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Abstract

We construct the SO(5) × U(1) gauge-Higgs unification with Higgs boson
massmH = 126 GeV on the Randall-Sundrum warped spacetime. We introduce
SO(5) × U(1) gauge fields and fermion multiplets which contain the standard
model particles in the bulk region. SO(5)×U(1) gauge symmetry is broken to
U(1)EM by using the Hosotani mechanism as electroweak symmetry breaking
mechanism. On the Planck brane there exists brane fermions and brane scalar.
The exotic bulk fermions become heavy because of the brane interactions. Dark
fermions (SO(5)-spinor fermions) are relevant for having the observed unstable
Higgs boson. We demonstrate how to determine the relevant parameter sets
for mH = 126 GeV. Relevant parameters in this model are determined self-
consistently. After we determine the relevant parameters, the global minimum
θH is determined and all other quantities such as the mass spectra of all KK
towers, gauge couplings of all particles, and Yukawa couplings of all fermions
are determined. We find that the universal relations that are independent on
the detail of the dark fermion sector. The Kaluza-Klein mass spectra of γ, Z,
ZR, top quark, couplings of the first Kaluza-Klein Z boson to quark and Higgs
self couplings obey universal relations with Wilson line phase θH in the fifth
dimension. Higgs cubic and quartic couplings are smaller than those in the
standard model. We analyze the decay rates H → γγ, gg and neutral gauge
bosons, Z ′, through dilepton events at LHC. We find that signal strengths of
the Higgs decay modes compared to the standard model are cos2 θH . In our

model Z ′ bosons are the first Kaluza-Klein modes Z
(1)
R , Z(1), and γ(1) at TeV

scale. An excess of events in the dilepton invariant mass should be observed in
the Z ′ search at the upgraded LHC at 14TeV. We explore dark matter searches
in the SO(5) × U(1) gauge-Higgs unification. The lightest neutral component
of dark fermions becomes the dark matter of the universe. The relic abundance
determined by WMAP and Planck data is reproduced with a model with one
light and three heavy dark fermions. This model with a mass of the lightest
dark fermion from 2.3TeV to 3.1TeV is consistent with direct search explored
by XENON 100 and LUX experiments. The corresponding Wilson line phase
θH ranges from 0.097 to 0.074, which is exactly the range explored for Z ′ search
at 14 TeV LHC as well.
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1 Introduction

Results of LHC experiments and realistic models The gauge symmetry is the

origin of the forces. The standard model (SM) is the most successful theory. The SM has

the SU(3)C×SU(2)L×U(1)Y gauge symmetry. The SM is strongly restricted by the gauge

symmetry, i.e. mass terms for gauge bosons, and quarks and leptons are forbidden. To

generate the mass terms, we introduce a Higgs boson a la the Higgs mechanism. SU(2)×
U(1) gauge symmetry is spontaneously broken by the vacuum expectation value of the

Higgs boson. In 2012 the Higgs boson was discovered by LHC experiments[1][2]. All

of the particles in the SM are discovered. The Higgs mass is measured to be mH =

125.3± 0.4(stat.)± 0.5(syst.) GeV and mH = 125.36± 0.37(stat)± 0.18(syst) GeV by the

CMS collaborations and the ATLAS collaboration, respectively[2][3].

There are unsolved problems which we should consider. Firstly the Higgs boson has

fine tuning problem. The loop corrections to Higgs mass have the quadratic divergence.

To solve this divergence part, we regard the SM as the low energy effective theory, i.e.

new physics appears above the certain energy scale. One introduces new physics such as

supersymmtery, extra dimensions, compositeness of the Higgs boson and so on above this

scale. The new physics predicts new particles such as superpartners, Kaluza-Klein (KK)

particles and techni-particles. For example, a model of the extra dimension has the lightest

KK particle. If this KK particle is stable, this can become a dark matter candidate. New

particles may couple to the SM particle and enhances or suppresses the loop corrections.

In other words, new physics may lead to departure from the SM. It is interesting and

meaningful to construct a realistic model which reproduce the SM at low energy.

The gauge-Higgs unification The gauge-Higgs unification (GHU) is one of the model

beyond the SM. The GHU is formulated in higher dimensional gauge theory. The main

feature of GHU is the four dimensional Higgs field which is corresponding to extra dimen-

sional component of the gauge fields. Suppose we consider the Wilson loop operator which

integrates gauge fields along direction of extra dimensions. When the extra dimension is

non-simply connected space, Wilson loop has non-trivial constant phases which cannot be

removed by gauge transformation,

eiθH = P exp

{
ig

∫ 2πR

0

dy ⟨Ay⟩
}
, (1.1)
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where Ay is the extra dimensional component of gauge fields and θH is a constant phase.

This constant phase is called the Wilson line phase or the Aharonov-Bohm (AB) phase.

The gauge symmetry is dynamically broken by this vacuum expectation value of Ay. This

mechanism is called Hosotani mechanism[4][5]. When we apply Hosotani mechanism to

the electroweak symmetry breaking, this scenario is called gauge-Higgs unification[6]. A

Higgs field appears as a fluctuation of the Wilson line phase, i.e. the Higgs field is the extra

dimensional components of the gauge field. GHU is strongly restricted by gauge principle.

The 1-loop effective potential and Higgs mass are finite as a consequence of gauge symmetry.

In this scenario there appears no fine tuning. This is the main motivation of GHU as a

model beyond the SM. Other motivations are to construct the model which only use gauge

symmetries as a principle and to discover the extra dimension. One might wonder if sum

of the all KK modes in loop corrections has divergence. In GHU 1-loop effective potential

and Higgs mass are finite. Therefore physical quantities in the GHU are expected to be

finite. This is the interesting feature and we find that loop corrections in H → γγ are

finite in SO(5)× U(1) GHU[7] as well.

The SO(5) × U(1) gauge-Higgs unification The most realistic model of the GHU

is the SO(5)×U(1) GHU[7]-[14]. We introduce SO(5) × U(1) gauge fields and fermion

multiplets which contain the standard model particles in the bulk region. SO(5) × U(1)

gauge symmetry is broken to U(1)EM by using the Hosotani mechanism as electroweak

symmetry breaking mechanism. On the Planck brane there exist brane fermions and brane

scalar. The exotic bulk fermions in the bulk region become heavy because of the brane

interactions. In the original model of the SO(5) × U(1) GHU, we could not explain the

Higgs boson which has been discovered at LHC experiments In the SO(5) × U(1) GHU

Yukawa couplings and Higgs 3-point couplings of gauge bosons are proportional to cos θH .

And in the original model of SO(5) × U(1) GHU the Wilson line phase takes the value

π/2 and all 3-point Higgs couplings of quarks, leptons, W and Z vanish. Therefore Higgs

boson becomes stable in the original model of SO(5)×U(1) GHU. So we should introduce

a mechanism that the Higgs become unstable. Then we introduce the additional fermions,

which are called dark fermions (SO(5)-spinor fermions)[7]. This dark fermion can has the

neutral and charged components. In this case the lightest dark fermion can become one of

the candidates of the dark matter.

Relevant parameters in this model should be determined self-consistently. We treat

the warp factor and the number of the dark fermions as free parameters. We choose the
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global minimum in the effective potential tentatively to determine self-consistently. Then

we calculate the other relevant parameters and determine the Higgs mass. If the obtained

Higgs mass is smaller (larger) than 126 GeV, we reiterate the same procedure with smaller

(larger) tentative value of the global minimum. After we determine the relevant parameters,

the global minimum θH is determined and all other quantities such as the mass spectra of

all KK towers, gauge couplings of all particles, and Yukawa couplings of all fermions are

determined.

We find that the universal relation which is independent on the details in the dark

fermion sector. The universality relations appear among θH , the KK mass, the masses

of Z(1), γ(1) and t(1), couplings of Z(1)q̄q and the Higgs self-couplings[7]. Once the θH

is determined from, say, Z(1) mass, we can determine other quantities, γ(1) mass , the

Higgs self-couplings and so on. If one finds the value of mZ(1)(θH) from experiments, θH is

determined and other quantities are predicted. Our Higgs cubic and quartic couplings are

smaller than those in the SM.

We analyze the Higgs decay, H → γγ, and Z ′ search[7][13]. We can know the Wilson

line phase θH from the analysis by using universality. We find that in signal strength

of H → γγ, dominant factor of deviation from the SM is cos2 θH which comes from the

Higgs couplings. First exited KK modes of Z boson Z(1), photon γ(1), the lowest mode

of ZR and Z
(1)
R have TeV scale mass in the SO(5) × U(1) gauge-Higgs unification. These

massive neutral gauge bosons appear as Z ′ boson. Z ′ in the SO(5)×U(1) GHU is strongly

coupled with right handed fermions so that Z ′ resonance has large width. In the region

θH < 0.13, SO(5) × U(1) GHU is consistent with the H → γγ and Z ′ search at 8 TeV

LHC experiments. And we predict Z ′ are discovered in the 14 TeV LHC experiments.

In addition to the collider experiments we examine the implication to the dark matter

problem. We assign the U(1) charge such that the dark fermions contain the neutral

components[14]. In the SO(5)×U(1) GHU the number of dark fermions is conserved so that

the lightest neutral dark fermions become stable. In the non-degenerate case of one lighter

neutral dark fermion and three heavier neutral dark fermions, we can explain the relic

density. We also examine the direct detection. In the region θH = 0.097−0.074, our model

is consistent with the experiments of the relic density and the direct detection. Especially

for the direct detection the model indicates dark matter is expected to be discovered in

the next LUX experiments.
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Figure 1: The left panel shows S1. The right panel shows the identification of the S1/Z2.

Extra dimension The most simplest case isM4×S1 in the model of the extra dimension.

The characteristic quantity of extra dimension is radius R. Wave functions of fields on the

S1 satisfy equations of motion. The wave function is expanded by the complete set. We

get wave functions and call KK mode for each mode. And also the equations of motion

give us the masses of each mode of the fields. Characteristic mass scale is 1/R. This is

called KK mass. However on the S1 ×M4 fermions are vector-like so that the SM cannot

be not reproduced. To have chiral fermions, we introduce the orbifold structure S1/Z2 in

which the upper side of S1 is identified with the lower side of S1, Fig.1. We introduce

the boundary conditions for a line segment. We can impose Dirichlet boundary condition

(fixed boundary condition), Neumann boundary condition and so on. Four dimensional

spacetime of end points are called the branes. And the other part is called the bulk.

When we impose Neumann boundary condition at both end points, the wave function is

cosine function because end points are not fixed. When we impose Dirichlet boundary

condition at both end points, the wave function is sine function because end points are

fixed. This sine function has no zero mode. If left- and right-handed fermions are imposed

by Neumann boundary condition and Dirichlet boundary condition, respectively, only the

left handed fermions has the lowest mode. We can consider more complicated case. The

Randall-Sundrum warped spacetime is a famous spacetime, Fig.2 [15]. Characteristic factor

is called warp factor which connects the TeV scale to the Planck scale. The fine tuning

problem is solved by this warp factor.

Contents of this paper In Sec. 2 we have the brief review of the Hosotani mechanism

for SU(N) gauge theory on the M4 × S1. In Sec. 3 the action of the SO(5)× U(1) GHU

is given. In Sec. 4 we calculate effective potentials Veff and determine global minimum
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Figure 2: This show the Randall-Sundrum warped spacetime. Horizontal axis is fifth
dimensional direction. Planes mean four dimension. Four dimensional coordinates expand
exponentially from TeV brane to Planck brane.

of the effective potential and Higgs mass. And we find universality which is independent

of the detail in the dark fermion sector. In Sec. 5 we discuss Higgs decay H → γγ, gg

and behaviors of the couplings for each KK mode. And we examine the Z ′ search. We

calculate dilepton process at tree level for 8 TeV and 14 TeV LHC experiments. In Sec.

6 we introduce the scenario which regard dark fermions as one of the candidates of dark

matter. We calculate the relic density and the direct detections of dark fermions . We find

that in our model we have a parameter region which is consistent with the experiments of

the relic density and direct search.

2 Hosotani mechanism

We shortly review Hosotani mechanism[4][5]. This section is based on [5]. Hosotani mech-

anism is the spontaneously symmetry breaking mechanism in higher dimensional gauge

theory. When the space is not simply connected, the Wilson loop can have constant phase.

Because the Wilson loop is gauge invariant quantity, this phase cannot remove. This phase

is dynamically determined by the 1-loop effective potential. Higgs mass is finite because of

gauge symmetry. This phase give fermion mass and gauge boson mass at quantum level.

Therefore fine tuning problem is solved.

In this section the constant phase appears from Wilson loop. By using background

gauge method we calculate the 1-loop effective potential for Wilson line phase.

9



2.1 Boundary conditions and equivalence class

Let us first consider SU(N) gauge theory in the five dimensions. We mainly focus on the

gauge field. The fifth dimension is S1 compactification which has radius R. We denote the

four dimensional Minkowski coordinate xµ, the fifth dimensional coordinate y. We identify

y and y + 2πR with boundary conditions U ,

AM(x, y + 2πR) = UAM(x, y)U †, (2.1)

where T [U ] means fundamental or adjoint representation. We consider the gauge transfor-

mation,

Aµ(x, y) → A′
M(x, y) = Ω(x, y)AM(x, y)Ω†(x, y)− i

g
Ω(x, y)∂MΩ†(x, y), (2.2)

where A′
M satisfies the new boundary condition U ′. Now we discuss the relation between

boundary conditions U and U ′. By using the gauge transformation Ω, one finds the relation,

U ′ = Ω(x, y + 2πR)UΩ(x, y). (2.3)

If Ω(x, y) obeys

Ω†(x, y + 2πR)∂MΩ(x, y + 2πR)U = UΩ(x, y)∂MΩ(x, y), (2.4)

U ′ is independent on coordinates. Because the boundary conditions U and U ′ are related

by the gauge transformation Ω(x, y), these boundary conditions satisfied with (2.4) are

equivalent,

U ∼ U ′. (2.5)

We call this relation (2.5) equivalence class. Not all boundary conditions U are not in-

dependent. Some boundary conditions are related to other boundary condition by gauge

transformations. We have the residual gauge invariance which is unchanged boundary

conditions (U = U ′),

Ω(x, y + 2πR) = UΩ(x)U †, (2.6)

where Ω(x, y) is not single-valued unless [Ω(x, y), U ] = 0.
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2.2 Vacuum configuration and the Wilson line phase

In simply connected space the vacuum expectation values of gauge fields can gauge away,

while in non-simply connected space gauge fields can have the non-vanishing expectation

value. We consider the vacuum configuration of the classical case ⟨FMN⟩ = 0. It follows

that,

⟨AM⟩ = − i

g
V †(x, y)∂MV (x, y). (2.7)

We use the boundary condition (2.1),

V †(x, y + 2πR) ∂MV (x, y + 2πR)U = U V †(x, y)∂MV (x, y). (2.8)

We transform eq.(2.7) by gauge transformation Ω(x, y),

⟨AM⟩ → ⟨A′
M⟩ = − i

g
(ΩV †)∂M(V Ω†). (2.9)

V is not unique. CV (CC† = 1) is also satisfied with (2.7), C is a constant unitary matrix.

