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An SDE approach to leafwise diffusions on foliated spaces

and its applications

KIYOTAKA SUZAKI

Abstract. We construct leafwise diffusions on foliated spaces via SDE approach. The

obtained diffusions are stochastically continuous and hence have the Feller property.

Moreover our construction enables us to prove a central limit theorem for the leafwise

diffusion on a compact foliated space in the same way as for a diffusion on a compact

manifold.

1. Introduction

The ergodic theory of dynamical systems with invariant measures is well-studied and has

been supplying many interesting results to various branches of mathematics. Foliations,

and consequently foliated spaces are regarded as generalization of dynamical systems. For

example, a nonsingular flow on a manifold corresponds to a foliation with one-dimensional

leaves. Therefore if we can find a class of measures which inherits dynamical properties

of foliated spaces, we can naturally extend the ergodic theory of dynamical systems to

that of foliated spaces. In 1983, Garnett [5] considered a stochastic process along the

leaves on a compact foliated Riemannian manifold, which is called a leafwise Brownian

motion. She called the invariant measures for the leafwise Brownian motion harmonic

measures and showed the existence of them. Moreover, she obtained some basic results

in the ergodic theory; however, she could not prove the Feller property of the semi-group
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theorem .
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2 K. SUZAKI

generated by the leafwise Brownian motion. It was Candel who proved this property in his

paper [1]. He used a method for solving evolution equations and the Hille-Yosida theorem

to construct a Feller semi-group generated by a leafwise elliptic differential operator on

a foliated space. A diffusion process along the leaves was also constructed by using this

semi-group. We call such a process a leafwise diffusion process (leafwise diffusion for

short). The basic facts for foliated spaces, leafwise diffusions and harmonic measures are

available in [2], [3] and [17].

Our purpose is to construct leafwise diffusions on a compact foliated space by an alter-

native approach. First we introduce stochastic differential equations on the foliated space

to obtain a class of diffusions. It is shown that each of the equations has a unique strong

solution (Theorem 2.1). We have to note that the solution cannot be expected to have a

regularity with respect to starting points as a solution of SDE on a manifold has. Since

foliated spaces do not always have a manifold structure by definition, the solution has

the tangential regularity but does not always have the transverse regularity with respect

to starting points. But we can show that the stochastic continuity of the solution with

respect to starting points (Theorem 2.1). This is strong enough for establishing the Feller

property. It should be noted that Kanai [7] discusses the transverse regularity of leafwise

diffusions on a special foliated manifold.

Next we verify that for any second order leafwise elliptic differential operator without

zero order term, there exists a leafwise smooth Riemannian metric such that the operator

is expressed as the sum of a leafwise smooth vector field and the leafwise Laplace-Beltrami

operator induced by the metric. Applying our results to a stochastic differential equation

on the bundle of orthonormal frames of the foliated space, we obtain a leafwise diffusion
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generated by the operator. In particular, the leafwise diffusion is obtained as a map

defined on the classical Wiener space. Thus our results are applicable to an analogue of

the well-known Eells-Elworthy-Malliavin construction of a diffusion on a manifold, the

details of which can be found in [6, Chapter V-4].

As another application we prove a central limit theorem for a class of additive function-

als of the leafwise diffusion starting at almost every point with respect to any harmonic

measure (Theorem 2.8). Moreover we apply the result to the case when there is only one

harmonic measure (Theorem 4.4). Our construction of leafwise diffusions enables us to

prove these limit theorems in the way used in [15], in which limit theorems for a diffusion

on a compact manifold were proved. We also note that the Feller property and the limit

theorems are obtained in [14] more easily than in the present paper when the underlying

leafwise diffusion is the leafwise Brownian motion on a mapping torus.

2. Preliminaries and main results

First of all we introduce some notation and basic facts. Let W1, W2 be topological

spaces and U an open set of Rd × W1. Let k be a nonnegative integer. A function

f : U → R is said to be of class Ck
L on U if f(·, z) is of Ck for any z and

U ∋ (y, z) 7→ ∂i1+i2+···+id

∂i1y1 · · · ∂idyd
f(y, z) ∈ R

is continuous for any multi-index (i1, i2, . . . , id) with i1 + i2 + · · · + id ≤ k. A map

f : U → Rp is said to be of class Ck
L if each of the component functions is of class Ck

L on

U . Let V be an open set of Rp ×W2. A map f : U → V is said to be of class Ck
L if it is

locally of the form f(y, z) = (f1(y, z), f2(z)), where f1 is of class C
k
L and f2 is continuous.
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In this paper we call a map f : U → V a leafwise smooth map if it is of class Ck
L for any

nonnegative integer k.

Let M , Z be locally compact, separable, metrizable spaces. M is a d-dimensional

foliated space (modeled transversely on Z) if there exist an open cover U = {Uα} of M

and homeomorphisms {φα : Uα → Bα,1 ×Bα,2} such that if Uα ∩Uβ ̸= ∅, then φβ ◦φ−1
α :

φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) is leafwise smooth, where Bα,1 and Bα,2 are open sets of

Rd and Z, respectively. Such a pair (Uα, φα) is called a foliated chart and U is called a

foliated atlas. For convenience we sometimes write (yα, zα) instead of φα. A plaque is a

set of the form φ−1
α (Bα,1 × {z}). We may assume that U is regular. That is,

(1) For each α, Uα is a compact subset of a foliated chart (Wα, ψα) and φα = ψα|Uα .

Hence we can consider the plaques of Uα.

(2) U is locally finite.

(3) Given foliated charts (Uα, φα), (Uβ, φβ) ∈ U and a plaque P ⊂ Uα, then P meets

at most one plaque of Uβ.

For any x ∈M , we put

Lx = {y ∈M : there exist plaques P1, P2, . . . , Pn

such that x ∈ P1, y ∈ Pn and Pi ∩ Pi+1 ̸= ∅ for 1 ≤ i ≤ n− 1} .

The subset Lx of M is called the leaf passing through x ∈ M . M is decomposed into

the leaves L = {Lλ}λ∈Λ. One can easily see that each of the leaves is a d-dimensional

smooth manifold. References for these fundamentals are found in [2, Chapter 11] and [13,

Chapter II].
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Next we introduce function spaces and tensor fields on M in the same way as in the

case of manifolds in [6, Chapter V]. In what follows, we assume that M is compact. Let

C(M) be the Banach space of continuous functions on M endowed with the supremum

norm ∥·∥∞. Given a nonnegative integer k, we denote by Ck
L(M) the totality of functions

f satisfying that f ◦ φ−1 : U → R is of class Ck
L for any foliated chart (U,φ). Note that

C0
L(M) = C(M). Let C∞

L (M) be the intersection
∩
k≥0

Ck
L(M). A function on M is called

a leafwise smooth function if it belongs to C∞
L (M). One can easily construct a leafwise

smooth function separating given two points in M and hence C∞
L (M) is dense in C(M)

by the Stone-Weierstrass theorem.

In the following, we use the Einstein summation convention, i.e., the summation sign

is omitted for repeated indices appearing once at the top and once at the bottom. For

any point x ∈M , we denote by Tx(L)pq the tensor product

Tx(Lx)⊗ Tx(Lx)⊗ · · · ⊗ Tx(Lx)︸ ︷︷ ︸
p

⊗Tx(Lx)
∗ ⊗ Tx(Lx)

∗ ⊗ · · · ⊗ Tx(Lx)
∗︸ ︷︷ ︸

q

.

A foliated chart (U, (y, z)) containing x naturally induces a basis

(2.1)

{(
∂

∂yi1

)
x

⊗
(

∂

∂yi2

)
x

⊗ · · · ⊗
(

∂

∂yip

)
x

⊗
(
dyj1

)
x
⊗
(
dyj2

)
x
⊗ · · · ⊗

(
dyjq

)
x

: i1, i2, . . . , ip, j1, j2, . . . , jq = 1, 2, . . . , d

}

of Tx(L)pq . A leafwise smooth (p, q)-tensor field onM is a map u : M ∋ x 7→ u(x) ∈ Tx(L)pq

whose components
{
u
i1,i2,...,ip
j1,j2,...,jq

(y, z)
}

with respect to the basis (2.1) are leafwise smooth

in every foliated chart. The family
{
u
i1,i2,...,ip
j1,j2,...,jq

(y, z)
}
of components satisfies a rule under
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a change of coordinates (y, z) 7→ (ỹ, z̃) :

(2.2) ũ
i1,i2,...,ip
j1,j2,...,jq

(ỹ, z̃) =
∂ỹi1

∂yk1
∂ỹi2

∂yk2
· · · ∂ỹ

ip

∂ykp
∂yl1

∂ỹj1
∂yl2

∂ỹj2
· · · ∂y

lq

∂ỹjq
u
k1,k2,...,kp
l1,l2,...lq

(y, z).

Conversely, if a family
{
u
i1,i2,...,ip
j1,j2,...,jq

(y, z)
}

of leafwise smooth functions is defined in every

foliated chart and satisfies the rule (2.2), then there exists a unique leafwise smooth

(p, q)-tensor field whose components coincide with it. By definition, if L is a leaf of M ,

the restriction of u to L is a usual smooth (p, q)-tensor field on L. A leafwise smooth

(1, 0)-tensor field is called a leafwise smooth vector field. A leafwise smooth (0, 2)-tensor

field g = {gij(y, z)} is called a leafwise smooth Riemannian metric on M if the matrices

{(gij(y, z))} are symmetric and positive definite. There exist many such tensor fields since

every open cover of M admits a subordinate leafwise smooth partition of unity (see [13,

Proposition 2.8]). We introduce a leafwise smooth vector field onM for later convenience.

