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An SDE approach to leafwise diffusions on foliated spaces

and its applications

KIYOTAKA SUZAKI

ABSTRACT. We construct leafwise diffusions on foliated spaces via SDE approach. The
obtained diffusions are stochastically continuous and hence have the Feller property.
Moreover our construction enables us to prove a central limit theorem for the leafwise
diffusion on a compact foliated space in the same way as for a diffusion on a compact

manifold.

1. INTRODUCTION

The ergodic theory of dynamical systems with invariant measures is well-studied and has
been supplying many interesting results to various branches of mathematics. Foliations,
and consequently foliated spaces are regarded as generalization of dynamical systems. For
example, a nonsingular flow on a manifold corresponds to a foliation with one-dimensional
leaves. Therefore if we can find a class of measures which inherits dynamical properties
of foliated spaces, we can naturally extend the ergodic theory of dynamical systems to
that of foliated spaces. In 1983, Garnett [5] considered a stochastic process along the
leaves on a compact foliated Riemannian manifold, which is called a leafwise Brownian
motion. She called the invariant measures for the leafwise Brownian motion harmonic
measures and showed the existence of them. Moreover, she obtained some basic results
in the ergodic theory; however, she could not prove the Feller property of the semi-group
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Key words and phrases.  Foliated space, leafwise diffusion process, harmonic measure, central limit
theorem .



2 K. SUZAKI

generated by the leafwise Brownian motion. It was Candel who proved this property in his
paper [1]. He used a method for solving evolution equations and the Hille-Yosida theorem
to construct a Feller semi-group generated by a leafwise elliptic differential operator on
a foliated space. A diffusion process along the leaves was also constructed by using this
semi-group. We call such a process a leafwise diffusion process (leafwise diffusion for
short). The basic facts for foliated spaces, leafwise diffusions and harmonic measures are
available in [2], [3] and [17].

Our purpose is to construct leafwise diffusions on a compact foliated space by an alter-
native approach. First we introduce stochastic differential equations on the foliated space
to obtain a class of diffusions. It is shown that each of the equations has a unique strong
solution (Theorem 2.1). We have to note that the solution cannot be expected to have a
regularity with respect to starting points as a solution of SDE on a manifold has. Since
foliated spaces do not always have a manifold structure by definition, the solution has
the tangential regularity but does not always have the transverse regularity with respect
to starting points. But we can show that the stochastic continuity of the solution with
respect to starting points (Theorem 2.1). This is strong enough for establishing the Feller
property. It should be noted that Kanai [7] discusses the transverse regularity of leafwise
diffusions on a special foliated manifold.

Next we verify that for any second order leafwise elliptic differential operator without
zero order term, there exists a leafwise smooth Riemannian metric such that the operator
is expressed as the sum of a leafwise smooth vector field and the leafwise Laplace-Beltrami
operator induced by the metric. Applying our results to a stochastic differential equation

on the bundle of orthonormal frames of the foliated space, we obtain a leafwise diffusion
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generated by the operator. In particular, the leafwise diffusion is obtained as a map
defined on the classical Wiener space. Thus our results are applicable to an analogue of
the well-known Eells-Elworthy-Malliavin construction of a diffusion on a manifold, the
details of which can be found in [6, Chapter V-4].

As another application we prove a central limit theorem for a class of additive function-
als of the leafwise diffusion starting at almost every point with respect to any harmonic
measure (Theorem 2.8). Moreover we apply the result to the case when there is only one
harmonic measure (Theorem 4.4). Our construction of leafwise diffusions enables us to
prove these limit theorems in the way used in [15], in which limit theorems for a diffusion
on a compact manifold were proved. We also note that the Feller property and the limit
theorems are obtained in [14] more easily than in the present paper when the underlying

leafwise diffusion is the leafwise Brownian motion on a mapping torus.

2. PRELIMINARIES AND MAIN RESULTS

First of all we introduce some notation and basic facts. Let W;, W5 be topological
spaces and U an open set of R? x W;. Let k be a nonnegative integer. A function

f: U — Ris said to be of class C§¥ on U if f(-,z) is of C* for any 2 and

Hirtizttia

Us(y,2) Gyl - - Piayyd

fly,2) €R

is continuous for any multi-index (i1, 4, ...,4q) with iy +is + -+ + iy < k. A map
[+ U — RP is said to be of class C¥ if each of the component functions is of class C§ on
U. Let V be an open set of R? x W,. A map f : U — V is said to be of class C¥ if it is

locally of the form f(y, z) = (fi(y, 2), f2(2)), where f; is of class C¥ and f, is continuous.
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In this paper we call amap f : U — V a leafwise smooth map if it is of class C¥ for any
nonnegative integer k.

Let M, Z be locally compact, separable, metrizable spaces. M is a d-dimensional
foliated space (modeled transversely on Z) if there exist an open cover U = {U,} of M
and homeomorphisms {¢, : Uy — Ba1 X Ba2} such that if U, NUsz # (), then ¢z o0 ol
0a(Us NUg) — (U, N Up) is leafwise smooth, where B, and B, are open sets of
R? and Z, respectively. Such a pair (Uy, p,) is called a foliated chart and U is called a
foliated atlas. For convenience we sometimes write (y,, zo) instead of ¢,. A plaque is a

set of the form ¢ ' (Ba1 x {2z}). We may assume that U/ is regular. That is,

(1) For each «, U, is a compact subset of a foliated chart (W, 1) and po = ¥alv, .
Hence we can consider the plaques of U,.

(2) U is locally finite.

(3) Given foliated charts (Uy, @), (Us, p5) € U and a plaque P C U,, then P meets

at most one plaque of 75

For any z € M, we put

L, ={y € M : there exist plaques P, P, ..., P,
such that z € Pj,y € P, and LN Py #Qfor 1 <i<n-—1}.

The subset L, of M is called the leaf passing through x € M. M is decomposed into
the leaves £ = {Ly},.,. One can easily see that each of the leaves is a d-dimensional

smooth manifold. References for these fundamentals are found in [2, Chapter 11] and [13,

Chapter I1].
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Next we introduce function spaces and tensor fields on M in the same way as in the
case of manifolds in [6, Chapter V]. In what follows, we assume that M is compact. Let
C(M) be the Banach space of continuous functions on M endowed with the supremum
norm ||-||... Given a nonnegative integer k, we denote by C} (M) the totality of functions
f satisfying that fo ™! : U — R is of class CF for any foliated chart (U, ). Note that

CYUM) = C(M). Let C(M) be the intersection ﬂ C¥(M). A function on M is called

k>0

a leafwise smooth function if it belongs to C$°(M). One can easily construct a leafwise
smooth function separating given two points in M and hence C¢°(M) is dense in C'(M)
by the Stone-Weierstrass theorem.

In the following, we use the Einstein summation convention, i.e., the summation sign
is omitted for repeated indices appearing once at the top and once at the bottom. For

any point x € M, we denote by T,(L)? the tensor product

(& J/
g
q

~
p

A foliated chart (U, (y, z)) containing = naturally induces a basis

0 9 ) | | |
J1 J2 Jq
{ar).o (@)oo (o) o .o . oo ),

. il,’ig,...,ip,jl,jg,...,jq:1,2,...,d}

of T,(L). Aleafwise smooth (p, ¢)-tensor field on M isamapu : M >z — u(z) € T,(L)?

i1,19,00ip

A z)} with respect to the basis (2.1) are leafwise smooth

whose components {u

il:i27"'77"p

ivgo i (Y Z)} of components satisfies a rule under

in every foliated chart. The family {u
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a change of coordinates (y, z) — (7, 2) :

- 8@21 agzz o agip ayh 8yl2 o aqu T
B 83/]“ (3ka aykp oyt Oz Oijla Uyt 0

(2.2) aie (g 3)

31,32, 20q (Y, 2).