If Ω(x, y) = V (x, y), ⟨A′
M⟩ is transformed to zero. The boundary condition is changed to

U ′ = V (x, y + 2πR)U V (x, y)†. (2.10)

(2.8) indicates U ′ is independent on the coordinates. Therefore we have the equivalence

class, (
U ; ⟨AM⟩ = − i

g
V †∂MV

)
∼ (U ′; ⟨AM⟩ = 0). (2.11)

This means AM is fixed when the boundary condition U is fixed. We cannot discuss AM

and the boundary condition independently.

Let us introduce the path-ordered Wilson loop with contour C,

W (0)[x, y;C] = P exp

{
ig

∫ x,y+2πR

x,y

AM dxM
}
. (2.12)

Generally W (0)[x, y;C] is not gauge covariant because Ω(x, y) ̸= Ω(x, y + 2πR). So we

redefine,

W [x, y;C] = W (0)[x, y;C]U, (2.13)

where U is introduced in eq.(2.1). Thus W [x, y;C] is transformed,

W [x, y;C] → W ′[x, y;C] = Ω(x, y)W (0)[x, y, C]Ω†(x, y + 2πR)U

= Ω(x, y)W [x, y;C]Ω†(x, y). (2.14)
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Eigenvalues of W [x, y;C] are gauge invariant. We consider the vacuum configuration

FMN = 0. In this time W [x, y;C] is given by

W [x, y;C] = V †(x, y)V (x, y + 2πR)U. (2.15)

We transform (2.15) with the gauge transformation Ω(x, y) = V (x, y) which changes the

boundary condition,

W ′[x, y;C] = V (x, y + 2πR)UV †(x, y) = V (x, y)W [x, y;C]V †(x, y). (2.16)

This means W ′[x, y;C] = U ′ in (2.10). Thus U ′ and W [x, y;C] have the same eigenvalues.

Since U ′ is independent on the coordinates, the eigenvalues of W [x, y;C] are also indepen-

dent on coordinates. This eigenvalues are called the Wilson line phase. In SU(N) gauge

theory, {
eiθ

a
k ,

N∑
k=1

θak = 0 (mod 2π) (a = 1 ∼ n)

}
, (2.17)

where θak is the Wilson line phase. In the non-simply connected space the gauge field can

contain this Wilson line phase. This Wilson line phase cannot be gauged away in the

equivalence class. We summarize the relation between the boundary conditions and the

gauge transformations in Fig. 2.2.

2.3 Effective Potential

Let us calculate the 1-loop effective potential by using background field method in the S1

compactification. Lagrangian is,

L = −1

2
TrFMNF

MN ,

FMN = ∂MAN − ∂NAM + ig[AM , AN ], (2.18)

where ζM is external field. The gauge fixing function is,

F [A] = DM(ζ)AM = ∂MA
M + ig[ζM , A

M ]. (2.19)

Faddeev-Popov operator is,

Mαβ =
δFα

δAM
γ

DM(A)γβ = DM(ζ)αγD
M(A)γβ, (2.20)
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Figure 3: Ω is the gauge transformation which change the boundary condition. Ω′ is the
gauge transformation which does not change the boundary condition. All gauge fields in
this figure contain the same Wilson line phase in the non-simply connected space.

where η is the ghost field. The effective Lagrangian is,

Leff[A, η, η̄] = −1

2
TrFMNF

MN

− 1

α
Tr{DM(ζ)AM}2 − Tr η̄DM(ζ)D

M(A)η. (2.21)

To get the 1-loop effective potential we divide classical parts and quantum parts which

is left quadratic parts.　We can use Euler-Lagrange equation for classical parts. We use

gauge fixing condition,

AM = A0
M + Aq

M , ⟨AM⟩ = A0
M ,

F 0
MN = ∂MA

0
N − ∂NA

0
M + ig[A0

M , A
0
N ],

D0
M = DM(A0), D̄M = DM(ζ). (2.22)

Leff[A
0 + Aq, η, η̄] ⊃ −1

2
Tr (D0

MA
q
N −D0

NA
q
M)(D0MAqN−D0NA0M)

−igTrF 0MN [Aq
M , A

q
N ]

− 1

α
Tr{D̄MA

qM}2 − Tr η̄D̄MD
0Mη. (2.23)

We integrate by part and use [D0
M , D

0
N ]A

qM = ig[F 0
MN , A

qM ],

Leff ∼ TrAq
MD

0
ND

0NAqM − 2igTrF 0
MN [A

qM , AqN ]

−Tr η̄D̄MD
0Mη + Tr(D0

MA
qM)2 − 1

α
Tr(D̄MA

qM)2. (2.24)
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Then we take ζ = A0 and α = 1,

Leff ∼ −TrAqMM g
MNA

qN − Tr η̄M ghη (2.25)

M g
MN = −gMND

0
ρD

0ρ − 4igF 0
MN (2.26)

M gh = D0
ρD

0ρ. (2.27)

Therefore we get the 1-loop effective potential for A0,

Veff[A
0]g = − i

2
Tr lnM g,

Veff[A
0]gh = iTr lnM gh. (2.28)

In the case of F 0
MN = 0,

Veff[A
0]g+gh = −(d− 2)

i

2
Tr lnDM(A0)DM(A0). (2.29)

In the fermion part, contributions of fundamental representation fund and adjoint repre-

sentation adj are

Df
M(A0)ψfund = (∂M + igA0

M)ψ,

Dadj
M ψad = ∂M + ig[A0

M , ψad],

Veff[A
0]fermion = iTr ln {iγMDM(A0)−m}. (2.30)

For massless Dirac fermion,

Veff[A
0]fermion = 2d/2iTr lnDM(A0)DM(A0). (2.31)

Firstly we calculate the contribution of the fermion with fundamental representation,

Veff[θ]
fund = 25/2iTr ln (−i∂M + gAM)2

= 25/2
i

2

1

2πR

+∞∑
n=−∞

∫
d4p

(2π)4
Tr ln {p20 − p21 − p22 − p23 − (ωn − gAy)

2}

=
25/2

4πR

N∑
j=1

∞∑
n=−∞

∫
d4p

(2π)4
ln

{
p2 +

(
ωn −

θj
2πR

)2}
, (2.32)

where ωn = n/R. In the second line of eq.(2.32), we get rid of constant term,

∞∑
n=−∞

ln{(2πn− x)2 + E2} = ln(1− eE+ix)(1− e−E−ix)

+(x− indpendent). (2.33)
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To use the gamma function,

V fund
eff = − 25/2

4πR

N∑
j=1

2

(4π)2
1

Γ(2)

∫ ∞

0

dp p3{ln (1− e2πRp+iθj) + ln (1− e2πRp−iθj)}

=
25/2Γ(2)

(2πR)5π5/2

N∑
j=1

∞∑
n=1

1

n5
cosnθj. (2.34)

In the similar way we can get the contributions of fermions for adjoint representation,

V adj
eff =

25/2Γ(2)

(2πR)5π5/2

N∑
j,k=1

∞∑
n=1

1

n5
cosn(θj − θk). (2.35)

Finally we get contributions of gauge fields and ghost fields,

V g+gh
eff = − 25/2Γ(2)

(2πR)5π5/2

N∑
j,k=1

∞∑
n=1

1

n5
cosn(θj − θk). (2.36)

Here we consider the dependence of boundary conditions for 1-loop effective potential.

We consider the following gauge trans formation,

A0′

M = ΩA0
MΩ† − i

g
Ω∂MΩ†. (2.37)

Euler-Lagrange equation for gauge fields and gauge fixing condition are,

DM(A0)FMN(A
0) = 0,

DM(A0)A0
M = 0. (2.38)

The gauge fixing condition (Second line of eq.(2.38)) is not gauge invariant satisfied for

eq.(2.37). In this time we consider the gauge fixing condition is gauge invariant and satisfied

with

DM(A0)∂MΩ†Ω = 0. (2.39)

Thus the gauge fixing term is gauge invariant with A′
M = A0′

M + Aq′

M ,

F ′[A′] = DM(A0′)A′
M

= Ω

{
DM(A0)AM − i

g
DM(A0)∂MΩ†Ω

}
Ω†

= ΩF [A]Ω†. (2.40)

Therefore, the 1-loop effective potential is unchanged for both boundary conditions U and

U ′,

Veff[A
0;U ] = Veff[A

0′ ;U ′]. (2.41)
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3 Model

In this section we define SO(5)×U(1) GHU [7]-[14]. SO(5)×U(1) GHU model is the most

realistic model which reconstructs the SM. Firstly we introduce the SU(3)C × SO(5) ×
U(1)X gauge symmetry on the Randall-Sundrum warped space-time. Then we discuss the

symmetry breaking. Secondly we introduce the 5 dimensional fermions. Exotic fermions

become heavy because of the brane interactions. We introduce the additional fermions,

which are called the dark fermions (SO(5)-spinor fermions). We explain the relevant

parameters in the next section.

3.1 Gauge fields in the SO(5)× U(1) GHU

3.1.1 Gauge symmetry

We introduce the SU(3)C × SO(5) × U(1)X gauge symmetry on the Randall-Sundrum

warped spacetime [15]. Fifth dimensional space is the line segment with length L. The

boundary of the fifth dimensional space is called the brane and the other region is called

the bulk. We denote y is the fifth dimensional coordinate. An four dimensional part of

end point at y = 0 is called the Planck brane, the other end point at y = L is called the

TeV brane. The metric of the Randall-Sundrum warped spacetime is given by

ds2 = GMNdx
MdxN = e−2σ(y)ηµνdx

µdxν + dy2 , (3.1)

where ηµν = diag(−1, 1, 1, 1), σ(−y) = σ(y), σ(y+2L) = σ(y) and σ(y) = k|y| for |y| ≤ L.

k is the curvature, which has the value from 104 TeV to 107 TeV. The characteristic factor

zL = ekL is called the warp factor, which has the value from 104 to 107. This warp factor

connects between the weak scale and Planck scale. The cosmological constant is given by

Λ = −6k2. We rewrite the metric with the conformal coordinate z = eky,

ds2 =
1

z2

(
ηµνdx

µdxν +
dz2

k2

)
. (3.2)

This form is useful to calculate the wave functions. The KK mass scale is given by mKK =

πk/(zL − 1) ∼ πkz−1
L . In this paper we focus on mKK = 4− 10 TeV.

There exist the SU(3)C×SO(5)×U(1)X gauge fields in the bulk region. SU(3)C gauge

fields become gluon fields in the 4 dimensions. Because of introducing the 4 dimensional

Higgs doublet, we introduce the SO(5) × U(1)X gauge fields. We note that SU(3) GHU

model does not obtain the Weinberg angle. The bulk part of the action is given by

Sgauge
bulk =

∫
d5x

√
−G

[
−tr

( 1

4
F (A)MNF

(A)
MN +

1

2ξA
(f

(A)
gf )2 + L(A)

gh

)
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−
( 1

4
F (B)MNF

(B)
MN +

1

2ξB
(f

(B)
gf )2 + L(B)

gh

)
−tr

( 1

2
F (G)MNF

(G)
MN +

1

ξC
(f

(G)
gf )2 + L(G)

gh

)]
, (3.3)

where AM , BM and GM (M = µ and y) are SO(5), U(1)X and SU(3)C gauge fields,

respectively. Field strengths are given by

F
(A)
MN = ∂MAN − ∂NAM − igA

[
AM , AN

]
, (3.4)

F
(B)
MN = ∂MBN − ∂NBM , (3.5)

F
(G)
MN = ∂MGN − ∂NGM − igC [GM , GN ]. (3.6)

gA and gC are SO(5) and SU(3)C charge, respectively. We denote the gB is the U(1)X

charge. We take the gauge fixing function,

f
(A)
gf = z2

{
ηµνDµAν + ξAk

2zDc
z(A

q
z/z)

}
(3.7)

with a background field Ac
z (Az = Ac

z + Aq
z), B

c
z = Gc

z = 0.

Now we discuss the symmetry breaking. SO(5)×U(1)X gauge symmetry breaks to the

SO(4)× U(1) gauge symmetry by the boundary conditions at y0 = 0 and y1 = L,(
Aµ

Ay

)
(x, yj − y) = Pvec

(
Aµ

−Ay

)
(x, yj + y)P−1

vec ,(
Bµ

By

)
(x, yj − y) =

(
Bµ

−By

)
(x, yj + y),

(
Gµ

Gy

)
(x, yj − y) =

(
Gµ

−Gy

)
(x, yj + y),

Pvec = diag (−1,−1,−1,−1,+1) (3.8)

Four dimensional SO(4) part and five dimensional SO(5)/SO(4) part of the gauge field AM

have parity even whereas four dimensional SO(5)/SO(4) part and five dimensional SO(4)

part of the gauge field AM have parity odd. By this boundary condition SO(5) symmetry

breaks to SO(4), which is equivalent to the SU(2)L×SU(2)R. SU(2)L×SU(2)R indicates

that the Peskin-Takeuchi T parameter is zero. SU(2)R ×U(1) symmetry is spontaneously

broken to U(1)Y by the brane scalar Φ̂. This brane scalar lives on the Planck brane.

The vacuum expectation value of the brane scalar is ⟨Φ̂⟩ ≫ mKK. At this time we have

the massive charged and neutral gauge bosons which come from the SU(2)R × U(1)X .
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We call charged gauge boson W±
R and neural gauge boson ZR. Massless neutral gauge

boson corresponds to U(1)Y field. And then we have the SM symmetry, SU(2)L × U(1)Y

symmetry. SU(2)L×U(1)Y symmetry is spontaneously broken to U(1)EM by the Hosotani

mechanism. SU(2)L×U(1)Y symmetry is unbroken at flat spacetime which is not Randall-

Sundrum warped spacetime. The SO(5) gauge fields AM are decomposed as

AM =
3∑

aL=1

AaL
M T aL +

3∑
aR=1

AaR
M T aR +

4∑
â=1

Aâ
MT

â, (3.9)

where T aL,aR(aL, aR = 1, 2, 3) and T â(â = 1, 2, 3, 4) are the generators of SO(4) ≃ SU(2)L×
SU(2)R and SO(5)/SO(4), respectively. Note that generators of the SU(2)L×U(1)Y gauge

symmetry are mixed generators of SO(5)×U(1) gauge symmetry by the Wilson line phase

θH after the electroweak symmetry breaking, Appendix B.

3.1.2 Four dimensional Higgs boson

The SO(5)/SO(4) coset part of the gauge field Ay contains four dimensional Higgs dou-

blet. Without loss of generality the zero mode of A4̂ component of Ay can has vacuum

expectation value when the EW symmetry is spontaneously broken. The zero modes of Aâ
y

(a = 1,2,3) are absorbed by W and Z bosons. The four-dimensional neutral Higgs field

H(x) appears as a fluctuation mode of the Wilson line phase,

A4̂
y(x, y) =

{
θHfH +H(x)

}
ũH(y) + · · · ,

exp
{ i
2
θH · 2

√
2T 4̂

}
= exp

{
igA

∫ L

0

dy ⟨Ay⟩
}
,

fH =
2

gA

√
k

z2L − 1
=

2

gw

√
k

L(z2L − 1)
, (3.10)

where gw = gA/
√
L is the dimensionless 4 dimensional SU(2)L coupling. After the KK

decomposition we get the wave function of the four-dimensional Higgs boson,

ũH(y) =

√
2k

z2L − 1
eky, 0 ≤ y ≤ L, (3.11)

where ũH(−y) = ũH(y) = ũH(y + 2L).
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3.1.3 KK decomposition of the gauge fields

The gauge fields are expanded by the terms of Bessel functions,

C(z;λ) =
π

2
λzzLF1,0(λz, λzL) , C ′(z;λ) =

π

2
λ2zzLF0,0(λz, λzL) ,

S(z;λ) = −π
2
λzF1,1(λz, λzL) , S ′(z;λ) = −π

2
λ2zF0,1(λz, λzL) ,

Ŝ(z;λ) =
C(1;λ)

S(1;λ)
S(z;λ) ,

Fα,β(u, v) = Jα(u)Yβ(v)− Yα(u)Jβ(v) . (3.12)

where m = λk. These functions satisfy

C(zL;λ) = zL , C ′(zL;λ) = 0 , S(zL;λ) = 0 , S ′(zL;λ) = λ ,

CS ′ − SC ′ = λz . (3.13)

Four dimensional components of the gauge fields are expanded by C(z;λ) or S(z;λ). These

functions depend on the boundary condition. C(z;λ) is corresponding to the Neumann

condition and S(z;λ) is corresponding to the Dirichlet boundary condition at TeV brane.