Given a leafwise smooth Riemannian metric g onM and f ∈ C1
L(M), the leafwise gradient

gradLf =
{
(gradLf)

i (y, z)
}
of f is defined by

(2.3) (gradLf)
i (y, z) = gij(y, z)

∂f

∂yj
(y, z)

in each foliated chart (U, (y, z)). The length ∥gradLf(x)∥g of gradLf at x is also defined

by ∥gradLf(x)∥g =
√
g(x)(gradLf, gradLf). The function x 7→ ∥gradLf(x)∥g is expressed

as

(2.4) ∥gradLf(y, z)∥g =

√
gij(y, z)

∂f

∂yi
(y, z)

∂f

∂yj
(y, z)
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in each foliated chart (U, (y, z)).

Now we consider a stochastic differential equation on M . Given leafwise smooth vector

fields A0, A1, . . . , Ar on M , we consider the following stochastic differential equation

(2.5) dX(t) = Aα(X(t)) ◦ dBα(t) + A0(X(t)) dt.

Let (Ω,F , P, (Ft)t≥0) be a usual filtered probability space, i.e., (Ω,F , P ) is a complete

probability space and (Ft)t≥0 is a right-continuous filtration such that F0 contains all P -

null sets. For example, the classical r-dimensional Wiener space with canonical filtration(
W r

0 ,FW , PW , (FW
t )t≥0

)
is a usual filtered probability space, where W r

0 is the totality

of continuous maps w : [0,∞) → Rr with w(0) = 0 endowed with the compact-open

topology, PW is the r-dimensional Wiener measure, FW is the completion of the topo-

logical Borel σ-field of W r
0 by PW and FW

t is the σ-field generated by the Borel cylinder

sets up to time t and all PW -null sets. Let WL(M) be the totality of continuous maps

ω : [0,∞) → M such that the image is contained in a single leaf. It is easy to see that

WL(M) endowed with the compact-open topology is a complete, separable, metrizable

space. We denote by B(WL(M)) and Bt(WL(M)) the topological Borel σ-field of WL(M)

and the sub-σ-field of B(WL(M)) generated by the Borel cylinder sets up to time t, re-

spectively. The σ-fields B(M), B(W r
0 ), Bt(W

r
0 ) etc. are defined similarly. We say that an

(Ft)-adapted, WL(M)-valued random variable X = {X(t)}t≥0 on (Ω,F , P, (Ft)t≥0) is a

solution of (2.5) if there exists an r-dimensional (Ft)-Brownian motion B = {B(t)}t≥0
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with B(0) = 0 such that

(2.6) f(X(t))− f(X(0)) =

∫ t

0

(Aαf) (X(s)) ◦ dBα(s) +

∫ t

0

(A0f) (X(s)) ds P -a.s.

for any f ∈ C2
L(M), where the first term on the right-hand side is understood in the sense

of the Fisk-Stratonovich integral (see [6, Chapter III-1] ).

For any topological space S and any Borel probability measure µ on S, we put

F(S)µ = (B(S)⊗ B(W r
0 ))

µ⊗PW

= the completion of B(S)⊗ B(W r
0 ) by µ⊗ PW ,

Ft(S)
µ = (B(S)⊗ Bt(W

r
0 )) ∨N (µ⊗ PW )

= the σ-field generated by B(S)⊗ Bt(W
r
0 ) and all µ⊗ PW -null sets,

and

F̂(S) =
∩

µ : Borel probability measure on M

F(S)µ, F̂t(S) =
∩

µ : Borel probability measure on M

Ft(S)
µ.

In the next section we will construct solutions {Xx}x∈M of (2.5) on the Wiener space(
W r

0 ,FW , PW , (FW
t )t≥0

)
such that Xx(0) = x PW -a.s. for each x ∈ M . Furthermore, we

will see that the family {Xx}x∈M of stochastic processes is stochastically continuous with

respect to x. Precisely we will obtain the following.

Theorem 2.1. There exists a map F : M ×W r
0 →WL(M) satisfying the following:

(1) F is F̂(M) /B(WL(M))-measurable.

(2) F is F̂t(M) /Bt(WL(M))-measurable for any t ≥ 0.
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(3) Suppose that an (Ft)-adapted, WL(M)-valued random variable X = {X(t)}t≥0 is

a solution of (2.5) with an (Ft)-Brownian motion B = {Bt}t≥0 on a usual filtered

probability space (Ω,F , P, (Ft)t≥0). Then X = F (X(0), B) P-a.s.

(4) If B = {B(t)}t≥0 is an (Ft)-Brownian motion and ξ is an M-valued F0-random

variable on (Ω,F , P, (Ft)t≥0), then F (ξ, B) is a solution of (2.5) on (Ω,F , P, (Ft)t≥0)

with the initial value ξ.

Therefore, if we define a map Xx : W r
0 → WL(M) for a fixed x ∈ M by Xx(t, w) =

F (x,w)(t) for (t, w) ∈ [0,∞) × W r
0 , then the stochastic process Xx = {Xx(t)}t≥0 is a

solution of (2.5) with the Brownian motion w = {w(t)}t≥0 and the initial distribution δx

on
(
W r

0 ,FW , PW , (FW
t )t≥0

)
. Furthermore, if dM is a metric on M , then for any ϵ > 0

and T > 0, there exists δ > 0 such that

PW

(
sup

0≤t≤T
dM(Xx(t), X x̃(t)) < ϵ

)
≥ 1− ϵ

for any x, x̃ ∈M with dM(x, x̃) < δ.

The proof of Theorem 2.1 will be given in the next section.

Remark 2.2. (1) We sometimes write X(t, x, w) instead of Xx(t, w) for convenience.

The pathewise uniqueness (the assertion (3) in the above) yields that if σ is a bounded(
FW

t

)
-stopping time, then X(t+ σ(w), x, w) = X(t,X(σ(w), x, w), θσ(w)) for t ≥ 0, PW -

a.s.w, where θσ : W r
0 →W r

0 is defined by θσw(·) = w(·+σ(w))−w(σ(w)). In particular,

the family of laws of the stochastic processes {Xx}x∈M is a strongly Markovian system.

(2) If M has a smooth manifold structure and A0, A1, . . . , Ar are smooth vector fields

on M , then {Xx}x∈M has a modification such that the map x 7→ X(t, x, w) is smooth
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PW -a.s.w for any t ≥ 0 (see [6, Theorem V-2.4]). Therefore we easily see that the family

{Xx}x∈M has the Feller property. As seen from the Corollary below, we need the latter

part of Theorem 2.1 to show that the family {Xx}x∈M has the Feller property in the

general case.

We put

(2.7) T (t)f(x) = E [f(Xx(t))]

for any bounded Borel measurable function f on M and t ≥ 0. From Theorem 2.1, we

see that the family of positive operators {T (t)}t≥0 turns out to be a Feller semi-group on

C(M) with a closed extension of A = (1/2)
∑

αAαAα+A0 as the infinitesimal generator.

Corollary 2.3. We have the following:

(1) For any t ≥ 0 and f ∈ C(M), ∥T (t)f∥∞ ≤ ∥f∥∞.

(2) For any t ≥ 0 we have T (t)C(M) ⊂ C(M).

(3) For t, s ≥ 0 and f ∈ C(M), we have T (t+ s)f = T (t)T (s)f .

(4) For any f ∈ C(M), lim
t↓0

∥T (t)f − f∥∞ = 0.

(5) The infinitesimal generator of the semi-group {T (t)}t≥0 is an extension of A and

the domain contains C2
L(M).

Proof. The assertion (1) is obvious from (2.7). Take any f ∈ C(M) and x ∈M . For any

ϵ > 0, we can choose δ > 0 such that |f(x)− f(x̃)| < ϵ whenever dM(x, x̃) < δ. Thus we
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have

|T (t)f(x)− T (t)f(x̃)| ≤ E
[∣∣f(Xx(t))− f(X x̃(t))

∣∣]
≤ E

[∣∣f(Xx(t)− f(X x̃(t))
∣∣ : dM(Xx(t), X x̃(t)) < δ

]
+ E

[∣∣f(Xx(t))− f(X x̃(t))
∣∣ : dM(Xx(t), X x̃(t)) ≥ δ

]
< ϵ+ 2 ∥f∥∞ PW

(
dM(Xx(t), X x̃(t)) ≥ δ

)
→ ϵ (x̃→ x)

by Theorem 2.1. This implies that the assertion (2) is valid. The assertion (3) follows from

the Markov property of the stochastic processes {Xx}x∈M . To verify the assertion (4) it

suffices to show that lim
t↓0

∥T (t)f − f∥∞ = 0 for any f ∈ C2
L(M). Since Xx = {Xx(t)}t≥0

is a solution of (2.5) with the initial distribution δx, we have

(2.8) f(Xx(t))− f(x) = a martingale with mean 0 +

∫ t

0

Af(Xx(s)) ds.

By taking expectation and supremum norms in the both sides we obtain

∥T (t)f − f∥∞ ≤
∥∥∥∥E [∫ t

0

Af(Xx(s)) ds

]∥∥∥∥
∞

≤ ∥Af∥∞ t→ 0 (t→ 0).

Thus the assertion (4) is valid. It remains to prove the assertion (5). We have to show

that

lim
t→0

∥∥∥∥T (t)f − f

t
− Af

∥∥∥∥
∞

= 0
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for any f ∈ C2
L(M). From the equation (2.8) and the Fubini theorem we have

T (t)f(x)− f(x) =

∫ t

0

T (s)Af(x) ds.