01,82ym00s ip

it (Y, z)} of leafwise smooth functions is defined in every

Conversely, if a family {u
foliated chart and satisfies the rule (2.2), then there exists a unique leafwise smooth
(p, q)-tensor field whose components coincide with it. By definition, if L is a leaf of M,
the restriction of u to L is a usual smooth (p,g)-tensor field on L. A leafwise smooth
(1,0)-tensor field is called a leafwise smooth vector field. A leafwise smooth (0, 2)-tensor
field g = {gi;(y, 2)} is called a leafwise smooth Riemannian metric on M if the matrices
{(9i;(y, 2))} are symmetric and positive definite. There exist many such tensor fields since
every open cover of M admits a subordinate leafwise smooth partition of unity (see [13,

Proposition 2.8]). We introduce a leafwise smooth vector field on M for later convenience.

Given a leafwise smooth Riemannian metric g on M and f € C: (M), the leafwise gradient

grad, f — {(gradL ) (v, z)} of f is defined by

(2.3) (grad, ) (4.2) = g7y, z>§—jj<y, )

in each foliated chart (U, (y,2)). The length [|grad f(z)|, of grad, f at x is also defined

by [lgrad,, f(2)], = Vg(z)(grad, f, grad, f). The function z lgrad,, f(z)]|, is expressed

as

. 0 0
(2.4) lerad, f(y, )], = \/gw (v, z)a—;<y, z>8—5j<y7 )
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in each foliated chart (U, (y, z)).
Now we consider a stochastic differential equation on M. Given leafwise smooth vector

fields Ag, Aq,..., A, on M, we consider the following stochastic differential equation

(2.5) dX (1) = Aa(X (1)) 0 dB*(t) + Ag(X (1)) dt.

Let (2, F, P, (Ft)t>0) be a usual filtered probability space, i.e., (2, F, P) is a complete
probability space and (), is a right-continuous filtration such that Fy contains all P-
null sets. For example, the classical r-dimensional Wiener space with canonical filtration
(Wg, FV, PV (F¥ )i=0) is a usual filtered probability space, where W{ is the totality
of continuous maps w : [0,00) — R" with w(0) = 0 endowed with the compact-open
topology, PV is the r-dimensional Wiener measure, F" is the completion of the topo-
logical Borel o-field of W by PV and F}"V is the o-field generated by the Borel cylinder
sets up to time ¢ and all P"-null sets. Let W (M) be the totality of continuous maps
w : [0,00) = M such that the image is contained in a single leaf. Tt is easy to see that
Wi (M) endowed with the compact-open topology is a complete, separable, metrizable
space. We denote by B(W(M)) and B;(W(M)) the topological Borel o-field of Wy, (M)
and the sub-o-field of B(WL(M)) generated by the Borel cylinder sets up to time ¢, re-
spectively. The o-fields B(M), B(Wy), By(W{) etc. are defined similarly. We say that an
(Fi)-adapted, Wi (M)-valued random variable X = {X(t)},5, on (€2, F, P, (F;)i>0) is a

solution of (2.5) if there exists an r-dimensional (F;)-Brownian motion B = {B({)},5,
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with B(0) = 0 such that

(2.6) f(X(t))—f(X(O))Z/O (Aaf) (X(S))OdBO‘(S)Jr/O (Aof) (X(s)) ds  P-as.

for any f € C?(M), where the first term on the right-hand side is understood in the sense
of the Fisk-Stratonovich integral (see [6, Chapter I1I-1] ).

For any topological space S and any Borel probability measure p on S, we put

FS) = BES) @ B = the completion of B(S) ® BOVY) by pu & PV,
Fe(S)* = (B(S) @ B(W§)) VN (pe PY)

= the o-field generated by B(S) @ B,(W]) and all y @ P"-null sets,

and

F(S) = N F(S)", Fi(S) = N F(S)-.

w: Borel probability measure on M w2 Borel probability measure on M

In the next section we will construct solutions {X*} _,, of (2.5) on the Wiener space
(Wg, FV, PV (F¥ )i=0) such that X*(0) =z P"-a.s.for each x € M. Furthermore, we
will see that the family {X*},.c)s of stochastic processes is stochastically continuous with

respect to x. Precisely we will obtain the following.

THEOREM 2.1. There exists a map F' : M x Wi — Wr(M) satisfying the following:

(1) F is F(M) | BOW,(M))-measurable.

(2) F is Fy(M) ] By(Wy(M))-measurable for any t > 0.
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(3) Suppose that an (Fi)-adapted, Wi (M)-valued random variable X = {X(t)},, is
a solution of (2.5) with an (F;)-Brownian motion B = {B,},5, on a usual filtered
probability space (2, F, P, (Fi)i>0). Then X = F(X(0), B) P-a.s.

(4) If B={B(t)}, is an (F;)-Brownian motion and & is an M-valued Fo-random
variable on (0, F, P, (F)i>0), then F (&, B) is a solution of (2.5) on (0, F, P, (F)i>0)
with the initial value &.

Therefore, if we define a map X* : Wi — Wr(M) for a fivted x € M by X*(t,w) =
F(z,w)(t) for (t,w) € [0,00) x W, then the stochastic process X* = {X*(t)}i>0 is a
solution of (2.5) with the Brownian motion w = {w(t)}+>o and the initial distribution J,
on (W(}”,}“W,PW, (ftw)tzo). Furthermore, if dy; is a metric on M, then for any € > 0
and T > 0, there exists 0 > 0 such that

PY < sup da(X*(t), X*(t)) < e> >1—¢

0<t<T
for any x, T € M with dy(z, %) <.
The proof of Theorem 2.1 will be given in the next section.

REMARK 2.2. (1) We sometimes write X (¢, z,w) instead of X*(¢,w) for convenience.
The pathewise uniqueness (the assertion (3) in the above) yields that if o is a bounded
(FV)-stopping time, then X (¢ + o(w), z,w) = X (t, X (0(w), z, w), 0,(w)) for t >0, PV~
a.s.w, where 6, : Wi — W{ is defined by 6,w(-) = w(- + o(w)) —w(o(w)). In particular,
the family of laws of the stochastic processes {X*}_ _,, is a strongly Markovian system.
(2) If M has a smooth manifold structure and Ao, A1, ..., A, are smooth vector fields

on M, then {X*} _, has a modification such that the map = — X(¢,x,w) is smooth
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PW-a.s.aw for any t > 0 (see [6, Theorem V-2.4]). Therefore we easily see that the family
{X*},cu has the Feller property. As seen from the Corollary below, we need the latter
part of Theorem 2.1 to show that the family {X*} _,, has the Feller property in the

general case.

We put
(2.7) T(t)f(x) = E[f(X*(1))]

for any bounded Borel measurable function f on M and ¢ > 0. From Theorem 2.1, we
see that the family of positive operators {7(t)};>o turns out to be a Feller semi-group on

C(M) with a closed extension of A = (1/2) > AyAs + Ap as the infinitesimal generator.

COROLLARY 2.3. We have the following:

(1) For anyt >0 and f € COM), [T fllo. < 1]

(2) For anyt >0 we have T'(t)C(M) C C(M).

(3) Fort, s>0 and f € C(M), we have T(t + s)f =T ()T (s)f.

(4) For any [ € C(M), i |7(1)f — fll., =0

(5) The infinitesimal generator of the semi-group {T'(t)},, s an extension of A and

the domain contains C%(M).