At large mass, wave functions of the C(z;λ) and S(z;λ) localize the TeV brane. Therefore

large KK modes of the gauge bosons have the wave functions which is localize the TeV

brane.

We determine the spectrum and wave function of the KK mode of gauge fields. We

introduce the convenient gauge because of the brane interaction at Planck brane. We call

the twisted gauge. This gauge conserve the boundary condition at the TeV brane, whereas

background gauge field is transformed to zero at the Planck brane. The twisted gauge is

given by a gauge transformation,

Ω = exp

{
igAθHfHT

4̂

∫ L

y

dy uH(y)

}

= exp

{
iθH

z2L − z2

z2L − 1

√
2T 4̂

}
for 1 ≤ z ≤ zL . (3.14)

As we mentioned in the previous section, some boundary conditions are related to other

boundary condition by gauge transformations. This gauge transformation change the orb-

ifold boundary conditions,

P̃j = Ω(yj − y)P0Ω(yj + y)−1, (3.15)
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where i = 0, 1. At z = zL, Ω(zL) = 1. This means the boundary condition at the TeV

brane is unchanged. The orbifold boundary condition matrix P0 changes,

P̃ vec
0 =


−1

−1
−1

− cos 2θH sin 2θH
sin 2θH cos 2θH

 . (3.16)

Under the twisted gauge, Aµ(x, z) and B
X
µ (x, z) are expanded in KK towers.

Ãµ(x, z) +
gB
gA
Bµ(x, z)TB

= Ŵ−
µ + Ŵ+

µ + Ẑµ + Âγ
µ + Ŵ−

Rµ + Ŵ+
Rµ + ẐRµ + Â4̂

µ , (3.17)

Ŵ∓
µ =

∑
n

W (n)∓
µ (x)

{
hLW (n)

T 1L ∓ iT 2L

√
2

+ hRW (n)

T 1R ∓ iT 2R

√
2

+ ĥW (n)

T 1̂ ∓ iT 2̂

√
2

}
,

Ẑµ =
∑
n

Z(n)
µ (x)

{
hLZ(n)T

3L + hRZ(n)T
3R + ĥZ(n)T 3̂ +

gB
gA
hBZ(n)TB

}
,

Âγ
µ =

∑
n

Aγ(n)
µ (x)

{
hLγ(n)T

3L + hRγ(n)T
3R +

gB
gA
hBγ(n)TB

}
,

Ŵ∓
Rµ =

∑
n

W
(n)∓
Rµ (x)

{
hL
W

(n)
R

T 1L ∓ iT 2L

√
2

+ hR
W

(n)
R

T 1R ∓ iT 2R

√
2

}
,

ẐRµ =
∑
n

Z
(n)
Rµ (x)

{
hL
Z

(n)
R

T 3L + hR
Z

(n)
R

T 3R +
gB
gA
hB
Z

(n)
R

TB

}
,

Â4̂
µ =

∑
n

A4̂(n)
µ (x)ĥA4̂(n)T

4̂,

Ŵ± =
Ŵ 1 ∓ iŴ 2

√
2

, Ŵ±
R =

Ŵ 1
R ∓ iŴ 2

R√
2

. (3.18)

where U(1)X generator TB is satisfied with TrTB
2 = 1, TrTBT

α = 0 and TrTαT β = δαβ.

The lowest modes of the Ŵ±, Ẑ and Âγ towers are W± boson, Z boson and photon,

respectively. The other towers do not contain light modes. The lowest modes of the other

towers have the mass O(mKK).

We summarize the spectra which we use in this paper. The spectrum of the W tower

is given by

2S(1;λW (n))C ′(1;λW (n)) + λW (n) sin2 θH = 0 . (3.19)
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which includes the W boson as the lowest mode W = W (0). KK spectrum of the Z tower

is given by

2S(1;λZ(n))C ′(1;λZ(n)) + (1 + s2ϕ)λZ(n) sin2 θH = 0 , (3.20)

which includes the Z boson Z = Z(0). We use cϕ and sϕ which are given by

cϕ =
gA√

g2A + g2B
, sϕ =

gB√
g2A + g2B

, cos θW =
1√

1 + s2ϕ

. (3.21)

The spectrum of the photon tower is given by

C ′(1;λγ(n)) = 0 , (3.22)

which includes a massless photon λγ(0) = 0. The spectrum of the ZR tower is given by

C(1;λ
Z

(n)
R
) = 0 , (3.23)

Az(x, z) and Bz(x, z) are expanded in KK towers as

Ãz(x, z) =
3∑

a=1

Ĝa +
3∑

a=1

D̂a + Ĥ,

Ĝa =
∑
n

Ga(n)(x)
{
uLG(n)T

aL + uRG(n)T
aR
}
,

D̂a =
∑
n

Da(n)(x)
{
uLD(n)T

aL + uRD(n)T
aR + ûD(n)T â

}
,

Ĥ =
∑
n

H(n)(x)uH(n)T 4̂,

Bz(x, z) =
∑
n

B(n)(x)uB(n)TB . (3.24)

The spectrum of the D tower is given by

S(1;λD(n))C ′(1;λD(n)) + λD(n) sin2 θH

= C(1;λD(n))S ′(1;λD(n))− λD(n) cos2 θH = 0 . (3.25)

3.2 Fermions and brane interactions in the SO(5)× U(1) GHU

In this subsection we introduce the five dimensional fermions. In the bulk region there are

quark-lepton multiplets Ψa which are represented by vector 5 of SO(5). These multiplets

contain the four dimensional SM fermions and exotic fermions. On Planck brane at y = 0
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(z = 1) we introduce the right-handed brane fermions χ̂αR and brane scalar Φ̂, which are

(2,1) and (1,2) representation of SU(2)L×SU(2)R, respectively. All exotic fermions acquire

masses of O(mKK) by brane interactions on the Planck brane. The brane interactions are

gauge-invariant under SO(4)×U(1)X×SU(3)C . The scalar Φ̂ on the Planck brane induces

couplings among Ψa and χ̂αR. With these brane fermions all four-dimensional anomalies in

SO(4)×U(1)X are cancelled[12]. This anomaly is known as breaking the Ward-Takahashi

identity by 1-loop triangle diagrams of axial current coupled to two gauge bosons. In the

SM, this anomaly is accidentally cancelled.

Additional fermions ΨFi
are introduced in the spinor representation 4 of SO(5)[7, 10,

12]. This fermions ΨFi
are needed to obtain minimum θH ̸= π/2 for Higgs effective po-

tential. The effective potentials for vectorial fermions and spinorial fermions have π and

2π periodicity, respectively. We discuss the detail of the effective potential in Sec.4. This

fermion is called the SO(5)-spinor fermion or the dark fermion. In Sec.6 we study the dark

fermions as a candidate of the dark matter.

3.2.1 The fermions in the bulk region

The bulk part of the action is given by

Sfermion
bulk =

∫
d5x

√
−G

[∑
a

Ψ̄aD(ca)Ψa +

nF∑
i=1

Ψ̄Fi
D(cFi

)ΨFi

]
,

D(c) = ΓAeA
M
(
∂M +

1

8
ωMBC [Γ

B,ΓC ]

−igAAM − igBQXBM − igCQ
colorGM)

)
− cσ′(y) . (3.26)

Qcolor = 1 for quark-multiplets and Qcolor = 0 otherwise. We introduce nF kinds of ΨFi

with bulk mass parameters cFi
. In the simplest case, all ΨFi

are degenerate, which have

the same bulk mass cF . And we can choose the U(1)X charge such that ΨFi
has neutral

components.

The electric charge is given by

QEM = T 3L + T 3R +QX . (3.27)

In the fermion part Ψ̄ = iΨ†Γ0 and ΓM matrices are given by

Γµ =

(
σµ

σ̄µ

)
, Γ5 =

(
1

−1

)
, σµ = (1, σ⃗) , σ̄µ = (−1, σ⃗) . (3.28)
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The cσ′(y) term in the action (3.26) gives a bulk kink mass. When the dimensionless

parameter c changes, profiles of fermion wave function change.

The orbifold boundary conditions at y0 = 0 and y1 = L are given by

Ψa(x, yj − y) = PvecΓ
5Ψa(x, yj + y),

ΨFi
(x, yj − y) = ηFi

(−1)jPspΓ
5ΨFi

(x, yj + y),

Psp = diag (+1,+1,−1,−1). (3.29)

Pvec is shown at boundary condition (3.8). The dark fermion has no zero mode because of

the boundary condition (3.29). The lowest mode of the dark fermions are 1st KK mode.

When for small θH , with ηFi
= +1 the dark fermions F

+(n)
i , F

0(n)
i for odd number of KK

modes (including the lowest mode) couple to SU(2)R gauge bosons. On the other hand,

the dark fermions F
+(n)
i , F

0(n)
i for even number of KK mode couple to SU(2)L gauge bosons

mainly. When for small θH , with ηFi
= −1 the dark fermions F

+(n)
i , F

0(n)
i for odd number of

KK modes couple to SU(2)L gauge bosons mainly, whereas the dark fermions F
+(n)
i , F

0(n)
i

for even number of KK mode couple to SU(2)R gauge bosons.

Quark-lepton multiplets Ψa are decomposed into SO(4) vectors and singlets. One

SO(4) vector multiplet contains two SU(2)L doublets. In each generation

Ψ1 =

[(
T
B

)
,

(
t
b

)
, t′
]
2/3

, Ψ2 =

[(
U
D

)
,

(
X
Y

)
, b′
]
−1/3

,

Ψ3 =

[(
ντ
τ

)
,

(
L1X

L1Y

)
, τ ′
]
−1

, Ψ4 =

[(
L2X

L2Y

)
,

(
L3X

L3Y

)
, ν ′τ

]
0

, (3.30)

where the subscripts denote QX . These t, b are not 4-dimensional top and bottom quarks

but five dimensional field. We take the bulk mass parameters c1 = c2 and c3 = c4 in each

generation. The Wilson line phase θH mixes (B, t) with t′ in the QEM = 2/3 sector, and

(D,X) with b′ in the QEM = −1/3 sector, respectively. Zero modes appear in[
Q1L =

(
TL
BL

)
, qL =

(
tL
bL

)
, t′R

]
,

[
Q2L =

(
UL

DL

)
, Q3L =

(
XL

YL

)
, b′R

]
,

[
ℓL =

(
ντL
τL

)
, L1L =

(
L1XL

L1Y L

)
, τ ′R

]
,

[
L2L =

(
L2XL

L2Y L

)
, L3L =

(
L3XL

L3Y L

)
, ν ′τR

]
, (3.31)

with the boundary condition in (3.29).
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3.2.2 The brane interactions

We denote the brane fermions

χ̂q
1R =

(
T̂R
B̂R

)
7/6

, χ̂q
2R =

(
ÛR

D̂R

)
1/6

, χ̂q
3R =

(
X̂R

ŶR

)
−5/6

,

χ̂l
1R =

(
L̂1XR

L̂1Y R

)
−3/2

, χ̂l
2R =

(
L̂2XR

L̂2Y R

)
1/2

, χ̂l
3R =

(
L̂3XR

L̂3Y R

)
−1/2

, (3.32)

where the subscripts denote QX . χ̂
q
αR’s are SU(3)C triplets. The brane interactions connect

B to B̂R, U and t to ÛR, in the QEM = 2/3 sector, whereas they connect D and b to D̂R,

and X to X̂R, in the QEM = −1/3 sector.

The brane part of the action is given by

Sbrane =

∫
d5x

√
−Gδ(y)

{
− (DµΦ̂)

†DµΦ̂− λΦ̂(Φ̂
†Φ̂− w2)2

+
3∑

α=1

(
χ̂q†
αR iσ̄

µDµχ̂
q
αR + χ̂l†

αRiσ̄
µDµχ̂

l
αR

)
−i
[
κq1χ̂

q†
1RΨ̌1L

˜̂
Φ + κ̃qχ̂q†

2RΨ̌1LΦ̂ + κq2χ̂
q†
2RΨ̌2L

˜̂
Φ + κq3χ̂

q†
3RΨ̌2LΦ̂− (h.c.)

]
−i
[
κ̃lχ̂l†

3RΨ̌3L
˜̂
Φ + κl1χ̂

l†
1RΨ̌3LΦ̂ + κl2χ̂

l†
2RΨ̌4L

˜̂
Φ + κl3χ̂

l†
3RΨ̌4LΦ̂− (h.c.)

]}
,

DµΦ̂ =
(
∂µ − igA

3∑
aR=1

AaR
µ T aR − iQXgBBµ

)
Φ̂ ,

Dµχ̂αR =
(
∂µ − igA

3∑
aL=1

AaL
µ T aL − iQXgBBµ − igCQ

colorGµ

)
χ̂αR ,

Ψ̌1L =

(
TL tL
BL bL

)
etc.,

˜̂
Φ = iσ2Φ̂

∗ . (3.33)

The vacuum expectation value of the brane scalar ⟨Φ̂⟩ = (0, w)t ̸= 0 breaks SU(2)R×U(1)X
to U(1)Y . The brane mass term is given by

Smass
brane =

∫
d5x

√
−Gδ(y)

{
−

3∑
α=1

iµq
α(χ̂

q†
αRQαL −Q†

αLχ̂
q
αR)− iµ̃q(χ̂q†

2RqL − q†Lχ̂
q
2R)

−
3∑

α=1

iµl
α(χ̂

l†
αRLαL − L†

αLχ̂
l
αR)− iµ̃l(χ̂l†

3RℓL − ℓ†Lχ̂
l
3R)

}
,

µq
α

κqα
=
µ̃l

κ̃q
=
µl
α

κlα
=
µ̃l

κ̃l
= w , (3.34)
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where µα, µ̃ are brane mass parameters. In this paper we do not consider off-diagonal parts

of the brane interactions in the generation of quarks and leptons. In general, couplings of

brane interactions, κs in (3.33), can be matrices in generations, which induces CKM and

MNS matrices. All of µα, µ̃ and w can be taken to be real and positive. In the case of

µα, µ̃≫ mKK, only µ̃
q/µq

2 and µ̃l/µl
3 become relevant at low energies.

