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Abstract

We construct the SO(5) x U(1) gauge-Higgs unification with Higgs boson
mass my = 126 GeV on the Randall-Sundrum warped spacetime. We introduce
SO(5) x U(1) gauge fields and fermion multiplets which contain the standard
model particles in the bulk region. SO(5) x U(1) gauge symmetry is broken to
U(1)gm by using the Hosotani mechanism as electroweak symmetry breaking
mechanism. On the Planck brane there exists brane fermions and brane scalar.
The exotic bulk fermions become heavy because of the brane interactions. Dark
fermions (SO(5)-spinor fermions) are relevant for having the observed unstable
Higgs boson. We demonstrate how to determine the relevant parameter sets
for my = 126 GeV. Relevant parameters in this model are determined self-
consistently. After we determine the relevant parameters, the global minimum
Oy is determined and all other quantities such as the mass spectra of all KK
towers, gauge couplings of all particles, and Yukawa couplings of all fermions
are determined. We find that the universal relations that are independent on
the detail of the dark fermion sector. The Kaluza-Klein mass spectra of v, Z,
Z R, top quark, couplings of the first Kaluza-Klein Z boson to quark and Higgs
self couplings obey universal relations with Wilson line phase 65 in the fifth
dimension. Higgs cubic and quartic couplings are smaller than those in the
standard model. We analyze the decay rates H — 77, gg and neutral gauge
bosons, Z’, through dilepton events at LHC. We find that signal strengths of
the Higgs decay modes compared to the standard model are cos?fy. In our

model Z’ bosons are the first Kaluza-Klein modes Zg), ZW and vV at TeV
scale. An excess of events in the dilepton invariant mass should be observed in
the Z’ search at the upgraded LHC at 14 TeV. We explore dark matter searches
in the SO(5) x U(1) gauge-Higgs unification. The lightest neutral component
of dark fermions becomes the dark matter of the universe. The relic abundance
determined by WMAP and Planck data is reproduced with a model with one
light and three heavy dark fermions. This model with a mass of the lightest
dark fermion from 2.3 TeV to 3.1 TeV is consistent with direct search explored
by XENON 100 and LUX experiments. The corresponding Wilson line phase
0y ranges from 0.097 to 0.074, which is exactly the range explored for Z’ search
at 14 TeV LHC as well.
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1 Introduction

Results of LHC experiments and realistic models The gauge symmetry is the
origin of the forces. The standard model (SM) is the most successful theory. The SM has
the SU(3)c x SU(2), xU(1)y gauge symmetry. The SM is strongly restricted by the gauge
symmetry, i.e. mass terms for gauge bosons, and quarks and leptons are forbidden. To
generate the mass terms, we introduce a Higgs boson a la the Higgs mechanism. SU(2) x
U(1) gauge symmetry is spontaneously broken by the vacuum expectation value of the
Higgs boson. In 2012 the Higgs boson was discovered by LHC experiments[1][2]. All
of the particles in the SM are discovered. The Higgs mass is measured to be my =
125.3 + 0.4(stat.) £ 0.5(syst.) GeV and mpy = 125.36 £+ 0.37(stat) £ 0.18(syst) GeV by the
CMS collaborations and the ATLAS collaboration, respectively|[2][3].

There are unsolved problems which we should consider. Firstly the Higgs boson has
fine tuning problem. The loop corrections to Higgs mass have the quadratic divergence.
To solve this divergence part, we regard the SM as the low energy effective theory, i.e.
new physics appears above the certain energy scale. One introduces new physics such as
supersymmtery, extra dimensions, compositeness of the Higgs boson and so on above this
scale. The new physics predicts new particles such as superpartners, Kaluza-Klein (KK)
particles and techni-particles. For example, a model of the extra dimension has the lightest
KK particle. If this KK particle is stable, this can become a dark matter candidate. New
particles may couple to the SM particle and enhances or suppresses the loop corrections.
In other words, new physics may lead to departure from the SM. It is interesting and

meaningful to construct a realistic model which reproduce the SM at low energy.

The gauge-Higgs unification The gauge-Higgs unification (GHU) is one of the model
beyond the SM. The GHU is formulated in higher dimensional gauge theory. The main
feature of GHU is the four dimensional Higgs field which is corresponding to extra dimen-
sional component of the gauge fields. Suppose we consider the Wilson loop operator which
integrates gauge fields along direction of extra dimensions. When the extra dimension is
non-simply connected space, Wilson loop has non-trivial constant phases which cannot be

removed by gauge transformation,

2R
e = Pexp {zg/ dy (Ay>} , (1.1)
0



where A, is the extra dimensional component of gauge fields and 0y is a constant phase.
This constant phase is called the Wilson line phase or the Aharonov-Bohm (AB) phase.
The gauge symmetry is dynamically broken by this vacuum expectation value of A,. This
mechanism is called Hosotani mechanism[4][5]. When we apply Hosotani mechanism to
the electroweak symmetry breaking, this scenario is called gauge-Higgs unification[6]. A
Higgs field appears as a fluctuation of the Wilson line phase, i.e. the Higgs field is the extra
dimensional components of the gauge field. GHU is strongly restricted by gauge principle.
The 1-loop effective potential and Higgs mass are finite as a consequence of gauge symmetry.
In this scenario there appears no fine tuning. This is the main motivation of GHU as a
model beyond the SM. Other motivations are to construct the model which only use gauge
symmetries as a principle and to discover the extra dimension. One might wonder if sum
of the all KK modes in loop corrections has divergence. In GHU 1-loop effective potential
and Higgs mass are finite. Therefore physical quantities in the GHU are expected to be
finite. This is the interesting feature and we find that loop corrections in H — ~v are
finite in SO(5) x U(1) GHU[7] as well.