Proof. The assertion (1) is obvious from (2.7). Take any f € C(M) and x € M. For any

€ > 0, we can choose 0 > 0 such that |f(z) — f(Z)| < € whenever dy/(z,Z) < §. Thus we
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have

T()f(x) = T f(2)] < E [|F(X*(t) — F(XT(1))]]
< B[|A(X7(8) = F(XT1)] + dar(X7(1), X7(1)) < 0]
+ B [[F(X7(t) = f(XT0))] + da(X7(2), X7(t)) > 0]
< e+ 2| flloe PV (dur(X7(1), X7(1)) 2 0) = e (2= )

by Theorem 2.1. This implies that the assertion (2) is valid. The assertion (3) follows from
the Markov property of the stochastic processes {X*} _,,. To verify the assertion (4) it
suffices to show that ltifgl IT(t)f = flloo = 0 for any f € CF(M). Since X* = {X*(t)},5,
is a solution of (2.5) with the initial distribution d,, we have

(2.8) F(X*(t)) — f(x) = a martingale with mean 0 —1—/ Af(X*(s))ds.

0

By taking expectation and supremum norms in the both sides we obtain

||T<t>f—f||oosHE[/OtAﬂXﬂE(s))ds} <JAfl t =0 (> 0)

‘ o

Thus the assertion (4) is valid. It remains to prove the assertion (5). We have to show

that

Jim || LS =1 AfH — 0
t—0 t o
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for any f € C2(M). From the equation (2.8) and the Fubini theorem we have

7))~ S(@) = [ T)A7(@)as.
Therefore we have

H% - AfHOO <1 [ Im@ar—an.. as

Applying the assertion (4) to Af, we obtain the desired result. OJ

Now we construct a diffusion process generated by a leafwise ellptic differential operator
with assuming the validity of Theorem 2.1. We say that a linear operator A : C%(M) —
C(M) is a second order leafwise elliptic differential operator (without zero order term) on

M if it is expressed as

2

AF(0:2) = 300 2) g £ + 0,205 £ 0.2

for f € C%(M) in each foliated chart (U, (y,z)), where the coefficients o, ') i,j =
1,2,...,d are leafwise smooth and the matrices {(a*(y, 2))} are symmetric, positive defi-
nite. The function Af is also defined by the local expression if f is of class C? along each
leaf. The family {a%(y, z)} of leafwise smooth functions defines a (2, 0)-tensor field on
M and hence we see that the inverse matrices {(g;;(y, z))} of {(a"(y, 2))} defines a leaf-
wise smooth Riemannian metric g = {g;;(y,2)} on M. Let {(Fg)fj (vy, z)} be the leafwise

Levi-Civita connection and A, the leafwise Laplace-Beltrami operator induced by g on
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M. That is, in any foliated chart (U, (y, 2)),

1/ 0 0 0
(05 0:2) = 5 (G (0 2) + i) = 5 002) ) 6702,

where (g7 (y, 2)) = (9i(y, 2)) ", and

02 0

Agf(yv Z) = gij(ya Z) Gy@yi f(ya Z) - gij(y7 Z) (Fg)fj (ya Z)ﬁ_ykf(y’ Z)

We define leafwise smooth functions {b'(y, z)} in every foliated chart by
i i Lok i
Then we see that b = {b*(y, 2)} is a leafwise smooth vector field and
1
(2.9) A= EAQ + 0.

Therefore any second order leafwise smooth elliptic differential operator can be expressed
as the form (2.9).

We consider sets
GL(L) = {r = (z,€) : eis a base of T,(L);}
and

O(L) = {r = (z,e) : e is an orthonormal base of T (£); with respect to g} .
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For A € A, let GL(L,) be the bundle of linear frames and O(L,) the bundle of orthonormal
frames on (Ly, g|r,). We can easily show that GL(L) and O(L) are foliated spaces with
{GL(Lx)},cn and {O(Ly)} s as the leaves, respectively. Indeed, a foliated atlas U =
{(Uq, va)} of M gives a foliated atlas of GL(L) as follows. For each «, we define a set U,
by

Uy ={r=(z,¢) € GL(L) : x € Uy}

and a map @ from U onto ¢, (Uy) x GL(d,R) C R? x Z x R by

Ba(r) = Ga(,€) = (al(z), (€j,1,5 = 1,2,...,d)),

where e = (e, e,...,€4) and

0
ej = € (8yi > € T,(L)y.

The pair (U, 3a) gives a foliated chart of GL(L) and we see that U = {(Us, 3a)} is a
foliated atlas of GL(L). It is similarly verified for O(L). In particular, if M is compact
then so is O(L). An element a of the real orthogonal group O(d, R) acts on O(L) from the
right by r-a = (2, ea) for r = (z, e), where ea = ((ea)y, (ea)s, . .., (ea)q) is an orthonormal
base of T,,(L)j defined by (ea); = ale;, j =1,2,...,d. Thus O(L) is a (leafwise smooth)

principal fibre bundle with the structural group O(d, R).
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Leafwise smooth vector fields ﬁg, fll, ey H, on GL(L) are defined by

Hy=b (ya "7’) ayz - (Fg)gj <y7 Z)b <y7 2)628_627
(2.10)
_ 0 D
Hazeaayi _(Fg)gj (y7z)€a€g)a_ega = 172a"'7d7

in each foliated chart (U, (y, z, (€5))), i.e., these vector fields are defined so that ]:10|GL(L) is
the horizontal lift of b|;, and {[:HGL(L), ﬁI2|GL(L), . ,ﬁd|GL(L)} is the system of canonical
horizontal vector fields on GL(L) if L is a leaf of M. We also denote the restrictions
of these vector fields to O(L) by the same symbols. Consider the stochastic differential

equation on O(L) given by
(2.11) dr(t) = Ho(r(t)) o dB(t) + Ho(r(t)) dt.

Applying Theorem 2.1 to the equation (2.11), we obtain a solution {r(t,7)},., of (2.11)
with the initial distribution 6, on the Wiener space (W, FV, PV (F/V)i0) for each
r € O(L). Let m : O(L) > r = (z,e) — x € M be the natural projection. We consider a
stochastic process X (r) = {X(t,7)},5, defined by X(¢,r) = m(r(t,7)). By the pathwise

uniqueness of solutions for (2.11) we see that

r(t,r,aw) -a =r(t,r-a,w)
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for any ¢+ > 0, P"-as.w and any a € O(d,R), where aw = {aw(t)},., is another d-

dimensional Brownian motion on (W, FW, PV (F}V);50). So we have

X(t,r,aw) = X(t,r - a,w)

for any ¢t > 0, P"-a.s.w and any a € O(d,R). Therefore the law P" of X (r) depends only

on x = 7(r). For any x € M we take r € O(L) with 7(r) = = and put

(2.12) X(t,z)( or X*(t)) = X(t,r) for t >0 and P* = P".

Then P is the law of X and the family {P*}, _,, is a strongly Markovian system. We
can also prove that the family {X*} _,, gives a Feller semi-group with an extension of

A =(1/2)A, + b as the infinitesimal generator. Precisely we have the following.

COROLLARY 2.4. For any bounded Borel measurable function f on M and t > 0 let
Tt)f(x) = E[f(X*())]. Then the assertions (1)—(5) of Corollary 2.3 are valid for

{T(1)},50 and A = (1/2)A, +D.

Proof. Put H = (1/2) PN H,H,+ Hy. We notice that f € C(M) implies for € C(O(L)).
Moreover f € C2(M) implies f o € C2(O(L)) and H(f ow) = Af. Applying Corollary

2.3 to the processes {r(¢,7)},5¢ .co(r)» We can reach the desired result. O

Now we summarize the above mentioned results as the following theorem.

THEOREM 2.5. Let M be a compact foliated space, A a second order leafwise smooth ellip-

tic differential operator defined by (2.9), H, the horizontal lift of b and {Ig'l, H,, ..., [:Td}
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the system of canonical horizontal vector fields (with respect to the leafwise Levi-Civita con-
nection) defined by (2.10). Consider the stochastic differential equation (2.11) on O(L).
Solutions of the equation define the family {r(t’r)}tZO,rEO(ﬁ) of diffusion processes on
O(L), which is stochastically continuous with respect to r. Their projections {X*} ., to
M give a Feller semi-group {T'(t)},5, with an extension of A as the infinitesimal genera-

tor.

