|2n) with m ≥ 2, n ≥ 1 has an even part
so(2m)⊕ sp(2n) and an odd part (2m, 2n).

The superalgebras D(2, 1; α) with α 6= 0,−1, ∞ is a one-parameter family of
superalgebras of rank 3 and dimension 17. It is a deformation of the superalgebra
D(2, 1) that corresponds to the case of α = 1. It has an even part sl(2)⊕ sl(2)⊕
sl(2) and an odd part (2, 2, 2) as the spinor representations of sl(2)⊕ sl(2)⊕ sl(2).
The three sl(2) factors appear as the anticommutator of the fermionic generators
with the relative weights 1, α and 1− α.

The superalgebra F(4) is 40-dimensional algebra of rank 4 and possesses an
even part sl(2)⊕ o(7) and an odd part (2, 8) as the spinor representations of sl(2)⊕
o(7).

The superalgebra G(3) is 31-dimensional algebra of rank 3 and has an even
part sl(2)⊕ G2 and an odd part (2, 7) as the representations of sl(2)⊕ G2.

By scanning through the list in Table 3.1, we can find the superconformal al-
gebras which satisfy the required conditions. For d = 1 superconformal field
theory, that is superconformal quantum mechanics, the bosonic conformal algebra
is so(1, 2) = sl(2, R) = su(1, 1) = sp(2) and richer superconformal structures are
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g g0 g1 K type

A(m− 1, n− 1) Am−1 ⊕ An−1 ⊕ u(1)δm,n (m, n) basic I
⊕(m, n)

su(m− p, p|n− q, q) su(m− p, p)⊕ su(n− q, q)⊕ u(1)δm,n basic I
su∗(2m|2n) su∗(2m)⊕ su∗(2n)⊕ so(1, 1)δm,n basic I

sl′(n|n) sl(n, C) basic I
B(m, n) Bm ⊕ Cn (2m + 1, 2n) basic II

m ≥ 0, n ≥ 1
C(n + 1) Cm ⊕ u(1) 2n⊕ 2n basic I

n ≥ 1
D(m, n) Dm ⊕ Cn (2m, 2n) basic II

m ≥ 2, n ≥ 1, m 6= n + 1
osp(m− p, p|n) so(m− p, p)⊕ sp(n) basic II
osp(m∗|n− q, q) so∗(m)⊕ usp(n− q, q) basic II

D(2, 1; α) A1 ⊕ A1 ⊕ A1 (2, 2, 2) basic II
0 < α ≤ 1

Dp(2, 1; α) so(4− p, p)⊕ sl(2) basic II
F(4) A1 ⊕ B3 (2, 8) basic I
Fp(4) so(7− p, p)⊕ sl(2) basic I

p = 0, 3
Fp(4) so(7− p, p)⊕ su(2) basic I

p = 1, 2
G(3) A1 ⊕ G2 (2, 7) basic I
Gp(3) g2,p ⊕ sl(2) basic I

p = −14, 2
P(m− 1) sl(m) (m⊗m) strange I

m ≥ 3
Q(m− 1) su(m) adjoint strange II

m ≥ 3
Q(m− 1) sl(m) strange II

Q((m− 1)∗) su∗(m) strange II
UQ(p, m− 1− p) su(p, m− p) strange II

Table 3.1: The list of the classical Lie superalgebras g = g0 ⊕ g1 with Killing forms
K.
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allowed due to the small conformal group. Note that so(1, 2) may be contained
as an even part g0 for the series of the Lie superalgebra g = osp(m− p, p|n) and
thus the corresponding R-symmetry algebras are the series of the non-compact
sp(n). Therefore if we consider the classical Lie superalgebras with compact R-
symmetry algebras, the corresponding supergroups can be represented in terms
of supermatrices as (

SL(2, R) B
C R-symmetry

)
, (3.1.16)(

SU(1, 1) B
C R-symmetry

)
, (3.1.17)(

Sp(2) B
C R-symmetry

)
(3.1.18)

where B and C are fermionic matrices. Two supermatrices (3.1.17) and (3.1.18) cor-
respond to the infinite series of the Lie superalgebra and provide us chains of the
one-dimensional superconformal groups. The remaining supermatrices (3.1.16)
may cover the exceptional Lie superalgebras and other special cases. The one-
dimensional superconformal groups are tabulated in Table 3.2 [183, 184, 136].

In the cases of N < 4 supersymmetry the superconformal groups are essen-
tially unique series of OSp(2|N ) as the isomorphism SU(1, 1|1) ∼= OSp(2|2) is
taken into account.

For N = 4 supersymmetry the structure of the superconformal group be-
comes large as the exceptional Lie superalgebra D(2, 1; α) is a one-parameter fam-
ily. Note that SU(1, 1|2) for N = 4 case is not simple as SU(m, n|m + n) is not
even semi-simple. The quotient PSU(1, 1|2) ∼= SU(1, 1|2)/U(1) is simple and we
denote it just by SU(1, 1|2). As D(2, 1;−1) and D(2, 1; 0) are semi-direct product
SU(1, 1|2) o SU(2) and they are not simple, they are excluded in the Table 3.2.

With N = 8 supersymmetry one-dimensional superconformal groups can be
realizes as four different supergroups; OSp(8|2), SU(1, 1|4), OSp(4∗|4) and F(4).

When the highly extended supersymmetry with N > 8 exists in the quan-
tum mechanics, one can have three distinct series of one-dimensional supercon-
formal groups for even N ; OSp(N |2), SU(1, 1|N2 ) and OSp(4∗|N2 ). The super-
group OSp(4∗|N2 ) is the exceptional series which does not appear in the theo-
ries with fewer supersymmetries. It has an even part SO∗(4) × USp(N ) where
the non-compact bosonic subgroup SO∗(4) ∼= SL(2, R)× SU(2) contain the one-
dimensional conformal group SL(2, R).
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supersymmetry supergroup R-symmetry

N = 1 OSp(1|2) 1
N = 2 SU(1, 1|1) U(1)
N = 3 OSp(3|2) SU(2)
N = 4 SU(1, 1|2) SU(2)

D(2, 1; α), α 6= −1, 0, SU(2)× SU(2)
N = 5 OSp(5|2) SO(5)
N = 6 SU(1, 1|3) SU(3)×U(1)

OSp(6|2) SO(6)
N = 7 OSp(7|2) SO(7)

G(3) G2

N = 8 OSp(8|2) SO(8)
SU(1, 1|4) SU(4)×U(1)
OSp(4∗|4) SU(2)× SO(5)

F(4) SO(7)
N > 8 OSp(N |2) SO(N )

SU(1, 1|N2 ) SU(N2 )×U(1)
OSp(4∗|N2 ) SU(2)× Sp(N2 )

Table 3.2: The simple classical Lie supergroups that contain the one-dimensional
conformal group SL(2, R) as a factored bosonic subgroup. For N > 8 supercon-
formal quantum mechanics there are three different superconformal groups.
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3.2 One-dimensional supersymmetry

Now we want to discuss the concrete construction of superconformal quantum me-
chanical models. To this end we should note that in one dimension the supersym-
metry is realized containing various peculiarities which do not appear in higher
dimensional cases regardless of whether a conformal symmetry exists or not. It
is known that the supersymmetry of a sigma-model imposes strong restrictions
on its target space. However, the restrictions of one-dimensional supersymmet-
ric sigma-models are generically weaker than higher dimensional sigma-models.
In other words, more couplings among the fields are allowed in one dimension.
This is because in higher dimensional cases the Lorentz symmetry rules out par-
ticular couplings, however, in one dimension there is no Lorentz symmetry group
and much more couplings are possible. Moreover we cannot expect the relation
between the number of bosonic and fermionic fields as in higher dimensional su-
persymmetric field theories.

3.2.1 Supermultiplet

One of the most powerful methods to construct supersymmetric quantum me-
chanics is to appeal the superspace and superfield formalism. In what follows we
will consider a particularly reasonable class of supermultiplets [185, 186, 187] and
discuss how many components we need to realize the N -extended superalgebra 1

which satisfy

[δεA , δεB ] = −2iεAεB∂t (3.2.1)

where A, B, · · · = 1, · · · ,N denote the R-symmetry indices and εA are a set of real
anti-commuting supersymmetry parameters.

Now consider the scalar multiplets Φ which consist of a set of d physical bosons
xi(t) and a set of d fermions ψî(t) where i = 1, · · · , d and î = 1, · · · , d denote the
multiplicities, i.e. the numbers of the bosons and the fermions respectively and
suppose that their supersymmetric transformations are given by

δεA xi = −iεA(LA)i
ĵψĵ, (3.2.2)

δεA ψî = εA(RA)î
j ẋj (3.2.3)

where (LA)i
ĵ and (RA)î

j are real d× d matrices. Then the algebra (3.2.1) imposes

1Also see [188, 189, 190] for the classification of the supermultiplets.
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constraints on the matrices LA and RA as

(LARB + LBRA)i
j = −2δABδ

j
j , (3.2.4)

(RALB + RBLA)î
ĵ = −2δABδ

ĵ
î
. (3.2.5)

From the algebraic point of view there is no relationship between two matrices LA

and RA, however, if we require that the kinetic action for the scalar multiplet Φ
with the form

S =
∫

dt
[

1
2

ẋ2
i −

i
2

ψt̂ψ̇î

]
(3.2.6)

is invarinat under the supersymmetric transformations (3.2.1), we obtain the rela-
tion

(LT
A)î j = −(RA)î j. (3.2.7)

Likewise let us consider the spinor multiplets Ψ which are composed of a set
of d real fermions λî and a set of d real bosons yi possess the supersymmetry
transformations

δεA λî = εA(RA)î
jyj, (3.2.8)

δεA yi = −iεA(LA)i
ĵλ̇ ĵ. (3.2.9)

Then one finds the same constraints for the two matrices LA and RA as (3.2.4) and
(3.2.5). In addition if we require that the quadratic part of the action for the spinor
multiplet Ψ

S =
∫

dt
[
− i

2
λîλ̇î +

1
2

yiyi

]
(3.2.10)

is invariant under the supersymmetry transformations (3.2.8) and (3.2.9), then we
find the precisely same relation as (3.2.7).

Hence the existence of the scalar supermultiplets Φ and Ψ is rooted in the
algebra 2 defined by three conditions (3.2.4), (3.2.5) and (3.2.7). It is known that
there is a minimal value of d, called dN for which N linearly independent real
d × d matrices LA and RA satisfying the relations (3.2.4), (3.2.5) and (3.2.7) exist.
We see that dN translates into the minimal number of the bosonic or fermionic

2In [186, 187, 191] this algebra of dimension d and rank N is called GR(d,N ) algebra since the
one of the two matrices, say LA satisfies a general real (GR) Pauli algebra (3.2.4), (3.2.5) with the
other matrix RA determined by the relation (3.2.7).
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n 1 2 3 4 5 6 7 8

log2 n 0 1 log2 3 2 log2 5 log2 6 log2 7 3
r 0 1 2 2 3 3 3 3

ρ(2r) 1 2 4 4 8 8 8 8

Table 3.3: Hurwitz-Radon function ρ(2r) where r is the nearest integer greater than
or equal to log2 n.

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

dN 1 2 4 4 8 8 8 8 16 32 64 64 128 128 128 128

Table 3.4: Then minimal numbers dN of the component fields in the N -extended
supermultiplets.

component fields in the supermultiplets for a given the number of supersymmetry
N . The value of dN is given by [189, 187]

dN = 16mρ(2r) (3.2.11)

where the number of supersymmetry is written as a mod8 decomposition

N = 8m + n. (3.2.12)

Here ρ(2r) is the so-called Hurwitz-Radon function [192, 193] define by 3

ρ(2r) =


2r + 1 n ≡ 0 mod4

2r n ≡ 1, 2 mod4

2r + 2 n ≡ 3 mod4.

(3.2.14)

with r being taken as the nearest integer greater than or equal to log2 n (see Ta-
ble 3.3). The results are summarized in Table 3.4 From Table 3.4 one can see that
when N = 1, 2, 4, 8 the minimal numbers dN of the component fields coincide with

3The Hurwitz-Radon function ρ(2r) yields the largest integer ρ for which the square identities
can (

a2
1 + · · ·+ a2

ρ

) (
b2

1 + · · ·+ b2
2r

)
= c2

1 + · · · c2
2r (3.2.13)

hold where a1, · · · , aρ and b1, · · · , b2r are the independent indeterminates and ci is a bilinear form
in a1, · · · , aρ and b1, · · · , b2r . The Hurwitz-Radon function also appears in topology [194] and linear
algebra [195]. See also [196, 197, 198].
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the numbers N of supersymmetries. As we will see in the following, the super-
space and superfield formalism works well for these four cases. Note that when
N > 8 the minimal numbers dN of the supermultiplets are greater than the num-
bers N of supersymmetries and the corresponding supermultiplets become much
more complicated and the superspace and superfield formalism is unsuccessful at
present.

3.2.2 Automorphic duality

One of the most significant features in one-dimensional supersymmetric field the-
ories, i.e. quantum mechanical models is the fact that the the equal number of
bosonic and fermionic physical degrees of freedom, which is valid in higher di-
mensional field theories, does not take place. This is because in one dimension
there is the duality which allows us to convert any physical field to auxiliary field
and vice versa [186, 187, 191]. Consequently even if we consider the N = 1, 2, 4, 8
supersymmetric cases, where dN = N is realized, a number of supermultiplets
can be constructed in one-dimension.

To see this let us take the most basic d = 1 N = 1 superalgebra

[δε1 , δε2 ] = −2iε1ε2∂t. (3.2.15)

We introduce N = 1 superspace R(1|1) parametrized by

R(1|1) = (t, θ) (3.2.16)

where t is time and θ is a real Grassmann coordinate. The covariant superderiva-
tive D is defined by 4

D = i
∂

∂θ
− θ

∂

∂t
, {D, D} = −2i∂t (3.2.17)

and the supercharge Q is realized as

Q = i
∂

∂θ
+ θ

∂

∂t
, {Q, Q} = 2i∂t (3.2.18)

in the superspace.
In this case there are two irreducible representations of (3.2.15); the scalar mul-

tiplet Φ and the spinor multiplet Ψ. The scalar multiplet contains a real bosonic
field x as the lowest component and a real fermion ψ as the highest component

4This convention yields {Q, Q} = 2H and leads to simple forms of the supersymmetric La-
grangian and its supersymmetric transformation.
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while the spinor multiplet Ψ includes a real fermion λ as the lowest component
and a real boson y as the highest component. Namely the multiplets can be de-
scribed by

Φ = x + iθψ, (3.2.19)

Ψ = λ + θy. (3.2.20)

The supersymmetry transformation laws for the scalar multiplet Φ are δΦ =
−i[εQ, Φ], which yield

δεx = iεψ, (3.2.21)

δεψ = εẋ (3.2.22)

and those for the spinor multiplet Ψ are δΨ = −i[εQ, Ψ], which give rise to

δελ = εy, (3.2.23)

δεy = iελ̇. (3.2.24)

One can write the supersymmetric action for the scalar multiplet Φ as

S = −1
2

∫
dtdθ DΦΦ̇ (3.2.25)

and also write that for the spinor multiplet Ψ as

S = − i
2

∫
dtdθΨDΨ. (3.2.26)

In component fields the above supersymmetric action (3.2.25) and (3.2.26) can be
expressed by

S =
1
2

∫
dt
[

ẋ2 + iψ̇ψ
]

(3.2.27)

and

S =
1
2

∫
dt
[
iλ̇λ + y2

]
(3.2.28)

respectively.
As described in [187], there is a useful operation which maps between the two

irreducible N = 1 multiplets

−DΦ ↔ Ψ. (3.2.29)
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In component fields this map is realized by performing the following replacements

(ẋ, ψ) ↔ (y, λ). (3.2.30)

We see that the supersymmetry transformations (3.2.21) for the scalar multiplet
and the transformations (3.2.23) for the spinor multiplet are exchanged under the
replacement (3.2.29) and that the action (3.2.27) for the scalar multiplet and the ac-
tion (3.2.28) for the spinor multiplet transform into the other under the operation
(3.2.29). Therefore a map (3.2.29) or (3.2.30) is the operation which replace a scalar
multiplet Φ with a spinor multiplet Ψ and vice-verse. This is called the automor-
phic duality (AD) map because the operation corresponds to the automorphism
on the space of the representations of the superalgebra. Intriguingly the AD map
(3.2.30) make it possible to convert the physical field x into the auxiliary field y and
vice versa. It has been pointed out [191] that this remarkable property in quantum
mechanics can be interpreted as the Hodge duality in one-dimension. In general
the Hodge duality maps a differential p-form Ωp in d-dimension into a differential
(d− p− 2)-form Ωd−p−2 in d-dimension by the Hodge star operation as

∗ : dΩp → dΩd−p−2. (3.2.31)

If we consider a scalar field, a zero-form in one dimension, then the Hodge duality
(3.2.31) gives rise to a dual (−1)-form. Formally the exterior derivative of a 0-form
or a scalar x is a (−1)-form. Therefore if we denote the component field of the
(−1)-form by y, we then get the relation

ẋ = y. (3.2.32)

This is just the AD map given in (3.2.30).
According to the existence of the AD map in quantum mechanics, we will use

the notation (n, N , N − n) for N = 1, 2, 4, 8 supermultiplets. Here the first entry
denoted by n is the number of physical bosons in the supermultiplet, the second
number N represents the number of fermions which is equal to the number of
supersymmetry and the last one N − n is the number of bosonic auxiliary fields.
Using this notation, the N = 1 scalar multiplet Φ is (1, 1, 0) and the spinor multi-
plet Ψ is (0, 1, 1).

3.3 N = 1 Superconformal mechanics

3.3.1 One particle free action

Consider the N = 1 n particle quantum mechanical system which is described by
the n-dimensional scalar superfield (1, 1, 0). In general the N = 1 superfield can
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be thought of as a map from the superspace R(1|1) to the target space M. In terms
of component fields we can write the multiplet as

Φi(t, θ) = xi(t) + iθψi(t) (3.3.1)

where i, j, · · · = 1, · · · , n. Also consider the (0, 1, 1) spinor superfield Ψa which is
a section of the bundle on M with rank k given by

Ψa(t, θ) = λa(t) + θya(t) (3.3.2)

where a, b, · · · = 1, · · · , k. We attach the mass dimension as the following:

[t] = −1, [θ] = −1
2

,

[Φ] = 0, [Ψ] =
1
2

,

[D] =
1
2

, [∂t] = 1. (3.3.3)

Then the most general N = 1 action with dimensionless couplings up to cubic
terms is given by 5

S =
∫

dtdθ

[
−1

2
gijDΦiΦ̇j +

i
3!

cijkDΦiDΦjDΦk

− i
2

habΨa∇Ψb +
1
3!

labcΨaΨbΨc + fiaΦ̇iΨa

+
i
2

miabΨaΨbDΦi +
i
2

nijaDΦiDΦjΨa

]
(3.3.4)

where gij is a metric on M and hab is a fibre metric on the bundle. The covariant
derivative for the fermions are defined by

∇Ψa = DΨa + DΦi(Ai)a
bΨb (3.3.5)

with (Ai)a
b being the connection on the bundle.

Note that for the one particle case where the corresponding target space M =
R has no non-trivial bundle over it, the N = 1 superspace action is described by
just a free action (3.2.27). This corresponds to the statement that it is not possible to
construct one-particle OSp(1|2) superconformal quantum mechanics with inverse-
square type potential [65, 67, 137].

5See also [199, 70] for the N = 1 superfield action.
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3.3.2 Multi-particle model

Let us focus on the sigma-model action constructed only from the (1, 1, 0) scalar
supermultiplet Φi [199, 200, 69, 136] 6

S =
∫

dtdθ

[
−1

2
gijDΦiΦ̇j +

i
3!

cijkDΦiDΦjDΦk
]

=
∫

dt
[

1
2

gij ẋi ẋj +
i
2

ψi
(

gij
Dψj

dt
− ẋkcijkψj

)
− 1

6
∂lcijkψlψiψjψk

]
(3.3.6)

where the covariant derivative is defined as

Dψi

dt
:= ψ̇i + ẋjΓi

jkψk (3.3.7)

with Γi
jk being the Christoffel symbol on M.

Instead of the space-time indices i for the fermions ψi we shall introduce the
tangent space indices α = 1, · · · , n by redefining the fermions ψα as

ψi = ei
αψα. (3.3.8)

Note that ψα commute with xi and pi while ψi does not commute with xi and pi

[pi, λj] = −i
(

ωi
j
k − Γj

ik

)
ψk. (3.3.9)

Then the action (3.3.6) can be written as

S =
∫

dt

[
1
2

gij ẋi ẋj +
i
2

(
δαβψαψ̇β + ẋiωiαβψαψβ

)
− i

2
ẋiciβγψαψβ − 1

6
el

δ∂lcijkei
αej

βek
γψδψαψβψγ

]
(3.3.10)

where ω is the spin connection and ciαβ := cijkej
αek

β. From the fermionic kinetic
terms in the action (3.3.10) we see that the covariant derivatives of the fermions
contains the connection with torsion c. Although this is similar to the two-dimensional
(1, 0) supersymmetric sigma models [201], the torsion c here is not necessarily
closed as opposed to two-dimensional case. This indicates that there exist new su-
permultiplets in one dimension which have no higher-dimensional ancestors. The
canonical momenta pi is expressed as

pi = gij ẋj +
i
2
(
ωijk − cijk

)
ψjψk (3.3.11)

6The (1, 1, 0) supermultiplet is also called N = 1B superfield.
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where ωijk := ωi
β
γejβek

γ. The action (3.3.6) is invariant under the supersymmetry
transformations

δxi = −iεψi, (3.3.12)

δψi = εẋi. (3.3.13)

By means of the Noether’s method we find the supercharge

Q = ψiΠi −
i
3

cijkψiψjψk (3.3.14)

where we have defined

Πi = gij ẋj. (3.3.15)

Note that the supercharge Q is Hermitian though Πi is not Hermitian. Using the
canonical relation for the fermions{

ψα, ψβ
}

= δαβ (3.3.16)

and the relations (2.8.3) for bosons, one finds

{Q, Q} = 2H. (3.3.17)

where the Hamiltonian is

H =
1
2

p†
a gab pb, (3.3.18)

which agrees with the bosonic sigma-model Hamiltonian (2.8.1) with the bosonic
potential V(x) vanishing.

At this stage we consider the condition so that the theory (3.3.10) is the OSp(1|2)
superconformal quantum mechanics. The corresponding osp(1|2) superalgebra is
characterized by the following (anti)commutation relations:

[H, D] = iH, [K, D] = −iD, [H, K] = 2iD, (3.3.19)

[Q, H] = 0, [Q, D] = − i
2

Q, [Q, K] = −iS, (3.3.20)

[S, H] = iQ, [S, D] =
i
2

S, [S, K] = 0, (3.3.21)

{Q, Q} = 2H, {Q, S} = −2D, {S, S} = 2K. (3.3.22)

From the commutation relation (3.3.20) and the expressions (3.3.14) and (2.8.15) we
can read the superconformal charge S

S = ψiDi (3.3.23)
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where Di has been introduced in (2.8.5) as the generalized dilatation. From the
anti-commutator (3.3.22) we obtain the modified dilatation generator

D =
1
4

(
DiΠi + Π†D†

i

)
(3.3.24)

with pi being replaced with Πi. Using the new dilatation generator (3.3.24),
[S, D] = i

2 S is satisfied, however, [Q, D] yields

[Q, D] = − i
2

Q− i
2

cijkDiψj pk +O(ψ3). (3.3.25)

Thus the OSp(1|2) superconformal symmetry imposes the condition so that the
second quadratic term in ψ must vanish

Dicijk = 0, (3.3.26)

which means that c is orthogonal to D. With the constraint (3.3.26), the commutator
(3.3.25) becomes

[Q, D] = − i
2

Q− 1
12

ψiψjψk (LD − 2) cijk, (3.3.27)

which implies that

LDcijk = 2cijk. (3.3.28)

Then one can check that the remaining (anti)commutation relations (3.3.19)-(3.3.22)
are satisfied and there are no further constraints for the OSp(1|2) symmetry im-
posed on the target space M.

Therefore the conditions so that the N = 1 sigma-model action (3.3.10) real-
izes the OSp(1|2) superconformal quantum mechanics are the conformal condition
(2.8.9), (2.8.16) and the additional two constraints on the torsion c

Dicijk = 0, (3.3.29)

LDcijk = 2cijk. (3.3.30)

3.3.3 Gauged superconformal mechanics

As a generalization of the gauged mechanics (2.5.3) for the DFF-model and the
gauged matrix model (2.9.2) for the Calogero model, we will discuss the superex-
tension of the N = 1 supersymmetric gauged mechanical model. As we will
see this gauging procedure allows for the explicit construction of the non-trivial
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N = 1 superconformal quantum mechanics [152, 137]. Consider the matrix super-
field gauged mechanics action

S = −i
∫

dtdθ

[
Tr (∇tXDX ) +

i
2
(
ZDZ −DZZ

)
+ cTrA

]
. (3.3.31)

Here we have introduced

• theN = 1 Grassmann-even Hermitian n× n matrix superfield X b
a (t, θ) which

satisfies (X )† = X and transforms as the adjoint representation of U(n)

• the N = 1 Grassmann-even complex superfield Za(t, θ) which satisfies Z =
Z† and transform as the fundamental representation of U(n)

• the N = 1 Grassmann-odd anti-Hermitian n× n matrix superfield Ab
a(t, θ)

which satisfies (A)† = −A and transforms as the adjoint representation of
U(n).

The covariant derivatives are defined by

∇tX = DX + i[At,X ], (3.3.32)

DX = DX + i[A,X ], (3.3.33)

DZ = DZ + iAZ (3.3.34)

where 7

D =
∂

∂θ
+ iθ

∂

∂t
, {D, D} = 2i∂t, (3.3.35)

At = −iDA−AA. (3.3.36)

The superconformal boost transformations are found to be

δt = −iηθt, δθ = ηt, (3.3.37)

δ(dtdθ) = −iηθ(dtdθ), δD = iηθD, (3.3.38)

δX = −iηθX , δA = iηθA, (3.3.39)

δZ = 0. (3.3.40)

The action (3.3.31) is invariant under the U(n) gauge transformations

X → eiΛX e−iΛ, (3.3.41)

Z → eiΛZ , (3.3.42)

A → eiΛAe−iΛ − ieiΛ
(

De−iΛ
)

, (3.3.43)

At → eiΛAte−iΛ − ieiΛ
(

∂te−iΛ
)

(3.3.44)

7Note that the notation here is different from (3.2.17).
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where Λb
a(t, θ) is the Hermitian n× n matrix gauge parameter. The N = 1 super-

fields X , Z and A can be expanded in the component fields as

X b
a = xb

a + iθψb
a , (3.3.45)

Za = za + θξa, (3.3.46)

Ab
a = i(ζb

a + θAb
a). (3.3.47)

From the gauge transformation (3.3.43) we can fix the gauge so that

Ab
a = iθ(A0)b

a(t). (3.3.48)

Inserting (3.3.48) into the action (3.3.31), performing the integration over θ and
integrating out the auxiliary fields ξ, ξ, we find the N = 1 gauged superconformal
matrix model action

S =
∫

dt
[

Tr (DxDx)− iTr (ψDψ) +
i
2

(zDz− Dzz) + cTrA0

]
(3.3.49)

where the covariant derivative is defined by

Dx = ẋ + i[A0, x], Dψ = ψ̇ + [A0, ψ]. (3.3.50)

Note that the action (3.3.49) is the supersymmetric generalization of (2.9.2) that
describes the Calogero model.

Instead of the gauge choice (3.3.48), we can fix the gauge as

X b
a = Xaδb

a , (3.3.51)

Za = Z a
(3.3.52)

as we have discussed in (2.9.9) and (2.9.14) for the bosonic gauged matrix model.
In this gauge the theory contains n2 real N = 1 superfields Ab

a, a 6= b and Xa while
the superfields Za and Aa

a are auxiliary. The superfield action (3.3.31) reads [137]

S = −i
∫

dtdθ

[
∑

a
ẊaDXa +

i
2 ∑

a

(
ZaDZa − DZaZa

)
− i ∑

a,b
(Xa −Xb)

2 DAb
aAa

b

−∑
a,b

(Xa −Xb)
2 (AA)b

a A
a
b + ∑

a,b
Z aAb

aZb + c ∑
a
A[a]

a

]
. (3.3.53)

For n = 1, one particle case, the action (3.3.53) becomes free action

S = −i
∫

dtdθẊDX (3.3.54)
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and the theory has no bosonic potential in the component action.
In the case of n = 2, that is two particles case, the action (3.3.53) is written as

S = −i
∫

dtdθ

[
1
2
Ẋ+DX+ −

1
2
A−DA−

+
1
2
Ẋ−DX− −

1
2
A+DA+ − cε1ε2

A+

X−

]
(3.3.55)

where

X− := X1 −X2, X+ := X1 +X2, (3.3.56)

A+ := X (A2
1 +A1

2), A− := iX (A2
1 −A1

2) (3.3.57)

and ε1 = ±1, ε2 = ±1 are the constans appearing in the constraint Z1Z2 = − cε1ε2
2 .

Note that the superfield action (3.3.55) is a sum of two free N = 1 supermultiplets
(X+,A−) and two interacting N = 1 supermultiplets (X−,A+). It has been ar-
gued that the superfield action (3.3.55) is the N = 1 superfield form of the off-shell
N = 2 superconformal mechanics based on the supermultiplet (1, 2, 1) [152, 137].

For n = 3 it has been shown [152, 137] that the N = 1 superfield action (3.3.55)
cannot be connected to the known N = 2 or N = 3 superconformal mechanical
modelds and that in the bosonic limit it yields the three particle Calogero model
for the component fields xa = Xa|.

3.4 N = 2 Superconformal mechanics

3.4.1 One particle model

The N = 2 superspace R(1|2) contains time coordinate t and two Grassmann coor-
dinate θ, θ

R(1|2) = (t, θ, θ). (3.4.1)

The covariant superderivatives D and D are

D = i
∂

∂θ
− θ

∂

∂t
, D = i

∂

∂θ
− θ

∂

∂t
,

{
D, D

}
= −2i∂t (3.4.2)

while the two supercharges Q and Q are given by

Q = i
∂

∂θ
+ θ

∂

∂t
, Q = i

∂

∂θ
+ θ

∂

∂t
,

{
Q, Q

}
= 2i∂t (3.4.3)
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in the superspace.
Now consider the N = 2 superfield (1, 2, 1) in the superspace (3.4.1)

Φ(t, θ, θ) = x(t) + iθψ(t) + iθψ(t) + θθy(t). (3.4.4)

The (1, 2, 1) supermultiplet is also called N = 2A multiplet. This supermultiplet
is related to the two-dimensional (1, 1) supersymmetry. Making use of the (1, 2, 1)
supermultiplet (3.4.4), we can write N = 2 supersymmetric action in the form

S =
1
2

∫
dtdθdθ

[
DΦDΦ−W(Φ)

]
(3.4.5)

where W(Φ) is a superpotential that is some function of the superfield Φ. In
component the superfield action (3.4.5) can be written as

S =
1
2

∫
dt
[

ẋ2 + iψ̇ψ− iψψ̇ + y2 −W ′(x)y−W ′′(x)ψψ
]

. (3.4.6)

To obtain the conformal invariant action, let us consider the superpotential in the
form

W(Φ) = f ln Φ2. (3.4.7)

Then the action (3.4.6) becomes

S =
1
2

∫
dt
[

ẋ2 + iψ̇ψ− iψψ̇ + y2 − 2 f y
x
− 2 f ψψ

x2

]
. (3.4.8)

By solving the algebraic equation of motion of y, one can integrate out the auxiliary
field y. Then we find the one-particle N = 2 OSp(2|2) superconformal mechanical
model [153, 154]

S =
1
2

∫
dt
[

ẋ2 + iψ̇ψ− iψψ̇− f ( f − 2ψψ)
x2

]
. (3.4.9)

In the superspace the generators of the superconformal group can be realized
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by the following expressions 8

H = i
∂

∂t
, (3.4.10)

D = i
(

t
∂

∂t
+

1
2

θ
∂

∂θ
+

1
2

θ
∂

∂θ
+ ∆

)
, (3.4.11)

K = i
(

t2 ∂

∂t
+ tθ

∂

∂θ
+ tθ

∂

∂θ
+ 2t∆

)
, (3.4.12)

Q = i
∂

∂θ
+ θ

∂

∂t
, Q = i

∂

∂θ
+ θ

∂

∂t
, (3.4.13)

S = tQ− θθ
∂

∂θ
+ 2∆θ, S = tQ− θθ

∂

∂θ
+ 2∆θ, (3.4.14)

B = −iθ
∂

∂θ
+ iθ

∂

∂θ
. (3.4.15)

One can show that these generators form the su(1, 1|1) superalgebra

[H, D] = iH, [K, D] = −iK, [H, K] = 2iD, (3.4.16)

[B, H] = 0, [B, D] = 0, [B, K] = 0, (3.4.17)

[H, Q] = 0, [D, Q] = − i
2 Q, [K, Q] = −iS,

[H, Q] = 0, [D, Q] = − i
2 Q, [K, Q] = iS,

(3.4.18)

[H, S] = iQ, [D, S] = i
2 S, [K, S] = 0,

[H, S] = iQ [D, S] = i
2 S, [K, S] = 0,

(3.4.19)

{Q, Q} = 2H, {S, S} = 2K, {Q, S} = 2D− B, (3.4.20)

[B, Q] = iQ, [B, S] = iS,

[B, Q] = −iQ, [B, S] = −iS. (3.4.21)

The supersymmetry transformations for the (1, 2, 1) multiplet which follow
from δΦ = −i[εQ + εQ, Φ] are expressed in the component fields as

δx = iεψ + iεψ, (3.4.22)

δψ = εẋ− iε
f
x

, (3.4.23)

δψ = εẋ + iε
f
x

. (3.4.24)

8Note that in [153] the Hamiltonian is expresses by
{

Q, Q
}

= −2H while in our notation the
additional sign does not appear.
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Applying the Noether’s method, we find the explicit expressions for the super-
charges Q, Q, the three SL(2, R) conformal generators H, D, K and we also intro-
duce the superconformal charges S, S and the SO(2) R-symmetry generator B as
follows:

Q = ψ

(
−ip +

f
x

)
, Q = ψ

(
ip +

f
x

)
, (3.4.25)

S = xψ, S = xψ, (3.4.26)

H =
1
2

[
p2 +

f ( f + 2B)
x2

]
(3.4.27)

D = −1
4
(xp + px), (3.4.28)

K =
1
2

x2, (3.4.29)

B =
1
2
[ψ, ψ]. (3.4.30)

Note that the potential in the Hamiltonian H is shifted as a quantum effect. Under
the canonical relations

[x, p] = i,
{

ψ, ψ
}

= 1, (3.4.31)

the set of operators (3.4.25)-(3.4.30) form the osp(2|2) superalgebra (3.4.16)-(3.4.20).
Let us study the spectrum of the one-particle OSp(2|2) superconformal quan-

tum mechanics (3.4.9). In general supersymmetric quantum mechanics has the
Hamiltonian H which can be written as the sum of squares of the Hermitian su-
percharges QA,A = 1, · · · ,N . This implies that the energy of any state is positive
or zero [202, 52]. If H|Ω〉 = 0, then we have 0 = 〈Ω|H|Ω〉 = ∑A〈Ω|Q2

A|Ω〉 =
∑A |QA|Ω〉|2, which is only possible if QA|Ω〉 for any A. Conversely if a state |Ω〉
is annihilated by QA, then H|Ω〉 = Q2

A|Ω〉 = 0, i.e. its energy is zero. Therefore
the supersymmetry generated by QA is broken if the system has no normalizable
ground state of H. Now consider the equations defining the ground state of H

Q|Ω〉 = Q|Ω〉 = 0. (3.4.32)

Using the explicit expressions (3.4.25) and (3.4.26), the equation (3.4.32) is written
as (

2iBp− f
x2

)
|Ω〉 = 0 (3.4.33)

which can be interpreted as the first order differential equation of x. Then the
generic solution of (3.4.33) leads to the x-depgroundence of the ground state of H
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as

|Ω〉 = x−2 f B|phys〉 (3.4.34)

where |phys〉 is any x independent state. Noting that the SO(2) R-symmetry
operator B has eigenvalue +1

2 and −1
2 , we see that the ground state of H may have

the two different x dependence

|Ω〉 =

x− f |phys〉 for B = 1
2

x f |phys〉 for B = −1
2 .

(3.4.35)

As the wavefunction will blow up for either large or small x region, there is no
normalizable state of H and therefore the supersymmetry generated by Q, Q is
spontaneously broken. Note that the wavefunction with E > 0 energy can be
exactly solved by using the result of DFF-model. Comparing the quantum Hamil-
tonian (3.4.27) with the DFF-model Hamiltonian (2.1.18), we find the relation

g2 = f ( f + 2B) =

 f ( f + 1) for B = 1
2

f ( f − 1) for B = −1
2 .

(3.4.36)

The appearance of two sectors, i.e. the doublet structure of the eigenstates of H
corresponds to the fact that H commutes with two operators Q and Q. From the
expression (2.2.1) we find the eigenfunctions

ψE,B(x) =

C
√

xJ√
f + 1

2

(√
2Ex

)
for B = 1

2

C
√

xJ√
f− 1

2

(√
2Ex

)
for B = −1

2 .
(3.4.37)

These wavefunctions are shown in Figure 3.2. From Figure 3.2 we see that there
are several peaks of the wavefunctions with the nearest one from the origin being
the maximum value. For large coupling constant f the relative positions of the
particle gradually become far from the origin. At high energy E the number of
peaks increases and the probability of the position of the particle is averaged.

Then we can follow the previous discussion for the DFF-model to solve the
problem of the absence of the ground state. Instead of the original Hamiltonian
we now regard the compact operator L0 = 1

2(H + K) as the new Hamiltonian.
Looking at the formulae (2.2.26), (2.2.28) and the relation (3.4.36), one finds

rn =


1
2

(3
2 + f

)
for B = 1

2
1
2

(
1
2 + f

)
for B = −1

2 .
(3.4.38)
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Figure 3.2: The eigenfunctions ψE,B(x) of the original Hamiltonian H with E 6= 0.
There are two sectors labeled by B = 1

2 and B = −1
2 .

Figure 3.3: The level structure of the spectrum of the new Hamiltonian L0. The
spectrum is equally spaced. For a fixed B the equal space is 1 while the space with
∆B 6= 1 is 1

2 .
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The level structure of the spectrum of L0 has two series corresponding to the two
different eigenvalues B = −1

2 , 1
2 . So it can be represented on the plane of the

eigenvalue of B and L0 (see Figure 3.3). In order to understand the appearance of
the half integer shift in an algebraic way, let us define the fermionic operators [154]

M = Q− S = ψ

(
−ip +

f
x
− x
)

, (3.4.39)

M = Q− S = ψ

(
ip +

f
x
− x
)

, (3.4.40)

N = Q + S = ψ

(
ip +

f
x

+ x
)

, (3.4.41)

N = Q + S = ψ

(
−ip +

f
x

+ x
)

. (3.4.42)

Then we find the following anti-commutation relations{
M, M

}
=: 4T1 = 4L0 + 2B− 2 f , (3.4.43){

N, N
}

=: 4T2 = 4L0 − 2B + 2 f , (3.4.44)

{M, N} = 4L+ = 2 (H − K + 2iD) , (3.4.45){
M, N

}
= 4L− = 2 (H − K− 2iD) , (3.4.46){

M, N
}

=
{

M, N
}

= 0. (3.4.47)

and the commutation relations

[L0, M] = −1
2

M, [L0, M] =
1
2

M, (3.4.48)

[L0, N] = −1
2

N, [L0, N] =
1
2

N, (3.4.49)

[T1, N] = −N, [T1, N] = N, (3.4.50)

[T2, N] = −N, [T2, N] = N, (3.4.51)

[T1, M] = [T1, M] = 0, (3.4.52)

[T2, N] = [T2, N] = 0, (3.4.53)

[T1, L−] = −L−, [T1, L+] = L+, (3.4.54)

[T2, L−] = −L−, [T2, L+] = L+. (3.4.55)

Let us consider the ground states eliminated by the supercharges. Since there
are now three sets of the supercharges; (Q, Q), (M, M) and (N, N), we find six
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possible candidates for the x dependence of the ground states |Ω〉:

|Ω〉 =



x− f |phys〉 for (H, Q, Q, B = 1
2)

x f |phys〉 for (H, Q, Q, B = −1
2)

x− f e
x2
2 |phys〉 for (T1, M, M, B = 1

2)

x f e−
x2
2 |phys〉 for (T1, M, M, B = −1

2)

x− f e−
x2
2 |phys〉 for (T2, N, N, B = 1

2)

x f e
x2
2 |phys〉 for (T2, N, N, B = −1

2)

(3.4.56)

where |phys〉 is a x independent state. We see that only the set of generators
(T1, M, M, B = −1

2) can yield the normalizable eigenfunction of the ground state.
In order to obtain the normalizable ground state, |phys〉 need to be the eigenstate
with B = −1

2 . Let us define a state |0〉 annihilated by the operator ψ

ψ|0〉 = 0. (3.4.57)

Then B|0〉 = −1
2 |0〉 and we thus can choose the state |0〉 as |phys〉. Given the state

|0〉, one can build up a tower of states by multiplying the operator ψ. Since the
square of the Grassmann variable is zero ψ2 = 0, the fermionic generators form
the two-dimensional space spanned by

|0〉, ψ|0〉 (3.4.58)

and ψ and ψ are identified with the lowering operator and raising operator for
fermionic excitation respectively. Therefore we obtain the normalizable ground
state

|Ω〉 = x f e−
x2
2 |0〉 (3.4.59)

which satisfies

M|Ω〉 = M|Ω〉 = 0, (3.4.60)

N|Ω〉 = 0, (3.4.61)

ψ|Ω〉 = 0. (3.4.62)

Having found the eigenfunction of L0, we see from (2.2.32) and (3.4.59) that the
ground state |Ω〉 is the eigenstate of L0 with the eigenvalue

r0 =
1
2

(
f +

1
2

)
(3.4.63)
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Figure 3.4: The bosonic excitations and the fermionic excitations in the L0 spec-
trum. For a fixed B, i.e. for the bosonic excitation generated by L+ and L−, the
space is one unit. For a fermionic excitation generated by N, N, M and M the
space is half a unit.

and obtain the two series (3.4.38) labeled by B. We observe from the commutation
relations (3.4.49) that the fermionic generator M, N decreases L0 by 1

2 while M, N
increase L0 by 1

2 . As seen from the relations (3.4.60), the fermionic excitation for
the ground state |Ω〉 can be generated by only N. In addition, there are bosonic
excitations. As in the DFF-model, L+ increases L0 by one and L− decreases L0

by one. While the fermionic excitations shift the eigenvalue of B, the bosonic
excitations does not. The excitations in the L0 spectrum are drawn in Figure 3.4.

From the relations (3.4.43), (3.4.44), (3.4.52) and (3.4.53) one can see that the two
sets of new supercharges (M, M) and (N, N) yield the bosonic operators T1 and T2

respectively. Since the bosonic operators T1 and T2 are compact, one may also use
T1 or T2 as the new Hamiltonian. However, unlike the compact operator L0, T1 and
T2 enjoy the double structures of their spectrums according to the commutation
relations (3.4.52) and (3.4.53).

Now consider the spectrum of T1. By noting the relations (3.4.43) and (3.4.60),
we see that the ground state |Ω〉 has zero eigenvalue of T1. According to the
commutation relations (3.4.50) and (3.4.54), one finds that for the T1 spectrum the
bosonic and fermionic excitations have the same spacing equal to one, which are
generated by L+, L− and N, N respectively. Note that M, M commute with T1 and
do not play the role of the raising and lowering operators. The T1 spectrum is
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Figure 3.5: The level structure of T1 spectrum and its bosonic and fermionic exci-
tations. Each of the bosonic and fermionic excitations has the equal space of one
unit. The ground state |Ω〉 has zero eigenvalue.

given by the two series

T1 =

0, 1, 2, · · · for B = −1
2

1, 2, · · · for B = 1
2 ,

(3.4.64)

which is illustrated in Figure 3.5. For all non-zero T1 states, there are degenerate
structures. In other words the bosonic and fermionic states are always paired
at the excited level of T1. This is due to the relations (3.4.52), which ensure the
preservation of the supersymmetry generated by M and M. Therefore one can
interpret the pairing structure of T1 spectrum at excited states as the consequence
of the preserved supersymmetry generated by M and M.

Similarly the spectrum T2 holds the doublet structure because T2 commute with
N and N and the corresponding supersymmetry is preserved as seen from (3.4.53).
In this case the bosonic excitation is generated by L+, L− whereas the fermionic
one is generated by M, M. Also one can see from (3.4.51) and (3.4.55) that both
bosonic and fermionic excitations are produced with equal spacing of one unit. In
this case, however, there is no normalizable zero T2 state. The normalizable ground
state |Ω〉 has the eigenstate of T2 with the eigenvalue (4 f + 2). The T2 spectrum is
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Figure 3.6: The level structure of T2 spectrum and its bosonic and fermionic exci-
tations. Each of the bosonic and fermionic excitations has the equal space of one
unit. The ground state |Ω〉 has eigenvalue (4 f + 2).

given by

T2 =

4 f + 2 + n for B = −1
2

4 f + 3 + n for B = 1
2

(3.4.65)

where n = 0, 1, 2, · · · . The T2 spectrum and its excitation are shown in Figure 3.6.

3.4.2 Multi-particle model

Now we want to discuss the N = 2 superconformal sigma-model. Let us start
with n (1, 2, 1) supermultiplets Φa,a = 1, · · · , n 9. The generic action without
superpotential terms takes the form [200]

S =
1
2

∫
dtd2θ

[
(g + b)ijDΦiDΦj + lijDΦiDΦj + mijDΦiDΦj

]
(3.4.66)

where gij is the metric and bij, lij and mij are the two-forms on the target space M.
Note that the terms of lij and mij correspond to the non-Lorentz invariant terms in
two-dimensions. Notice that the target space M of the (1, 2, 1) supermultiplet, or
N = 2A multiplet is a real manifold.

9The (1, 2, 1) supermultiplet is also called N = 2A multiplet while (2, 2, 0) chiral supermultiplet
is also called N = 2B multiplet [200].
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We have already defined the two covariant derivatives D and D for N = 2
supersymmetry in (3.4.2), however, more generally in terms of the two N = 1
covariant derivatives D1, D2 the N = 2 two covariant derivatives can be chosen as

D2Φi = Ii
jD1Φj (3.4.67)

where I is an endomorphism of the tangent bundle ofM. Then the anti-commutation
relations

{
Di, Dj

}
= 2i∂t impose the conditions

I2 = −1, (3.4.68)

N(I) = 0 (3.4.69)

where N(I) is the Nijenhuis tensor of the endomorphism I. The condition (3.4.68)
implies that I is the almost complex structure and the condition (3.4.69) further
shows that the I is an (integrable) complex structure. Thus N = 2 supersymmetry
requires a complex structure I on the target space [199].

To go further let us follow the strategy in [201] and express the second super-
symmetry transformation in terms of the N = 1 superspace formalism as [69]

δxi = −iεIi
jψ

j, (3.4.70)

δψi = −ε
[

Ii
j ẋj − iψk

(
∂k Ii

j

)
ψj
]

. (3.4.71)

Following the Noether’s procedure, we obtain the second supercharge

Q2 = ψi Ii
jΠj −

i
2

ψi I j
icjklψ

jψk − i
6

ψiψjψk I l
i Im

j In
kclmn −

i
2

ψicijk I jk (3.4.72)

where Πi := gij ẋj. Then it turns out that the N = 1 action (3.3.6) is invariant under
the N = 2 supersymmetry transformations if we have [200, 203]

gij = Ik
i I l

jgkl, (3.4.73)

∇(+)
(i Ik

j) = 0, (3.4.74)

∂[i

(
Im

jc|m|kl]

)
− 2Im

[i∂[mcjkl]] = 0 (3.4.75)

where ∇(+)
i is the connection with torsion c on M; Γi

jk + ci
jk. The first constraint

(3.4.73) requires that the metric g on M is Hermitian with respect to the complex
structure I. The second condition (3.4.74) is a generalized Yano tensor condition
with torsion 10. This corresponds to the vanishing of {Q1, Q2}where Q1 is theN =
1 supercharge given by (3.3.14). The third condition (3.4.75) yields the restriction

10For vanishing torsion the equation (3.4.74) coincides with the Yano tensor condition as in [204]
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on torsion and complex structure, however it has no geometrical interpretation so
far.