3.2.3 The wave functions and the mass function of the fermions

The fermions with a bulk mass parameter c are expanded by the terms of Bessel functions,(
CL

SL

)
(z;λ, c) = ±π

2
λ
√
zzLFc+

1
2
,c∓1

2
(λz, λzL) ,(

CR

SR

)
(z;λ, c) = ∓π

2
λ
√
zzLFc−1

2
,c±1

2
(λz, λzL) . (3.35)

They satisfy

D+(c)

(
CL

SL

)
= λ

(
SR

CR

)
, D−(c)

(
CR

SR

)
= λ

(
SL

CL

)
,

D±(c) = ± d

dz
+
c

z
, (3.36)

and

CR = CL = 1 , SR = SL = 0 for z = zL ,

CLCR − SLSR = 1 , SL(z;λ,−c) = −SR(z;λ, c) . (3.37)

The left-handed fermions are expanded by CL(z;λ, c) or SL(z;λ, c). The right-handed

fermions are expanded by CR(z;λ, c) or SR(z;λ, c). The wave function of the left-handed

fermions are localized at the Planck brane with larger bulk mass parameter c, whareas The

wave function of the right-handed fermions are localized at the TeV brane with larger bulk

mass parameter c.

We summarize the mass functions of up-type quarks (top), down-type quarks (bottom)

and the dark fermions. The mass spectrum of the KK tower of the up-type quark are given

by

2

{
1 +

(µq
2

µ̃q

)2}
SL(1;λt(n) , ct)SR(1;λt(n) , ct) +

(µq
2

µ̃q

)2
sin2 θH = 0 . (3.38)
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The mass of the KK tower of the up-type quark is given by mt(n) = λt(n)k. The ratio µ
q
2/µ̃

q

in (3.38) is determined by mass ratio of a/a. The mass spectrum of the down-type quark

are given by

2

{
1 +

(µq
2

µ̃q

)2}
SL(1;λb(n) , ct)SR(1;λb(n) , ct) + sin2 θH = 0. (3.39)

The mass of the up-type quark is given by mb(n) = λb(n)k. For a lepton mupltiplet (ντ , τ),

the wave functions are given by the following replacement rules,
U
B
t
t′

→


ντ
L2Y

L3X

ν ′τ

 ,


b
D
X
b′

→


L3Y

τ
L1Y

τ ′

 ,

(µ̃q, µq
2) → (µℓ

3, µ̃
ℓ) , (µq

3, µ
q
1) → (µℓ

1, µ
ℓ
2) ,

(c1, c2) → (c4, c3) . (3.40)

The mass spectrum of the KK tower of the dark fermion ΨFi
are given by

CL(1;λi,n, cFi
)CR(1;λi,n, cFi

)− sin2 θH
2

= 0 . (3.41)

The mass of the KK tower of the dark fermions is given by m
F

(n)
i

= λi,nk. We determine

the bulk mass parameters c in the next section 4.

4 The effective potential and the universality

We generate Higgs effective potential and we show the minimum of effective potential is

controlled by gauge fields, top quark multiplet and dark fermions. We find the universal

relation which is independent on the detail of the dark fermion sector. The universality

relations appear among θH , the KK mass mKK, the masses of Z(1) and γ(1), and the Higgs

self-couplings[7].

4.1 Veff(θH) and observed Higgs boson

4.1.1 Relevant parameters

Firstly we consider relevant parameters in this model. We have two parameters zL and k

(or L) from Randall-Sundrum warped spacetime in (3.1). Gauge couplings gA and gB come

from SO(5)L × U(1)X gauge symmetry. We interpret the gauge couplings as the angles
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sϕ and cϕ in (3.21). Top and bottom mass spectrums in (3.38) and (3.39) are determined

by ct and µ̃q/µq
2. The detail of the degenerate dark fermions is determined by nF and

cF in (3.26) and (3.41). In the non-degenerate case, we need nFi
and cFi

for each dark

fermions ΨFi
. These eight parameters k, zL, gA, gB, ct, µ̃/µ2, cF and nF are relevant.

Other brane mass parameters are irrelevant as µα, µ̃, w ≫ mKK. When these parameters

are determined, Veff(θH) is determined. We use the six observed values, mZ , αw, sin
2 θW ,

mt, mb, and mH [16]. We treat zL and nF as free parameters.

Global minimum θH and Higgs mass mH are determined after determining the effective

potential. The effective potential is determined by the details of the particles. The details

of the particles are determined by the global minimum θH . Therefore all parameters must

be determined self-consistently.

4.1.2 Effective potential without dark fermions

Let us first consider no dark fermions (SO(5)-spinor fermions) ΨFi
case. In the effective

potentials, the contributions from the gauge bosons and top quark multiplet are positive

and negative, respectively. The contributions of other quarks and leptons are smaller than

the top quark multiplet and negligible. Because the contribution of the top quark mulitplet

is larger than the contributions of gauge bosons, the total effective potential is shown in left

panel of Fig. 4. This potential has π periodicity. This minimum of the effective potential

is always located at θH = π/2. In this theory all 3-point Higgs couplings of quarks, leptons

and W and Z bosons vanish because these 3-point Higgs couplings are proportional to

cos θH . Therefore this Higgs boson becomes stable. In 2012 the Higgs boson has been

discovered by LHC experiments. The existence of the unstable Higgs boson indicates that

there must be additional fields which gives rise to contributions of different periodicity, say

2π. This is fulfilled by the dark fermions. This fermion has 2π periodicity in right panel of

Fig. 4. The sum of both contributions generate the minimum θH ̸= π/2. The larger dark

fermions contribute, the smaller Wilson line phase θH is. In this way we control the place

of minimum.

4.1.3 Effective potential with degenerate dark fermions

We determine the relevant parameters and the effective potential. Firstly we calculate

the case of (zL, nF ) = (105, 5) as an example. As we mentioned we should determine the

parameters self-consistently. Firstly we fix θ1 = 0.120 tentatively. The minimum of Veff(θH)
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Figure 4: Left figure is effective potential for contributions of gauge bosons and fermions
with vectorial representation. Right figure is effective potential for contributions of fermions
with spinorial representation (dark fermions).

is located at θ1. In general we cannot get mH = 126 GeV from this minimum. If we do

not obtain the 126 GeV Higgs mass, we change the value θ1.

We determine k from Z boson mass sepctrum (3.20),

Fk(x =
zL
k
, θ1,mZ(0)) = 2S(1;mZ(0)x)C ′(1;mZ(0)x) +

mZ(0)x

1 + s2ϕ
sin2 θ1, (4.1)

where the angle sϕ is given by Weinberg angle sin2 θW = 0.231. The mass eigenvalue λZ(0)

is given by mZ/k. We use mZ = 91.19 GeV. In Fig. 5 zL/k is 4.17 × 10−1/TeV. We

determine k = 2.27 × 105 TeV from Fk(x, θ1,mZ(0)) = 0. At this time we can determine

L = (Log zL)/k = 5.08× 10−5/TeV and KK mass mKK = πk/(zL − 1) = 7.12 TeV.
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-8.´10-9
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F
k

Figure 5: In the case of (zL, nF ) = (105, 5) and θ1 = 0.120, we plot (4.1). Horizontal line
x is zL/k. Solution of zL/k is 4.17× 10−1/TeV. We obtain k = 2.27× 105 TeV.

Next, we determine ct from spectra of top and bottom quark towers (3.38) and (3.39).

We sum (3.38) and (3.39),

Ft(ct, θ1) = SL(1;λt(n) , ct)SR(1;λt(n) , ct) + SL(1;λb(n) , ct)SR(1;λb(n) , ct) +
1

2
sin2 θH , (4.2)

28



0.0 0.1 0.2 0.3 0.4

-0.006

-0.004

-0.002

0.000

ct

F
t

Figure 6: In the case of (zL, nF ) = (105, 5) and θ1 = 0.120, we plot (4.2). Horizontal line
is ct. we determine ct = 0.227.

where we take ct = cb. We use the observed values mt = kλt(1) = 171.17 GeV and

mb = kλb(1) = 2.89 GeV. From (4.2) we determine ct = 0.227 in Fig.6. We can also

determine |µ̃q/µq
2| = mb/mt [10].

We calculate the effective potential (4.10) with a parameter cF . The effective potential

is given by

Veff =
1

(4π)2

∫ ∞

0

dy y3 ln ρ(iy)

=

(
kz−1

L

)4
(4π)2

∫ ∞

0

dq q3 ln ρ(iq), (4.3)

where y is not coordinate of the extra dimension. Second line is y = kq/zL. ρ is the

mass spectrum function. This formula is shown in Appendix C. In this effective potential

(4.3), we ignore the positive sign for bosons and the negative sign for fermions. The 1-

loop effective potential Veff has the contributions from only the KK towers whose mass

spectra depend on θH . Because in (4.3) the argument of mass spectrums is imaginary, we

transform modified Bessel functions from Bessel functions in the mass spectra. Modified

Bessel functions are given by

Iα(x) = i−αJ(ix), Kα(x) =
π
2
iα+1Hα(ix),

Hα(x) = Jα(x) + iYα(x). (4.4)

We transform the mass spectrum (3.19) as an example,

QW = 1 +
λW (n) sin2 θH

2S(1;λW (n))C ′(1;λW (n))

= 1 +
λW (n) sin2 θH

−2π
2
λW (n)F1,1(λW (n) , λW (n)zL) · π

2
λ2
W (n)zLF0,0(λW (n) , λW (n)zL)

.
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We denote λW (n) = q/zL,

QW = 1 +
zL sin

2 θH

−π2

2
q2F1,1(q, qzL)F0,0(q, qzL)

. (4.5)

We transform the Bessel functions in F1,1(q, qzL) and F0,0(q, qzL).

F1,1(qz
−1
L , q) =

2

π
i−1
{
I1(qz

−1
L )K1(q)−K1(qz

−1
L )I1(q)

}
,

F0,0(qz
−1
L , q) =

2

π
i−1
{
I0(qz

−1
L )K0(q)−K0(qz

−1
L )I0(q)

}
.

We define F̂α,β(u, v),

F̂α,β(u, v) = Iα(u)Kβ(v)− e−i(α−β)πKα(u)Iβ(v) . (4.6)

By using (4.6) we obtain

QW = 1 +
1

2

zL

q2F̂1,1(qz
−1
L , q)F̂0,0(qz

−1
L , q)

sin2 θH

= 1 +
1

2
Q0[q;

1
2
] sin2 θH , (4.7)

where

Q0[q; c] =
zL

q2F̂c− 1
2
,c− 1

2
(qz−1

L , q)F̂c+ 1
2
,c+ 1

2
(qz−1

L , q)
. (4.8)

By the same way we obtain Q of Z tower, D tower, top tower, bottom tower and dark

fermion tower,

QW = cos2 θWQZ =
1

2
QD =

1

2
Q0[q;

1

2
] sin2 θH ,

Qtop =
Qbottom

rt
=

Q0[q; ct]

2(1 + rt)
sin2 θH ,

QF = Q0[q; cF ] cos
2 1

2
θH , (4.9)

where rt = (µ̃/µ2)
2. Finally we obtain the effective potential from (4.3),

Veff(θH , ct, rt, cF , nF , k, zL, θW ; ξ) = 2(3− ξ2)I[QW ] + (3− ξ2)I[QZ ] + 3ξ2I[QD]

−12{I[Qtop] + I[Qbottom]} − 8nF I[QF ] ,

I[Q(q; θH)] =
(kz−1

L )4

(4π)2

∫ ∞

0

dq q3ln{1 +Q(q; θH)} . (4.10)

In the following we take the ’t Hooft–Feynman gauge ξ = 1. Coefficients of I[Q] come from

degree of freedom of the W , Z, D, top, bottom and dark fermions.
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Figure 7: We plot Veff(θ1) for (zL, nF ) = (105, 5), θ1 = 0.120 and ξ = 1. In left panel,
plot range is from 0 to π. In right panel, plot range is from 0 to 0.2. Global minimum is
θ1 = 0.120. In this case Higgs mass is mH = 125 GeV.

We determine dark fermion mass parameter cF from the following condition,

dVeff
dθH

∣∣∣∣
θ1

= 0. (4.11)

The minimum of Veff(θH) is located at θ1. In the case of (zL, nF ) = (105, 5) and θ1 = 0.120

we obtain cF = 0.382. Fig. 7 is effective potential for this case.

We evaluate the Higgs mass,

m2
H =

1

f 2
H

d2Veff
dθ2H

∣∣∣∣
min

, (4.12)

where fH is defined in (3.10). Four dimensional coupling is given by g24 = 4πα/ sin2 θW =

0.652 where α = 1/128. In the case of θ1 = 0.120 we obtain Higgs mass mH = 125 GeV.

Because we want to obtain the Higgs mass mH = 126 GeV, we change θH . If the obtained

Higgs mass is smaller (larger) than the 126 GeV, we change the smaller (larger) value of

θ1. To reiterate this procedure we can obtain the parameter set for mH = 126 GeV. In the

case of (zL, nF ) = (105, 5), we obtain the parameter set, θH = 0.114, k = 2.38× 105 TeV,

L = 4.83× 10−5/TeV, mKK = 7.49 TeV, ct = 0.227 and cF = 0.382.

When we get mH = 126 GeV, global minimum θH is determine and all other quantities

such as the mass spectra of all KK towers, gauge couplings of all particles, and Yukawa

couplings of all fermions are determined. We calculate the first KK Z boson mass as an

example. We use (4.1),

Fk(
zL
k
, θH ,M) = 2S(1;M

zL
k
)C ′(1;M

zL
k
) +

M zL
k

1 + s2ϕ
sin2 θH
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Figure 8: We plot Fk(k/zL, θ1,m) for (zL, nF ) = (105, 5), θ1 = 0.114 and ξ = 1. In left
panel, plot range is from 0 to 105 GeV. In right panel, plot range is from 0 to 102 GeV.
The first KK Z boson mass mZ(1) = 6.07 TeV. The right panel shows that Z boson mass
is 91.2 GeV.

where a variable is m. In left panel of Fig.8 we obtain the first KK Z boson mass mZ(1) =

6.07 TeV from Fk(
zL
k
, θH ,M) = 0. The right panel shows that Z boson mass is 91.2 GeV.

We note that in the case of nF = 1, 2 and 3, small zL cannot reproduce mH = 126 GeV

because the small zL gives mH < 126 GeV. At cF = 0 the lowest mode of dark fermion

tower has the largest mass. In the case of nF = 1 and nF = 3 the smallest warp factor is

zL = 1.66× 109 and zL = 2.0× 102 in Fig. 1 and Fig. 2, respectively. In the case of nF ≥ 4

and zL < 104, this case cannot reproduce the top mass. At ct = 0 the lowest mode of top

quark tower has the largest mass. If the mass of the lowest mode is below the observed

top mass at ct = 0 we cannot obtain the top mass.

Determined values for θH , mKK, mZ(1) , etc. are tabulated in Table 2 and 3 in the case of

nF = 3 and nF = 5, respectively. The smaller zL is, the smaller θH . The smaller zL is, the

larger mKK is. The small bulk mass parameters cF and ct give the large mass mF and mt

and large contribution to the effective potential. The masses of Z
(1)
R , Z(1) and γ(1) are about

0.8×mKK. Dark fermion mass mF is below the half of the Z
(1)
R mass. For large nF the dark

fermion mass mF (cF ) is smaller (larger) than that for small nF with the fixed Higgs mass.