The SO(5) x U(1) gauge-Higgs unification The most realistic model of the GHU
is the SO(5)xU(1) GHU[7]-[14]. We introduce SO(5) x U(1) gauge fields and fermion
multiplets which contain the standard model particles in the bulk region. SO(5) x U(1)
gauge symmetry is broken to U(1)gy by using the Hosotani mechanism as electroweak
symmetry breaking mechanism. On the Planck brane there exist brane fermions and brane
scalar. The exotic bulk fermions in the bulk region become heavy because of the brane
interactions. In the original model of the SO(5) x U(1) GHU, we could not explain the
Higgs boson which has been discovered at LHC experiments In the SO(5) x U(1) GHU
Yukawa couplings and Higgs 3-point couplings of gauge bosons are proportional to cos 0.
And in the original model of SO(5) x U(1) GHU the Wilson line phase takes the value
/2 and all 3-point Higgs couplings of quarks, leptons, W and Z vanish. Therefore Higgs
boson becomes stable in the original model of SO(5) x U(1) GHU. So we should introduce
a mechanism that the Higgs become unstable. Then we introduce the additional fermions,
which are called dark fermions (SO(5)-spinor fermions)[7]. This dark fermion can has the
neutral and charged components. In this case the lightest dark fermion can become one of
the candidates of the dark matter.

Relevant parameters in this model should be determined self-consistently. We treat

the warp factor and the number of the dark fermions as free parameters. We choose the
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global minimum in the effective potential tentatively to determine self-consistently. Then
we calculate the other relevant parameters and determine the Higgs mass. If the obtained
Higgs mass is smaller (larger) than 126 GeV, we reiterate the same procedure with smaller
(larger) tentative value of the global minimum. After we determine the relevant parameters,
the global minimum 6y is determined and all other quantities such as the mass spectra of
all KK towers, gauge couplings of all particles, and Yukawa couplings of all fermions are
determined.

We find that the universal relation which is independent on the details in the dark
fermion sector. The universality relations appear among 6y, the KK mass, the masses
of ZW, v and tW, couplings of ZMgq and the Higgs self-couplings[7]. Once the 0y
is determined from, say, Z() mass, we can determine other quantities, () mass , the
Higgs self-couplings and so on. If one finds the value of mya)(fy) from experiments, 0y is
determined and other quantities are predicted. Our Higgs cubic and quartic couplings are
smaller than those in the SM.

We analyze the Higgs decay, H — -7, and Z’ search[7][13]. We can know the Wilson
line phase 0y from the analysis by using universality. We find that in signal strength
of H — ~v, dominant factor of deviation from the SM is cos? @y which comes from the
Higgs couplings. First exited KK modes of Z boson Z(), photon v, the lowest mode
of Zr and Zg) have TeV scale mass in the SO(5) x U(1) gauge-Higgs unification. These
massive neutral gauge bosons appear as Z’ boson. Z’ in the SO(5) x U(1) GHU is strongly
coupled with right handed fermions so that Z’ resonance has large width. In the region
Oy < 0.13, SO(5) x U(1) GHU is consistent with the H — v and Z’ search at 8 TeV
LHC experiments. And we predict Z" are discovered in the 14 TeV LHC experiments.

In addition to the collider experiments we examine the implication to the dark matter
problem. We assign the U(1) charge such that the dark fermions contain the neutral
components|[14]. In the SO(5)xU(1) GHU the number of dark fermions is conserved so that
the lightest neutral dark fermions become stable. In the non-degenerate case of one lighter
neutral dark fermion and three heavier neutral dark fermions, we can explain the relic
density. We also examine the direct detection. In the region 8y = 0.097 —0.074, our model
is consistent with the experiments of the relic density and the direct detection. Especially
for the direct detection the model indicates dark matter is expected to be discovered in

the next LUX experiments.
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Sl 81/22

Figure 1: The left panel shows S'. The right panel shows the identification of the S*/Z,.

Extra dimension The most simplest case is M* x S* in the model of the extra dimension.
The characteristic quantity of extra dimension is radius R. Wave functions of fields on the
St satisfy equations of motion. The wave function is expanded by the complete set. We
get wave functions and call KK mode for each mode. And also the equations of motion
give us the masses of each mode of the fields. Characteristic mass scale is 1/R. This is
called KK mass. However on the S' x M* fermions are vector-like so that the SM cannot
be not reproduced. To have chiral fermions, we introduce the orbifold structure S'/Z, in
which the upper side of S! is identified with the lower side of S!, Fig.1. We introduce
the boundary conditions for a line segment. We can impose Dirichlet boundary condition
(fixed boundary condition), Neumann boundary condition and so on. Four dimensional
spacetime of end points are called the branes. And the other part is called the bulk.
When we impose Neumann boundary condition at both end points, the wave function is
cosine function because end points are not fixed. When we impose Dirichlet boundary
condition at both end points, the wave function is sine function because end points are
fixed. This sine function has no zero mode. If left- and right-handed fermions are imposed
by Neumann boundary condition and Dirichlet boundary condition, respectively, only the
left handed fermions has the lowest mode. We can consider more complicated case. The
Randall-Sundrum warped spacetime is a famous spacetime, Fig.2 [15]. Characteristic factor
is called warp factor which connects the TeV scale to the Planck scale. The fine tuning

problem is solved by this warp factor.

Contents of this paper In Sec. 2 we have the brief review of the Hosotani mechanism
for SU(N) gauge theory on the M* x S'. In Sec. 3 the action of the SO(5) x U(1) GHU

is given. In Sec. 4 we calculate effective potentials V.g and determine global minimum



exponential expansion
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Figure 2: This show the Randall-Sundrum warped spacetime. Horizontal axis is fifth
dimensional direction. Planes mean four dimension. Four dimensional coordinates expand
exponentially from TeV brane to Planck brane.

of the effective potential and Higgs mass. And we find universality which is independent
of the detail in the dark fermion sector. In Sec. 5 we discuss Higgs decay H — 77, gg
and behaviors of the couplings for each KK mode. And we examine the Z’ search. We
calculate dilepton process at tree level for 8 TeV and 14 TeV LHC experiments. In Sec.
6 we introduce the scenario which regard dark fermions as one of the candidates of dark
matter. We calculate the relic density and the direct detections of dark fermions . We find
that in our model we have a parameter region which is consistent with the experiments of

the relic density and direct search.