REMARK 2.6. (1) The infinitesimal generator of {T'()},., and its domain are identified
via the Hille-Yosida theorem in [1].
(2) By Corollary 2.4 and the Markov property of {P"} _,,, we see that a function

defined by = — P*(B) is B(M)-measurable for any Borel measurable set B of W (M).

We call the stochastic process X* = {X*(t)},, constructed in the above the A-leafwise
diffusion process on M starting at x. The family X = {X*}__,, of the A-leafwise diffusion
processes is simply called the A-leafwise diffusion on M.

To state another one of the main results we consider A-harmonic measures. A Borel

measure m is called an A-harmonic measure if

/MAfdm:()

for any f € C(M) which is of class C? along each leaf and satisfies Af € C(M). The
A-harmonic measure is characterized as an invariant measure for the A-leafwise diffusion,

ie.,

/MT(t)fdm:/Mfdm
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holds for any f € C(M) and for any t > 0 (see [1]).

As another application of our construction, we show a central limit theorem for a class
of additive functionals. To this end we need the following result which is a consequence of
the ergodic theorem and the martingale convergence theorem. We note that the following

is an analogue of [14, Proposition 2.7].

PROPOSITION 2.7.

(1) Consider the set

t

Qx = {x eM: tlim % tf(Xw(s))ds = lim ! T(s)f(x)ds

0 t—oo t 0

for any f € C(M), PW-a.s.}

- {“’ €M : lim %/0 Fleo(s))ds = lim + [ B“O[f(u(s))] ds

t—o0 t—oo t 0
for any f € C(M), Px—a.s.w},
where the symbol E* means taking the expectation with respect to P*. Then Q) x
18 Borel measurable subset of M.
(2) m(Qx) =1 for any A-harmonic probability measure m.
(3) For any x € Qx, there exist an A-harmonic probability measure m, and a mea-
surable set A, with PV (A,) = 1 such that w € A, yields

1 t
(2.13) lim ;/O f(Xm(s,w))ds—/Mfdmx

t—o00

for any f € C(M).
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Proof. (1) Consider the set

Q1(Wr(M)) = {w e Wr(M) : tlggo% f(w(s))ds exists for any f € C'(M)} :

0

Obviously the set

Qi(WL(M), f) = {w e Wr(M) : lim — / f(w(s))ds ex1sts}

t—oo ¢

is B(Wr(M))-measurable for each f € C(M). Let {f,} be a countable dense subset of

C(M). Tt is easy to see that
Q1(WL(M)) = () @u(WL(M), f.).
n=1

Therefore Q(Wr(M)) is B(Wr(M))-measurable. For a fixed f € C(M), we define

bounded functions on Wy (M) by

lim / fw(s)ds w e QuWL(M))

Avr(f tooo t

w ¢ Q(Wr(M))

and

Avro(f)(w) = E°O[Avr(f)].

We can show that the set

Qs(Wr(M)) ={w e Wr(M) : Avr(f)(w) = Avre(f)(w) for any f € C(M)}
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is B(Wp(M))-measurable in the same way as Q1 (W (M)). Since z — P*(Q(WL(M)) N

Q2(Wr(M))) is a B(M)-measurable map and

Qx ={z e M : PY(Qi(WL(M)) N Q2(Wr(M))) =1},

the assertion (1) is valid.

(2) Take any A-harmonic probability measure m and f € C(M). Let P™ be a Borel
probability measure on W (M) defined by P™(dw) = P*(dw)m(dz). In order to verify
the assertion (2) it suffices to show that P"(Q(W(M))) =1 and P"™(Q2(Wr(M))) = 1.

We consider the semi-flow of translations {oy} on W (M) defined by

(ow)(s) =w(t+s) fors>0.

The diffusion invariance of m implies that ({at}t>0,Pm) is a continuous parameter

measure-preserving dynamical system. Applying the ergodic theorem, we have

P™Qui(Wi (M), f)) = 1

and hence P™(Q1(WL(M))) = 1. Next we notice that Avr(f)oo, = Avr(f) for any t > 0.

The Markov property of {P*}__,, and the martingale convergence theorem yield that

Avro(f) 0 0,(w) = E*OlAvr(f)] = E*[Avr(f) 0 0, | B(WL(M))](w)

= E*[Avr(f) | B(WL(M))](w) = Avr(f)(w) (¢ = o)



SDE APPROACH TO LEAFWISE DIFFUSIONS 21

P?-a.s.w and L'(P®) for € M. Therefore we have

[Avro(f) — Avr(f)l| i pmy = [[Avro(f) 0 o0 — Avr ()] 1 pmy
_ /M | Auro(£) 0 0 — Avr(f)ll s pey mldz) 0 (= o0).

This implies that P™(Qo(W(M))) = 1.
1 t
(3) If x € Qx, then the map c¢(z) : f— tlim ?/ T(s)f(x)ds is a bounded positive
—00 0
linear functional on C'(M) with ¢(x)(1) = 1. Therefore there exists a probability measure

m, such that c(z)(f) = [,, fdm, by the Riesz representation theorem. Substituting

T(t)f for f, we see that m, is an A-harmonic probability measure. 0

For z € M and f € C(M) we define a stochastic process Y = {Y{(t)},5, with

parameter \ by

1 At
2.14 YZI(t) = —/ X*(s))ds.
214 0=— [ s
Now we can state a central limit theorem for the A-leafwise diffusion X.
THEOREM 2.8. For a real-valued function h € C%(M) let f = Ah and consider the

process Y defined by (2.14). Then for any x € Qx, the processes Y¥ converge in law to

the Brownian motion Wiy with variance (f)(x)t for each time t > 0 as A — oo, where

(f)(x) is given by

(2.15) (f)(z) = /M lerad, b2 dm,.
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g is the leafwise smooth Riemannian metric induced by A and m, is the A-harmonic

probability measure appearing in Proposition 2.7.

REMARK 2.9. (1) If there exists y € supp m,, such that [|grad h(y)|, > 0, then (f)(z) >
0, i.e., the Brownian motion W) is non-degenerate. If (f)(z) = 0, then we regard the
process W) as a process which is constantly 0.

(2) For a stationary reversible Markov process, the same kind of central limit theorem
as above under extremely general setting was proved by Kipnis and Varadhan in [9]. But
as noted by themselves in [9, Remark 1.7], their idea is not directly applicable to the
limit problem concerned with almost every starting point with respect to any harmonic

measure.

3. CONSTRUCTION OF LEAFWISE DIFFUSIONS ON FOLIATED SPACES

The aim of this section is to prove Theorem 2.1. First we consider a stochastic differ-

ential equation on R% x Z given by

(3.1) dY (1) = 0u(Y (1), Zo) dB*(t) + oo(Y (1), Zo) dt,

where 0g,04,...,0, are R%valued, bounded leafwise smooth maps on R% x Z. Let Y =
{Y(t)},5o be an R%valued, (F;)-adapted continuous process and Z; a Z-valued, Fo-
random variable on a usual filtered probability space (2, F, P, (Fi)i>0). We say that the

pair (Y, Zp) is a solution of (3.1) if there exists an r-dimensional (F;)-Brownian motion



SDE APPROACH TO LEAFWISE DIFFUSIONS 23

B = {B(t)}, such that
Y(t) - Y(0) = /t (Y (s), Zy) dB(s) + /t oo(Y(s),Zp)ds fort >0 P-as.

The results summarized in the following lemma are rather elementary but they play
important roles in the construction of the solutions of stochastic differential equations on

foliated spaces. So we shall give their proofs for the sake of later convenience.