The mass mF (1) is plotted in Fig. 9 for various nF . As we mentioned, when nF ≥ 4, one

cannot reproduce the top quark mass for zL < 104. This constraint of top quark mass is

severe due to the independence of constructing the effective potential. Therefore we cannot

consider the dark fermions mass is too heavy in this calculation. For the small θH (large

mKK), heavy KK particles are decoupled. We can regard zL → 1 (flat limit) or θH → 0

as the SM limit. Strictly speaking, we cannot take the SM limit numerically as small zL

cannot reproduce mt or mH = 126 GeV. If we take this limit actually, we need many dark
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Figure 9: θH vs mF for mH = 126GeV with nF degenerate dark fermions. This figure is
originally shown in [13].

Table 1: Parameters and masses in the case of degenerate dark fermions with nF = 1. All
masses and k are given in units of TeV.

zL θH mKK k ct cF
1012 1.06 1.51 4.79× 1011 0.413 0.395
1011 0.843 1.68 5.36× 1010 0.403 0.319
1010 0.668 1.94 6.17× 109 0.391 0.215

1.66× 109 0.548 2.21 1.17× 109 0.380 0.000796

fermions. In the large nF case the dark fermion mass is too small so that dark fermions

appear at low energy. Furthermore gauge symmetry is unbroken at θH = 0.

4.1.4 Effective potential with non-degenerate dark fermions

We consider the more general situations. We can introduce nF kinds of the dark fermions

which have different bulk mass parameters. Here we introduce two kinds of the dark

fermions. The nh
F dark fermions have smaller bulk mass parameter chF and heavier mass

mFh
, the nl

F dark fermions have larger bulk mass parameter clF and lighter mass mFl
. The

dark fermion part of the effective potential (4.10) change,

V DF
eff (θH , cFh

, cFl
, nFh

, nFl
, k, zL, θW ) = −8nF1I[QF1 ]− 8nF2I[QF2 ] . (4.13)

We fix the difference of the bulk mass parameters and determine the cF s from the condition

(4.11). When nF = nh
F + nl

F = 5, a difference clF − chF = 0.01(0.03) leads to mFh
−mFl

=

30 to 80GeV (80 to 240GeV). The dark fermion masses m
F

(1)
h

and m
F

(1)
l

in the case of
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Table 2: Parameters and masses in the case of degenerate dark fermions with nF = 3. All
masses and k are given in units of TeV. This table is originally shown in [7].

zL θH mKK k ct cF mF (1)

109 0.485 2.45 7.79× 108 0.376 0.411 0.465
108 0.360 3.05 9.72× 107 0.357 0.385 0.668
107 0.258 3.95 1.26× 107 0.330 0.353 0.993
106 0.177 5.30 1.69× 106 0.296 0.309 1.54
105 0.117 7.29 2.32× 105 0.227 0.235 2.53

2× 104 0.086 9.21 5.87× 104 0.137 0.127 3.88

Table 3: Parameters and masses in the case of degenerate dark fermions with nF = 5. All
masses and k are given in units of TeV. This table is originally shown in [13].

zL θH mKK k ct cF mF (1) m
Z

(1)
R

mZ(1) mγ(1)

109 0.473 2.50 7.97× 108 0.376 0.459 0.353 1.92 1.97 1.98
108 0.351 3.13 9.97× 107 0.357 0.445 0.502 2.40 2.48 2.48
107 0.251 4.06 1.29× 107 0.330 0.430 0.735 3.11 3.24 3.24
106 0.172 5.45 1.74× 106 0.292 0.410 1.11 4.17 4.37 4.38
105 0.114 7.49 2.38× 105 0.227 0.382 1.75 5.73 6.07 6.08
104 0.0730 10.5 3.33× 104 0.0366 0.333 2.91 8.00 8.61 8.61

(nh
F , n

l
F ) = (3, 2) and clF − chF = 0.03 are tabulated in Table 4. For the case of (nh

F , n
l
F ) =

(3, 1) a difference clF − chF = 0.04(0.06) leads to mFh
−mFl

∼ 300 GeV (400 GeV), which is

tabulated in Table 12 in Sec. 6. We tabulate the parameters which is various (nh
F , n

l
F ) with

nF = 6 and clF − chF = 0.06, Table 5. We also tabulate the parameters which is various

clF − chF with nF = 5, Table 6. As increase the number of the light dark fermions nl
F ,

masses of both heavy and light dark fermions become heavy. One finds that in Fig.5 the

mass difference of the dark fermions almost unaffects the effective potential Veft(θH). We

find that global minimum θH is numerically unchanged to the accuracy of three digits by

this mass difference. Therefore we do not need to consider changing the numerical values

of mKK, k, ct, mZ
(1)
R
, mZ(1) , and mγ(1) when the dark fermions are non-degenerate.

We have constraints for parameter sets by experiments at this time. The low energy

data, the S parameter constraint, and the tree-level unitarity constraint indicate small

θH < 0.3[8][17]. The KK mass scale mKK is predicted to be 3 ∼ 7TeV for θH = 0.1 ∼ 0.3.

If the dark fermion is charged and long-lived particle, its current limit is mF (1) > 0.5TeV

[18][19]. In Sec.6, however, we consider charged components of the dark fermion decay

sufficiently fast. In this case, this current limit cannot be applied for our dark fermions.
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Table 4: Parameters and masses in the case of non-degenerate dark fermions with
(nh

F , n
l
F ) = (3, 2) and clF − chF = 0.03. Masses are given in units of TeV. The values of

mKK, k, ct, mZ(1) , m
Z

(1)
R
, and mγ(1) are the same in three digits as those in Table 3 in the

degenerate case.

zL θH chF m
F

(1)
h

m
F

(1)
l

109 0.473 0.447 0.384 0.304
108 0.351 0.434 0.540 0.444
107 0.251 0.418 0.781 0.663
106 0.172 0.398 1.17 1.02
105 0.114 0.370 1.83 1.64
104 0.0730 0.321 3.01 2.77

Table 5: Parameters and masses in the case of non-degenerate dark fermions with nF = 6,
clF − chF = 0.06. Masses are given in units of TeV.

(nh
F , n

l
F ) zL θH mKK k ct chF m

F
(1)
h

m
F

(1)
l

(6,0) 105 0.113 7.56 2.41× 105 0.227 0.414 1.57
104 0.0724 10.5 3.36× 104 0.0365 0.379 2.57

(5,1) 105 0.113 7.56 2.41× 105 0.227 0.404 1.63 1.25
104 0.0724 10.5 3.36× 104 0.0365 0.369 2.65 2.17

(4,2) 105 0.113 7.56 2.41× 105 0.227 0.394 1.69 1.31
104 0.0724 10.5 3.36× 104 0.0365 0.359 2.73 2.25

(3,3) 105 0.113 7.56 2.41× 105 0.227 0.384 1.76 1.38
104 0.0724 10.5 3.36× 104 0.0365 0.349 2.81 2.33

(2,4) 105 0.113 7.56 2.41× 105 0.227 0.374 1.82 1.44
104 0.0724 10.5 3.36× 104 0.0365 0.339 2.89 2.41

(1,5) 105 0.113 7.56 2.41× 105 0.227 0.364 1.88 1.50
104 0.0724 10.5 3.36× 104 0.0365 0.329 2.967 2.49
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Table 6: Parameters and masses in the case of non-degenerate dark fermions with
nF = 5, zL = 104 and various clF − chF . In this case, parameters are (θH ,mKK, k, ct) =
(0.073, 10.5 TeV, 3.33× 104 TeV, 0.0366). Masses are given in units of TeV.

clF − chF (nh
F , n

l
F ) chF m

F
(1)
h

m
F

(1)
l

0 (5,0) 0.333 2.91
0.01 (4,1) 0.331 2.93 2.85

(3,2) 0.329 2.94 2.87
(2,3) 0.327 2.96 2.88
(1,4) 0.325 2.97 2.90

0.02 (4,1) 0.329 2.94 2.79
(3,2) 0.325 2.97 2.82
(2,3) 0.321 3.01 2.85
(1,4) 0.317 3.04 2.88

0.03 (4,1) 0.327 2.96 2.72
(3,2) 0.321 3.01 2.77
(2,3) 0.315 3.05 2.82
(1,4) 0.309 3.10 2.87

0.04 (4,1) 0.325 2.98 2.66
(3,2) 0.317 3.04 2.73
(2,3) 0.309 3.10 2.79
(1,4) 0.301 3.16 2.85

0.05 (4,1) 0.323 2.99 2.60
(3,2) 0.313 3.07 2.68
(2,3) 0.303 3.15 2.76
(1,4) 0.293 3.22 2.84

0.06 (4,1) 0.321 3.01 2.54
(3,2) 0.309 3.10 2.63
(2,3) 0.297 3.20 2.73
(1,4) 0.285 3.29 2.82
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4.2 The universality

In previous subsection we determined parameter sets k, gA, gB, ct, µ̃/µ2 and cF from

mZ , αw, sin
2 θW , mt, mb, and mH . Free parameters are zL and nF . We can determine

parameters, mKK, the mass spectra, Higgs cubic and quartic self-couplings λ3, λ4 and

Yukawa couplings, when we fix the warp factor zL and the number of the dark fermions

nF . We plot mKK, Z
(1)
R mass, Z(1) mass, γ(1) mass, first KK top t(1) mass, couplings Z(1)q̄q,

λ3 and λ4 against θH for the various nF , Fig.10–15. The formula for couplings of Z(n)q̄q

are shown in Appendix A. In the case of nF = 0, a parameters set for mH = 126 GeV is

zL = 1.5 × 1013, θH = π/2, ct = 0.422 and k = 6.55 × 1012 TeV. In the case of nF = 0 a

parameter set for mH = 125 GeV is zL = 1013, θH = π/2, ct = 0.421 k = 4.34× 1012 TeV.

In Fig.10–15, one finds that all plots are on the same curves. In Fig.10 and Fig.11, the

blue curves are the fitting curves. These fitting curves for mKK, Z
(1)
R , Z(1), γ(1) and mt1)

masses are given by,

mKK ∼ 1352GeV

(sin θH)0.786
, m

Z
(1)
R

∼ 1038GeV

(sin θH)0.784
,

mZ(1) ∼
1044GeV

(sin θH)0.808
, mγ(1) ∼

1056GeV

(sin θH)0.804
,

mt(1) ∼
1033GeV

(sin θH)0.862
. (4.14)

The fitting curves for Higgs self-couplings λ3 and λ4 are given by,

λ3/GeV = 26.7 cos θH + 1.42(1 + cos 2θH) ,

λ4 = −0.0106 + 0.0304 cos 2θH + 0.00159 cos 4θH . (4.15)

This relations mean that mKK, masses of Z
(1)
R , Z(1), γ(1) and t(1), couplings gZ

(1)

tL(R)
, gZ

(1)

tL(R)
,

gZ
(1)

uL(R)
and gZ

(1)

dL(R)
, λ3 and λ4 are independent on the detail of the dark fermion sector.

This property is called the universality. The dark fermion parameters cF and nF have a

important roll for determining the value of non-trivial minimum of the 1-loop Higgs effective

potential whereas cF and nF are not important for some quantities which have universality.

In sec.5.2 we analyze Z ′ search. We can use the parameter sets for nF = 5 as a bench mark.

The universality ensure that we need not to analyze other nF . If quantities, for example

Z(1) mass, are determined by experiments, we can know θH and other quantities by using

the universality even though we do not know the detail of the dark fermion sector. On the
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Figure 10: θH vs mZ(1) and θH vs mt(1) for mH = 126GeV with nF degenerate dark
fermions in the left and right panels, respectively. Blue line in the left panel is fitting
function mZ(1) ∼ 1044GeV/(sin θH)

0.808. Blue line in the right panel is fitting function
mt(1) ∼ 1033GeV/(sin θH)

0.862. In the nF = 0 case Wilson line phase is π/2. The left panel
of this figure is originally shown in [13].
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Figure 11: θH vs λH3 and λH4 for mH = 126GeV with nF degenerate dark fermions. In
the SM λSM3 = 31.5GeV and λSM4 = 0.0320. The fitting curves are given by (4.15). These
figures are originally shown in [13].

other hand, dark fermion mass has dependence of nF , Fig.9. And we find that we cannot

determine the detail of non-degenerate dark fermions from the θH mKK, mZ(1) , Table 5 To

determine the detail of dark fermions we should discuss searches for the dark fermions. In

Sec.6 we discuss searches for the dark fermions with QX = 1/2 and predict the region θH

in which dark fermions are discovered.

As we discussed the previous subsection, we regard the limit θH → 0 as the SM limit.

Our Higgs self-coupling λ3 and λ4 for θH → 0 are small compared with those in the SM,

Fig.11. In the SM the Higgs self-couplings are λSM3 = 31.5GeV and λSM4 = 0.0320. It

is interesting to distinguish our Higgs self-couplings from those in the SM in the future

experiments. At small θH the absolute value of the right-handed quark coupling with Z(1)
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quark coupling with Z(1) for mH = 126GeV with nF degenerate dark fermions in the left
and right panels, respectively. In the nF = 0 case Wilson line phase is π/2.
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Figure 13: θH vs left-handed bottom coupling quark with Z(1) and θH vs right-handed
bottom quark coupling with Z(1) for mH = 126GeV with nF degenerate dark fermions in
the left and right panels, respectively. In the nF = 0 case Wilson line phase is π/2.

is smaller than that of nF = 0 case. On the other hand, at small θH the absolute value

of the left-handed quark coupling with Z(1) is larger than that of nF = 0 case. In the

case of nF = 0 our Higgs cubic coupling is zero. Our Higgs quartic coupling λ4 is negative

for θH < 0.6 and do not cause the instability. In the gauge-Higgs unification there is no

instability problem in the Higgs couplings. For example Higgs effective potential Veff(θH)

for negative λ4 and θH = π/2 is the left panel in Fig.4.

We study the universality for various Higgs mass. In Fig.16 we plot the mKK against

θH . The KK mass scale mKK increases as mH . The fitting curve is parametrized by

mKK = α/| sin θH |β with fixed mH . The parameters α and β are tabulated in Table 7. We

plot mKK(θH) for mH = 110, 126, 140GeV in Fig. 16. The Higgs mass is measured to be

mH = 125.3±0.4(stat.)±0.5(syst.) GeV and mH = 125.36±0.37(stat)±0.18(syst) GeV by

the CMS collaborations and the ATLAS collaboration, respectively[2][3]. In our analysis
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Figure 15: θH vs left-handed down quark coupling with Z(1) and θH vs right-handed down
quark coupling with Z(1) for mH = 126GeV with nF degenerate dark fermions in the left
and right panels, respectively. In the nF = 0 case Wilson line phase is π/2.

we use mH = 126 GeV. Fig.16 and Table 7 indicate that changing our result for Sec.5.1,

5.2 and 6 is sufficiently small to change the values between the measured Higgs mass and

our Higgs mass.

We mention again that the universality leads to powerful predictions. Once the value

of θH is determined from, say, mZ(1) , many other quantities are predicted. In Sec.5.2 we

study the Z ′ search. Our Z
(1)
R , Z(1) and γ(1) become the Z ′ bosons. If these particles

are discovered in the future experiments, our Higgs self-couplings are determined through

determining θH by using the universality. Then if the Higgs self-couplings are determined

by the future experiments, due to this property our model is distinguishable from other

models beyond the SM.
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Table 7: This table is shown in [13]. Universality relation mKK = α/| sin θH |β with various
value of mH .

mH(GeV) α(TeV) β
110 1.20 0.733
120 1.30 0.766
126 1.35 0.786
130 1.39 0.800
140 1.49 0.820

5 SO(5)× U(1) GHU in the LHC experiments

5.1 Higgs decay H → γγ

When Higgs boson was discovered, signal strength forH → γγ is larger than that in the SM.