2 Hosotani mechanism

We shortly review Hosotani mechanism[4][5]. This section is based on [5]. Hosotani mech-
anism is the spontaneously symmetry breaking mechanism in higher dimensional gauge
theory. When the space is not simply connected, the Wilson loop can have constant phase.
Because the Wilson loop is gauge invariant quantity, this phase cannot remove. This phase
is dynamically determined by the 1-loop effective potential. Higgs mass is finite because of
gauge symmetry. This phase give fermion mass and gauge boson mass at quantum level.
Therefore fine tuning problem is solved.

In this section the constant phase appears from Wilson loop. By using background

gauge method we calculate the 1-loop effective potential for Wilson line phase.



2.1 Boundary conditions and equivalence class

Let us first consider SU(N) gauge theory in the five dimensions. We mainly focus on the
gauge field. The fifth dimension is S* compactification which has radius R. We denote the
four dimensional Minkowski coordinate z#, the fifth dimensional coordinate y. We identify

y and y + 27 R with boundary conditions U,
Az, y+21R) = UAy(z,y)UT, (2.1)

where T'[U] means fundamental or adjoint representation. We consider the gauge transfor-

mation,
, 1

where A’ satisfies the new boundary condition U’. Now we discuss the relation between

boundary conditions U and U’. By using the gauge transformation €2, one finds the relation,
U =Qz,y +2rR)UQ(x,y). (2.3)

If Q(x,y) obeys
Qf (2, y + 27 R) 0y Qz,y + 2rR)U = UQ(z,y) 00z, y), (2.4)

U’ is independent on coordinates. Because the boundary conditions U and U’ are related
by the gauge transformation 2(x,y), these boundary conditions satisfied with (2.4) are

equivalent,
U~U'. (2.5)

We call this relation (2.5) equivalence class. Not all boundary conditions U are not in-
dependent. Some boundary conditions are related to other boundary condition by gauge
transformations. We have the residual gauge invariance which is unchanged boundary

conditions (U = U’),
Qz,y +27R) = UQ(2)UT, (2.6)

where Q(z,y) is not single-valued unless [Q(z,y), U] = 0.
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2.2  Vacuum configuration and the Wilson line phase

In simply connected space the vacuum expectation values of gauge fields can gauge away,
while in non-simply connected space gauge fields can have the non-vanishing expectation
value. We consider the vacuum configuration of the classical case (Fy;y) = 0. It follows

that,
(Au) = —éVT(x,y)aMV(x,y). (2.7)
We use the boundary condition (2.1),
Vi, y+27R) 0y V(z,y +27R)U = UV (2, y)00V (2,7). (2.8)
We transform eq.(2.7) by gauge transformation Q(x,y),
(Au) — (A),) = —é(QV*)@M(VQT). (2.9)

V is not unique. CV (CCT = 1) is also satisfied with (2.7), C'is a constant unitary matrix.
If Q(z,y) = V(x,y), (A),) is transformed to zero. The boundary condition is changed to

U =V(z,y+2rR) UV (x,y)'. (2.10)

(2.8) indicates U’ is independent on the coordinates. Therefore we have the equivalence

class,
(U (Aws) = —évTan) ~ (U (Ayg) = 0). (2.11)

This means A); is fixed when the boundary condition U is fixed. We cannot discuss A,
and the boundary condition independently.

Let us introduce the path-ordered Wilson loop with contour C,

z,y+27R

WOz, y; C] = Pexp {ig/ Ap c&cM} . (2.12)

7y
Generally W©® [z, y: O] is not gauge covariant because Q(z,y) # Q(z,y + 27R). So we

redefine,
Wiz, y; €] = WOlz,y; CIU, (2.13)
where U is introduced in eq.(2.1). Thus Wz, y; C] is transformed,

Wiz, y;C] = W'z,y;C] = Qz,y)WOlz,y, CQ (z,y + 2rR)U
= Q(z,y)W[z,y; CO (2, y). (2.14)

11



Eigenvalues of Wz, y;C] are gauge invariant. We consider the vacuum configuration

Fyy = 0. In this time Wz, y; C] is given by
Wiz, y;C] = Vi(z,y)V(z,y+2rR)U. (2.15)

We transform (2.15) with the gauge transformation Q(z,y) = V(z,y) which changes the

boundary condition,
W'lz,y;C) = V(z,y + 2aR) UV (z,y) = V(z,y) Wz, y; CIV(2,y). (2.16)

This means W[z, y; C] = U’ in (2.10). Thus U’ and Wz, y; C] have the same eigenvalues.
Since U’ is independent on the coordinates, the eigenvalues of Wz, y; C| are also indepen-
dent on coordinates. This eigenvalues are called the Wilson line phase. In SU(N) gauge

theory,

{eiez, i@% =0 (mod 27) (a=1r~ n)} ) (2.17)

k=1
where 07 is the Wilson line phase. In the non-simply connected space the gauge field can
contain this Wilson line phase. This Wilson line phase cannot be gauged away in the
equivalence class. We summarize the relation between the boundary conditions and the

gauge transformations in Fig. 2.2.

2.3 Effective Potential

Let us calculate the 1-loop effective potential by using background field method in the S*

compactification. Lagrangian is,

1
L = —§TrFMNFMN,
FMN = 8MAN—(9NAM+ig[AM,AN], (2.18)

where () is external field. The gauge fixing function is,
F[A] = Dy (Q)AM = 0y AM +ig[Car, AM]. (2.19)

Faddeev-Popov operator is,

SF,
§AM

Mop = DM(A)W = DM(C)OFYDM(A)’YB7 (2.20)

12
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same boundary condition T d|f'ferent boundary condition
/ \

g A ( f /A/ s

\\\ M, l 7//,

OV (z,y+27R) = UQ (2)UT
Of(z,y + 27 R) O U,y + 2w R)U = Uz, )0z, y)

equivalence class

U~U'

Figure 3: € is the gauge transformation which change the boundary condition. € is the
gauge transformation which does not change the boundary condition. All gauge fields in
this figure contain the same Wilson line phase in the non-simply connected space.