LEMMA 3.1. (i) The pathwise uniqueness of solutions for (3.1) holds, i.e., if (Y1, Z1)
and (Yo, Zs) are solutions of (3.1) with an r-dimensional (F;)-Brownian motion
on a usual filtered probability space (0, F, P, (Fi)i>0) and satisfy (Y1(0),7;) =
(Y5(0), Z3) P-a.s., then Y1 = Y5 P-a.s.

(i) For any (y,2) € R x Z, there exists an R%-valued continuous stochastic process

Y2 = {YWa (1)} _  on the r-dimensional Winer space (Wg,FW, PV (F")i0)

>0
such that (Y %2 2) is a solution of (3.1) with (Y®2)(0), 2) = (y, z) PV -a.s.
(iii) For any p > 1, T >0 and compact subset C of R? x Z,
sup B |sup [Y®I(t) YT’ -0 (05— 0),

(4,20, (5,)€C 0<t<T
ly—7|+dz(2,2)<d

where dy is a metric on Z.

Proof. (i) Using the regular conditional probability given Fy, we need only consider the
case where (Y1(0),Z;) = (Y2(0),Z2) = (y,2) P-as.for some (y,2) € R x Z (see [6,

Remark 1.4 in Chapter IV-1]). Then Y; and Y, are solutions of a stochastic differential
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equation on R? given by
(3.2)

Since the maps o¢(-, 2),01(+, 2), ..., 0.(+, z) are locally Lipschitz continuous, the pathwise
uniqueness of solutions for (3.2) holds (see [6, Chapter IV-3] and [16, Chapter V-2] for
examples). Therefore we have Y1 =Y, P-a.s.

(ii) Obviously, the assertion (ii) is valid by the existence of a strong solution for the
equation (3.2) (see [6, Chapter IV] and [8, Chapter 5-2 and 5-3]).

(iii)) We assume that d = r = 1 for simplicity. In the general case, we can also prove in
the same way. Furthermore, we may assume that p > 2 and C'is of the form [— K, K] x Z’,
where K > 0 and 7’ is a compact subset of Z. Take T' > 0 and fix it. In the following

K, Ky, ... are positive constants which may depend on 7', K and p. We first show that

sup F [ sup |Y 2 (1)[PH] < oo,

(y,2)eC 0<t<T

We have

sup
0<t<T

E | sup |Y(y’z) (t)|p+11 < K, {Kp“ +FE

0<t<T

/0 o1 (YE(s5), 2) du(s)

:
)

t
+F / oo(Y W3 (s), 2) ds
0

sup
0<t<T
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Here
t P [ t (p+1)/2
E{Sup /Jl(Y(y’Z)(s),z)dw(s) :|§K2E (/ UI(Y(y’Z)(s),z)st) ]
0<t<T |Jo i 0
T +1
< KE / |o (Y2 (2), 2) || dt}
< K3T [|oy |2
and
t p+1
E | sup /JO(Y(y’z)(s),z)ds §K4T||00||ZO’:>rl
o<t<T | Jo

from a well-known moment inequality [6, Theorem III-3.1] and the Hélder inequality.

Thus we obtain

(3.3) sup E [ sup |Y(y’z)(t)|p+1} < 0.
(y,2)eC 0<t<T

For a fixed n > K, we define a (F}V)-stopping time by W) = inf {t>0:|Y©I(t)] >n}
for (y,2) € Rx Z. Let 0 < € < 1 be given. Since oy and o, are leafwise smooth, there

exist 0 < 6§,z < € and K, z» > 1 depending on n and Z’ such that

loa (Y1, 21) — 0a(y2, 21)| + |0a(y2, 21) — 0a(Ye, 22)| < Kpnzilyr — ya| + €



26 K. SUZAKI

for any (y1,21), (Y2,22) € [—n,n] x Z" with dz(z1,22) < dpz and o = 0,1. If (y, 2),

(g,2) € C and t satisfy |y — y| +dz(z,2) < 6,z and t < T, then
|0a(Y(y’Z)(t A Tfly’z) A 7‘7(;}’5)), z) — UQ(Y@’E) (t A TT(ly’Z) A 77(17”7’2)), 2)|P
< Kj {|aa(Y(y’Z) (t A Téy’z) A 7'7(53’2)), z) — aa(Y@’E) (t A 7'7(ly’z) A 7‘7(;}’2)), 2)|P
+|UQ(Y(37’§) (t A Téy’z) A 7‘,&9’2)), z) — aa(Y@’z) (t A Téy’z) A 7‘7(15’2)), Z) |p}

< K;K? Z,{|Y<yz (t AT ATED) Y BE(E A THD A 70D g 2P +e}

for « = 0,1. Therefore we have

E

sup |y(y,z) (s) — Y2 (s) ‘p]

OSSStAT,(Ly’Z)/\T,Sg’E)

sup
OSSSt/\T,(Ly’Z> /\7',(?’2>

<K6{|y—yj|p+E

/OS {o (Y2 (4), 2) — oy (Y5 (u 2)} dw(u

f
)

+F sup

Ogsﬁt/\'rfly’z)/\ﬂ(ﬁ’s)

/OS {JO(Y(W) (u), 2) — oo (YT (u), 2)} du

< Ksly =gl
t ~ o~
+ K F [/ |01(Y(y’z)(5 A r,(ly"z) A T,(Ly’z)), z) — oy (Y(yz (s A T(y A 7' v:%) ,2)|P ds]
0
t [e——
+ KyF {/ |00(y(y,z)(8 A 7-T(Zy,z) A 7-7(Ly,z))’z) _ (Y(y z)(s /\T(y z) /\T(yz)) )‘ ds}
0

t
< K,K7, {e+ / B[|Y 09 (s A7) A r89) — Y8 (s A7) A 19 2)| ds}.
0
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By the Gronwall inequality, we obtain

E

Sup ‘Y(yvz) (t) i Y(g’g) (t) ‘p] S EKloKZz/ eXp {KlOKﬁ’Z/T}-

0<t<TATY ™ Ar?)

Consequently, for any n > K,

(3.4) sup E
(4,2),(7,5)€C
ly=gl+dz(2,2)<é

sup |Y(y’z) (t) — Y& (t)‘p] —0 (6 —0).

0<t<TATY ™ Ari??)

In addition, we have

E [ sup |[Y@2)(t) — y @2 (t)ﬂ

0<t<T

<k

sup Y0~y 0 <t>!p]

0<t<TATY ) AP

+F [ sup (’Y(y’z)(t)’ + |Y(g”§) (t)|)p : Téy’z) A Tﬁg’g) < T}

0<t<T

<E

sup }Y(w) (t) — y (@.2) (1) |p]

0<t<TATY ) AP

+E [ sup (|[Y@ ()| + [YEI@)])" : sup (Y@ ()| + [Y @I (1)) zn]

0<t<T 0<t<T

<E sup Y1) — Y@ (1)["

0<t<TATY ) A

+ lE [ sup (|[Y@2 ()] + [y (t)|)p+1}

n 0<t<T

for (y, 2), (g,2) € C. Combining (3.3) and (3.4), we obtain the desired result. O

Let W7 be the totality of R%valued continuous maps on [0,00) and P®%?) the law of
W4 x Z-valued random variable (Y 2 z). If 11 is a Borel probability measure on R? x Z,

then a probability measure P* on W? x Z is defined by P*(dw) = PW?) (dw)u(d(y, 2)).
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We can easily show that the measure P* is the law of a solution of the equation (3.1)
with the initial distribution p. Therefore by combining this result with Lemma 3.1-(i),

we have a unique strong solution of the equation (3.1).

LEMMA 3.2. There exists a map F : R x Z x W§ — W satisfying the following :

(1) Fis F(R x Z) / BIW?)-measurable.

(2) F is Fi(R x Z) | Bi(W%)-measurable.