It is known that the N = 2 supermultiplets in one dimension are related to the
N = 1 supersymmetry in two dimensions

1d N = 2A ⇔ 2d N = (1, 1),

1d N = 2B ⇔ 2d N = (2, 0) (3.4.76)

by the dimensional reduction. Note that two-dimensional (2, 0) supersymmetry
sigma-models requires the first condition (3.4.73), however, the last two conditions
(3.4.74) and (3.4.75) do not appear in two-dimensional (2, 0) sigma-models. Instead
of (3.4.74), there appears the covariant constant condition of I with respect to the
connection ∇(+)

∇(+)
i I j

k = 0. (3.4.77)

Now we consider the N = 2 superconformal condition. Promoted from the
osp(1|2) algebra (3.3.19)-(3.3.22), the su(1, 1|1) algebra (3.4.18)-(3.4.21) contain the
U(1) R-symmetry generator B. From the commutation of the supercharges Q1 in
(3.3.14) and Q2 in (3.4.72) with the conformal boost generator K we can read the
superconformal charges

S1 = ψiDi, S2 = ψi I j
iDj. (3.4.78)

Then the R-symmetry generator B can be found from the commutator of Q and S2

as

B = Di
2Πi − iIijψ

iψj − iDi
2cijkψjψk. (3.4.79)

The constraint can be found from the commutation relation [D, Q2] = i
2 Q2, which

leads to

LD I j
i = 0. (3.4.80)

This implies that D preserves the complex structure I, that is D acts holomorphi-
cally. Combining the constraint (3.4.80) with the other required conditions (3.3.29)
and (3.4.74), we also find

LD̃ I j
i = 0, LD̃gij = 0, (3.4.81)

which means that D̃i := Dj Ii
j generates a holomorphic isometry.
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Therefore the SU(1, 1|1) superconformal quantum sigma-model with vanish-
ing bosonic potential can be realized if the conformal invariant conditions (2.8.9),
(2.8.16), the N = 2 supersymmetry invariant conditions (3.4.73)-(3.4.75) and the
SU(1, 1|1) superconformal invariant conditions (3.4.80), (3.4.81) are satisfied. The
last additional constraints on the target space M require that D acts holomorphi-
cally and D̃i : Dj Ii

j generates a holomorphic isometry.

3.4.3 Freedman-Mende model

Let us consider n (1, 2, 1) supermultiplets Φa,a = 1, · · · , n and a simple superfield
action given by

S =
1
2

∫
dtd2θ

[
n

∑
a=1

DΦaDΦa −W(Φ)

]
(3.4.82)

where W(Φ) is the superpotential. In terms of the component fields the action
(3.4.82) is expressed as

S =
1
2

∫
dt

[
n

∑
a=1

(
ẋ2

a + iψ̇aψa − iψaψ̇a

)
− 1

4

N

∑
a=1

∂aW∂aW −∑
a,b

(∂a∂bW) ψaψb

]
(3.4.83)

where ∂a := ∂
∂xa

. Taking into account the superconformal boost transformation on
the (1, 2, 1) multiplet

δΦa = −i
(
ηθ + ηθ

)
Φa (3.4.84)

and the invariance of the measure δ (dtdθ) = 0 we find that the action (3.4.83) is
invariant under the superconformal boost transformation only if we have

Φa∂aW(Φ) = c (3.4.85)

with c being a constant. It has been shown [205] that c characterizes the central
charge in su(1, 1|1) superconformal algebra and that the superpotential W(Φ) is a
harmonic function of Φa if quantum Hamiltonian contain boson-fermion interac-
tion but no boson-boson interaction.

It is interesting to note that the superpotential [206]

W(Φ) = f ∑
a 6=b

ln (Φa −Φb) (3.4.86)
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where f is a constant gives rise to the Freedman-Mende model [207]

S =
1
2

∫
dt

[
n

∑
a=1

(
ẋ2

a + iψ̇aψa − iψaψ̇a

)
− ∑

a 6=b

f 2 + 4 f ψaψb
4(xa − xb)2

]
. (3.4.87)

This is the N = 2 superconformal generalization of the Calogero model. For
the Freedman-Mende model the central charge Z in the su(1, 1|1) superconformal
algebra can be identified with

Z = n(n− 1) f . (3.4.88)

The Freedman-Mende model is the supersymmetric rational An+1 Calogero model
in the sense that the original Calogero model is obtained by projecting the super-
symmetric Hamiltonian onto the zero fermion sector.

If we have the superpotential

W(Φ) = f ln

(
∑

a
ΦaΦa

)
(3.4.89)

with f being a constant, then we find [208]

S =
1
2

∫
dt

N

∑
a=1

[
ẋ2

a + iψ̇aψa − iψaψ̇a −
f ( f − 2ψaψa)

x2
a

]
. (3.4.90)

Unlike the Freedman-Mende model (3.4.88), the interaction terms are not pairwise
but still possess the inverse square behavior. This is the N = 2 superconformal
mechanics describing the motion of the n-particle center of mass and the corre-
sponding central charge Z in the superconformal algebra su(1, 1|1) is [208]

Z = 2 f . (3.4.91)

3.4.4 Gauged superconformal mechanics

We start with theN = 2 matrix superfield gauged mechanical action [152, 209, 137]

S =
∫

dtd2θ

[
Tr
(
DXDX

)
+

1
2
Ze2VZ − cTrV

]
. (3.4.92)

Here we have

• the N = 2 Grassmann-even Hermitian n × n matrix superfield X b
a (t, θ, θ)

which satisfies (X )† = X and transforms as the adjoint representation of
U(n); the (1, 2, 1) supermultiplet
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• the N = 2 Grassmann-even chiral superfield Za(tL, θ), Z a(tR, θ), tL,R = t±
iθθ which transform as the fundamental representations of U(n); the (2, 2, 0)
supermultiplets

• the N = 2 Grassmann-even complex n× n matrix bridge superfield bb
a(t, θ, θ)

which satisfies b := b†.

Note that gauge superfields are described by the complex n × n matrix bridge
superfields b or by the prepotential V defined by

e2V = e−ibeib. (3.4.93)

The covariant derivatives are defined by

DX = DX + i[A,X ], DX = DX + i[A,X ] (3.4.94)

where 11

D =
∂

∂θ
+ iθ

∂

∂t
, D = − ∂

∂θ
+ iθ

∂

∂t
,

{
D, D

}
= −2i∂t (3.4.95)

where the connections A are deduced from the bridge superfields

A = −ieib
(

De−ib
)

, A = −ieib
(

De−ib
)

. (3.4.96)

The superconformal boost transformations are [210]

δt = −i
(
ηθ + ηθ

)
t, δθ = −η(t + iθθ), (3.4.97)

δθ = −η(t− iθθ), δ(dtd2θ) = 0, (3.4.98)

δX = −i
(
ηθ + ηθ

)
X , δZ = 0, (3.4.99)

δb = 0, δV = 0. (3.4.100)

The action (3.4.92) is invariant under the U(n) transformations [152, 209, 137]

eib → eiΛeibe−iλ, eib → eiΛeibe−iλ, e2V → eiλe2Ve−iλ, (3.4.101)

X → eiΛX e−iΛ, Z → eiλZ , Z → Ze−iλ. (3.4.102)

Here Λ is the Hermitian n × n matrix gauge parameter and λ are the complex
n× n gauge parameters.

Alternatively if we use the Λ gauge invariant superfields V, Z and the new
Hermitian n× n matrix superfield

Y = e−ibX eib, (3.4.103)

11The notation here is different from (3.4.2).
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the action (3.4.92) can be written as

S =
∫

dtd2θ

[
Tr
(
DYe2VDYe2V

)
+

1
2
Ze2VZ − cTrV

]
(3.4.104)

where the covariant derivatives are

DY = DY + e−2V(De2V)Y , DY = DY − Ye2V
(

De−2V
)

. (3.4.105)

The N = 2 superfields V, Y , Z and Z can be expressed in terms of the com-
ponent fields as

V = v + θξ − θξ + θθA, (3.4.106)

Y = x + θψ− θψ + θθy, (3.4.107)

Z = z + 2iθζ + iθθż, (3.4.108)

Z = z + 2iθζ − iθθż. (3.4.109)

According to the gauge transformation (3.4.101), let us choose the gauge so that

V(t, θ, θ) = θθA0(t). (3.4.110)

After integrating out the auxiliary fields ζ, ζ and performing the Grassmann inte-
grations, we get the N = 2 superconformal gauged mechanical action

S =
∫

dt

[
Tr (DxDx) +

i
2

(zDz− Dzz)

+ iTr
(
ψDψ− Dψψ

)
− cTrA0

]
(3.4.111)

where the covariant derivatives are

Dx = ẋ + i[A0, x], Dz = ż + iA0z, (3.4.112)

Dψ = ψ̇ + i[ψ, A0], Dψ = ψ̇ + i[ψ, A0]. (3.4.113)

The action (3.4.111) is the supersymmetric generalization of the Calogero model
whose bosonic part agrees with the Calogero model (2.9.2). The action is invariant
with respect to the U(n) gauge transformations

x → gXg−1, z → gz, (3.4.114)

ψ → gψg−1, A0 → gA0g−1 + iġg−1 (3.4.115)

98



where g ∈ U(n). By fixing the gauge as in (2.9.9) and (2.9.14), z, z and the non-
diagonal part of x are eliminated and thus we have

n physical bosons xa
a,

2n2 physical fermions ψb
a , ψ

b
a. (3.4.116)

This is different from the Freedman-Mende model (3.4.88) which possesses n phys-
ical bosons and 2n physical fermions. which can be realized as

(n, 2n2, 2n2 − n) = n(1, 2, 1)⊕ (n2 − n)(0, 2, 2). (3.4.117)

It has been pointed out [211] that the supermultiplet (3.4.117) can be obtained from
n (1, 2, 1) supermultiplets by gauging procedure.

3.5 N = 4 Superconformal mechanics

As we have discussed in subsection 3.1.3, the most general superconformal alge-
bra of N = 4 superconformal quantum mechanics is D(2, 1; α). As opposed to
the N = 1 superconformal algebra osp(1|2) and N = 2 superconformal algebra
su(1, 1|1) ∼= osp(2|2), the Lie superalgebra D(2, 1; α) is a one-parameter family
of superalgebra characterized by a real parameter α. In order to construct the
corresponding family of N = 4 superconformal quantum mechanical modelds
parametrized by α, it is desirable to find the inequivalent irreducible off-shell su-
permultiplets in a systematic way.

To this end there is the methodical way proposed in [212] by means of the non-
linear realizations technique [155, 156, 157]. We shall start from the superconformal
algebra D(2, 1; α), wihch contains three conformal charges H, D, K which form
sl(2, R), four supercharges Qi, Qi, i = 1, 2, four superconformal charges Si, Si and
two commuting sets of su(2) R-symmetry generators J, J, J3 and I, I, I3

12

[H, D] = iH, [K, D] = −iK, [H, K] = 2iD, (3.5.1)

[H, Qi] = 0, [D, Qi] = − i
2

Qi, [K, Qi] = −iSi, (3.5.2)

[H, Si] = iQi, [D, Si] =
i
2

Qi, [K, Si] = 0, (3.5.3)

12 Here we use the notation in [183, 213, 212], which is slightly different from our previous N = 1
and N = 2 cases in that the signs of the anti-commutators (3.5.4) and the covariant derivatives
(3.5.28) and the supercharges (3.5.29).

99



{Qi, Qj} = −2δi
j H, {Si, Sj} = −2δi

jK, {Qi, Sj} = −2(1 + α)εij I,

{Q1, S2} = 2αJ {Q1, S1} = −2D− 2αJ3 + 2(1 + α)I3,

{Q2, S1} = −2αJ, {Q2, S2} = −2D + 2αJ3 + 2(1 + α)I3, (3.5.4)

[J3, Q1] = − i
2

Q1, [J3, Q2] =
i
2

Q2, [J, Q1] = −iQ2, [J, Q2] = iQ1,

[J3, S1] = − i
2

S1, [J3, S2] =
i
2

S2, [J, S1] = −iS2, [J, S2] = iS1,

[I3, Qi] = − i
2

Qi, [I, Qi] = −iQi
, [I3, Si] = − i

2
Si, [I, Si] = −iSi

, (3.5.5)

[J3, J] = i J, [J3, J] = −i J, [J, J] = −2i J3,

[I3, I] = iI, [I3, I] = −i J, [I, I] = −2i J3. (3.5.6)

The R-symmetry group contains two SU(2) factors generated by J, J, J3 and I, I, I3.
Looking at the commutation relations (3.5.5), J corresponds to the rotations indices
i of θi while I mixes θi with their complex conjugates.

Here we take bosonic conformal generators H, D, K as Hermitian operators

(H)† = H, (D)† = D, (K)† = K (3.5.7)

while the other operators are chosen so that

(J)† = J, (J3)† = −J3, (3.5.8)

(I)† = I, (I3)† = −I3, (3.5.9)

(Qi) = Qi, (Si) = Si. (3.5.10)

The parameter α only appears in the anti-commutation relations (3.5.4), from
which we see that two su(2) R-symmetry algebras appear with relative weights α

and −(1 + α). Note that the conformal algebra sl(2, R) has relative weight 1. Thus
the transformation

α ↔ −(1 + α) (3.5.11)

exchanges the role of two R-symmetry algebras; J ↔ I. On the other hand, the
transformation

α ↔ 1
α

(3.5.12)

is not well-defined for our real D(2, 1; α) superalgebra because it exchanges the
role of the non-compact conformal algebra sl(2, R) and the compact R-symmetry
algebra su(2).
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In particular we have the isomorphism

D(2, 1; α) ∼=


su(1, 1|2) + su(2) for α = −1, 0

osp(4∗|2) for α = 1,−2

osp(4|2) for α = −1
2

(3.5.13)

At α = −1 and α = 0 one of the R-symmetry su(2) algebra is decoupled and the
superalgebra D(2, 1;−1) is isomorphic to the semi-direct sum su(1, 1|2) + su(2)
13. In this case one can extend the su(1, 1|2) superalgebra by adding the central
charges. To see this let us put the su(2) generators J, J and J3 as

Z ≡ αJ, Z ≡ αJ, Z3 ≡ αJ3 (3.5.14)

where Z, Z and Z3 commute with everything. Then the new generators Z, Z and
Z3 only appear in the anti-commutations (3.5.4) and they now become

{Qi, Qj} = −2δi
j H, {Si, Sj} = −2δi

jK, {Qi, Sj} = −2εij I,

{Q1, S2} = 2Z, {Q1, S1} = −2D− 2Z3 + 2I3,

{Q2, S1} = −2Z, {Q2, S2} = −2D + 2Z3 + 2I3. (3.5.15)

Hence the three generators Z, Z and Z3 are identified with the central charges.
Note that we can only have single nonvanishing central charge by taking into
account the SU(2) transformation on the three central charges.

As its name suggests, D(2, 1; α) is regarded as a deformation of the super-
algebra D(2, 1) = osp(4|2) that corresponds to the case α = 1, however, we
are now considering the even part of D(2, 1; α) as sl(2) ⊕ su(2) ⊕ su(2) not as
sl(2) ⊕ sl(2) ⊕ sl(2). The first sl(2) factor is the conformal algebra and the re-
maining two factors are replaced with the compact algebras su(2). Consequently
so∗(4), the non-compact version of the original factor so(4) shows up for α = 1.
We see that the case of α = −1

2 is self-dual under the transformation (3.5.11). In
our case this degenerate case realizes the so(4) ∼= su(2)⊕ su(2) factor and all the
other cases can be thought of as the deformations of D(2, 1; 1

2) = osp(4|2).
Using the generators of D(2, 1; α), let us consider the supercoset of D(2, 1; α)

g = eitHeiuDeizKeθiQi+θ
iQi eψiSi+ψ

iSi eiϕJ+iϕJeφJ3 (3.5.16)

where the parameters t, θi, θ
i

are the coordinates of the N = 4 superspace R(1|4)

and the other parameters u, z, ψi, ψ
i, ϕ, ϕ and φ are the N = 4 Goldstone super-

fields. Note that the R-symmetry group SU(2) generated by (I, I, I3), which mixes
13We use ⊕ for the direct sum and + for the semi-direct sum.
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the fermionic charges with their conjugates, is taken into the supercoset but con-
sidered as the stability subgroup. Note that our chice of the supercoset (3.5.16) is
allowed for the case of α 6= 0 where the generators (J, J, J3) exist.

From the supercoset one can extract left-covariant Cartan one-form Ω

Ω = g−1dg. (3.5.17)

Expanding Ω over the generators, we find the the corresponding one-forms [212]

ωD = idu− 2
(

ψ
idθi + ψidθ

i
)
− 2izdt̃, (3.5.18)

ωV =
e−iφ

1 + ΛΛ

(
idΛ + ω̂J + Λ2ω̂ J −Λω̂J3

)
, (3.5.19)

ωV =
eiφ

1 + ΛΛ

(
idΛ + ω̂ J + Λ

2
ω̂J + Λω̂J3

)
, (3.5.20)

ωJ3 = dφ +
1

1 + ΛΛ

[
i
(
dΛΛ−ΛdΛ

)
+
(
1−ΛΛ

)
ω̂J3 − 2

(
Λω̂ J −Λω̂J

)]
(3.5.21)

where

ω̂J = 2α
[
ψ2dθ

1 − ψ
1 (dθ2 − ψ2dt̃)

]
, (3.5.22)

ω̂ J = 2α
[
ψ

2dθ1 − ψ1

(
dθ

2 − ψ
2dt̃
)]

, (3.5.23)

ω̂J3 = 2α
[
ψ1dθ

1 − ψ
2dθ1 − ψ2dθ

2 + ψ
2dθ2 +

(
ψ

1
ψ1 − ψ

2
ψ2

)
dt̃
]

, (3.5.24)

dt̃ = dt + i
(

θidθ
i + θ

idθi

)
, (3.5.25)

Λ =
tan

√
ϕϕ√

ϕϕ
. (3.5.26)

For the N = 4 superspace R(1|4) parametrized by [210]

R(1|4) = (t, θi, θ
j), (θi)† = θ

i
, i, j = 1, 2 (3.5.27)

we will introduce the covariant derivatives

Di =
∂

∂θi
+ iθi ∂

∂t
, Dj =

∂

∂θ
j + iθj

∂

∂t
,

{
Di, Dj

}
= 2iδi

j∂t. (3.5.28)

The supercharges Q and Q can be expressed by

Qi =
∂

∂θi
− iθi ∂

∂t
, Qj =

∂

∂θ
j − iθj

∂

∂t
,

{
Qi, Qj

}
= −2iδi

j∂t (3.5.29)

in the superspace.
By acting a particular element on the supercoset element (3.5.16) from the left,

we can find the corresponding transformations.
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1. supersymmetry transformations

Acting the element

gε = eεiQi+εiQi ∈ D(2, 1; α), (3.5.30)

we obtain the supersymmetry transformations

δt = i
(
θε− εθ

)
, (3.5.31)

δθi = εi, (3.5.32)

δθ
i = εi. (3.5.33)

2. superconformal boost transformations

Acting the element

gη = eηiSi+ηiSi , (3.5.34)

one finds the superconformal boost transformations [213, 212, 214]

δt = −it
(
ηθ + ηθ

)
+ (1 + 2α)

(
θθ
) (

ηθ − ηθ
)

, (3.5.35)

δθi = ηit− 2iαθi(θη) + 2i (1 + α) θi
(
θη
)
− i(1 + 2α)ηi(θθ), (3.5.36)

δu = −2i
(
ηθ + ηθ

)
, (3.5.37)

δφ = 2α

[
η1θ1 − η2θ2 − η1θ

1 + η2θ
2

+
(

η2θ1 − η1θ
2
)

Λ +
(

η1θ2 − η2θ
1
)

Λ

]
, (3.5.38)

δΛ = 2iα

[
θ2η1 − θ

1
η2 +

(
θ

2
η1 − θ1η2

)
Λ2

+
(

θ
1
η1 − θ1η1 + θ2η2 − θ

2
η2

)
Λ

]
(3.5.39)

and

δ(dtd4θ) = 2i
(
ηθ + ηθ

)
dtd4θ, (3.5.40)

δDi = i
[
(2 + α)(ηθ) + α(θη)

]
Di

− 2i(1 + α)(ηθ)Di − 2iα
[
η(iθk) + θ(iεk)

]
Dk, (3.5.41)

δDi = i
[
(2 + α)(ηθ) + α(θη)Di

]
− 2i(1 + α)(θη)Di − 2iα

[
η(iθk) + θ(iεk)

]
Dk. (3.5.42)
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At this stage we are ready to derive the irreducible off-shell supermultiplets
which allow us to construct the D(2, 1; α) superconformal mechanics. The strategy
is to extract the irreducible superfields from the Goldstone superfields u, z, ψi, ψ

i, ϕ, ϕ

by imposing the appropriate constraints. Since the number of the fermionic Gold-
stone superfields is four which coincides with the minimal number of the fermionic
fields in N = 4 supermultiplets, we attempt to reduce the number of the bosonic
Goldstone superfields. It has been discussed [213, 212] that such irreducibility con-
dition can be achieved by requiring that all spinor derivatives of all bosonic super-
fields are expressed in terms of the fermionic fields ψi and ψ

i. From the equations
(3.5.18)-(3.5.22), we see that this requirement corresponds to the constraints on the
corresponding Cartan forms ωD, ωJ , ωV ωJ3 .

3.5.1 (4, 4, 0) supermultiplet

Let us begin with the most general case where the supercoset (3.5.17) holds all
four bosonic Goldstone superfields u, ϕ ,ϕ and φ. If we require that the all spinor
covariant derivatives of these bosonic superfields can be expressed by ψi,ψ

i, then
(3.5.18)-(3.5.22) lead to

ωD = ωJ | = ω J | = ωJ3 = 0 (3.5.43)

where | represents the restriction to spinor projection. The set of constraints (3.5.43)
can be rewritten as

D(iqj) = 0, D(iqj) = 0, D(iqj) = 0, D(iqj) = 0 (3.5.44)

where

q1 =
e

1
2 (αu−iφ)√
1 + ΛΛ

Λ, q2 =
e

1
2 (αu−iφ)√
1 + ΛΛ

,

q1 =
e

1
2 (αu+iφ)√
1 + ΛΛ

, q2 =
e

1
2 (αu+iφ)√
1 + ΛΛ

(3.5.45)

are identified with four N = 4 superfields. This multiplet was discussed in [199,
200, 215, 216, 212, 217, 211, 218, 219] and was considered in N = 4 harmonic
superspace [214]. The constraints (3.5.44) lead to the following independent fields:qi 4 physical bosons

Diqi, Diqi, Diqi, Diqi 4 fermions.
(3.5.46)
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The superfield qi contains 4 bosonic, 4 fermionic fields and no auxiliary fields and
is diagnosed as the (4, 4, 0) supermultiplet. Since qi and their set of constraints
(3.5.44) are similar to the d = 4 N = 2 hypermultiplet, it is also called hypermulti-
plet. However, the conditions (3.5.44) for the (4, 4, 0) multiplet defines the off-shell
multiplet as opposed to the d = 4 N = 2 hypermultiplet.

Remarkably it has been discussed that all other N = 4 supermultiplets can
be obtained from (4, 4, 0) multiplet via reduction process either on the component
action [217] or on the superfield action [211, 218, 219]. Accordingly the (4, 4, 0)
multiplet can be viewed as a fundamental multiplet.

Since we know the superconformal boost transformations (3.5.35)-(3.5.39) for
the original Goldstone superfields, we can read off the superconformal boost trans-
formations for the superfields qi, qi

δqi = 2iα
(

θ
i
ηj − θiη j

)
qj. (3.5.47)

This leads to the transformations δ(qq) = −2iα(ηθ + ηθ)(qq), which cancel the
transformation (3.5.40) of the integration measure. Therefore we can write super-
conformally invariant superfield action

S =
∫

dtd4θ (qq)
1
α . (3.5.48)

Note that this vanishes when α = −1 due to the constraints (3.5.44). For α = −1
the superconformal superfield action is given by [214, 212]

S =
∫

dtd4θ
ln (qq)

qq
. (3.5.49)

It is worthwhile to remark that these two expressions (3.5.48) and (3.5.49) can be
written uniformly by adding the overall factor as

1
1 + α

∫
dtd4θ (qq)

1
α . (3.5.50)

One can check that (3.5.50) is regular for any α and coincides with (3.5.49) at
α = −1.

Although there is a superpotential term for the (4, 4, 0) multiplet [214] which is
a Wess-Zumino type term 14 of first order in time derivative, it does not produce
any non-trivial potential for physical bosons. Therefore one cannot construct N =
4 superconformal mechanics with the non-trivial potential for the physical bosons
by using the (4, 4, 0) multiplet only. On the other hand, it has been discussed
[211, 218] that the gauged action of the (4, 4, 0) multiplet generates more generic
actions.

14 The superfield Wezz-Zumino type potential term for all N = 4 multiplets can be represented
manifestly only in the harmonic superspace [137].
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3.5.2 (3, 4, 1) supermultiplet

Let us set φ = 0 in the supercoset (3.5.16). This enforces us to put the corre-
sponding subgroup U(1) ⊂ SU(2) into the stability subgroup and thus the result-
ing supercoset involves SL(2, R) × SU(2)/U(1). To realize the spinor covariant
derivatives of the remaining bosonic superfields u, Λ, Λ, we should impose the
conditions

ωD = ωJ | = ω J | = 0. (3.5.51)

The set of conditions (3.5.51) can be expressed as

D(iV jk) = 0, D(iV jk) = 0 (3.5.52)

where

V11 = −i
√

2eαu Λ
1 + ΛΛ

, V22 = i
√

2eαu Λ
1 + ΛΛ

, V12 =
i√
2

eαu 1−ΛΛ
1 + ΛΛ

. (3.5.53)

Note that the N = 4 superfields Vij is real and satisfy the relations

Vij = V ji, Vij = εikεjlVkl, V2 := VijVij = e2αu. (3.5.54)

The superfield Vij obeying the constraints (3.5.52) was firstly introduced in [220]
and later discussed in [221, 222, 70, 213, 212, 214, 211, 218]. The constraints (3.5.52)
give rise to the independent components

V11, V12, V12 3 physical bosons

D1V12, D2V12, D1V12, D2V12 4 fermions

DiDjVij 1 auxiliary boson

(3.5.55)

Thus we can identify the superfield Vij with the (3, 4, 1) supermultiplet. Since the
constraints (3.5.52) are obtained by the dimensional reduction from the constraints
of the d = 4 N = 2 tensor multiplet [223], the (3, 4, 1) multiplet is also called tensor
multiplet 15.

From (3.5.37)-(3.5.39), one can read the D(2, 1; α) superconformal boost trans-
formations of Vij

δVij = −2iα
[(

ηθ + ηθ
)

Vij +
(

η(iθk − ηkθ(i
)

V j)k +
(

ηkθ
(i − η(iθk

)
V j)k

]
(3.5.56)

15 The superfield Vij can also be obtained by the dimensional reduction from d = 4 N = 1 vector
multiplet [221] as the spatial component of d = 4 Abelian gauge vector connection superfield.
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The superfield action for the kinetic term is given by [213, 214, 212]

Skin =
∫

dtdθ (V2)
1

2α (3.5.57)

where V2 is defined in (3.5.54). The action (3.5.57) vanishes for α = −1. The
superfield action for the kinetic term in the case of α = −1 is

Skin = −1
2

∫
dtd4θ (V2)−

1
2 ln V2. (3.5.58)

It has been pointed out [213] that both of the action (3.5.57) and (3.5.58) can be
described in a unified form as

Skin =
1

1 + α

∫
dtdθ (V2)

1
2α . (3.5.59)

The superconformally invariant potential term for the (3, 4, 1) multiplet can be
written as [213]

Spot = −i
√

2
∫

dtd4θ

[∫ 1

0
dy∂yW

1√
V2

]
(3.5.60)

where W is the prepotential satisfying

Vij = D(iDj)W , W = −W . (3.5.61)

Note that the constraints (3.5.52) are solved by an unconstraint prepotential W .
Alternative way to obtain the potential term for the (3, 4, 1) multiplet has been
proposed as an integral over the analytic harmonic superspace [214].

Combining the kinetic terms (3.5.59) and the potential terms (3.5.60), we find
the bosonic superconformal actions in component fields as [213]

Sbosonic = µ−1 α2

1 + α
(Skin)bosonic + ν(Spot)bosonic

=
∫

dt

[
µ−1α2euu̇2 + 4µ−1eu Λ̇Λ̇

(1 + ΛΛ)2
− 1

4
µν2e−u + iν

ΛΛ̇−ΛΛ̇
1 + ΛΛ

]

=
1
2

∫
dt
[

4α2µṙ2 + µr2
(

ϑ̇2 + sin2 ϑϕ̇2
)
− ν2

µr2 + 2ν cos ϑϕ̇

]
=
∫

dt
[

µgij(X)ẊiẊ j − 1
4µ

ν2

|X|2 + 2iν
ε3ijXiẊ j

(X2 + |X|) |X|

]
(3.5.62)

where

Λ = tan
ϑ

2
eiϕ, e

u
2 =

1√
2

µr, (3.5.63)

gij(X) = δij + (4α2 − 1)
XiXj

|X|2 . (3.5.64)

107



Observing the two explicit expressions (3.5.45) and (3.5.54) for the two super-
fields qi and Vij in terms of the initial Goldstone superfields, we can express the
superfields Vij as

V11 = −i
√

2q1q1, V22 = −i
√

2q2q2, V12 = − i√
2

(
q1q2 + q2q1

)
. (3.5.65)

Also one can check that if the the irreducible constraints (3.5.44) for the (4, 4, 0)
multiplet are satisfied by qi, qi, then the constraints (3.5.52) for the (3, 4, 1) multiplet
are also solved by (3.5.65) [214]. However, it is important to note that (3.5.65) are
not general but rather special solutions to the(3, 4, 1) multiplet. So the generic
(3, 4, 1) multiplet cannot be covered by (3.5.65).

3.5.3 (2, 4, 2) supermultiplet

Now we will put u = 0, z = 0, φ = 0 in the supercoset (3.5.16). Then the supercoset
contain only two bosonic fields ϕ, ϕ or equivalently Λ, Λ, which parametrize the
two-sphere S2 ∼ SU(2)/U(1). The condition that the spinor covariant derivatives
of ϕ, ϕ can be expressed in terms of ψ, ψ is

ωJ | = ωJ | = 0. (3.5.66)

For α 6= −1 these the conditions (3.5.66) are written as

D1Λ = −ΛD2Λ, D2Λ = ΛD1Λ. (3.5.67)

Under the constraints (3.5.67) the superfield Λ, Λ yields the independent compo-
nent fields 

Λ, Λ 2 physical bosons

−D1Λ, D1Λ, D2Λ,−D2Λ 4 fermions

D1D2Λ, D2D1Λ 2 auxiliary bosons,

(3.5.68)

which implies the (2, 4, 2) supermultiplet. This multiplet is called non-linear chiral
multiplet because the constraints (3.5.67) can be viewed as the modified chirality
conditions so that they are also covariant with respect to D(2, 1; α). Note that, apart
from the non-linear realization of D(2, 1; α), the N = 4 chiral multiplet (2, 4, 2) is
constructed by a complex superfields φ, φ obeying the constraints

Diφ = 0, Djφ = 0. (3.5.69)
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It has been discussed that one cannot construct superconformal superfield ac-
tions out of the (2, 4, 2) multiplet alone due to the absence of the dilaton u [212].
In order to obtain superconformal superfield actions, the coupling to some other
N = 4 supermultiplets is needed.

In terms of the hypermultiplet q, q, the superfield Λ, Λ can be written as

Λ = −q1

q2 , Λ = −q1
q2

. (3.5.70)

These are just the special solutions to the constraint equations (3.5.67) for the non-
linear chiral multiplet.

3.5.4 (1, 4, 3) supermultiplet

Let us retain the dilaton u alone in the supercoset (3.5.16). This corresponds to
putting two SU(2) R-symmetry factors into the stability subgroup. The irreducible
condition

ωD| = 0 (3.5.71)

just implies that the four spinor derivatives of u is expressed by the four fermionic
Goldstone superfield ψ, ψ. Therefore the equation (3.5.71) does not impose any
constraints on the superfield u. The independent component fields are [210]

eu 1 physical bosons

Diu, Diu 4 fermions

[D(i, Dj)]eu, [Di, Di]eu 3 auxiliary bosons

(3.5.72)

and this means the (1, 4, 3) supermultiplet. However, as was shown in [210], one
should impose additional irreducible constraints on the dilaton u

DiDie−αu = DiD
ie−αu = [Di, Di]e−αu = 0 (3.5.73)

for the minimal (1, 4, 3) multiplet. It has been pointed out [213] that if we build up
the u superfield out of the (3, 4, 1) superfield Vij satisfying (3.5.52) as

e−αu =
1√
V2

, (3.5.74)

then u automatically obeys the minimal constraints (3.5.73). Substituting the re-
lation (3.5.74) into (3.5.60) and (3.5.58), we obtain the superconformal superfield
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action 16

S =
∫

dtd4θ eu (3.5.75)

for α 6= −1 and

S =
∫

dtd4θ euu (3.5.76)

for α = −1. By putting the overall factor, we can express the superconformal
superfield actions for both cases as [213]

S =
1

1 + α

∫
dtd4θ eu. (3.5.77)

Combining (3.5.37) and (3.5.40), one can check that the superfield action (3.5.77)
is invariant under the superconformal boost transformations. Note that (3.5.77) is
not defined at α = 0 because of our choice of the supercoset (3.5.16) and it should
be treated separately [211, 218].

Inserting the appropriate set of component fields which solve the minimal con-
straints (3.5.73) into the superfield action (3.5.77), integrating over the Grassmann
coordinates θi, θ

i
and integrating out the auxiliary fields, one finds the one particle

D(2, 1; α) superconformal mechanical model [224, 137]

S =
1
2

∫
dt

ẋ2 + i
(

ψiψ̇
i − ψ̇iψ

i
)

+
2
3
(1 + 2α)

ψiψ
j
ψ(iψj)

x2

 . (3.5.78)

Although the action (3.5.78) does not possess bosonic potential at the classical level,
upon the quantization the anti-commutation for the fermions may yield a purely
bosonic potential term. We see that the potential terms just flip the overall sign
under the transformation α (3.5.11).

As we have already seen (3.5.13), when α = −1, 0 the N = 4 superconformal al-
gebra D(2, 1; α) is isomorphic to the semi-direct sum of su(1, 1|2) and su(2), which
implies that one of the SU(2) symmetry is broken and the superalgebra su(1, 1|2)
allows for the central charge. So the irreducible constraints for the bosonic Gold-
stone superfields can be weakened by adding the central charge [224, 137]. The
constraints (3.5.73) can be modified as

DiDie−αu = 0, DiD
ie−αu = 0, [Di, Di]e−αu = c (3.5.79)

or

DiDie−αu = c, DiD
ie−αu = c, [Di, Di]e−αu = 0 (3.5.80)

16In the original work in [210] only the SU(1, 1|2) invariant action with α = −1 was considered.
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where c is the central charge of the su(1, 1|2) superalgebra. The two constraints
correspond to the case where the broken SU(2) symmetry is taken as the rotation
of θ coordinates and θ coordinates respectively [210]. The solutions to the new
constraint equations acquire the additional term proportional to θθc. Then one
obtains the one particle SU(1, 1|2) superconformal mechanical action [210, 224,
137]

S =
1
2

∫
dt

[
ẋ2 + i

(
ψiψ̇

i − ψ̇iψ
i
)
−
(
c + ψiψ

i)2

x2

]
. (3.5.81)

Note that the additional contribution from the central charge c yields the inverse
square type bosonic potential at the classical level.

3.5.5 (0, 4, 4) supermultiplet

Although we have seen that the irreducibility conditions for the supermultiplet can
be systematically obtained by means of the non-linear realization method, there is
a further possible supermultiplet (0, 4, 4) 17. It is described by a fermionic analytic
superfield in the harmonic superspace (HSS) [214].

The harmonic superspace (HSS) is the extension of the original superspace by
introducing the new commuting harmonic coordinate u±i , i = 1, 2 parametrizing
the internal degrees of freedom as the two-sphere S2 ∼ SU(2)/U(1) with SU(2)
being the R-symmetry [225].

HR(1+2|4) = (tA, θ+, θ
+

, θ−, θ
−

, u+
i , u−k )

= (ζ, u+
i , u−k , θ−, θ

−) (3.5.82)

where

tA := t− i(θ+θ
− + θ−θ

+), θ± = θiu±i , θ
± = θ

iu±i , (3.5.83)

u+iu−i = 1, u+
i u−j − u+

j u−i = εij. (3.5.84)

The significant property is the existence of an analytic subspace (ASS), which is
the quotient of H(1+2|4) by {θ−, θ

−}

AR(1+2|2) = (ζ, u)

= (tA, θ+, θ
+

, u+
i , u−k ). (3.5.85)

17At least the author does not know the (0, 4, 4) supermultiplet based on the non-linear realiza-
tion of the superconformal group D(2, 1; α).
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The covariant derivatives in the analytic basis of HSS, (ζ, u, θ−, θ
−) are defined by

D+ =
∂

∂θ−
, D+ = − ∂

∂θ
− , (3.5.86)

D− = − ∂

∂θ+ − 2iθ−
∂

∂tA
, D− =

∂

∂θ
+ − 2iθ−

∂

∂tA
(3.5.87)

and the harmonic covariant derivatives in the analytic basis of HSS are

D±± = ∂±± + 2iθ±θ
± ∂

∂tA
+ θ±

∂

∂θ∓
+ θ

± ∂

∂θ
∓ . (3.5.88)

The constraints for the (0, 4, 4) superfield Ψ+a(ζ, u), a = 1, 2 18 are givne by
[214]

D++Ψ+a = 0. (3.5.89)

The solution of the constraint (3.5.89) is written as

Ψ+a(ζ, u) = ψiau+
i + θ+ξa + θ

+
ξ

a + 2iθ+θ
+

ψ̇iau−i (3.5.90)

and the independent component fields areψia
4 fermions

ξa, ξ
a

4 auxiliary bosons.
(3.5.91)

The (0, 4, 4) superfield Ψ+a has been discussed in [211, 218, 227]. The action takes
the form

S =
1
2

∫
dudζ−−Ψ+aΨ+

a

=
∫

dt
[
iψiaψ̇ia + ξaξa

]
. (3.5.92)

Although the action (3.5.92) contains only the kinetic term of the free fermions and
the quadratic term of the bosonic auxiliary fields, if we appropriately couple the
(0, 4, 4) multiplet to the other N = 4 supermultiplets, we may produce bosonic
potentials [211, 218, 227].

3.5.6 Multi-particle model

WDVV equation

We have seen that the superspace and superfield formalism based on the non-
linear realization technique is useful to build up N = 4 superconformal mechan-
ical models possessing D(2, 1; α) symmetry. However, it is known that the direct

18The indices a = 1, 2 denote the doublet of the extra SU(2) called the Pauli-Gürsey group [226].
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generalization of the one particle analysis does not work well for the construction
of the D(2, 1; α) multi-particle superconformal mechanical systems 19. Hence it is
insightful to investigate the construction for the N = 4 multi-particle superconfor-
mal mechanics in the component level.

Let us consider N particles on R with canonical variables xa and their momenta
pp where a = 1, · · · , N label the particles. The N = 4 supersymmetry leads to two
complex fermions ψa

i , ψ
ai, i = 1, 2. In addition, we also consider a one pair of

bosonic isospin variables ui, i = 1, 2 which parametrize the internal degrees of
freedom 20.

Now we impose the ansatz for the supercharges Qi and Qi
of the form [228]

Qi = paψa
i + Ua(x)Kijψ

aj + iFabc(x)ψajψb
j ψ

c
i , (3.5.93)

Qi = paψ
ai + Ua(x)Kijψ

aj − iFabc(x)ψ
aj

ψ
b
j ψc

i (3.5.94)

where Ua(x) and Fabc(x) are homogeneous functions of degree −1 in xa and

Kij =
i
2
(
uiuj + ujui

)
. (3.5.95)

Let us consider the Dirac brackets

{xa, pb} = δa
b ,

{
ψa

i , ψ
bj
}

= − i
2

δk
i δab,

{
ui, uk

}
= −iδi

k. (3.5.96)

Then the N = 4 superalgebra {
Qi, Qj

}
= 2iδj

i H (3.5.97)

implies that [229, 228]

∂aUb − ∂bUa = 0, (3.5.98)

∂aFbcd − ∂bFacd = 0 (3.5.99)

and

FcaeFebd − FcbeFead = 0, (3.5.100)

∂aUb −UaUb − FabcUc = 0. (3.5.101)

19In the case of α = −1, 0 with SU(1, 1|2) symmetry, the standard N = 4 superspace description
can be generalized to the multi-particle case [228].

20It has been discussed [228] that isospin variables is needed in order to obtain the multi-particle
D(2, 1; α) superconformal mechanics for α 6= −1, 0. See [229] for α = −1, 0, i.e. SU(1, 1|2) super-
conformal mechanics.
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The first set of equations (3.5.98) and (3.5.99) can be solved by

Ua(x) = ∂aU(x), Fabc(x) = ∂a∂b∂cF(x) (3.5.102)

where U(x) and F(x) are the prepotentials, the scalar functions defined up to
polynomials of degree 0 and 2 in xa respectively. Therefore we have two non-
linear differential equations (3.5.100) and (3.5.101) for the prepotential U(x) and
F(x). Quite interestingly the equation (3.5.100) is the so-called Witten-Dijkgraaf-
Verlinde-Verlinde (WDVV) equation [230, 231]. It has been established that the so-
lution of WDVV equations determines the structure of a Frobenius manifold. The
other equation (3.5.101) describes the so-called twisted periods Ua of the Frobenius
manifold [232, 233] 21.

Under the conditions (3.5.100) and (3.5.101) the Hamiltonian can be written as

H =
1
4

pa pa +
1
8

Jij JijUaUa

− iUabKijψ
aiψ

bj − 1
2

Fabcdψaiψb
i ψ

c
j ψ

dj. (3.5.104)

We should note that the N = 4 superconformal algebra D(2, 1; α) has not been
taken into account so far. So the WDVV equation and the twisted period equation
are just the requirement for the conservation of N = 4 supersymmetry.

To realize D(2, 1; α) superconformal algebra let us introduce the conformal gen-
erators D, K, superconformal generators Si, Si

and the R-symmetry generators Jij

D = −1
4
{xp pa} , K = xaxa, (3.5.105)

Si = −2xaψa
i , Si = −2xaψ

ia, (3.5.106)

Jij = Kij + 2iψa
(iψ

a
j), (3.5.107)

I11 = iψa
i ψia, I22 = −iψia

ψ
a
i , I12 = iψa

i ψ
ia. (3.5.108)

From the dilatation invariance we require the homogeneity

∂b(xaUa) = (xa∂a + 1)Ub = 0, (3.5.109)

∂b(xaFacd) = (xa∂a + 1)Fbcd = 0. (3.5.110)

21 Any function p̃ satisfying

∂ξa

∂pb = νGcd ∂3F∗(p)
∂pd∂pa∂pb ξc, ξa =

∂ p̃(p; ν)
∂pa (3.5.103)

is called twisted period of the Frobenius manifold where pa are periods.
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The remaining D(2, 1; α) superconformal algebra (3.5.1)-(3.5.6) then leads to

xaUa = 2α, (3.5.111)

xaFabc = −(1 + 2α)δbc. (3.5.112)

For α 6= −1
2 the prepotential F is non-vanishing and any two values of α are

related by a rescaling under the transformation (3.5.11). In this sense the two
conditions (3.5.111) and (3.5.112) can be viewed as the normalization conditions.
In the case of α = −1

2 which realizes the OSp(4|2) superconformal mechanics, the
prepotential F cannot be normalized. This corresponds to the fact that under the
reflection (3.5.11) α = −1

2 is self-dual 22. Therefore we can utilize the families of
the solutions (U, F) along with the expression (3.5.104) to construct N = 4 multi-
particle superconformal mechanics. Since the number of independent equations
are given by[137] 1

12(N − 1)(N − 2)2(N − 3) for WDVV equation
1
2(N − 1)(N − 2) for twisted periods,

(3.5.113)

when N ≥ 4, i.e. the system contains more than four particles, the non-trivial
WDVV equation (3.5.100) appears and the twisted periods equation (3.5.101) gives
rise to the non-trivial conditions.

At this stage we with to look for the solution F to the WDVV equation (3.5.100)
and the twisted periods Ua defined by (3.5.101). However, up to date it is an open
mathematical problem to list up all the solutions to the WDVV equation and only
part of the solutions are known [234, 235, 236, 237, 238, 239, 240]. In [234] it was
shown that one can construct the solutions to the WDVV equation (3.5.100) by
imposing the ansatz

F(x) = ∑
α

fαK(α · x) (3.5.114)

where

K(z) =


−1

4 z2 ln z2 rational case

−1
4Li3(e2iz) + 1

6 z3 trigonometric case

−1
4Li3(e2iz|τ) elliptic case

(3.5.115)

with fα ∈ R and α · x = αaxa. Here {α} are the covectors constructing a deformed
Lie (super)algebra root system 23. Li3 is the trilogarithm and Li3 is an elliptic gen-
eralization [242, 243, 244, 245]. Among the above known solutions to the WDVV

22The induced metric defined in (3.5.117) is degenerate for α = − 1
2 .

23It is known that the root systems of some Lie superalgebras give rise to the solutions to the
WDVV equation [237, 241].
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equation, only the rational case satisfies the normalization conditions (3.5.111) and
(3.5.112). Thus the D(2, 1; α) superconformal models may arise for

F(x) = −1
4 ∑

α

fα(α · x)2 ln |α · x|2 (3.5.116)

The ansatz (3.5.116) defines the constant metric

gab = −xcFcab = ∑
α

fαα⊗ α. (3.5.117)

Then it was established [235] that certain deformations of root systems can solve
the WDVV equation (3.5.100) and the corresponding collections of covectors {α}
is called ∨-systems [246].

On the other hand, it was observed [233] that the ansatz for the twisted periods
Ua

U(x) = ∑
β

uβ ln Pβ(x) (3.5.118)

can solve the equation (3.5.101) where Pβ(x) are homogeneous polynomials of
degree nβ in x and uβ is chosen so that ∑β nβuβ = 2α.

Now let us assume that α 6= −1
2 and consider the special solutions to the

twisted periods as the form

U(x) = ∑
α

uα ln(α · x) (3.5.119)

where the same covectors α are chosen for U(x) and F(x). Then the normalization
conditions (3.5.111) and (3.5.112) reduce to

∑
α

uα = 2α, (3.5.120)

∑
α

fααaαb = (1 + 2α)δab (3.5.121)

and we get the potential term

V(x) =
KijKij

8 ∑
α,β

uαuβ
α · β

(α · x) (β · x)
. (3.5.122)

By requiring the invariance under permutations of the particle labels, the WDVV
solutions F based on deformed root systems of the Lie algebras An, BCDn and EFn

and the Lie superalgebras have been discussed [247]. It is an interesting question
to reveal the geometrical understanding for the relevant WDVV solutions and the
relation to the construction of the N = 4 superconformal mechanical models.
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On the contrary, we cannot apply the same method to the OSp(4|2) supercon-
formal mechanical models for α = −1

2 since some formulae become singular. One
of the illness is the degenerate induced metric

∑
α

fαα⊗ α = 0, (3.5.123)

which can be seen from (3.5.117) and (3.5.121). Since this implies the degenerate
covectors α, it is natural to consider the degenerate limit of the deformed root sys-
tems which solve the WDVV equation. By observing that there exists a degenerate
limit in the moduli space of the deformed An root systems, the prepotentials for
the OSp(4|2) superconformal mechanics have been proposed as [247]

F(x) =
1

4N ∑
a<b

(xa − xb)2 ln(xa − xb)2 − 1
4N2 ∑

a
(Nxa − X)2 ln(Nxa − X)2,

(3.5.124)

U(x) = − 1
2N ∑

a
ln (Nxa − X) (3.5.125)

where X = ∑a xa. Correspondingly we get the potential [247, 137]

V(x) =
KijKij

8

∑
a

1
(Nxa − X)2 −

1
N

(
∑

a

1
Nxa − X

)2


=
KijKij

8N ∑
a<b

[
1

Nxa − X
− 1

Nxb − X

]
. (3.5.126)

We should note that the potential (3.5.126) does not take the form of the Calogero
type pairwise interaction albeit it is the inverse-square type interaction.

Sigma-model

We shall study the N = 4 superconformal sigma-model which is more general
multi-particle N = 4 superconformal quantum mechanical system 24.

In order to find the condition on the target space geometry, we assume that the
second, third and fourth supersymmetry transformations are expressed as [200]

δΦi = εr(Ir)i
jDΦj (3.5.127)

where Φi is the (1, 2, 1) superfields and εr, r = 1, 2, 3 are the supersymmetry pa-
rameters and Ir are the endomorphisms of the tangent bundle of the target space.

24Note that in the N = 4 superconformal multi-particle mechanical models relevant to the
WDVV equation, the metric is trivial due to the ansatz (3.5.93), (3.5.94).
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The corresponding N = 4 supermultiplet is referred to as N = 4B multiplet. This
is related to the two-dimensional N = (4, 0) supersymmetry. Then the N = 4
superalgebra imposes the conditions [199, 200]

Ir Is + Is Ir = −2δrs, (3.5.128)

N(Ir, Is) = 0 (3.5.129)

where a N(F, G) is Nijenhuis concomitant [248, 249]

N(F, G)(X, Y) = [FX, GY]− F[X, GY]− F[GX, Y] + FG[X, Y] + G ↔ F (3.5.130)

where X, Y are vector fields on M. Thus the target space M possesses three
complex sructures Ir which have vanishing mixed Nijenhuis tensors and obey the
Clifford algebra (3.5.128). Furthermore the three complex structures turn out to
satisfy the algebra of imaginary unit quaternions

Ir Is = −δrs + εrst It (3.5.131)

or the su(2) R-symmetry algebra

[Ir, Is] = 2εrst It (3.5.132)

since one can construct a third complex structures from other two by multiplica-
tion.