where 7 is the ghost field. The effective Lagrangian is,
1
Leg[A,n,n] = _éTrFMNFMN
1 _
——Tr{D(QAM}Y* = Tr D) DY(A)n. (2:21)

To get the 1-loop effective potential we divide classical parts and quantum parts which
is left quadratic parts. 0 We can use Euler-Lagrange equation for classical parts. We use
gauge fixing condition,
Fiyy = OmAY — OnAJy +ig[Ady, A,
DY, = Dy (A%), Dy = Dps(Q). (2.22)

Leg[A° + A% 7] D —%Tr (DY, A% — DS A%, ) (DOM AN — DON AOM)
—igTr FOMN[A A% ]
—éTr{D_]V[Aq]V[}2 — Trf Dy DM, (2.23)
We integrate by part and use [DY,, DA™ = ig[FY, 5, A?M],
Leg ~ Tr A9, DS DN AM — 2igTr I}, [A™M ) AN

_ 1 _
—Tr 7Dy D™y + Tr(DY, ATM)? — ZTr(Dy  AM)2, (2.24)
[0
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Then we take ( = A° and o = 1,

Legg ~ —Tr A MY, AN — Ty M9y (2.25)
M,y = —gunDODY — 4igFY, (2.26)
Mst = DO, (2.27)

Therefore we get the 1-loop effective potential for A°,

Ve[ A°)9 = —£ TrIn MY,
Ve[ A%)9" = i Tr In M9 (2.28)

In the case of Fy;y =0,
Vgl A%+ = —(d — 2)%% In Dy (A%) DM (A°). (2.29)

In the fermion part, contributions of fundamental representation fund and adjoint repre-

sentation adj are

Dﬁj ¢ad - 8M + Zg[A%/[a ¢ad]7
Vg AC]fermion — 4Ty In {in™ Dy (A%) — m}. (2.30)

For massless Dirac fermion,
Vo[ A0)fermion — 94/2; Ty 1n Dy, (A%) DM (A°). (2.31)
Firstly we calculate the contribution of the fermion with fundamental representation,
Vogl0]7® = 25/2iTrIn (—idy + gAn)?

. +0c0
st 1 d'p 2 2 92 9 2
= P55 2 Gl ot s o)

BT [l (o)) e

where w,, = n/R. In the second line of eq.(2.32), we get rid of constant term,

Z In{(2mn — z)? + E?} = In(1 —e"T™)(1 — e i)

+(z — indpendent). (2.33)

14



To use the gamma function,

un 25/2 = T 10 7 Rp—i0;
Vi = R o [ I ) (1 )
252 (2
orR) 57T5/2E g cosnej. (2.34)

lnl

In the similar way we can get the contributions of fermions for adjoint representation,

adj
Vol = 27rR 57T5/2 Z Z — cosn(0; — O). (2.35)

k:lnl

Finally we get contributions of gauge fields and ghost fields,

2°/21°(2
h
Vo = ~ R 57r5/2 E E — cosn(0; — b). (2.36)

7,k=1n= 1
Here we consider the dependence of boundary conditions for 1-loop effective potential.

We consider the following gauge trans formation,
/ 1
AY, = A%,0f — gQﬁMQT. (2.37)
Euler-Lagrange equation for gauge fields and gauge fixing condition are,
DM (A% Fyn(A®) =0,
DM (A% A%, =0. (2.38)

The gauge fixing condition (Second line of eq.(2.38)) is not gauge invariant satisfied for

eq.(2.37). In this time we consider the gauge fixing condition is gauge invariant and satisfied
with

(A0, Q70 = 0. (2.39)
Thus the gauge fixing term is gauge invariant with A4, = A, + A‘]I\;
F'[A] = DM(AM4),
_q {DM(AO)AM _ éDM(AO)aMQTQ} of
= QF[AQ. (2.40)

Therefore, the 1-loop effective potential is unchanged for both boundary conditions U and
U,

VgAY U] = Vig[AY; U'). (2.41)
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3 Model

In this section we define SO(5) x U(1) GHU [7]-[14]. SO(5) x U(1) GHU model is the most
realistic model which reconstructs the SM. Firstly we introduce the SU(3)c x SO(5) X
U(1)x gauge symmetry on the Randall-Sundrum warped space-time. Then we discuss the
symmetry breaking. Secondly we introduce the 5 dimensional fermions. Exotic fermions
become heavy because of the brane interactions. We introduce the additional fermions,
which are called the dark fermions (SO(5)-spinor fermions). We explain the relevant

parameters in the next section.

3.1 Gauge fields in the SO(5) x U(1) GHU
3.1.1 Gauge symmetry

We introduce the SU(3)c x SO(5) x U(1)x gauge symmetry on the Randall-Sundrum
warped spacetime [15]. Fifth dimensional space is the line segment with length L. The
boundary of the fifth dimensional space is called the brane and the other region is called
the bulk. We denote y is the fifth dimensional coordinate. An four dimensional part of
end point at y = 0 is called the Planck brane, the other end point at y = L is called the

TeV brane. The metric of the Randall-Sundrum warped spacetime is given by
ds* = GyndeMda™ = e Wy, datde” + dy* (3.1)

where 7, = diag(—1,1,1,1), o(—y) = o(y), o(y+2L) = o(y) and o(y) = k|y| for |y| < L.
k is the curvature, which has the value from 10* TeV to 107 TeV. The characteristic factor
21, = e is called the warp factor, which has the value from 10* to 107. This warp factor

connects between the weak scale and Planck scale. The cosmological constant is given by

A = —6k%. We rewrite the metric with the conformal coordinate z = e*¥,
1 L dz2?
ds* = = (nw,dx“d:v + ?> : (3.2)

This form is useful to calculate the wave functions. The KK mass scale is given by mgk =
mk/(z;, — 1) ~ wkz;'. In this paper we focus on mgg = 4 — 10 TeV.