(3) Suppose that (Y, Zy) is a solution of (3.1) with an (F;)-Brownian motion B =
{Bi}150 on a usual filtered probability space (Q, F, P, (Ft)i0)-
ThenY = F(Y(0), Zy, B) P-a.s.

(4) If B={B(t)} is an (F;)-Brownian motion, & is an R?-valued Fy-random variable
and 0 is a Z-valued Fo-random variable on (Q, F, P, (Fi)o), then (F(&,n, B),n)

is a solution of (3.1) on (0, F, P, (Fi)i>0) with the initial value (&, 7).

We omit the proof since it is shown in the same way as [6, Theorem IV-1.1] and [8,
Corollary 5-3.23].

Recall that we consider the stochastic differential equation on M given by
(3.5) dX (t) = Au(X(t)) 0 dB(t) + Ag(X (¢)) dt,

where Ay, Ay, ..., A, are leafwise smooth vector fields. First we construct “local” solutions

of (3.5). For a fixed foliated chart (U, (y, z)), these vector fields are expressed as

, 0
Aazag(y,z)a—yi, a=0,1,...,r
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in (U, (y,2)). We can extend o0¢,01,...,0, to leafwise smooth functions with compact

support on R? x Z. Consider a stochastic differential equation on R? x Z given by

dY (t) = 0,(Y (t),2) 0o dB*(t) + oo(Y(t),2) dt
(3.6)
= 0,(Y(t),2)dB(t) + 70(Y (t), 2) dt,

where

70:2) = 0 ) + 5 3 (G 2)) okl

a=1
Then we have the strong solution Fy : RY x Z x W — W? for the equation (3.6) by
Lemma 3.2. We notice that the map (y, z) : U — B; x By is extended to a map from U

onto By x Bsy. Define maps Tgi’i)BQ, Fy; and 7 so that

0 (W) =inf {t >0 : (Fuly,zw)(t),z) ¢ Bi x By},

Fult,z,w) = (5,2) " (Foly(@), 2(2),w)t ArSE5), 2(@)) - and

oz, w) = 75D (w),

Recall that the rule (2.2) for Ay, Ay, ..., A, under changes of coordinates and the fact that
the chain rule for the operation o takes the same form as in the ordinary calculus. Then
we can show that if V' € U is another foliated chart containing z, Fy(t,z) = Fy(t,z) for
t < 1y(z) A1y (x) PYV-a.s. by the pathwise uniqueness of solutions for the equation (3.6).

Next we patch together the local solutions. Let U = {(U,, )} be a foliated atlas of
M. We may assume that for any «, there exist foliated charts (U, 1, pa1) and (Ua2, 9a2)

such that U, C U,1 C Uy C Ugso, a2lve, = Pag and @ailu, = Y. For o € M,
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if {Uy,U,,..., U} is the totality of foliated charts in U containing z, we set 7(x,w) =
max {7y, (z,w) : 1 <i <1}. Then amap F is defined for t < 7(z, w) so that F(t,z, w) =
Fy,,(t,z,w) for t < 7y, (z,w) and 1 < i <1 PY-asw. Define 1 =7 and F(t) = F(t)
for t < 7. Inductively, if 7, and F(t) are defined for 0 < t < 7,, then on the set

{(z,w) : T,(x,w) < o0}, we define
Ty =F(1,), w,=0,w, Ty1="Tn+7(xy,w,) and F(t)= F\(t — Tp,y Ty W)

for 7, <t < 7,41. Thus F(t) is defined for ¢t < lim 7,,.

n—oo

Now we prove Theorem 2.1.

Proof of Theorem 2.1. We divide the proof into three steps.

(Step 1) For any x € M, PY(7,,(z) T oo (n 1 00)) = 1.

Take z € M and fix it. By definition, 7(x), 7,(x), n = 1,2,... are (EW)—stopping

times. We need to show that

E H1{Tn(x)<00}eXp<_?(xn’wn)) =0.

Since M is compact, we may assume that U/ is finite. We can prove that there exists k < 1
such that

Lz () <00} B [exp (=T (2, wn)) | FY ()] < K
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for any n > 1 and x € M in the same way as [6, Lemma IV-2.1]. Moreover, we have

m+1 m+1
E H L (@)<oc} €XP (=T (2n, wy,)) | = £ | E H L (@)<oo} €XP (=T (Zn, wy)) ]:ZH(:E)”
n=1 n=1
<kE

1 1) <00y 30 (=T (2, wn))]
n=1
for m > 1. Therefore we reach the desired result.

(Step 2) The map F : (z,w) — F(:,x,w) gives a unique strong solution for (2.5)

((3.5)), i.e., I satisfies (1)—(4) in Theorem 2.1.

The assertions (1) and (2) follow from the measurability of the maps {FUQJ} stated
in Lemma 3.2. To verify the assertion (4) we need only to show in the case where
(QF, P, (Fez0) = (M x W, F(IM)*, p@ P, (Fe(M)*)e=0), B(t)(z,w) = w(t) and
&(xz,w) = x for a fixed Borel probability measure g on M. Suppose that x € U, and

f € C}(M). Since Fy,, is a solution of the equation (3.6), we have

tAT1(2) '
FECAnN) - 1) = [ (k) Py (o) 50 6) () 0 ()
tAT1(2) Zﬁ o
[ () Pl ) 0) 2(0)) s
tATL(2) tATL(2)
_ /0 (Aaf) (F(5,7)) 0 duw®(s) + /0 (Aof) (F(s,2)) ds PV-as.

on the set {w : 71 (z,w) = 7y, , (z,w)}. Therefore

FF(EAT)) — F(F(0)) = / " (Aaf) (F(s)) o du(s) + / " (Aof) (F(s)) ds
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1 ® PW-a.s. Substituting the law of x,, for u and noticing that x,, and w,, are independent
for n > 1, we see that

JE(E A ) — F(F(EAT) = / T Aaf) (F(8)) o dut(s)

NTn

T / " (Aof) (F(s)) ds

NTn

pux PV-as. From Step 1, it follows that 7, T oo (n 1 00) u ® P"-a.s. Hence we see
that the assertion (4) is valid. It remains to prove the assertion (3). But it immediately
follows by the pathwise uniqueness of solutions for the equations (3.6).

We define a map X* : W) — Wr(M) for a fixed € M by X*(t,w) = F(z,w)(t) for

(t,w) € [0,00) x W{. Let dps be a metric on M.
(Step 3) For any € > 0 and T > 0, there exists § > 0 such that

PV ( sup dy(X3(t), X2(t)) < E) > 1

0<t<T

for any x, € M with dy(z,Z) <.

We take a foliated atlas U = {(U;, ;) }ir, of M satistying that there exist foliated

charts (U;1, ;1) and (U, 2, ¢;2) such that U, C Uil C m C Uia, @io

Uix = Pil and

vi1ly, = ¢; for each 7. Let | be a Lebesgue number of ¢. For each x € M we put
Z(z) ={1<i<m: By(l/2) C U;} and i(z) = minZ(zx), where B,(l/2) is the open ball

of radius [/2 centered at x in M. We define maps by

plz,w) =inf {t >0 : X(t,z,w) ¢ Uyn1}, o(z,w)=inf {t >0 : X(t,2,w) ¢ Uyz)2}
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for (z,w) € M x W,
p(F 2, w) = inf {£ >0+ X(£,7,0) ¢ Uiy}

0@ w,w) = inf {t = 0 5 X(t,7,0) ¢ Ui}

for (z,z,w) € M x M x W§ and po(x,w) = 0, ppi1(x,w) = pp(z, w) + p(X*(pyn),0,,w)
for n > 0.

To prove the assertion of Step 3, we need the next lemma.

LEMMA 3.3. (i) For any x € M, PV (pn(z) 1 0o (n 1 o0)) = 1.