Also the supersymmetry invariance of the action requires that

gij = (Ir)k
i(Ir)l

jgkl, (3.5.133)

∇(+)
(i (Ir)k

j = 0, (3.5.134)

∂[i

(
Im

jc|m|kl]

)
− 2(Ir)m

[i∂[mcjkl]] = 0. (3.5.135)

The first condition(3.5.133) implies that the metric g on M is Hermitian with re-
spect to the three complex structures. The second condition (3.5.134) is a gen-
eralized Yano tensor condition with torsion and the third condition (3.5.135) is
imposed on torsion and complex structures.

It has been pointed out [200] that the above constraints on the target space
M are similar to the defining conditions for a weak hyperkähler manifold with
torsion (HKT) [250]. A weak HKT manifold is a Riemannian manifold {M, g, c}
with a metric g, a torsion three-form c and three complex structures Ir, r = 1, 2, 3
which obey the following conditions 25

25If c is closed in addition to (3.5.131), (3.5.133), (3.5.136), it is called a strong HKT[250, 200].
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1. the three complex structures Ir satisfy the algebra of imaginary of unit quater-
nions (3.5.131)

2. the metric is Hermitian with respect to the three complex structures; (3.5.133)

3. the complex structures are covariant constant

∇(+)
k (Ir)i

j = 0 (3.5.136)

with respect to the covariant derivative ∇(+) with the torsion.

We see that the conditions for the weak HKT geometry are only different from
the constraints on the target space M in that the covariant constant properties for
the complex structures (3.5.136) are replaced with (3.5.134) and (3.5.135). It turns
out that the equation (3.5.136) always solves the constraints (3.5.134) and (3.5.135).
Therefore a weak HKT geometry satisfies the constraints (3.5.130)-(3.5.135) on the
N = 4B supersymmetric sigma-models.

Although it is known that the N = 4 supermultiplets in one-dimension hold
the connections to the N = 2 supersymmetry in two-dimensions as

1d N = 4A ⇔ 2d N = (2, 2),

1d N = 4B ⇔ 2d N = (4, 0), (3.5.137)

we have seen that the target space M of the N = 4B sigma-model is not the HKT
geometry in two-dimensions, but rather a weak HKT geometry. This shows that
there are one-dimensional supermultiplets which cannot be obtained from higher-
dimensional supermultiplets.

Furthermore the D(2, 1; α) superconformal algebra (3.5.1)-(3.5.6) imposes the
additional conditions [69] 26

LDr(Ir)i
j = − 2

1 + α
εrst(It)i

j, LDr gij = 0 (3.5.138)

where Dr := Di(Ir)i
j∂j. These conditions (3.5.138) can be viewed as the general-

izations of the N = 2 superconformal constraints (3.4.81).

3.5.7 Gauged superconformal mechanics

Consider the N = 4 matrix superfield gauged mechanical action in the harmonic
superspace [152]

S =SX + SWZ + SFI (3.5.139)

26Here the value α = −1, 0 are excluded.
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where

SX = − 1
4(1 + α)

∫
µHTr

(
X− 1

α

)
, (3.5.140)

SWZ =
1
2

∫
µ

(−2)
A V0Z̃+Z+, (3.5.141)

SFI =
i
2

c
∫

µ
(−2)
A TrV++ (3.5.142)

where the integration measures are defined

µH = dudtd4θ, µ
(−2)
A = dudζ(−2) (3.5.143)

with harmonic superspace parametrized by the coordinates (3.5.82)-(3.5.85). The
superfields are

• theN = 4 Grassmann-even Hermitian n×n matrix superfield X b
a (t, θ±, θ

±
, u±)

which obeys

D++X = 0, D+D−X = 0,
(
D+D− +D+D−

)
X = 0, (3.5.144)

which is the (1, 4, 3) supermultiplet

• the N = 4 Grassmann-even analytic superfield Z+
a (ζ, u) which satisfies

D++Z+ = 0, D+Z+ = 0, D+Z+ = 0, (3.5.145)

which is the (4, 4, 0) supermultiplet and Z̃+ being its Hermitian conjugation
preserving analyticity [226, 214]

• the N = 4 Grassmann-even n× n matrix gauge superfield V++b
a (ζ, u)

• the unconstrained real analytic superfield V0(ζ, u) defined by∫
duV0(tA, θ+, θ

+
, u±)|

θ±=θiu±i ,θ±=θ
iu±i

= Tr (X ) (3.5.146)

where the covariant derivative D++ is given by

D++X = D++X + i[V++,X ], (3.5.147)

D++Z = D++Z+ + iV++Z+. (3.5.148)

The first term SX of the action (3.5.139) is the superconformal action (3.5.77) for
the (1, 4, 3) superfield X . The second term SWZ is the Wess-Zumino (WZ) term
describing Z+

a [211]. The third term SFI is the Fayet-Iliopoulos (FI) term for the
gauge superfield V++.
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The superconformal boost transformations are [214, 211]

δtA = α−1ΛtA, δθA = −η+tA + 2i(1 + α)η−θ+θ
+

, δu+
i = Λ++u−i , (3.5.149)

δµH = µH

(
2Λ− 1 + α

α
Λ0

)
, δµ

(−2)
A = 0, (3.5.150)

δX = −Λ0X , δZ+ = ΛZ+, δV++ = 0 (3.5.151)

where

λ = 2iα
(

η−θ+ − η−θ
+
)

, (3.5.152)

Λ++ = D++Λ = 2iα
(

η+θ+ − η+θ
+
)

, (3.5.153)

Λ0 = 2Λ− D−−Λ++. (3.5.154)

The action (3.5.139) is invariant under the U(n) transformations [152]

X → eiΛX e−iΛ, (3.5.155)

Z+ → eiΛZ+, (3.5.156)

Z̃+ → eiΛZ+, (3.5.157)

V++ → eiΛV++e−iΛ − ieiΛ
(

D++e−iΛ
)

(3.5.158)

where Λb
a(ζ, u±) is the Hermitian analytic matrix gauge parameter. From the

gauge freedom (3.5.155)-(3.5.158) let us fix the gauge as

V++ = −2iθ+θ
+A(tA). (3.5.159)

Integrating out the auxiliary fields by means of their algebraic equations of motion
and performing the Grassmann integral, we obtain the D(2, 1; α) superconformal
mechanics [209]

S =
∫

dt

[
ẋ2 +

i
2

(
zizi − c

)
− iψiψ̇

i − ψ̇iψ
i

− α2(zizi)2

4x2 + 2α
ψiψ

jz(izj)

x2 +
2
3
(1 + 2α)

ψiψ
j
ψ(iψj)

x2 − A
(

zizi − c
)]

. (3.5.160)
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Using the Noether’s method the set of generators are evaluated to be [209]

H =
1
4

p2 + α2 (zizi)2 + 2zizi

4x2 − 2α
z(izj)ψ(iψk)

x2 ,

− (1 + 2α)
ψiψ

iψ
j
ψj

2x2 +
(1 + 2α)2

16x2 , (3.5.161)

D = tH − 1
4
{x, p} , (3.5.162)

K = t2H − 1
2

t {x, p}+ x2, (3.5.163)

Qi = pψi + 2iα
z(izj)ψj

x
+ i(1 + 2α)

〈ψjψ
jψ

i〉
x

, (3.5.164)

Qi = pψi − 2iα
z(izj)ψ

j

+
i(1 + 2α)

〈ψj
ψjψi〉
x

, (3.5.165)

Si = tQi − 2xψi (3.5.166)

Si = tQi − 2xψi (3.5.167)

Jij = i
(

z(izk) + 2ψ(iψ
k)
)

, (3.5.168)

I11 = −iψiψ
k, (3.5.169)

I22 = iψi
ψ

i, (3.5.170)

I12 = − i
2
[ψi, ψ

i] (3.5.171)

where 〈·〉 denotes the Weyl ordering. One can show that under the canonical
relations

[x, p] = i, [zi, zj] = δi
j,

{
ψi, ψj

}
= −1

2
δi

j (3.5.172)

the generators form the D(2, 1; α) superalgebra [209].

3.6 N = 8 Superconformal mechanics

Up to now much less has been known about higher extendedN > 4 supersymmet-
ric quantum mechanics. A study on N > 4 supersymmetric quantum mechanics
was initiated in [220] within the on-shell Hamiltonian approach. As we have dis-
cussed in subsection 3.2.1, the N = 8 supersymmetry is the maximum case in
which only the same number of supersymmetry is required for the component
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fields in the minimal supermultiplet 27. In other words, the N = 8 supersym-
metry is the highest supersymmetric case in which the superspace and superfield
formalism is applicable. In fact off-shell actions of the N = 8 superconformal me-
chanical models are only known for a few cases. From the Table 3.2 we see that
there are four different possible superconformal group for N = 8 superconformal
mechanics 28:

1. SU(1, 1|4)

2. OSp(8|2)

3. OSp(4∗|4)

4. F(4).

As we will see, the OSp(4∗|4) superconformal mechanics has been constructed
from the (3, 8, 5) and the (5, 8, 3) supermultiplets [252, 253] and F(4) superconfor-
mal mechanics has been proposed from the (1, 8, 7) supermultiplet [254].

3.6.1 On-shell SU(1, 1|N2 ) action

It has been discussed [210, 255, 224, 137] that the on-shell one particle component
action of the SU(1, 1|N2 ), N > 4 superconformal mechanical models generically
take the form

S =
∫

dt

[
ẋ2 + i

(
ψiψ̇

i − ψ̇iψ
i
)
−
(
c + ψiψ

i)2

x2

]
(3.6.1)

where the fermionic fields ψi are the spinor representation of the R-symmetry
group SU(N2 ). It has been pointed out [224] that the generators of the supercon-
formal group SU(1, 1|N2 ) can be found from those of the SU(1, 1|2) jus by replac-
ing the SU(2) spinor ψi with the SU(N2 ) spinors and c is a constant parameter.
Correspondingly the supercharges Qi, Qi and the Hamiltonian H can be expressed

27Note that this statement has not been strictly proven without the assumptions for the particular
forms of supersymmetric transformations (3.2.2), (3.2.3) and the relevant algebras.

28 The relevant D-module representations for the d = 1 N = 2, 4 and 8 superconformal algebras
have been discussed in [251].
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as

Qi = ψi

(
p− 2i

c + ψiψ
i

x

)
, (3.6.2)

Qi = ψi

(
p + 2i

c + ψiψ
i

x

)
, (3.6.3)

H =
p2

4
+
[
c + ψiψ

i]2
x2 . (3.6.4)

However, it has not been completely understood how to realize the on-shell action
(3.6.1) from the off-shell superspace and superfield formalism.

3.6.2 Superspace and supermultiplet

The N = 8 superspace R(1|8) is parametrized by [252, 253]

R(1|8) = (t, θia, ϑαA), (θia) = θia, (ϑαA) = ϑαA (3.6.5)

with i, a, α, A = 1, 2. In terms of (3.6.5) four commuting SU(2) factors of the R-
symmetry will be manifest. The covariant derivatives are defined by

Dia =
∂

∂θia
+ iθia ∂

∂t
, ∇αA =

∂

∂ϑαA
(3.6.6)

and they satisfy{
Dia, Djb

}
= 2iεijεab ∂

∂t
,

{
∇αA,∇βB

}
= 2iεαβεAB ∂

∂t
. (3.6.7)

Although the N = 8 superfields are useful to find the irreducibility constraints
and the transformation properties, it is hard to reproduce the supersymmetric
action in terms of the component fields because of the large dimension of the
integration measure. The efficient strategy is to split the N = 8 supermultiplets
into the N = 4 supermultiplets and to deal with the N = 4 superspace and
superfield formalism. Such decompositions of the N = 8 supermultiplets in terms
of the N = 4 supermultiplets can be written as the direct sum [252, 256]

(n, 8, 8 − n) = (n1, 4, 4− n1)⊕ (n2, 4, 4− n2) (3.6.8)

with n = n1 + n2. Here n represents the number of physical bosonic fields in the
N = 8 supermultiplets while n1 and n2 denote the numbers of physical bosons in
the two N = 4 supermultiplets respectively.
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(0, 8, 8) supermultiplet

The (0, 8, 8) supermultiplet is described by two real fermionic superfields ΨaA, Ξiα

satisfying the constraints

∇(αAΞβ)
i = 0, D(iaΞj

α = 0, (3.6.9)

∇α(AΨB)
a = 0, Di(aΨb)

A = 0, (3.6.10)

∇αAΨa
A = DiaΞα

i , ∇αAΞi
α = −DiaΨA

a . (3.6.11)

(3.6.11) implies that the covariant derivative with respect to ϑαA can be represented
by the covariant derivatives with respect to θia.

The (0, 8, 8) supermultiplet possesses a unique splitting

(0, 8, 8) = (0, 4, 4)⊕ (0, 4, 4). (3.6.12)

In order to describe the (0, 0, 8) supermultiplet in terms of the N = 4 superfields,
we pick up the appropriate N = 4 superspace as

R(1|4) = (t, θia) ⊂ R(1|8) = (t, θia, ϑαA). (3.6.13)

Expanding the superfields in ϑiA, the constraints (3.6.11) leave the independent
N = 4 superfields

ψaA = ΨaA|ϑ=0, ξ iα = Ξiα|ϑ=0. (3.6.14)

Then the constraints (3.6.9) and (3.6.10) imply that

Da(iξ j)α = 0, Di(aψb)A = 0. (3.6.15)

The conditions (3.6.15) correspond to the constraints (3.5.89) for (0, 4, 4) supermul-
tiplets on the superfields ξ ia, ψaA.

The N = 8 supersymmetric action can be written as

S =
∫

dtd4θ
[
θiaθb

i ψA
a ψbA + θiaθ

j
aξα

i ξ jα

]
. (3.6.16)

Although the action (3.6.16) is not manifestly invariant due to the existence of the
Grassmann coordinates, one can show that it is invariant.

(1, 8, 7) supermultiplet

The (1, 8, 7) supermultiplet is described by a single scalar superfield U obeying the
conditions

∇(αi∇β)jU = 0, Di(aDjb)U = 0, (3.6.17)

DiaDj
aU = −∇αj∇i

αU (3.6.18)
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The condition (3.6.18) reduce the manifest R-symmetry into three SU(2) factors
due to the identification of the indices A and i of the covariant derivatives ∇αA

and Dia.
The (1, 8, 7) has a unique decomposition into the N = 4 multiplets as

(1, 8, 7) = (1, 4, 3)⊕ (0, 4, 4). (3.6.19)

By choosing the N = 4 superspace R(1|4) as in (3.6.13) and expanding the super-
fields in ϑiA, we find the projected N = 4 superfields

u = U|ϑ=0, ψiα = ∇iαU|ϑ=0 (3.6.20)

obeying

D(iaψj)α = 0, Di(aDjb)u = 0, (3.6.21)

which are viewed as the constraint equations (3.5.89) and (3.5.72). Thus we can
identify ψiα and u with the (0, 4, 4) and (1, 4, 3) superfields respectively.

The general N = 8 supersymmetric component action of the (1, 8, 7) super-
multiplet can be found in [190]. The harmonic superspace action can be found in
[257, 258, 226].

Taking into account the decomposition (3.6.19) of the (1, 8, 7) supermultiplet,
N = 8 superconformal mechanical model has been constructed by combining
the two supermultiplets (1, 4, 3) and (0, 4, 4) for D(2, 1; α = −1

3) [254]. Since the
possible N = 8 superconformal group into which one can embed D(2, 1; α = −1

3)
is only F(4), the resulting N = 8 superconformal mechanical model is identified
with F(4) superconformal mechanics.

(2, 8, 6) supermultiplet

The (2, 8, 6) supermultiplet contains two scalar bosonic superfields U , Φ which
satisfy

∇(ai∇b)jU = 0, ∇a(i∇bj)Φ = 0, (3.6.22)

∇aiU = DiaΦ, ∇aiΦ = −DiaU (3.6.23)

where the indices i, A being identified and the indices a, α being identified and thus
only two SU(2) factors are manifest. The (2, 8, 6) multiplets can be regarded as the
two (1, 8, 7) multiplets with the additional conditions because the two constraints
(3.6.22) and (3.6.23) lead to

D(iaDj)bΦ = 0, Di(aDjb)U = 0, (3.6.24)

DiaDj
aU = −∇aj∇i

aU , DiaDb
i Φ = −∇bi∇a

i Φ. (3.6.25)
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The (2, 8, 6) multiplet has two different decompositions

(2, 8, 6) =

(1, 4, 3)⊕ (1, 4, 3)

(2, 4, 2)⊕ (0, 4, 4).
(3.6.26)

1. (1, 4, 3)⊕ (1, 4, 3)

Choosing the N = 4 superspace (3.6.13) and expanding the superfields in
ϑiA, we find from (3.6.22) and (3.6.23) the independent N = 4 superfields

u = U|ϑ=0, φ = Φ|ϑ=0 (3.6.27)

satisfying

Di(aDjb)u = 0, D(iaDj)bφ = 0, (3.6.28)

which are the constraints equations (3.5.73). Therefore the two superfields u,
φ are regarded as the (1, 4, 3) superfields.

The action can be written as

S =
∫

dtd4θ F(u, φ) (3.6.29)

where the function F satisfies the Laplace equation

∂2F
∂u2 +

∂2F
∂φ2 = 0. (3.6.30)

2. (2, 4, 2)⊕ (0, 4, 4)

To realize the decomposition (2, 8, 6) = (2, 4, 2)⊕ (0, 4, 4) we need to modify
the choice of the N = 4 superspace and the superfields. Let us introducethe
covariant derivatives

Dia =
1√
2

(
Dia − i∇ai

)
, Dia =

1√
2

(
Dia + i∇ai

)
(3.6.31)

and the superfields V ,V as

V = U + iΦ, V = U − iΦ. (3.6.32)

Then we find a set of constraint equations

DiV = 0, ∇iV = 0, (3.6.33)

DiV = 0, ∇iV = 0, (3.6.34)

DiDiV = ∇i∇
iV , Di∇jV = Di∇jV = 0 (3.6.35)
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where we have defined

Di := Di1, Di := Di2
, (3.6.36)

∇i := Di2, ∇i = −Di1
. (3.6.37)

Considering a new set of coordinates for the N = 4 superspace as

R(1|4) = (t, θi1 + iϑi1, θi2 − iϑi2) ⊂ R(1|8), (3.6.38)

we find from the constraints (3.6.33)-(3.6.35) the independent N = 4 super-
fields

v = V|, v = V|, (3.6.39)

ψi = ∇iV|, ψ
i = −∇iV| (3.6.40)

satisfying

Div = 0, Div = 0, (3.6.41)

Diψj = 0, Di
ψ

j = 0, Diψ
j = −Di

ψj (3.6.42)

Thus we can identify the two sets of the superfields, v, v and ψi, ψ
i with the

(2, 4, 2) and (0, 4, 4) superfields.

The invariant action is given by

S =
∫

dtd4θvv− 1
2

∫
dtd2θψiψi −

1
2

∫
dtd2θψiψ

i. (3.6.43)

We should note that the form of the action (3.6.43) depend on the choice of
the N = 4 superspace. Although the superfield action (3.6.43) looks different
from the previous action (3.5.92), it turns out to be the same in the component
level.

(3, 8, 5) supermultiplet

The (3, 8, 5) supermultiplet includes the three bosonic superfields V ij = V ji obey-
ing

D(i
a V jk) = 0, ∇α

(iV jk) = 0 (3.6.44)

and three SU(2) factors are manifest. (3.6.44) yield to a further condition

∂t

(
Da

i DjaVij +∇α
i ∇jαVij

)
= 0, (3.6.45)
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which leads to [252]

∇α
i ∇jαVij = 6m− Da

i DjaVij (3.6.46)

where m is a constant parameter.
The (3, 8, 5) multiplet has two decompositions

(3, 8, 5) =

(3, 4, 1)⊕ (0, 4, 4)

(1, 4, 3)⊕ (2, 4, 2).
(3.6.47)

1. (3, 4, 1)⊕ (0, 4, 4)

Let us choose the N = 4 superspace (3.6.13) and expand the superfields
in ϑiα. Then the constraints (3.6.44) leave in V ij the four bosonic and four
fermionic N = 4 superfields

vij = V ij|, ξ i
α = ∇jαV ij|, (3.6.48)

A = ∇α
i ∇jαVij| (3.6.49)

which obey

D(i
a vjk) = 0, D(i

a ξ
j)
α = 0, (3.6.50)

A = 6m− Da
i Dajvij. (3.6.51)

Since (3.6.50) are identified with the constraint equations (3.5.52) and (3.5.89),
we see that the superfields vij and ξ i

α are the (3, 4, 1) and (0, 4, 4) superfields
respectively. The remaining equation (3.6.51) is the conservation law type
condition which gives rise to a constant m. As observed in [210], this is the
reminiscent of the d = 4 N = 1 tensor multiplet constraints [259].

To write down the invariant action let us project out the N = 4 superfields
v(ij) and ξ i

α onto the harmonic superspace as

v++ = viju+
i u+

j , v+− =
1
2

D−−v++, v−− = D−−v+−, (3.6.52)

ξ+ = ξ iu+
i , ξ

+ = ξ
iu+

i . (3.6.53)

Then the OSp(4∗|4) superconformal action is given by [252]

S =
∫

dtd4θ
√

v2

− 1√
2

∫
dudζ−−

[
ξ+ξ

+

(1 + c−−v̂++)
3
2

+ 12m
v̂++

√
1 + c−−v̂++(1 +

√
1 + c−−v̂++)

]
(3.6.54)
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where

dudζ−− = dudtAdθ+dθ
+

, (3.6.55)

c±c± = ciku±i u±k , cik = const., (3.6.56)

v++ = v̂++ + c++. (3.6.57)

2. (1, 4, 3)⊕ (2, 4, 2)

To obtain the decomposition (3, 8, 5) = (1, 4, 3)⊕ (2, 4, 2), we shall introduce
the new covariant derivatives

Da =
1√
2

(
D1a + i∇a1

)
, Da =

√
1
√

2
(

D2
a − i∇2

a

)
, (3.6.58)

∇a =
i√
2

(
D2a + i∇a2

)
, ∇a =

i√
2

(
D1

a − i∇1
a

)
(3.6.59)

and the set of coordinates closed under the action of Da, Da

R(1|4) = (t, θ1a − iϑa1, θ1a + iϑa1) ⊂ R(1|8). (3.6.60)

Defining the N = 4 superfields as

v = −2iV12, ϕ = V11, ϕ = V22, (3.6.61)

we find the constraints (3.5.73) for the (1, 4, 3) supermultiplet and the con-
straints (3.5.69) for the (2, 4, 2) chiral supermultiplet

DaDav = 0, DaDav = 0, (3.6.62)

Da ϕ = 0, Da ϕ. (3.6.63)

from the constraints (3.6.44). Therefore the superfields v can be viewed as
the (1, 4, 3) superfield and ϕ as the (2, 4, 2) superfield. From the constraints
(3.6.62) and (3.6.63) it follows that

∂

∂t
[
Da, Da

]
v = 0. (3.6.64)

Combining (3.6.46) and (3.6.64), we obtain the constant m [210]

[Da, Da]v = −2m. (3.6.65)

In this case the N = 8 supersymmetric free action takes the form [252]

S = −1
4

∫
dtd4θ

(
v2 − 2ϕϕ

)
. (3.6.66)
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However, the action (3.6.66) is not invariant under the superconformal trans-
formations. Following the strategy of [260, 213], the OSp(4∗|4) superconfor-
mal action is given by [252]

S = −1
4

∫
dtd4θ

[
v ln

(
v +

√
v2 + ϕϕ

)
−
√

v2 + 4ϕϕ

]
(3.6.67)

whose bosonic part is

Sbosonic =
∫

dt
1√

v2 + 4ϕϕ

[
v̇2 + 4ϕ̇ϕ̇−m2 − 2imv̇− 4imϕϕ̇

v +
√

v2 + ϕϕ

]
.

(3.6.68)

Therefore the (3, 8, 5) supermultiplet can describe the OSp(4∗|4) superconfor-
mal mechanics [252]. By means of the non-linear realization method parametrize
a coset of the supergroup OSp(4∗|4) such that SO(5) ⊂ OSp(4∗|4) belongs to the
stability subgroup while one out of three Goldstone bosons is the coset parame-
ter associated with the dilatation, the dilaton and the remaining two Goldstone
bosons parametrize the R-symmetry coset SU(2)R/U(1)R. Although the action
(3.6.54) and (3.6.68) have different manifest N = 4 superconformal symmetries
OSp(4∗|2) and SU(1, 1|2) respectively, both of them form OSp(4∗|4) superconfor-
mal group together with the hidden symmetries. Hence the two superfield actions
(3.6.54) and (3.6.68) exhibit different symmetry aspects of the same N = 8 super-
conformal mechanics. Note that the two actions (3.6.54) and (3.6.68) produce the
same actions (3.6.68) in terms of the component fields as they can be obtained from
the single N = 8 superfield formulation.

(4, 8, 4) supermultiplet

The (4, 8, 4) supermultiplet includes a four superfields Qaα which obeys

D(a
i Q

b)α = 0, ∇(α
i Q

β)
a = 0. (3.6.69)

The constraints (3.6.69) are manifestly covariant with respect to the three SU(2)
factors for the indices i, a and α.

There are three different decompositions of the (4, 8, 4) supermultiplet

(4, 8, 4) =


(4, 4, 0)⊕ (0, 4, 4)

(3, 4, 1)⊕ (1, 4, 3)

(2, 4, 2)⊕ (2, 4, 2).

(3.6.70)
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1. (4, 4, 0)⊕ (0, 4, 4)

Making the choice of theN = 4 superspace (3.6.13) and expanding the super-
fields in ϑiα, the constraints (3.6.69) yield the independent N = 4 superfields

qaα = Qaα|, ψia = ∇i
αQaα| (3.6.71)

satisfying the constraint conditions (3.5.44) for the (4, 4, 0) supermultiplet and
(3.5.90) for the (0, 4, 4) supermultiplet

Di(aqb)α = 0, Di(aψb)i = 0. (3.6.72)

Thus the superfields qiα and ψia are the (4, 4, 0) and (0, 4, 4) superfields re-
spectively.

2. (3, 4, 1)⊕ (1, 4, 3)

Let us introduce the N = 8 superfields V ab, V as

Qaα = δα
bV

ab − εaαV , V ab = V ba (3.6.73)

and pick up the N = 4 superspace

R(1|4) = (t, θ1a + iϑ1a, θ2a − iϑ2a) ⊂ R(1|8). (3.6.74)

Correspondingly we will consider the covariant derivatives Da, Da and∇a
,∇a

as

(Da, Da) =
(
D1a,D2a

)
, (∇a

,∇a) =
(
D2a,D1a

)
(3.6.75)

where Dia,Dia
are defined in (3.6.31). Then the constraints (3.6.69) lead to

the independent N = 4 superfields

vab = V ab, v = V (3.6.76)

which are subjected to

D(avbc) = 0, D(avbc) = 0, (3.6.77)

D(aDb)v = 0. (3.6.78)

Thus the superfields vab and v are the (3, 4, 1) and (1, 4, 3) superfields respec-
tively.

The supersymmetric invariant free action is given by

S =
∫

dtd4θ

[
v2 − 3

8
vabvab

]
. (3.6.79)

132



3. (2, 4, 2)⊕ (2, 4, 2)

We shall define the new set of N = 8 superfields W , Φ in terms of V , V ab

introduced in (3.6.73) as

W = V11, W = V22, (3.6.80)

Φ =
2
3

(
V +

3
2
V12
)

, Φ =
2
3

(
V − 3

2
V12
)

(3.6.81)

and the new set of the N = 4 covariant derivatives Di, ∇i as

Di =
1√
2

(
Di1 +Di1

)
, Di =

1√
2

(
Di2 +Di2

)
, (3.6.82)

∇i =
1√
2

(
Di1 −Di1

)
, ∇i = − 1√

2

(
Di2 −Di2

)
(3.6.83)

where Dia,Dia
are introduced in (3.6.31). Then the constraints (3.6.69) pro-

vides us with the two independent (2, 4, 2) superfields

w = W|, φ = Φ|. (3.6.84)

The free supersymmetric action can be written as

S =
∫

dtd4θ
[
ww− φφ

]
. (3.6.85)

The (4, 8, 4) supermultiplet can be constructed by reducing two-dimensional
N = (4, 4) or heterotic N = (8, 0) sigma model [261].

(5, 8, 3) supermultiplet

The (5, 8, 3) supermultiplet is described by the five bosonic superfields Vαa,U
which satisfy

DibVαa = −δb
a∇i

αU , ∇βiVαa = −δ
β
α Di

αU . (3.6.86)

The constraints (3.6.86) are covariant not only with respect to three SU(2) factors
for the indices i, a, α but also with respect to the SO(5) R-symmetry. The SO(5)
R-symmetry transformations mix the spinor derivatives

The (5, 8, 3) supermultiplet may have two decompositions

(5, 8, 3) =

(1, 4, 3)⊕ (4, 4, 0)

(3, 4, 1)⊕ (2, 4, 2)
(3.6.87)
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1. (1, 4, 3)⊕ (4, 4, 0)

Using the N = 4 superspace (3.6.13) and carrying out the expansion of the
superfields in ϑiα, we find the independent N = 4 superfields

vαa = Vαa|, u = U| (3.6.88)

which satisfy

Di(avb)α = 0, Di(aDb)
i u = 0. (3.6.89)

Hence we obtain the (4, 4, 0) superfield vaα and the (1, 4, 3) superfield u.

2. (3, 4, 1)⊕ (2, 4, 2)

In order to present the decomposition (5, 8, 3) = (2, 4, 2)⊕ (2, 4, 2), we intro-
duce the new set of superfields W , W and Wαβ as

Wαβ =
1
2

(
Vαβ + V βα

)
, W = −εαaVαa + iU (3.6.90)

and the new N = 4 superspace

R(1|4) = (t, θiα + ϑαi, θiα − iϑαi) ⊂ R(1|8). (3.6.91)

Then the constraints (3.6.86) leave us with the independentN = 4 superfields

φ = W , eαβ = Wαβ (3.6.92)

which obey

Dαφ = 0, Dαφ = 0, (3.6.93)

D(αwβγ) = 0, D(αwβγ) = 0. (3.6.94)

Here the N = 4 covariant derivatives Dα, Dα are defined as

Dα = D1α Dα = D1α (3.6.95)

in terms of the covariant derivatives introduced in (3.6.31). Therefore the
N = 4 superfields φ and wαβ are the (2, 4, 2) superfield and the (3, 4, 1)
superfield respectively.

The N = 4 supersymmetric free action is given by [252]

S =
∫

dtd4θ

[
w2 − 3

4
φφ

]
. (3.6.96)
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The OSp(4∗|4) superconformal action can be written as [252]

S = 2
∫

dtd4θ

ln
(√

w2 +
√

w2 + 1
2 φφ

)
√

w2
(3.6.97)

whose bosonic part has the form

Sbosonic =
∫

dt
ẇαẇαβ + 1

2 φ̇φ̇(
w2 + 1

2 φφ
) 3

2
. (3.6.98)

The action (3.6.98) can be regarded as a conformal invariant type of the SO(5)
invariant sigma-model action of [262].

The (5, 8, 3) supermultiplet can be obtained by the dimensional reduction of
the d = 4 N = 2 Abelian multiplet [262]. The three extra physical scalar fields
originate from the spatial component fields of the d = 4 gauge vector potential.

Using the non-linear realization technique, it has been shown [252] that the
(5, 8, 3) supermultiplet can parametrize a coset of OSp(4∗|4) such that the four out
of five Goldstone bosons parametrize the SO(5)/SO(4) coset while the remaining
one Goldstone boson is the dilaton.

(6, 8, 2) supermultiplet

The (6, 8, 2) supermultiplet has two tensor superfields V ij,W ab subjected to the
conditions

D(i
a V jk) = 0, ∇(i

a V jk) = 0, (3.6.99)

D(a
i W

bc) = 0, ∇(a
i W

bc) = 0, (3.6.100)

Da
j V ij = ∇biW a

b , ∇a
jV ij = −Di

bW
ab. (3.6.101)

The conditions (3.6.101) identify the eight fermions in V ij with those in W ab and
also reduce the number of the auxiliary fields to two.

The (6, 8, 2) supermultiplet can be decomposed as

(6, 8, 2) =

(3, 4, 1)⊕ (3, 4, 1)

(4, 4, 0)⊕ (2, 4, 2).
(3.6.102)

1. (3, 4, 1)⊕ (3, 4, 1)
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Using the N = 4 superspace (3.6.13) and expanding the superfields in ϑ, we
can project out the N = 4 superfields

vij = V ij, wab = W ab (3.6.103)

obeying

Da(ivjk) = 0, Di(awbc) = 0. (3.6.104)

Thus we obtain the two (3, 4, 1) superfields vij and wab.

The supersymmetric free action reads

S =
∫

dtd4θ
(

v2 − w2
)

. (3.6.105)

2. (4, 4, 0)⊕ (2, 4, 2)

This decomposition can be realized by combining the (2, 4, 2) chiral multiplet
φ, φ and the (4, 4, 0) hypermultiplet qia.

The invariant free action takes the form

S =
∫

dtd4θ
(

q2 − 4φφ
)

. (3.6.106)

(7, 8, 1) supermultiplet

The (7, 8, 1) supermultiplet contains two different types of superfields V ij,Qaα

which obey

D(iaV jk) = 0, ∇α(iV jk) = 0, (3.6.107)

Di(aQαb) = 0, ∇(α
i Q

β)
a = 0, (3.6.108)

Da
j V ij = i∇i

αQaα, ∇α
j V ij = −iDi

aQaα. (3.6.109)

The constraints (3.6.107) extract the (3, 8, 5) and (4, 8, 4) supermultiplets from the
superfields V ij and Qaα respectively. The constraints (3.6.108) identify the fermions
in the superfields V ij and Qaα and reduce the number of the auxiliary fields to one.

The (7, 8, 1) supermultiplet has a unique splitting

(7, 8, 1) = (3, 4, 1)⊕ (4, 4, 0). (3.6.110)

By using the N = 4 superspace (3.6.13) and expanding the superspace in ϑ, we
find the independent N = 4 superfields

vij = V ij|, qaα = Qaα| (3.6.111)
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which satisfy the constraints

Da(ivjk) = 0, Di(aqb)α = 0. (3.6.112)

We thus obtain the (3, 4, 1) superfield vij and the (4, 4, 0) superfield qaα.
The invariant free action is given by [253]

S =
∫

dtd4θ

[
v2 − 4

3
q2
]

. (3.6.113)

(8, 8, 0) supermultiplet

The (8, 8, 0) supermultiplet possesses two real bosonic superfields QaA, Φiα which
obey

D(iaΦj)α = 0, ∇(αAΦβ)
i = 0, (3.6.114)

Di(aQb)A = 0, ∇α(AQaB) = 0, (3.6.115)

∇αAΦi
α = DiaQA

a , ∇αAQa
A = −DiaΦα

i . (3.6.116)

Similar to the (0, 8, 8) supermultiplet, the two conditions (3.6.115) and (3.6.116)
means that the covariant derivatives with respect to ϑαA can be written in terms of
the covariant derivatives with respect to θia.

The (0, 8, 8) supermultiplet has a unique decomposition

(8, 8, 0) = (4, 4, 0)⊕ (4, 4, 0). (3.6.117)

Choosing the N = 4 superspace (3.6.13) and expanding the superfields in ϑ,
one find the independent N = 4 superfields

qaA = QaA|, φiα = Φiα| (3.6.118)

satisfying the constraints for (4, 4, 0) supermultiplet

Da(iφj)α = 0, Di(aqb)A = 0. (3.6.119)

This implies that the (8, 8, 0) supermultiplet can be decomposed as the sum of the
two (4, 4, 0) supermultiplets as in (3.6.117).

The invariant free action can be written as [253]

S =
∫

dtd4θ
[
q2 − φ2

]
. (3.6.120)
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3.6.3 Multi-particle model

Let us consider the N = 8 supersymmetric sigma-model 29.
Suppose we have the extended supersymmetry transformations as the form

δΦi = εA(IA)i
jDΦj (3.6.121)

where Φi is the (1, 2, 1) superfields and εA, A = 1, · · · , 7 are the supersymmetry
parameters and IA are the endomorphism of the tangent bundle of the target space.
This N = 8 supermultiplet is called N = 8B multiplet. This is related to the two-
dimensional N = (4, 0) supersymmetry. The closure of the N = 8 superalgebra
requires that [200]

IA IB + IB IA = −2δAB, (3.6.122)

N(IA, IB) = 0 (3.6.123)

where a N(F, G) is Nijenhuis concomitant defined in (3.5.130). Thus the target
space M has seven complex structures Ir which have vanishing mixed Nijenhuis
tensors and the underlying algebraic structure is associated with that of octonions.

The invariance of the action under the N = 8B supersymmetry leads to

gij = (IA)k
i(IA)l

jgkl, (3.6.124)

∇(+)
(i (IA)k

j = 0, (3.6.125)

∂[i

(
Im

jc|m|kl]

)
− 2(IA)m

[i∂[mcjkl]] = 0. (3.6.126)

The first condition(3.5.133) implies that the metric g on M is Hermitian with re-
spect to the seven complex structures. The second condition (3.5.134) is a gen-
eralized Yano tensor condition with torsion and the third condition (3.5.135) is
imposed on torsion and complex structures.

The Riemannian manifold {M, g, c} with a metric g, a torsion three-form c and
three complex structures IA, A = 1, · · · , 7 which obey the conditions (3.6.122)-
(3.6.126) is called Octonionic Kähler with torsion manifold (OKT) [200].

29The N = 8 superconformal sigma-model has not been well understood. We will only discuss
the N = 8 supersymmetric sigma-model in this thesis.
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Part II

M2-branes
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Chapter 4

BLG-model

The dominant theme of this chapter and the next chapter is the world-volume
theories of the multiple planar M2-branes 1. We will begin in this chapter with
the BLG-model [21, 22, 23, 24, 25], which is one of the candidate descriptions of
the low-energy dynamics of the multiple planar M2-branes. In section 4.1 we
will set our notations and conventions and review the basic properties. In section
4.2 we will focus on the study of the A4 BLG-model that is the non-trivial finite
dimensional Lie 3-algebra with positive definite metric, which may describe two
membranes.

4.1 Construction

The BLG-model is a three-dimensional N = 8 supersymmetric Chern-Simons mat-
ter theory found by Bagger, Lambert [21, 22, 23] and Gustavsson [24, 25]. It is
characterized by a Lie 3-algebra A, which is a generalization of a Lie algebra. The
action has a manifest N = 8 supersymmetry and the SO(8)R R-symmetry. It has
been shown [264] that the SO(4) BLG theory has an OSp(4|8) superconformal
symmetry at the classical level.

The field content is

• 8 real scalar fields X I = X I
aTa

• 16 (8 on-shell) real fermionic fields ΨȦ = ΨȦaTa

• gauge fields Aµ = AµabT ab.

1See [263] for the excellent review on the world-volume theories of the multiple planar M2-
branes.
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Here Ta, a = 1, · · · , dimA is a basis of the Lie 3-algebra A and T ab is the fun-
damental object in A which will be introduced in (4.1.18). Under the SO(8)R

R-symmetry the bosonic scalar fields X I , I = 1, · · · , 8 are the vector represen-
tations 8v while the fermionic fields ΨȦ, Ȧ = 1, · · · , 8 are the conjugate spinor
representations 8c respectively.

They also carry the (dimA)-dimensional representations of the Lie 3-algebra.
The gauge fields Aµab are 3-algebra A valued world-volume vector fields. They
are antisymmetric under two indices a, b of the Lie 3-algebra; Aµab = −Aµba

2.
The mass dimensions of the field content and the supersymmetry parameter ε are
given by

[X I
a] =

1
2

, [Ψa] = 1, [Aµ] = 1, [ε] = −1
2

(4.1.1)

ΨȦa is defined as an SO(1, 10) Majorana fermion and its conjugate is given by

Ψ := ΨTC, (4.1.2)

where C is a SO(1, 10) charge conjugation matrix satisfying

CT = −C, CΓMC−1 = −(ΓM)T. (4.1.3)

Gamma matrix ΓM is the representation of eleven-dimensional Clifford algebra

{ΓM, ΓN} = 2gMN (4.1.4)

Γ10 := Γ0···9, (4.1.5)

where gMN = ηMN = diag(−1, +1, +1, · · · , +1). ΓM can be decomposed asΓµ = γµ ⊗ Γ̃9 µ = 0, 1, 2

ΓI = I2 ⊗ Γ̃I−2 I = 3, · · · , 10
(4.1.6)

where

γ0 =

(
0 1
−1 0

)
= iσ2, γ1 =

(
0 1
1 0

)
= σ1, γ2 =

(
1 0
0 −1

)
= σ3 (4.1.7)

and Γ̃I is an SO(8) 16× 16 gamma matrix whose chirality matrix is Γ̃9 := Γ̃1···8.
The fermionic field Ψ is a real 1

2 · 2
[ 11

2 ] = 32-component Majorana spinor of eleven-
dimensional space-time, obeying the chirality condition3

Γ012Ψ = −Ψ. (4.1.8)
2For the A4 algebra we have a one-to-one correspondence between the fundamental object T

and the element Tab of the associated Lie algebra so(4). Hence Aµab is Lie so(4)-valued. Moreover
matter fields X I

a, ΨȦa are interpreted as the fundamental representations 4 of so(4).
3

32 supercharges in M-theory is broken to 16 due to the existence of M2-branes and Ψ is
identified with the Goldstino corresponding to the broken supersymmetry. Therefore the chirality
condition on Ψ is opposite to that of supersymmetry parameters ε.
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Although at this stage Ψ contains 16 independent real components, the number is
reduced to 8 when we treat it on-shell. From (4.1.6) it follows that

Γ012 = Γ34···10 = I2 ⊗ Γ̃9 (4.1.9)

and
Γ34···10Ψ = −Ψ. (4.1.10)

Thus Ψ is the conjugate spinor representation 8c of the SO(8)R R-symmetry group.

4.1.1 Lie 3-algebra

The construction of the BLG model is based on the Lie 3-algebra A. The Lie 3-
algebra is an N-dimensional vector space endowed with the totally antisymmetric
multi-linear triple product [A, B, C] satisfying the fundamental identity

[A, B[C, D, E]] = [[A, B, C], D, E] + [C, [A, B, D], E] + [C, D, [A, B, E]], (4.1.11)

which is a generalization of the Jacobi identity in Lie algebra and requires that the
gauge symmetry δABX = [A, B, X] acts as the derivation4

δAB([C, D, E]) = [δABC, D, E] + [C, δABD, E] + [C, D, δABE]. (4.1.12)

The supersymmetry algebra of the BLG model is closed on-shell when the fun-
damental identity (4.1.11) is satisfied [22]. Let us introduce the basis {Ta}1≤a≤N

of 3-algebra. Then the 3-algebra is specified by the metric hab and the structure
constant f abc

d

hab = (Ta, Tb), (4.1.13)

[Ta, Tb, Tc] = f abc
dTd. (4.1.14)

In terms of the structure constant, the fundamental identity (4.1.11) can be ex-
pressed as

f abc
g f deg

f = f dea
g f bcg

f + f deb
g f cag

f + f dec
g f abg

f (4.1.15)

= 3 f de[a
g f bc]g

f , (4.1.16)

which turns out to be equivalent to the relation [265]

f [abc
g f d]eg

f = 0. (4.1.17)

4Jacobi identity [A, [B, C]] = [[A, B], C] + [B, [A, C]] ensures that the transformation δAX = [A, X]
behaves as derivation δA[B, C] = [δAB, C] + [B, δAC].
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Here we will define the fundamental object T = T ab as

T · X := [Ta, Tb, X], ∀X ∈ A. (4.1.18)

The fundamental object induces derivation and gives the adjoint map

adTaTb : X 7→ [Ta, Tb, X], ∀X ∈ A. (4.1.19)

If we require that the action of the derivation on the scalar product is invariant

T · (Tc, Td) = (T · Tc, Td) + (Tc, T · Td) = 0, (4.1.20)

then we obtain the relation

(Ta, [Tb, Tc, Td]) = −([Ta, Tb, Tc], Td). (4.1.21)

A Lie 3-algebra is called “metric” if it satisfies the relation (4.1.21). This metric
property is assumed for all of the BLG theories. In terms of the structure constant,
(4.1.21) is rewritten as

f abcd = f [abcd]. (4.1.22)

This antisymmetry of f abcd indicates that the symmetry algebra is contained in
so(N). To be more precise, we rewrite the fundamental identity (4.1.11) as

adAB(adCDX)− adCD(adABX) = ad([A,B,C],D)+(C,[A,B,D])X (4.1.23)

or equivalently

adT (adSX)− adS(adT X) = adT SX, ∀T ,S ∈ ∧2A, X ∈ A. (4.1.24)

Introducing the coordinates of the (dimA×dimA) matrices [Ta1 , Ta2 , ] =: T a1a2 =:
ada1a2 ∈ EndA as

adT a1a2
l
k = (T a1a2)l

k := f a1a2l
k (4.1.25)

T a1a2 · Tk = [Ta1 , Ta2 , Tk] = f a1a2k
lT

l, (4.1.26)

then the equations (4.1.23) and (4.1.24) may be written in the form

[(T a1a2), (T b1b2)]sk = − f a1a2[b1l f b2]
lk

s, (4.1.27)

which means that

[(T a1a2), (T b1b2)]sk =
1
2

Ca1a2b1b2 c1c2(T c1c2)s
k (4.1.28)

where
Ca1a2b1b2 c1c2 = f a1a2[b1

[c1
δ

b2]
c2]

. (4.1.29)

Although (4.1.28) is the same form of the commutator in the Lie algebra, this does
not mean Ca1a2b1b2 c1c2 are the structure constants of the Lie algebra g because
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1. Ca1a2b1b2 c1c2 may not be antisymmetric under (a1, a2) ↔ (b1, b2)

2. T c1c2 may not be the basis of the Lie algebra g.

However, it has been shown [266] that when the Lie 3-algebra is simple, Ca1a2b1b2 c1c2

are antisymmetric in the upper indices

f a1a2[b1
[c1

δ
b2]
c2]

= − f b1b2[a1
[c1

δ
a2]
c2]

(4.1.30)

and define the structure constants of Lie algebra g. Moreover one can find the
cases where T c1c2 can be viewd as the basis of g.

4.1.2 Lagrangian

The BLG-model Lagrangian is

L =− 1
2

DµX IaDµX I
a +

i
2

Ψa
ȦΓµ

ȦḂ
DµΨḂa

+
i
4

ΨȦbΓI J
ȦḂ

X I
c X J

dΨḂa f abcd −V(X) + LTCS (4.1.31)

where

V(X) =
1
12

f abcd f e f g
dX I

aX J
bXK

c X I
e X J

f XK
g , (4.1.32)

LTCS =
1
2

εµνλ

(
f abcd Aµab∂ν Aλcd +

2
3

f cda
g f e f gb Aµab Aνcd Aλe f

)
. (4.1.33)

The covariant derivative is defined as

DµXa := ∂µXa − Aµcd[Tc, Td, X]a

= ∂µXa − Ãb
µaXb (4.1.34)

where Ãa
µb := f cda

b Aµcd. Alternatively we can express the Lagrangian in terms of
the trace and the triple product of Lie 3-algebra:

L =− 1
2
(DµX I , DµX I) +

i
2
(Ψ, ΓµDµΨ)

+
i
4

(
ΨΓI J [X I , X J , Ψ]

)
− 1

12

(
[X I , X J , XK], [X I , X J , XK]

)
+

1
2

εµνλ

[
Tr
(

Aµab∂ν Ãab
λ

)
+

2
3

Tr
(

Aµab Ãa
νg Ãb

λg

)]
(4.1.35)

Although the kinetic term of the gauge fields is similar to the conventional Chern-
Simons term, it is twisted by the structure constant of the 3-algebra. Notice that the
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gauge fields are non-propagating since it has at most first order derivative terms.
This is consistent with the degrees of freedom required from supersymmetry.