There exist the SU(3)¢ x SO(5) x U(1) x gauge fields in the bulk region. SU(3)¢ gauge
fields become gluon fields in the 4 dimensions. Because of introducing the 4 dimensional
Higgs doublet, we introduce the SO(5) x U(1)x gauge fields. We note that SU(3) GHU
model does not obtain the Weinberg angle. The bulk part of the action is given by

1 1
St = [ oG [on (PO O+ )
A

16



1 1
—(ZF(B)MNFA(E)V (P + E(B)>

2£B gh
1 1
—tr (G FOMNER (7 + L) (3.3)

where Ay, By and Gy (M = poand y) are SO(5), U(1l)x and SU(3)c gauge fields,
respectively. Field strengths are given by

Fz%zf = OmAN — OnAy —iga[An, An], (3.4)
Fifv = OumBy — OxBu, (3.5)
F\% = 0uGy — OnGar — igo[Gar, Gl. (3.6)

ga and go are SO(5) and SU(3)¢ charge, respectively. We denote the gp is the U(1)x
charge. We take the gauge fixing function,

I = 2 (DA, + EaR2DE(AL2)) 37)

g

with a background field A¢ (A, = AS + A?), BS = G¢ = 0.
Now we discuss the symmetry breaking. SO(5) x U(1)x gauge symmetry breaks to the
SO(4) x U(1) gauge symmetry by the boundary conditions at yo = 0 and y; = L,

A, N A, A -1
(Ay) (xay] y) _Pvec (_Ay) ('ray]+y)Pvec7
B, N B, A
(By) <x7yj y) - (_By) (l’, y] + y)a

(gg) (z,y; —y) = (_Gc‘fy) (z,y; + ),

Pvec:diag<_17_17_17_17+1) (38)

Four dimensional SO(4) part and five dimensional SO(5)/S0(4) part of the gauge field Ay,
have parity even whereas four dimensional SO(5)/SO(4) part and five dimensional SO(4)
part of the gauge field Ay, have parity odd. By this boundary condition SO(5) symmetry
breaks to SO(4), which is equivalent to the SU(2), x SU(2)g. SU(2); x SU(2)g indicates
that the Peskin-Takeuchi T parameter is zero. SU(2)g x U(1) symmetry is spontaneously
broken to U(1l)y by the brane scalar ®. This brane scalar lives on the Planck brane.

The vacuum expectation value of the brane scalar is (®) > mxkgk. At this time we have

the massive charged and neutral gauge bosons which come from the SU(2)g x U(1)x.
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We call charged gauge boson Wﬁ and neural gauge boson Zr. Massless neutral gauge
boson corresponds to U(1)y field. And then we have the SM symmetry, SU(2), x U(1)y
symmetry. SU(2);, x U(1)y symmetry is spontaneously broken to U(1)gy by the Hosotani
mechanism. SU(2); x U(1)y symmetry is unbroken at flat spacetime which is not Randall-

Sundrum warped spacetime. The SO(5) gauge fields Ay, are decomposed as

3

3 4
Ay =D AQT Y AT 4> AT, (3.9)

aL:]_ CLR=1 a=1

where T%% (ar, ag = 1,2,3) and T%(a = 1,2, 3,4) are the generators of SO(4) ~ SU(2)1 x
SU(2)r and SO(5)/SO(4), respectively. Note that generators of the SU(2), x U(1)y gauge
symmetry are mixed generators of SO(5) x U(1) gauge symmetry by the Wilson line phase
Oy after the electroweak symmetry breaking, Appendix B.

3.1.2 Four dimensional Higgs boson

The SO(5)/SO(4) coset part of the gauge field A, contains four dimensional Higgs dou-
blet. Without loss of generality the zero mode of A* component of A, can has vacuum
expectation value when the EW symmetry is spontaneously broken. The zero modes of AZ
(a = 1,2,3) are absorbed by W and Z bosons. The four-dimensional neutral Higgs field

H(x) appears as a fluctuation mode of the Wilson line phase,
Ai(ﬂf,y) = {9HfH + H(I)}’ZLH(Q) Ty

1 i : -
exp{§t9H L 2V2T } — exp {ng/ dy <Ay>} :
0

2 |k 2 k
_ - =y 3.10
I ga Z% —1 Gu L(Z% - 1) ’ ( )

where g, = ga/v/L is the dimensionless 4 dimensional SU(2); coupling. After the KK

decomposition we get the wave function of the four-dimensional Higgs boson,

2%k
up(y) = - e 0<y <L, (3.11)

where @y (—y) = Uy (y) = tu(y + 2L).
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3.1.3 KK decomposition of the gauge fields

The gauge fields are expanded by the terms of Bessel functions,

C(z;\) = g)\zzLFLg()\z, Azp), C'(z M) = g)\zzzLFop()\z, A\zr)

S(z:\) = —g)\zFLl()\z,AzL) . Sz = —g)\zzFoJ()\z,)\zL) ,
O
( )‘) - S(l,)\) S(Za )‘) )

S(z;
Fop(u,v) = Jo(u)Yg(v) — Yy (u)Js(v) . (3.12)
where m = Ak. These functions satisfy

Clzp;N) =21, C'(zp;\) =0, S(zp;\) =0, S'(zp;\) =\,
OS5 — SC' = - . (3.13)

Four dimensional components of the gauge fields are expanded by C'(z; A) or S(z; A). These
functions depend on the boundary condition. C(z;\) is corresponding to the Neumann
condition and S(z; \) is corresponding to the Dirichlet boundary condition at TeV brane.
At large mass, wave functions of the C'(z; \) and S(z; A) localize the TeV brane. Therefore
large KK modes of the gauge bosons have the wave functions which is localize the TeV
brane.