Therefore we have

∥∥∥∥T (t)f − f

t
− Af

∥∥∥∥
∞

≤ 1

t

∫ t

0

∥T (s)Af − Af∥∞ ds.

Applying the assertion (4) to Af , we obtain the desired result. □

Now we construct a diffusion process generated by a leafwise ellptic differential operator

with assuming the validity of Theorem 2.1. We say that a linear operator A : C2
L(M) →

C(M) is a second order leafwise elliptic differential operator (without zero order term) on

M if it is expressed as

Af(y, z) =
1

2
αij(y, z)

∂2

∂yi∂yj
f(y, z) + βi(y, z)

∂

∂yi
f(y, z)

for f ∈ C2
L(M) in each foliated chart (U, (y, z)), where the coefficients αij, βi, i, j =

1, 2, . . . , d are leafwise smooth and the matrices {(αij(y, z))} are symmetric, positive defi-

nite. The function Af is also defined by the local expression if f is of class C2 along each

leaf. The family {αij(y, z)} of leafwise smooth functions defines a (2, 0)-tensor field on

M and hence we see that the inverse matrices {(gij(y, z))} of {(αij(y, z))} defines a leaf-

wise smooth Riemannian metric g = {gij(y, z)} on M . Let
{
(Γg)

k
ij (y, z)

}
be the leafwise

Levi-Civita connection and ∆g the leafwise Laplace-Beltrami operator induced by g on
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M . That is, in any foliated chart (U, (y, z)),

(Γg)
k
ij (y, z) =

1

2

(
∂

∂yi
gmj(y, z) +

∂

∂yj
gim(y, z)−

∂

∂ym
gij(y, z)

)
gkm(y, z),

where (gij(y, z)) = (gij(y, z))
−1, and

∆gf(y, z) = gij(y, z)
∂2

∂yi∂yj
f(y, z)− gij(y, z) (Γg)

k
ij (y, z)

∂

∂yk
f(y, z).

We define leafwise smooth functions {bi(y, z)} in every foliated chart by

bi(y, z) = βi(y, z) +
1

2
gjk(y, z) (Γg)

i
jk (y, z).

Then we see that b = {bi(y, z)} is a leafwise smooth vector field and

(2.9) A =
1

2
∆g + b.

Therefore any second order leafwise smooth elliptic differential operator can be expressed

as the form (2.9).

We consider sets

GL(L) =
{
r = (x, e) : e is a base of Tx(L)10

}

and

O(L) =
{
r = (x, e) : e is an orthonormal base of Tx(L)10 with respect to g

}
.
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For λ ∈ Λ, let GL(Lλ) be the bundle of linear frames and O(Lλ) the bundle of orthonormal

frames on (Lλ, g|Lλ
). We can easily show that GL(L) and O(L) are foliated spaces with

{GL(Lλ)}λ∈Λ and {O(Lλ)}λ∈Λ as the leaves, respectively. Indeed, a foliated atlas U =

{(Uα, φα)} of M gives a foliated atlas of GL(L) as follows. For each α, we define a set Ũα

by

Ũα = {r = (x, e) ∈ GL(L) : x ∈ Uα}

and a map φ̃ from Ũ onto φα(Uα)×GL(d,R) ⊂ Rd × Z × Rd2 by

φ̃α(r) = φ̃α(x, e) = (φα(x), (e
i
j, i, j = 1, 2, . . . , d)),

where e = (e1, e2, . . . , ed) and

ej = eij

(
∂

∂yiα

)
x

∈ Tx(L)10.

The pair (Ũα, φ̃α) gives a foliated chart of GL(L) and we see that Ũ = {(Ũα, φ̃α)} is a

foliated atlas of GL(L). It is similarly verified for O(L). In particular, if M is compact

then so is O(L). An element a of the real orthogonal group O(d,R) acts on O(L) from the

right by r ·a = (x, ea) for r = (x, e), where ea = ((ea)1, (ea)2, . . . , (ea)d) is an orthonormal

base of Tx(L)10 defined by (ea)j = aijei, j = 1, 2, . . . , d. Thus O(L) is a (leafwise smooth)

principal fibre bundle with the structural group O(d,R).
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Leafwise smooth vector fields H̃0, H̃1, . . . , H̃d on GL(L) are defined by

(2.10)

H̃0 = bi(y, z)
∂

∂yi
− (Γg)

q
ij (y, z)b

i(y, z)ejp
∂

∂eqp
,

H̃α = eiα
∂

∂yi
− (Γg)

q
ij (y, z)e

i
αe

j
p

∂

∂eqp
, α = 1, 2, . . . , d,

in each foliated chart (Ũ , (y, z, (eij))), i.e., these vector fields are defined so that H̃0|GL(L) is

the horizontal lift of b|L and {H̃1|GL(L), H̃2|GL(L), . . . , H̃d|GL(L)} is the system of canonical

horizontal vector fields on GL(L) if L is a leaf of M . We also denote the restrictions

of these vector fields to O(L) by the same symbols. Consider the stochastic differential

equation on O(L) given by

(2.11) dr(t) = H̃α(r(t)) ◦ dBα(t) + H̃0(r(t)) dt.

Applying Theorem 2.1 to the equation (2.11), we obtain a solution {r(t, r)}t≥0 of (2.11)

with the initial distribution δr on the Wiener space
(
W d

0 ,FW , PW , (FW
t )t≥0

)
for each

r ∈ O(L). Let π : O(L) ∋ r = (x, e) 7→ x ∈ M be the natural projection. We consider a

stochastic process X(r) = {X(t, r)}t≥0 defined by X(t, r) = π(r(t, r)). By the pathwise

uniqueness of solutions for (2.11) we see that

r(t, r, aw) · a = r(t, r · a, w)
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for any t ≥ 0, PW -a.s.w and any a ∈ O(d,R), where aw = {aw(t)}t≥0 is another d-

dimensional Brownian motion on
(
W d

0 ,FW , PW , (FW
t )t≥0

)
. So we have

X(t, r, aw) = X(t, r · a, w)

for any t ≥ 0, PW -a.s.w and any a ∈ O(d,R). Therefore the law P r of X(r) depends only

on x = π(r). For any x ∈M we take r ∈ O(L) with π(r) = x and put

(2.12) X(t, x)( or Xx(t)) = X(t, r) for t ≥ 0 and P x = P r.

Then P x is the law of Xx and the family {P x}x∈M is a strongly Markovian system. We

can also prove that the family {Xx}x∈M gives a Feller semi-group with an extension of

A = (1/2)∆g + b as the infinitesimal generator. Precisely we have the following.

Corollary 2.4. For any bounded Borel measurable function f on M and t ≥ 0 let

T (t)f(x) = E [f(Xx(t))]. Then the assertions (1)–(5) of Corollary 2.3 are valid for

{T (t)}t≥0 and A = (1/2)∆g + b.

Proof. Put H̃ = (1/2)
∑

α H̃αH̃α+H̃0. We notice that f ∈ C(M) implies f ◦π ∈ C(O(L)).

Moreover f ∈ C2
L(M) implies f ◦ π ∈ C2

L(O(L)) and H̃(f ◦ π) = Af . Applying Corollary

2.3 to the processes {r(t, r)}t≥0,r∈O(L), we can reach the desired result. □

Now we summarize the above mentioned results as the following theorem.

Theorem 2.5. Let M be a compact foliated space, A a second order leafwise smooth ellip-

tic differential operator defined by (2.9), H̃0 the horizontal lift of b and {H̃1, H̃2, . . . , H̃d}



SDE APPROACH TO LEAFWISE DIFFUSIONS 17

the system of canonical horizontal vector fields (with respect to the leafwise Levi-Civita con-

nection) defined by (2.10). Consider the stochastic differential equation (2.11) on O(L).

Solutions of the equation define the family {r(t, r)}t≥0,r∈O(L) of diffusion processes on

O(L), which is stochastically continuous with respect to r. Their projections {Xx}x∈M to

M give a Feller semi-group {T (t)}t≥0 with an extension of A as the infinitesimal genera-

tor.

Remark 2.6. (1) The infinitesimal generator of {T (t)}t≥0 and its domain are identified

via the Hille-Yosida theorem in [1].

(2) By Corollary 2.4 and the Markov property of {P x}x∈M , we see that a function

defined by x 7→ P x(B) is B(M)-measurable for any Borel measurable set B of WL(M).

We call the stochastic process Xx = {Xx(t)}t≥0 constructed in the above the A-leafwise

diffusion process onM starting at x. The family X = {Xx}x∈M of the A-leafwise diffusion

processes is simply called the A-leafwise diffusion on M .

To state another one of the main results we consider A-harmonic measures. A Borel

measure m is called an A-harmonic measure if

∫
M

Af dm = 0

for any f ∈ C(M) which is of class C2 along each leaf and satisfies Af ∈ C(M). The

A-harmonic measure is characterized as an invariant measure for the A-leafwise diffusion,

i.e., ∫
M

T (t)f dm =

∫
M

f dm
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holds for any f ∈ C(M) and for any t ≥ 0 (see [1]).

As another application of our construction, we show a central limit theorem for a class

of additive functionals. To this end we need the following result which is a consequence of

the ergodic theorem and the martingale convergence theorem. We note that the following

is an analogue of [14, Proposition 2.7].

Proposition 2.7.