In 2014 the signal strength of H → γγ divided by the corresponding SM prediction is found

the best-fit value µ = 1.17±0.27 at the value of mH = 125.4 GeV by ATLAS collaboration

[20] and µ = 1.14+0.26
−0.23 at the value of mH = 124.7 GeV by the CMS collaboration [21] in

8 TeV LHC experiments. H → γγ has no tree level diagram. Dominant processes are loop

diagrams. So it was expected that contributions of new physics may be hidden. In this

subsection we summarize the result of [7].

5.1.1 Couplings for H → γγ

We evaluate Higgs couplings with W boson, top quark, dark fermions and their KK modes

in Fig. 17. We calculate HW (n)W (n)† couplings gHW (n)W (n) , Yukawa couplings yt(n) and
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yF (n) and we define the ratios,

IW (n) =
gHW (n)W (n)

gwmW (n) cos θH
= −

√
kL(z2L − 1)

sin θH
rW (n)

C(1;λW (n))

S(1;λW (n))
, (5.1)

It(n) =
yt(n)

ySMt cos θH
= − gw

2ySMt

√
kL(z2L − 1)

sin θH
rt(n)

CL(1;λt(n) , ct)

SL(1;λt(n) , ct)
, (5.2)

IF (n) =
yF (n)

ySMt sin 1
2
θH

= − gw
4ySMt

√
kL(z2L − 1)

cos 1
2
θH

rF (n)

CR(1;λF (n) , cF )

SR(1;λF (n) , cF )
. (5.3)

where gSMHWW and ySMt are HWW and the top Yukawa couplings in the SM, respectively.

These ratios are plotted in Fig.18 for nF = 3 and zL = 108 (θH = 0.360). The signs of

IW (n) , It(n) and IF (n) alternate as n increase. The magnitudes of IW (n) , It(n) and IF (n) are

almost constant.
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Figure 18: The ratios IW (n) = gHW (n)W (n)/gwmW (n) cos θH in (5.1), It(n) = yt(n)/ySMt cos θH
in (5.2) and IF (n) = yF (n)/ySMt sin 1

2
θH in (5.3) are plotted for nF = 3 and θH = 0.360

(zL = 108) in the range 1 ≤ n ≤ 100. (□: the top quark tower, ♢: the W tower, ⃝: the
ΨF tower) IW (0) = 1.004 and It(0) = 1.012. The sign of gHW (n)W (n) , yt(n) and yF (n) alternates
as n increases. IW (1) , It(1) , IF (1) < 0. This figure is originally shown in [7].
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Table 8: Functions FW , Ftop and FF in the nF = 3 and zL = 105, 108 case. This suggests
most of the contributions come from the lowest modes of the top quark and W boson.
Contributions of the W boson and the top quark are denoted by FW only and Ftop only,
respectively. We obtain FW + 4

3
Ftop +

3
2
FF = 6.508 and 6.199 for θH = 0.117 and 0.360.

zL θH FW only Ftop only FW/FW only Ftop/Ftop only FF/Ftop only

108 0.360 7.873 −1.305 0.998 0.990 −0.033
105 0.117 8.330 −1.372 0.9996 0.998 −0.0034

5.1.2 Decay rate for H → γγ, gg

The decay rate is given by [22]-[24],

Γ(H → γγ) =
α2g2w
1024π3

m3
H

m2
W

∣∣∣FW +
4

3
F top +

(
2(Q

(F )
X )2 +

1

2

)
nFFF

∣∣∣2 ,
FW =

∞∑
n=0

gHW (n)W (n)

gwmW

m2
W

m2
W (n)

F1(τW (n)) ,

Ftop =
∞∑
n=0

yt(n)

ySMt

mt

mt(n)

F1/2(τt(n)) ,

FF =
∞∑
n=1

yF (n)

ySMt

mt

mF (n)

F1/2(τF (n)) , (5.4)

where W (0) = W , t(0) = t, τa = 4m2
a/m

2
H and the functions F1(τ) and F1/2(τ) are defined

in Ref. [24]. Q
(F )
X is the U(1)X charge of ΨF . For large mass limit, τ → ∞, F1(τ) and

F1/2(τ) behave F1(τ) → 7 and F1/2(τ) → −4
3
. The dark fermion multiplet ΨF contains

particles with electric charges (Q
(F )
X ± 1

2
)e.

The infinite sums in Fs converge. The couplings alternate as KK mode n increase,

Fig.18. All KK masses are proportional to nmKK. For large mass limit, τ → ∞, F1(τ)

and F1/2(τ) behave constant. Therefore the infinite sums converge as F ∼
∑

(−1)nn−1 or∑
(−1)nn−1(lnn)q (q = 1, 2, · · · ).
We calculate amplitudes Fs numerically. We tabulate the result of Fs for nF = 3,

zL = 105 and 108 (θH = 0.117 and 0.360) and QX = 0 in Table 8. The ratio of all

contributions divided by those of the only W boson and the top quark is 1.001 and 1.011

for θH = 0.117 and 0.360. Therefore contributions of KK modes and the dark fermions are

small, i.e. contributions of KK modes are 0.1% (1.1%) for θH =0.117 (0.360).

In the GHU, Higgs couplings with WW , ZZ, cc̄, bb̄ and τ τ̄ are cos θH compared with

those in the SM (i.e. gGHU ∼ gSM cos θH). So all decay rates are suppressed by cos2 θH .
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Branching fraction for the Higgs boson is defined by the ratio Γ(Higgs→ X)/Γ(Higgs→
all). In this form the factor cos2 θH is cancelled. The signal strength is determined by

the product of the Higgs production rate and the branching fraction. Because the Higgs

production rate is proportional to cos2 θH , the GHU predicts that the signal strength

relative to the SM is ∼ cos2 θH . For θH = 0.1 (0.3), the signal strength relative to the SM

is about 0.99 (0.91). This result is consistent with the result of the LHC experiments.

5.2 Z ′ search

q

q̄

`

¯̀

Z 0

Figure 19: Diagram Z ′. Our Z ′s are Z(1), γ(1) and Z
(1)
R .

We predict the new particles which come from the extra dimension at 14 TeV LHC

experiments[13]. First exited modes of Z boson Z(1), photon γ(1), the lowest mode of ZR

and Z
(1)
R have TeV scale mass in the SO(5) × U(1) GHU. The masses Z

(1)
R , Z(1) and γ(1)

and couplings of quarks with Z(1) have universality in Fig.10 and 12–15. According to

Fig. 10 these masses are 3 - 6 TeV for θH = 0.1 - 0.2. These massive neutral gauge bosons

appear as the Z ′ boson. There are no signal of Z ′ boson in the experiments [28]-[30]. Tree

level diagram is Fig.19. In this section we summarize the result of [13].

5.2.1 Couplings and decay widths

Firstly we discuss our Z ′ couplings with quarks and leptons. The gauge couplings are

shown in [13] . We tabulate the numerical results of Z
(1)
R , Z(1), γ(1) and Z(2) couplings

in Table 9 and Table 10. We analyze only nF = 5 case because these couplings have

universality (See subection 4.2.). Because masses of Z(1) and γ(1) are almost the same,

the resonances of Z(1) and γ(1) are located on almost the same invariant mass. Mass of

the second KK Z boson is also TeV scale. However Z(2) coupling is smaller than that in

the SM Z boson. As a result, the decay width of Z(2) is narrow. The wave functions of

right-handed fermions and KK gauge bosons, Z
(1)
R , Z(1) and γ(1), localize on TeV brane. On
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the other hand, the wave functions of left-handed fermions localize on the Planck brane.

When we determine the couplings, we integrate over the fifth-dimensional part of wave

functions. KK gauge boson couplings with right-handed fermions are larger than couplings

with the left-handed fermions because wave functions of KK gauge bosons overlap that of

right-handed fermions.

The decay width is tabulated in Table 9 and Table 10. The formula of the decay width

is shown in the [13]. One finds that decay widths of Z
(1)
R , Z(1) and γ(1) are wider than

decay width of the SM Z boson because the Z
(1)
R , Z(1) and γ(1) couplings with right-handed

fermions are larger than that of the SM Z boson. The decay widths of Z
(1)
R , Z(1) and γ(1)

are 300 - 900 GeV. This width is the characteristic signal of the SO(5)× U(1) GHU.

Table 9: Masses, total decay widths and couplings of the Z ′ bosons to SM particles in the
first generation for θH = 0.114. Couplings to µ are approximately the same as those to e.
This table is originally shown in [13].

Z ′ m(TeV) Γ(GeV) gZ
′

uL gZ
′

dL gZ
′

eL gZ
′

uR gZ
′

dR gZ
′

eR

Z 0.0912 2.44 0.257 −0.314 −0.200 −0.115 0.0573 0.172

Z
(1)
R 5.73 482 0 0 0 0.641 −0.321 −0.978

Z(1) 6.07 342 −0.0887 0.108 0.0690 −0.466 0.233 0.711

γ(1) 6.08 886 −0.0724 0.0362 0.109 0.846 −0.423 −1.29

Z(2) 9.14 1.75 −0.00727 0.00889 0.00565 −0.00548 0.00274 0.00856

Table 10: Masses, total decay widths and couplings of the Z ′ bosons to SM particles in the
first generation for θH = 0.073. This table is originally shown in [13].

Z ′ m(TeV) Γ(GeV) gZ
′

uL gZ
′

dL gZ
′

eL gZ
′

uR gZ
′

dR gZ
′

eR

Z
(1)
R 8.00 553 0 0 0 0.588 −0.294 −0.896

Z(1) 8.61 494 −0.100 0.123 0.0780 −0.426 0.213 0.650

γ(1) 8.61 1.04×103 −0.0817 0.0408 0.123 0.775 −0.388 −1.18

Z(2) 12.8 1.33 −0.0540 0.00660 0.00420 −0.00433 0.00216 0.00675

5.2.2 Production at LHC

In our study, we calculate the dilepton production cross sections through the Z ′ boson, the

Z boson and photon exchange, Fig.19. Formula of the dilepton production cross sections
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is shown in [13]. We calculate the case of the final state µ+µ−. (The case of the final state

e+e− is the similar result of µ+µ− case.) We calculate the differential cross section for

pp→ µ+µ− for nF = 5 at 8 TeV LHC experiments, Fig.20. The black doted line represents

the SM background. The case of θH = 0.114 (the red solid curve) is consistent with the

SM. For the case of θH = 0.251 (the blue dashed curve), the masses and the decay widths

of Z
(1)
R ,Z(1) and γ(1) are (341, 3.11), (221, 3.24) and (629 GeV, 3.24 TeV), respectively.

The masses of Z ′ bosons in our model are heavier than the plot range of Fig. 20. The case

of θH = 0.251 (blue dashed curve) deviates from the SM background because of the wide

tail of resonances for our Z ′. The case of θH = 0.251 (blue dashed curve) at Mµµ = 2 TeV

is 87 times larger than the SM background. The region θH < 0.13 is consistent with the 8

TeV LHC experiments. In this region Z
(1)
R mass is larger than 5.1 TeV.
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Figure 20: The differential cross section multiplied by an integrated luminosity of 20.6 fb−1

for pp → µ+µ−X at the 8 TeV LHC for θH = 0.114 (red solid curve) and for θH = 0.251
(blue dashed curve). The black dashed line represents the SM background. This figure is
originally shown in [13].

We predict the signal of pp → µ+µ− at 14 TeV LHC experiments. In Fig.21 the

differential cross section dσ/dMµµ for θH = 0.114 and 0.073 ranges 3TeV < Mµµ < 9TeV.

Masses and decay widths of our Z ′ bosons are tabulated in Table 9 and Table 10. There

are two peaks and the large tail of resonances for Z
(1)
R ,Z(1) and γ(1). This signal deviates

from the SM. Therefore this signal can be detected at the upgraded LHC. AtMµµ = 3 TeV

(4 TeV) the case of θH = 0.114 (the red solid line) are 13 (86) times as large as the SM.

For θH = 0.114, an excess due to the broad widths of the Z ′ resonances should be observed
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Figure 21: The differential cross section for pp → µ+µ−X at the 14 TeV LHC for θH =
0.114 (red solid curve) and for θH = 0.073 (blue dashed curve) . The nearly straight line
represents the SM background. This figure is originally shown in [13].

above 3TeV in the dilepton invariant mass. The discovery of the Z ′ bosons in the 3 -

9TeV range would give strong support for the GHU. Furthermore this is the signals of the

existence of extra dimensions. However we cannot know the detail of the dark fermions. In

the next section we study the dark fermions as a candidate of dark matters. The number

of dark fermions nF and θH can be constrained by the relic density of dark matter and

direct searches.

6 Dark fermion as a dark matter candidate

The dark matter is required by observations of the cosmology. We summarize the result

of our paper [14]. In the SO(5) × U(1) GHU the lightest neutral component of dark

fermions can become one of the candidate of the dark matter. When we take U(1)X charge

QX = 1/2, we have neutral and charged components of dark fermions. The charged dark

fermions are heavier than the neutral dark fermions due to loop contributions. The charged

dark fermions decay sufficiently fast, these fermions do not exist in the present universe.

In this section we consider constraints from relic density [31] and direct detections [32][33].

We analyze the dark matter decay until the freeze-out temperature. In the SO(5)×U(1)
GHU we consider both neutral and charged dark fermions. The charged dark fermion

contributes as coannihilation. The couplings of the dark fermions are very weak compared

with the SM particle for small θ because the dark fermion couplings are proportional to

sin θH . In this situation it may be difficult that the dark fermions decay. However decays of
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the dark fermions are enhanced by the Breit-Wigner resonance. The strong enhancement

occurs at m
Z

(1)
R

∼ 2mF . On the other hand, the number of the dark fermions is the

suppression factor for cross section because one of the dark fermions can only decay with

the pair of the dark fermion. Therefore this suppression factor is 1/2nF which 1/2 comes

from the contribution of the antiparticle because the dark fermion is Dirac dark matter.

The dark matter is also searched directly by using collisions with nuclei. In recent years

the constraints for cross section of dark matter with nuclei become strong by experiments.

In the SO(5) × U(1) GHU main processes of the dark fermions with nucleus are Z, Z
(1)
R

and Higgs exchange processes. We find that we have a region which is consistent with the

experiments of the relic density and direct search.

6.1 The neutral and charged dark fermions

Firstly we introduce the dark fermions with QX = 1/2 in Sec.3.2. This dark fermion has

the charged (QEM = 1) and neutral (QEM = 0) components. According to our analysis of

Z ′ search, θH ranges 0.1 - 0.2. In this region the lowest mode of ΨFi
has the mass range

1.5 - 4 TeV. For small θH the dark fermions with the boundary condition ηFi
= +1 couple

to SU(2)L bosons very weakly. On the other hand, for small θH the dark fermions with

the boundary condition ηFi
= −1 couple to SU(2)R bosons very weakly. The dark fermion

number is conserved so that the lightest mode of the dark fermions becomes stable. The

charged and neutral components of the dark fermions have the same mass at tree-level.