From (4.1.31), we obtain the equations of motion

DµDµX I
a −

i
2

ΨcΓI JX J
dΨb f cdb

a +
1
2

f bcd
a f e f g

dX J
bXK

c X I
e X J

f XK
g =0, (4.1.36)

ΓµDµΨa +
1
2

ΓI JX I
c X J

dΨb f cdb
a =0, (4.1.37)

F̃b
µνa + εµνλ(X J

c DλX J
d +

i
2

ΨcΓλΨd) f cdb
a =0. (4.1.38)

Here the field strength of the gauge field is defined as

F̃b
µνaXb := [Dµ, Dν]Xa. (4.1.39)

Combining the definition (4.1.34) of the covariant derivative, we can express it as

F̃b
µνa = ∂ν Ãb

µa − ∂µ Ãb
νa − Ãb

µc Ãc
νa + Ãb

νc Ãc
µa. (4.1.40)

The field strength satisfies Bianchi identity

εµνλDµ F̃a
νλb = 0. (4.1.41)

The stress-energy tensor can be computed as

Tµν = DµX I
aDνX Ia − ηµν

(
1
2

DλX IaDλX I
a + V(X)

)
(4.1.42)

where we set fermionic fields to zero. Thus bosonic part of the Hamiltonian den-
sity is

H = T00 =
1
2

D0X IaX0X I
a +

1
2

DαX IaDαX I
a + V(X) (4.1.43)

and the momentum density is

pα = T0α = D0X IaDαX I
a. (4.1.44)

4.1.3 Gauge transformation

The gauge transformations of the BLG-model are given by

δΛX I
a =Λcd[Tc, Td, X I ]a

=Λcd f cdb
aX I

b = Λ̃b
aX I

b, (4.1.45)

δΛΨa =Λcd[Tc, Td, Ψ]a

=Λcd f cdb
aΨb = Λ̃b

aΨb, (4.1.46)

δΛ Ãb
µa =∂µΛ̃b

µa − Λ̃b
c Ãc

µa + Ãb
µcΛ̃c

a

=DµΛ̃b
a, (4.1.47)

δF̃b
µνa =− Λ̃b

c F̃c
µνa + F̃b

µνcΛ̃c
a, (4.1.48)
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where Λ̃b
a := f cdb

aΛcd is a gauge parameter. Lagrangian (4.1.31) is invariant up to
a total derivative terms under the above gauge transformations.

4.1.4 Supersymmetry transformation

The N = 8 supersymmetry transformations of the BLG-model are

δX I
a = iεAΓI

AḂΨḂa, (4.1.49)

δΨȦa = DµX I
aΓµΓI

ȦBεB −
1
6

X I
bX J

c XK
d f bcd

aΓI JK
ȦB

εB, (4.1.50)

δÃb
µa = iεAΓµΓI

AḂX I
cΨḂd f cdb

a. (4.1.51)

Here εA, A = 1, · · · , 8 is the unbroken supersymmetry parameter obeying the
chirality condition

Γ012ε = Γ34···10ε = ε. (4.1.52)

This implies that εA is a two component three-dimensional Majorana spinor and
transforms as the spinor representation 8s of the SO(8)R R-symmetry. Lagrangian
(4.1.31) is invariant under the supersymmetric transformations up to a total deriva-
tive.

Using the equations of motion (4.1.36), (4.1.37) and (4.1.38), we find the follow-
ing relations from (4.1.49), (4.1.50) and (4.1.51):

[δ1, δ2]X I
a = vλDλX I

a + Λ̃b
aX I

b, (4.1.53)

[δ1, δ2]Ψa = vλDλΨa + Λ̃b
aΨb, (4.1.54)

[δ1, δ2]Ãb
µa = vλ F̃b

µλa + DµΛ̃b
a (4.1.55)

where vλ = −2iε2Γλε1 and Λ̃b
a = −2iε2ΓJKε1X J

c XK
d f cdb

a are identified with a trans-
lation parameter and a gauge parameter respectively. Thus the supersymmetry
transformations close into a translation (the first term) and a gauge transformation
(the second term) on-shell and the theory is invariant under 16 supersymmetries
and SO(8)R R-symmetry at the classical level.

Allowing the supersymmetry parameter ε to has x dependence and taking su-
persymmetry variations of the action, we obtain

δS = −i
∫

d3xDµε

(
DνX I

aΓνΓIΓµΨa +
1
6

X I
aX J

bXK
c f abcdΓI JKΓµΨd

)
. (4.1.56)

This gives

Jµ = −DνX I
aΓνΓIΓµΨa − 1

6
X I

aX J
bXK

c f abcdΓI JKΓµΨd. (4.1.57)
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Then the supercharge is

Q =
∫

dx2xJ0 = −
∫

d2x
(

DνX I
aΓνΓIΓ0Ψa +

1
6

X I
aX J

bXK
c f abcdΓI JKΓ0Ψd

)
. (4.1.58)

From (4.1.1) one can check that Q has the correct mass dimension [Q] = 1
2 and J0

has [J0] = 5
2 . The supercharge Q is the SUSY generator in the sense that5

δεΦ = i[εQ, Φ} =

iεṖ[QṖ, ΦB] (bosonic field)

iεṖ{QṖ, ΦQ̇
F } (fermionic field)

(4.1.59)

where Ṗ, Q̇, · · · are 11-dimensional spinor indices. As an example, we can generate
the SUSY transformation for the scalar fields X I

δX I =iε[Q, X I ]

=iε
[
−
∫

d2x∂νX J(x)ΓνΓJΓ0Ψ(x), X I(x′)
]

=− iεΓ0ΓJΓ0
∫

d2xΨ(x)
[
∂0X J(x), X I(x′)

]
=iεΓJ

∫
d2xΨ(x)δI Jδ(x− x′) = iεΓIΨ. (4.1.60)

4.1.5 M2-brane algebra

Now we want to discuss the algebraic structure of the M2-brane by studying the
BLG-model. Noting that 6

iεṖ{QṖ, QQ̇} =
∫

d2xεṖ

{
QṖ, J0Q̇(x)

}
=
∫

d2x(δε J0Q̇(x)), (4.1.61)

we obtain [267, 268]{
QṖ, QQ̇

}
=− 2Pµ(ΓµΓ0)ṖQ̇ + ZI JΓI JΓ0

+ ZαI JKL(ΓI JKLΓαΓ0)ṖQ̇ + ZI JKL(ΓI JKL)ṖQ̇ (4.1.62)

where α is the two-dimensional spatial indice of the M2-brane world-volume and
Pµ is the energy momnetum vector Pµ :=

∫
d2xT0µ. The central charges are given

5 The symbol [A, B} means AB− (−1)ABBA in a Z2-graded algebra.
6The central charges are proportional to the world-volume of M2-branes and can be infinite for

infinitely extended M2-branes. Focusing on the charge density, we can avoid the infinities.
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by

ZI J = −
∫

d2xTr
(

DαX I DβX Jεαβ − D0XK[X I , X J , XK]
)

, (4.1.63)

ZαI JKL =
1
3

∫
d2xTr

(
DβX[I [X J , XK, XL]]εαβ

)
, (4.1.64)

ZI JKL =
1
4

∫
d2xTr

(
[XM, X[I , X J ], [XM, XK, XL]]

)
. (4.1.65)

Introducing the expression

Γ̃I =

(
0 ΓI

ȦA

ΓI
BḂ 0

)
(4.1.66)

where (ΓI
AȦ)T = ΓI

ȦA are 8× 8 real gamma matrices satisfying

ΓI
AȦΓJ

ȦB + ΓJ
AȦΓI

ȦB = 2δI JδAB,

ΓI
ȦAΓJ

AḂ + ΓJ
ȦAΓI

AḂ = 2δI JδȦḂ (4.1.67)

we can rewrite (4.1.63) and (4.1.64) as surface integrals [267]

Z[AB] = −
∫

d2x∂αTr
(

X I , DβX J
)

εαβ(ΓI J)AB, (4.1.68)

Z(AB)
µ = − 1

12

∫
d2x∂αTr

(
X I , [X J , XK, XL]

)
ε0α

µ(ΓI JKL)AB (4.1.69)

where the symmetric central charge is traceless δABZ(AB)
µ = 0 and A, B, · · · =

1, · · · , 8 are the SO(8) indices. (4.1.62) and (4.1.63)-(4.1.65) are the field realization
of the M2-brane algebra and the central charges [269]. These are useful tools to
investigate five constitutes in M-theory, that is M-wave, M2-brane, M5-brane, M-
KK monopole, M9-brane.

1. Z[AB]

Z[AB] is a world-volume 0-form transforming 28 of SO(8). 0-form corre-
sponds to a 0-brane (point) on the M2-brane. 28 defines a 2-form or 6-form
in the transverse space to the M2-brane. In the case of 2-form, 0-brane is the
result of the intersection with two another M2-brane over a point and defines
the 2-plane along which the second M2-brane is aligned [270].

0 1 2 3 4 5 6 7 8 9 10
M2 ◦ ◦ ◦ × × × × × × × ×
M2 ◦ × × ◦ ◦ × × × × × ×

(4.1.70)
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When choosing 6-form, 0-brane acquires the interpretation as the intersection
of M2-brane with M-KK monopole over a point [271].

0 1 2 3 4 5 6 7 8 9 10
M2 ◦ ◦ ◦ × × × × × × × ×

MKK ◦ × × ◦ ◦ ◦ ◦ ◦ ◦ × ×
(4.1.71)

2. Z(AB)
µ

Z(AB)
µ is a world-volume 1-form and 35+ of SO(8). 1-form corresponds to a

1-brane (string) on the M2-brane. 35+ defines a 4-form in the 8-dimensional
transverse space. 1-brane is determined by 4-plane along which four of the
spatial spaces of the M5-brane are aligned. Thus 1-brane has the interpreta-
tion as the intersection of M2-brane with M5-brane.

0 1 2 3 4 5 6 7 8 9 10
M2 ◦ ◦ ◦ × × × × × × × ×
M5 ◦ ◦ × ◦ ◦ ◦ ◦ × × × ×

(4.1.72)

3. ZI JKL

Due to the total antisymmetry and the fundamental identity, ZI JKL = Z[I JKL]

vanishes when we consider trace elements.

However, it is discussed [268] that if we take into account constant back-
ground configurations of X I that take values in non-trace elements7, such
configurations may give rise to BPS charges although non-abelian fields are
infinite dimensional and have an infinite norm8.

4. Pµ

Pµ is a 1-form on a world-volume and a singlet 1 of SO(8). 1-form corre-
sponds to a 1-brane (string) on the M2-brane. 1 defines a 0-form or 8-form
in the transverse space. In the case of 0-form, 1-brane can be viewed as the

7Configurations with non-trace elements are discussed in the matrix theory conjecture for M-
theory in the light-cone quantization [272].

8By the novel Higgs mechanism, we can reduce ZI JKL to the form Tr[X I , X J ][X I , X J ] which is
similar to D4-brane charge in the D0-brane action in the matrix model. It is natural to think that
ZI JKL is identified with D6-brane charge because the BLG theory action reduces to the D2-brane
action rather than D0-brane action. Furthermore D6-brane is uplifted to M-KK monopole, so ZI JKL

is expected to produce the energy bound of the configuration of M2-brane and M-KK monopole.
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intersection of M2-brane with an M-wave over a 1-dimensional string.

0 1 2 3 4 5 6 7 8 9 10
M2 ◦ ◦ ◦ × × × × × × × ×
MW ◦ ◦ × × × × × × × × ×

(4.1.73)

In the case of 8-form, 1-brane is the intersection of the M2-brane with M9-
brane over a string.

0 1 2 3 4 5 6 7 8 9 10
M2 ◦ ◦ ◦ × × × × × × × ×
M9 ◦ ◦ × ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

(4.1.74)

4.2 A4 BLG-theory

If we assume that

1. the metric hab of the 3-algebra A is positive definite so that the kinetic term
and the potential term are all positive,

2. the dimension N of 3-algebra A is finite,

then the 3-algebra A is uniquely determined by [273, 274]

f abcd =
2π

k
εabcd = f εabcd, (4.2.1)

hab = δab (4.2.2)

with a, b = 1, · · · , 4. Here εabcd is an antisymmetric tensor and k is the integer
determined by the quantization of the Chern-Simons level for a non-simply con-
nected gauge group SO(4) [275]. The correct normalization can be checked by
using the expression (4.2.14) and noting that the coefficient of the Chern-Simons
term is k

4π .
The 3-algebra characterized by (4.2.1) and (4.2.2) is called the A4 algebra. For

the A4 algebra we do not distinguish superscripts and subscripts since gauge in-
dices a, b, · · · are raised and lowered with Kronecker delta. However, A and Ã
should be distinguished because of the existence of f . The corresponding BLG
theory has no continuous coupling constant but admit a discrete coupling k. The
uniqueness up to the Chern-Simons level k makes it difficult to describe an arbi-
trary number of coincident M2-branes because the rank of the gauge algebra is
expected to be related to the number of M2-branes in analogy with D-branes.
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In terms of the antisymmetric tensor εabcd let us introduce the dual generators

Ma1a2 :=
1
2

εa1a2b1b2T
b1b2 (4.2.3)

for the fundamental object T . Then from the relation

εi1···in
j1···jn =

n

∑
k=1

(−1)k+1δi1
jk

εi2···in
j1··· ĵk···jn

=
n

∑
k=1

(−1)k+nε
i1···in−1

j1··· ĵk···jn
δin

jk
, (4.2.4)

we obtain the commutation relations

[Ma1a2 , Mb1b2 ] = −δa1b2 Ma2b1 − δa2b1 Ma1b2 + δa1b1 Ma2b2 + δa2b2 Ma1b1 (4.2.5)

The algebraic relation (4.2.5) is recognized as commutators of semisimple so(4)
algebra. Thus from the ordinary Lie algebra point of view, the A4 BLG theory
is based on the so(4) gauge algebra. It has been discussed [276] that for the A4

BLG-model there are two possible inequivalent gauge groups G;

G =

SO(4) ∼= (SU(2)× SU(2))/Z2

Spin(4) ∼= SU(2)× SU(2).
(4.2.6)

4.2.1 Quiver gauge structure

Now we want to discuss the connection between the BLG-model based on the Lie
3-algebras and the ordinary gauge theories based on the Lie algebras. This has
been accomplished by the remarkable observation [277] that the A4 BLG-model
can be rewritten as an ordinary gauge theory with quiver type gauge group and
matters in the bifundamental representation 9.

Since in the A4 theory the Higgs fields X I and Ψ are the fundamental repre-
sentation 4 of the so(4) we can denote them by the four-vectors

X I =


xI

1
xI

2
xI

3
xI

4

 , Ψ =


Ψ1

Ψ2

Ψ3

Ψ4

 . (4.2.7)

In terms of the Pauli matrices σi
10, one may express these in the bi-fundamental

9This alternative expression of the A4 BLG-model triggered the discovery of the ABJM-model.
10Pauli matrices σi are given in (4.1.7) and normalized such that Tr(σiσj) = 2δij.
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representation (2, 2) of the su(2)⊕ su(2) gauge algebra as

X I =
1
2
(xI

4I2 + ixI
i σi) =

1
2

(
xI

4 + ixI
3 xI

2 + ixI
1

−xI
2 + ixI

1 xI
4 − ixI

3

)
,

Ψ =
1
2
(Ψ4I2 + iΨiσ

i) =
1
2

(
Ψ4 + iΨ3 Ψ2 + iΨ1

−Ψ2 + iΨ1 Ψ4 − iΨ3

)
. (4.2.8)

They obey the reality conditions

X I
αβ̇

=εαβεβ̇α̇(X I†)α̇β,

Ψαβ̇ =εαβεβ̇α̇(Ψ†)α̇β, (4.2.9)

where α, β = 1, 2 and α̇, β̇ = 1, 2 denote bi-fundamental representation (2, 2) of the
su(2)× su(2) gauge algebra.

In order to find the adjoint gauge field for each su(2) gauge symmetry factor,
we decompose gauge fields Aµab into the sum of the selfdual and anti-selfdual
parts

Aµab := − 1
2 f

(A+
µab + A−µab) (4.2.10)

where

∗A+
µab =

1
2

εab
cd A+

µcd = A+
µab,

∗A−µab =
1
2

εab
cd A−µcd = −A−µab (4.2.11)

and ∗ is the Hodge star acting on the gauge indices and satisfying ∗2 = 1. Noting
that Ãab

µ = f cdab Aµcd, we also have

Ãcd
µ = −(A+cd

µ − A−cd
µ ). (4.2.12)

Then we define

Aµ :=A+
µ4iσi,

Âµ :=A−µ4iσi. (4.2.13)

Using the expressions (4.2.8) and (4.2.13), we rewrite the original BLG-theory La-
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grangian (4.1.31) as

L =− Tr
(

DµX I†DµX I
)

+ iTr
(

Ψ†ΓµDµΨ
)

− 2
3

i f Tr
(

Ψ†ΓI JX IX J†Ψ + Ψ†ΓI JX JΨ†X I + Ψ†ΓI JΨX I†X J
)

− 8
3

f 2Tr
(

X[IX J†Xk]XK†X JX I†
)

+
1

2 f
εµνλTr

(
Aµ∂ν Aλ +

2
3

iAµ Aν Aλ

)
− 1

2 f
εµνλTr

(
Âµ∂ν Ãλ +

2
3

iÂµ Âν Âλ

)
.

(4.2.14)

Here the covariant derivative is defined by

DµX I = ∂µX I + iAµX I − iX I Âµ. (4.2.15)

Notice that now the twisted Chern-Simons terms in the original BLG-model is
decomposed into two ordinary Chern-Simons terms for A and Â with opposite
signs. This observation was crucial for the discovery of the ABJM-model as it
opens up the highly extended supersymmetric Chern-Simons matter theories with
quiver type gauge group. We see that the theory becomes weakly coupled in the
large k limit since after rescaling A →

√
f A, all interaction terms are proportional

to positive power of f = 2π
k .

The Lagrangian (4.2.14) is invariant under a new set of supersymmetry trans-
formations

δX I =iεΓIΨ, (4.2.16)

δΨ =DµX IΓµΓIε +
4π

3
X IX J†XKΓI JKε, (4.2.17)

δAµ = f εΓI(X IΨ† −ΨX I†), (4.2.18)

δÂµ = f εΓµΓI(Ψ†X I − X I†Ψ). (4.2.19)

4.2.2 Superconformal symmetry

It has been proven [264] that the A4 BLG theory has OSp(8|4) superconformal
symmetry that contains the SO(8)R R-symmetry group and the three-dimensional
Sp(4) ∼= Spin(2, 3) conformal symmetry group as bosonic factor groups at the
classical level. To see the superconformal symmetry explicitly, we replace super-
symmetry parameter εA by ΓµxµηA where ηA is a superconformal symmetry pa-
rameter and add a term −ΓIX I

aη to δΨa in the supersymmetry transformations of

153



the BLG-model. Then the superconformal symmetry is given by

δX I
a =iηΓµxµΓIΨa, (4.2.20)

δΨa =DµX I
aΓµΓIΓνxνη − 1

6
X I

bX J
c XK

d f bcd
aΓI JKΓνxνη − ΓIX I

aη, (4.2.21)

δÃb
µa =iηxνΓνΓµΓIX I

cΨd f cdb
a (4.2.22)

and one can check that the action (4.1.31) is invariant under the superconformal
transformations (4.2.20)-(4.2.22) up to total derivative terms.

4.2.3 Parity invariance

Although Chern-Simons theories are parity violating, we can make the A4 BLG
Lagrangian (4.2.14) parity invariant by defining parity transformation as a spatial
reflection together with interchange of two SU(2) gauge groups [264, 22, 277]. This
implies that we assign an odd parity to f abcd. In particular, under the reflection
x2 → −x2 we require that

X I
a → X I

a, Ãa
2b → −Ãa

2b, (4.2.23)

Ãa
0b → Ãa

0b, f abcd → − f abcd, (4.2.24)

Ãa
1b → Ãa

1b, Ψa → Γ2Ψa. (4.2.25)

Then (4.2.14) turns out ot be parity conserving.

4.2.4 Moduli space

The vacuum moduli space of the theory is the configuration space that minimise
the potential modulo gauge transformations. For the A4 BLG-model it was ini-
tially investigated in [277, 278, 275]. Since A4 BLG theory has the Euclidean inner
product, the potential is positive definite and the potential is minimal when

[X I , X J , XK] = 0. (4.2.26)

From the fact that the bosonic scalar fields X I
a are eight vectors in an R4 rotated

by the gauge symmetry SO(4), the triple product X I
aX J

bXK
c produces a new vec-

tor perpendicular to the three vectors X I
a, X J

b and XK
c whose length is the signed

volume of the parallelepiped spanned by the three vectors in R4 (see Figure 4.1).
The bosonic potential is proportional to the square of this volume summed over

each possible triple of vectors. Therefore the bosonic potential vanishes if and only
if all the three vectors lie in the same plane. This space is labeled by ordered sets
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Figure 4.1: The parallelepiped spanned by the three vectors X I
a, X J

b and XK
c . A new

vector produced by the triple product has the length as the signed volume of the
parallelepiped. The triple product is zero if and only if all the vectors lie in the
same plane.

of eight vectors in the same plane. One can assume that all vectors lie in the x1-x2

plane without losing generality where xa are the coordinates of Ta. Then eight x1

coordinates rI
1 and the eight x2 coordinates rI

2 form two octuplets which are rotated
into each other by the residual O(2) symmetry. Thus, up to gauge transformation,
the vacuum moduli space is parametrized by

X I
a = rI

1T1 + rI
2T2 =


rI

1
rI

2
0
0

 , rI
1, rI

2 ∈ R8. (4.2.27)

In the bi-fundamental notation (4.2.8), (4.2.27) is expressed as

X I =
1√
2

(
zI 0
0 zI

)
=

1√
2

(
r1 + irI

2 0
0 rI

1 − irI
2

)
. (4.2.28)

Then one can see that the residual gauge symmetries g ∈ SO(4) that preserve the
form X I is the block diagonal form

g =

(
g1 0
0 g2

)
(4.2.29)

where g1, g2 ∈ O(2) act on (x1, x2) and (x3, x4) respectively, with det g1 = det g2.
Since g2 acts trivially on (4.2.27), we can ignore it and simply look at g1 ∈ O(2).
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Let us discuss the residual gauge symmetry in the diagonal configurations
(4.2.28). The residual O(2) gauge symmetry in which g1 is contained consists of
two types of symmetries:

1. simultaneous rotation on zI (continuous symmetry)

U(1)12 : zI → eiθzI , θ ∈ [0, 2π) (4.2.30)

2. simultaneous complex conjugation (discrete symmetry)

zI → zI (4.2.31)

However, the continuous symmetry U12 is generically broken down for the di-
agonal configuration (4.2.27). Therefore the remaining component of gauge field
become massive by the Higgs mechanism. To see this we shall write down the
effective action. Let us firstly define the gauge field Bµ associated with the bro-
ken U(1)12 that rotate zI and the preserved gauge field Cµ associated with the
preserved U(1) by

Bµ :=
4π

k
A34

µ , (4.2.32)

Cµ :=
4π

k
A12

µ . (4.2.33)

Note that because of εabcd in the covariant derivative (4.1.34) the broken U(1)12

gauge field is associated with A34
µ not A12

µ . Substituting the configurations (4.2.27),
(4.2.32) and (4.2.33) into the BLG Lagrangian (4.1.31), one can write the kinetic
terms on the moduli space and the twisted Chern-Simons terms as [278, 275]

Lkin + LTCS = −1
2
|DµzI |2 +

k
2π

εµνλBµ∂νCλ (4.2.34)

where DµzI = ∂µzI + iBµzI .
Moreover we can replace the unbroken gauge field C with its dual photon σ

that plays a role of a Lagrange multiplier to impose the Bianchi identity εµνλ∂µGνλ

on the field strength Gµν := ∂µCν − ∂νCµ by introducing the additional term 11

Ldual =
1

4π
σεµνλ∂µGνλ. (4.2.35)

11In the original work of [278, 275] the normalization is chosen as Ldual = 1
8π σεµνλ∂µGνλ so that

σ ∈ [0, 2π). However, this does depend on the two choice of the gauge group; SU(2)× SU(2) and
(SU(2)× SU(2))/Z2 as pointed in [276].
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Combining (4.2.34) and (4.2.35), we can write the low-energy effective action as
[278, 275]

Lkin + LTCS + Ldual = −1
2
|DµzI |2 +

1
4π

εµνλ(kBµ − ∂µσ)Gνλ. (4.2.36)

The action (4.2.36) is invariant under the U(1)12 gauge symmetry transformations

zI → eiθzI , σ → σ + kθ, Bµ → Bµ + ∂µθ. (4.2.37)

Using the equation of motion for Gµν

Bµ =
∂µσ

k
, (4.2.38)

the action (4.2.36) further reduces to

L = −1
2
|∂µzI − i

k
zI∂µσ|2. (4.2.39)

By defining the fields

wI := e−
iσ
k zI , (4.2.40)

we can absorb the Lagrange multiplier σ and the action (4.2.39) finally becomes

L = −1
2

∂µwI∂µwI . (4.2.41)

As a next step we need to determine the periodicity of σ which yields the gauge
symmetry of the moduli parameter zI as seen from the redefinition (4.2.40). The
periodicity of σ occurs from the Dirac quantization of the flux of the field strength.
Let us consider the case where some field φ couples to a U(1) gauge field Aµ as
Dµφ = ∂µφ + iAµφ. If we go around a closed path γ, then φ is parallel transported

into φγ = ei
∮

γ A
φ = ei

∫
Σ Fφ where D is a two-dimensional surface whose boundary

is γ and F is the field strength of A. Since the choice of the surface Σ is not unique,
we require that q :=

∫
Σ F = 2πZ. This is the Dirac quantization for the charge q.

Now we are interested in the Dirac quantization of the field strength G = dC of
the preserved gauge field C since it yields the periodicity for σ as we see from the
action (4.2.36). However, in our case the charge of the field strength G = dC turns
out to be different as the Dirac value. The result is given by [275, 276]

∫
Σ

G ∈

4πZ for Spin(4) = SU(2)× SU(2)

2πZ for SO(4) = (SU(2)× SU(2))/Z2.
(4.2.42)
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This is because at the generic point of the moduli space the U(1) gauge field C
sits inside the diagonal SO(3) ∈ (SU(2)× SU(2))/Z2 or SU(2)× SU(2) and the
Higgs fields does not transform as the adjoint representations of the U(1) but that
of the SO(3). This situation is similar to the ’t Hooft-Polyakov monopoles [279]
where all the fields transform in the adjoint representation of SU(2) ∼= SO(3). For
the SU(2)× SU(2) group G is thus essentially the sum of two independent field
strengths and we need the additional factor 2 as

∫
Σ G ∈ 4πZ. For the (SU(2)×

SU(2))/Z2 gauge group the phase is equal to one only up to a Z2 action and we
require that

∫
Σ G ∈ 2πZ. Noting that dG = 1

2 εµνλ∂µGνλ and lifting the relation
(4.2.42) to the integral of dG over the three-manifold, we get

1
4π

∫
εµνλ∂µGνλ ∈

2Z for Spin(4) = SU(2)× SU(2)

Z for SO(4) = (SU(2)× SU(2))/Z2.
(4.2.43)

Since σ appears in the action (4.2.36) as the coupling to 1
4π εµνλ∂µGνλ, which takes

the discrete value in (4.2.42), σ must be periodic as

σ ∼

σ + π for Spin(4) = SU(2)× SU(2)

σ + 2π for SO(4) = (SU(2)× SU(2))/Z2.
(4.2.44)

Combining the periodicity (4.2.44) and the expression (4.2.40), we can read the
gauge identification of zI from the continuous transformation (4.2.30) as

zI ∼=

e
πi
k zI for Spin(4) = SU(2)× SU(2)

e
2πi

k zI for SO(4) = (SU(2)× SU(2))/Z2.
(4.2.45)

At this stage we have two types of the gauge equivalences; one is (4.2.45) from the
continuous symmetry (4.2.45) yielding Z2k or Zk and the other is from the discrete
one (4.2.31) corresponding to Z2. Since both of them do not commute, we finally
obtain the moduli space Mk of the A4 BLG-model with the Chern-Simons level k
as [276]

Mk =

R8×R8

D4k
for Spin(4) = SU(2)× SU(2)

R8×R8

D2k
for SO(4) = (SU(2)× SU(2))/Z2.

(4.2.46)

For generic k we do not know whether these moduli spaces can have a geometrical
interpretation of the M2-branes. However, for k = 1, 2, 4 there is a conjectural
space-time interpretation of the M2-branes.
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Chapter 5

ABJM-model

In this chapter we will review the ABJM-model [26] which may describe an arbi-
trary number of M2-branes. We will introduce the notations and conventions in
section 5.1. We will turn to the analysis of the moduli space in section 5.2. Then we
will discuss the conjectural duality between the BLG-model and the ABJM-model
in section 5.3.

5.1 Construction

The ABJM-model is a three-dimensional N = 6 superconformal U(N)k × Û(N)−k

Chern-Simons-matter theory proposed as a generalization of the BLG-model in
that it may describe the dynamics of an arbitrary number of coincident M2-branes
[26]. The theory has manifestly onlyN = 6 supersymmetry and the corresponding
SU(4)R R-symmetry at the classical level. It has been discussed that [26, 280, 281]
at k = 1 and k = 2 these symmetries are enhanced to N = 8 supersymmetry and
SO(8)R R-symmetry as a quantum effect. The theory contains

• 4 complex scalar fields YA

• 4 Weyl spinors ψA

• 2 types of gauge fields Aµ, Âµ.

Here the upper and lower indices A, B, · · · = 1, 2, 3, 4 denote 4 and 4 of the SU(4)R

respectively. The matter fields are N × N matrices so that YA and ψA transform
as (N, N) bi-fundamental representations of U(N)k × Û(N)−k gauge group, while
Y†

A and ψ†A do as (N, N). Aµ is a Chern-Simons U(N) gauge field of level +k
and Âµ is that of level −k. Also in the theory there is a U(1)B flavor symmetry
and the corresponding baryonic charges are assigned +1 for bi-fundamental fields,
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U(N) Û(N) SU(4)R U(1)B

YA N N 4 +1
Y†

A N N 4 −1
ψA N N 4 +1
ψ†A N N 4 −1
Aµ N2 1 1 0
Âµ 1 N2 1 0

Table 5.1: The symmetries and their representations for fields in the ABJM-model.
The bold letters for U(N), Û(N) and SU(4)R symmetries denote the represen-
tations for the symmetry groups and the quantities for U(1)B symmetry are the
corresponding charges.

−1 for anti-bi-fundamental fields and 0 for gauge fields. The symmetries in the
ABJM-model are summarized in Table 5.1.

5.1.1 Lagrangian

The Lagrangian of the ABJM-model is given by [282]

LABJM =− Tr(DµY†
ADµYA)− iTr(ψ†AγµDµψA)−Vferm −Vbos

+
k

4π
εµνλTr

[
Aµ∂ν Aλ +

2i
3

Aµ Aν Aλ − Âµ∂ν Âλ −
2i
3

Âµ Âν Âλ

]
(5.1.1)

where

Vferm =− 2πi
k

Tr
(

Y†
AYAψ†BψB − ψ†BYAY†

AψB

− 2Y†
AYBψ†AψB + 2YAY†

BψAψ†B

− εABCDY†
AψBY†

CψD + εABCDYAψ†BYCψ†D
)

, (5.1.2)

Vbos =− 4π2

3k2 Tr
(

YAY†
AYBY†

BYCY†
C + Y†

AYAY†
BYBY†

CYC

+ 4YAY†
BYCY†

AYBY†
C − 6YAY†

BYBY†
AYCY†

C

)
. (5.1.3)

Here we use the Dirac matrix (γµ)α
β = (iσ2, σ1, σ3). The spinor indices are raised,

θα = εαβθβ, and lowered, θα = εαβθβ with ε12 = −ε12 = 1. Note that this makes
the Dirac matrix γ

µ
αβ := (γµ)α

γεβγ = (−I2,−σ3, σ1) symmetric and guarantees the

160



Hermiticity of the fermionic kinetic term. The covariant derivatives are defined by

DµYA = ∂µYA + iAµYA − iYA Âµ, DµψA = ∂µψA + iAµψA − iψA Âµ,

DµY†
A = ∂µY†

A − iAµY†
A + iY†

A Âµ, Dµψ†A = ∂µψ†A − iAµψ†A + iψ†A Âµ. (5.1.4)

5.1.2 Supersymmetry transformation

The supersymmetry transformation laws are

δYA = iωABψB, (5.1.5)

δY†
A = iψ†BωAB, (5.1.6)

δψA = −γµωABDµYB +
2π

k

[
−ωAB(YCY†

CYB −YBY†
CYC) + 2ωCDYCY†

AYD
]

,

(5.1.7)

δψ†A = DµY†
BωABγµ +

2π

k

[
−(YBYCY†

C −Y†
CYCY†

B)ωAB + 2Y†
DYAY†

CωCD
]

, (5.1.8)

δAµ =
π

k

(
−YAψ†BγµωAB + ωABγµψAY†

B

)
, (5.1.9)

δÂµ =
π

k

(
−ψ†AYBγµωAB + ωABγµY†

AψB

)
. (5.1.10)

The parameter ωAB is defined by

ωAB := εi(Γi)AB, ωAB := εi(Γi∗)AB (5.1.11)

where the SL(2, R) spinor εi, i = 1, · · · , 6 transforms as the representation 6 under
the SU(4)R and Γi is the six-dimensional 4× 4 matrix satisfying

(Γi)AB = −(Γi)BA, (5.1.12)
1
2

εABCD(Γi)CD = −(Γi†)AB = (Γi∗)AB, (5.1.13){
Γi, Γj

}
= 2δij. (5.1.14)

Note that the supersymmetry parameter ωAB obeys

ωAB = ω∗
AB =

1
2

εABCDωCD. (5.1.15)

5.2 Moduli space

In order to determine the vacuum moduli space of the U(N)k × Û(N)−k ABJM-
model, we need to consider the minimum of the scalar potential. Since the poten-
tial turns out to be a perfect square, the potential is minimal when the potential
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vanishes. The vanishing condition of the bosonic potential is given by

YCY†
CYB = 0, (5.2.1)

YCY†
AYD = 0. (5.2.2)

The generic solution is given by diagonal configurations

YA = diag(yA
1 , · · · , yA

N) (5.2.3)

up to gauge equivalences. The configurations (5.2.3) are the full moduli space
because for generic diagonal elements one obtains positive definite mass matrix
for the off-diagonal elements and all off-diagonal elements turn out to be massive.
The solutions (5.2.3) break the gauge group U(N)× Û(N) to U(1)N ×U(1)N × SN

where SN is the Weyl group of U(N) that permutes the diagonal elements of all
matrices. At a generic point of the moduli space, only a U(1)N subgroup that does
not act on the eigenvalues remains unbroken and its gauge transformations keep
There are gauge transformations that YA diagonal. Quotienting by such gauge
symmetries, one finds The moduli space of the U(N)k × Û(N)−k ABJM-model is
[26]

MN,k =
(C4/Zk)N

SN
= SymN(C4/Zk). (5.2.4)

This can be identified with the moduli space of N indistinguishable M2-branes
moving in C4/Zk transverse space. Therefore the ABJM-model is expected to
describe the low-energy world-volume theory of N coincident M2-branes probing
an orbifold C4/Zk. The four complex scalar fields YA represent the positions of
the membranes in C4.

The orbifold Zk acts on the four complex coordinates yA as

yA → e
2πi

k yA. (5.2.5)

This preserves SU(4) rotational symmetry, which is realized as the R-symmetry in
the ABJM theory. The action of the Zk on the fermionic fields is

ψ → e
2π(s1+s2+s3+s4)

k ψ (5.2.6)

where si = ±1
2 are the spinor weights. The chirality projection implies that the

sum of all si must be even, which produces an eight-dimensional representation.
The spinors that are left invariant by the orbifold have ∑4

i=1 si = 0, mod k. This
selects six out of eight spinors, so the M2-brane theory has 12 supercharges. This
agrees with ABJM theory. Therefore this is consistent to the conjecture that the
ABJM theory is dual to M-theory on AdS4 × S7/Zk with N units of flux [26].
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5.3 Duality between BLG and ABJ(M)

In [276] it has been discussed that if N and k are co-prime, then the vacuum
moduli space of the U(N)k × Û(N)−k theory is equivalent to that of the SU(N)×
SU(N)/ZN theory. Consequently there are conjectural dualities between the ABJ(M)
theory and the BLG theory

U(2)1 × Û(2)−1 ABJM theory ⇔ SO(4) BLG theory with k = 1, (5.3.1)

U(2)2 × Û(2)−2 ABJM theory ⇔ Spin(4) BLG theory with k = 2, (5.3.2)

U(3)2 × Û(2)−2 ABJ theory ⇔ SO(4) BLG theory with k = 4. (5.3.3)

These proposed dualities have been tested by the computations of the supercon-
formal indices [283]. Hence we may regard the SO(4) BLG-model with k = 1 as
the world-volume theory of two planar M2-branes propagating in a flat space.
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Part III

SCQM from M2-branes
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Chapter 6

N = 16 Superconformal Mechanics

Let us turn to the most important part of this thesis in which we will see how
the two subjects discussed so far are connected with each other. We will initiate
our study in this chapter by considering the BLG-model wrapped on a torus and
derive the IR quantum mechanics by shrinking the torus. We will see that the IR
quantum mechanics is the N = 16 superconformal gauged quantum mechanics
and also find the OSp(16|2) superconformal quantum mechanics from the reduced
systems.

6.1 N = 16 gauged quantum mechanics

We shall start our analysis of the wrapped M2-branes with the case where the
two membranes wrap a torus T2 and propagate in a transverse space with an
SO(8) holonomy group. For a torus there is no non-trivial spin connection and the
world-volume theory of M2-branes is given by the BLG action (4.1.31) defined on
M3 = R× T2.

A torus is a compact Riemann surface of genus one and it is characterized by
two periods which are defined as the integration of a holomorphic differential ω

along two canonical homology basis a, b of a torus (see Figure 6.1). Let us define
the periods by ∫

a
ω = 1,

∫
b

ω = τ. (6.1.1)

Here τ is the moduli of the torus and it should not be real.
We now want to consider the limit in which T2 has vanishingly small size

and derive the low-energy effective one-dimensional theory on R. In order to
obtain such a theory we need to determine the configurations with the lowest
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Figure 6.1: A torus with two canonical homology basis a and b.

energy. Since we are now considering supersymmetric theories, the low-energy
configurations can be determined by solving the BPS equations. As we are inter-
ested in bosonic BPS configurations, we require that the background values of the
fermionic fields vanish. Then the bosonic fields are automatically invariant under
their supersymmetry transformations. Therefore the BPS equations correspond to
the vanishing of the supersymmetry transformations (4.1.50) for fermionic fields.
Also we discard the terms which include the covariant derivatives with respect to
time because we are now interested in the low energy dynamics as a fluctuation
around gauge invariant static configurations. Then one finds the BPS equations

DzX I
a = 0, DzX I

a = 0, (6.1.2)

[X I , X J , XK] = 0. (6.1.3)

To go further we consider the SO(4) BLG-model that may describe two M2-
branes. In this case the Higgs fields transform as fundamental representations
of the SO(4) gauge group and we assume that these Higgs fields have non-zero
values. Then the generic solution to (6.1.3) is given by X I

a =
(
X I

1, X I
2, 0, 0

)T. For
these solutions, the remaining BPS equations (6.1.2) reduce to

∂zX I
1 + Ã1

z2X I
2 = 0, ∂zX I

2 − Ã1
z2X I

1 = 0, (6.1.4)

Ã1
z3X I

1 + Ã2
z3X I

2 = 0, Ã1
z4X I

1 + Ã2
z4X I

2 = 0, (6.1.5)

and their complex conjugates. First of all, the equations (6.1.4) tell us that the sum
of the squares (X I

1)
2 + (X I

2)
2 for I = 1, · · · , 8 is independent of the locus of the

Riemann surface. Thus we can write

X I+2
1 + iX I+2

2 = rIei(θ I+ϕ(z,z)) (6.1.6)

where rI , θ I ∈ R are constant on the torus and represent the configuration of
the two membranes in the I-th direction while ϕ(z, z) may depend on z and z.
Furthermore the equations (6.1.4) enable us to write Ã1

z2 = ∂z ϕ. The second set
of equations (6.1.5) forces us to turn off four of six gauge fields; Ã1

z3 = Ã2
z3 =
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Ã1
z4 = Ã2

z4 = 0. These components of the gauge field become massive by the
Higgs mechanism. Note that the above set of solutions automatically satisfies the
integrability condition for (6.1.2) because the gauge field Ã1

z2 is flat.
One can find further restrictions by noting that the flat gauge fields Ã1

z2 on a
torus have specific expressions. Cutting a torus along the canonical basis a and b,
the sections of a flat bundle are described by their transition functions, i.e. constant
phases around a and b. Thus they can be completely classified by their twists e2πiξ ,
e−2πiζ on the homology along cycles a, b where ξ and ζ are real parameters. This
space is the torus C/Lτ where Lτ is the lattice generated by Z + τZ. It is referred
to as the Jacobi variety of T2 denoted by Jac(T2). The twists on the homology can
be described as a point on the Jacobi variety. Hence the flat gauge field can be
expressed in the form [284]

Ã1
z2 = −2π

Θ
τ − τ

ω, Ã1
z2 = 2π

Θ
τ − τ

ω (6.1.7)

where Θ := ζ + τξ is the complex parameter representing the twists on the ho-
mology along two cycles. Subsequently we can write

ϕ(z, z) = 2π
Θ

τ − τ
z− 2π

Θ
τ − τ

z. (6.1.8)

Since the angular variable ϕ(z, z) in the X I
1X I

2-plane characterizes the ratio of two
bosonic degrees of freedom for the two membranes, it must take same values mod-
ulo 2πZ under the shifts z → z + 1 and z → z + τ around two cycles. Therefore
both the coordinates ξ and ζ are required to be integer values. From the expres-
sion (6.1.7), the discretization of these coordinates implies that Ã1

z2 and Ã1
z2 are

quantized. We therefore conclude that the generic BPS solutions are given by

X I+2 =


X I

A
X I

B
0
0

 =


cos(θ I + ϕ(z, z))
sin(θ I + ϕ(z, z))

0
0

 rI ,

Ãz =


0 −2π Θ

τ−τ ωz 0 0
2π Θ

τ−τ ωz 0 0 0
0 0 0 Ã3

z4(z, z)
0 0 −Ã3

z4(z, z) 0

 . (6.1.9)

Note that the Abelian gauge fields Ã3
z4 and Ã3

z4 which are associated with the pre-
served U(1) symmetry do not have any constraints from the BPS conditions. Tak-
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ing into account the bosonic configurations (6.1.9) and the supersymmetry trans-
formations (4.1.49), we can write down the fermionic partners

Ψ± =


Ψ±A

Ψ±B

0
0

 , Ψ± =


Ψ±

A

Ψ±
B

0
0

 (6.1.10)

where Ψ is the conjugate spinor defined by Ψ := ΨTC̃ in terms of the SO(8)
charge conjugation matrix C̃. Ψa

+ and Ψ+a are the SO(2)E spinors with the positive
chiralities while Ψa

− and Ψ−a carry the negative ones. Both of them transform as
8c of the SO(8)R. The subscripts A, B are just the label of the gauge indices 1 and
2 1.

Under retaining the above static BPS configurations (6.1.9) and (6.1.10), we now
wish to consider the evolution of time and compactify the system on T2. Substitu-
tion of the configurations (6.1.9) and (6.1.10) into the action (4.1.31) yields

S =
∫

R
dt
∫

T2
d2z

[
1
2

D0X IaD0X I
a −

i
2

ΨαaD0Ψαa

− k
2π

Ã1
02F̃3

zz4 −
k

4π

(
Ã1

z2
˙̃A3

z4 − Ã1
z2

˙̃A3
z4

)]
(6.1.11)

where the Greek letters α = +,− denote the SO(2)E spinor indices. The terms in
the first line of the action (6.1.11) come from the kinetic terms of the BLG action
while those in the second correspond to the twisted topological Chern-Simons
terms.

Firstly since the gauge fields Ã1
z2 and Ã1

z2 are quantized and their time deriva-
tives do not appear in the action, these fields are just auxiliary fields. Exploit-
ing the equations of motion they can be excluded and we find the constraints
˙̃A3

z4 = ˙̃A3
z4 = 0. Hence the corresponding field strength F̃3

zz4 has no time depen-
dence. In order to dimensionally reduce the theory on the torus, we rescale the
fields as

X I′ = R2X I , Ψ′
αa = R2Ψαa, Ψαa′ = R2Ψαa (6.1.12)

where R is the circumference of the torus. Note that they get the canonical dimen-
sions in the reduced theory; the bosonic variable X I′ has mass dimension −1/2
and the fermionic variable Ψ′ acquires mass dimension 0.

1In order to avoid the confusion coming from the various possible explicit numerical subscripts,
we here relabel the gauge indices a = 1, 2 as a = A, B.
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Let us carry out the integration on the torus with respect to the coordinates z, z
by applying the Kaluza-Klein ansatz for the Abelian gauge field Ã12

0 and omit the
unimportant primes on the fields. Then we find the effective action

S =
∫

R
dt

[
1
2

D0X IaD0X I
a −

i
2

ΨαaD0Ψαa − kC1(E)Ã1
02

]
. (6.1.13)

Here

C1(E) =
∫

T2
c1(E) :=

1
2π

∫
T2

d2zF̃3
zz4 (6.1.14)

is the Chern number resulting from the integration of the first Chern class c1(E)
of the U(1) principal bundle E → T2 over the torus, which is associated with
the preserved U(1) gauge field Ã3

z4. Hence the last term in the action (6.1.13) is
recognized as a Fayet-Iliopoulos (FI) term as in (2.5.3).

The action (6.1.13) is invariant under the one-dimensional conformal transfor-
mations

δt = f (t) = a + bt + ct2, δ∂0 = − ḟ ∂0, (6.1.15)

δX I
a =

1
2

ḟ X I
a, δÃ1

02 = − ḟ Ã1
02, (6.1.16)

δΨαa = 0, δΨαa = 0 (6.1.17)

where f (t) is a quadratic function of time with real infinitesimal parameters a, b
and c.

The action (6.1.13) is also invariant under the N = 16 supersymmetry transfor-
mations

δX I
a = iε+Γ̃IΨ−a − iε−Γ̃IΨ+a, δÃ1

02 = 0, (6.1.18)

δΨ+a = −D0X I
aΓ̃Iε−, δΨ−a = D0X I

aΓ̃Iε+. (6.1.19)

Therefore the low-energy effective theory (6.1.13) is the N = 16 superconformal
gauged quantum mechanics with the FI term.

6.2 Reduction

As we have already argued, gauged conformal mechanics and the Calogero model
reduce to conformal mechanical models with inverse-square type potentials after
integrating out the auxiliary gauge fields. In fact our gauged mechanical action
(6.1.13) is quadratic in the U(1) gauge field Ã1

02 and does not contain the time
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derivative of the Abelian gauge field. So Ã1
02 can be identified with an auxiliary

field and has no contribution to the Hamiltonian. Namely, the Hamiltonian is
invariant under the action of the corresponding U(1) gauge group on the phase
space M. This implies that the corresponding moment map µ : M → u(1)∗ is
the integral of motion [166] and we can reduce the original phase space M to a
smaller phase space Mc = µ−1(c) with fewer degrees of freedom by fixing the
inverse of the moment map at a point c ∈ u(1)∗ 2.

In order to obtain our reduced system, we shall eliminate the auxiliary field
Ã1

02 in two steps; first we choose a specific gauge and then impose the Gauss law
constraint to ensure the consistency of the gauge fixing. Let us choose the temporal
gauge Ã0 = 0. Together with the solutions

Ã1
02 =

kC1(E) + ∑I(rI)2θ̇ I + iΨα
AΨαB

∑I(rI)2 , (6.2.1)

Ã1
03 = Ã1

04 = Ã2
03 = Ã2

04 = 0 (6.2.2)

to the equations of motion for Ã0, we can read off the Gauss law constraint

φ0 := kC1(E) + ∑
I
(rI)2θ̇ I + iΨα

AΨαB = 0. (6.2.3)

This equation is the moment map condition. To see the physical meaning of
this constraint, we observe that (rI)2θ̇ I represents the “angular momentum”, the
SO(2)-charge corresponding to the rotation in the X I

1X I
2-plane while the fermionic

bilinear term iΨα
AΨαB produces the charge of the SO(2) rotational group of the two

types of fermionic variables ΨA and ΨB. Accordingly the equation (6.2.3) says that
the total SO(2) charge which rotates the internal degrees of freedom for the two
M2-branes is fixed by the Chern-Simons level k and the Chern number C1(E).

With the constraint function φ0, one can write a new Lagrangian by adding λφ0

where λ is the Lagrange multiplier. The resulting action is

S =
∫

R
dt

[
1
2 ∑

I
(ṙI)2 +

1
2 ∑

I
(rI θ̇ I)2 − i

2
ΨαaΨ̇αa

+ λ

(
kC1(E) + ∑

I
(rI)2θ̇ I + iΨα

AΨαB

)]
. (6.2.4)

The absence of the variables θ I’s in the action (6.2.4) immediately implies that
they are cyclic coordinates and their canonical momenta pθ I = (rI)2θ̇ I are just the
integrals of motion.