(1) Consider the set

QX =

{
x ∈M : lim

t→∞

1

t

∫ t

0

f(Xx(s)) ds = lim
t→∞

1

t

∫ t

0

T (s)f(x) ds

for any f ∈ C(M), PW -a.s.

}

=

{
x ∈M : lim

t→∞

1

t

∫ t

0

f(ω(s)) ds = lim
t→∞

1

t

∫ t

0

Eω(0)[f(ω(s))] ds

for any f ∈ C(M), P x-a.s.ω

}
,

where the symbol Ex means taking the expectation with respect to P x. Then QX

is Borel measurable subset of M .

(2) m(QX) = 1 for any A-harmonic probability measure m.

(3) For any x ∈ QX , there exist an A-harmonic probability measure mx and a mea-

surable set Λx with PW (Λx) = 1 such that w ∈ Λx yields

(2.13) lim
t→∞

1

t

∫ t

0

f(Xx(s, w)) ds =

∫
M

f dmx

for any f ∈ C(M).
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Proof. (1) Consider the set

Q1(WL(M)) =

{
ω ∈ WL(M) : lim

t→∞

1

t

∫ t

0

f(ω(s)) ds exists for any f ∈ C(M)

}
.

Obviously the set

Q1(WL(M), f) =

{
ω ∈ WL(M) : lim

t→∞

1

t

∫ t

0

f(ω(s)) ds exists

}

is B(WL(M))-measurable for each f ∈ C(M). Let {fn} be a countable dense subset of

C(M). It is easy to see that

Q1(WL(M)) =
∞∩
n=1

Q1(WL(M), fn).

Therefore Q1(WL(M)) is B(WL(M))-measurable. For a fixed f ∈ C(M), we define

bounded functions on WL(M) by

Avr(f)(ω) =


lim
t→∞

1

t

∫ t

0

f(ω(s)) ds ω ∈ Q1(WL(M))

0 ω /∈ Q1(WL(M))

and

Avr0(f)(ω) = Eω(0)[Avr(f)].

We can show that the set

Q2(WL(M)) = {ω ∈ WL(M) : Avr(f)(ω) = Avr0(f)(ω) for any f ∈ C(M)}
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is B(WL(M))-measurable in the same way as Q1(WL(M)). Since x 7→ P x(Q1(WL(M)) ∩

Q2(WL(M))) is a B(M)-measurable map and

QX = {x ∈M : P x(Q1(WL(M)) ∩Q2(WL(M))) = 1} ,

the assertion (1) is valid.

(2) Take any A-harmonic probability measure m and f ∈ C(M). Let Pm be a Borel

probability measure on WL(M) defined by Pm(dω) = P x(dω)m(dx). In order to verify

the assertion (2) it suffices to show that Pm(Q1(WL(M))) = 1 and Pm(Q2(WL(M))) = 1.

We consider the semi-flow of translations {σt} on WL(M) defined by

(σtω)(s) = ω(t+ s) for s ≥ 0.

The diffusion invariance of m implies that
(
{σt}t≥0 , P

m
)
is a continuous parameter

measure-preserving dynamical system. Applying the ergodic theorem, we have

Pm(Q1(WL(M), f)) = 1

and hence Pm(Q1(WL(M))) = 1. Next we notice that Avr(f)◦σt = Avr(f) for any t ≥ 0.

The Markov property of {P x}x∈M and the martingale convergence theorem yield that

Avr0(f) ◦ σt(ω) = Eω(t)[Avr(f)] = Ex[Avr(f) ◦ σt | Bt(WL(M))](ω)

= Ex[Avr(f) | Bt(WL(M))](ω) → Avr(f)(ω) (t→ ∞)
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P x-a.s.ω and L1(P x) for x ∈M . Therefore we have

∥Avr0(f)− Avr(f)∥L1(Pm) = ∥Avr0(f) ◦ σt − Avr(f)∥L1(Pm)

=

∫
M

∥Avr0(f) ◦ σt − Avr(f)∥L1(Px) m(dx) → 0 (t→ ∞).

This implies that Pm(Q2(WL(M))) = 1.

(3) If x ∈ QX , then the map c(x) : f 7→ lim
t→∞

1

t

∫ t

0

T (s)f(x) ds is a bounded positive

linear functional on C(M) with c(x)(1) = 1. Therefore there exists a probability measure

mx such that c(x)(f) =
∫
M
f dmx by the Riesz representation theorem. Substituting

T (t)f for f , we see that mx is an A-harmonic probability measure. □

For x ∈ M and f ∈ C(M) we define a stochastic process Y x
λ = {Y x

λ (t)}t≥0 with

parameter λ by

(2.14) Y x
λ (t) =

1√
λ

∫ λt

0

f(Xx(s)) ds.

Now we can state a central limit theorem for the A-leafwise diffusion X.

Theorem 2.8. For a real-valued function h ∈ C2
L(M) let f = Ah and consider the

process Y x
λ defined by (2.14). Then for any x ∈ QX , the processes Y x

λ converge in law to

the Brownian motion W⟨f⟩(x) with variance ⟨f⟩(x)t for each time t ≥ 0 as λ→ ∞, where

⟨f⟩(x) is given by

(2.15) ⟨f⟩(x) =
∫
M

∥gradLh∥
2
g dmx,
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g is the leafwise smooth Riemannian metric induced by A and mx is the A-harmonic

probability measure appearing in Proposition 2.7.

Remark 2.9. (1) If there exists y ∈ suppmx such that ∥gradLh(y)∥g > 0, then ⟨f⟩(x) >

0, i.e., the Brownian motion W⟨f⟩(x) is non-degenerate. If ⟨f⟩(x) = 0, then we regard the

process W⟨f⟩(x) as a process which is constantly 0.

(2) For a stationary reversible Markov process, the same kind of central limit theorem

as above under extremely general setting was proved by Kipnis and Varadhan in [9]. But

as noted by themselves in [9, Remark 1.7], their idea is not directly applicable to the

limit problem concerned with almost every starting point with respect to any harmonic

measure.

3. Construction of leafwise diffusions on foliated spaces

The aim of this section is to prove Theorem 2.1. First we consider a stochastic differ-

ential equation on Rd × Z given by

(3.1) dY (t) = σα(Y (t), Z0) dB
α(t) + σ0(Y (t), Z0) dt,

where σ0, σ1, . . . , σr are Rd-valued, bounded leafwise smooth maps on Rd × Z. Let Y =

{Y (t)}t≥0 be an Rd-valued, (Ft)-adapted continuous process and Z0 a Z-valued, F0-

random variable on a usual filtered probability space (Ω,F , P, (Ft)t≥0). We say that the

pair (Y, Z0) is a solution of (3.1) if there exists an r-dimensional (Ft)-Brownian motion



SDE APPROACH TO LEAFWISE DIFFUSIONS 23

B = {B(t)}t≥0 such that

Y (t)− Y (0) =

∫ t

0

σα(Y (s), Z0) dB
α(s) +

∫ t

0

σ0(Y (s), Z0) ds for t ≥ 0 P -a.s.

The results summarized in the following lemma are rather elementary but they play

important roles in the construction of the solutions of stochastic differential equations on

foliated spaces. So we shall give their proofs for the sake of later convenience.

Lemma 3.1. (i) The pathwise uniqueness of solutions for (3.1) holds, i.e., if (Y1, Z1)

and (Y2, Z2) are solutions of (3.1) with an r-dimensional (Ft)-Brownian motion

on a usual filtered probability space (Ω,F , P, (Ft)t≥0) and satisfy (Y1(0), Z1) =

(Y2(0), Z2) P -a.s. , then Y1 = Y2 P -a.s.

(ii) For any (y, z) ∈ Rd × Z, there exists an Rd-valued continuous stochastic process

Y (y,z) =
{
Y (y,z)(t)

}
t≥0

on the r-dimensional Winer space
(
W r

0 ,FW , PW , (FW
t )t≥0

)
such that (Y (y,z), z) is a solution of (3.1) with (Y (y,z)(0), z) = (y, z) PW -a.s.

(iii) For any p ≥ 1, T > 0 and compact subset C of Rd × Z,

sup
(y,z),(ỹ,z̃)∈C

|y−ỹ|+dZ(z,z̃)<δ

E

[
sup

0≤t≤T

∣∣Y (y,z)(t)− Y (ỹ,z̃)(t)
∣∣p]→ 0 (δ → 0),

where dZ is a metric on Z.

Proof. (i) Using the regular conditional probability given F0, we need only consider the

case where (Y1(0), Z1) = (Y2(0), Z2) = (y, z) P -a.s. for some (y, z) ∈ Rd × Z (see [6,

Remark 1.4 in Chapter IV-1]). Then Y1 and Y2 are solutions of a stochastic differential
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equation on Rd given by

(3.2)


dY (t) = σα(Y (t), z) dBα(t) + σ0(Y (t), z) dt

Y (0) = y

.

Since the maps σ0(·, z), σ1(·, z), . . . , σr(·, z) are locally Lipschitz continuous, the pathwise

uniqueness of solutions for (3.2) holds (see [6, Chapter IV-3] and [16, Chapter V-2] for

examples). Therefore we have Y1 = Y2 P -a.s.

(ii) Obviously, the assertion (ii) is valid by the existence of a strong solution for the

equation (3.2) (see [6, Chapter IV] and [8, Chapter 5-2 and 5-3]).