We determine the spectrum and wave function of the KK mode of gauge fields. We
introduce the convenient gauge because of the brane interaction at Planck brane. We call
the twisted gauge. This gauge conserve the boundary condition at the TeV brane, whereas
background gauge field is transformed to zero at the Planck brane. The twisted gauge is

given by a gauge transformation,

L
Q= exp {igAQHfHT4/ dy UH(Q)}
y

2
ZL_

2 R
= exp {i@H 22 _Zl \/§T4} forl1 <z<zp . (3.14)

As we mentioned in the previous section, some boundary conditions are related to other
boundary condition by gauge transformations. This gauge transformation change the orb-

ifold boundary conditions,

Py =Qy; —y) Py, + )7, (3.15)
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where i = 0,1. At z = z;, Q(zz) = 1. This means the boundary condition at the TeV
brane is unchanged. The orbifold boundary condition matrix F, changes,

-1
—1
By = ~1 . (3.16)
—cos20g sin20gy
sin20g  cos 20y

Under the twisted gauge, A,(x,2) and Bff (z, z) are expanded in KK towers.
A#(JI, z) + g—BBu(x, )T
ga
=W, + W+ 2,4+ AL+ We, + Wi + Zru + Ay, (3.17)

. Tt £ T2 Tir £4iT2% . TlxiT?
WF=N"WwF@)dnk ——— 4+ hf T B — )
Iz Z Iz ){ w () \/5 W) \/5 W (n) \/5

ZAM = Z Zfln)(l‘) { Z(H)T + hR )T f+ hZ(")T3 z_jhg(n)TB} )

A = Zm {hLWT L b, TR+ jhﬁn)TB} :

A Tle T2 Tir x {T?%r
_ (n)F L R
W]:%Fu - Z WRM (.’L’) {hWI(zn) \/§ + hWI(%n) \/5 } )

n

=Y zZpl(@) { T30+ hR T3 4 hB TB}

Z A4(n A4(n T

vz E V2
where U(1)yx generator Tp is satisfied with Tr Tp?> =1, Tr TpT® = 0 and Tr ToT? = §5.

The lowest modes of the Wi,Z and A7 towers are W+ boson, Z boson and photon,

(3.18)

respectively. The other towers do not contain light modes. The lowest modes of the other
towers have the mass O(mxk).
We summarize the spectra which we use in this paper. The spectrum of the W tower

is given by
25(1; Ay ) C'(1; Ay ) 4 Aoy sin? Oy = 0 (3.19)
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which includes the W boson as the lowest mode W = W . KK spectrum of the Z tower
is given by

25(1; Azm)C'(1; Agem) 4 (1 + 85) Az sin 0y = 0 (3.20)

which includes the Z boson Z = Z(®). We use cy and sy which are given by

ga 9B 1

Cp=—F———, S4= ==, COSOy = —F—. (3.21)
Vit 9 Vit 9 V1482
The spectrum of the photon tower is given by
C'(L;Am) =0, (3.22)

which includes a massless photon A ) = 0. The spectrum of the Zg tower is given by
C(L;A,m) =0, (3.23)
R
A,(z,z) and B,(z, z) are expanded in KK towers as
A (x,z) = ZG“+ZD“+H,
a=1 a=1
& = 3G {ul T + uly T
D* = Z Da(n) <.fl:) {Ué(n)TGL + Ug(n)TaR + ’i:[/D(n) T&} s
H = Y H"(@)uyemT,
B.(x,z) = Z B (2)ugmTs . (3.24)
The spectrum of the D tower is given by
S(l; /\D(n))(J’(l; /\D(n)) + )\D(n) sin2 9H
= C(L; Apw)S"(1; A\pey) — Apw cos? 0 =0 . (3.25)

3.2 Fermions and brane interactions in the SO(5) x U(1) GHU

In this subsection we introduce the five dimensional fermions. In the bulk region there are
quark-lepton multiplets W, which are represented by vector 5 of SO(5). These multiplets

contain the four dimensional SM fermions and exotic fermions. On Planck brane at y = 0
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(z = 1) we introduce the right-handed brane fermions Y,z and brane scalar &, which are
(2,1) and (1,2) representation of SU(2), x SU(2)g, respectively. All exotic fermions acquire
masses of O(mgg) by brane interactions on the Planck brane. The brane interactions are
gauge-invariant under SO(4) x U(1)x x SU(3)¢. The scalar ® on the Planck brane induces
couplings among ¥, and x,g. With these brane fermions all four-dimensional anomalies in
SO(4) x U(1)x are cancelled[12]. This anomaly is known as breaking the Ward-Takahashi
identity by 1-loop triangle diagrams of axial current coupled to two gauge bosons. In the
SM, this anomaly is accidentally cancelled.

Additional fermions Wp, are introduced in the spinor representation 4 of SO(5)[7, 10,
12]. This fermions W, are needed to obtain minimum 0y # /2 for Higgs effective po-
tential. The effective potentials for vectorial fermions and spinorial fermions have 7 and
27 periodicity, respectively. We discuss the detail of the effective potential in Sec.4. This
fermion is called the SO(5)-spinor fermion or the dark fermion. In Sec.6 we study the dark

fermions as a candidate of the dark matter.

3.2.1 The fermions in the bulk region

The bulk part of the action is given by
ng
s = [ 2V=G 30 Dle) ¥+ Y U Dlen) U],
a i=1

1
D(c) =Tey™ <5’M + gwmse 07,1
—igaAy —igpQx By — iQCQCOIOrGMD —co'(y) . (3.26)

Qlr = 1 for quark-multiplets and Q%" = 0 otherwise. We introduce np kinds of ¥y,
with bulk mass parameters cg,. In the simplest case, all ¥, are degenerate, which have
the same bulk mass cp. And we can choose the U(1)x charge such that Ur, has neutral
components.

The electric charge is given by
Qem = T° + T°7 + Qx . (3.27)
In the fermion part ¥ = iWT? and I'™ matrices are given by
I = (w 0“) , TP = (1 _1), o= (1,5, o"= (-1, &) . (3.28)
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The co’(y) term in the action (3.26) gives a bulk kink mass. When the dimensionless
parameter ¢ changes, profiles of fermion wave function change.