2 The components of the moment map form a system being in involution since the gauge group
is Abelian. So we do not need to divide by the non-trivial coadjoint isotropy subgroup to obtain
the reduced phase space.
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At this state we can eliminate cyclic coordinates from the Lagrangian by intro-
ducing the Routhian. As we have discussed in section 2.5, the Routhian is a hybrid
between the Lagrangian and the Hamiltonian, defined by performing a Legendre
transformation on the cyclic coordinates

R(rI , ṙI , hI , Ψ) := L(rI , ṙI , θ̇ I , Ψ)−∑
I

θ̇ I pθ I . (6.2.5)

Due to the partial Legendre transformation, the variables rI and Ψ still follow
the Euler-Lagrange equations while the cyclic coordinates θ I and their momenta
hI := pθ I obey the Hamilton equations. However, the latter set of equations results
in trivial statements; the constant property of hI (i.e. ḣI = 0) and the definition of
hI (i.e. θ̇ I = hI

(rI)2 ). So classically the Routhian is not really R(rI , ṙI , hI , Ψ) but rather

R(rI , ṙI , Ψ) along with the integrals of motion hI’s. Hence we can rewrite (6.2.4) as

S =
∫

R
dt

[
1
2 ∑

I
(ṙI)2 − 1

2 ∑
I

(hI)2

(rI)2 −
i
2

ΨαaΨ̇αa + λ

(
kC1(E) + ∑

I
hI + iΨα

AΨαB

)]
.

(6.2.6)

Integrating out λ, we finally obtain the reduced effective action

S =
1
2

∫
R

dt

[
q̇2 + ∑

I 6=K
(ṙI)2 − iΨαaΨ̇αa

−
[
kC1(E) + ∑I 6=K hI + iΨα

AΨαB
]2

q2 − ∑
I 6=K

(hI)2

(rI)2

]
. (6.2.7)

Here we have taken the SO(8) charge conjugation matrix C̃ as an identity matrix
for simplicity 3. We have defined q := rK where K denotes the specific direction in
which hK is automatically determined by other conserved quantities hI’s. Note that
the terms appearing in the numerator of the potential are the integrals of motion,
namely they commute with the Hamiltonian.

Let us study the classical properties of the theory (6.2.7). The action (6.2.7)

3For the symmetric charge conjugation matrix one can reduce it to an identity matrix by an
appropriate unitary transformation.
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leads to the classical equations of motion

q̈ =
[kC1(E) + ∑I 6=K hI + iΨα

AΨαB]2

q3 , (6.2.8)

r̈I =
(hI)2

(rI)3 , (6.2.9)

Ψ̇αA = −
[kC1(E) + ∑I 6=K hI + iΨα

AΨαB]
q2 ΨαB, (6.2.10)

Ψ̇αB =
[kC1(E) + ∑I 6=K hI + iΨα

AΨαB]
q2 ΨαA. (6.2.11)

Making use of the equations of motion (6.2.10) and (6.2.11), one can check that the
differentiation of the Gauss law constraint (6.2.3) with respect to time t vanishes.
In other words, φ0 is the constant of motion.

The canonical momenta are

p :=
∂L
∂q̇

= q̇, pI :=
∂L
∂ṙI = ṙI , (6.2.12)

παa :=
~∂L

∂Ψ̇αa
=

i
2

Ψαa. (6.2.13)

The fermionic momenta παa do not depend on the velocities but on the fermionic
degrees of freedom themselves. Hence one can read second-class constraints

φαa
1 := παa − i

2
Ψαa = 0. (6.2.14)

Under the constraints, we get the Dirac brackets

[q, p]DB = 1,
[
rI , pJ

]
DB

= δI
J , (6.2.15)[

ΨαaȦ, πβbḂ
]

DB
=

1
2

δαβδabδȦḂ,
[
ΨαaȦ, ΨβbḂ

]
DB

= −iδαβδabδȦḂ. (6.2.16)

The action (6.2.7) is invariant under the following one-dimensional conformal
transformations

δt = f (t) = a + bt + ct2, δ∂0 = − ḟ ∂0, (6.2.17)

δq =
1
2

ḟ q, δrI =
1
2

ḟ rI , (6.2.18)

δΨαa = 0. (6.2.19)

Here the constant parameters a, b and c are infinitesimal parameters of translation,
dilatation and conformal boost respectively. The corresponding Noether charges,
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the Hamiltonian H, the dilatation operator D and the conformal boost operator K
are found to be

H =
1
2

[
p2 +

(
kC1(E) + ∑I 6=K hI + iΨα

AΨαB
)2

q2 + ∑
I 6=K

(
p2

I +
(hI)2

(rI)2

)]
, (6.2.20)

D = tH − 1
4

[
(qp + pq) + ∑

I 6=K

(
rI pI + pIrI

)]
, (6.2.21)

K = t2H − 1
2

t

[
(qp + pq) + ∑

I 6=K

(
rI pI + pIrI

)]
+

1
2

[
q2 + ∑

I 6=K
(rI)2

]
. (6.2.22)

The action (6.2.7) is invariant under the following fermionic transformations

δq =
i√
2

(
ε−Ψ−A − ε+Ψ+A

)
+

i√
2

(
ε−Ψ−B − ε+Ψ+B

)
, (6.2.23)

δrI = i cos θ I
(

ε+Γ̃IΨ−A − ε−Γ̃IΨ+A

)
+ i sin θ I

(
ε+Γ̃IΨ−B − ε−Γ̃IΨ+B

)
,

(6.2.24)

δΨ+AȦ = − 1√
2

(
q̇− hK

q

)
ε+Ȧ −

i√
2

l
q

Ψ+BȦ − ∑
I 6=K

(
ṙI cos θ I − sin θ I hI

rI

)
Γ̃Iε−Ȧ,

(6.2.25)

δΨ−AȦ =
1√
2

(
q̇− hK

q

)
ε−Ȧ −

i√
2

l
q

Ψ−BȦ + ∑
I 6=K

(
ṙI cos θ I − sin θ I hI

rI

)
Γ̃Iε+Ȧ,

(6.2.26)

δΨ+BȦ = − 1√
2

(
q̇ +

hK

q

)
ε+Ȧ +

i√
2

l
q

Ψ+AȦ − ∑
I 6=K

(
ṙI sin θ I + cos θ I hI

rI

)
Γ̃Iε−Ȧ,

(6.2.27)

δΨ−BȦ =
1√
2

(
q̇ +

hK

q

)
ε−Ȧ +

i√
2

l
q

Ψ−AȦ + ∑
I 6=K

(
ṙI sin θ I + cos θ I hI

rI

)
Γ̃Iε+Ȧ

(6.2.28)

where we have defined

θ I(t) := hI
∫ t dt′

(rI(t′))2 , (6.2.29)

l :=
(

Ψ+Aε+ −Ψ−Aε−
)
−
(

Ψ+Bε+ −Ψ−Bε−
)

. (6.2.30)

We should note that the supersymmetry is generically non-local in the sense that
the transformations contain the integrals of the function of the non-local variables
rI’s with respect to time. The non-locality is the consequence of the Routh reduc-
tion. Hence the infinite number of the associated conserved charges may exist and
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things may become much more exotic 4. However, as seen from the (6.2.20), the
motion in the K-th direction endowed with the local supersymmetry and others
with non-local ones are essentially decoupled because their Hamiltonians com-
mute with each other. Thus we can treat them separately. This indicates that the
theory possesses the local conserved supercurrents and the non-local supercur-
rents which are in involution.

6.3 OSp(16|2) superconformal mechanics

We shall focus on the study of the motion in the K-th direction which is associ-
ated with the local charges and investigate the algebraic structure of the symmetry
group in the quantum mechanics. From now on we will consider the case where
the all independent conserved charges hI’s are zeros. This is realized when the in-
ternal degrees of freedom for two M2-branes are unbiased. Note that for the pur-
pose of the exploration of the algebraic structure for the K-th motion, this specific
charge assignment does not affect the following discussion since non-vanishing
hI’s can only give rise to a constant shift of the coupling constant in the potential.
From (6.2.7) one can read the effective action for the dynamics in the K-th direction

S =
1
2

∫
R

dt

[
q̇2 − iΨαaΨ̇αa −

(
kC1(E) + iΨα

AΨαB
)2

q2

]
. (6.3.1)

We see that our reduced action (6.3.1) contains the inverse-square potential which
is similar to the known N > 4 superconformal mechanical potentials discussed in
(3.6.1) (also see [210, 255, 224, 137]).

We shall study the existing symmetry in the effective action (6.3.1). The action
(6.3.1) may be rewritten as SU(1, 1|16) superconformal quantum mechanics in the
form of (3.6.1). However, we should note that the same form of the Lagrangian
does not necessarily lead to the same symmetry in the theory if we have additional
constraints or symmetries. In fact in our setup the bilinear terms for fermions are
treated as conserved quantities due to the Gauss constraint (6.2.3). This implies
that the gauge indices a, b, · · · = A, B should be distinguished from other indices
α, β, · · · and Ȧ, Ḃ, · · · and prevents us from forming 32 supercharges. Put it an-
other way, our theory describes the radial motion of the wrapped membranes and

4The action (6.2.7) is invariant under the fermionic transformations (6.2.23)-(6.2.28), however,
the Gauss constraint (6.2.14) may not be invariant under those transformations. Although in that
case the original system may be modified, we here just want to study the reduced system without
the auxiliary gauge field.
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thus we have at most 16 supercharges on the branes by the projection. So we
will only focus on the remaining N = 16 supersymmetry due to the constraint.
The simplest way to read the consistent supersymmetry for the wrapped branes
is just look at the supersymmetry transformations for the original BLG-model.
From (4.1.49)-(4.1.51) we see that the action (6.3.1) is invariant under the following
N = 16 supersymmetry transformation laws

δq =
i√
2

(
ε−Ψ−A − ε+Ψ+A

)
+

i√
2

(
ε−Ψ−B − ε+Ψ+B

)
, (6.3.2)

δΨ+AȦ = − 1√
2

(
q̇ +

g
q

)
ε+Ȧ −

i√
2

l
q

Ψ+BȦ, (6.3.3)

δΨ−AȦ =
1√
2

(
q̇ +

g
q

)
ε−Ȧ −

i√
2

l
q

Ψ−BȦ, (6.3.4)

δΨ+BȦ = − 1√
2

(
q̇− g

q

)
ε+Ȧ +

i√
2

l
q

Ψ+AȦ, (6.3.5)

δΨ−BȦ =
1√
2

(
q̇− g

q

)
ε−Ȧ +

i√
2

l
g

Ψ−AȦ (6.3.6)

where we have defined

g := kC1(E) + iΨα
AΨαB. (6.3.7)

Unlike the transformations (6.2.23)-(6.2.28), the supersymmetry transformations
(6.3.2)-(6.3.6) are local and we therefore can apply the conventional Noether’s pro-
cedure. By means of the Noether’s method, the corresponding supercharges are
calculated to be

Q+Ȧ =
1√
2

(
p +

g
q

)
Ψ+AȦ +

1√
2

(
p− g

q

)
Ψ+BȦ, (6.3.8)

Q−Ȧ = − 1√
2

(
p +

g
q

)
Ψ−AȦ −

1√
2

(
p− g

q

)
Ψ−BȦ. (6.3.9)

Since the action (6.3.1) is invariant under the conformal transformations δt = f (t),
δq = 1

2 ḟ q and δΨαa = 0, three generators, the Hamiltonian H, the dilatation gener-
ator D and the conformal boost generator K are explicitly expressed as

H =
1
2

p2 +
[
kC1(E) + iΨα

AΨαB
]2

2q2 , (6.3.10)

D = −1
4
{q, p}, (6.3.11)

K =
1
2

q2 (6.3.12)
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where {, } represents an anti-commutator.
In order to quantize the theory, we impose the (anti)commutation relations for

the canonical variables obtained from the Dirac brackets (6.2.15) and (6.2.16)

[q, p] = i,
{

ΨαaȦ, ΨβbḂ

}
= δαβδabδȦḂ. (6.3.13)

The combination of the conformal symmetry and the supersymmetry leads to
the superconformal symmetry. Let us define the superconformal boost generators

S+Ȧ =
1√
2

q
(
Ψ+AȦ + Ψ+BȦ

)
, (6.3.14)

S−Ȧ = − 1√
2

q
(
Ψ−AȦ + Ψ−BȦ

)
. (6.3.15)

Because of the extended supersymmetry the theory has the internal R-symmetry
which rotates the fermionic charges. Let us define the R-symmetry generators by

(Jαβ)ȦḂ = iΨαaȦΨa
βḂ. (6.3.16)

Notice that the R-symmetry generators satisfy the relations

(J++)ȦḂ = −(J++)ḂȦ, (6.3.17)

(J−−)ȦḂ = −(J−−)ḂȦ, (6.3.18)

(J+−)ȦḂ = −(J−+)ḂȦ (6.3.19)

and therefore the matrices J++, J−− and J−+ contain 28, 28 and 64 independent
entries respectively while J−+ yields no independent ones because of the relations
(6.3.19). Therefore the R-symmetry matrix totally carries 28 + 28 + 64 = 120 ele-
ments.

Using the canonical (anti)commutation relations (6.3.13) and considering the
Weyl ordering for the fermionic bilinear terms, one can find the complete set of
(anti)commutators among the generators

[H, D] = iH, [K, D] = −iK, [H, K] = 2iD, (6.3.20)

[(Jαβ)ȦḂ, H] = 0, [(Jαβ)ȦḂ, D] = 0, [(Jαβ)ȦḂ, K] = 0, (6.3.21)

[(Jαβ)ȦḂ, (Jγδ)ĊḊ] = i(Jγβ)ĊḂδαδδȦḊ − i(Jαδ)ȦḊδβγδḂĊ,

+ i(Jδβ)ḊḂδαγδȦĊ − i(Jαγ)ȦĊδβδδḂḊ, (6.3.22)

[H, QαȦ] = 0, [D, QαȦ] = − i
2 QαȦ, [K, QαȦ] = iSαȦ, (6.3.23)
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[H, SαȦ] = −iQαȦ, [D, SαȦ] = i
2 SαȦ, [K, SαȦ] = 0, (6.3.24)

{QαȦ, QβḂ} = 2HδαβδȦḂ,

{SαȦ, SβḂ} = 2KδαβδȦḂ,

{QαȦ, SβḂ} = −2DδαβδȦḂ + (Jαβ)ȦḂ, (6.3.25)

[(Jαβ)ȦḂ, QγĊ] = i
(

QαȦδβγδḂĊ −QβḂδαγδȦĊ

)
,

[(Jαβ)ȦḂ, SγĊ] = i
(

SαȦδβγδḂĊ − SβḂδαγδȦĊ

)
. (6.3.26)

The Hamiltonian H, the dilatation generator D and the conformal boost gener-
ator K satisfy the one-dimensional conformal algebra (6.3.20).

As the superpartners of the conformal generators there are sixteen supercharges
QαȦ and as many superconformal generators SαȦ. As seen from (6.3.21) and
(6.3.26), the R-symmetry generators (Jαβ)ȦḂ commute with the bosonic generators
H, D and K while they yield the rotations of the fermionic generators QαȦ and
SαȦ. The commutation relation (6.3.22) implies that (Jαβ)ȦḂ obey the so(16) alge-
bra. Therefore we can conclude that the theory (6.3.1) is the OSp(16|2) invariant
N = 16 superconformal mechanics. In fact this fits in the list of the possible simple
supergroup for superconformal quantum mechanics, which we have already given
in Table 3.2.

It is true that the quantum mechanics (6.3.1) possesses the N = 16 superconfor-
mal symmetry, however, it is not clear that the theory (6.3.1) actually captures the
dynamics of the wrapped membranes around a torus since it is not totally same
as the superconformal gauged quantum mechanics (6.1.13) due to the reduction
process.

Note that the original SO(8) R-symmetry is now enhanced to SO(16) in our
quantum mechanics. It is not so strange as a similar phenomenon has been already
observed in d = 11 supergravity. In d = 11 supergravity the original tangent
space symmetry SO(1, 10) can break down into the subgroup SO(1, 2) × SO(8)
through a partial choice of gauge for the elfbein. However, it has been pointed
out in [285, 286, 287] that one can find the enhanced SO(1, 2) × SO(16) tangent
space symmetry by introducing new gauge degrees of freedom. It would be an
intriguing open question to investigate whether such enhanced R-symmetry of our
quantum mechanics reflects that of d = 11 supergravity.
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Chapter 7

N = 12 Superconformal Mechanics

Similar to the previous chapter, we will consider the ABJM-model wrapped on a
torus and derive the IR quantum mechanics by shrinking the torus in this chap-
ter. We will derive the IR N = 12 superconformal gauged quantum mechanic-
sãĂĂ and extract the corresponding SU(1, 1|6) superconformal quantum mechan-
ics from the reduced systems.

7.1 N = 12 gauged quantum mechanics

We now want to consider an arbitrary number of M2-branes wrapped around a
torus, which may be described by the U(N)k × Û(N)−k ABJM-model on R× T2.
The theory may describe the dynamics of N coincident M2-branes with the world-
volume M3 = R× T2 moving in a transverse space with an SU(4) holonomy. The
crucial point is now that the volume of the torus yields a typical energy scale in the
theory and we can take a further limit where the energy is lower than the inverse of
the size of the torus. Such low-effective theory describes the fluctuations around
static BPS configurations obeying the BPS equations. From the supersymmetry
transformations (5.1.7), (5.1.8) for fermions we find the following set of the BPS
equations:

DzYA = 0, DzYA = 0, (7.1.1)

YCY†
CYB −YBY†

CYC = 0, (7.1.2)

YCY†
AYD = 0. (7.1.3)

To satisfy the algebraic equations (7.1.2) and (7.1.3), the bosonic Higgs fields YA

and Y†
A should take the diagonal form

YA = diag(yA
1 , · · · , yA

N), Y†
A = diag(yA1, · · · , yAN) (7.1.4)
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where yA
a is a complex scalar field. For the above diagonal configurations, all the

off-diagonal elements are massive and the gauge group U(N)× Û(N) is sponta-
neously broken to U(1)N [26]. Let us define

A+
µa := Aµaa + Âµaa, A−µa := Aµaa − Âµaa (7.1.5)

where the indices a = 1, · · · , N characterize the gauge degrees of freedom, i.e. the
internal degrees of freedom of the multiple M2-branes. Note that all the couplings
involve the gauge fields A−µa while the other gauge fields A+

µa are associated with
the preserved U(1) gauge group. In terms of the expressions (7.1.4) and (7.1.5), we
can rewrite the equations (7.1.1) as

∂zyA
a + iA−zayA

a = 0, ∂zyAa − iA−zayAa = 0, (7.1.6)

∂zyA
a + iA−zayA

a = 0, ∂zyAa − iA−zayAa = 0, (7.1.7)

Azab = Âzab = Azab = Âzab = 0 for a 6= b. (7.1.8)

The first and second lines correspond to the equations for diagonal elements and
last one is for the off-diagonal elements. The general solutions to the equations
(7.1.6) and (7.1.7) are given by

yA
a = rA

a ei(ϕa(z,z)+θA
a ), (7.1.9)

A−za = −∂z ϕa(z, z) (7.1.10)

where rA
a , θA

a ∈ R have no dependence on z and z while ϕa(z, z) ∈ R is a function
of z and z. The expression (7.1.10) ensures the flatness of the U(1) gauge field A−z .
Hence ϕa, A−za and A−za take the form [284]

ϕa(z, z) = −2π
Θa

τ − τ
z + 2π

Θa

τ − τ
z, (7.1.11)

A−za = 2π
Θa

τ − τ
ω, A−za = −2π

Θa

τ − τ
ω. (7.1.12)

Here τ is the moduli of the torus defined in (6.1.1) and Θa := ζa + τξa, a = 1, · · · , N
are the coordinates of the product space of the N Jacobi varieties characterizing the
N U(1) flat bundles. For the bosonic Higgs fields to describe the positions of the
membranes, we should impose the single-valuedness of yA

a as

yA
a (z + 1, z + 1) = yA

a (z, z),

yA
a (z + τ, z + τ) = yA

a (z, z). (7.1.13)

These conditions require that ξa and ζa are integers, which result in the quantiza-
tion of the variables ϕa, A−za and A−za. Then the resulting static BPS configurations
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are

YA = diag(yA
1 , · · · , yA

N) = diag
(

rA
1 ei(ϕ1(z,z)+θA

1 ), · · · , rA
Nei(ϕN(z,z)+θA

N)
)

,

Y†
A = diag(yA1, · · · , yAN) = diag

(
rA

1 e−i(ϕ1(z,z)+θA
1 ), · · · , rA

Ne−i(ϕN(z,z)+θA
N)
)

,

Az = diag (Az11, · · · , AzNN) ,

Âz = Az + ∂z ϕ = diag (Az11 + ∂z ϕ1, · · · , AzNN + ∂z ϕN) . (7.1.14)

By the supersymmetry the above bosonic configurations are paired with the fermionic
fields

ψ±A = diag (ψ±A1, · · · , ψ±AN) , ψ†A
± = diag

(
ψ†A1
± , · · · , ψ†AN

±

)
(7.1.15)

where the subscripts ± label the SO(2)E spinor representation.
Inserting the set of BPS configurations (7.1.14) and (7.1.15) into the ABJM action

(5.1.1) one finds

S =
∫

R
dt
∫

T2
d2z ∑

A

N

∑
a=1

[
D0ya

AD0yA
a − iψ†Aa

+ D0ψ+Aa − iψ†Aa
− D0ψ−Aa

+
k

4π

(
A−0aF

+
zza +

1
2
A−zaȦ

+
za −

1
2
A−zaȦ+

za

)]
. (7.1.16)

Recall that A−z and A−z are quantized and their time derivative terms do not show
up in the action. Thus we can treat them as auxiliary fields and integrate out them.
Consequently we get constraints Ȧ+

za = Ȧ+
za = 0, which imply that the gauge fields

A+
za and A+

za on the Riemann surface have no time dependence.
Taking these constraints into account and proceeding the integration over the

torus, we obtain the low-energy effective action

S =
∫

R
dt
[

D0ya
AD0yA

a − iψ†αAaD0ψαAa + kC1(Ea)A−0a

]
. (7.1.17)

Here the repeated indices are summed over and α, β, · · · = +,− denote the SO(2)E

spinor indices. The covariant derivatives are defined by

D0yA
a = ẏA

a + iA−0ayA
a , D0yAa = ẏAa − iA−0ayAa,

D0ψαAa = ψ̇αAa + iA−0aψαAa, D0ψ†A
αa = ψ̇†A

αa − iA−0aψ†A
αa . (7.1.18)

and

C1(Ea) :=
1

2π

∫
T2

Fzzaa =
1

4π

∫
T2
F+

zza (7.1.19)
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is the Chern number of the a-th U(1) principal bundle Ea → T2 over the torus
associated with the preserved U(1) gauge fields Azaa.

The action (7.1.17) is invariant under the one-dimensional conformal transfor-
mations

δt = f (t) = a + bt + ct2, δ∂0 = − ḟ ∂0, (7.1.20)

δyA
a =

1
2

ḟ yA
a , δyAa =

1
2

ḟ yAa, (7.1.21)

δψαAa = 0, δψ†A
αa = 0, (7.1.22)

δA−0a = − ḟA−0a (7.1.23)

and N = 12 supersymmetry transformations

δyA
a = iωαABψαBa, δyAa = iψ†αB

a ωαAB, (7.1.24)

δψαAa = ωαABD0yB
a , δψ†A

αa = −D0yBaωAB
α , (7.1.25)

δA−0a = 0 (7.1.26)

where the supersymmetry parameters ω+AB := ε+i(Γi)AB and ω−AB := ε−i(Γi)AB

transform as 6+ and 6− under SU(4) × SO(2)E respectively. Therefore the low-
energy effective theory is described by the N = 12 superconformal gauged quan-
tum mechanics (7.1.17).

7.2 Reduction

The low-energy effective action (7.1.17) is quadratic in A−0a and contains no time
derivatives of A−0a. So they are auxiliary fields and we want to integrate them out.
Let us fix the gauge as A−0a = 0. Then the algebraic equations of motion of A−0a
yield the Gauss law constraints, the moment map conditions

φ0a := kC1(Ea) + 2 ∑
A

(rA
a )2θ̇A

a + ∑
A

ψ†αAaψαAa = 0 (7.2.1)

for a = 1, · · · , N. Note that although the set of equations (7.2.1) has the same form
as that of (6.2.3), the physical meaning of these constraints are different because the
angular variable θA

a ’s are defined not in the abstract space of the internal degrees
of freedom as in (6.2.3), but in the actual configuration space of the a-th M2-brane
in the A-th complex plane.

Defining the conserved charges hA
a := 2(rA

a )2θ̇A
a , using the above constraints

(7.2.1) and following the reduction procedure as in the derivation of (6.2.7), we can
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integrate out the auxiliary gauge fields A−0a and find the reduced effective action
with the inverse-square type interaction

S =
∫

R
dt

N

∑
a=1

[
ẋ2

a −
i
2 ∑

A 6=B

(
ψ†αAaψ̇αAa − ψ̇†AaψαAa

)
+ ∑

A 6=B
(ṙA

a )2 − i
2

(
λ†αaλ̇αa − λ̇†αaλαa

)

−
[
kC1(Ea) + ∑A 6=B hA

a + ∑A 6=B ψ†αAaψαAa + λ†αaλαa
]2

4x2
a

− ∑
A 6=B

(hA
a )2

4(rA
a )2

]
.

(7.2.2)

Here xa := rB
a describes the motion of the a-th M2-brane in the B-th complex

plane in which the corresponding “angular momentum” hB
a is determined by the

assignment of the other preserved charges. We have also introduced the fermionic
variable λαa := ψαBa with A = B, which turns out to be the superpartner of rC

a ,
C = 1, 2, 3, as we will see the supersymmetry transformations (7.2.27) and (7.2.28).

The action (7.2.2) leads to the following equations of motion

ẍa =

[
kC1(Ea) + ∑A 6=B hA

a + ∑A 6=B ψ†αAaψαAa + λ†αaλαa
]2

4x3
a

, (7.2.3)

r̈A
a =

(hA
a )2

4(rA
a )3 , (7.2.4)

ψ̇αAa = i
kC1(Ea) + ∑A 6=B hA

a + ∑A 6=B ψ†αAaψαAa + λ†αaλαa

2xa
ψαAa, (7.2.5)

ψ̇†αAa = −i
kC1(Ea) + ∑A 6=B hA

a + ∑A 6=B ψ†αAaψαAa + λ†αaλαa

2xa
ψ†αAa, (7.2.6)

λ̇αa = i
kC1(Ea) + ∑A 6=B hA

a + ∑A 6=B ψ†αAaψαAa + λ†αaλαa

2xa
λαa, (7.2.7)

λ̇†αa = −i
kC1(Ea) + ∑A 6=B hA

a + ∑A 6=B ψ†αAaψαAa + λ†αaλαa

2xa
λ†αa. (7.2.8)

Using the fermionic equations of motion (7.2.5)-(7.2.8), we can check that the Gauss
law constraint (7.2.1) has no time dependence, i.e. φ̇0a = 0.

The canonical momenta are given by

pa :=
∂L
∂ẋa

= 2ẋa, Pa
A :=

∂L
∂ṙA

a
= 2ṙa

A, (7.2.9)

παAa :=
~∂L

∂ψ̇αAa
=

i
2

ψ†αAa, π̃αAa :=
~∂L

∂ψ̇†αAa =
i
2

ψαAa, (7.2.10)

Παa :=
~∂L
∂λ̇αa

=
i
2

λ†αa, Π̃αa :=
~∂L

∂λ̇†αa
=

i
2

λαa. (7.2.11)
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The fermionic canonical momenta provide the second class constraints

φαAa
1 := παAa − i

2
ψ†Aa = 0, φ2αAa := π̃αAa −

i
2

ψαAa = 0, (7.2.12)

φαa
3 := Παa − i

2
λ†αa = 0, φ4αa := Π̃αa −

i
2

λαa = 0. (7.2.13)

Taking account into the constraints (7.2.12) and (7.2.13), we find the Dirac brackets

[xa, pb]DB = δab, [rA
a , Pb

B]DB = δABδab, (7.2.14)[
ψαAa, ψ†βBb

]
DB

= iδαβδABδab,
[
λαa, λ†βb

]
DB

= iδαβδab. (7.2.15)

The action (7.2.2) possesses the one-dimensional conformal invariance

δt = f (t) = a + bt + ct2, δ∂0 = − ḟ ∂0, (7.2.16)

δxa =
1
2

ḟ xa, δrA
a =

1
2

ḟ rA
a , (7.2.17)

δψαAa = 0, δψ†αA
a = 0, (7.2.18)

δλαa = 0, δλ†α
a = 0. (7.2.19)

Using the Noether’s procedure we find the SL(2, R) generators

H =
N

∑
a=1

[
p2

a
4

+

(
kC1(Ea) + ∑A 6=B hA

a + ∑A ψ†αAaψαAa + λ†αaλαa
)2

4x2
a

+ ∑
A 6=B

(
(PA

a )2

4
+

(hA
a )2

4(rA
a )2

)]
, (7.2.20)

D = −1
4

N

∑
a=1

[
{xa, pa}+ ∑

A 6=B

{
rA

a , PA
a

}]
, (7.2.21)

K =
N

∑
a=1

[
x2

a + ∑
A 6=B

(rA
a )2

]
. (7.2.22)

Note that we have absorbed the time dependent part of D and K by using the
similarity transformations (2.1.34).

Also the action (7.2.2) is invariant under the following fermionic transforma-
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tions

δxa =
i√
2

(
εαCψαCa + ε†

αCψ†αC
a

)
, (7.2.23)

δrC
a =

i
2

[(
ωαCDψαDa

)
e−iθC

a +
(

ψ†αD
a ωαCD

)
eiθC

a −
(

εαCλαa

)
e−iθC

a −
(

ε†
αCλ†α

a

)
eiθC

a
]

,

(7.2.24)

δψαCa =
(

ṙD
a + i

hD
a

2rD
a

)
eiθD

a ωαCD

+
√

2

(
ẋa − i

kC1(Ea) + ∑D 6=B hD
a + ψ†αDaψαDa + λ†αaλαa

2xa

)
ε†

αC −
i√
2

la

xa
ψαCa,

(7.2.25)

δψ†αC
a = −

(
ṙD

a − i
hD

a
2rD

a

)
e−iθD

a ωCD
α

+
√

2

(
ẋa + i

kC1(Ea) + ∑D 6=B hD
a + ψ†αDaψαDa + λ†αaλαa

2xa

)
εαC +

i√
2

la

xa
ψ†αC

a ,

(7.2.26)

δλαa = −ε†
αC

(
ṙC

a + i
hC

a

2rC
a

)
eiθC

a , (7.2.27)

δλ†α
a = −

(
ṙC

a − i
hC

a

2rC
a

)
e−iθC

a εαC (7.2.28)

with C, D = 1, 2, 3. Here εαC and their Hermitian conjugate ε†
αC are infinitesimal

fermionic parameters and we have defined

θC
a (t) = hC

a

∫ t dt′

(rC
a (t′))2

, (7.2.29)

la = εψa − ε†ψ†
a . (7.2.30)

7.3 SU(1, 1|6) superconformal mechanics

Since the non-local quantities are included in the fermionic transformations (7.2.23)-
(7.2.28), there may exist infinitely many conserved non-local charges. However, we
see from (7.2.20) that the Hamiltonian describing the motion in the B-th complex
plane associated with the variable xa and the local charges commute with the oth-
ers associated with the variables rC

a ’s and the non-local charges. Therefore they
are decoupled with one another and we thus can analyze the dynamics in the B-th
direction separately. As in the subsection 6.3, it is convenient to assign the con-
served charges hA

a and λ†αaλαa to be zeros. Then the low-energy dynamics in the
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B-th complex plane is described by the action

S =
∫

R
dt

N

∑
a=1

[
ẋ2

a − iψ†αAaψ̇αAa −
(
kC1(Ea) + ψ†αAaψαAa

)2

4x2
a

]
(7.3.1)

where A = 1, 2, 3 denote the R-symmetry indices. Note that the action (7.3.1) has
the same structure as (3.6.1) [210, 224, 137] for SU(1, 1|N2 ), N > 4 superconformal
quantum mechanics.

The action (7.3.1) has the invariance under the N = 12 supersymmetry trans-
formation laws

δxa =
i√
2

(
εαAψα

Aa + ε†
αAψ†αA

a

)
, (7.3.2)

δψαAa =
√

2
(

ẋa − i
ga

2xa

)
ε†

αA −
i√
2

la

xa
ψαAa, (7.3.3)

δψ†αA
a =

√
2
(

ẋa + i
ga

2xa

)
εαA +

i√
2

la

xa
ψ†αA

a (7.3.4)

where

ga = kC1(Ea) + ψ†αAaψαAa. (7.3.5)

The supersymmetry transformations (7.3.2)-(7.3.4) are generated by the super-
charges

QαA =
i√
2

(
pa − ga

xa

)
ψαAa, (7.3.6)

Q̃αA =
i√
2

(
pa +

ga

xa

)
ψ†αA. (7.3.7)

Also the action (7.3.1) has the one-dimensional conformal invariance. The cor-
responding Noether charges are now expressed as

H =
N

∑
a=1

[
p2

a
4

+
(
kC1(Ea) + ψ†αAaψαAa

)2

4x2
a

]
, (7.3.8)

D = −1
4

N

∑
a=1

{xa, pa} , (7.3.9)

K =
N

∑
a=1

x2
a. (7.3.10)

According to the Dirac brackets (7.2.14) and (7.2.15), quantum operators of the
canonical coordinates and momenta obey the quantum brackets

[xa, pb] = iδab,
{

ψαAa, ψ†βBb
}

= −δαβδABδab. (7.3.11)
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Combining the supercharges and the conformal generators, we find the super-
conformal boost generators

SαA =
√

2i ∑
a

xaψαAa, (7.3.12)

S̃αA =
√

2i ∑
a

xaψ†αA
a . (7.3.13)

The R-symmetry generator is given by

(Jαβ)AB = i ∑
a

ψ
†βB
a ψαAa. (7.3.14)

Note that (7.3.14) is a complex 6× 6 matrix with α, β = +,− and A, B = 1, 2, 3 and
it contains 36 complex valued elements.

Under the canonical relations (7.3.11) and the Weyl ordering 1, the generators
form the following algebra

[H, D] = iH, [K, D] = −iK, [H, K] = 2iD, (7.3.15)

[(Jαβ)AB, H] = 0, [(Jαβ)AB, D] = 0, [(Jαβ)AB, K] = 0, (7.3.16)

[(Jαβ)AB, (Jγδ)CD] = i(Jαδ)ADδβγδBC − i(Jγβ)CBδαδδAD, (7.3.17)

[H, QαA] = 0, [D, QαA] = − i
2 QαA, [K, QαA] = iSαA,

[H, Q̃αA] = 0, [D, Q̃αA] = − i
2 Q̃αA, [K, Q̃αA] = iS̃αA,

(7.3.18)

[H, SαA] = −iQαA, [D, SαA] = i
2 SαA, [K, SαA] = 0,

[H, S̃αA] = −iQ̃αA, [D, S̃αA] = i
2 S̃αA, [K, S̃αA] = 0,

(7.3.19)

{QαA, Q̃βB} = 2HδαβδAB,

{SαA, S̃βB} = 2KδαβδAB,

{QαA, S̃βB} = −2DδαβδAB − 2(Jαβ)AB,

{Q̃αA, SβB} = −2DδαβδAB − 2(J†
αβ)AB, (7.3.20)

[(Jαβ)AB, QγC] = iQαAδβγδBC, [(Jαβ)AB, Sγ,C] = iSαAδβγδBC,

[(Jαβ)AB, Q̃γC] = −iQ̃αAδβγδBC, [(Jαβ)AB, S̃γ,C] = −iS̃αAδβγδBC. (7.3.21)

1One needs to pick up constant shifts as a quantum effect.
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The Hamiltonian H, the dilatation generator D and the conformal boost gener-
ator form the one-dimensional conformal algebra so(1, 2) = sl(2, R) = su(1, 1). As
each of the supercharges QαA and Q̃αA = −(QαA)† contain six real components,
there exist twelve supercharges. They are the square roots of the Hamiltonian H.
In addition, there are as many superconformal charges SαA and S̃αA, which are
the square roots of the conformal boost generator K. The anti-commutators of the
fermionic charges generate an extra bosonic R-symmetry generators (Jαβ)AB. They
form the u(6) algebra (7.3.17). Thus the action (7.3.1) describes the SU(1, 1|6) in-
variant N = 12 superconformal mechanics. In fact this belongs to the list of the
simple supergroup for superconformal quantum mechanics, which we have shown
in Table 3.2.

Following the AdS2/CFT1 correspondence, we expect that the superconformal
quantum mechanical models (6.1.13) and (7.1.17) may be related to AdS2 × T2

solutions, the so-called magnetic brane solutions [288, 289]. It may be interesting
to check those correspondences.
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Chapter 8

Curved Branes and Topological
Twisting

In this chapter we will investigate the topological twisting and its relevant ap-
plication as the world-volume description of curved branes in string theory and
M-theory, which was firstly pointed out in [28]. In section 8.1 we will discuss
various topological twisting procedures. In section 8.2 we will explain that the
topologically twisted theories may yield the world-volume theories of the curved
branes.

8.1 Topological twisting

Topological twisting is a modification of the Euclidean rotational group of a su-
persymmetric theory through an embedding into a global symmetry of the theory.
The resulting theory will be topological if the twisted supersymmetry generators
include at least one space-time scalar. Equivalently one can regard the twisting
procedure as a gauging of an internal symmetry group in which a global sym-
metry is promoted to a space-time symmetry. In many cases, gauging can be
performed by coupling of the internal symmetry current to the spin connection of
the underlying manifold to the Lagrangian. We will give many examples of the
topological twisting in the following.

8.1.1 d = 4, N = 2 SYM theories

Let us consider topological twisting of d = 4, N = 2 super Yang-Mills (SYM)
theories [290]. We take M4 = R4 whose rotational symmetry group is Spin(4)E

∼=
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SU(2)l × SU(2)r. The global symmetry of the theory is U(2)R ' SU(2) ×U(1)
R-symmetry. The field content is

• complex scalar field φ

• 2 complex fermionic fields λi
α, λα̇i

• gauge field Aαα̇

where α are indices of the fundamental representation of SU(2)l and α̇ are indices
of the fundamental representation of SU(2)r. i denotes the fundamental represen-
tation of SU(2)R. These indices are raised and lowered with the antisymmetric
tensor εαβ, εα̇β̇, εij such that ε12 = ε12 = 1. All fields are the adjoint representation
of compact group G. The scaling dimensions are

[φ] = 1, [ψ] = [λ] =
3
2

, [A] = 1, [ε] = −1
2

(8.1.1)

where ε is a supersymmetry parameter.
The supersymmetry transformations are

δAµ = −iλα̇
i σµαα̇εαi + iεα̇

i σµαα̇λαi, (8.1.2)

δλi
α = σ

µν
αβ εβiFµν + iεi

α[φ, φ] + i
√

2σ
µ
αα̇Dµφεijεα̇

j , (8.1.3)

δλα̇i = σ
µν

α̇β̇
ε

β̇
i Fµν − iεα̇i[φ, φ] + i

√
2Dµσ

µ
α̇αφεijε

αj, (8.1.4)

δφ =
√

2εαiλαi, (8.1.5)

δφ =
√

2εα̇
i λ

i
α̇ (8.1.6)

where εi
α and εα̇i are supersymmetry parameters that transform as (2, 1, 2) and

(1, 2, 2) respectively.
The Lorentzian action is given by

L =
1
e2

∫
M

d4xTr

(
−1

4
FµνFµν − iλα̇

i σ
µν
αα̇ Dµλαi − DµφDµφ

− 1
2
[φ, φ]2 − 1√

2
ϕεij[λαi, λ

j
α] +

i√
2

φεij[λα̇i, λ
α̇
i ]

)
. (8.1.7)

Here Tr is an invariant quadratic form on the Lie algebra.
The classical N = 2 theory has a U(2) symmetry acting on the two fermion

(λ, λ). The center U(1)R ⊂ U(2) is anomalous. On a given 4-manifold M4 and for

189



a given instanton numberk, the total violation ∆U of the U(1)R charge is given by
the dimension of the Yang-Mills instanton moduli space [290]. For SU(2) this is

∆U = dimM = 8k− 3
2
(χ + σ) (8.1.8)

where χ and σ are the Euler characteristic and signature of M4
1. This was first

discussed in [290].
The fields and supersymmetry parameters transform under SO(4)E ×U(2)R '

SU(2)l × SU(2)r × SU(2)R ×U(1)R as

φ :(1, 1, 1)2 ⊕ (1, 1, 1)−2 (8.1.9)

ψ, λ :(2, 1, 2)1 ⊕ (1, 2, 2)−1 (8.1.10)

Aµ :(2, 2, 1)0 (8.1.11)

ε :(2, 1, 2)1 ⊕ (1, 2, 2)−1. (8.1.12)

To perform the topological twisting, we leave SU(2)l undisturbed and pick a ho-
momorphism

π : SU(2)r → SU(2)R, (8.1.13)

and replace SU(2)r by a diagonal subgroup SU(2)′r = (1 + π)(SU(2)) ⊂ SU(2)r ×
SU(2)R. Then under the new rotational symmetry SO(4)′E ' SU(2)l × SU(2)′r, the
fields and supersymmetry parameters transform as

φ →(1, 1)2 ⊕ (1, 1)−2 (8.1.14)

ψ, λ →(2, 2)1 ⊕ (1, 1)−1 ⊕ (1, 3)−1 (8.1.15)

Aµ →(2, 2)0 (8.1.16)

ε →(2, 2)1 ⊕ (1, 1)−1 ⊕ (1, 3)−1. (8.1.17)

Thus the bosonic field content is

• complex scalar field φ: (1, 1)2 ⊕ (1, 1)−2

• gauge field Aµ: (2, 2)0

and the fermionic field content is

• scalar field η: (1, 1)−1

• 1-form ψµ: (2, 2)1

• 2-form (self-dual antisymmetric 2-tensor) χ+
µν: (1, 3)−1.

1The quantity χ+σ
2 is always integer.
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From (8.1.17), one can see that there exists one BRST charge.
In d = 4, N = 2 SYM theories, the possible anomalies are related to the global

SU(2) anomaly [291], which only appear when the corresponding moduli space
is not orientable [290]. In Donaldson-Witten theory the moduli space is given by
anti-self-dual connections, which is orientable [292]. Thus the twisted theory is
anomaly free.

The twisted Lagrangian is

L = Tr

(
1
4

FαβFαβ − 1
2

DαφDασ− iηDαψα + iDαψβ · χαβ

− i
8

φ[χαβ, χαβ]− i
2

σ[ψα, ψα]− i
2

φ[η, η]− 1
8
[φ, σ]2

)
. (8.1.18)

For the closure of supersymmetry algebra, it it necessary to introduce an aux-
iliary field Tij = Tji. It has scaling dimension [T] = 2 and transform (1, 1, 3)0

under SU(2)l × SU(2)r × SU(2)R ×U(1)R. After twisting they transform (1, 3)0

and identified with a 2-form.
Twisted N = 2 supersymmetric gauge theories have an off-shell formulation

such that the action can be expressed as a Q-exact expression up to a θ-term2,
where Q is the BRST charge.

8.1.2 d = 4, N = 2 SCFT on C× Σ

We now consider a four-dimensional N = 2 superconformal field theory (SCFT)
on M4 = C×Σ whose holonomy group is reduced to U(1)C×U(1)Σ, where C and
Σ are Riemann surfaces. This has been discussed in [293]. The global symmetry of
the theory is SU(2)R ×U(1)R R-symmetry and U(1)B symmetry. The field content
is

• complex scalar field in the adjoint representation: ϕ, ϕ

• 2 complex scalar fields in representation R, R∨ of G (squarks): q, q̃

• gauge field Aµ

• 2 gauginos: ψ, λ

• 2 complex left-handed quarks in representation R∨, R of G: ψq, ψq̃

2 Because of the chiral anomaly inherent to the R-symmetry of N = 2 SYM theories, observables
are independent of θ-term up to rescaling. Thus one can ignore θ-term.
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U(1)′R
ϕ 0
ϕ 0
ψ +
λ −
q +
q̃ −

ψq 0
ψq̃ 0

Table 8.1: The U(1)′R ⊂ SU(2)R charge assignments for d = 4, N = 2 SCFT field
content.

• 2 complex right-handed quarks in representation R, R∨ of G: ψq, ψq̃.

Before topological twisting, fields transform under U(1)C ×U(1)Σ × SU(2)R ×
U(1)R ×U(1)B as

ϕ, ϕ : 10020 ⊕ 100−20 (8.1.19)

q, q̃ : 2000− ⊕ 2000+ (8.1.20)

Aµ : 12000 ⊕ 1−2000 ⊕ 10200 ⊕ 10−200 (8.1.21)

ψ, λ : 2+−+0 ⊕ 2−++0 (8.1.22)

ψ, λ : 2−−−0 ⊕ 2++−0 (8.1.23)

ψq, ψq̃ : 1+−−− ⊕ 1+−−+ ⊕ 1−+−− ⊕ 1−+−+ (8.1.24)

ψq, ψq̃ : 1−−++ ⊕ 1++++ ⊕ 1−−+− ⊕ 1+++− (8.1.25)

. To perform the topological twisting, we pick a homomorphism π : U(1)E →
SU(2)R×U(1)R×U(1)B and replace U(1)E by U(1)′E = (1 + π)(U(1)E) ⊂ U(1)E×
SU(2)R ×U(1)R ×U(1)B.

To pick a homomorphism, we consider the maximal torus U(1)′R of SU(2)R

SU(2)R ⊃ U(1)′R. (8.1.26)

We assign U(1)′R charge for each field as in Table 8.13. Then all of the U(1) charges
are summarized in Table 8.2. In Table 8.2, the subscripts ± indicate the upper and
lower components of spinors. If Σ is flat, we should twist only U(1)C and there

3Our assignment is different from that in [293] where the both charges for q, q̃ are −.
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U(1)C U(1)Σ U(1)′R U(1)R U(1)B section

ϕ 0 0 0 2 0 OC ⊗OΣ

ϕ 0 0 0 −2 0 OC ⊗OΣ

ψ+ + − + + 0 K
1
2
C ⊗ K−

1
2

Σ

ψ− − + + + 0 K−
1
2

C ⊗ K
1
2
Σ

λ+ + − − + 0 K
1
2
C ⊗ K−

1
2

Σ

λ− − + − + 0 K−
1
2

C ⊗ K
1
2
Σ

ψ+ − − − − 0 K−
1
2

C ⊗ K−
1
2

Σ

ψ− + + − − 0 K
1
2 ⊗ K

1
2
Σ

λ+ − − + − 0 K−
1
2

C ⊗ K−
1
2

Σ

λ− + + + − 0 K
1
2
C ⊗ K

1
2
Σ

q 0 0 + 0 − OC ⊗OΣ

q̃ 0 0 − 0 + OC ⊗OΣ

ψq+ + − 0 − − K
1
2
C ⊗ K−

1
2

Σ

ψq− − + 0 − − K−
1
2

C ⊗ K
1
2
Σ

ψq̃+ + − 0 − + K
1
2
C ⊗ K−

1
2

Σ

ψq̃− − + 0 − + K−
1
2

C ⊗ K
1
2
Σ

ψq+ − − 0 + + K−
1
2

C ⊗ K−
1
2

Σ

ψq− + + 0 + + K
1
2
C ⊗ K

1
2
Σ

ψq̃+ − − 0 + − K−
1
2

C ⊗ K−
1
2

Σ

ψq̃− + + 0 + − K
1
2
C ⊗ K

1
2
Σ

Table 8.2: U(1)R charge assignments for d = 4, N = 2 SCFT field content. The
subscripts ± indicate the upper and lower components of spinors. We denote the
trivial bundle as O and the canonical bundle as K.
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A-twist B-twist
fields U(1)′C U(1)′Σ U(1)′C U(1)Σ

ϕ 0 0 2 0
ϕ 0 0 −2 0

ψ+ 2 − 2 −
ψ− 0 + 0 +
λ+ 0 − 2 −
λ− −2 + 0 +
ψ+ −2 − −2 −
ψ− 0 + 0 +
λ+ 0 − −2 −
λ− 2 + 0 +
q + 0 0 0
q̃ − 0 0 0

ψq+ + − 0 −
ψq− − + −2 +
ψq̃+ + − 0 −
ψq̃− − + 2 +
ψq+ − − 0 −
ψq− + + 2 +
ψq̃+ − − 0 −
ψq̃− + + 2 +

Table 8.3: The spin of the fields for A-twisted and B-twisted d = 4, N = 2 SCFT
on C× Σ.

are two types of twisting

A-twist :U(1)C → U(1)′R (8.1.27)

B-twist :U(2)C → U(1)R. (8.1.28)

The field content of A-twist and B-twist listed in Table 8.3. If both C and Σ are
curved, we should also twist U(1)Σ. Although there are many possibilities for
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AA-twist BA-twist BB-twist BA+-twist
fields U(1)′C U(1)′Σ U(1)′C U(1)Σ U(1)′C U(1)′Σ U(1)′C U(1)′Σ

ϕ 0 0 2 0 2 2 2 0
ϕ 0 0 −2 0 −2 −2 −2 0

ψ+ 2 0 2 0 2 0 2 0
ψ− 0 2 0 2 0 2 0 2
λ+ 0 −2 2 −2 2 0 2 −2
λ− −2 0 0 0 0 2 0 0
ψ+ −2 −2 −2 −2 −2 −2 −2 −2
ψ− 0 0 0 0 0 0 0 0
λ+ 0 0 −2 0 −2 −2 −2 0
λ− 2 2 0 2 0 0 0 2
q − − 0 − 0 0 0 0
q̃ − − 0 − 0 0 0 0

ψq+ + − 0 − 0 −2 0 −2
ψq− − + −2 + −2 0 −2 0
ψq̃+ + − 0 − 0 −2 0 0
ψq̃− − + −2 + −2 0 −2 2
ψq+ − − 0 − 0 0 0 0

ψq− + + 2 + 2 2 2 2

ψq̃+ − − 0 − 0 0 0 −2

ψq̃− + + 2 + 2 2 2 0

Table 8.4: The spin of the fields for AA, BA, BB-twisted 4d N = 2 SCFT on C× Σ.

twisting, we consider the following cases

AA-twist : U(1)C → U(1)′R, U(1)Σ → U(1)′R (8.1.29)

BA-twist : U(1)C → U(1)R, U(1)Σ → U(1)′R (8.1.30)

BB-twist : U(1)C → U(1)R, U(1)Σ → U(1)R (8.1.31)

BA+-twist : U(1)C → U(1)R, U(1)Σ → U(1)′R ×U(1)B. (8.1.32)

The results of twisting are given in Table 8.4.
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A-twist

After twisting, the bosonic scalar fields ϕ, ϕ, q, q̃ remain scalars and the left-handed
quarks ψq, ψq̃ remain sections of

K
1
2
C ⊗ K−

1
2

Σ + K−
1
2

C ⊗ K
1
2
Σ (8.1.33)

and the right-handed quarks ψq, ψq̃ are sections of

K−
1
2

C ⊗ K−
1
2

Σ + K
1
2
C ⊗ K

1
2
Σ. (8.1.34)

On the other hand squarks q, q̃ become sections of K
1
2
C and K−

1
2

C . The gauginos ψ

reduces to sections of

KC ⊗ K−
1
2

Σ +OC ⊗ K
1
2
Σ (8.1.35)

and λ become sections of

OC ⊗ K−
1
2

Σ + K−1
C ⊗ K

1
2
Σ. (8.1.36)

Their right-handed partners are sections of

K−1
C ⊗ K−

1
2

Σ +OC ⊗ K
1
2
Σ (8.1.37)

OC ⊗ K−
1
2

Σ + KC ⊗ K
1
2
Σ. (8.1.38)

In the original theory, we have eight supercharges. Since the transformations of
supercharges under R-symmetry are identical to those of gauginos and only scalars
on C survive in the twisted theory, (8.1.35)-(8.1.38) shows that there remains four
supercharges

OC ⊗ K
1
2
Σ, OC ⊗ K−

1
2

Σ ,

OC ⊗ K
1
2
Σ, OC ⊗ K−

1
2

Σ . (8.1.39)

Two of them transform as spinors of positive chirality on Σ and the other two
transform as those of negative chirality on Σ. Therefore if one takes into account
the dimensional reduction to Σ, the theory on Σ has (2, 2) supersymmetry.

