<table>
<thead>
<tr>
<th>Title</th>
<th>An SDE approach to leafwise diffusions on foliated spaces and its applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>須崎, 清剛</td>
</tr>
<tr>
<td>Citation</td>
<td>大阪大学, 2015, 博士論文</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/52318</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
論文内容の要旨

力学系に対して不变測度に基づくエルゴード理論的手法は非常に有効であり、数学の様々な分野へ多くの興味深い結果を与えている。そして多様体上の非特異な流れによって表われる力学系が1次元の葉層付き空間を定めるように、葉層付き空間は力学系の一般化と考えることができる。したがって、もし葉層付き空間の力学系的性質を反映するような測度の族を見つけることができれば、我々はこれを用いて力学系のエルゴード理論から葉層付き空間上のエルゴード理論へと発展させることができる。1983年にGarnettはコンパクトな葉層付き多様体上に今日では各葉Brown運動と呼ばれる葉に沿ったバスを作り確率過程を考え、その不变測度を調和測度と呼び、その存在を明らかにした。さらに各葉Brown運動と調和測度の組に対してエルゴード理論におけるいくつかの基本的結論が成立することを示している。しかし、各葉Brown運動によって生成される線型半群のFeller性の説明には難点があったことが知られている。そこで2003年に発展方程式の一般論とHille-Yosidaの定理を用いて葉層付き空間上の各葉横断型微分分作
用率を合成素数とするFeller半群を構築したのがCandelである。さらにこの線型半群によって葉に沿ったバスを作り葉層付き空間上の拡散過程も導入されている。このような確率過程を本論文では各葉拡散過程と呼ぶことにする。

本論文の目的は、コンパクトな葉層付き空間上の各葉拡散過程を先行的研究とは異なる方法で構成することである。まず初めに、あるクラスの各葉拡散過程を構成するために葉層付き空間上の確率微分方程式を導入する。本論文の主目的の1つ目は、このような方程式が一意的な強い解をもつということである。このとき得られた解に対して、葉層付き空間は一般に多様体の構造をもつとは限らないことから、多様体上の確率微分方程式の解がもつような拡散点に関する連続性や滑らかさは期待できないことに注意する必要がある。そこで本論文では、得られた解が拡散点に関する連続性をもつことを示した。この性質は、Feller性よりも強い性質であることもわかる。

次に、コンパクト葉層付き空間上の2階の項をもたない2階の各葉横断型微分分作用素が与えられた場合を考える。このとき葉層付き空間の正規直交基底上主極限法を適用することで、与えられた作用素を合成作用素とするような各葉拡散演が得られる。このように本論文の構成方法は、多様体上の拡散過程の構成方法としてよく知られているEells-Elworthy-Malliavinの構成方法の類似へ応用できる。

他の応用として、本論文では調和確率測度に関してほとんどいたところの点を出発点とする各葉拡散過程のある変数の拡散に関して中心極限定理が成立することを示した。さらにこの極限定理を調和確率測度が一意的に存在する場合に適用した例を述べている。本論文における各葉拡散過程の構成は、これらの極限定理を多様体上の拡散過程の場合と同様の手法で証明することを可能にするものである。
論文審査の結果の要旨及び担当者

<table>
<thead>
<tr>
<th>氏名（職）</th>
<th>氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>主審</td>
<td>教授</td>
</tr>
<tr>
<td>副審</td>
<td>教授</td>
</tr>
<tr>
<td>副審</td>
<td>教授</td>
</tr>
<tr>
<td>副審</td>
<td>師教授</td>
</tr>
</tbody>
</table>

論文審査の結果の要旨

力学系の近傍挙動をとその不変測度を通して研究するエルゴード理論的手法は数学の様々な分野で応用され多くの興味深い結果を与えてきた。多様体上の非特異な流れの軌道を葉層構造の葉とみなすことによって、流れの定める力学系は特殊な1次元葉層付き空間とみなすことができる。実際、葉層多様体がRuelle-Sullivanカレントと呼ばれる横断測度をもつ場合には葉層多様体を力学系の観点から取り扱うことが可能であり、1970年代後半に作用素環論を含む多くの分野に影響を与えた。同時にコンパクト葉層多様体の重要なクラスには横断測度を許容しないものがいることともこのころ指摘されていた。L.Garnett は1983年に発表した論文で、コンパクト葉層Riemann多様体上に葉層に互いに断熱されたBrown運動を考えて、それをひととりにして得られる今日では各葉Brown運動と呼ばれている大域的な拡散過程の存在を示し、その調和測度、すなわち、拡散過程としての不変測度が横断測度の代替物として効果的に働くという重要な結果を得た。ここで注目すべきことは葉層多様体が横断測度を許容する場合には横断測度とGarnettの調和測度は同一の概念であり、調和測度は横断測度の自然な一般化になっていることである。しかしながら、Garnettの論文では一般には期待できない条件が用いられており、各葉Brown運動のFeller性と調和測度の存在の正当化は、2003年A.Candelが発展方程式におけるHille-Yosidaの定理を用いて葉層付き空間上の各葉相関型階層微分作用素を生成作用素とするFeller半群の構成に成功するまでの20年もの間未解決のままであった。

本論文では葉層付き空間上の確率微分方程式による接近性を用いて各葉拡散過程を構成するというCandelとは全く異なる方法によってGarnettの論文の要旨が解消されており注目する。より具体的には、本論文の主定理は、Candelが扱った拡散過程を含むあるクラスの各葉拡散過程を構成するために葉層付き空間上の確率微分方程式を導入し、それが一意的な強い意味の解を持つことを証明している。得られた解の出発点に関する葉に沿った滑らかさは標準的な方法で検証できるが、葉層付き空間は一般に多様体の構造をもつとは限らないため、通常の意味の大域的連続性は期待できない。この問題については確率連続性の成立という形で望ましい解が与えられている。したがって、本論文の主結論は葉層付き空間上の確率微分方程式の解をWiener過程として研究するための基礎を確立したという意味を有しており重要な結果といえる。

さらに本論文では主結論の応用として以下の二つの興味深い結果が示されている。最初の応用は、コンパクト葉層付き空間上に与えられた0階項を持たない各葉相関型微分作用素に関して、それに対応した各葉Riemann計量から定まる正規直交構造束上で主定理を適用することによって、与えられた作用素を生成作用素とするような各葉拡散過程を系统的に構成する方法を与えたことである(Rallis-Worthy-Malliavinの構成法の類似)。もう一つの応用は、調和確率測度に関して‘ほとんどないところ’の点を出発点とする各葉拡散過程のある種の加減的均質性についての中心極限定理が、コンパクト多様体上の非退化拡散過程の場合と同様の手法で証明できることを示したことである。

よって、本論文は博士(理学)の学位論文として十分価値のあるものと認められる。