(iii) We assume that d = r = 1 for simplicity. In the general case, we can also prove in

the same way. Furthermore, we may assume that p ≥ 2 and C is of the form [−K,K]×Z ′,

where K > 0 and Z ′ is a compact subset of Z. Take T > 0 and fix it. In the following

K1, K2, . . . are positive constants which may depend on T , K and p. We first show that

sup
(y,z)∈C

E

[
sup

0≤t≤T
|Y (y,z)(t)|p+1

]
<∞.

We have

E

[
sup

0≤t≤T

∣∣Y (y,z)(t)
∣∣p+1

]
≤ K1

{
Kp+1 + E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

σ1(Y
(y,z)(s), z) dw(s)

∣∣∣∣p+1
]

+E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

σ0(Y
(y,z)(s), z) ds

∣∣∣∣p+1
]}

.
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Here

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

σ1(Y
(y,z)(s), z) dw(s)

∣∣∣∣p] ≤ K2E

[(∫ t

0

σ1(Y
(y,z)(s), z)2 ds

)(p+1)/2
]

≤ K3E

[∫ T

0

∥∥σ(Y (y,z)(t), z)
∥∥p+1

dt

]

≤ K3T ∥σ1∥p+1
∞

and

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

σ0(Y
(y,z)(s), z) ds

∣∣∣∣p+1
]
≤ K4T ∥σ0∥p+1

∞

from a well-known moment inequality [6, Theorem III-3.1] and the Hölder inequality.

Thus we obtain

(3.3) sup
(y,z)∈C

E

[
sup

0≤t≤T
|Y (y,z)(t)|p+1

]
<∞.

For a fixed n ≥ K, we define a
(
FW

t

)
-stopping time by τ

(y,z)
n = inf

{
t ≥ 0 : |Y (y,z)(t)| ≥ n

}
for (y, z) ∈ R × Z. Let 0 < ϵ < 1 be given. Since σ0 and σ1 are leafwise smooth, there

exist 0 < δn,Z′ < ϵ and Kn,Z′ > 1 depending on n and Z ′ such that

|σα(y1, z1)− σα(y2, z1)|+ |σα(y2, z1)− σα(y2, z2)| < Kn,Z′|y1 − y2|+ ϵ
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for any (y1, z1), (y2, z2) ∈ [−n, n] × Z ′ with dZ(z1, z2) < δn,Z′ and α = 0, 1. If (y, z),

(ỹ, z̃) ∈ C and t satisfy |y − ỹ|+ dZ(z, z̃) < δn,Z′ and t ≤ T , then

|σα(Y (y,z)(t ∧ τ (y,z)n ∧ τ (ỹ,z̃)n ), z)− σα(Y
(ỹ,z̃)(t ∧ τ (y,z)n ∧ τ (ỹ,z̃)n ), z̃)|p

≤ K5

{
|σα(Y (y,z)(t ∧ τ (y,z)n ∧ τ (ỹ,z̃)n ), z)− σα(Y

(ỹ,z̃)(t ∧ τ (y,z)n ∧ τ (ỹ,z̃)n ), z)|p

+|σα(Y (ỹ,z̃)(t ∧ τ (y,z)n ∧ τ (ỹ,z̃)n ), z)− σα(Y
(ỹ,z̃)(t ∧ τ (y,z)n ∧ τ (ỹ,z̃)n ), z̃)|p

}
≤ K5K

p
n,Z′

{∣∣Y (y,z)(t ∧ τ (y,z)n ∧ τ (ỹ,z̃)n )− Y ỹ,z̃(t ∧ τ (y,z)n ∧ τ (ỹ,z̃)n , ỹ, z̃)
∣∣p + ϵ

}

for α = 0, 1. Therefore we have

E

[
sup

0≤s≤t∧τ (y,z)n ∧τ (ỹ,z̃)n

∣∣Y (y,z)(s)− Y (ỹ,z̃)(s)
∣∣p]

≤ K6

{
|y − ỹ|p + E

[
sup

0≤s≤t∧τ (y,z)n ∧τ (ỹ,z̃)n

∣∣∣∣∫ s

0

{
σ1(Y

(y,z)(u), z)− σ1(Y
(ỹ,z̃)(u), z̃)

}
dw(u)

∣∣∣∣p
]

+E

[
sup

0≤s≤t∧τ (y,z)n ∧τ (ỹ,z̃)n

∣∣∣∣∫ s

0

{
σ0(Y

(y,z)(u), z)− σ0(Y
(ỹ,z̃)(u), z̃)

}
du

∣∣∣∣p
]}

≤ K6 |y − ỹ|p

+K7E

[∫ t

0

|σ1(Y (y,z)(s ∧ τ (y,z)n ∧ τ (ỹ,z̃)n ), z)− σ1(Y
(ỹ,z̃)(s ∧ τ (y,z)n ∧ τ (ỹ,z̃)n , z̃)|p ds

]

+K8E

[∫ t

0

∣∣σ0(Y (y,z)(s ∧ τ (y,z)n ∧ τ (ỹ,z̃)n ), z)− σ0(Y
(ỹ,z̃)(s ∧ τ (y,z)n ∧ τ (ỹ,z̃)n ), z̃)

∣∣p ds]

< K9K
p
n,Z′

{
ϵ+

∫ t

0

E
[∣∣Y (y,z)(s ∧ τ (y,z)n ∧ τ (ỹ,z̃)n )− Y (ỹ,z̃)(s ∧ τ (y,z)n ∧ τ (ỹ,z̃)n , z̃)

∣∣p] ds} .
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By the Gronwall inequality, we obtain

E

[
sup

0≤t≤T∧τ (y,z)n ∧τ (ỹ,z̃)n

∣∣Y (y,z)(t)− Y (ỹ,z̃)(t)
∣∣p] ≤ ϵK10K

p
n,Z′ exp

{
K10K

p
n,Z′T

}
.

Consequently, for any n ≥ K,

(3.4) sup
(y,z),(ỹ,z̃)∈C

|y−ỹ|+dZ(z,z̃)<δ

E

[
sup

0≤t≤T∧τ (y,z)n ∧τ (ỹ,z̃)n

∣∣Y (y,z)(t)− Y (ỹ,z̃)(t)
∣∣p]→ 0 (δ → 0).

In addition, we have

E

[
sup

0≤t≤T

∣∣Y (y,z)(t)− Y (ỹ,z̃)(t)
∣∣p]

≤ E

[
sup

0≤t≤T∧τ (y,z)n ∧τ (ỹ,z̃)n

∣∣Y (y,z)(t)− Y (ỹ,z̃)(t)
∣∣p]

+ E

[
sup

0≤t≤T

(∣∣Y (y,z)(t)
∣∣+ ∣∣Y (ỹ,z̃)(t)

∣∣)p : τ (y,z)n ∧ τ (ỹ,z̃)n ≤ T

]

≤ E

[
sup

0≤t≤T∧τ (y,z)n ∧τ (ỹ,z̃)n

∣∣Y (y,z)(t)− Y (ỹ,z̃)(t)
∣∣p]

+ E

[
sup

0≤t≤T

(∣∣Y (y,z)(t)
∣∣+ ∣∣Y (ỹ,z̃)(t)

∣∣)p : sup
0≤t≤T

(∣∣Y (y,z)(t)
∣∣+ |Y (ỹ,z̃)(t)|

)
≥ n

]

≤ E

[
sup

0≤t≤T∧τ (y,z)n ∧τ (ỹ,z̃)n

∣∣Y (y,z)(t)− Y (ỹ,z̃)(t)
∣∣p]+ 1

n
E

[
sup

0≤t≤T

(∣∣Y (y,z)(t)
∣∣+ ∣∣Y (ỹ,z̃)(t)

∣∣)p+1
]

for (y, z), (ỹ, z̃) ∈ C. Combining (3.3) and (3.4), we obtain the desired result. □

Let W d be the totality of Rd-valued continuous maps on [0,∞) and P (y,z) the law of

W d×Z-valued random variable (Y (y,z), z). If µ is a Borel probability measure on Rd×Z,

then a probability measure P µ on W d × Z is defined by P µ(dω) = P (y,z)(dω)µ(d(y, z)).
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We can easily show that the measure P µ is the law of a solution of the equation (3.1)

with the initial distribution µ. Therefore by combining this result with Lemma 3.1-(i),

we have a unique strong solution of the equation (3.1).

Lemma 3.2. There exists a map F : Rd × Z ×W r
0 →W d satisfying the following :

(1) F is F̂(R× Z) /B(W d)-measurable.

(2) F is F̂t(R× Z) /Bt(W
d)-measurable.

(3) Suppose that (Y, Z0) is a solution of (3.1) with an (Ft)-Brownian motion B =

{Bt}t≥0 on a usual filtered probability space (Ω,F , P, (Ft)t≥0).

Then Y = F (Y (0), Z0, B) P -a.s.

(4) If B = {B(t)} is an (Ft)-Brownian motion, ξ is an Rd-valued F0-random variable

and η is a Z-valued F0-random variable on (Ω,F , P, (Ft)t≥0), then (F (ξ, η, B), η)

is a solution of (3.1) on (Ω,F , P, (Ft)t≥0) with the initial value (ξ, η).

We omit the proof since it is shown in the same way as [6, Theorem IV-1.1] and [8,

Corollary 5-3.23].