B-twist

After the twisting the bosonic scalars ϕ becomes section of KC and squarks q, q̃ are
unchanged. The quarks ψq and ψq̃ become sections of

OC ⊗ K−
1
2

Σ + K−1
C ⊗ K

1
2
Σ (8.1.40)

OC ⊗ K−
1
2

Σ + KC ⊗ K
1
2
Σ. (8.1.41)
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The gauginos ψ and λ are sections of

KC ⊗ K−
1
2

Σ +OC ⊗ K
1
2
Σ (8.1.42)

KC ⊗ K−
1
2

Σ +OC ⊗ K
1
2
Σ (8.1.43)

and ψ̃ and λ̃ are sections of

K−1
C ⊗ K−

1
2

Σ +OC ⊗ K
1
2
Σ (8.1.44)

K−1
C ⊗ K−

1
2

Σ +OC ⊗ K
1
2
Σ. (8.1.45)

From (8.1.42)-(8.1.45), we see that there are four supercharges

OC ⊗ K
1
2
Σ, OC ⊗ K

1
2
Σ (8.1.46)

OC ⊗ K
1
2
Σ, OC ⊗ K

1
2
Σ, (8.1.47)

which transform as spinors of the positive chirality on Σ. Thus the theory on Σ
can have (4, 0) supersymmetry.

AA-twist

After twisting, we have

ϕ ∈ Γ(OC ⊗OΣ) (8.1.48)

q ∈ Γ(K
1
2
C ⊗ K−

1
2

Σ ), q̃ ∈ Γ(K−
1
2

C ⊗ K−
1
2

Σ ) (8.1.49)

ψq ∈ Γ(K
1
2
C ⊗ K−

1
2

Σ + K−
1
2

C ⊗ K
1
2
Σ), ψq̃ ∈ (K

1
2
C ⊗ K−

1
2

Σ + K−
1
2

C ⊗ K
1
2
Σ) (8.1.50)

ψq ∈ Γ(K−
1
2

C ⊗ K−
1
2

Σ + K
1
2
C ⊗ K

1
2
Σ), ψq̃ ∈ Γ(K−

1
2

C ⊗ K−
1
2

Σ + K
1
2
C ⊗ K

1
2
Σ) (8.1.51)

ψ ∈ Γ(KC ⊗OΣ +OC ⊗ KΣ), λ ∈ Γ(OC ⊗ K−1
Σ + K−1

C ⊗OΣ) (8.1.52)

ψ ∈ Γ(K−1
C ⊗ K−1

Σ +OC ⊗OΣ), λ ∈ Γ(OC ⊗OΣ + KC ⊗ KΣ). (8.1.53)

In other word, the fields transform under U(1)′C ×U(1)′Σ as

ϕ, ϕ → 100 ⊕ 100 (8.1.54)

ψ, λ → 120 ⊕ 102 ⊕ 10−2 ⊕ 1−20 (8.1.55)

ψ, λ → 1−2−2 ⊕ 100 ⊕ 100 ⊕ 122 (8.1.56)

q, q̃ → 1++ ⊕ 1−− (8.1.57)

ψq, ψq̃ → 1+− ⊕ 1−+ ⊕ 1+− ⊕ 1−+ (8.1.58)

ψq, ψq̃ → 1−− ⊕ 1++ ⊕ 1−− ⊕ 1++. (8.1.59)

Therefore the bosonic field content is
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• 2 scalar fields φ, σ: 100 ⊕ 100

• gauge fields Az, Aw: 120 ⊕ 1−20 ⊕ 102 ⊕ 10−2

• spinor fields q̃, q̃: 1++ ⊕ 1−−

and the fermionic field content is

• scalar field η: 100

• 1-forms ψz, ψw: 120 ⊕ 102 ⊕ 1−02 ⊕ 1−20

• 2-form χ: 1−2−2 ⊕ 122

• spinor fields ψq, ψq̃, ψq, ψq̃: 2 (1+− ⊕ 1−+ ⊕ 1−− ⊕ 1++)

Focusing on the vector multiplet, one can check that the field content is same as
that of N = 2 twisted Donaldson-Witten theory as expected.

In the twisted theory we have two supercharges. Both of them are right-handed
in 4-dimensions. Noting the spin of U(1)C ×U(1)Σ for ψ−, λ+

ψ− : (+, +) AA-twist−−−−−→ (0, 0) (8.1.60)

λ+ : (−,−) AA-twist−−−−−→ (0, 0), (8.1.61)

one can see that the two supercharges have the opposite chiralities on both C and
Σ.

BA-twist

After twisting we obtain

ϕ ∈ Γ(KC ⊗OΣ) (8.1.62)

q ∈ Γ(OC ⊗ K−1
Σ ), q̃ ∈ Γ(OC ⊗ K−1

Σ ) (8.1.63)

ψq, ψq̃ ∈ Γ(OC ⊗ K−
1
2

Σ + K−1
C ⊗ K

1
2
Σ) (8.1.64)

ψq, ψq̃ ∈ Γ(OC ⊗ K−
1
2

Σ + KC ⊗ K
1
2
Σ) (8.1.65)

ψ ∈ Γ(KC ⊗OΣ +OC ⊗ KΣ), λ ∈ Γ(KC ⊗ K−1
Σ +OC ⊗OΣ) (8.1.66)

ψ ∈ Γ(K−1
C ⊗ K−1

Σ +OC ⊗OΣ), λ ∈ Γ(K−1
C ⊗OΣ +OC ⊗ KΣ). (8.1.67)

Therefore there exists two supercharges. One is left-handed and the other is right-
handed in 4-dimensions. From the fact

λ− : (−, +) → (0, 0) (8.1.68)

ψ− : (+, +) → (0, 0), (8.1.69)
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it turns out that two supercharges have the same chirality on Σ and the opposite
chirality on C.

8.1.3 d = 4, N = 4 SYM theories

Let us start with d = 10, N = 1 SYM theory. d = 4, N = 4 SYM theory is most
easily derived by dimensional reduction from ten dimensions 4.

The field content of d = 10, N = 1 SYM theory is

• gauge field A

• 16 fermionic fields (gauginos) Ψ

The gauge field A is a connection on a G-bundle E. The fermionic field Ψ is
a positive chirality spinor field with values in the adjoint representation of G,
that is a section of S+ ⊗ ad(E). We should note that the ten-dimensional spin
representations

16s and 16c are

real and dual to each other : Lorentz signature

complex conjugate : Euclidean signature
. (8.1.70)

The gaugino Ψ is a ten-dimensional positive chirality spinor field

Γ11Ψ = Ψ (8.1.71)

where

Γ11 := iΓ12···10. (8.1.72)

The conjugate is given by

Ψ := ΨTC (8.1.73)

where C is a ten-dimensional charge conjugation matrix satisfying5

CT = C, CΓMC−1 = ΓM. (8.1.75)

4 From Nahm’s theorem [12], ten-dimensional is the maximum possible dimension for SYM
theory.

5Although there is another definition given by

CT = −C, CΓMC−1 = −ΓM (8.1.74)

which corresponds to C+, we choose C− in (8.1.74).
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physics convention mathmatics convention

D = d− iA′ (A′:Hermitian) D = d + A (A:anti-Hermitian),
F = i(D)2 = dA′ − iA′ ∧ A′ F = D2 = dA + A ∧ A

Table 8.5: The physical and mathematical definitions of connection and field
strength. The relations are given by −iF′ = F,−iA′ = A. Although the anti-
Hermitian fields A are unnatural for G = U(1), they may avoid unnatural factors
i.

The Lagrangian of Euclidean d = 10, N = 1 SYM theory is given by

L =
1
e2 Tr

(
1
4

FMN FMN +
1
2

ΨΓMDMΨ
)

(8.1.76)

where M, N, · · · = 1, 2, · · · , 10 are indices of ten-dimensional space-time and we
define6

DMΨ := ∂MΨ− i[AM, Ψ], (8.1.77)

FMN := ∂M AN − ∂N AM − i[AM, AN]. (8.1.78)

The 16 supersymmetries are

δAM = ΨΓMε = −εΓMΨ (8.1.79)

δΨ =
1
2

FMNΓMNε. (8.1.80)

To consider the dimensional reduction of d = 10, N = 1 SYM theories to four
dimensions, we decompose the gamma matrices under SO(10) ⊃ SO(4)E × SO(6)
as Γµ = γµ ⊗ Γ̂7

ΓI = I4 ⊗ Γ̂I
(8.1.81)

where µ = 1, 2, 3, 4 and I = 5, 6, 7, 8, 9, 10. Γ̂I are six-dimensional gamma matrices
satisfying

{Γ̂I , Γ̂J} = 2δI J , (Γ̂I)† = ΓI (8.1.82)

Γ̂7 = iΓ̂12···6 =

(
I4 0
0 −I4

)
(8.1.83)

6 This is preferred convention in physics (see Table 8.5).
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and γµ are four-dimensional gamma matrices

{γµ, γν} = 2δµν, (γµ)† = γµ, γ5 := γ1···4. (8.1.84)

The charge conjugation matrix C and the chiral matrix are decomposed as

C = C⊗ Ĉ, (8.1.85)

Γ11 = γ5 ⊗ Γ̂7 (8.1.86)

where C is the four-dimensional charge conjugation matrix satisfying 7

CT = −C, CγµC−1 = (γµ)T, Cγ5C−1 = (γ5)T (8.1.87)

and Ĉ is the six-dimensional charge conjugation matrix

ĈT = −Ĉ, ĈΓ̂IĈ−1 = (Γ̂I)T, CΓ̂7C−1 = −(Γ̂7)T (8.1.88)

The global symmetry of the theory is SU(4)R R-symmetry. The field content is

• 6 real scalar fields φI(I = 5, 6, · · · , 10)

• 16 fermionic fields (gauginos) ψA(A = 1, 2, 3, 4)

• gauge field Aµ

where indices I, J, · · · and A, B, · · · are 6 and 4 of SU(4)R R-symmetry.
Performing the dimensional reduction of (8.1.76), we obtain the Lagrangian of

d = 4, N = 4 SYM theories

L =
1
e2 Tr

(
1
4

FµνFµν +
1
2

DµφI DµφI − 1
4
[φI , φI ][φI , φI ] +

1
2

ψΓµDµψ− i
2

ψΓI [φI , ψ]

)
(8.1.89)

where φI := AI(5 ≤ I ≤ 10) and µ, ν = 1, 2, 3, 4. If G is simple and if we require
that Lagrangian is quadratic in derivatives, the above Lagrangian is unique except
for the change of parameter e. However, we may have θ-term that measures the
topology of the G-bundle E

Lθ =
iθ

16π2 Tr(F ∧ F) =
iθ

16π2 Tr(∗FµνFµν), (8.1.90)

7Here we choose C as C−.
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which is θ times the second Chern class or instanton number of the bundle8. The
parameter e and θ combine into a complex parameter

τ =
θ

2π
+

4πi
e2 . (8.1.91)

The Lagrangian (8.1.89) is invariant under 16 supersymmetries

δφI = ψΓIε = −εΓIψ, (8.1.92)

δAµ = ψΓµε = −εΓµψ, (8.1.93)

δψ =
1
2

FµνFµνε + DµΦIΓµΓIε− i
2
[φI , φJ ]ΓI Jε. (8.1.94)

Before topological twisting, fields transform under SO(4)E×SU(4)R ' SU(2)l×
SU(2)r × SU(4)R as

φ :(1, 1, 6) (8.1.95)

ψ :(2, 1, 4)⊕ (1, 2, 4) (8.1.96)

Aµ :(2, 2, 1). (8.1.97)

To perform the fully topological twisting, we pick a homomorphism π : SO(4)E →
SU(4)R and replace SO(4)E by SO(4)′E = (1 + π)(SO(4)E) ⊂ SO(4)E × SO(6)R.

The choice of π amounts to embedding SO(4)E ' SU(2)l × SU(2)r in SU(4)R

as

π : SU(2)l × SU(2)r →
(

SU(2)l 0
0 SU(2)r

)
, (8.1.98)

which leads us to consider the decomposition

SU(4) ⊃ SU(2)× SU(2)×U(1). (8.1.99)

Under (8.1.99), we still have several possible embedding determined by telling how
the 4 of SU(4)R transforms under SU(2)l × SU(2)r. Up to an exchange of left and
right, there are three inequivalent transformations of 4 of SU(4)R under (8.1.99).

(i) GL twist 4 = (2, 1)1 ⊕ (1, 2)−1

(ii) VW twist 4 = (1, 2)1 ⊕ (1, 2)−1

(iii) DW twist 4 = (1, 2)0 ⊕ (1, 1)1 ⊕ (1, 1)−1

(8.1.100)

8In N = 4 SYM theories θ-terms are observable because there is no chiral anomaly and we
cannot shift them. This situation is different from N = 2 SYM.
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Geometric Langlands (GL) twist

GL twist has the branching

4 = (2, 1)1 ⊕ (1, 2)−1

4 = (2, 1)−1 ⊕ (1, 2)1. (8.1.101)

1. fermionic fields

Noting that

(2, 1)0 × ((2, 1)−1 ⊕ (1, 2)1) = (1, 1)−1 ⊕ (3, 1)−1 ⊕ (2, 2)1 (8.1.102)

and

(1, 2)0 × ((2, 1)1 ⊕ (1, 2−1)) = (2, 2)1 ⊕ (1, 1)−1 ⊕ (1, 3)−1, (8.1.103)

one can see that the fermionic fields transform under SU(2)′l × SU(2)′r×U(1)
as

(1, 1)−1 ⊕ (3, 1)−1 ⊕ (2, 2)1 ⊕ (2, 2)1 ⊕ (1, 1)−1 ⊕ (1, 3)−1. (8.1.104)

Similarly one can obtain the transformations of supersymmetries. Thus, from
(8.1.104) we see that GL twist leads to two unbroken BRST charges which
have the same U(1) charge.

2. bosonic fields

The bosonic scalar field 6v of SO(6)R is produced by the product of SO(6)
spinor 8 = 4 + 4 as

8× 8 =(4 + 4)× (4 + 4)

=4× 4 + 4× 4 + 4× 4 + 4× 4

=([1] + [3]) + ([0] + [2]) + ([0] + [2]) + ([1] + [3])

=(6 + 10) + (1 + 15) + (1 + 15) + (6 + 10). (8.1.105)

Note that 6v is the antisymmetric product of 4

6v =(4 + 4)a

= (((2, 1)1 ⊕ (1, 2)−1)⊗ ((2, 1)1 ⊕ (1, 2)−1))a

= (((1, 1)2 ⊕ (1, 1)−2 ⊕ (2, 2)0)⊕ ((3, 1)2 ⊕ (2, 2)0 ⊕ (1, 3)−2))a

=(1, 1)2 ⊕ (1, 1)−2 ⊕ (2, 2)0. (8.1.106)

Thus the bosonic field content consists of
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• 2 scalar fields : (1, 1)2 ⊕ (1, 1)−2

• 1-form : (2, 2)0

• gauge field : (2, 2)0

and the fermionic field content is

• 2 scalar fields : (1, 1)−1 ⊕ (1, 1)−1

• 2 1-forms : (2, 2)1 ⊕ (2, 2)1

• 2 2-forms 9 : (3, 1)−1 ⊕ (1, 3)−1.

Under decomposition SO(10) ⊃ SO(4)E × SO(4)× SO(2), the decomposition
of the ten-dimensional gamma matrices is given by

Γµ = γµ ⊗ γ5 ⊗−σ3

Γµ+4 = I4 ⊗ γµ ⊗ I2

Γi+8 = I4 ⊗ γ5 ⊗ σi

(8.1.107)

where µ = 1, 2, 3, 4 and i = 1, 2. σi are Pauli matrices and γµ are four-dimensional
gamma matrices defined by (8.1.84). The charge conjugation matrix C is decom-
posed as

C = C⊗ C⊗ σ1 (8.1.108)

Under the decomposition (8.1.107), ten-dimensional chirality matrix is expressed
as

Γ11 = −
(

γ5 ⊗ γ5 ⊗ σ3

)
. (8.1.109)

1. bosonic fields

For the bosonic fields we redefine

Φµ := φ4+µ, (µ = 1, 2, 3, 4), (8.1.110)

A±µ :=
1√
2
(Aµ ± iΦµ), (8.1.111)

ϕ :=
1√
2
(φ9 + iφ10), ϕ :=

1√
2
(φ9 − iφ10). (8.1.112)

9Note that this is not self-dual.
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2. fermionic fields

Noting the fermionic field content of GL twist, one can decompose the 10-
dimensional fermionic field Ψ under the decomposition SO(10) ⊃ SO(4)E ×
SO(4)× SO(2) as 10

Ψpqα =
1√
2

(
ηαI4pq + ψµαγ

µ
pq +

1
2

χµναγ
µν
pq + ωµαγ

µ5
pq + ζαγ5

pq

)
C−1 (8.1.113)

where p, q and α are indices of SO(4)E, SO(4) and SO(2) respectively. ηα, ζα

are scalars (1, 1)− ⊕ (1, 1)− and ψµα, ωµα are 1-forms (2, 2)+ ⊕ (2, 2)+ and
χµν = −χνµ is a 2-form (3, 1)− ⊕ (1, 3)−.

From the decompositions (8.1.107) and the chirality condition (8.1.71) for the
femionic fields, we see that

σ3η = η, σ3ψµ = ψµ, (8.1.114)

σ3χµν = −χµν, σ3ωµ = ωµ, (8.1.115)

σ3ζ = −ζ (8.1.116)

Therefore ψµ, ωµ have U(1) ghost charge +1 and η, χµν, ζ have U(1) charge
−1. This is consistent to the results of the fermionic field content for GL
twist.

3. supersymmetries

For the sypersymmetries we can also expand as

εpqα =
1√
2

(
εαI4pq + εµαγ

µ
pq +

1
2

εµναγ
µν
pq + ε̃µαγµ5 + ε̃αγ5

pq

)
C−1. (8.1.117)

From the decompositions (8.1.107) and the chirality condition for the super-
symmetries, we see that

σ3ε = −ε, σ3ε̃ = −ε̃ (8.1.118)

Therefore both BRST charges ε and ε̃ have U(1) charge −1 as expected.

10The inverse of charge conjugation matrices C−1 is included just because of the convenience of
the calculation.
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The BRST transformation is given by

δAµ = −2(εωµ)− 2(ε̃ψµ), (8.1.119)

δΦµ = −2i(εψµ)− 2i(ε̃ωµ), (8.1.120)

δϕ = 2iεσ+ζ + 2iε̃σ+η, (8.1.121)

δϕ̃ = 2iεσ−ζ + 2iε̃σ−η, (8.1.122)

δη = iDµΦµε̃− 1
2
[φi, φj](εijε), (8.1.123)

δψµ = −iDµφi(σiε)− i[Φµ, φi](σiε̃), (8.1.124)

δχµν = −Fµνε + εµνρσFρσε̃ + 2iεµνρσDρΦσε + 2iDµΦνε̃

+ i[Φµ, Φν]ε− iεµνρσ[Φρ, Φσ]ε̃, (8.1.125)

δωµ = −iDµφi(σiε̃) + i[Φµ, φi](σiε), (8.1.126)

δζ = −iDµΦµε− 1
2
(εijε̃)[φi, φj] (8.1.127)

where we introduce

σ+ :=
1√
2
(σ1 + iσ2), (8.1.128)

σ− :=
1√
2
(σ1 − iσ2). (8.1.129)

Vafa-Witten (VW) twist

VW twist corresponds to the following branching:

4 = (1, 2)1 ⊕ (1, 2)−1

4 = (1, 2)−1 ⊕ (1, 2)1. (8.1.130)

1. fermionic fields

Noting that

(2, 1)0 × ((1, 2)−1 ⊕ (1, 2)1) = (2, 2)−1 ⊕ (2, 2)1 (8.1.131)

and

(1, 2)0 × ((1, 2)1 ⊕ (1, 2)−1) = (1, 1)1 ⊕ (1, 3)1 ⊕ (1, 1)−1 ⊕ (1, 3)−1, (8.1.132)

it turns out that the fermionic fields transform under SU(2)′l × SU(2)′r×U(1)
as

(2, 2)−1 ⊕ (2, 2)1 ⊕ (1, 1)1 ⊕ (1, 3)1 ⊕ (1, 1)−1 ⊕ (1, 3)−1. (8.1.133)

Therefore VW twist gives rise to two unbroken BRST charges which have the
opposite U(1) charge.
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2. bosonic fields

The bosonic scalar field 6v of SO(6)R is given by the antisymmetric product
of 4

6v =(4× 4)a

= (((1, 2)1 ⊕ (1, 2)−1)× ((1, 2)1 ⊕ (1, 2)−1))a

= (((1, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)2 ⊕ (1, 1)−2)⊕ ((1, 3)2 ⊕ (1, 1)0 ⊕ (1, 3)0 ⊕ (1, 3)−2))a

=(1, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)2 ⊕ (1, 1)−2. (8.1.134)

Thus the bosonic field content consists of

• 3 scalar fields : (1, 1)−2 ⊕ (1, 1)0 ⊕ (1, 1)2

• 2-form : (1, 3)0

• gauge field : (2, 2)0

and the fermionic one is

• 2 scalar fields : (1, 1)+ ⊕ (1, 1)−

• 1-form : (2, 2)− ⊕ (2, 2)+

• 2 2-from : (1, 3)− ⊕ (1, 3)+.

Donaldson-Witten (DW) twist

DW twist has the branching

4 = (1, 2)0 ⊕ (1, 1)1 ⊕ (1, 1)−1

4 = (1, 2)0 ⊕ (1, 1)−1 ⊕ (1, 1)1. (8.1.135)

1. fermionic fields

Noticing that

(2, 1)0 × ((1, 2)0 ⊕ (1, 1)−1 ⊕ (1, 1)1) = (2, 2)0 ⊕ (2, 1)−1 ⊕ (2, 1)1 (8.1.136)

and

(1, 2)0 × ((1, 2)0 ⊕ (1, 1)1 ⊕ (1, 1)−1) = (1, 1)0 ⊕ (1, 3)0 ⊕ (1, 2)1 ⊕ (1, 2)−1,
(8.1.137)

one can see that fermionic fields transform under SU(2)′l × SU(2)′r ×U(1) as

(2, 2)0 ⊕ (2, 1)−1 ⊕ (2, 1)1 ⊕ (1, 1)0 ⊕ (2, 3)0 ⊕ (1, 2)1 ⊕ (1, 2)−1, (8.1.138)

which implies that DW twist allows one unbroken BRST charge.
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2. bosonic fields

The bosonic scalar field 6v of SO(6)R is given by the antisymmetric product
of 4

6v =(4× 4)a

= (((1, 2)0 ⊕ (1, 1)1 ⊕ (1, 1)−1)× ((1, 2)0 ⊕ (1, 1)1 ⊕ (1, 1)−1))a

= ((2(1, 1)0 ⊕ (1, 2)1 ⊕ (1, 2)−1)⊕ ((1, 1)0 ⊕ (1, 3)0 ⊕ (1, 2)1 ⊕ (1, 2)−1 ⊕ (1, 1)2 ⊕ (1, 1)−2))a

=2(1, 1)0 ⊕ (1, 2)1 ⊕ (1, 2)−1. (8.1.139)

Thus the bosonic field content consists of

• 2 scalar fields : (1, 1)0 ⊕ (1, 1)0

• 2 spinor fields : (1, 2)1 ⊕ (1, 2)−1

• gauge field : (2, 2)0

8.1.4 d = 4, N = 4 SYM theories on C× Σ

Now we discuss a d = 4, N = 4 SYM theory on M4 = C × Σ. We consider the
twisting by using the embedding

U(1)C → U(1)R. (8.1.140)

The assignment of U(1) charges are given in Table 8.6 where +,− signs denote
upper and lower components of spinors and right-handed fermions indicated with
bars. Under U(1)′C ×U(1)′Σ × SU(2)2 the fields transform as

φ → 100 ⊕ 300 ⊕ 120 ⊕ 1−20 (8.1.141)

ψ → 22− ⊕ 20− ⊕ 20+ ⊕ 2−2+ (8.1.142)

ψ → 20− ⊕ 2−2− ⊕ 22+ ⊕ 20+ (8.1.143)

Aµ → 120 ⊕ 102 ⊕ 10−2. (8.1.144)

The bosonic field content is

• 2 complex scalar fields φ, φ: 100 ⊕ 300

• 1-form Φw, Φw : 120 ⊕ 1−20

• gauge field Az, Az, Aw, Aw : 120 ⊕ 1−20 ⊕ 102 ⊕ 10−2

and the fermionic field content is
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U(1)C U(1)Σ U(1)R U(1)′C U(1)′Σ
φ1 0 0 0 0 0
φ2 0 0 0 0 0
φ3 0 0 0 0 0
φ4 0 0 0 0 0
φ5 0 0 0 2 2
φ6 0 0 0 −2 −2
ψ1

+ + − + 2 −
ψ2

+ + − + 2 −
ψ3

+ + − + 0 −
ψ4

+ + − + 0 −
ψ1
− − + + 0 +

ψ2
− − + + 0 +

ψ3
− − + − −2 +

ψ4
− − + − −2 +

ψ
1
+ − − − 0 −

ψ
2
+ − − − 0 −

ψ
3
+ − − − −2 −

ψ
4
+ − − − −2 −

ψ
1
− + + + 2 +

ψ
2
− + + + 2 +

ψ
3
− + − + 0 +

ψ
4
− + − + 0 +

Table 8.6: U(1) charges for VW partial twisting.
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• 8 scalar fields ηa
−, χa

+, ηa
−, χa

+ : 20− ⊕ 20+ ⊕ 20− ⊕ 20+

• 1-form λa
w−, χa

w+, λ
a
w, χa

w+ : 22− ⊕ 2−2+ ⊕ 2−2− ⊕ 22+

where a = 1, 2 are the indices of the fundamental representations of the unbroken
SU(2)2 symmetry.

One can see that there are eight BRST charges. Four of them transform as
spinors with positive chirality on Σ corresponding to χa

+ and χa
+ and the others,

that is ηa
− and ηa

− transform as those with negative chirality on Σ. Therefore we
can regard the theory on Σ has (4, 4) supersymmetry.

8.1.5 d = 3, N = 4 SYM theories

The global symmetry of the theory is SO(4) ' SU(2)1 × SU(2)2 R-symmetry. In
order to understand the symmetry, it is convenient to construct d = 3, N = 4
theories by dimensional reduction from d = 6, N = 1 supersymmetric gauge
theories. SU(2)1 is the double cover of rotational symmetry SO(3) in the three
reduced coordinates and SU(2)2 is the R-symmetry in six-dimensional N = 1
SYM theories [294, 295, 296, 297, 298].

The field content is

• 3 scalar fields φi

• fermionic field ψ

• gauge fields Aµ

Before topological twisting, fields transform under SU(2)E × SU(2)1 × SU(2)2

as

φ :(1, 3, 1) (8.1.145)

ψ :(2, 2, 2) (8.1.146)

Aµ :(3, 1, 1). (8.1.147)

To perform the fully topological twisting, we pick a homomorphism π : SU(2)E →
SU(2)1 × SU(2)2 and replace SU(2)E by SU(2)′E = (1 + π)(SU(2)E) ⊂ SU(2)E ×
SU(2)1 × SU(2)2.

We many have two choices of π as(i)A-twist SU(2)E → SU(2)2

(ii)B-twist SU(2)E → SU(2)1
.
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A-twist

After twisting, the fields transform under the new symmetry SU(2)′E × SU(2)1 as

φ →(1, 3) (8.1.148)

ψ →(1, 2)⊕ (3, 2) (8.1.149)

Aµ →(3, 1). (8.1.150)

There are two BRST charges and this is just the dimensional reduction of Donaldson-
Witten theory (twisted d = 4, N = 2 theory). The field content is same as d = 3
super BF model [299, 300, 301, 302] associated with the Casson invariant.

B-twist

After twisting, the fields transform under the new symmetry SU(2)′E × SU(2)2 as

φ →(3, 1) (8.1.151)

ψ →(1, 2)⊕ (3, 2) (8.1.152)

Aµ →(3, 1). (8.1.153)

In B-twist we also have two BRST charges. As B-twist is related A-twist under the
exchange of SU(2)1 and SU(2)2, it is expected that B-twist may be regarded as a
mirror discription of the Casson invariant because d = 3, N = 4 mirror symmetry
has mirror pair under this exchange.

8.1.6 d = 3, N = 8 SYM theories

The global symmetry of the theory is Spin(7)R R-symmetry. If we construct the
theories by the dimensional reduction of d = 10, N = 1 SYM theories, this is
recognized as double cover of rotational symmetry SO(7) in the seven reduced
coordinates. The field content is

• 7 scalar fields φi

• fermionic field ψ

• gauge fields Aµ

Before topological twisting, fields transform under SU(2)E × Spin(7)R as

φ :(1, 7) (8.1.154)

ψ :(2, 8) (8.1.155)

Aµ :(3, 1). (8.1.156)

211



To perform the fully topological twisting, we pick a homomorphism π : SU(2)E →
Spin(7)R and replace SU(2)E by SU(2)′E = (1 + π)(SU(2)E) ⊂ SU(2)E× Spin(7)R.

The homomorphism π is determined by the decomposition of Spin(7) under
SU(2) and the embedding of SU(2) in Spin(7). Although there are many possible
decompositions, we consider the following branchings

Spin(7) ⊃ SU(2)1 × SU(2)2 × SU(2)3. (8.1.157)

Under (8.1.157), 7 and 8 of Spin(7) decomposed as [303]

7 = (2, 2, 1)⊕ (1, 1, 3) (8.1.158)

8 = (2, 1, 2)⊕ (1, 2, 2). (8.1.159)

Then one can consider two different types of embedding with the residual global
symmetry 11 SU(2)× SU(2)

A-twist : SU(2)E → SU(2)3

B-twist : SU(2)E → SU(2)1. (8.1.160)

A-twist

After twisting the fields transform under SU(2)′E × SU(2)1 × SU(2)2 as

φ → (1, 2, 2)⊕ (3, 1, 1) (8.1.161)

ψ → (1, 2, 1)⊕ (3, 2, 1)⊕ (1, 1, 2)⊕ (3, 1, 2). (8.1.162)

The bosonic field content consists of

• 4 scalar fields: (1, 2, 2)

• 1-form: (3, 1, 1)

• gauge field: (3, 1, 1)

and fermionic fields are

• 4 scalar fields: (1, 2, 1)⊕ (1, 1, 2)

• 4 vector fields: (3, 2, 1)⊕ (3, 1, 2).

Thus in A-twist, there are four BRST charges transforming as two SU(2) dou-
blets. It turns out that A-twist topological theories is the dimensional reduction of
twisted d = 4, N = 4 theories with GL twist and VW twist.

11Note that SU(2)E → SU(2)2 is same as B twist.
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B-twist

After twisting, the fields transform under SU(2)′E × SU(2)2 × SU(2)3 as

φ →(2, 2, 1)⊕ (1, 1, 3) (8.1.163)

ψ →(1, 1, 2)⊕ (3, 1, 2)⊕ (2, 2, 2). (8.1.164)

The bosonic field content is

• 3 scalar fields: (1, 1, 3)

• 2 spinor fields: (2, 2, 1)

• gauge fields: (3, 1, 1)

and the fermionic field content is

• 2 scalar fields: (1, 1, 2)

• 2 vector fields: (3, 1, 2)

• 4 spinor fields: (2, 2, 2).

In B-twist, we have two BRST charges transforming as a SU(2) doublet. B-twist
topological theories are the dimensional reduction of twisted d = 4, N = 4 theories
with DW twist.

8.1.7 d = 3, N = 8 SYM theories on R× Σ

Now consider a three-dimensional N = 8 SYM theories on M3 = R× Σ.
Before twisting, fields transform under SO(2)E × Spin(7)R as

φ :70 (8.1.165)

ψ :8+ ⊕ 8− (8.1.166)

Aµ :1−2 ⊕ 10 ⊕ 12. (8.1.167)

To determine the homomorphism, we consider the decomposition of Spin(7) un-
der SO(2) as

A-twist : Spin(7) ⊃ SO(5)× SO(2) (8.1.168)

B-twist : Spin(7) ⊃ SO(3)× SO(4) ⊃ SO(3)× SO(2)1 × SO(2)2 (8.1.169)

C-twist : Spin(7) ⊃ SO(6) ⊃ SO(2)1 × SO(2)2 × SO(2)3 (8.1.170)
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A-twist

Under (8.1.168), 7 and 8 of Spin(7)R decomposed as

7 = 50 ⊕ 1−2 ⊕ 12 (8.1.171)

8 = 4+ ⊕ 4−. (8.1.172)

Then after twisting, fields transform under SO(2)E × SO(5)R as

70 → 50 ⊕ 1−2 ⊕ 12 (8.1.173)

8+ ⊕ 8− → 42 ⊕ 40 ⊕ 40 ⊕ 4−2 (8.1.174)

1−2 ⊕ 10 ⊕ 12 → 1−2 ⊕ 10 ⊕ 12. (8.1.175)

Thus there are eight BRST charges in A-twisted d = 3, N = 8 SYM theory on
R× Σ.

B-twist

Under (8.1.169), 7 and 8 of Spin(7)R decomposed as

7 = 300 ⊕ 10−2 ⊕ 102 ⊕ 120 ⊕ 1−20 (8.1.176)

8 = 2++ ⊕ 2+− ⊕ 2−+ ⊕ 2−−. (8.1.177)

We normalize SO(2)1, SO(2)2 charges by dividing by two and simply take a sum
of all of the charges including the original rotational SO(2)E charges. Performing
this twisting, fields transform under SO(2)′E × SO(3)R as

70 → 30 ⊕ 2(1+)⊕ 2(1−) (8.1.178)

8+ ⊕ 8− → 22 ⊕ 2(2+)⊕ 2(20)⊕ 2(2−)⊕ 2−2 (8.1.179)

1−2 ⊕ 10 ⊕ 12 → 1−2 ⊕ 10 ⊕ 12. (8.1.180)

Thus there are four BRST charges in B-twisted d = 3, N = 8 SYM theory on R×Σ.

C-twist

Under (8.1.170), 7 and 8 of Spin(7)R decomposed as

7 = 1200 ⊕ 1−200 ⊕ 1020 ⊕ 10−20 ⊕ 1002 ⊕ 100−2 ⊕ 1000 (8.1.181)

8 = 1+++ ⊕ 1++− ⊕ 1+−+ ⊕ 1+−− ⊕ 1−++ ⊕ 1−+− ⊕ 1−−+ ⊕ 1−−−. (8.1.182)
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We normalize SO(2)1, SO(2)2, SO(2)3 charges by dividing by three and simply
take a sum of all of the charges including the original rotational SO(2)E charges.
Performing this twisting, fields transform under SO(2)′E as

70 → 3(1 2
3
)⊕ 3(1− 2

3
)⊕ 10 (8.1.183)

8+ ⊕ 8− → 2(10)⊕ 2(1 2
3
)⊕ 2(1− 2

3
)⊕ 1 4

3
⊕ 1− 4

3
(8.1.184)

1−2 ⊕ 10 ⊕ 12 → 1−2 ⊕ 10 ⊕ 12. (8.1.185)

Thus there are two BRST charges in B-twisted d = 3, N = 8 SYM theory on R×Σ.

8.1.8 d = 2, N = 8 SYM theories

The global symmetry of the theory is Spin(8)R R-symmetry. The field content is

• 8 scalar fields φi

• fermionic fields ψ

• gauge field Aµ.

Before topological twisting, fields transform under SO(2)E × Spin(8)R as

φ : 8v0 (8.1.186)

ψ : 8c+ ⊕ 8s− (8.1.187)

Aµ : 1−2 ⊕ 12. (8.1.188)

To perform the topological twisting, we pick a homomorphism π : SO(2)E →
Spin(8)R and replace SO(2)E by SO(2)′E = (1 + π)(SO(2)E) ⊂ SO(2)E × Spin(8)R.

The homomorphism π is determined by the decomposition of Spin(8) under
SO(2) and the embedding of SO(2) in Spin(8). Although there are many possible
decompositions, we consider the following two types of branching

A-twist : Spin(8)R ⊃ SO(6)R × SO(2)1 (8.1.189)

B-twist : Spin(8)R ⊃ SO(4)1 × SO(4)2 ⊃ SO(4)1 × SU(2)1 × SU(2)2

⊃ SO(4)1 × SU(2)1 × SO(2)2 (8.1.190)

A-twist

Under (8.1.189), 8v, 8s and 8c of Spin(8)R decomposed as

8v =60 ⊕ 12 ⊕ 1−2 (8.1.191)

8s =4+ ⊕ 4− (8.1.192)

8c =4− ⊕ 4+. (8.1.193)
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Then the choice of π amounts to SO(2)′E → SO(2)1 and the fields transform under
SO(2)E × SO(6)R as

8v →60 ⊕ 12 ⊕ 1−2 (8.1.194)

8s →40 ⊕ 4−2 (8.1.195)

8c →40 ⊕ 42 (8.1.196)

There are eight supercharges transforming 4 of SO(6)R. This is just the dimen-
sional reduction of A-twisted d = 3, N = 8 SYM theory.

To see this, let us consider the further decomposition

SO(6)R ' SU(4)R ⊃ SU(2)1 × SU(2)2 ×U(1). (8.1.197)

Under (8.1.197), 6 and 4 decomposed as 12

6 =(2, 2)0 ⊕ (1, 1)2 ⊕ (1, 1)−2 (8.1.198)

4 =(2, 1)+ ⊕ (1, 2)− (8.1.199)

4 =(2, 1)− ⊕ (1, 2)+. (8.1.200)

Then the fields transform under SO(2)′E × SU(2)1 × SU(2)2 as

8v → (2, 2)0 ⊕ (1, 1)0 ⊕ (1, 1)0 ⊕ (1, 1)2 ⊕ (1, 1)−2 (8.1.201)

8s → (2, 1)0 ⊕ (1, 2)0 ⊕ (2, 1)−2 ⊕ (1, 2)−2 (8.1.202)

8c → (2, 1)0 ⊕ (1, 2)0 ⊕ (2, 1)2 ⊕ (1, 2)2 (8.1.203)

Thus bosonic field content is

• 6 scalar fields: 2(1, 1)0 ⊕ (2, 2)0

• 1-form: (1, 1)2 ⊕ (1, 1)−2

and the fermionic field content is

• 8 scalar fields: 2(2, 1)0 ⊕ 2(1, 2)0

• 4 1-forms: (2, 1)2 ⊕ (2, 1)−2 ⊕ (1, 2)2 ⊕ (1, 2)−2.

The two bosonic scalars 2(1, 1)0 correspond to the third components of the gauge
field and 1-form in three dimensions. Also the four fermionic scalars (2, 1)0 ⊕
(1, 2)0 are the third components of the 1-form in three dimensions.

12As in (8.1.100), we have other possible decompositions. (8.1.197) is same as GL twist.
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B-twist

Under (8.1.190), 8v, 8s and 8c of Spin(8) decomposed as

8v =(4, 1)⊕ (1, 4)

=(4, 1, 1)⊕ (1, 2, 2) = (4, 1)0 ⊕ (1, 2)+ ⊕ (1, 2)− (8.1.204)

8s =(2, 2)⊕ (2′, 2′)

=(2, 2, 1)⊕ (2′, 1, 2) = (2, 2)0 ⊕ (2′, 1)+ ⊕ (2′, 1)− (8.1.205)

8c =(2, 2′)⊕ (2′, 2)

=(2, 1, 2)⊕ (2′, 2, 1) = (2, 1)+ ⊕ (2, 1)− ⊕ (2′, 2)0. (8.1.206)

Then the choice of π amounts to SO(2)E → SO(2)2 and the fields transform under
SO(2)′E × SO(4)R × SO(2)1 as

8v → (4, 1)0 ⊕ (1, 2)+ ⊕ (1, 2)− (8.1.207)

8s → (2, 2)− ⊕ (2′, 1)0 ⊕ (2′, 1)−2 (8.1.208)

8c → (2, 1)2 ⊕ (2, 1)0 ⊕ (2′, 2)+. (8.1.209)

The bosonic field contnt is

• 4 scalar fields: (4, 1)0

• 4 spinors: (1, 2)+ ⊕ (1, 2)−

and the fermionic field content is

• 4 scalar fields: (2′, 1)0 ⊕ (2, 1)0

• 8 spinors: (2, 2)− ⊕ (2′, 2)+

• 2 1-forms: (2′, 1)−2 ⊕ (2, 1)2.

There are four BRST charges in B-twist.

8.1.9 d = 3, N = 4 Chern-Simons matter theories

Gaiotto and Witten gave a general prescription for coupling Chern-Simons theory
to hypermultiplets, which allows for a new large class of three-dimensional N = 4
supersymmetric gauge theories [304]. Gaiotto-Witten theory can be regarded as a
three-dimensional N = 4 gauged sigma-model with a hyperkähler target space X.

The field content is

• gauge field Am
µ
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• hypermultiplet boson qA
α

• hypermultiplet fermion ψA
α̇

• twisted hypermultiplet q̃A
α̇

• twisted hypermultiplet ψ̃A
α

where m is the adjoint indices raised by invariant quadratic form kmn of the gauge
group. The gauge group is a subgroup of Sp(2n) and we denote the anti-Hermitian
generators of the gauge group by (tm)A

B (A, B, · · · = 1, · · · , 2n), which satisfy

[tm, tn] = f mn
ptp, tAB = ωACtC

B (8.1.210)

where ωAB are the anti-symmetric invariant tensor.
The hyper-multiplet fields satisfy the reality condition

(qA
α )∗ = εαβωABqB

β , (8.1.211)

(ψA
α )∗ = εα̇β̇ωABψB

β̇
(8.1.212)

where (α, β; α̇, β̇) are the indices of SU(2)× SU(2) R-symmetry.
For N = 4 supersymmetry, tm

AB satisfy the fundamental identity

kmntm
(ABtn

C)D = 0 (8.1.213)

where A, B, C, · · · are symmetrized. (8.1.213) is nothing but the Jacobi identity for
three fermionic generators of a Lie superalgebra

[Mm, Mn] = f mn
pMp, (8.1.214)

[Mm, QA] = QB(tm)B
A, (8.1.215)

{QA, QB} = tm
ABMm. (8.1.216)

Lagrangian of the Gaiotto-Witten theory is given by 13

L =
1
2

εµνλ

(
kmn Am

µ ∂ν An
λ +

1
3

fmnp Am
µ An

ν Ap
λ

)
+ ωAB

(
−εαβDqA

α DqB
β + iεα̇β̇ψA

α̇ DµγµψB
β̇

)
− ikmnεαβεγ̇δ̇ jm

αγ̇ jn
βδ̇
− 1

12
fmnp(µm)α

β(µn)β
γ(µp)γ

α (8.1.217)

13An overall coefficients of the Lagrangian should satisfy an integrality condition to make the
quantum theory well-defined. But here we suppress them.
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where

µm
αβ := tm

ABqA
α qB

β , (8.1.218)

jm
αḂ := tm

ABqA
α ψB

β̇
, (8.1.219)

ρm
α̇β̇

:= tm
ABψA

α̇ ψB
β̇

(8.1.220)

are the momentum map multiplet.
The Euclidean Lagrangian is

L =− i
2

εµνλ

(
kmn Am

µ ∂ν An
λ +

1
3

fmnp Am
µ An

ν Ap
λ

)
−ωAB

(
−εαβDqA

α DqB
β + iεα̇β̇ψA

α̇ DµγµψB
β̇

)
+ ikmnεαβεγ̇δ̇ jm

αγ̇ jn
βδ̇

+
1

12
fmnp(µm)α

β(µn)β
γ(µp)γ

α . (8.1.221)

Note that it differs from the Lorentzian Lagrangian (8.1.217) by the factor (−i) for
Chern-Simons term and an overall sign for the matter terms. Now the fermionic
fields do not obey the reality conditions.

The supersymmetry transformations are

δqA
α = iεα̇

αψA
α̇ , (8.1.222)

δψA
α̇ =

(
DµγµqA

α +
1
3

kmn(tm)A
B qB

β(µn)β
α

)
εα

α̇, (8.1.223)

δAm
µ = iεαα̇γµ jm

αα̇. (8.1.224)

The supersymmetry parameter ε transforms as (2, 2) in SU(2)×SU(2) R-symmetry
and satisfies the reality condition

(εα̇
α)
∗ = −εαβεα̇β̇ε

β̇
β. (8.1.225)

The supersymmetry transformations are same as in the Lorentzian case.
Furthermore we can add twisted hyper-multiplets (q̃A

α̇ , ψ̃A
α ) to Gaiotto-Witten

theory. This is regarded as a non-linear sigma model [304]. The Lagrangian is

L =
1
2

εµνλ

(
kmn Am

µ ∂ν An
λ +

1
3

fmnp Am
µ An

ν Ap
λ

)
+ ωAB

(
−εαβDqA

α DqB
β + iεα̇β̇ψA

α̇ DµγµψB
β̇

)
+ ωAB

(
−εα̇β̇Dq̃B

α̇ + iεαβψ̃A
α Dµγµψ̃B

β

)
− ikmn

(
εαβεγ̇δ̇ jm

αγ̇ jn
βδ̇

+ εα̇β̇εγδ j̃m
α̇γ j̃n

β̇δ
+ 4εαγεβ̇δ̇ jm

αβ̇
j̃n
δ̇γ
− εα̇γ̇εβ̇δ̇µ̃m

α̇β̇
ρn

γ̇δ̇
− εαγεβδµm

αβρ̃γδ

)
− 1

12
fmnp(µm)α

β(µn)β
γ(µp)γ

α + (µ̃m)α̇
β̇
(µ̃n)β̇

γ̇(µ̃ρ)γ̇
α̇

− 1
2

µ̃mn(µm)α
β(µn)

β
α −

1
2

µmn(µ̃m)α̇
β̇
(µ̃n)

β̇
α̇ (8.1.226)
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where the twisted moment map is defined by

µmn = εαβ(tmtn)ABqA
α qB

β , (8.1.227)

µ̃mn = εα̇β̇(tmtn)ABq̃A
α̇ q̃B

β̇
. (8.1.228)

The supersymmetry transformation is

δqA
α = iεα̇

αψA
α̇ , (8.1.229)

δψA
α̇ =

(
DµγµqA

α +
1
3
(tm)A

B qB
β(µm)β

α

)
εα

α̇, (8.1.230)

δψ̃A
α =

(
DµγµqA

α̇ +
1
3
(t̃m)q̃B

β̇
(µ̃m)β̇

α̇

)
εα̇

α − (t̃m)A
B q̃B

β̇
(µm)β

αεββ̇, (8.1.231)

δAm
µ = iεαα̇γµ(jm

αα̇ + j̃m
α̇α). (8.1.232)

The topological twisting for Gaiotto-Witten theory was discussed in [305, 306].