The charged components of the dark fermion are heavier than the neutral components

of the dark fermion because of the radiative correction depicted in Fig.22. The mass

difference of dark fermions must be the order of 10GeV or larger. More detail of this mass

difference between the charged and neutral components of the dark fermion is shown in

Ref.[14]. Hereafter we assume that charged components of dark fermions decay to neutral

components of the dark fermions sufficiently quickly. In the present universe only the

neutral components of dark fermions are left. We consider the both contributions of the

charged and neutral components in the relic abundance of the dark matter. On the other

hand, we consider the contribution from only the neutral components of the dark fermion

in the direct detection of the dark matter.
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Figure 22: Diagrams contributing to the fermion mass difference ∆mF = δmF+ − δmF 0 .
This figure is originally shown in [14].

6.2 Relic density

The best value [68% confidence level (CL) limits] of the relic density of the cold dark matter

observed by Planck [31]:

ΩCDMh
2 = 0.11805 [0.1186± 0.0031], (6.1)

where Hubble’s expansion-rate H0 ≡ 100h km s−1Mpc−1, 100h = 67.11 [67.4± 1.4].

We analyze the relic abundance of the dark matter in the early universe [34]-[36]. To

know the time evolution of n(F ) which denotes the number density of F , we consider the

Boltzmann equation for F 0
i .

6.2.1 Pair annihilations and relic density of dark fermions

We consider the case where θH is small (zL ≲ 106, θH < 0.2) because of the result for

Z ′ search (Sec.5.2). In such a case, mKK is about 5.5 TeV ∼ 10.5 TeV and dark fermion

becomes heavy. Because of the dark fermion coupling is proportional to sin θH , some of

annihilation amplitudes are processes are suppressed by sin2 θH . Relevant processes for

dark fermion annihilation are the following s-channel processes

F 0F̄ 0 → Z
(1)
R → qq̄, ll̄, νν̄,

F+F− → γ, γ(1) → qq̄, ll̄,

F+F− → Z
(1)
R → qq̄, ll̄, νν̄,

(6.2)

and all other annihilation and co-annihilation processes are negligible. This detail is shown

in Ref.[14]

Now we calculate the relic density of the degenerate dark fermions numerically. Param-

eter sets are obtained in Sec.4, Table 2 and Table 11. In Fig.23 we plot the relic density

of the dark fermion for nF = 3, 4, 5 and 6. In the case of the nF = 3 the relic density is

smaller than the current observed limit. Especially in the case of nF = 3 and zL ∼ 3× 104

the relic density become small because of the Breit–Wigner resonance. On the other hand,
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Figure 23: Relic density of neutral dark fermions in the case of nf degenerate dark fermion
multiplets (nF = 3, 4, 5, 6). Data points are, from right to left, zL = 104 (2 × 104) to 105

with a step of 104, 106, 107 and 108 for nF = 4, 5, 6 (nF = 3). The current observed limit of
ΩDMh

2 and the lower bound of the over-closure of the universe are indicated as horizontal
lines. This figure is originally shown in [14].

in the case of the nF = 4, 5 and 6, the relic density is larger than the current observed

limit. We find that for the degenerate dark fermion case we do not explain the current DM

density.

6.2.2 The case of the non-degenerate dark fermions

We consider the two types of dark fermions. Some of the dark fermions are heavier,

the others are lighter. The mass difference of these dark fermions is O(100) GeV (See

Sec.4.). Only the lightest F
0(1)
i ’s become the dark matter. Heavier one is needed to decay

sufficiently fast. The lowest modes of heavy and light dark fermions denote (F+
h , F

0
h ) and

(F+
l , F

0
l ), respectively. The lighter dark fermions obeys the boundary condition ηFl

= +1,

whereas heavier dark fermions obeys the boundary condition ηFh
= −1. For small θH

the lowest mode (F
+(1)
h , F

0(1)
h ) strongly couples to an SU(2)L doublet compared with an

SU(2)R doublet. On the other hand, for small θH , (F
+(1)
l , F

0(1)
l ) strongly couples to an

SU(2)R doublet compared with an SU(2)L doublet. Heavier neutral dark fermions F 0
h can

decay as shown in Fig. 24. Hereafter we assume that heavy dark fermions decay to light

dark fermions sufficiently quickly. More detail of the mass difference for the non-degenerate

dark fermion is shown in Ref.[14].

The heavy dark fermion couplings with W and Z bosons are not small. Therefore the

dominant annihilation processes of Fh are s-channel processes of FF̄ annihilation to the
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Table 11: θH , ctop, cF and mF for zL and nF = 4, 5 and 6, in the case of where dark
fermions are degenerate. This table is originally shown in [14].

nF zL θH ctop cF mF

[TeV]
4 108 0.355 0.357 0.423 0.567

106 0.174 0.292 0.374 1.27
105 0.115 0.227 0.332 2.03

3× 104 0.0917 0.168 0.299 2.66
104 0.0737 0.0366 0.256 3.46

6 108 0.348 0.356 0.461 0.455
106 0.171 0.292 0.434 1.00
105 0.113 0.227 0.414 1.57
104 0.0724 0.0365 0.379 2.57

Z

F
0
h F

0
l

W
−

W
+

F
0
h F

+ F
0
l

Figure 24: F 0
h decay to F 0

l by emitting one Z boson or two W bosons. This figure is
originally shown in [14].

Table 12: Parameters in the non-degenerate case of dark fermions, (nlight, nheavy). Bulk
mass parameter cFl

and the masses mFh
and mFl

of Fh and Fl are tabulated for various
∆cF ≡ cFl

− cFh
(see text) and zL. Even small ∆cF gives rise to large mass difference. This

table is originally shown in [14].

∆cF 0.04 0.06
(nlight, nheavy) zL cFl

mFh
mFl

cFl
mFh

mFl

[TeV] [TeV] [TeV] [TeV]
(1,3) 106 0.404 1.32 1.13 0.418 1.34 1.06

105 0.362 2.09 1.86 0.377 2.12 1.77
3× 104 0.329 2.72 2.46 0.344 2.76 2.36
104 0.286 3.54 3.24 0.240 3.58 3.14

(2,2) 105 0.352 2.15 1.92 0.361 2.21 1.86
104 0.276 3.61 3.32 0.285 3.69 3.25

(3, 1) 105 0.342 2.21 1.98 0.346 2.30 1.95
104 0.266 3.68 3.39 0.270 3.80 3.36
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Figure 25: Relic density of the dark fermion versus mDM = mFl
for nF = 4 (nlight =

1, nheavy = 3). Thick-solid and thick-dotted lines are ∆cF ≡ cFl
− cFh

= 0.06 and 0.04,
respectively. Data points are, from right to left, zL = 104 to 105 with an interval 104,
3× 105 and 106. Horizontal lines around ΩDMh

2 ∼ 0.12 show the observed 68% confidence
level (CL) limit of the relic density of the cold dark matter. This figure is originally shown
in [14].

SM fermions through Z(1) and γ(1) and co-annihilation through W (1). Through the similar

procedure of the degenerate dark fermion case we can analyze the Boltzmann equation and

the annihilation cross section of the dark fermions. We denote mass difference

η =
mFh

−mFl

mFl

. (6.3)

In our analysis, the annihilation cross section of the non-degenerate dark fermions is sup-

pressed by a factor nF/n
light
F compared with that of the degenerate dark fermions. As the

number of the heavy dark fermions increases, The annihilation cross section becomes small

and the relic abundance enhances.

We find that the current observed relic abundance in the parameter sets of the

(nlight
F , nheavy

F ) = (1, 3) is reconstructed, Fig.25. The other parameter sets cannot do. In

the case of ∆cF = 0.04 and ∆cF = 0.06 corresponding mass differences are about 300 GeV

and about 400 GeV, respectively, Table 12. Note that the small mass regions (less than

1000 GeV) is inconsistent with the result of the Z ′ search.

We plot the relic abundance in (∆cF , zL) plane to interpolate and extrapolate with

respect ∆cF and zL, Fig.26. Inner and outer colored regions are allowed with the 68% CL

limit and twice of the 68% CL limit ΩDMh
2 ⊂ [0.1186 ± 2 × 0.0031], respectively. We

obtain the current observed relic abundance in the parameter region 104 ≲ zL ≲ 106 and

0.04 ≲ ∆cF ≲ 0.07. The small zL regions (less than 106) is inconsistent with the result of

the Z ′ search. The corresponding regions of the Wilson line phase and the dark fermion

mass are 0.07 ≲ θH ≲ 0.17 and 3100 ≲ mF ≲ 1000 GeV, respectively.
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Figure 26: Parameter region (∆cF , zL) allowed by the limits of relic density. Inner and
outer colored regions are allowed with the 68% CL limit and twice of the 68% CL limit
ΩDMh

2 ⊂ [0.1186 ± 2 × 0.0031], respectively. Mass of the dark fermion mFl
and a mass

ratio η ≡ (mFh
−mFl

)/mFl
are also indicated as solid and dashed lines, respectively. This

figure is originally shown in [14]
.

6.3 Direct detection

F 0 F 0

q q

Z

F 0 F 0

q q

Z
(1)
R

F 0 F 0

H

q q

Figure 27: Dominant and subdominant processes of the F 0-nucleus scattering. This figure
is originally shown in [14].

Let us analyze the elastic scattering between the dark fermion (F 0) and a nucleus [37]-

[39]. We examine the constraint coming from direct detection experiments[32][33]. We

treat only the neutral dark fermion F 0 because the charged dark fermion does not exist

in the present. The dominant process is the Z boson exchange, Fig.27. The subdominant

processes are Z
(1)
R and Higgs exchange. Because the F 0 coupling to Z boson is small,

and the Z
(1)
R mass is heavy, contributions of Z and Z

(1)
R boson are small so that the dark

fermions are not observed by the current direct search.

Heavy target nuclei are used by the experiments [32][33]. These experiments are the

spin-independent scattering experiments. More detail of the F 0-nucleon spin-independent
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Table 13: F 0 mass mF and the spin-independent cross section σN of the F 0-nucleon scat-
tering for nF = 4, 5, 6 degenerate dark fermions. This figure is originally shown in [14].

nF = 4
zL θH mF (TeV) σN (cm2)
105 0.115 2.03 5.33×10−44

5× 104 0.101 2.36 3.78×10−44

3× 104 0.092 2.66 2.99×10−44

2× 104 0.085 2.92 2.53×10−44

104 0.074 3.46 2.03×10−44

nF = 5
zL θH mF (TeV) σN (cm2)
105 0.114 1.75 3.67×10−44

104 0.073 2.91 1.01×10−44

nF = 6
zL θH mF (TeV) σN (cm2)
105 0.113 1.57 2.96×10−44

104 0.072 2.56 0.72×10−44

cross sections σN is in ref. [14]. Our numerical result of the F 0-nucleon spin-independent

cross sections σN are shown in Table 13 and Fig. 28. In Fig. 28 the black solid line is the

strongest bound for current direct dark matter direct search and the 90% confidence limits

set by the 85.3 live-days result of the LUX experiment[33]. The black doted line is the

bound of the expectation values by the 300 live-days result of the LUX experiment. Red

circles and blue squares represent the cases of non-degenerate dark fermions (nlight, nheavy) =

(1, 3) with ∆cF = 0.04 and 0.06, respectively. The purple and light purple bands represent

the regions allowed by the limit of the relic abundance of dark matter at the 68 % CL and

by twice of that, respectively. When we choose the suitable mass difference ∆cF , our result

are consistent with the dark matter direct search. This band indicates the allowed region

for both relic density and direct detection of dark fermions exists. Thus the allowed band

region is from zL = 104 to 4× 104, from mF = 3.1 TeV to 2.3 TeV and from θH = 0.074 to

0.097. In this band the mass of Z ′ bosons ranges from 8TeV to 6.5TeV. Therefore we find

that this allowed region is consistent with the relic density, direct search and the results of

Higgs decay and Z ′ search.
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Table 14: mFl
, m

Z
(1)
R
, the spin-independent cross section σN of the F 0

l -nucleon scattering

for nF = 4 and (nlight, nheavy) = (1, 3). This table is originally shown in [14].

∆cF = 0.04
zL θH mFl

m
Z

(1)
R

σN (cm2)

(TeV) (TeV)
4× 104 0.097 2.29 6.47 2.69×10−44

3× 104 0.092 2.46 6.74 2.35×10−44

2× 104 0.085 2.72 7.15 1.96×10−44

104 0.074 3.24 7.92 1.53×10−44

∆cF = 0.06
zL θH mFl

m
Z

(1)
R

σN (cm2)

(TeV) (TeV)
2× 104 0.085 2.61 7.15 1.76×10−44

104 0.074 3.13 7.92 1.35×10−44
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Figure 28: The spin-independent cross section of the F 0-nucleon elastic scattering for
104 ≤ zL ≤ 105. The orange diamonds and light blue stars represent the nF = 4 and
nF = 5 cases of degenerate dark fermions with a step of 104 in zL, respectively. Red circles
and blue squares represent the cases of non-degenerate dark fermions (nlight, nheavy) = (1, 3)
with ∆cF = 0.04 and 0.06, respectively. The black solid line and green dashed line are
the 90% confidence limits set by the 85.3 live-days result of the LUX experiment[33] and
the 225 live-days result of the XENON100 experiment[32], respectively. The purple and
light purple bands represent the regions allowed by the limit of the relic density of DM at
the 68 % CL depicted in Fig. 26 and by twice of that. The model with dark fermions of
2.3TeV < mFl

< 3.1TeV (4 × 104 > zL > 104) gives a consistent scenario. This figure is
originally shown in [14].
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7 Conclusion

In this paper we constructed and analyzed the SO(5)×U(1) gauge-Higgs unification with

Higgs mass mH = 126 GeV. The SO(5) × U(1) GHU has SU(3)C×SO(5)×U(1)X gauge

symmetry on the Randall-Sundrum warped space-time. The four dimensional Higgs boson

appears a part of the extra dimensional component of the SO(5) gauge fields. The quark

and leptons are introduced in the vectorial representation of SO(5). To realize the observed

unstable Higgs boson, the dark fermions are introduced in the spinorial representation of

SO(5). The four dimensional Higgs boson appears as the fluctuation mode of the AB

phase θH . This phase is determined by location of the global minimum of the effective

potential Veff(θH). When the effective potential is determined, the relevant parameters

were determined self-consistently. The Higgs mass and Higgs cubic and quartic couplings

are determined by Veff(θH). The shape of Veff(θH) strongly depends on the detail of the

gauge boson, top quark multiplet and dark fermion sector.

We determined parameter sets for mH = 126 GeV. We demonstrated how to determine

the relevant parameters. We fixed warp factor zL and the number of the dark fermions nF

and chose the global minimum θ1 in the effective potential tentatively. Then we calculated

the other relevant parameters and determined the Higgs mass. If the obtained Higgs

mass was smaller (larger) than 126 GeV, we reiterated the same procedure with smaller

(larger) θ1. After we determined the relevant parameters, the global minimum θH was

determined and all other quantities such as the mass spectra of all KK towers, gauge

couplings of all particles, and Yukawa couplings of all fermions were determined. In the

case of nF = 1, 2 and 3, small zL cannot reproduce mH = 126 GeV because the small zL

gives mH < 126 GeV. In the case of nF ≥ 4 and zL < 104, this case cannot reproduce the

top mass.

The fact mH = 126 GeV leads to important consequences in the SO(5) × U(1) GHU.

We found the universal relations which are independent on the detail of the dark fermions.

The universal relations appear among θH , the KK mass, the masses of Z
(1)
R , Z(1), γ(1) and

t(1), couplings Z(1)q̄q, the Higgs cubic and quartic couplings. If one finds the value of

mZ(1)(θH) from experiments, θH is determined and other quantities are predicted. And we

can know the behavior of the KK mass and couplings at the SM limit (θH → 0) without

informations of the dark fermions, although, strictly speaking, we cannot take θ → 0 limit.