(ii) For any e >0 and T > 0, there exists § > 0 such that

PY ( sup das (X (t A p(z)), X (t A p(2))) < e) >1—e

0<t<T

for any x, & € M with dy(z,T) < 0.

Proof of Lemma 3.3. The assertion (i) immediately follows from the same reason as

Step 1 stated above. The assertion (ii) is shown as follows. Put
D =min{dy (U1, M\ Uiz) : 1 <i<m}.

We take any 7' > 0 and 0 < € < D/2. From Lemma 3.1-(iii) and the Chebyshev inequality

in each U, 2, we see that there exists 0 < 0 < [/2 such that

3.7y pPY ( sup dy (X*(tAo(z) Ao(Z; ), XP(tAo(z) Ao(F;2))) < e) >1—e

0<t<T
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whenever dy/(z, %) < 0. Since € < D/2, if dps(z,Z) < ¢ and

OiltlfT dy (X*(t Ao(z) Ao(E;z),w), X (tAo(z) Ao(F;z),w)) <e,

then p(z,w) < (o(x) A o(Z;x))(w). Therefore the inequality (3.7) implies

PV ( sup dy (X*(t A p()), X*(t A p(x))) < e) >1—k¢,

0<t<T

which completes the proof of Lemma 3.3.
Now we return to the proof of Theorem 2.1. Let € > 0, T'> 0 and x € M be given. It
suffices to show that there exists § > 0 such that P" < sup da (X“(t), X*(t)) < e) >1—c¢

0<t<T

for any € M with dy/(z,Z) < §. By Lemma 3.3-(ii), we can choose 0 < d§; < € so that

PY ( sup  dy(XH(t), X2 (1)) < e) >1—¢

0<t<TAp1(x1)

for any 1, x9 € M with dy(x1,22) < §;. Applying Lemma 3.3-(ii) again, we can take

0 < dy < 67 so that

PY ( sup  dy(X(t,xq1), X(t, 22)) < 61> >1—-0

0<t<TAp1(z1)
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whenever dy(z1,z2) < 8. Since (X*(p1(x)), X*(p1(z))) and 6, yw are independent on

(p1(x) < 00), we have

0<t<TApa()

PW< sup dM(Xw(t),Xf(t))q)
0<t<TAp2(z)

=pW (( sup  da(XE(1), XE(t)) < €> N(T < P1($)>>

+P" (( sup  da (X7 (1), X¥(t)) < €> N(pi(z) < T)>

0<t<TAp2 ()

0<t<TAp1(z)

>p" (( sup  da(X7(t), X7(1)) < 6) (T < pl(l’)))

+ PV <( sup  da(XE(t), X7(t)) < 51) N(p1(z) <T)

0<t<p1(z)

0<t<TAp1 (XI (Pl (z))vepl (z)w)

A < sup dy (X (t, X7 (p1(2)), Oy 0y w), X (£, X7 (p1()), 0, 0)w)) < 6))

2PV (T < pu(@)) = e+ (1= P <<0<§3p( X0, X7(0) < a) N (prla) < T))
2P (T < pu(e))) = e+ (L= ) (P ((pa(e) ST)) = 01) 2 1= 3¢

if dps(z, &) < dy. Here the first inequality follows from the fact that

X (t+ pi(z)) = X(t, X" (p1(2)), 0, yw) for t >0 PV-as. on (pi(z) < 00).
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Using the same argument above, we can show that for any positive integer n, there exists

0, > 0 such that

|
N

PW< sup  dar(XT(t), X*(t) < e) >

0<t<TApn(x)
for any @ € M with dy;(z, %) < d,. From (i) of Lemma 3.3, there exists N > 1 such that
PY(T < py(x)) > 1 —€/2. Consequently, we obtain

PY ( sup da(X*(t), X*(t)) < e>

0<t<T

> pW (( sup  dar(XF(t), X7 (1)) < e) N(T < pN(x))>

0<t<TApn ()

=1—ce€

>1—

[NORING

€
2

whenever dys(z, %) < dn. The proof of Theorem 2.1 is now complete.

REMARK 3.4. (1) Considering functions defined by f(y,z) = ¢', i = 1,2,...,d in each
foliated chart, we easily see that if a stochastic process X = {X(t)}, satisfies the equality
(2.6) for any f € C°(M), then X is a solution of the equation (2.5).

(2) Let X7 = {XF(t)},5 be a solution on (Wg, FV, P" (FV)i>0) of the equation

(3.8) AX1(t) = Aal(X1(1)) 0 dB(t) + Ao|L(XL(t)) dt
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on a leaf L with the initial distribution 0, and ¢;, : L — M the inclusion map. Con-
sequently, we have X® = i (X¥) PW-a.s. by the pathwise uniquness of solutions in each
foliated chart.

(3) If M is non-compact, we can similarly construct a unique strong solution of (2.5)
up to explosion times.

(4) As we mentioned in Remark 2.2, the stochastic continuity of the family {X*} _,,

with respect to x is an important result to show its Feller property.

4. CENTRAL LIMIT THEOREM FOR ADDITIVE FUNCTIONALS

In this section we prove Theorem 2.8. Let X = {X*} _,, be an A-leafwise diffusion
defined by (2.12). Let = be an element in M and f a continuous function given by f = Ah
for a function h € CF(M). We consider the stochastic process Yy = {Y(t)},5, defined
by (2.14). If the process {r(t,7)},5, is a solution of the equation (2.11) on O(L) satisfying

that 7(r(t,r)) = X*(t) for ¢t > 0, then we have

h(X*(t)) — h(x) = hor(r(t,r)) — hom(r)
/H (hom) (r(s,r)) o dw( /HO (hom)(r(s,r)) ds
t t (1%~ -
:/0 Ha (hor) (r(s,r)) dwa(s)+/0 <§ZHQHQ+HO) (hom)(r(s,r))ds

:/0 H, (hom)(r(s,r)) dwa(s)—l—/o f(X7(s))ds

We put
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for ¢ > 0. Then we have

hX"(At)) — h(z)
7 :

YY) = M(t) +

In addition we see that the stochastic processes {M{} are continuous martingales and

their quadratic variations are given by

/M d o (hom) (r(s,r))>2 ds = %/O/\t ||gradLh(X“”(s))||§ ds,

where g is the leafwise smooth Riemannian metric on M induced by A. Note that

Z( (hom) - ) Z:: of gh](y,) g”(y,Z)g—;i(y,z)g—;j(y,Z)

a=1

= |lgrad Ay, =)l

for (y, z, () with §7(y, 2, (¢})) € O(L).
We can easily prove Theorem 2.8.

Proof of Theorem 2.8. Let x be an element in Q)x. Recall that

h(X*(M)) — h(z)

Since

AX(M) — ()] _ 2l
20 VA =7

=0 (A— 00),
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we have only to show that MY — Wiy, in law as A — oo. To this end it suffices to show

that

(M) () — (/M lgrad hf, dmx) -t (A — 00) in probability

for ¢ > 0 by [12, Corollary 1 and references therein]. Noticing that € Qx, we obtain

1 At 1 A
)0 = 5 [ oot (NI ds = (55 [ Neraduh DI ds) -
— </ ngadLth; dmr) t (A= o0) PV-as.
M

This completes the proof of the theorem.

REMARK 4.1. When M is a mapping torus constructed by a topological dynamical system
and X is the leafwise Brownian motion induced by a natural leafiwise smooth Riemannian

metric, the corresponding result to Theorem 2.8 is obtained in [14].

Next we consider the case when there is only one A-harmonic probability measure on

M. Then we obtain the following.

LEMMA 4.2. The following are equivalent.