1. flat target space X

If the target X is flat, Gaiotto-Witten theory has SU(2)× SU(2) R-symmetry.
The topologically twisted theory is equivalent to the pure Chern-Simons the-
ory whose gauge group is a supergroup [305]. In other words, the topologi-
cally twisted Gaiotto-Witten theory is obtained from the supergroup Chern-
Simons theory by gauge fixing the odd part of the supergroup and the even
part of the supergroup gives rise to gauge group G.

2. general target space X

For general target X, Gaiotto-Witten theory has SU(2) R-symmetry. The
topologically twisted Gaiotto-Witten theory can be interpreted as a gauged
Rozansky-Witten theory [307], that is a hybrid of Chern-Simons and Rozansky-
Witten theory [305]. It is associated to a quadruple:

(a) G: a compact Lie group

(b) κ: invariant metric on the Lie algebra

(c) X: hyperkähler manifold with a tri-holomorphic action of G

(d) I: complex structure on X such that the complex moment map with
respect to the complex symplectic form ΩI is isotropic with respect to κ

Before twisting, fields and supercharges transform under SU(2)E × SU(2)1 ×
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SU(2)2 as

q : (1, 2, 1) (8.1.233)

ψ : (2, 1, 2) (8.1.234)

Q : (2, 2, 2). (8.1.235)

We may also have fields of twisted hypermultiplet, which transform as

q̃ : (1, 1, 2) (8.1.236)

ψ̃ : (2, 2, 1). (8.1.237)

Depending on which SU(2) factor we use, we may think two types of twisting

A-twist : SU(2)E → SU(2)2 (8.1.238)

B-twist : SU(2)E → SU(2)1. (8.1.239)

However, if both hypermultiplet and twisted hypermultiplet are present, A-twist
and B-twist are the same. We call it AB-twist.

A-twist

After A-twisting, the fields and supercharges transform under SU(2)′E × SU(2) as

q → (1, 2) (8.1.240)

ψ → (1, 1)⊕ (3, 1) (8.1.241)

Q → (1, 2)⊕ (3, 1). (8.1.242)

Thus in the bosonic field content we have

• 2 scalar fields: (1, 2)

and in the fermionic field content we include

• scalar field (1, 1)

• 1-form (3, 1).

There are two BRST charges in A-twisted theory.

1. bosonic fields

In A-twist all of the hypermultiplet scalars remain scalars.
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2. fermionic fields

We decompose the fermionic fields under SU(2)E × SU(2)1 × SU(2)2 as

(ψα′)A
α̇ =

1√
2

(
ψAIα′α̇ + ΨA

i (σi)α′α̇

)
σ−1

2 (8.1.243)

where α′, α̇ are the indices of SU(2)E, SU(2)2 respectively. A = 1, 2, · · · , 2n is
again the index of Sp(2n).

3. supersymmetries

For the supersymmetries we expand as

(εα′)α̇
α =

1√
2

(
εαIα′α̇ + εiα(σi)α′α̇

)
(σ2)−1. (8.1.244)

B-twist

After B-twisting, the fields tranform under SU(2)′E × SU(2) as

q → (2, 1) (8.1.245)

ψ → (2, 2) (8.1.246)

Q → (1, 2)⊕ (3, 2). (8.1.247)

Thus the bosonic field content is

• spinor field: (2, 1)

and the fermionic field content is

• 2 spinor fields (2, 2).

We have two BRST charges in B-twisted theory.

AB-twist

After twisting, the fields transform under SU(2)′E × SU(2)2 as

q → (1, 2) (8.1.248)

ψ → (1, 1)⊕ (3, 1) (8.1.249)

q̃ → (2, 1) (8.1.250)

ψ̃ → (2, 2) (8.1.251)

Q → (1, 2)⊕ (3, 2). (8.1.252)

Thus the bosonic field content is
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• 2 scalar fields : (1, 2)

• spinor field: (2, 1)

and the fermionic field content is

• scalar fields : (1, 1)

• 1-form : (3, 1)

• 2 spinor fields: (2, 2).

Again we have two BRST charges in AB-twisted theory.

8.1.10 d = 3, N = 5 Chern-Simons matter theories

Three-dimensional N ≥ 5 theories can be understood in the Gaiotto-Witten frame-
work by adding twisted hypermultiplets [308]. The target spaces of N ≥ 5 theories
are only flat spaces and their orbifolds.

We may consider the decomposition of SO(5)R R-symmetry under SO(3) '
SU(2) as

SO(5) ⊃ SO(2)× SO(3) (8.1.253)

SO(5) ⊃ SO(4) ⊃ SU(2)1 × SU(2)2. (8.1.254)

Under (8.1.253), 5 of SO(5)R decomposed as

5 = 30 ⊕ 1−2 ⊕ 12. (8.1.255)

Noting that

20 × (30 ⊕ 1−2 ⊕ 12) = 20 ⊕ 40 ⊕ 22 ⊕ 2−2, (8.1.256)

we see that there are no BRST charges.
On the other hand, under (8.1.254), 5 and 4 of SO(5)R decomposed as

5 = 4 + 1 = (2, 2)⊕ (1, 1) (8.1.257)

4 = 4 = (2, 1)⊕ (1, 2). (8.1.258)

This is nothing but the AB-twist in d = 3, N = 4 Chern-Simons matter theory.
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8.1.11 d = 3, N = 6 Chern-Simons matter theories

We may consider the decomposition of SO(6)R R-symmetry under SO(3) ' SU(2)
as

SO(6) ⊃ SO(3)× SO(3) (8.1.259)

SO(6) ⊃ SO(2)× SO(4) ⊃ SO(2)× SU(2)1 × SU(2)2. (8.1.260)

Under (8.1.259), 5 of SO(5)R decomposed as

6 = (3, 1)⊕ (1, 3). (8.1.261)

Noting that

2× 3 = 2⊕ 4⊕ 2⊕ 2, (8.1.262)

we see that there are no BRST charges.
On the other hand, under (8.1.260), 6 of SO(6)R decomposed as

6 = 40 ⊕ 1−2 ⊕ 12 = (2, 2)0 ⊕ (1, 1)−2 ⊕ (1, 1)2. (8.1.263)

As seen from the appearance of (2, 2), this is nothing but the AB-twist in d = 3,
N = 4 Chern-Simons matter theory.

8.1.12 d = 3, N = 8 Chern-Simons matter theories

To perfom the topological twisting, we put the BLG theory on a three-dimensional
Euclidean space. The fermionic fields and supersymmetry parameters are defined
as eleven-dimensional fermions and their conjugate are given by

Ψ := ΨTC (8.1.264)

where C is a eleven-dimensional matrix satisfying

CT = −C, CΓMC−1 = −(ΓM)T. (8.1.265)

Gamma matrix ΓM is the representation of eleven-dimensional Clifford algebra{
ΓM, ΓN

}
= 2gMN, Γ11 := iΓ12···10. (8.1.266)

ΓM can be decomposed under SO(11) ⊃ SO(3)× SO(8) asΓi = σi ⊗ Γ̃9

ΓI+3 = I⊗ Γ̃I
(8.1.267)
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where Γ̃9 := Γ̃1···8. Note that

Γ123 = iΓ45···11 = i(I⊗ Γ̃9). (8.1.268)

The fermionic fields Ψ are 8c of SO(8)R, so they satisfy the chirality condition

Γ45···11Ψ = −Ψ, (8.1.269)

Γ123Ψ = −iΨ. (8.1.270)

The Euclidean BLG Lagrangian is given by

L =
1
2
(DµX I , DµX I)− i

2
(Ψ, ΓµDµΨ)− i

4

(
ΨΓI J [X I , X J , Ψ]

)
+

1
12

(
[X I , X J , XK], [X I , X J , XK]

)
− i

2
εµνλ

[
Tr
(

Aµab∂ν Ãab
λ

)
+

2
3

Tr
(

Aµab Ãa
νg Ãb

λg

)]
,

(8.1.271)

which differs from Lorentzian case by the factor (−i) for the Chern-Simons terms
and a overall sign factors for matter terms.

The supersymmetry transformations are

δX I
a = iεΓIΨa, (8.1.272)

δΨa = DµX I
aΓµΓIε− 1

6
X I

bX J
c XK

d f bcd
aΓI JKε, (8.1.273)

δÃa
µb = iεΓµΓIX I

cΨd f cda
b. (8.1.274)

This is exactly same as in the Lorentzian transformations (4.1.49)-(4.1.51). ε is the
unbroken supersymmetry parameters obeying14

Γ34···11ε = ε, (8.1.275)

Γ123ε = iε (8.1.276)

Before topological twisting, fields and supersymmetry parameter transform
under SU(2)E × SO(8)R as

X : (1, 8v) (8.1.277)

Ψ : (2, 8c) (8.1.278)

ε : (2, 8s). (8.1.279)

Although there are many possible ways of the twisting, we consider the following
decomposition SO(8)R under SO(3) [303]

A-twist :SO(8) ⊃ SO(5)× SO(3) (8.1.280)

B-twist :SO(8) ⊃ G2 ⊃ SU(2)1 × SU(2)2. (8.1.281)

14 This convention is different from that in [306]. There are two choices for Γ̃9 = ±Γ̃12···8. We
take Γ̃9 = +Γ̃12···8.
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A-twist

Under (8.1.280), we can obtain the decomposition of 8v, 8s and 8c as

8v = (5, 1)⊕ (1, 3) (8.1.282)

8s = (4, 2) (8.1.283)

8c = (4, 2). (8.1.284)

Then the transformations under SO(3)′E × SO(5)R of the fields are

X → (1, 5)⊕ (3, 1) (8.1.285)

Ψ → (1, 4)⊕ (3, 4) (8.1.286)

ε → (1, 4)⊕ (3, 4). (8.1.287)

The bosonic field content is

• 5 scalar fields : (1, 5)

• 1-form : (3, 1)

and the fermionic field content is

• 4 scalar fields : (1, 4)

• 4 1-form : (3, 4).

Therefore there exists four supercharges.
We decompose the gamma matrices under SO(11) ⊃ SO(3)E × SO(5)× SO(3)

as 
Γi = σi ⊗ I4 ⊗ I2 ⊗ σ1

Γµ+3 = I2 ⊗ γµ ⊗ I2 ⊗ σ2

Γµ+9 = I2 ⊗ I4 ⊗ σi ⊗ σ3

(8.1.288)

where σi are Pauli matrices and γµ are five-dimensional gamma matrices satisfying

{γµ, γν} = 2δµνγ5 := γ1234. (8.1.289)

The charge conjugation matrix can be expressed as

C = σ2 ⊗ C⊗ σ2 ⊗ I2 (8.1.290)

where σ2 is a three-dimensional charge conjugation matrix

(σ2)T = −σ2σ2σiσ
−1
2 = −(σ2)T (8.1.291)
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and C is a five-dimensional charge conjugation matrix

(C)T = −CCγµC−1 = (γµ)T. (8.1.292)

The chirality matrix is given by

Γ123 == −iΓ45···11i(I⊗ I⊗ I⊗ σ1). (8.1.293)

1. bosonic fields

For the bosonic fields we redefine

φI := X I(I = 4, 5, 6, 7, 8),

Φµ := Xµ+8(µ = 1, 2, 3) (8.1.294)

2. fermionic fields

We expand the elven-dimensional fermionic fields Ψ under the decomposi-
tion SO(11) ⊃ SO(3)E × SO(5)× SO(3) as

Ψpαq =
1√
2

(
ψαIpq + Ψiασipq

)
σ−1

2 (8.1.295)

where p, q, α are indices of SO(3)E, SO(5), SO(3) respectively. ψα and Ψiα are
scalars (1, 4) and a 1-form (3, 4).

B-twist

Under (8.1.281), we can obtain the decomposition of 8v, 8s and 8c as

8v = 7 + 1 = (1, 3)⊕ (2, 2)⊕ (1, 1) (8.1.296)

8s = 7 + 1 = (1, 3)⊕ (2, 2)⊕ (1, 1) (8.1.297)

8c = 7 + 1 = (1, 3)⊕ (2, 2)⊕ (1, 1). (8.1.298)

Choosing the homomorphism as SU(2)E → SU(2)1, the transformations under
SO(3)′E × SU(2)′2 of the fields are

X → (1, 3)⊕ (2, 2)⊕ (1, 1) (8.1.299)

Ψ → (2, 3)⊕ (1, 2)⊕ (3, 2)⊕ (2, 1) (8.1.300)

ε → (2, 3)⊕ (1, 2)⊕ (3, 2)⊕ (2, 1). (8.1.301)

The bosonic field content is

• 4 scalar fields : (1, 3)⊕ (1, 1)
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• 2 spinor fields : (2, 2)

and the fermionic field content is

• 2 scalar fields : (1, 2)

• 4 spinor fields : (2, 3)⊕ (2, 1).

• 2 1-form : (3, 2).

Therefore there exists two supercharges.

8.1.13 d = 2, N = (2, 2) non-linear sigma-model

There are two types global symmetry in the theory, which are called U(1)V vector
R-symmetry and U(1)A axial R-symmetry 15.

The field content is

• scalar fields φI(z, z)

• fermionic fields ψI
+(z, z), ψI

−(z, z)

The bosonic field φI(z, z) is a map from 2-dimensional genus g Riemann surface Σ
to a target space X of metric g

φI(z, z) : Σ → X (8.1.304)

where z, z are the local coordinates on Σ. The fermionic field ψI
+ is a section of

K
1
2 ⊗ φ∗(TX) and ψI

− is a section of K−
1
2 ⊗ φ∗(TX)

ψI
±(z, z) ∈ Γ(K±

1
2 ⊗ φ∗(TX)) (8.1.305)

where TX is the holomorphic tangent bundle to X. K and K−1 are the canonical
and anti-canonical bundle on Σ (i.e. the bundle of (1, 0) and (0, 1) forms) and K

1
2

and K−
1
2 are square roots of these.

15Although SO(2)E rotational symmetry acts on the variables z, z, θ± and θ simultaneously, one
can construct two U(1) groups that act only on a subset of variables and leave the measure invariant
and keep the chiral fields to be chiral

U(1)V :

(θ+, θ
+) → (e−iαθ+, eiαθ

+)

(θ−, θ
−) → (e−iαθ+, eiαθ

+)
(8.1.302)

U(1)A :

(θ+, θ
+) → (e−iαθ+, eiαθ

+)

(θ−, θ
−) → (eiαθ−, e−iαθ

−)
. (8.1.303)
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Here we consider the case where we have N = (2, 2) supersymmetry, which
require that X is Kähler. We denote the local complex coordinates by φi and their

complex conjugate by φi = φ
i. As the complexified tangent bundle TX has a

decomposition as TX = T1,0X⊕ T0,1X, (8.1.305) becomes

ψi
+ ∈ Γ(K

1
2 ⊗ φ∗(T1,0X)),

ψi
+ ∈ Γ(K

1
2 ⊗ φ∗(T0,1X)),

ψi
− ∈ Γ(K−

1
2 ⊗ φ∗(T1,0X)),

ψi
− ∈ Γ(K−

1
2 ⊗ φ∗(T0,1X)) (8.1.306)

and ψi
± and ψi

± are left- and right-moving fermionic fields respectively.
The action is

S = 2t
∫

Σ
d2z
(

1
2

gI J∂zφI∂zφJ + igijψ
j
−Dzψi

− + igijψ
j
+Dzψi

+ + Rijklψ
i
+ψ

j
+ψk

−ψl
−

)
(8.1.307)

where t is a coupling constant or a string tension depending on the overall volume
of X and Rijkl is the Riemann tensor of target space X.

Originally fields transform under SO(2)E × U(1)V ×U(1)A as in Table 8.7 16.
Likewise supersymmetry generators transform as Table 8.8. Depending on which
R-symmetry we use, there are two homomorphisms for the twisting

A-twist :U(1)E → U(1)V (8.1.314)

B-twist :U(1)E → U(1)A. (8.1.315)

The results of the twisting are summarized in Table 8.9 and Table 8.10.

16 From (8.1.302) and (8.1.303), the vector R-rotations and the axial R-rotations of superfield are
given by

eiαFV : Φ(xµ, θ±, θ
±) 7→ eiαqV Φ(xµ, e−iαθ±, eiαθ

±) (8.1.308)

eiβFA : Φ(xµ, θ±, θ
±) 7→ eiβqA Φ(xµ, e∓iβθ±, e±iβθ

±) (8.1.309)

where FV , FA are the generators of the vector and the axial R-symmetry and qV , qA are the vector
and the axial R-charges respectively. Therefore we see that

ψi
+new = eiα(1−qV)ψi

+old, ψi
+new = eiβ(1−qA)ψi

+old (8.1.310)

ψi
−new = eiα(1−qV)ψi

−old, ψi
−new = eiβ(−1−qA)ψi

−old (8.1.311)

ψi
+new = eiα(−1+qV)ψi

+old, ψi
+new = eiβ(−1−qA)ψi

+old (8.1.312)

ψi
−new = eiα(−1+qV)ψi

+old, ψi
−new = eiα(1−qA)ψi

−old. (8.1.313)

Setting qV = qA = 0, we obtain the U(1)V and the U(1)A charges in Table 8.7.
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U(1)E U(1)V U(1)A L
φ 0 0 0 O

ψi
+ + − + K

1
2

ψi
− − − − K−

1
2

ψi
+ + + − K

1
2

ψi
− − + + K−

1
2

Table 8.7: U(1) charges of the d = 2, N = (2, 2) sigma model fields. L is the
complex line bundle on Σ in which the fields take values. O is the trivial bundle
and K is the canonical bundle.

U(1)E U(1)V U(1)A L
Q+ + − + K

1
2

Q− − − − K−
1
2

Q+ + + − K
1
2

Q− − + + K−
1
2

Table 8.8: U(1) charges of the d = 2, N = (2, 2) sigma model supersymmetry
generators.

A-twist B-twist
fields U(1)′E L U(1)′E L

φ 0 O 0 O
ψi

+ 2 K 2 K
ψi
− 0 O −2 K−1

ψi
+ 0 O 0 O

ψi
− −2 K−1 0 O

Table 8.9: The spin of field for A-twisted and B-twisted d = 2, N = (2, 2) sigma
model.
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A-twist B-twist
fields U(1)′E L U(1)′E L
Q+ 2 K 2 K
Q− 0 O −2 K−1

Q+ 0 O 0 O
Q− −2 K−1 0 O

Table 8.10: The spin of the supersymmetry generators for A-twisted and B-twisted
d = 2, N = (2, 2) sigma model.

A-model

After performing A-twist, the bundles in which the fermionic fields take values
are modified as

ψi
z ∈ Γ(K⊗ φ∗(T1,0X)),

ψi ∈ Γ(φ∗(T0,1X)),

ψi ∈ Γ(φ∗(T1,0X)),

ψi
z ∈ Γ(K−1 ⊗ φ∗(T0,1X)). (8.1.316)

B-model

B-twist changes the bundles in which fermionic fields take values as

ψi
z ∈ Γ(K⊗ φ∗(T1,0X)),

ψi ∈ Γ(φ∗(T0,1X)),

ψi
z ∈ Γ(K−1 ⊗ φ∗(T1,0X)),

ψi ∈ Γ(φ∗(T0,1X)). (8.1.317)

These topological twisted theories are known as A-model and B-model topo-
logical sigma-models, or topological string theories [309, 230, 310, 311] 17.

8.2 Curved branes and twisted theories

Let us consider the gauge theories arising from the dimensional reduction of ten-
dimensional N = 1 SYM theory to (p + 1) dimensions. It is known that these
theories describe the low energy world-volume dynamics of flat Dp-branes [20].

17See [312] for the detailed review on the topological string theory.
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On the other hand, when one consider curved branes wrapping around a non-
trivial cycle C in the ambient manifold X, the cycle has to be identified with a
calibrated submanifold and satisfy some stringent conditions to preserve some
fraction of the supersymmetries.

As discussed in [28], curved world-brane theories are obtained by topological
twisting along the directions where the world-volume is curved. To see this, we
remember that the bosonic scalar fields are associated with translations of the
D-brane. Thus when D-brane wrap around curved cycle C in X, there are only
(10− dim X) actual scalar fields and the other translational modes are identified
with the section of the normal bundle NC to C in X. Therefore these modes should
be twisted if the normal bundle is non-trivial and so are their superpartners.

From the above observations, for given supersymmetric cycles C and their am-
bient manifolds X, one can determine

1. the bosonic field content

2. the number of scalar supercharges

of the world-volume topological gauge theories of D-branes. On the contrary, one
can check whether there exists supersymmetric cycles with the required properties
for given topological gauge theories.

Noting that there is a global invariance under the rotational SO(10− dim X)
symmetry 18 of the uncompactified dimensions, the original R-symmetry SO(9−
p) should be decomposed as

SO(9− p) ⊂ SO(10− dim X)× SO(dim X− p− 1). (8.2.1)

Then, under the branching (8.2.1) of R-symmetry, we try to perform topological
twisting by using the second factor SO(dim X − p− 1) corresponding to the nor-
mal bundle NC in X. A relevant information is given by Table 8.11.

The preserved fraction of supersymmetries are derived as follows. The holon-
omy group of K3 surface is SU(2), so the spinor of SO(4) is decomposed under
SO(4) ⊃ SU(2)H × SU(2)×U(1) ⊃ SU(2)H as

4 = (2, 1)− ⊕ (1, 2)+ = 2⊕ 1⊕ 1. (8.2.2)

Thus 2 of 4 supercharges are constant spinors and we have 1
2 BPS background.

18 When one considers Euclidean D-branes, the invariant rotational symmetry is SO(1, 9−dim X)
because curved D-branes do not wrap the time direction.
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ambient manifolds (dimensions) holonomy submanifolds SUSY

Calabi-Yau 2-fold (4) SU(2) ⊂ SO(4) holomorphic curve (2) 1
2

Calabi-Yau 3-fold (6) SU(3) ⊂ SO(6) Lagrangian (3) 1
4

G2 manifold (7) G2 ⊂ SO(7) coassociative (4) 1
8

associative (3) 1
8

Spin(7) manifold (8) Spin(7) ⊂ SO(8) Cayley (4) 1
16

Calabi-Yau 4-fold (8) SU(4) ⊂ SO(8) Lagrangian (4) 1
8

Hyperkähler manifold (8) Sp(2) ⊂ SO(8) 3
16

CY2 × CY2 (8) SU(2)× SU(2) ⊂ SO(8) 1
4

Calabi-Yau 5-fold (10) SU(5) ⊂ SO(10) Lagrangian (5) 1
16

Table 8.11: The ambient manifolds and the examples of calibrated submanifolds
that preserve the fraction of supersymmetry. Note that all of the Calabi-Yau mani-
folds include holomorphic submanifolds as calibrated submanifolds.

The holonomy group of Calabi-Yau 3-fold is SU(3), so the spinor of SO(6) is
decomposed under SO(6) ⊃ SU(3) as

4 = 3⊕ 1. (8.2.3)

Thus 1 of 4 supercharges is constant spinor and we have 1
4 BPS background.

The holonomy group of Calabi-Yau 4-fold is SU(4), so the spinor of SO(8) is
decomposed under SO(8) ⊃ SU(4) as

8s ⊕ 8c = 6⊕ 1⊕ 1⊕ 4⊕ 4 (8.2.4)

Thus 2 of 16 supercharges is constant spinor and we have 1
8 BPS background.

The holonomy group of G2 manifold is G2, so the spinor of SO(7) is decom-
posed under SO(7) ⊃ G2 as

8 = 1⊕ 7 (8.2.5)

Thus 1 of 8 supercharges is constant spinor and we have 1
8 BPS background.

The holonomy group of Spin(7) manifold is Spin(7), so the spinor of SO(8) is
decomposed under SO(8) ⊃ Spin(7) as

8s ⊕ 8c = 7⊕ 1⊕ 8 (8.2.6)

Thus 1 of 16 supercharges is constant spinor and we have 1
16 BPS background.
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The holonomy group of Calabi-Yau 5-fold is SU(5), so the spinor of SO(10) is
decomposed under SO(10) ⊃ SU(5) as

16⊕ 16′ = 1−5 ⊕ 53 ⊕ 10− ⊕ 15 ⊕ 5−3 ⊕ 10+ (8.2.7)

Thus 2 of 32 supercharges is constant spinor and we have 1
16 BPS background.

8.2.1 D3-branes and twisted d = 4, N = 4 SYM theories

The first example is the low-energy effective field theories of the D3-branes wrapped
on curved four-manifold. A set of these descriptions can be obtained by the three
distinct topologically twisted d = 4, N = 4 SYM theories.

1. GL twist D-brane

The fact that dim C = 4 and that there are two scalar fields means that the
theory describes 4-cycle C in 4 + (6− 2) = 8-dimensional manifold X. The
existence of two preserved BRST charges indicates that 8-manifold preserve
2

16 = 1
8 of the supersymmetry. From the above facts and Table 8.11, X is a

Calabi-Yau 4-fold and C is a special Lagrangian submanifold19.

Moreover it it known that in the case where special Lagrangian submanifold
is embedded in Calabi-Yau 4-fold, the normal bundle NC can be identified
with the cotangent bundle T∗C [313]. This is consistent to the fact that the
remaining four scalar fields combine to form one 1-form on C.

Note that a global U(1) ghost number symmetry corresponds to the rota-
tional symmetry of the two uncompactified dimensions. The two scalars
having opposite U(1) charges are identified with the 2-dimensional vector
and the 1-form is a U(1)-singlet.

2. VW twist D-brane

The fact that dim C = 4 and that there are three scalar fields means that the
theory describes 4-cycle C in 4 + (6− 3) = 7-dimensional manifold X. The
existence of two preserved BRST charges indicates that 7-manifold preserve
2

16 = 1
8 of the supersymmetry. From the above facts and Table 8.11, X is a G2

manifold and C is a coassociative submanifold.

It is known that for a coassociative 4-submanifold in G2 manifold, the nor-
mal bundle is (1, 3)0 [313]. This is consistent to the results obtained by the
twisting.

19Special Lagrangian submanifold is a submanifold for which the real part of the holomorphic
form restricts to the volume form on the submanifold.
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twist submanifold (dimension) ambient manifold (dimension) SUSY

GL twist Lagrangian (4) Calabi-Yau 4-fold (8) 16
8 = 2

VW twist coassociative (4) G2 manifold (7) 16
8 = 2

DW twist Cayley (4) Spin(7) manifold (8) 16
16 = 1

Table 8.12: Three types of topological twists for d = 4, N = 4 SYM theories, curved
D3-branes (submanifolds) and ambient manifolds.

3. DW twist D-brane

The fact that dim C = 4 and that there are two scalar fields means that the
theory describes 4-cycle C in 4 + (6− 2) = 8-dimensional manifold X. The
existence of one preserved BRST charge indicates that 8-manifold preserve
1

16 = 1
16 of the supersymmetry. From the above facts and Table 8.11, X is a

Spin(7) manifold and C is a Cayley submanifold.

It it known that for the Spin(7) manifold the normal bundle is S+⊕V where
S+ is a spin bundle of a given chirality and V is a 2-dimensional bundle [28].
When V is trivial, this becomes S+ ⊕ S+, that is (1, 2)+ ⊕ (1, 2)−.

These results are summarized in Table 8.12

8.2.2 D2-branes and twisted d = 3, N = 8 SYM theories

The D2-branes wrapped on three-manifold are given by the topologically twisted
d = 3, N = 8 SYM theories.

1. A-twist

The fact that dim C = 3 and that there are four scalar fields means that
the theory describes 3-cycle C in 3 + (7− 4) = 6-dimensional manifold X.
The existence of the four preserved BRST charges indicates that 6-manifold
preserve 4

16 = 1
4 of the supersymmetry. From the above facts and Table 8.11,

X is a Calabi-Yau 3-fold and C is a special Lagrangian submanifold.

Also it is known that the normal bundle NC can be identified with the cotan-
gent bundle T∗C [313]. This is consistent to the fact that the remaining three
scalar fields combine to form one 1-form on C.

A global SU(2)1 × SU(2)2 ' SU(4) ghost number symmetry corresponds to
the rotational symmetry of the four uncompactified dimensions. The four
scalars transform as a 4v of SO(4) and the 1-form is an SO(4)-singlet.
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twist submanifold (dimension) ambient manifold (dimension) SUSY

A-twist Lagrangian (3) Calabi-Yau 3-fold (6) 16
4 = 4

B-twist associative (3) G2 manifold (7) 16
8 = 2

Table 8.13: Two types of topological twists for d = 3, N = 8 SYM theories, curved
D2-branes (submanifolds) and ambient manifolds.

2. B-twist

The fact that dim C = 3 and that there are three scalar fields means that
the theory describes 3-cycle C in 3 + (7− 3) = 7-dimensional manifold X.
The existence of the two preserved BRST charges indicates that 7-manifold
preserve 2

16 = 1
8 of the supersymmetry. From the above facts and Table 8.11,

X is a G2 manifold and C is an associative submanifold.

Also it is known that for an associative 3-submanifold in G2 manifold, the
normal bundle is NC = S ⊗ V where S is a spinor bundle of C and V is a
rank two SU(2)-bundle. This is consistent to the fact that the twisted bosonic
spinors (2, 2, 1) are an SU(2)-doublet of spinors on C.

Again a global SU(2)3 ' SO(3) symmetry corresponds to the rotational sym-
metry of the four uncompactified dimensions. The three scalars transform as
a 3v of SO(3) and the twisted bosonic spinors (2, 2, 1) are SO(3)-singlet.

These results are summarized in Table 8.13

8.2.3 D2-branes and twisted d = 3, N = 8 SYM theories on R× Σ

The low-energy effective theories of the D2-branes wrapping on the holomorphic
Riemann surface Σ are the partially twisted d = 3, N = 8 SYM theories:

1. A-twist

The fact that dim Σ = 2 and that there are five scalar fields means that the
theory describes 2-cycle Σ in 2 + (7− 5) = 4-dimensional manifold X. The
existence of the eight preserved BRST charges indicates that 4-manifold pre-
serve 8

16 = 1
2 of the supersymmetry. From the above facts and Table (8.11), X

is a K3 surface and Σ is a holomorphic curve.

2. B-twist

The fact that dim Σ = 2 and that there are three scalar fields means that
the theory describes 2-cycle Σ in 2 + (7− 3) = 6-dimensional manifold X.
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twist submanifold (dimension) ambient manifold (dimension) SUSY

A-twist holomorphic (2) K3 surface (4) 16
2 = 8

B-twist holomorphic (2) Calabi-Yau 3-fold (6) 16
4 = 4

C-twist holomorphic (2) Calabi-Yau 4-fold (8) 16
8 = 2

Table 8.14: Three types of topological twists for d = 3, N = 8 SYM theories on
R× Σ, curved D2-branes (submanifolds) and ambient manifolds.

The existence of the four preserved BRST charges indicates that 6-manifold
preserve 4

16 = 1
4 of the supersymmetry. From the above facts and Table (8.11),

X is a Calabi-Yau 3-fold and Σ is a holomorphic curve.

3. C-twist

The fact that dim Σ = 2 and that there are one scalar field means that the
theory describes 2-cycle Σ in 2 + (7− 1) = 8-dimensional manifold X. The
existence of the two preserved BRST charges indicates that 6-manifold pre-
serve 2

16 = 1
8 of the supersymmetry. From the above facts and Table (8.11), X

is a Calabi-Yau 4-fold and Σ is a holomorphic curve.

These results are summarized in Table 8.14

8.2.4 Relationship between d = 4 and d = 3 twists

The d = 4 twisting and the d = 3 twisting are connected via dimensional reduction.

1. DW twist and B-twist

Let us define Cayley 4-form in local coordinates R8 as [314, 313]

ΩCayley := dx0123+
(

dx01 − dx23
)
∧
(

dx45 − dx67
)

+
(

dx02 + dx13
)
∧
(

dx46 + dx57
)

+
(

dx03 − dx12
)
∧
(

dx47 − dx56
)

+ dx4567 (8.2.8)

where dxijk := dxi ∧ dxj ∧ dxk, etc. Then one can define Spin(7) manifold to
be the subgroup of GL(8) that preserve ΩCayley. Integrating over the fibre x0,
we obtain

π∗ΩCayley = dx123+dx1 ∧
(

dx45 − dx67
)

+dx2 ∧
(

dx46 + dx57
)

+dx3 ∧
(

dx47 − dx56
)

(8.2.9)
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On the other hand, the associative 3-form Ωass characterizing associative 3-
manifolds of G2 manifolds is defined as [314]

Ωass := dx456+dx4 ∧
(

dx01 − dx23
)

+dx5 ∧
(

dx02 + dx13
)

+dx6 ∧
(

dx03 − dx12
)

(8.2.10)

Thus
π∗ΩCayley = Ωass. (8.2.11)

Therefore DW twist is related to B twist by the dimensional reduction.

2. VW twist and A-twist

VW twist theory corresponds to coassociative submanifolds of G2 manifolds
characterized by the Hodge dual 4-form Ωcoass = ∗Ωass, which is expressed
as [313]

Ωcoass = dx0123 − dx56 ∧
(

dx01 − dx23
)

+ dx46 ∧
(

dx02 + dx13
)

− dx45 ∧
(

dx03 − dx12
)

. (8.2.12)

Integrating this over x0, one obtains

π∗Ωcoass = dx123 − dx156 + dx246 − dx345. (8.2.13)

On the other hand, the holomorphic volume form of a Calabi-Yau 3-fold
characterizing special Lagrangian submanifolds is

Ωslag =dz1 ∧ dz2 ∧ dz3

=
(

dx123 − dx453 − dx156 − dx426
)

+ i
(

dx423 + dx513 + dx612 − dx456
)

.

Thus
π∗Ωcoass = ReΩslag. (8.2.14)

Therefore VW twist is associated with A twist by the dimensional reduction.

3. GL twist and A-twist

Suppose that the Calabi-Yau 4-fold is locally of the form

CY4 = CY3 × T2. (8.2.15)
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Then special Lagrangian of CY4 wrapping around one of the circles reduce
to special Lagrangian submanifolds of CY3 by the double dimensional re-
duction. Therefore GL twist is related to A-twist by the double dimensional
reduction.

8.2.5 D1-branes and twisted d = 2, N = 8 SYM theories

The world-volume theories of the D1-branes wrapped on holomorphic Riemann
surfaces are topologically twisted d = 2, N = 8 SYM theories.

1. A-twist

The fact that dim C = 2 and that there are six scalar fields means that the
theory describes 2-cycle C in 2 + (8− 6) = 4-dimensional manifold X. The
existence of the eight preserved BRST charges indicates that 4-manifold pre-
serve 8

16 = 1
2 of the supersymmetry. From the above facts and Table 8.11, X

is a K3 surface and C is a holomorphic curve.

Let us consider the normal bundle NC . Noting that

TX = TC ⊕ NC , (8.2.16)

c1(TX) = 0 (8.2.17)

for holomorphic genus g curve C in Calabi-Yau n-folds X, we see that

c1(NC) = −c1(TC) = 2g− 2. (8.2.18)

Alternatively as ∧nTX is trivial, one has

∧n TX = TC ∧n−1 NC = 1, (8.2.19)

which gives the condition of the canonical bundle KC on C

∧n−1NC = KC (8.2.20)

because TC = K−1
C .

If X is a K3 surface and C is a holomorphic curve, then n = 2 and NC has
rank one and (8.2.20) becomes

NC = KC . (8.2.21)

This is consistent to the fact that remaining two scalar fields combine to form
a single one-form on C.

A global SO(6)R ghost number symmetry corresponds to the rotational sym-
metry of the six uncompactified dimensions. The six scalars transform as a
6v of SO(6) and the one-form is an SO(6)-singlet.
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twist submanifold (dimension) ambient manifold (dimension) SUSY

A-twist holomorphic curve (2) K3 surface (4) 16
2 = 8

B-twist holomorphic curve (2) Calabi-Yau 3-fold (6) 16
4 = 4

Table 8.15: Two types of topological twists for d = 2, N = 8 SYM theories, curved
D1-branes (submanifolds) and ambient manifolds.

2. B-twist

The fact that dim C = 2 and that there are four scalar fields means that
the theory describes 2-cycle C in 2 + (8− 4) = 6-dimensional manifold X.
The existence of the four preserved BRST charges indicates that 6-manifold
preserve 4

16 = 1
4 of the supersymmetry. From the above facts and Table 8.11,

X is a Calabi-Yau 3-fold and C is an holomorphic curve.

In this case (8.2.20) becomes

∧2 NC = KC (8.2.22)

and generally this is solved by

NC = K
1
2
C ⊗V (8.2.23)

where V is a rank two bundle with trivial determinant.

These results are summarized in Table 8.15

8.2.6 M2-branes and twisted BLG theory

The low-energy description of the two M2-branes wrapping curved three-fold are
as follows:

1. A-twist

The fact that dim C = 3 and that there are five scalar fields means that the
theory describes 3-cycle C in 3 + (8− 5) = 6-dimensional manifold X. The
existence of the four preserved BRST charges indicates that 6-manifold pre-
serve 4

16 = 1
4 of the supersymmetry. From the above facts and Table 8.11, X

is a Calabi-Yau 3-fold and C is a special Lagrangian submanifold.

Also it is known that the normal bundle NC can be identified with the cotan-
gent bundle T∗C [313]. This is consistent to the fact that the remaining three
scalar fields combine to form one 1-form on C.
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twist submanifold (dimension) ambient manifold (dimension) SUSY

A-twist Lagrangian (3) Calabi-Yau 3-fold (6) 16
4 = 4

B-twist associative (3) G2 manifold (7) 16
8 = 2

Table 8.16: Two types of topological twists for BLG model, curved M2-branes
(submanifolds) and ambient manifolds.

A global SO(5) ghost number symmetry corresponds to the rotational sym-
metry of the four uncompactified dimensions. The five scalars transform as
a 5v of SO(5) and the 1-form is an SO(5)-singlet.

2. B-twist

The fact that dim C = 3 and that there are three scalar fields means that
the theory describes 3-cycle C in 3 + (8− 4) = 7-dimensional manifold X.
The existence of the two preserved BRST charges indicates that 7-manifold
preserve 2

16 = 1
8 of the supersymmetry. From the above facts and Table 8.11,

X is a G2 manifold and C is an associative submanifold.

These results are summarized in Table 8.16 and same as that of D2-brane in-
stantons (Table 8.13).
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Chapter 9

Curved M2-branes and Topological
Twisting

In this chapter we will return to the study of the M2-branes and discuss that the
topologically twisted A4 BLG-model may describe the two wrapped M2-branes
around a holomorphic Riemann surface in Calabi-Yau manifold based on the work
of [51]. We will study the preserved supersymmetry on the wrapped branes
around a holomorphic Riemann surface inside a Calabi-Yau manifold in section
9.1, 9.2 and 9.3. In section 9.4 we will specify the appropriate twisting procedures
for our wrapped M2-branes.

9.1 M2-branes wrapping a holomorphic curve

Now we are ready to discuss the M2-branes wrapping curved Riemann surface.
Recall that the BLG action (4.1.31) and the ABJM action (5.1.1) may describe the
dynamics of probe membranes propagating in a fixed background geometry with
an SO(8) and an SU(4) holonomy respectively. For both cases, the world-volume
M3 is considered as a flat space-time R1,2 or R× T2. Now let us consider more gen-
eral situations where curved M2-branes reside in some fixed curved background
geometries. If we naively put the theory on a general three dimensional manifold,
all supersymmetries are broken. However, here we shall wrap the M2-branes on a
Riemann surface Σg of genus g that can preserve supersymmetry (i.e. supersym-
metric two-cycles) as the form

M3 = R× (Σg ⊂ X) (9.1.1)

where R is viewed as a time direction and X is a real 2(n + 1)-dimensional space
preserving supersymmetry with vanishing three-form gauge field. Thus far the
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only known supersymmetric two-cycles, i.e. calibrated two-cycles, in special holon-
omy manifolds are holomorphic two-cycles in Calabi-Yau spaces. The correspond-
ing two-form calibrations are Kähler calibrations. Accordingly we will take the
ambient space X as an (n + 1)-dimensional Calabi-Yau space and the other space
as flat. Namely the geometry of the M-theory is taken as

R1,8−2n × CYn+1. (9.1.2)

9.2 Supersymmetry in Calabi-Yau space

As a first step to count the number of preserved supersymmetries in our setup,
one should know the dimension of the vector space formed by the corresponding
Killing spinor ε, that is the amount of supersymmetries in the background geom-
etry. Since we are now considering the background geometries with vanishing
four-form flux, the Killing spinor equation is given by

∇Mε =
(

∂M +
1
4

ωMPQΓPQ
)

ε = 0 (9.2.1)

where ωMPQ, M, N, P, Q = 0, 1, · · · , 10 is an eleven-dimensional Levi-Civita spin
connection. This leads to the integrability condition

[∇M,∇N]ε =
1
4

RMNPQΓPQε = 0, (9.2.2)

which implies that a Killing spinor ε transforms as a singlet under the restricted
holonomy group H ⊂ Spin(1, 10) generated by RMNPQΓPQ. Therefore the amount
of preserved supersymmetries in the special holonomy manifold is equivalent to
the number of singlets in the decomposition of the spinor representation 32 of
Spin(1, 10) into the representation of the holonomy group H. In our case the
background geometries are taken as Calabi-Yau (n + 1)-folds with the holonomy
H = SU(n + 1), n = 1, 2, 3, 4 and the decompositions are as follows.

1. CY5

In this case the geometry is of the form R×CY5. This splits the Spin(10) into
SU(5) and the corresponding decomposition of the spinor representation is
given by

16 = 10− ⊕ 53 ⊕ 1−5

16′ = 10+ ⊕ 5−3 ⊕ 15. (9.2.3)
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Here the capital letters denote the representations of the SU(5) and the sub-
scripts stand for the U(1) charges which appear after the decomposition
Spin(10) → SU(5) × U(1). The existence of two singlets implies that the
space R× CY5 preserves 2

32 = 1
16 supersymmetries.

Let us define an explicit set of projections defining the Killing spinors. To
this end we need to specify how the Calabi-Yau spaces live in the eleven-
dimensional space-time. We shall consider the situations where the Calabi-
Yau manifolds fill in the order (x1, x2), (x9, x10), (x7, x8), (x5, x6) and (x3, x4).
Then the Killig spinors can be defined by the eigenvalues ±1 for the follow-
ing set of commuting matrices

Γ12910, Γ91078, Γ7856, Γ5634. (9.2.4)

The corresponding Killing spinors for CY5 can be defined by the projection

Γ12910ε = Γ91078ε = Γ7856ε = Γ5634ε = −ε. (9.2.5)

Note that this implies that Γ012ε = ε.

2. CY4

For this case the geometry is the product form R1,2 × CY4. This leads to the
decomposition of the Spin(8) into SU(4) and that of the spinor representa-
tion

8s = 60 ⊕ 12 ⊕ 1−2

8c = 4− ⊕ 4+. (9.2.6)

We see that the decomposition provides two singlets from sixteen compo-
nents. Thus the geometry R1,2 × CY4 can preserve 2

16 = 1
8 supersymmetries.

In this case the projection for the Killing spinor is given by

Γ12910ε = Γ91078ε = Γ7856ε = −ε. (9.2.7)

3. CY3

In this case the geometry is given by R1,4×CY3. This decomposes the Spin(6)
into SU(3) and correspondingly spinor representation decomposes as

4 = 3− ⊕ 13

4 = 3+ ⊕ 1−3. (9.2.8)
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The appearance of two singlets from eight components means that there
are 2

8 = 1
4 supersymmetries in the product space R1,4 × CY3. Therefore the

Killing spinor can be defined by the projection

Γ12910ε = Γ91078ε = −ε. (9.2.9)

4. CY2

For this case the geometry is the product space R1,6 × CY2. The decomposi-
tion of Spin(4) into SU(2)× SU(2) gives rise to that of the spinor represen-
tation

2 = (2, 1)

2′ = (1, 2). (9.2.10)

The presence of two singlets under one part of the SU(2) implies that there
are 2

4 = 1
2 supersymmetries in the geometry R1,6 × CY2. The corresponding

Killing spinors satisfy the projection

Γ12910ε = −ε. (9.2.11)

9.3 Calibration and supersymmetric cycle

As a next step we shall consider the situation where the M2-branes wrapping a
Riemann surface Σg propagate in a Calabi-Yau space without back reaction. In
order to hold supersymmetry on the world-volume, Σg turns out to be a cali-
brated two-cycle, i.e. holomorphic curve of a Calabi-Yau manifold. To see this let
us briefly review the background material concerning a calibration. In general a
calibration on a special holonomy manifold X is a differential p-form ϕ obeying
[27]

dϕ = 0, (9.3.1)

ϕ|Cp ≤ Vol|Cp , ∀Cp (9.3.2)

where Cp is any p-cycle in X and Vol is the volume form on the cycle induced from
the metric on X. Here the inequality is defined locally, namely ϕ|Cp = a ·Vol|Cp for
some a ∈ R, and ϕ|Cp ≤ Vol|Cp if a ≤ 1. A p-cycle Σ is said to be calibrated by ϕ if
it satisfies

ϕ|Σ = Vol|Σ. (9.3.3)
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We remark that a calibrated submanifold is a minimal surface in their homology
class because

Vol(Σ) =
∫

Σ
ϕ =

∫
Mp+1

dϕ +
∫

Σ′
ϕ =

∫
Σ′

ϕ ≤ Vol(Σ′) (9.3.4)

where Σ′ is another p-cycle in the same homology class such that ∂Mp+1 = Σ−Σ′.
It is known that Calabi-Yau (n + 1)-folds admit two different types of calibra-

tions; the Kähler form J and the real part of holomorphic (n + 1, 0)-form Ω. One
can construct calibrations as bilinear forms of spinors [315, 316]

JMN = iε†ΓMNε, (9.3.5)

ΩM1···Mn+1 = εTΓM1···M2(n+1)
ε. (9.3.6)

Now we consider the condition so that a bosonic configuration of membranes is
supersymmetric. Since one can always add a second probe brane without breaking
supersymmetry if it is wrapped on the supersymmetric cycle which the original
probe brane is wrapping, a simple way to find such condition is to analyze an
effective world-volume action of a single membrane [317]. The action for a super-
membrane coupled to d = 11 supergravity is given by [318]

S =
∫

d3x

[
1
2

√
−hhµν∂µXM∂νXNgMN −

1
2

√
−h

− i
√
−hhµνΘΓµ∇νΘ +

1
6

εµνλCMNP∂µXM∂νXN∂λXP + · · ·
]

(9.3.7)

where hµν, µ, ν = 0, 1, 2 is the metric of the world-volume, h = det(hµν), gMN, M =
0, 1, · · · , 10 is the d = 11 space-time metric. XM is a space-time coordinate and Θ
is a fermionic space-time coordinate. CMNP is a three-form gauge field, which is
now taken to be zero in our background geometries. The action (9.3.7) is invariant
under the rigid supersymmetry transformations

δεXM = iεΓMΘ, (9.3.8)

δεΘ = ε (9.3.9)

where ε is a constant anti-commuting eleven-dimensional spinor. Also the action
(9.3.7) has a local fermionic symmetry, called κ-symmetry. The κ-symmetry trans-
formation is given by

δκXM = 2iΘΓMP+κ(x), (9.3.10)

δκΘ = 2P+κ(x) (9.3.11)
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where κ(x) is a d = 11 spinor and the matrices

P± =
1
2

(
1± 1

6
√
−h

εµνλ∂µXM∂νXN∂λXPΓMNP

)
(9.3.12)

are projection operators satisfying

P2
± = 1, P+P− = 0, P+ + P− = 1. (9.3.13)

To extract the physical degrees of freedom, we must choose the suitable gauge
that fixes the local world-volume reparametrization and the local κ-symmetry. Let
us fix the reparametrization by choosing x0 = X0. Then the projection operator
(9.3.12) can be expressed as

P± =
1
2

(1± Γ) (9.3.14)

where

Γ :=
1

2
√

det(hΣij)
Γ0εij∂iXM∂jXNΓMN. (9.3.15)

Here hΣij, i, j = 1, 2 is the metric of the Riemann surface wrapped by the M2-

brane and
√

det(hΣij) is the area of the surface. As a next step we want to fix
the local κ-symmetry on the world-volume. In order for a bosonic world-volume
configuration to be supersymmetric, the global supersymmetry transformations
(9.3.9) need to be compensated for by the κ-symmetry transformations (9.3.11)

(δε + δκ) Θ = ε + 2P+κ(x) = 0. (9.3.16)

Acting P− on both sides we find that

P−ε =
1− Γ

2
ε = 0. (9.3.17)

Therefore the supersymmetry preserved by the M2-branes is given by the Killing
spinor ε which obeys the projection (9.3.16). Noting that Γ2 = 1 and Γ† = Γ, we
find that

ε† 1− Γ
2

ε = ε† (1− Γ)(1− Γ)
4

ε =
∣∣∣∣1− Γ

2
ε

∣∣∣∣2 ≥ 0. (9.3.18)

By normalizing the Killing spinors such that ε†ε = 1, the inequality (9.3.18) can be
rewritten as

Vol(Σg) ≥ ϕ (9.3.19)

247



M3 supersymmetry

R× (Σg ⊂ K3) 8

R× (Σg ⊂ CY3) 4

R× (Σg ⊂ CY4) 2

R× (Σg ⊂ CY5) 2

Table 9.1: The amounts of the preserved supersymmetries for the M2-branes wrap-
ping holomorphic curves Σg in Calabi-Yau spaces. Note that the M2-branes can
wrap a holomorphic curve in a CY5 without loss of the supersymmetries.

where Vol(Σg) =
√

det(hΣij) is the area of the Riemann surface and ϕ is the dif-
ferential two-form defined by

ϕ = −1
2

(εΓMNε) dXM ∧ dXN. (9.3.20)

Hence the two-form (9.3.20) satisfies the condition (9.3.2) for the calibration and
has the bilinear expression for Kähler calibration J (see (9.3.5)). Moreover it can be
shown that the two-form (9.3.20) obeys the other required condition (9.3.1) for the
calibration by noting the explicit expression (9.3.20) 1. Therefore we can conclude
that the two-form (9.3.20) is a Kähler calibration and that the supersymmetric two-
cycle Σg wrapped by the M2-branes is a calibrated two-cycle, i.e. a holomorphic
curve. Notice that (9.3.16) is precisely the chirality condition Γ012ε = ε imposed
on the supersymmetry parameters in the BLG-model (see (4.1.52)).