The orbifold boundary conditions at yo = 0 and y; = L are given by
\Ila<,’1;‘7 Y; — y) = Pvecl—f)gla(x? Yj + y)7
Y, (, Yi — y) = nFi<_1)jPSpF5\IjFi<x’ Yyj + Y),
P,, = diag (+1,+1, -1, —1). (3.29)

Pyec is shown at boundary condition (3.8). The dark fermion has no zero mode because of
the boundary condition (3.29). The lowest mode of the dark fermions are 1st KK mode.
When for small 0y, with np = +1 the dark fermions F;r(n), Fio(") for odd number of KK
modes (including the lowest mode) couple to SU(2)g gauge bosons. On the other hand,
the dark fermions F;r(n), Fio(n) for even number of KK mode couple to SU(2),, gauge bosons
mainly. When for small 0, with np = —1 the dark fermions Ff("), Fio(n) for odd number of
KK modes couple to SU(2),, gauge bosons mainly, whereas the dark fermions F;r("), FZ-O(”)
for even number of KK mode couple to SU(2)r gauge bosons.

Quark-lepton multiplets W, are decomposed into SO(4) vectors and singlets. One
SO(4) vector multiplet contains two SU(2),, doublets. In each generation

n=|(5) G) e, = l0)6) 0]
= [()- (@) 7], we[(m) () ], e

where the subscripts denote (Qx. These t,b are not 4-dimensional top and bottom quarks
but five dimensional field. We take the bulk mass parameters ¢; = ¢y and ¢3 = ¢4 in each
generation. The Wilson line phase 0y mixes (B,t) with ¢’ in the Qgm = 2/3 sector, and
(D, X) with b in the Qgy = —1/3 sector, respectively. Zero modes appear in

T, t U X
|:Q1L - <Bi) ,dL = <bi) ’ t;%:| ) |:Q2L - <Di> aQ3L = <YLL> ) b;?:| )
Vrr Lixr / Loxr, Lsxr, /
l; = , L, = , , | Lop = , Lsp, = , Vo , (3.31
= () o= () 7] o= (i) = (120%) 2] 00

with the boundary condition in (3.29).
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3.2.2 The brane interactions

We denote the brane fermions
Tr R Ur R Xr
(3), (i), ()
7/6 R/ 1/6 R/ _5/6

od

Xir = BR

N

L . L . L
XIR - ( 1XR) ) XIZR = ( 2XR> ) XéR = (ZA-J?)XR) ) (332)
—3/2 1/2 YR/ _1/9

ﬁly R E2YR
where the subscripts denote Qx. x%z’s are SU(3)¢ triplets. The brane interactions connect

B to BR, U and t to UR, in the Qgm = 2/3 sector, whereas they connect D and b to ﬁR,

and X to X, in the Qpy = —1/3 sector.
The brane part of the action is given by

S = [ E0V=Go)] ~ (DB D" 2y (816 - )
3
+ Y (R0 16" DXl g + X 10" DuXur)

a=1

Ii({}zﬂz@l[ﬁﬁ + I%q)zg;z\illll(b + Iﬂg)zgk\ilgll(i) + Iig)%g};qngci) — (hC)

)

—1 [/%Z)QQTR\I’:),LQA) + /ill)%llTR\ing(i) + Hé)%lgTR\i]4L(i) + Ké)%éTqujglLé — (hC)] },

—

—1

3
Db = (8, —iga 3 AT —iQugiB, )@

ar=1
3
D, Xar = (au —iga Y AUT™ —iQxgpB, — igoQ“’eru) XaR »

ar=1
\illL = TL tL etc., (i) = ?:O'Qci)* . (333)
Br by

The vacuum expectation value of the brane scalar (®) = (0, w)! # 0 breaks SU(2) g x U(1)x

to U(1)y. The brane mass term is given by

3
Smass — / (Ve 6<y>{ Y it (W Qar — QLXCR) — i (V3har — 4l Xip)
a=1

brane

3
N Z iHe (XZRLaL - LLLXlaR) - Z'/:LZ(X?R& - ETLXZSR)}’

«

a=1
pd optooph,opb
K_gé E_,i_l_ﬁ_w’ (3.34)
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where 1., fi are brane mass parameters. In this paper we do not consider off-diagonal parts
of the brane interactions in the generation of quarks and leptons. In general, couplings of
brane interactions, xs in (3.33), can be matrices in generations, which induces CKM and
MNS matrices. All of u,, i and w can be taken to be real and positive. In the case of

s i > mxk, only 9/ud and ' /ub become relevant at low energies.

3.2.3 The wave functions and the mass function of the fermions

The fermions with a bulk mass parameter ¢ are expanded by the terms of Bessel functions,

CL . T

(SL) (z;0,¢) = iE)“/ZZLFch%,c;%()‘Z’)‘ZL) :

(OR) (z;\,¢) = IFZ)\\/zzLF 1 1Az Azp) . (3.35)
SR 2 c—§,c:|:§

They satisfy
CL i SR CR o SL
v (G) =) >0 (5) - (@)
d c

and
CR:CLzl, SR:SLIO fOI‘Z:ZL,
CLCR — SLSR =1 s SL(Z; )\,—C) = —SR(Z; )\,C) . (337)

The left-handed fermions are expanded by Cp(z; A, ¢) or Sp(z; A, ¢). The right-handed
fermions are expanded by Cg(z; A, ¢) or Sg(z; A, ¢). The wave function of the left-handed
fermions are localized at the Planck brane with larger bulk mass parameter ¢, whareas The
wave function of the right-handed fermions are localized at the TeV brane with larger bulk
mass parameter c.

We summarize the mass functions of up-type quarks (top), down-type quarks (bottom)
and the dark fermions. The mass spectrum of the KK tower of the up-type quark are given
by

q q

2 2
2{1 + (%) }SL(1§)\t<n>,Ct)SR(1§)\t<n>,Ct) + (%) sin* 0y =0 . (3.38)
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The mass of the KK tower of the up-type quark is given by mym) = \ymk. The ratio u3 /i
in (3.38) is determined by mass ratio of a/a. The mass spectrum of the down-type quark

are given by
115\ 2
2{1 + ([t_z) }SL(1§ Ay €6)Sr(1; Ay, ¢¢) 4 sin® 0y = 0. (3-39)

The mass of the up-type quark is given by mym) = Aym k. For a lepton mupltiplet (v, 7),

the wave functions are given by the following replacement rules,

U UV, b Lgy

B LQY D T

t] Tl | x| T Ly |
t/ U/ b/ 7_/

(A%, 1) — (s, 1% o (ud, ) — (b, pb)

(c1,¢2) = (ca,c3) - (3.40)

The mass spectrum of the KK tower of the dark fermion Wy, are given by
) HH
CrL(L; Nin, cr)Cr(1; N, cFy) — sin o = 0. (3.41)
The mass of the KK tower of the dark fermions is given by m = Aink. We determine

the bulk mass parameters ¢ in the next section 4.