(i) An A-harmonic probability measure exists uniquely.
(ii) There exists an A-harmonic probability measure m such that for any f € C(M),
(1/t)/tT(s)f ds converges to / fdm uniformly as t — oo.
0 M
(i) For any f € C(M), there exists a number C(f) depending only on f such that

for any x € M, (1/t) /tf(Xx(s))ds converges to C(f) in L*(PY) ast — oo.
0
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(iv) For any f € C(M), there exists a number C(f) depending only on f such that
t

for any x € M, (1/t)/ f(X*(s))ds converges to C(f) in probability as t — 0.
0

(v) For any f € C(M), there exists a number C(f) depending only on f such that

for any x € M, (1/t) /tT(s)f(:E) ds converges to C(f) ast — oo.
0

Proof. ((i) = (ii)). Let m be an A-harmonic probability measure. Suppose that (ii) is
false. Then there exist an element fy in C'(M), a positive number ¢, a sequence {z;} of

points in M and a sequence of positive numbers {¢;} such that lim; , t; = co and

tl/ojT(s)fo(xj)ds—/Mfodm‘ > €.

J

(4.1)

Choosing a subsequence we may assume that the limit

1
W%mﬁAHWW@

Jj—00

exists for any f € C(M). By the Riesz representation theorem, there exists a Borel

probability measure m’ such that J(f) = / f dm' for each f € C(M). By substituting
M

T(t)f for f, it is easy to see that m’ is an A-harmonic probability measure. The inequality
(4.1) implies that m # m/'.
((ii) = (iii)). Considering f — C(f), we have only to show

(;/ tf(Xf(s))ds)Ql -

(4.2) lim £

t—o00
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t

whenever (1/t) [ T(s)f ds converges to 0 uniformly in x as t — oco. For ¢t > 0 we have

S—

I(t) =E (% / f(Xx(S))dS>]
:tg ar / ELF(X™(r) F(X"(5))] ds
-2 ar / E[f(X*(r)(T(s — 1) £)(X*(r))] ds
-2 ar / B[ () (T(s) ) (X7 ()] ds
2 ['p [f(xﬂ@(r)) / _T(T(S)f)(XW))dS} dr
2 (¢ np [f(xwt — / (T )X ) ds} dr
1 t(1—r)
_ / e / (T(s)f>(X““(tr))d8] dr.

Here the third equality follows from the Markov property of X = {X*}__,,, the fourth
equality is obtained by the change of variable s —r + s, the fifth equality is a consequence
of the Fubini theorem, and the last equality is obtained by the change of variable r > tr.

Thus we have

1 t(1—r)
/ T(s)fds| dr—0 (t— o)
0

101 <20 | (=) |7

[e.9]

by the bounded convergence theorem. Hence we have (4.2).

(ili) = (iv) and (iv) = (v) hold immediately.
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((v) = (i)). The ergodic theorem for {T'(t)},., yields that C(f) = / f dm holds for
- M
any A-harmonic probability measure m (see [1, Theorem 7.3] and [4, Theorem VIIL.7.1

and Theorem VIII.7.5]). Hence an A-harmonic probability measure exists uniquely. O

REMARK 4.3. If M is a mapping torus constructed by a topological dynamical system and
X is the leafwise Brownian motion, the unique ergodicity of the base dynamical system

is also equivalent to the preceding (i)—(v). The proof of this fact is given in [14].

Now we state a version of Theorem 2.8 in the case when there is only one A-harmonic

probability measure on M.

THEOREM 4.4. Assume that there exists a unique A-harmonic probability measure m.
For a real-valued function h € C3(M) let f = Ah and consider the process Y defined
by (2.14). Then for any point x € M, the processes Y¥ converge in law to the Brownian

motion Wiy, with variance (f)t for each time t > 0 as X\ — oo, where

(f) = /MngadLhﬂz dm.

Proof. We use the notation in the proof of Theorem 2.8. We need only to show that

(M) (t) — </M ngadLth dm) -t (A — o0) in probability

for any x € M and t > 0. From (iv) of Lemma 4.2, we have

i) = (5 [ a1 as) 1= ([ feradgallam) ¢ (= o0
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in probability for any x € M and ¢ > 0. Now the proof of the theorem is complete.  [J

Finally we give two examples of uniquely ergodic (1/2)A -leafwise diffusions, i.e., leaf-

wise Brownian motions on foliated spaces.

EXAMPLE 4.5. (The mapping torus of a Z%-action on the d-torus) Let T¢ = R?/Z? be the
d-torus and {ay,as,...,aq} a set of real numbers such that 1, aq,aq, ..., a4 are linearly

independent over Q. Consider the Z?-action on T? given by

F o T3 (21, 29,...,24) + 2% = (21 +niay, 29 + noas, . .., x4 + ngag) + 24 € T?

for n = (ny,ng,...,ng) € Z% A Z%action on R?x T¢ is also defined by R¢x T? > (u, z) >
(u—mn, F"z) € RYx T for n € Z*. The quotient space (R% x T?)/Z% is a compact foliated
space endowed with a natural leafwise smooth Riemannian metric g. The space is called
the mapping torus of the action F' = {F"} _,, and we denote it by T%. Each of the leaves
of T% is identified with R?. Let B = {B(t)},», be a d-dimensional standard Brownian
motion defined on a probability space (€2, F, P). The stochastic processes X = {X x}xerF
on T4 are defined so that X™# (%) (¢) = 7p(u+B(t),x) for t > 0, where 7 : R¢xT?¢ — T
is the natural projection. It is easy to see that X has the same distribution as the leafwise
Brownian motion on T%. Moreover we can show that there is a one-to-one correspondence
between the set of harmonic probability measures for X on T% and that of invariant

probability measures for F' in the same way as [14]. The correspondence is explicit in the

sence that if a harmonic probability measure m, for X is correspondence to an invariant
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probability measure p for F', we have

/

for any continuous function f on T%, where ¢ is the d-dimensional Lebesgue measure on

fam,= [ (fomed(t!x
[0,1)dxTd

d
F

[0,1)%. As is well-known, the normalized Haar measure py is the only invariant probability
measure for F'. Therefore m,,, is a unique harmonic probability measure for X. Applying
Theorem 4.4, if (u,z) is an element in R? x T¢ and f is of the form f = (1/2)A,h with a

function h € C2(T%), then we see that

%/0 .f(XﬂF(u’x)(S)) ds = %/ﬂ f(WF(u + B(s),x))ds = Wi () (A — o0) in law,

where Wy is the one-dimensional Brownian motion with variance

d A(homp)\>
rad, h|> dm,,, | -t = / (—F> d (14 x -t
(/poug Ll ) (HZ o (1" % pr)

for each time ¢t > 0.

EXAMPLE 4.6. (The stable foliation of the geodesic flow on a compact Riemannian mani-
fold of negative curvature) Let M be a compact smooth Riemannian manifold of negative
sectional curvature, SM the unit tangent bundle to M, {¢;},.r the geodesic flow on SM

and TW*(v) the stable manifold of the element v in SM, i.e.,

We(v) = {w € SM : there exists s € R such that tlim d(pyssv, prw) = O} :
—00
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It is well-known that SM is a compact foliated space with W#(v) as the leaf passing
through v € SM. The Riemannian metric on M induces a leafwise smooth Riemannian
metric g on SM. Hence the leafwise Laplace-Beltrami operator A, and the leafwise
Brownian motion X = {X"} _.,, are defined on SM. It should be noted that Ledrappier
discusses about such a process (see [10] and [11]). In particular he showed that a harmonic
probability measure m for X exists uniquely in [11]. Therefore, applying Theorem 4.4,

we see that

1
ﬁ/0 FX(s)) ds = Win() (A= oo) in law

whenever v is an element in SM, f is of the form f = (1/2)A,h with a function h €

C?(SM) and Wy, is the Brownian motion with variance

(/ lgrad A2 dm) ot
SM

for each time ¢t > 0.
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