At this stage we are ready to count the number of preserved supersymmetries
in our M2-brane configurations by combining the two different types of projec-
tions; the projections (9.2.5), (9.2.7), (9.2.9) and (9.2.11) for the background Calabi-
Yau manifolds and the projection (9.3.16) (or (4.1.52)) for the membranes wrapped
around a calibrated two-cycle Σg. In most of the cases wrapped branes break half
of the supersymmetries preserved by the special holonomy manifolds according
to the additional projection for the branes wrapping calibrated cycles. However,
for the Calabi-Yau 5-fold the projection condition (9.3.16) for the M2-branes does
not give rise to a further constraint on the surviving two Killing spinors. This im-
plies that M2-branes can wrap a holomorphic curve in a Calabi-Yau 5-fold without
breaking down the supersymmetry. The amounts of preserved supersymmetries
by the M2-branes wrapping holomorphic curves Σg in Calabi-Yau spaces are sum-
marized in Table 9.1. Upon the dimensional reduction to R, the arising quantum
mechanics on R will have the same number of supersymmetries.

1It can also be checked by using the supersymmetry algebra [319].
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9.4 Topological twisting

In general a quantum field theory on the curved M2-branes interacts with gravity,
however, it is also possible to get a supersymmetric quantum field theory on R×
Σg by taking the appropriate decoupling limit lp → 0 while keeping the volume
of Σg and that of X fixed. In order to derive such low-energy effective theories on
the curved world-volume, we recall how the BLG-model describes the dynamics
of the flat M2-branes. In the BLG-model the fields and supercharges transform
under SO(2)E × SO(8)R as

X I
a : 8v0

Ψa : 8c+ ⊕ 8c−

ε : 8s+ ⊕ 8s−. (9.4.1)

The eight scalar fields X I’s transform as the vector representations of the R-symmetry
SO(8)R which represents the rotational group of the transverse space of the M2-
branes. In other words, they are sections of the normal bundle, which is trivial
in this case. However, corresponding to the geometry given in (9.1.1), now the
tangent bundle TX of the ambient Calabi-Yau manifold X is decomposed as

TX = TΣ ⊕ NΣ (9.4.2)

where TΣ is the tangent bundle over the Riemann surface Σg and NΣ is the normal
bundle over the surface. Therefore we need to take into account the existence of
the non-trivial normal bundle of calibrated cycles and to introduce new dynamical
variables instead of the original scalar fields. These transitions from scalars, i.e.
trivial normal bundle to the non-trivial normal bundles are intimately connected
with the way in which the field theory on R× Σg realizes supersymmetry. Along
with the coupling to the curvature on the Riemann surface, there now exists a cou-
pling to an external SO(2n) gauge group, the R-symmetry background. Thus one
can preserve supersymmetry on the holomorphic Riemann surface by choosing
the SO(2) Abelian background from the SO(2n) appropriately.

There is a beautiful observation that such an effective description for curved
branes can be obtained by topological twisting [28]. Here we attempt to twist
the BLG-model to obtain the low-energy descriptions for the curved M2-branes
2. Schematically topological twisting procedure can be achieved by replacing the
original Euclidean rotational group SO(2)E on the Riemann surface by a different

2 For the ABJM-model the geometric meaning of the topological twisting is less clear because the
classical SU(4)R R-symmetry reflects the orbifolds. In this paper we will focus on the BLG-model.
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subgroup SO(2)′E of SO(2)E × SO(8)R. Although there are many possible ways to
pick such subgroups, here we will consider the following decomposition

SO(8) ⊃SO(8− 2n)× SO(2n)

⊃SO(8− 2n)× SO(2)1 × · · · × SO(2)n. (9.4.3)

The SO(8− 2n) is a rotational group of the Euclidean space perpendicular to the
Riemann surface, while the SO(2)i are diagonal subgroups of the external SO(2n)
gauge group. The meaning of this decomposition is that the Calabi-Yau manifold
X enjoys the decomposable line bundles as the form

X = L1 ⊕ · · · ⊕ Ln → Σg. (9.4.4)

Under the decomposition (9.4.3), the R-charges for 8v, 8s and 8c are determined as
follows:

1. SO(8) ⊃ SO(6)× SO(2)1

8v =60 ⊕ 12 ⊕ 1−2

8s =4+ ⊕ 4−

8c =4− ⊕ 4+. (9.4.5)

2. SO(8) ⊃ SO(4)× SO(2)1 × SO(2)2

8v =400 ⊕ 102 ⊕ 10−2 ⊕ 120 ⊕ 1−20

8s =2++ ⊕ 2′+− ⊕ 2−− ⊕ 2′−+

8c =2−+ ⊕ 2′−− ⊕ 2+− ⊕ 2′++. (9.4.6)

3. SO(8) ⊃ SO(2)× SO(2)1 × SO(2)2 × SO(2)3

8v =2000 ⊕ 1002 ⊕ 100−2 ⊕ 1020 ⊕ 10−20 ⊕ 1200 ⊕ 1−200

8s =1+++ ⊕ 1++− ⊕ 1+−− ⊕ 1+−+ ⊕ 1−−+ ⊕ 1−−− ⊕ 1−+− ⊕ 1−++

8c =1−++ ⊕ 1−+− ⊕ 1−−− ⊕ 1−−+ ⊕ 1+−+ ⊕ 1+−− ⊕ 1++− ⊕ 1+++. (9.4.7)

4. SO(8) ⊃ SO(2)1 × SO(2)2 × SO(2)3 × SO(2)4

8v =10002 ⊕ 1000−2 ⊕ 10020 ⊕ 100−20 ⊕ 10200 ⊕ 10−200 ⊕ 12000 ⊕ 1−2000

8s =1++++ ⊕ 1++−− ⊕ 1+−−+ ⊕ 1+−+− ⊕ 1−−++ ⊕ 1−−−− ⊕ 1−+−+ ⊕ 1−++−

8c =1−+++ ⊕ 1−+−− ⊕ 1−−−+ ⊕ 1−−+− ⊕ 1+−++ ⊕ 1+−−− ⊕ 1++−+ ⊕ 1+++−.
(9.4.8)
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With one of the decompositions (9.4.5)-(9.4.8), we can now define a new generator
s′, i.e. the SO(2)′E charge by

s′ := s−
n

∑
i=1

aiTi. (9.4.9)

Here s denotes a generator of the original rotational group SO(2)E, Ti represents
a generator of the subgroup SO(2)i diagonally embedded in the external gauge
group SO(2n) and ai’s are the constant parameters characterizing the twisting
procedures. From now on we normalize these charges s′, s and Ti such that they
are twice as the usual spin on the Riemann surface. Since ai’s are related to the
degrees of the line bundles Li’s as

deg(Li) =

2|g− 1|ai for g 6= 1

ai for g = 1
(9.4.10)

and the degrees correspond to the first Chern classes, the conditions that X is
Calabi-Yau are given by

n

∑
i=1

ai =


−1 for g = 0

0 for g = 1

1 for g > 1

. (9.4.11)

Note that the Calabi-Yau conditions (9.4.11) simultaneously ensure the existence of
the covariant constant spinors in the twisted theories. One can easily check that the
topological twists underlying the decompositions (9.4.5), (9.4.6), (9.4.7) and (9.4.8)
preserve 8, 4, 2 and 2 supersymmetries as we expect for K3, CY3, CY4 and CY5.

Therefore given the decomposable line bundle structures of the Calabi-Yau
manifolds (9.4.4), we can determine the topological twisting procedure from the
two conditions (9.4.10) and (9.4.11). For a K3 surface, i.e. for a2 = a3 = a4 = 0,
the local geometry is T∗Σg and a single twisting parameter a1 is uniquely deter-
mined by the Calabi-Yau condition. For other Calabi-Yau spaces the Calabi-Yau
conditions are not so powerful and there are infinitely many ways of the twisting
characterized by ai, or the degrees of the line bundles.
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Chapter 10

SCQM from M2-branes in a K3
surface

In this chapter we will give further detailed investigation on the wrapped M2-
branes on the holomorphic Riemann surface of genus g > 1 in a K3 surface. Firstly
we will discuss the field content and the supersymmetry in the twisted theory and
their consistency in section 10.1. Then we will derive the twisted theory in section
10.2. Finally we will compactify the twisted theory on the Riemann surface and
find the IR quantum mechanics in section 10.3. The theory turns out to be the
N = 8 superconformal gauged quantum mechanics.

10.1 K3 twisting

In order to obtain the world-volume description for the membranes wrapping a
curved Riemann surface of genus g > 1 embedded in a K3 surface, we should
carry out the topological twisting utilizing the decomposition (9.4.5). Requiring
the existence of covariant constant spinors, the twisting procedure can be uniquely
determined since the external gauge field is nothing but an SO(2) Abelian back-
ground in this case. Note that the twisting for Σg = P1 can be realized just by the
orientation reversal.

The decomposition SO(2)E × SO(8)R → SO(2)′E × SO(6)R yields the new field
content and the supersymmetry parameters characterized by the following repre-
sentations for the twisted field theory with g > 1:

X I : 8v0 → 60 ⊕ 12 ⊕ 1−2

ε : 8s+ ⊕ 8s− → 40 ⊕ 42 ⊕ 4−2 ⊕ 40

Ψ : 8c+ ⊕ 8c− → 42 ⊕ 40 ⊕ 40 ⊕ 4−2. (10.1.1)

252



The results of the topological twisting for the components of fields and supersym-
metry parameters are shown in Table 10.1 and 10.2 respectively. In the twisted
theory the bosonic field content is six scalar fields φI transforming as 60 and one-
forms Φz, Φz transforming as 12 ⊕ 1−2. The fermionic field content is eight scalar
fields ψ, λ̃ as 40 ⊕ 40 and one-forms Ψz, Ψ̃z as 42 ⊕ 4−2. The supersymmetry pa-
rameters are eight scalars ε, ε̃ as 40 ⊕ 40 and one-forms ε̃z, εz as 42 ⊕ 4−2.

Here and hereafter we distinguish 4 and 4 in terms of tildes over the fermionic
objects.

We should note that there are six bosonic scalar fields and eight fermionic scalar
charges in the twisted theory. Since a Riemann surface is a real two-dimensional
manifold and there are six scalar fields, the theory should describe the circum-
stance where the two-cycle lives in a 2 + (8− 6) = 4-dimensional curved manifold
X. The existence of eight scalar supercharges indicates that the four-manifold
preserves 8

16 = 1
2 of the supersymmetries. This is the case where a holomorphic

Riemann surface Σg is embedded in a K3 surface.
Locally the K3 geometry is the cotangent bundle T∗Σg. The remaining two

scalar fields combine to yield one-forms on the Riemann surface. They represent
the motion of the M2-branes along the non-trivial normal bundle NΣ over the
Riemann surface inside the K3 surface. Under the SO(6) rotational group of the
six uncompactified dimensions, the six scalars transform as vector representations
6v and the one-forms are just singlets. We take the eleven-dimensional space-time
configuration as

0 1 2 3 4 5 6 7 8 9 10
K3 × ◦ ◦ × × × × × × ◦ ◦
M2 ◦ ◦ ◦ × × × × × × × ×
Σg × ◦ ◦ × × × × × × × ×

(10.1.2)

where ◦ denotes the direction in which the geometrical objects extend, while ×
denotes the direction in which they localize. Note that the projection (9.2.11) for the
K3 surface encodes the configuration (10.1.2). The world-volume of the M2-branes
extend to a time direction x0 and spacial directions x1, x2. The spacial directions
x1, x2 are tangent to the compact Riemann surface in the K3 surface. The normal
geometry of the M2-branes is divided into two parts; one is the normal bundle NΣ

inside the K3 surface, extending to two directions x9, x10 and the other is the flat
Euclidean space transverse to the K3 surface, labeled by x3, · · · , x8.
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SO(2)E SO(2)1 SO(2)′E L
φ1 0 0 0 O
φ2 0 0 0 O
φ3 0 0 0 O
φ4 0 0 0 O
φ5 0 0 0 O
φ6 0 0 0 O
Φz 0 2 −2 K−1

Φz 0 −2 2 K
Ψz1 1 −1 2 K
Ψz2 1 −1 2 K
Ψz3 1 −1 2 K
Ψz4 1 −1 2 K
λ̃1 1 1 0 O
λ̃2 1 1 0 O
λ̃3 1 1 0 O
λ̃4 1 1 0 O
Ψ̃z1 −1 1 −2 K−1

Ψ̃z2 −1 1 −2 K−1

Ψ̃z3 −1 1 −2 K−1

Ψ̃z4 −1 1 −2 K−1

ψ1 −1 −1 0 O
ψ2 −1 −1 0 O
ψ3 −1 −1 0 O
ψ4 −1 −1 0 O

Table 10.1: The twisting for bosonic scalar fields X I’s and fermionic fields Ψ’s of
the BLG-model when the Riemann surface of genus g > 1 is embedded in a K3

surface. L is the complex line bundle over Σg in which the fields take values. O
and K are the trivial bundle and the canonical bundle respectively.
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SO(2)E SO(2)1 SO(2)′E L
ε1 1 1 0 O
ε2 1 1 0 O
ε3 1 1 0 O
ε4 1 1 0 O
ε̃z1 1 −1 2 K
ε̃z2 1 −1 2 K
ε̃z3 1 −1 2 K
ε̃z4 1 −1 2 K
ε̃1 −1 −1 0 O
ε̃2 −1 −1 0 O
ε̃3 −1 −1 0 O
ε̃4 −1 −1 0 O
εz1 −1 1 −2 K−1

εz2 −1 1 −2 K−1

εz3 −1 1 −2 K−1

εz4 −1 1 −2 K−1

Table 10.2: The twisted supersymmetry parameters of the BLG-model probing a
K3 surface. The eight covariant constant spinors play the role of BRST generators
in the twisted theory. The result is consistent to the fact that a holomorphic curve
inside a K3 surface can preserve a half of the supersymmetries (see Table 9.1).
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10.2 Twisted theory

The space-time configuration (10.1.2) breaks down the space-time symmetry group
SO(1, 10) to SO(2)E × SO(6)R × SO(2)1. Then the SO(1, 10) gamma matrix can be
decomposed as 

Γµ = γµ ⊗ Γ̂7 ⊗ σ2 µ = 0, 1, 2

ΓI+2 = I2 ⊗ Γ̂I ⊗ σ2 I = 1, · · · , 6

Γi+8 = I2 ⊗ I8 ⊗ γi i = 1, 2

(10.2.1)

where 1 Γ̂I is the SO(6) gamma matrix obeying

{Γ̂I , Γ̂J} = 2δI J , (Γ̂I)† = ΓI (10.2.2)

Γ̂7 = −iΓ̂12···6 =

(
I4 0
0 −I4

)
. (10.2.3)

Similarly the SO(1, 10) charge conjugation matrix C is expressed as

C = ε⊗ Ĉ⊗ ε (10.2.4)

where ε := iσ2 is introduced as the charge conjugation matrix with the relations

εT = −ε, εγµε−1 = −(γµ)T (10.2.5)

while Ĉ is the SO(6) charge conjugation matrix satisfying 2

ĈT = −Ĉ, ĈΓ̂IĈ−1 = (Γ̂I)T, ĈΓ̂7Ĉ−1 = −(Γ̂7)T. (10.2.7)

Under the decomposition (10.2.1), the SO(8) chiral matrix becomes

Γ012 = Γ34···10 = I2 ⊗ Γ̂7 ⊗ σ2. (10.2.8)
1(d + 1)-th component of d = t + s dimensional gamma matrices can be defined by [320]

Γd+1 :=
√

(−1)
s−t

2 Γ12···d

where s and t are correspond to the dimension of space and time respectively. In the above case
s = 6 and t = 0 . Note that minus sign should be included in (10.2.3) since we are now considering
the decomposition of (4.1.6).

2 In even dimensional space-time, a charge conjugation matrix can be defined in two ways.
Instead of (10.2.7), we may define

ĈT = Ĉ, ĈΓ̂IĈ−1 = −(Γ̂I)T . (10.2.6)

However, Majorana spinors are only allowed for (10.2.7).
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For the twisted bosonic fields we set

φI := X I+2, (10.2.9)

Φz :=
1√
2
(X9 − iX10), Φz :=

1√
2
(X9 + iX10), (10.2.10)

Az :=
1√
2
(A1 − iA2), Az :=

1√
2
(A1 + iA2) (10.2.11)

where the bosonic scalar fields φI’s transform as the vector representations 6v of
the SO(6) global symmetry and the indices I = 1, · · · , 6 label the flat transverse
directions. The bosonic one-froms, Φz and Φz are the SO(6)-singlets and they
describe the motion in the normal geometry NΣ of the Riemann surface inside the
K3 surface. These Higgs fields φI , Φz and Φz are the 3-algebra valued.

Next, consider the twisted fermionic objects. Originally the fermionic fields Ψ
are SL(2, R) spinors that transform as the spinor representations 8c of the SO(8)R

R-symmetry. After the decompositions Spin(1, 10)→ Spin(2)× Spin(6)× Spin(2),
as seen from (10.1.1), the fermionic fields Ψ are split into the representations 42, 40,
40 and 4−2, whose component fields are denoted by Ψz, λ̃, ψ and Ψ̃z respectively.
Accordingly they can be expanded as

Ψαβ
A =

i√
2

ψA(γ+ε−1)αβ + iΨ̃zA(γzε−1)αβ − i√
2

λ̃A(γ−ε−1)αβ − iΨzA(γzε−1)αβ

(10.2.12)

where the three indices α, A and β denote the SO(2)E spinor, the SO(6)R spinor
and the SO(2)1 spinor respectively. Here we have introduced the matrices γ±, γz

and γz defined by

γ+ :=
1√
2
(I2 + σ2), γ− :=

1√
2
(I2 − σ2), (10.2.13)

γz :=
1√
2
(γ1 + iγ2) =

1√
2

(
i 1
1 −i

)
, (10.2.14)

γz :=
1√
2
(γ1 − iγ2) =

1√
2

(
−i 1
1 i

)
. (10.2.15)

As seen from (10.2.12), the above matrices enable us to carry out the topological
twisting, or in other words the identification of the index α with the index β. The
matrices γ+ and γz are associated with the conjugate spinor representations 8c−
and yield 40 and 4−2, while the other pair of matrices γ− and γz are associated
with 8c+ and give rise to 42 and 40. Together with the decomposition (10.2.8) and
the chirality condition (4.1.8) for Ψ, one can check that the expansion (10.2.12)
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leads to the relations; Γ̂7ψ = ψ, Γ̂7Ψ̃z = −Ψ̃z, Γ̂7λ̃ = −λ̃ and Γ̂7Ψz = Ψz. For the
A4 algebra all of these fermionic fields are the fundamental representations of the
SO(4) gauge group. We define the conjugate of the SO(6) spinors as

ψ := ψTĈ, λ̃ := λ̃TĈ, Ψz := ΨT
z Ĉ, Ψ̃z := Ψ̃T

z Ĉ. (10.2.16)

Likewise, the supersymmetry parameters originally transform as the SL(2, R)
spinor representations of the rotational group of the world-volume and 8s of the
SO(8) R-symmetry in the BLG-model, while in the twisted theory they reduce to
the four distinct representations 40, 42, 4−2 and 40. Thus we can write supersym-
metry parameters as

ε
αβ
A =

i√
2

ε̃A(γ+ε−1)αβ + iεzA(γzε−1)αβ − i√
2

εA(γ−ε−1)αβ − iε̃zA(γzε−1)αβ.

(10.2.17)

Here again the indices α, A and β label SO(2)E, SO(6)R and SO(2)1 respectively.
Since ε and ε̃ are fermionic scalars on an arbitrary Riemann surface, they are
identified with supercharges and hence the effective theory will be endowed with
the corresponding eight supercharges.

Plugging the expressions (10.2.1), (10.2.9), (10.2.10), (10.2.11) and (10.2.12) into
the original BLG Lagrangian (4.1.31), we find the topologically twisted BLG La-
grangian

L =
1
2
(D0φI , D0φI)− (DzφI , DzφI) + (D0Φz, D0Φz)− 2(DzΦw, DzΦw)

+ (λ̃, D0ψ) + (Ψz, D0Ψ̃z)− (Ψ̃z, D0Ψz)− 2i(Ψ̃z, Dzψ) + 2i(λ̃, DzΨz)

+
i
2
(λ̃Γ̂I J , [φI , φJ , ψ])− i(Ψ̃zΓ̂I J , [φI , φJ , Ψz])

+ 2i(ψΓ̂I , [Φz, φI , Ψz])− 2i(λ̃Γ̂I , [Φz, φI , Ψ̃z])

+ i(λ̃, [Φz, Φz, ψ])− 2i(Ψ̃w, [Φz, Φz, Ψw])

− 1
12

(
[φI , φJ , φK], [φI , φJ , φK]

)
− 1

2

(
[Φz, φI , φJ ], [Φz, φI , φJ ]

)
− 1

2

(
[Φz, Φw, φI ], [Φz, Φw, φI ]

)
− 1

2

(
[Φz, Φw, φI ], [Φz, Φw, φI ]

)
+

1
6

([Φz, Φw, Φv], [Φz, Φw, Φv]) +
1
2

([Φz, Φw, Φv], [Φz, Φw, Φv]) + LTCS.

(10.2.18)

Here we have introduced ( , ) as the trace form on the 3-algebra introduced in
(4.1.13) and we have defined the covariant derivatives Dz := 1√

2
(D1 − iD2) and

Dz := 1√
2
(D1 + iD2).
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Substituting the expressions (10.2.1), (10.2.9), (10.2.10), (10.2.11), (10.2.12) and
(10.2.17) into the supersymmetry transformations (4.1.49)-(4.1.51) for BLG theory,
we can read off the following BRST transformations

δφI
a = iε̃Γ̂I λ̃a − iεΓ̂Iψa, (10.2.19)

δΦza = −iε̃Ψza, (10.2.20)

δΦza = −iεΨ̃za, (10.2.21)

δψa = iD0φI
aΓ̂ε̃− 2DzΦzaε +

1
6
[φI , φJ , φK]aΓ̂I JK ε̃ + [Φz, Φz, φI ]aΓ̂I ε̃, (10.2.22)

δλ̃a = iD0φI
aΓ̂Iε− 2DzΦzaε̃− 1

6
[φI , φJ , φK]aΓ̂I JKε + [Φz, Φz, φI ]aΓ̂Iε, (10.2.23)

δΨza = −DzφI Γ̂I ε̃− iD0Φzε +
1
2
[Φz, φI , φJ ]aΓ̂I Jε +

1
3
[Φw, Φw, Φz]aε, (10.2.24)

δΨ̃za = DzφI
aΓ̂Iε + iD0Φzaε̃ +

1
2
[Φz, φI , φJ ]aΓ̂I J ε̃ +

1
3
[Φw, Φw, Φz]aε̃, (10.2.25)

δÃb
0a = −εΓ̂IφI

cψd f cdb
a − ε̃Γ̂IφI

c λ̃d f cdb
a − 2εΦzcΨ̃zd f cdb

a + 2ε̃ΦzcΨzd f cdb
a, (10.2.26)

δÃb
za = 2iεΓ̂IφI

cΨzd f cdb
a + 2iεΦzcλ̃d f cdb

a, (10.2.27)

δÃb
za = −2iε̃Γ̂IφI

cΨ̃zd f cdb
a + 2iε̃Φzcψd f cdb

a. (10.2.28)

10.3 Derivation of quantum mechanics

In the previous section we have derived the topologically twisted BLG-model as
the low-energy effective field theories on the curved M2-branes. Now we attempt
to reduce the theory further to a low-energy effective one-dimensional field theory
on R. As mentioned in the analysis for the membranes wrapped around a torus,
when the size of the Riemann surface shrinks, only the light degrees of freedom
are relevant. To keep track of them we have to find the static configurations that
minimize the energy, that is the zero-energy conditions. We can replace the zero-
energy conditions by a set of BPS equations. In addition, we set all the fermionic
fields to zero because we are interested in bosonic BPS configurations. Then the
BPS equations, which correspond to the vanishing conditions of the BRST trans-
formations (10.2.22)-(10.2.25) for the fermionic fields, are

DzφI = 0, DzφI = 0, (10.3.1)

DzΦz = 0, DzΦz = 0, (10.3.2)

[φI , φJ , φK] = 0, (10.3.3)

[Φz, Φz, φI ] = 0, [Φz, φI , φJ ] = 0, [Φz, φI , φJ ] = 0, (10.3.4)

[Φw, Φw, Φz] = 0, [Φw, Φw, Φz] = 0. (10.3.5)
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Note that due to the algebraic equations (10.3.3), (10.3.4) and (10.3.5), all the
bosonic Higgs fields have to lie in the same plane in the SO(4) gauge group. Thus
we can write them as

φI = (φI1, φI2, 0, 0)T, Φz = (Φ1
z, Φ2

z, 0, 0)T, Φz = (Φ1
z, Φ2

z, 0, 0)T. (10.3.6)

From the supersymmetry we can write the corresponding fermionic partners as

ψ = (ψ1, ψ2, 0, 0)T, λ̃ = (λ̃1, λ̃2, 0, 0)T, (10.3.7)

Ψz = (Ψ1
z, Ψ2

z, 0, 0)T, Ψ̃z = (Ψ̃1
z, Ψ̃2

z, 0, 0)T. (10.3.8)

The configurations (10.3.6)-(10.3.8) generically break the original SO(4) gauge group
down to U(1)×U(1). Taking into account these solutions and the BPS equations
(10.3.1), (10.3.2) we find that Ã1

z3 = Ã2
z3 = Ã1

z4 = Ã2
z4 = 0. This implies that these

components of the gauge field now become massive by the Higgs mechanism.
Then we should follow the time evolution for remaining degrees of freedom in the
low-energy effective theory.

To achieve this consistently we further need to impose the Gauss law constraint.
This requires that the gauge field is flat; F̃zz = 0. Recall that we are now consider-
ing the case where the genus of the Riemann surface is greater than one. In that
case the generic flat connections are irreducible. As long as we only consider ir-
reducible flat connections, the Laplacian has no zero modes. Accordingly it is not
allowed for scalar fields to have non-trivial values and it is required that φI = 0 3.
To sum up, the above set of equations over the compact Riemann surface of genus
g > 1 reduces to

F̃1
zz2 = 0, (10.3.9)

∂zΦz1 + Ã1
z2Φz2 = 0, (10.3.10)

∂zΦz2 − Ã1
z2Φz1 = 0. (10.3.11)

We now want to determine the generic BPS configuration obeying (10.3.9)-
(10.3.11). Since we are now considering a compact Riemann surface of genus
g, there are g holomorphic (1, 0)-forms ωi, i = 1, · · · , g and g anti-holomorphic
(0, 1)-forms ωi. Let us normalize them as∫

ai

ωj = δij,
∫

bi

ωj = Ωij (10.3.12)

with ai, bi being canonical homology basis for H1(Σg) (see Figure 10.1). The matrix
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Figure 10.1: A Riemann surface Σg of genus g. ai and bi generate H1(Σg).

Ω is the period matrix of the Riemann surface. It is a g × g complex symmetric
matrix with positive imaginary part. The equation (10.3.9) imposes the flatness
condition for the U(1) gauge field Ã1

z2. The space of the U(1) flat connection on
a compact Riemann surface is the torus known as the Jacobi variety denoted by
Jac(Σg). The flat gauge fields can be expressed in the form [284]

Ã1
z2 = −2π

g

∑
i,j=1

(
Ω−Ω

)−1
ij Θiωj, Ã1

z2 = 2π
g

∑
i,j=1

(
Ω−Ω

)−1
ij Θ

i
ω j (10.3.13)

where Θi := ζ i + Ωijξ
j represents the complex coordinate of Jac(Σg) which char-

acterizes the twists e2πiξ i
and e−2πiζ i

around the i-th homology cycles ai and bi.
Notice that ξ i → ξ i + mi, ζ i → ζ i + ni for ni, mi ∈ Z gives rise to the same point on
Jac(Σg). This implies that Jac(Σg) = Cg/LΩ where LΩ is the lattice generated by
Zg + ΩZg. We define a function

ϕ := −2π
g

∑
i,j=1

(
Ω−Ω

)−1
ij

(
Θi f j(z)−Θ

i f j(z)
)

(10.3.14)

where fi(z) :=
∫ z

ωi is the holomorphic function of z that obeys the relations
fi|aj = δij and fi|bj = Ωij. We then can express the flat gauge fields as

Ã1
z2 = ∂z ϕ, Ã1

z2 = ∂z ϕ. (10.3.15)

The above expressions (10.3.13) for the U(1) flat connection allows us to write the

3 Such BPS solutions with the irreducible connections have been considered in the four-
dimensional topologically twisted Yang-Mills theories defined on the product of two Riemann
surfaces [321, 36, 293] and the corresponding decoupling limit for the brane description has been
argued in [40].
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generic solutions to the equation (10.3.10) and (10.3.11) in the following forms:

Φz1(z, z)− iΦz2(z, z) =e−iϕ(z,z)
g

∑
i=1

xi
Aωi,

Φz1(z, z) + iΦz2(z, z) =eiϕ(z,z)
g

∑
i=1

xi
Bωi (10.3.16)

where xi
A, xi

B ∈ C are constant on the Riemann surface. Since we take the limit
where the Riemann surface Σg shrinks to zero size, the space-time configurations
of the membranes should be expressed as single-valued functions of z and z in the
low-energy effective quantum mechanics. In other words, ξ i and ζ i can only be
integers and therefore the U(1) flat gauge fields Ã1

z2 and Ã1
z2 are quantized. The

single-valuedness condition requires that the point of the Jac(Σg) is fixed.
Putting all together, the general bosonic BPS configurations are given by

φI = 0

Φz =
g

∑
i=1


1
2

(
e−iϕxi

A + eiϕxi
B
)

i
2

(
e−iϕxi

A − eiϕxi
B
)

0
0

ωi, Φz =
g

∑
i=1


1
2

(
eiϕxi

A + e−iϕxi
B

)
− i

2

(
eiϕxi

A − e−iϕxi
B

)
0
0

ωi,

Ãz =


0 ∂z ϕ(z, z) 0 0

−∂z ϕ(z, z) 0 0 0
0 0 0 Ã3

z4(z, z)
0 0 −Ã3

z4(z, z) 0

 (10.3.17)

where Ã3
z4 and Ã3

z4 are the Abelian gauge fields associated with preserved U(1)
symmetry and they do not receive any constraints from the BPS conditions.

By virtue of the supersymmetry we can write the corresponding fermionic
fields from the bosonic configurations (10.3.17) as

ψ = 0, λ̃ = 0,

Ψz =
g

∑
i=1


1
2

(
Ψi

A + Ψi
B
)

i
2

(
Ψi

A −Ψi
B
)

0
0

ωi, Ψ̃z =
g

∑
i=1


1
2

(
Ψ̃i

A + Ψ̃i
B
)

− i
2

(
Ψ̃i

A − Ψ̃i
B
)

0
0

ωi. (10.3.18)

By inserting the BPS configuration (10.3.17) and (10.3.18) into the twisted action
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(10.2.18), we find

S =
∫

R
dt
∫

Σg
d2z

[
(D0Φa

z, D0Φza) +
(

Ψa
z, D0Ψ̃za

)
−
(

Ψ̃
a
z, D0Ψza

)
− k

2π
Ã1

02F̃3
zz4 −

k
4π

(
Ã1

z2
˙̃A3

z4 − Ã1
z2

˙̃A3
z4

)]
. (10.3.19)

Since the gauge fields Ã1
z2, Ã1

z2 are quantized and there are no their time derivatives
in the effective action, we can integrate them out as the auxiliary fields. They give
rise to the constraints ˙̃A3

z4 = ˙̃A3
z4 = 0.

In order to perform the integration over the Riemann surface, we use the Rie-
mann bilinear relation [322]∫

Σg
ω ∧ η =

g

∑
i=1

[∫
ai

ω
∫

bi

η −
∫

bi

ω
∫

ai

η

]
. (10.3.20)

By carrying out the integration over the Riemann surface Σg we find the gauged
quantum mechanical action

S =
∫

R
dt

[
∑
i,j

(Im Ω)ij

(
D0xiaD0xj

a + ΨiaD0Ψ̃j
a − Ψ̃

ia
D0Ψj

a

)
− kC1(E)Ã1

02

]
.

(10.3.21)

Here the indices a = A, B stand for the two internal degrees of freedom for the
two M2-branes. The covariant derivatives are defined by

D0xi
A = ẋi

A + iÃ1
02xi

A, D0xi
B = ẋi

B − iÃ1
02xi

B, (10.3.22)

D0Ψi
A = Ψ̇i

A + iÃ1
02Ψi

A, D0Ψi
B = Ψ̇i

B − iÃ1
02Ψi

B, (10.3.23)

D0Ψ̃i
A = ˙̃Ψi

A − iÃ1
02Ψ̃i

A, D0Ψi
B = ˙̃Ψi

B + iÃ1
02Ψ̃i

B (10.3.24)

and the Chern number C1(E) ∈ Z is associated to the U(1) principal bundle
E → Σg over the Riemann surface

C1(E) =
∫

Σg
c1(E) =

1
2π

∫
Σg

d2zF̃3
zz4. (10.3.25)

The action (10.3.21) has the invariance under the one-dimensional SL(2, R) confor-
mal transformations

δt = f (t) = a + bt + ct2, δ∂0 = − ḟ ∂0, (10.3.26)

δxi
a =

1
2

ḟ xi
a, δÃ1

02 = − ḟ Ã1
02, (10.3.27)

δΨi
a = 0, δΨ̃i

a = 0. (10.3.28)
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The action (10.3.21) is also invariant under the N = 8 supersymmetry transforma-
tion laws

δxi
a = 2iε̃Ψi

a, δxi
a = 2iεΨ̃i

a, (10.3.29)

δΨi
a = −iD0xi

aε, δΨ̃i
a = iD0xi

aε̃, (10.3.30)

δÃ1
02 = 0. (10.3.31)

We thus conclude that the N = 8 superconformal gauged quantum mechanics
(10.3.21) may describe the low-energy effective motion of the two wrapped M2-
branes around Σg probing a K3 surface.

We see from the action (10.3.21) that the U(1) gauge field Ã1
02, due to the ab-

sence of the kinetic term, is regarded as an auxiliary field. In consequence the
gauge field has no contribution to the Hamiltonian. Hence the corresponding
gauge symmetry yields an integral of motion as a moment map µ : M → u(1)∗

and we can reduce the phase space M to Mc = µ−1(c) by fixing the inverse of the
moment map at a point c ∈ u(1)∗. Choosing a temporal gauge Ã1

02 = 0, we find
the action

S =
∫

R
dt ∑

i,j
(ImΩ)ij

(
ẋia ẋj

a + Ψia ˙̃Ψj
a − Ψ̃

ia
Ψ̇j

a

)
(10.3.32)

and the Gauss law constraint

φ0 := kC1(E) + i ∑
i,j

(ImΩ)ij

[
Kij + 2

(
Ψi

AΨ̃j
A −Ψi

BΨ̃j
B

)]
= 0 (10.3.33)

where

Kij :=
(

ẋi
Axj

A − xi
A ẋj

A

)
−
(

ẋi
Bxj

B − xi
B ẋj

B

)
. (10.3.34)

The constraint equation (10.3.33) requires that all states in the Hilbert space are
gauge invariant. In this case the symmetry of the system is not so large as in
the previous superconformal gauged quantum mechanical models (6.1.13) and
(7.1.17). It is curious to know whether the superconformal gauged quantum me-
chanics (10.3.21) (or (10.3.32) together with (10.3.33)) have a reduced Lagrangian
description with an inverse-square type potential. However, our result may drop
a hint on the obstructed construction of SCQM that a large class of SCQM could
be formulated as “gauged quantum mechanics” with the help of auxiliary gauge
fields as in [150, 151, 152].

It might be helpful to determine the corresponding supermultiplet for our
N = 8 superconformal quantum mechanics (10.3.21). We, however, do not fully
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understand it because our derivation does not rely on the superfield formulation
and the reduced quantum mechanical description has not been acquired so far.
Judging from the representations (10.1.1) of the physical variables under the re-
maining R-symmetry SO(6), the corresponding supermultiplet may be inferred as
the g sets of (2, 8, 6) multiplet. However, after integrating out the single auxiliary
gauge field Ã1

02, the physical degrees of freedom may be reduced and thus the
supermultiplets may be modified.

265



Chapter 11

Conclusion and Discussion

11.1 Conclusion

In this thesis we have established the new connection between two subjects; the
superconformal quantum mechanics and the M2-branes by examining the IR su-
perconformal quantum mechanics resulting from the multiple M2-branes wrapped
around a compact Riemann surface Σg after shrinking the size of the Riemann sur-
face.

We have seen that conformal symmetry and supersymmetry in quantum me-
chanics, i.e. one-dimensional field theory are rather out of the way in that they
contain numerous unfamiliar features which are not observed in higher dimen-
sional field theories.

Instead of the morbid Hamiltonian, one can label the state in terms of the
eigenstate of the compact operator L0 = 1

2(H + K) and the second Casimir opera-
tor of the SL(2, R) conformal symmetry group. Although one cannot assume the
existence of both normalizable conformally invariant states and invariant primary
operators due to the fact that the quantum mechanics is based on the Hilbert space
not on the Fock space, the 2-point, 3-point and 4-point functions which satisfy the
conformal constraints can be constructed by using those two defects [86, 87]. We
have also discussed the interesting observations [65, 66] that the motion of the par-
ticle near the horizon of the extreme Reissner-Nordström black hole is described
by the (super)conformal mechanics. This indicates that (super)conformal quan-
tum mechanics may caputure the information of the dual AdS2 gravity. Obviously
further surveys are needed to understand AdS2/CFT1 correspondence.

Due to the reduced Poincaré symmetry, one-dimensional supersymmetry has
the special properties that (i) the number of the component fields in the supermul-
tiplet is larger than the number N of supersymmetry if N is greater thatn eight
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and that (ii) the number n of physical bosonic component fields is not necessarily
same as that of the fermions. These facts allow us to construct various supermulti-
plets (n,N ,N − n) only forN = 1, 2, 4 and 8 supersymmetric quantum mechanics.
Indeed we have argued that for such supersymmetric quantum mechanics there
have been continuous attempts to construct superconformal mechanical models by
appealing the superspace and superfield formalism.

We have shown that the IR quantum mechanics arising from the BLG-model
and the ABJM-model wrapped on a torus are the N = 16 and N = 12 supercon-
formal gauged quantum mechanical models respectively. Furthermore after the
integration of the auxiliary gauge fields, we found that the OSp(16|2) quantum
mechanics (6.3.1) and SU(1, 1|6) quantum mechanics (7.3.1) emerge from the re-
duced theories. Both of them are N > 8 superconformal quantum mechanical
models which have not been available by the superspace and superfield formalism
so far. It is interesting to investigate their spectrums, wavefunctions and correla-
tion functions for those new superconformal mechanical models.

We have also surveyed the membranes wrapped around a genus g 6= 1 Rie-
mann surface. In this case the surface is singled out as a calibrated holomorphic
curve in a Calabi-Yau manifold to preserve supersymmetry. We have found that
the IR quantum mechanical models have N = 8, 4, 2 and 2 supersymmetries for
K3, CY3, CY4 and CY5 respectively. Especially when the Calabi-Yau manifolds are
constructed via decomposable line bundles over the Riemann surface, the K3 sur-
face essentially allows for a unique topological twist while for the other Calabi-Yau
manifolds there are infinitely many topological twists which are specified by the
degrees of the line bundles.

We have especially analyzed the two membranes wrapping a holomorphic
genus g > 1 curve embedded in a K3 surface based on the topologically twisted
BLG-model. We have found the new N = 8 superconformal gauged quantum
mechanics (10.3.21) that may describe the low-energy dynamics of the wrapped
M2-branes in a K3 surface. It is known that [150, 151, 152] there are the connec-
tions of the gauged quantum mechanics to the conformal mechanical models, the
Calogero model and their generalizations. An interesting question is what type of
interaction potential, if it exists, may characterize our superconformal “gauged”
quantum mehcanics (10.3.21). The structure of the resulting theory may indicate
that generic SCQM takes the form of superconformal gauged quantum mechanics
along with auxiliary gauge fields.
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11.2 Future directions

There may be a number of future aspects of the present work. In the following we
will briefly discuss the possible three applications.

11.2.1 AdS2/CFT1 correspondence

AdSd+1/CFTd correspondence [17] is an important example of the holographic
principle [323].

For d = 2 it has been shown [324] that the Hilbert space of the any quan-
tum gravity on an asymptotically AdS3 space-time is a representation of the two-
dimensional conformal group and that the central charge of the d = 2 CFT is given
by

c =
3l
2G

(11.2.1)

where l is the AdS3 radius and G is Newton constant. The relationship between the
BTZ black hole and the state in the two-dimensional CFT indicates that the entropy
of the black may be defined as the logarism of the degeneracy of the corresponding
states in the CFT. In this perspective the entropy of the d = 3 Baãdos-Teitelboim-
Zanelli (BTZ) black hole is computed by counting the states of the d = 2 conformal
field theory on the boudnary of AdS3 [325]

S = 2π

√
cnR

6
+ 2π

√
cnL

6
(11.2.2)

where nR and nL are the eigenvalues of the Virasoro generators L0 and L0 respec-
tively. For large L0 one can use the Cardy formula to evaluate the degeneracy of
the states and it has been shown [326, 327, 328, 329] that the result agrees with the
one obtained by Wald’s formula [330, 331, 332, 333].

The case of d = 1, i.e. AdS2/CFT1 correspondence [78, 334, 80, 79, 81, 83, 82,
335, 336, 337, 75, 84, 85, 338, 339, 340, 341, 76, 342, 343, 344] is less understood,
however, it is extremely significant case of AdSd+1/CFTd correspondence in that
all known extremal black holes contain the AdS2 factor in their near horizon ge-
ometries [345, 346]. The two candidates for the CFT1 have been proposed

(i) conformal quantum mechanics

(ii) a chiral half of a d = 2 CFT.

For the former only the global SL(2, R) acts nontrivially on the Hilbert space,
while in the in latter case one copy of the Virasoro generators acts nontrivially on
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the Hilbert space. In [341] the central charge for the CFT1 which corresponds to
the quantum gravity with a U(1) gauge field on AdS2 has been given by

c =
3kE2l4

4
(11.2.3)

where l is the AdS2 radius, E is the electric field and k is the level of the U(1) cur-
rent. The expression is similar to (11.2.1) for AdS3/CFT2 correspondence. It has
been discussed [78, 341] that the latter idea of the non-trivial action of the Virasoro
could be consistent and AdS2/CFT1 correspondence reduces to the CFT2/CFT2

duality on the strip. As discussed in [78, 341], this idea could be true when AdS2

is generated as a S1 compactification of AdS3, however, there may be other types
of the AdS2 which do not arise as a S1 compactification of AdS3 and therefore
the former possibility could still be a good candidate of the CFT1. In the for-
mer perspective, it has been proposed [343] that the logarithm of the ground state
degeneracy in a conformal quantum mechanics living on the boundary of AdS2

yields the definition of the entropy of the extremal black hole in the quantum the-
ory. Furthermore it has been pointed out in [86, 87] that the correlation functions of
the conformal quantum mechanics [54] have the expected scaling behaviors from
AdS2/CFT1 correpondence although one cannot assume the existence of the nor-
malized and conformal invariant vacuum states in conformal quantum mechanics
as in other higher dimensional conformal field theories. It is interesting to investi-
gate whether our superconformal quantum mechanics resulting from the wrapped
M2-branes around a compact Riemann surface in M-theory could provide some
examples of the AdS2/CFT1 correspondence in the former perspective.

11.2.2 Indices and the reduced Gromov-Witten invariants

Another topic is the computation of the indices and their applications. For in-
stance, the BPS partition function which gives rise to the counding of the BPS
states may be related to the number of the supersymmetric two-cycles of genus g in
our setup. Indeed, in the setup where the curved D3-branes wrapping supersym-
metric two-cycles embedded in K3 surface, the formula for the numbers of rational
curves with g double points on a K3 surface, the so-called reduced Gromov-Witten
invariants [347] has been conjectured by Yau and Zaslow [39] in the computation of
the BPS partition function by appealing the string duality. Closely related to their
setup, our N = 8 superconformal gauged quantum mechanics (10.3.21) appears
from the wrapped M2-branes instead of the D3-brane. It would be interesting to
compute the indices and to extract enumerative information and structure from
our model.
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In order to compute the indices we take a trace over the eigenstates. As dis-
cussed in section 2.2, it is difficult to calculate a trace over the eigenstate of the
Hamiltonian H for the superconformal quantum mechanics because there is no
normalizable ground state and its spectrum is continuous. As proposed in [73],
the indices in superconformal quantum mechanics can be defined by taking a trace
over the eigenstates of the compact operator L0 = 1

2(H + K) which has a normal-
izable ground state and the discrete eigenvalues with equal spacing as

I(O) = TrL0(−1)2JOe−β(L0−J) (11.2.4)

where J is the R-symmetry generator and O is some operator in the theory. It is an
open problem to evaluate indices and understand their physical and mathematical
implication for our superconformal quantum mechanics.

11.2.3 1d-2d relation

Finally we want to comment on the “1d-2d relation”, which is motivated by the
fascinating stories arising from the compactification of M5-branes, for example, the
AGT-relation [348], the DGG-relation [349] and the 2d-4d relation [350]. It has been
argued that the world-volume theories of multiple M5-branes can be described by
the six-dimensional superconformal field theories labeled by a simply-laced Lie
algebra g, the so-called (2, 0) theories. Via compactification, such theories leads
to a family T[M6−d, g] of d-dimensional superconformal field theories which can
be labeled by a choice of a specific manifold M6−d and a Lie algebra g. From this
perspective the AGT-relation, the DGG-relation and 2d-4d relation are regarded as
the decomposition of the six-dimensional world-volume of M5-branes as 6 = 4 + 2,
3 + 3 and 2 + 4 respectively.

On the other hand, the world-volume theories of multiple M2-branes can be
described by the three-dimensional superconformal field theories. Unlike the M5-
branes we know the explicit Lagrangian for such world-volume theories as the
BLG-model and the ABJ(M) model. It would be attractive to find the new rela-
tionship between the superconformal field theories and the geometries or relevant
dualities from M2-branes, i.e. “1d-2d relation” arising from the decomposition of
the three-dimensional world-volume of M2-branes as 3 = 1 + 2. As an exchange
of the order we may have two ways of the compactification

3d SCFT on R× Σg

↙ ↘
1d SCQM on R 2d TQFT on Σg,

(11.2.5)
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which suggests a new set of dualities in the sense that the partition functions or
indices on both sides yield the same result. As we discussed in section 3.5, the
WDVV equation [230, 231] and the twisted periods [232, 233] which are relevant
to two-dimensional geometries and topological field theories appear from the con-
straint conditions for the constructions of N = 4 superconformal mechanics. It
would be interesting to investigate whether our M-theoretical construction of su-
perconformal quantum mechanics could help to understand and generalize such
relations as the “1d-2d relation”.
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