Recall that we consider the stochastic differential equation on M given by

(3.5) dX(t) = Aα(X(t)) ◦ dBα(t) + A0(X(t)) dt,

where A0, A1, . . . , Ar are leafwise smooth vector fields. First we construct “local” solutions

of (3.5). For a fixed foliated chart (U, (y, z)), these vector fields are expressed as

Aα = σi
α(y, z)

∂

∂yi
, α = 0, 1, . . . , r
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in (U, (y, z)). We can extend σ0, σ1, . . . , σr to leafwise smooth functions with compact

support on Rd × Z. Consider a stochastic differential equation on Rd × Z given by

(3.6)

dY (t) = σα(Y (t), z) ◦ dBα(t) + σ0(Y (t), z) dt

= σα(Y (t), z) dBα(t) + σ0(Y (t), z) dt,

where

σi
0(y, z) = σi

0(y, z) +
1

2

r∑
α=1

(
∂σi

α

∂yk
(y, z)

)
σk
α(y, z).

Then we have the strong solution FU : Rd × Z ×W r
0 → W d for the equation (3.6) by

Lemma 3.2. We notice that the map (y, z) : U → B1 ×B2 is extended to a map from U

onto B1 ×B2. Define maps τ
(y,z)
B1×B2

, FU and τU so that

τ
(y,z)
B1×B2

(w) = inf
{
t ≥ 0 :

(
FU(y, z, w)(t), z

)
/∈ B1 ×B2

}
,

FU(t, x, w) = (y, z)−1
(
FU(y(x), z(x), w)(t ∧ τ (y(x),z(x))B1×B2

), z(x)
)

and

τU(x,w) = τ
(φ(x))
B1×B2

(w).

Recall that the rule (2.2) for A0, A1, . . . , Ar under changes of coordinates and the fact that

the chain rule for the operation ◦ takes the same form as in the ordinary calculus. Then

we can show that if V ∈ U is another foliated chart containing x, FU(t, x) = FV (t, x) for

t ≤ τU(x) ∧ τV (x) PW -a.s. by the pathwise uniqueness of solutions for the equation (3.6).

Next we patch together the local solutions. Let U = {(Uα, φα)} be a foliated atlas of

M . We may assume that for any α, there exist foliated charts (Uα,1, φα,1) and (Uα,2, φα,2)

such that Uα ⊂ Uα,1 ⊂ Uα,1 ⊂ Uα,2, φα,2|Uα,1 = φα,1 and φα,1|Uα = φα. For x ∈ M ,
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if {U1, U2, . . . , Ul} is the totality of foliated charts in U containing x, we set τ̂(x,w) =

max
{
τUi,1

(x,w) : 1 ≤ i ≤ l
}
. Then a map F̂ is defined for t ≤ τ̂(x,w) so that F̂ (t, x, w) =

FUi,1
(t, x, w) for t ≤ τUi,1

(x,w) and 1 ≤ i ≤ l PW -a.s.w. Define τ1 = τ̂ and F (t) = F̂ (t)

for t ≤ τ1. Inductively, if τn and F (t) are defined for 0 ≤ t ≤ τn, then on the set

{(x,w) : τn(x,w) <∞}, we define

xn = F (τn), wn = θτnw, τn+1 = τn + τ̂(xn, wn) and F (t) = F̂ (t− τn, xn, wn)

for τn ≤ t ≤ τn+1. Thus F (t) is defined for t < lim
n→∞

τn.

Now we prove Theorem 2.1.

Proof of Theorem 2.1. We divide the proof into three steps.

(Step 1) For any x ∈M , PW (τn(x) ↑ ∞ (n ↑ ∞)) = 1.

Take x ∈ M and fix it. By definition, τ̂(x), τn(x), n = 1, 2, . . . are
(
FW

t

)
-stopping

times. We need to show that

E

[∏
n

1{τn(x)<∞} exp (−τ̂(xn, wn))

]
= 0.

SinceM is compact, we may assume that U is finite. We can prove that there exists k < 1

such that

1{τn(x)<∞}E
[
exp (−τ̂(xn, wn))|FW

τn(x)

]
≤ k
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for any n ≥ 1 and x ∈M in the same way as [6, Lemma IV-2.1]. Moreover, we have

E

[
m+1∏
n=1

1{τn(x)<∞} exp (−τ̂(xn, wn))

]
= E

[
E

[
m+1∏
n=1

1{τn(x)<∞} exp (−τ̂(xn, wn))

∣∣∣∣FW
τm+1(x)

]]

≤ kE

[
m∏

n=1

1{τn(x)<∞} exp (−τ̂(xn, wn))

]

for m ≥ 1. Therefore we reach the desired result.

(Step 2) The map F : (x,w) 7→ F (·, x, w) gives a unique strong solution for (2.5)

((3.5)), i.e., F satisfies (1)–(4) in Theorem 2.1.

The assertions (1) and (2) follow from the measurability of the maps
{
FUα,1

}
stated

in Lemma 3.2. To verify the assertion (4) we need only to show in the case where

(Ω,F , P, (Ft)t≥0) =
(
M ×W r

0 ,F(M)µ, µ⊗ PW , (Ft(M)µ)t≥0

)
, B(t)(x,w) = w(t) and

ξ(x,w) = x for a fixed Borel probability measure µ on M . Suppose that x ∈ Uα and

f ∈ C2
L(M). Since FUα,1 is a solution of the equation (3.6), we have

f(F (t ∧ τ1(x)))− f(x) =

∫ t∧τ1(x)

0

(
σi
α

∂f

∂yi

)
(FUα,1(y(x), z(x))(s), z(x)) ◦ dwα(s)

+

∫ t∧τ1(x)

0

(
σi
0

∂f

∂yi

)
(FUα,1(y(x), z(x))(s), z(x)) ds

=

∫ t∧τ1(x)

0

(Aαf) (F (s, x)) ◦ dwα(s) +

∫ t∧τ1(x)

0

(A0f) (F (s, x)) ds P
W -a.s.

on the set
{
w : τ1(x,w) = τUα,1(x,w)

}
. Therefore

f(F (t ∧ τ1))− f(F (0)) =

∫ t∧τ1

0

(Aαf) (F (s)) ◦ dwα(s) +

∫ t∧τ1

0

(A0f) (F (s)) ds
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µ⊗PW -a.s. Substituting the law of xn for µ and noticing that xn and wn are independent

for n ≥ 1, we see that

f(F (t ∧ τn+1))− f(F (t ∧ τn)) =
∫ t∧τn+1

t∧τn
(Aαf) (F (s)) ◦ dwα(s)

+

∫ t∧τn+1

t∧τn
(A0f) (F (s)) ds

µ × PW -a.s. From Step 1, it follows that τn ↑ ∞ (n ↑ ∞) µ ⊗ PW -a.s. Hence we see

that the assertion (4) is valid. It remains to prove the assertion (3). But it immediately

follows by the pathwise uniqueness of solutions for the equations (3.6).

We define a map Xx : W r
0 → WL(M) for a fixed x ∈ M by Xx(t, w) = F (x,w)(t) for

(t, w) ∈ [0,∞)×W r
0 . Let dM be a metric on M .

(Step 3) For any ϵ > 0 and T > 0, there exists δ > 0 such that

PW

(
sup

0≤t≤T
dM(Xx(t), X x̃(t)) < ϵ

)
≥ 1− ϵ

for any x, x̃ ∈M with dM(x, x̃) < δ.

We take a foliated atlas U = {(Ui, φi)}mi=1 of M satisfying that there exist foliated

charts (Ui,1, φi,1) and (Ui,2, φi,2) such that Ui ⊂ Ui,1 ⊂ Ui,1 ⊂ Ui,2, φi,2|Ui,1
= φi,1 and

φi,1|Ui
= φi for each i. Let l be a Lebesgue number of U . For each x ∈ M we put

I(x) = {1 ≤ i ≤ m : Bx(l/2) ⊂ Ui} and i(x) = min I(x), where Bx(l/2) is the open ball

of radius l/2 centered at x in M . We define maps by

ρ(x,w) = inf
{
t ≥ 0 : X(t, x, w) /∈ Ui(x),1

}
, σ(x,w) = inf

{
t ≥ 0 : X(t, x, w) /∈ Ui(x),2

}
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for (x,w) ∈M ×W r
0 ,

ρ(x̃; x,w) = inf
{
t ≥ 0 : X(t, x̃, w) /∈ Ui(x),1

}
,

σ(x̃;x,w) = inf
{
t ≥ 0 : X(t, x̃, w) /∈ Ui(x),2

}
for (x, x̃, w) ∈ M ×M ×W r

0 and ρ0(x,w) = 0, ρn+1(x,w) = ρn(x,w) + ρ(Xx(ρn), θρnw)

for n ≥ 0.

To prove the assertion of Step 3, we need the next lemma.

Lemma 3.3. (i) For any x ∈M , PW (ρn(x) ↑ ∞ (n ↑ ∞)) = 1.

(ii) For any ϵ > 0 and T > 0, there exists δ > 0 such that

PW

(
sup

0≤t≤T
dM
(
Xx(t ∧ ρ(x)), X x̃(t ∧ ρ(x))

)
< ϵ

)
≥ 1− ϵ

for any x, x̃ ∈M with dM(x, x̃) < δ.

Proof of Lemma 3.3. The assertion (i) immediately follows from the same reason as

Step 1 stated above. The assertion (ii) is shown as follows. Put

D = min
{
dM(Ui,1,M \ Ui,2) : 1 ≤ i ≤ m

}
.