Especially our Higgs cubic and quartic couplings are smaller than those in the SM.
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In Sec.5.1, we estimated θH region which is consistent with the LHC experiments.

Firstly we analyzed Higgs decay H → γγ. The infinite sum of the KK modes in the loop

corrections converges. The KK mode contributions to the branching fraction are 0.2%

(2%) for θH = 0.117 (0.360). Because the Higgs couplings in the SO(5) × U(1) GHU

have the factor cos θH compared to the SM. Higgs production rate is suppressed by cos2 θH

compared to the SM. The branching fraction is almost the same as that in the SM. Therefore

in signal strength dominant factor of deviation from the SM is cos2 θH . For θH = 0.1 (0.3)

the signal strength is also about 0.99 (0.91) compared to the SM. Secondary we examined

the prediction of KK particles at LHC experiments. First exited KK modes of Z boson

Z(1), photon γ(1), the lowest mode of ZR and Z
(1)
R have TeV scale mass in the SO(5)×U(1)

GHU. These massive neutral gauge bosons become Z ′ boson. In the SO(5) × U(1) GHU

Z ′ bosons is strongly coupled with right handed fermions so that Z ′ bosons have large

width. The decay widths of Z
(1)
R , Z(1) and γ(1) are 482, 342 and 886GeV (553, 494GeV

and 1.04TeV) for θH = 0.114 (0.073). The region θH < 0.13 (m
Z

(1)
R

>5.1 TeV) in our

model is consistent with the result of Z ′ search in the LHC experiments. We predicted Z ′

are discovered in the 14 TeV LHC experiments.

In addition to the collider experiments we examined the implication of a dark matter

problem. The dark fermions with QX = 1/2 have the neutral and charged components.

The charged dark fermion is heavier than the neutral one due to the radiative correction.

In the SO(5) × U(1) GHU the number of dark fermions is conserved and the lightest

dark fermions become stable. We evaluated the relic density of the dark matter. In

the degenerate case, it turns out that the observed relic density is not reproduced. We

found that we can reconstruct the relic density with the case of (nlight, nheavy) = (1, 3).

The relic density is consistent with the experimental bound for 104 ≲ zL ≲ 106, 0.04 ≲
∆cF ≲ 0.07 (400 GeV < ∆mF < 500 GeV). We also examined the direct detection of the

dark matter. We calculated the spin-independent scattering cross section of the lightest

neutral dark fermions with nucleons. We found that in the region 104 ≲ zL ≲ 4× 104 for

(nlight, nheavy) = (1, 3) our model is consistent with the result of the relic density and direct

search from Planck, XENON100 and LUX experiments. The neutral dark fermion masses

are favored in the region 3.1TeV to 2.3TeV (θH =0.074 - 0.097). Especially for the direct

detection our model indicates dark matter is discovered in the next LUX experiments.

As we have seen, there exists the region which is consistent with the experiments of

the relic density, direct search and the results of Higgs decay H → γγ and Z ′ search.
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θH ranges from 0.074 to 0.097. We predicted our Z ′ bosons a dark fermions should be

observed by the upgraded LHC and LUX experiments in near future. It is interesting

that the parameter regions in which Z ′ bosons and the dark fermions should be observed

are overlapped. We note that suppose that the Z ′ bosons or the dark fermions in our

model are observed. We can predict the Higgs cubic and quartic couplings through the θH

with the universality. When θH ranges from 0.074 to 0.097, we can predict λ3 ∼ 29 GeV,

λ4 ∼ 0.021, mtop(1) = 7.7 − 9.8 TeV and m
Z

(1)
R

= 6.5 − 7.9 TeV. When the Higgs self-

couplings are measured by the future experiments, we can distinguish the gauge-Higgs

unification from the other models which include the SM.
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Appendices

A Zq̄q couplings

This section is originally shown in [13]. The couplings of Zq̄q is given by

Z(n)
µ (x) gw

√
L

∫ zL

1

dz

[
t̄Lγ

µtL(x)
{1
2
hLZ(n) (ftLftL + fUL

fUL
− fBL

fBL
)

+
1

2
hRZ(n) (fBL

fBL
+ fUL

fUL
− ftLftL) + ĥZ(n)

(
fBL

ft′L + ftLft′L
)

+
gB
3gA

hBZ(n)

(
2fBL

fBL
+ 2ftLftL + 2ft′Lft′L − fUL

fUL

)}
+b̄Lγ

µbL(x)
{1
2
hLZ(n) (fXL

fXL
− fbLfbL − fDL

fDL
)

+
1

2
hRZ(n) (fDL

fDL
− fXL

fXL
− fbLfbL) + ĥZ(n)

(
fDL

fb′L − fXL
fb′L
)

+
gB
3gA

hBZ(n)

(
fbLfbL − fDL

fDL
− fb′Lfb′L − fXL

fXL

)}]
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+(L→ R) . (A.1)

where fs and hs are defined by followings.

The mode functions of the Z tower are
hL
Z(n)(z)

hR
Z(n)(z)

ĥZ(n)(z)

hB
Z(n)

 =
1√

1 + s2ϕ

1√
2 rZ(n)


{
(1 + s2ϕ)(1 + cos θH)− 2s2ϕ

}
C(z;λZ(n)){

(1 + s2ϕ)(1− cos θH)− 2s2ϕ
}
C(z;λZ(n))

−
√
2(1 + s2ϕ) sin θH Ŝ(z;λZ(n))

−2sϕcϕC(z;λZ(n))

 ,

rZ(n) =

∫ zL

1

dz

kz

{
c2ϕC(z;λZ(n))2

+ (1 + s2ϕ)[cos
2 θHC(z;λZ(n))2 + sin2 θH Ŝ(z;λZ(n))2

}
. (A.2)

Wave functions for the KK tower of an up-type quark t (top) are given by
UL(x, z)
BL(x, z)
tL(x, z)
t′L(x, z)

 ⊃
√
kz2

√
rt(n)


a
(n)
U C

(2)
L (z, λt(n))

a
(n)
B C

(1)
L (z, λt(n))

a
(n)
t C

(1)
L (z, λt(n))

a
(n)
t′ S

(1)
L (z, λt(n))

 t
(n)
L (x) ≡

√
kz2


f
(n)
UL

(z)

f
(n)
BL

(z)

f
(n)
tL

(z)

f
(n)

t′L
(z)

 t
(n)
L (x) ,


UR(x, z)
BR(x, z)
tR(x, z)
t′R(x, z)

 ⊃
√
kz2

√
rt(n)


a
(n)
U S

(2)
R (z, λt(n))

a
(n)
B S

(1)
R (z, λt(n))

a
(n)
t S

(1)
R (z, λt(n))

a
(n)
t′ C

(1)
R (z, λt(n))

 t
(n)
R (x) ≡

√
kz2


f
(n)
UR

(z)

f
(n)
BR

(z)

f
(n)
tR

(z)

f
(n)

t′R
(z)

 t
(n)
R (x) ,

rt(n) =

∫ zL

1

dz
{
a
(n)2
U C

(2)
L (z, λt(n))2 + (a

(n)2
B + a

(n)2
t )C

(1)
L (z, λt(n))2 + a

(n)2
t′ S

(1)
L (z, λt(n))2

}
=

∫ zL

1

dz
{
a
(n)2
U S

(2)
R (z, λt(n))2 + (a

(n)2
B + a

(n)2
t )S

(1)
R (z, λt(n))2 + a

(n)2
t′ C

(1)
R (z, λt(n))2

}
.

(A.3)

Here C
(i)
L (z, λt(n)) = CL(z;λt(n) , ci), S

(i)
R (z, λb(n)) = SR(z;λb(n) , ci), etc., and other towers of

QEM = 2
3
e fermions have been suppressed. The common factors are given by


a
(n)
U

a
(n)
B

a
(n)
t

a
(n)
t′

 =


−
√
2µ̃qC

(1)
L /µq

2C
(2)
L

(1− cos θH)/
√
2

(1 + cos θH)/
√
2

− sin θHC
(1)
L /S

(1)
L

 ,

C
(i)
L ≡ CL(1;λt(n) , ci) , S

(i)
L ≡ SL(1;λt(n) , ci) , (A.4)
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where λt(n) satisfies (3.38).

For a down-type quark b (bottom) we have
bL(x, z)
XL(x, z)
DL(x, z)
b′L(x, z)

 ⊃
√
kz2

√
rb(n)


a
(n)
b C

(1)
L (z, λb(n))

a
(n)
X C

(2)
L (z, λb(n))

a
(n)
D C

(2)
L (z, λb(n))

a
(n)
b′ S

(2)
L (z, λb(n))

 b
(n)
L (x) ≡

√
kz2


f
(n)
bL

(z)

f
(n)
XL

(z)

f
(n)
DL

(z)

f
(n)

b′L
(z)

 b
(n)
L (x) ,


bR(x, z)
XR(x, z)
DR(x, z)
b′R(x, z)

 ⊃
√
kz2

√
rb(n)


a
(n)
b S

(1)
R (z, λb(n))

a
(n)
X S

(2)
R (z, λb(n))

a
(n)
D S

(2)
R (z, λb(n))

a
(n)
b′ C

(2)
R (z, λb(n))

 b
(n)
R (x) ≡

√
kz2


f
(n)
bR

(z)

f
(n)
XR

(z)

f
(n)
DR

(z)

f
(n)

b′R
(z)

 b
(n)
R (x) ,


a
(n)
b

a
(n)
X

a
(n)
D

a
(n)
b′

 =


−
√
2µq

2C
(2)
L /µ̃qC

(1)
L

(1− cos θH)/
√
2

(1 + cos θH)/
√
2

sin θHC
(2)
L /S

(2)
L

 ,

C
(i)
L ≡ CL(1;λb(n) , ci), S

(i)
L ≡ SL(1;λb(n) , ci) ,

rb(n) =

∫ zL

1

dz
{
a
(n)2
b C

(1)
L (z, λb(n))2 + (a

(n)2
X + a

(n)2
D )C

(2)
L (z, λb(n))2 + a

(n)2
b′ S

(2)
L (z, λb(n))2

}
=

∫ zL

1

dz
{
a
(n)2
b S

(1)
R (z, λb(n))2 + (a

(n)2
X + a

(n)2
D )S

(2)
R (z, λb(n))2 + a

(n)2
b′ C

(2)
R (z, λb(n))2

}
.(A.5)

where λb(n) satisfies (3.39).

B Generators and the Wilson line phase

We define the generators of SU(2)′L and SU(2)′R as SaL,aR which appears after the elec-

troweak symmetry breaking,

SaL = αT aL + βT aR + γT â, (B.1)

where T aL , T aR and T â are SO(5) generators. Coefficients α, β and γ are determined by

algebra [Sa
L, S

b
L] = iϵabc,

α2 + γ2

2
= α

β2 + γ2

2
= β

(α + β)γ = γ. (B.2)
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Then we get,

α = 1
2
(1 + cos θ)

β = 1
2
(1− cos θ)

γ = 1√
2
sin θ, (B.3)

where θ is the parameter in the region θ = 0 - 2π. SU(2)′R generators SaR is orthogonal to

SU(2)′L. This θ is corresponding to θH . The coefficient of T 1L + T 2L is (1 + cos θ)/2 which

is the same of θH dependence of W boson mode function. We can also construct the Z

boson generators (A.2). These relations (B.3) can be derived by another way. Suppose we

define unitary transformation Ω = eiαT
4̂
,

SaL = Ω(α)T aLΩ−1(α) ≡ T aL(α)

SaR = Ω(α)T aRΩ−1(α) ≡ T aR(α)

S â = Ω(α)T âΩ−1(α) ≡ T â(α), (B.4)

where S â are SO(5)/SO(4)′ generators. We solve these equations and redefine θ = α/
√
2−

π. We can get eq.(B.3) again. This means Wilson line phase rotates the axis of the

symmetry by unitary transformation. When the symmetry is broken by Wilson line phase,

we should consider this rotation.

C Calculation of effective potential

We can evaluate d dimensional 1-loop Higgs effective potential from the mass spectrums,

Veff =
1

(4π)d/2Γ(d
2
)

∫ ∞

0

dy yd−1 lnρ(iy) (C.1)

where ρ is mass spectrum function which is satisfied ρ(m) = 0. Let us first consider 1-loop

effective potential with KK spectrum mn(θH) ,

Veff = 1
2

∫
d4pE
(2π)4

∑
n ln (p

2
E +m2

n),

m 2
n ∼

(
n+a
R

)2
. (C.2)

We ignore the positive sign for bosons and the negative sign for fermions in this formula.

We define a function,

f(∆) ≡
∫

ddp

(2π)d
ln (p2 +∆).
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We differentiate this function with ∆,

d

d∆
f(∆) =

∫
ddp

(2π)d
1

p2 +∆
,

=
Γ(1− d

2
)

(4π)d/2
1

∆1−d/2
. (C.3)

We integrate from zero to ∆,

f(∆)− f(0) =
2

d

Γ(1− d
2
)

(4π)d/2
∆

d
2 . (C.4)

Therefore, we get the effective potential with only a dependent θH part,

Veff =
1

d

Γ(1− d
2
)

(4π)d/2

∑
n

m d
n (C.5)

Next, we consider to evaluate
∑

nm
d
n . We define spectral function ρ(z) which is analytic

on the complex plane and is satisfied ρ(mn) = 0 on the real axis. For example, ρ is

ρ(z) ∼ an(z −mn),
ρ′(z)

ρ(z)
∼ 1

z −mn

. (C.6)

We integrate all mn(θH) on Re z > 0 along a contour C,∫
C

dz zd
ρ′(z)

ρ(z)
=
∑
n

−2πim d
n . (C.7)

Let us estimate the left side of this equation,∑
n

m d
n = − 1

2πi

∫
C

dz zd
ρ′(z)

ρ(z)
,

=
d

2πi

∫
C

dz zd−1ln ρ(z). (C.8)

Suppose this integral is satisfied with |zd−1lnρ| < 1/R for |z| → ∞. We can integrate along

the imaginary axis, ∑
n

m d
n =

d

2πi

∫
C′
dz zd−1ln ρ(z),

=
d

2πi

(∫
C′

−

+

∫
C′

+

)
dz zd−1ln ρ(z), (C.9)

where Contours C ′
− and C ′

+ are negative value of Imz and positive value of Imz, respectively,

C ′
+ : z = iy, y : 0 → ∞,

C ′
− : z = −iy, y : ∞ → 0. (C.10)
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When the ρ is even function ρ(iy) = ρ(−iy),∑
n

m d
n =

d

2πi

{
e

π
2
id

∫ ∞

0

dy yd−1lnρ(iy) + e−
π
2
id

∫ 0

∞
dy yd−1lnρ(−iy)

}
,

=
d

2πi
2i sin

πd

2

∫ ∞

0

dy yd−1lnρ(iy). (C.11)

Therefore,

Veff =
Γ(1− d

2
)

(4π)d/2
1

π
sin

πd

2

∫ ∞

0

dy yd−1lnρ(iy),

=
1

(4π)d/2Γ(d
2
)

∫ ∞

0

dy yd−1 lnρ(iy). (C.12)

where we use the formula of gamma function,

Γ

(
d

2

)
Γ

(
1− d

2

)
=

π

sin πd
2

. (C.13)
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