We take any T > 0 and 0 < ϵ < D/2. From Lemma 3.1-(iii) and the Chebyshev inequality

in each Ui,2, we see that there exists 0 < δ < l/2 such that

(3.7) PW

(
sup

0≤t≤T
dM
(
Xx(t ∧ σ(x) ∧ σ(x̃;x)), X x̃(t ∧ σ(x) ∧ σ(x̃;x))

)
< ϵ

)
≥ 1− ϵ
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whenever dM(x, x̃) < δ. Since ϵ < D/2, if dM(x, x̃) < δ and

sup
0≤t≤T

dM
(
Xx(t ∧ σ(x) ∧ σ(x̃; x), w), X x̃(t ∧ σ(x) ∧ σ(x̃; x), w)

)
< ϵ,

then ρ(x,w) ≤ (σ(x) ∧ σ(x̃; x))(w). Therefore the inequality (3.7) implies

PW

(
sup

0≤t≤T
dM
(
Xx(t ∧ ρ(x)), X x̃(t ∧ ρ(x))

)
< ϵ

)
≥ 1− ϵ,

which completes the proof of Lemma 3.3.

Now we return to the proof of Theorem 2.1. Let ϵ > 0, T > 0 and x ∈ M be given. It

suffices to show that there exists δ > 0 such that PW

(
sup

0≤t≤T
dM(Xx(t), X x̃(t)) < ϵ

)
≥ 1− ϵ

for any x̃ ∈M with dM(x, x̃) < δ. By Lemma 3.3-(ii), we can choose 0 < δ1 < ϵ so that

PW

(
sup

0≤t≤T∧ρ1(x1)

dM(Xx1(t), Xx2(t)) < ϵ

)
≥ 1− ϵ

for any x1, x2 ∈ M with dM(x1, x2) < δ1. Applying Lemma 3.3-(ii) again, we can take

0 < δ2 < δ1 so that

PW

(
sup

0≤t≤T∧ρ1(x1)

dM(X(t, x1), X(t, x2)) < δ1

)
≥ 1− δ1
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whenever dM(x1, x2) < δ2. Since (Xx(ρ1(x)), X
x̃(ρ1(x))) and θρ1(x)w are independent on

(ρ1(x) <∞), we have

PW

(
sup

0≤t≤T∧ρ2(x)
dM(Xx(t), X x̃(t)) < ϵ

)

=PW

((
sup

0≤t≤T∧ρ2(x)
dM(Xx(t), X x̃(t)) < ϵ

)
∩ (T < ρ1(x))

)

+ PW

((
sup

0≤t≤T∧ρ2(x)
dM(Xx(t), X x̃(t)) < ϵ

)
∩ (ρ1(x) ≤ T )

)

≥PW

((
sup

0≤t≤T∧ρ1(x)
dM(Xx(t), X x̃(t)) < ϵ

)
∩ (T < ρ1(x))

)

+ PW

((
sup

0≤t≤ρ1(x)

dM(Xx(t), X x̃(t)) < δ1

)
∩ (ρ1(x) ≤ T )

∩(
sup

0≤t≤T∧ρ1(Xx(ρ1(x)),θρ1(x)w)

dM(X(t,Xx(ρ1(x)), θρ1(x)w), X(t,X x̃(ρ1(x)), θρ1(x)w)) < ϵ

))

≥PW ((T < ρ1(x)))− ϵ+ (1− ϵ)PW

((
sup

0≤t≤ρ1(x)

dM(Xx(t), X x̃(t)) < δ1

)
∩ (ρ1(x) ≤ T )

)

≥PW ((T < ρ1(x)))− ϵ+ (1− ϵ)
(
PW ((ρ1(x) ≤ T ))− δ1

)
≥ 1− 3ϵ

if dM(x, x̃) < δ2. Here the first inequality follows from the fact that

X x̃(t+ ρ1(x)) = X(t,X x̃(ρ1(x)), θρ1(x)w) for t ≥ 0 PW -a.s. on (ρ1(x) <∞).
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Using the same argument above, we can show that for any positive integer n, there exists

δn > 0 such that

PW

(
sup

0≤t≤T∧ρn(x)
dM(Xx(t), X x̃(t)) < ϵ

)
≥ 1− ϵ

2

for any x̃ ∈M with dM(x, x̃) < δn. From (i) of Lemma 3.3, there exists N ≥ 1 such that

PW (T ≤ ρN(x)) ≥ 1− ϵ/2. Consequently, we obtain

PW

(
sup

0≤t≤T
dM(Xx(t), X x̃(t)) < ϵ

)

≥ PW

((
sup

0≤t≤T∧ρN (x)

dM(Xx(t), X x̃(t)) < ϵ

)
∩ (T ≤ ρN(x))

)

≥ 1− ϵ

2
− ϵ

2
= 1− ϵ

whenever dM(x, x̃) < δN . The proof of Theorem 2.1 is now complete.

□

Remark 3.4. (1) Considering functions defined by f(y, z) = yi, i = 1, 2, . . . , d in each

foliated chart, we easily see that if a stochastic processX = {X(t)}t≥0 satisfies the equality

(2.6) for any f ∈ C∞
L (M), then X is a solution of the equation (2.5).

(2) Let Xx
L = {Xx

L(t)}t≥0 be a solution on
(
W r

0 ,FW , PW , (FW
t )t≥0

)
of the equation

(3.8) dXL(t) = Aα|L(XL(t)) ◦ dBα(t) + A0|L(XL(t)) dt
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on a leaf L with the initial distribution δx and iL : L → M the inclusion map. Con-

sequently, we have Xx = iL(X
x
L) P

W -a.s. by the pathwise uniquness of solutions in each

foliated chart.

(3) If M is non-compact, we can similarly construct a unique strong solution of (2.5)

up to explosion times.

(4) As we mentioned in Remark 2.2, the stochastic continuity of the family {Xx}x∈M

with respect to x is an important result to show its Feller property.

4. Central limit theorem for additive functionals

In this section we prove Theorem 2.8. Let X = {Xx}x∈M be an A-leafwise diffusion

defined by (2.12). Let x be an element inM and f a continuous function given by f = Ah

for a function h ∈ C2
L(M). We consider the stochastic process Y x

λ = {Y x
λ (t)}t≥0 defined

by (2.14). If the process {r(t, r)}t≥0 is a solution of the equation (2.11) on O(L) satisfying

that π(r(t, r)) = Xx(t) for t ≥ 0, then we have

h(Xx(t))− h(x) = h ◦ π(r(t, r))− h ◦ π(r)

=

∫ t

0

H̃α (h ◦ π) (r(s, r)) ◦ dwα(s) +

∫ t

0

H̃0 (h ◦ π) (r(s, r)) ds

=

∫ t

0

H̃α (h ◦ π) (r(s, r)) dwα(s) +

∫ t

0

(
1

2

d∑
α=1

H̃αH̃α + H̃0

)
(h ◦ π)(r(s, r)) ds

=

∫ t

0

H̃α (h ◦ π) (r(s, r)) dwα(s) +

∫ t

0

f(Xx(s)) ds.

We put

Mx
λ (t) =

−1√
λ

∫ λt

0

H̃α (h ◦ π) (r(s, r)) dwα(s)
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for t ≥ 0. Then we have

Y x
λ (t) =Mx

λ (t) +
h(Xx(λt))− h(x)√

λ
.

In addition we see that the stochastic processes {Mx
λ} are continuous martingales and

their quadratic variations are given by

⟨Mx
λ ⟩ (t) =

1

λ

∫ λt

0

d∑
α=1

(
H̃α (h ◦ π) (r(s, r))

)2
ds =

1

λ

∫ λt

0

∥gradLh(X
x(s))∥2g ds,

where g is the leafwise smooth Riemannian metric on M induced by A. Note that

d∑
α=1

(
H̃α (h ◦ π)

(
y, z, (eij)

))2
=

d∑
α=1

eiαe
j
α

∂h

∂yi
(y, z)

∂h

∂yj
(y, z) = gij(y, z)

∂h

∂yi
(y, z)

∂h

∂yj
(y, z)

= ∥gradLh(y, z)∥
2
g

for (y, z, (eij)) with φ̃
−1(y, z, (eij)) ∈ O(L).

We can easily prove Theorem 2.8.

Proof of Theorem 2.8. Let x be an element in QX . Recall that

Y x
λ (t) =Mx

λ (t) +
h(Xx(λt))− h(x)√

λ
.

Since

sup
t≥0

|h(Xx(λt))− h(x)|√
λ

≤ 2 ∥h∥∞
λ

→ 0 (λ→ ∞),
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we have only to show that Mx
λ → W⟨f⟩(x) in law as λ→ ∞. To this end it suffices to show

that

⟨Mx
λ ⟩(t) →

(∫
M

∥gradLh∥g dmx

)
· t (λ→ ∞) in probability

for t ≥ 0 by [12, Corollary 1 and references therein]. Noticing that x ∈ QX , we obtain

⟨Mx
λ ⟩(t) =

1

λ

∫ λt

0

∥gradLh (X
x(s))∥2g ds =

(
1

λt

∫ λt

0

∥gradLh (X
x(s))∥2g ds

)
· t

→
(∫

M

∥gradLh∥
2
g dmx

)
· t (λ→ ∞) PW -a.s.

This completes the proof of the theorem.

□

Remark 4.1. WhenM is a mapping torus constructed by a topological dynamical system

and X is the leafwise Brownian motion induced by a natural leafiwise smooth Riemannian

metric, the corresponding result to Theorem 2.8 is obtained in [14].

Next we consider the case when there is only one A-harmonic probability measure on

M . Then we obtain the following.

Lemma 4.2. The following are equivalent.

(i) An A-harmonic probability measure exists uniquely.

(ii) There exists an A-harmonic probability measure m such that for any f ∈ C(M),

(1/t)

∫ t

0

T (s)f ds converges to

∫
M

f dm uniformly as t→ ∞.

(iii) For any f ∈ C(M), there exists a number C(f) depending only on f such that

for any x ∈M , (1/t)

∫ t

0

f(Xx(s)) ds converges to C(f) in L2(PW ) as t→ ∞.
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(iv) For any f ∈ C(M), there exists a number C(f) depending only on f such that

for any x ∈M , (1/t)

∫ t

0

f(Xx(s)) ds converges to C(f) in probability as t→ ∞.

(v) For any f ∈ C(M), there exists a number C(f) depending only on f such that

for any x ∈M , (1/t)

∫ t

0

T (s)f(x) ds converges to C(f) as t→ ∞.

Proof. ((i) ⇒ (ii)). Let m be an A-harmonic probability measure. Suppose that (ii) is

false. Then there exist an element f0 in C(M), a positive number ϵ0, a sequence {xj} of

points in M and a sequence of positive numbers {tj} such that limj→∞ tj = ∞ and

(4.1)

∣∣∣∣ 1tj
∫ tj

0

T (s)f0(xj) ds−
∫
M

f0 dm

∣∣∣∣ ≥ ϵ0.

Choosing a subsequence we may assume that the limit

J(f) = lim
j→∞

1

tj

∫ tj

0

T (s)f(xj) ds

exists for any f ∈ C(M). By the Riesz representation theorem, there exists a Borel

probability measure m′ such that J(f) =

∫
M

f dm′ for each f ∈ C(M). By substituting

T (t)f for f , it is easy to see that m′ is an A-harmonic probability measure. The inequality

(4.1) implies that m ̸= m′.

((ii) ⇒ (iii)). Considering f − C(f), we have only to show

(4.2) lim
t→∞

E

[(
1

t

∫ t

0

f(Xx(s)) ds

)2
]
= 0
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whenever (1/t)

∫ t

0

T (s)f ds converges to 0 uniformly in x as t→ ∞. For t > 0 we have

I(t) =E

[(
1

t

∫ t

0

f(Xx(s)) ds

)2
]

=
2

t2

∫ t

0

dr

∫ t

r

E[f(Xx(r))f(Xx(s))] ds

=
2

t2

∫ t

0

dr

∫ t

r

E[f(Xx(r))(T (s− r)f)(Xx(r))] ds

=
2

t2

∫ t

0

dr

∫ t−r

0

E[f(Xx(r))(T (s)f)(Xx(r))] ds

=
2

t2

∫ t

0

E

[
f(Xx(r))

∫ t−r

0

(T (s)f)(Xx(r)) ds

]
dr

=
2

t2

∫ t

0

(t− r)E

[
f(Xx(r))

1

t− r

∫ t−r

0

(T (s)f)(Xx(r)) ds

]
dr

=2

∫ 1

0

(1− r)E

[
f(Xx(tr))

1

t(1− r)

∫ t(1−r)

0

(T (s)f)(Xx(tr)) ds

]
dr.

Here the third equality follows from the Markov property of X = {Xx}x∈M , the fourth

equality is obtained by the change of variable s−r 7→ s, the fifth equality is a consequence

of the Fubini theorem, and the last equality is obtained by the change of variable r 7→ tr.

Thus we have

|I(t)| ≤ 2∥f∥∞
∫ 1

0

(1− r)

∥∥∥∥∥ 1

t(1− r)

∫ t(1−r)

0

T (s)f ds

∥∥∥∥∥
∞

dr → 0 (t→ ∞)

by the bounded convergence theorem. Hence we have (4.2).

(iii) ⇒ (iv) and (iv) ⇒ (v) hold immediately.
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((v) ⇒ (i)). The ergodic theorem for {T (t)}t≥0 yields that C(f) =

∫
M

f dm holds for

any A-harmonic probability measure m (see [1, Theorem 7.3] and [4, Theorem VIII.7.1

and Theorem VIII.7.5]). Hence an A-harmonic probability measure exists uniquely. □

Remark 4.3. IfM is a mapping torus constructed by a topological dynamical system and

X is the leafwise Brownian motion, the unique ergodicity of the base dynamical system

is also equivalent to the preceding (i)–(v). The proof of this fact is given in [14].

Now we state a version of Theorem 2.8 in the case when there is only one A-harmonic

probability measure on M .

Theorem 4.4. Assume that there exists a unique A-harmonic probability measure m.

For a real-valued function h ∈ C2
L(M) let f = Ah and consider the process Y x

λ defined

by (2.14). Then for any point x ∈ M , the processes Y x
λ converge in law to the Brownian

motion W⟨f⟩ with variance ⟨f⟩t for each time t ≥ 0 as λ→ ∞, where

⟨f⟩ =
∫
M

∥gradLh∥
2
g dm.

Proof. We use the notation in the proof of Theorem 2.8. We need only to show that

⟨Mx
λ ⟩ (t) →

(∫
M

∥gradLh∥
2
g dm

)
· t (λ→ ∞) in probability

for any x ∈M and t ≥ 0. From (iv) of Lemma 4.2, we have

⟨Mx
λ ⟩(t) =

(
1

λt

∫ λt

0

∥gradLh(X
x(s))∥2g ds

)
· t→

(∫
M

∥gradLh∥
2
g dm

)
· t (λ→ ∞)
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in probability for any x ∈M and t ≥ 0. Now the proof of the theorem is complete. □

Finally we give two examples of uniquely ergodic (1/2)∆g-leafwise diffusions, i.e., leaf-

wise Brownian motions on foliated spaces.

Example 4.5. (The mapping torus of a Zd-action on the d-torus) Let Td = Rd/Zd be the

d-torus and {a1, a2, . . . , ad} a set of real numbers such that 1, a1, a2, . . . , ad are linearly

independent over Q. Consider the Zd-action on Td given by

F n : Td ∋ (x1, x2, . . . , xd) + Zd 7→ (x1 + n1a1, x2 + n2a2, . . . , xd + ndad) + Zd ∈ Td

for n = (n1, n2, . . . , nd) ∈ Zd. A Zd-action on Rd×Td is also defined by Rd×Td ∋ (u, x) 7→

(u−n, F nx) ∈ Rd×Td for n ∈ Zd. The quotient space (Rd×Td)/Zd is a compact foliated

space endowed with a natural leafwise smooth Riemannian metric g. The space is called

the mapping torus of the action F = {F n}n∈Zd and we denote it by Td
F . Each of the leaves

of Td
F is identified with Rd. Let B = {B(t)}t≥0 be a d-dimensional standard Brownian

motion defined on a probability space (Ω,F , P ). The stochastic processes X = {Xx}x∈Td
F

on Td
F are defined so thatXπF (u,x)(t) = πF (u+B(t), x) for t ≥ 0, where πF : Rd×Td → Td

F

is the natural projection. It is easy to see that X has the same distribution as the leafwise

Brownian motion on Td
F . Moreover we can show that there is a one-to-one correspondence

between the set of harmonic probability measures for X on Td
F and that of invariant

probability measures for F in the same way as [14]. The correspondence is explicit in the

sence that if a harmonic probability measure mµ for X is correspondence to an invariant
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probability measure µ for F , we have

∫
Td
F

f dmµ =

∫
[0,1)d×Td

(f ◦ πF ) d(ld × µ)

for any continuous function f on Td
F , where l

d is the d-dimensional Lebesgue measure on

[0, 1)d. As is well-known, the normalized Haar measure µH is the only invariant probability

measure for F . Therefore mµH
is a unique harmonic probability measure for X. Applying

Theorem 4.4, if (u, x) is an element in Rd ×Td and f is of the form f = (1/2)∆gh with a

function h ∈ C2
L(Td

F ), then we see that

1√
λ

∫ λ·

0

f(XπF (u,x)(s)) ds =
1√
λ

∫ λ·

0

f(πF (u+B(s), x)) ds→W⟨f⟩(·) (λ→ ∞) in law,

where W⟨f⟩ is the one-dimensional Brownian motion with variance

(∫
Td
F

∥gradLh∥
2
g dmµH

)
· t =

(∫
[0,1)d×Td

d∑
i=1

(
∂(h ◦ πF )

∂ui

)2

d
(
ld × µH

))
· t

for each time t ≥ 0.

Example 4.6. (The stable foliation of the geodesic flow on a compact Riemannian mani-

fold of negative curvature) Let M be a compact smooth Riemannian manifold of negative

sectional curvature, SM the unit tangent bundle to M , {ϕt}t∈R the geodesic flow on SM

and W s(v) the stable manifold of the element v in SM , i.e.,

W s(v) =
{
w ∈ SM : there exists s ∈ R such that lim

t→∞
d(ϕt+sv, ϕtw) = 0

}
.
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It is well-known that SM is a compact foliated space with W s(v) as the leaf passing

through v ∈ SM . The Riemannian metric on M induces a leafwise smooth Riemannian

metric g on SM . Hence the leafwise Laplace-Beltrami operator ∆g and the leafwise

Brownian motion X = {Xv}v∈SM are defined on SM . It should be noted that Ledrappier

discusses about such a process (see [10] and [11]). In particular he showed that a harmonic

probability measure m for X exists uniquely in [11]. Therefore, applying Theorem 4.4,

we see that

1√
λ

∫ λ·

0

f(Xv(s)) ds→W⟨f⟩(·) (λ→ ∞) in law

whenever v is an element in SM , f is of the form f = (1/2)∆gh with a function h ∈

C2
L(SM) and W⟨f⟩ is the Brownian motion with variance

(∫
SM

∥gradLh∥
2
g dm

)
· t

for each time t ≥ 0.
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