4 The effective potential and the universality

We generate Higgs effective potential and we show the minimum of effective potential is
controlled by gauge fields, top quark multiplet and dark fermions. We find the universal
relation which is independent on the detail of the dark fermion sector. The universality
relations appear among Ay, the KK mass mky, the masses of Z() and vV, and the Higgs

self-couplings|[7].
4.1 Veg(0y) and observed Higgs boson
4.1.1 Relevant parameters

Firstly we consider relevant parameters in this model. We have two parameters zy and k
(or L) from Randall-Sundrum warped spacetime in (3.1). Gauge couplings g4 and g come

from SO(5)p x U(1)x gauge symmetry. We interpret the gauge couplings as the angles
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se and ¢, in (3.21). Top and bottom mass spectrums in (3.38) and (3.39) are determined
by ¢; and f?/pd. The detail of the degenerate dark fermions is determined by np and
cp in (3.26) and (3.41). In the non-degenerate case, we need ng, and cp, for each dark
fermions Wp,. These eight parameters k, zp, ga, 9B, ¢, fi/p2, cp and np are relevant.
Other brane mass parameters are irrelevant as jiq, fi, w > mgg. When these parameters
are determined, Vg(fy) is determined. We use the six observed values, mz, ay,, sin? Gy,
my, my, and my[16]. We treat z; and np as free parameters.

Global minimum 65 and Higgs mass my are determined after determining the effective
potential. The effective potential is determined by the details of the particles. The details
of the particles are determined by the global minimum 6. Therefore all parameters must

be determined self-consistently.

4.1.2 Effective potential without dark fermions

Let us first consider no dark fermions (SO(5)-spinor fermions) ¥p, case. In the effective
potentials, the contributions from the gauge bosons and top quark multiplet are positive
and negative, respectively. The contributions of other quarks and leptons are smaller than
the top quark multiplet and negligible. Because the contribution of the top quark mulitplet
is larger than the contributions of gauge bosons, the total effective potential is shown in left
panel of Fig. 4. This potential has 7 periodicity. This minimum of the effective potential
is always located at 0y = 7/2. In this theory all 3-point Higgs couplings of quarks, leptons
and W and Z bosons vanish because these 3-point Higgs couplings are proportional to
cos@y. Therefore this Higgs boson becomes stable. In 2012 the Higgs boson has been
discovered by LHC experiments. The existence of the unstable Higgs boson indicates that
there must be additional fields which gives rise to contributions of different periodicity, say
2m. This is fulfilled by the dark fermions. This fermion has 27 periodicity in right panel of
Fig. 4. The sum of both contributions generate the minimum 6y # 7/2. The larger dark
fermions contribute, the smaller Wilson line phase 8y is. In this way we control the place

of minimum.

4.1.3 Effective potential with degenerate dark fermions

We determine the relevant parameters and the effective potential. Firstly we calculate
the case of (z,np) = (10°,5) as an example. As we mentioned we should determine the

parameters self-consistently. Firstly we fix ; = 0.120 tentatively. The minimum of V.g(0g)
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Figure 4: Left figure is effective potential for contributions of gauge bosons and fermions
with vectorial representation. Right figure is effective potential for contributions of fermions

with spinorial representation (dark fermions).

is located at #;. In general we cannot get my = 126 GeV from this minimum. If we do

not obtain the 126 GeV Higgs mass, we change the value 6;.

We determine k from Z boson mass sepctrum (3.20),

z
Fi(x = ?L,Hl,mz(m) = 25(1;myox)C' (1;myoz) +

mzo)x

2
1+s¢

sin? 6, (4.1)

where the angle s, is given by Weinberg angle sin® 6y = 0.231. The mass eigenvalue )

is given by mz/k. We use my = 91.19 GeV. In Fig. 5 zp/k is 4.

17 x 1071 /TeV. We

determine k = 2.27 x 10° TeV from Fy(x,01,m40) = 0. At this time we can determine

L = (Log z1)/k = 5.08 x 107°/TeV and KK mass mgx = wk/(2; — 1) = 7.12 TeV.

T T T T T
2.%10-° /-d\
0

-2.x107° |-

X
LL
—-4.x10°° F

—6.x107° F

-8.x10°

L L L L L L
0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

z /K

Figure 5: In the case of (21,nr) = (10°,5) and 6; = 0.120, we plot (4.1). Horizontal line
x is 2y /k. Solution of 27 /k is 4.17 x 107! /TeV. We obtain k = 2.27 x 10° TeV.

Next, we determine ¢; from spectra of top and bottom quark towers (3.38) and (3.39).

We sum (3.38) and (3.39),

1 .
Fi(et,01) = SL(1; Mmy, €) Sr(L; Ay, €¢) + SL(1; Ay, ) Sr(L; Myeny, €1) + 3 sin? 0y , (4.2)
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Figure 6: In the case of (21,nr) = (10°,5) and 6; = 0.120, we plot (4.2). Horizontal line
is ¢;. we determine ¢, = 0.227.

where we take ¢; = ¢,. We use the observed values m; = kA = 171.17 GeV and
my = kXA = 2.89 GeV. From (4.2) we determine ¢, = 0.227 in Fig.6. We can also
determine |?/ud| = my/my [10].

We calculate the effective potential (4.10) with a parameter cg. The effective potential

is given by

1 [ .
Ve = W/o dyy® In p(iy)

ERTR

%/0 dyq®In piq), (4.3)
where y is not coordinate of the extra dimension. Second line is y = kq/zp. p is the
mass spectrum function. This formula is shown in Appendix C. In this effective potential
(4.3), we ignore the positive sign for bosons and the negative sign for fermions. The 1-
loop effective potential V. has the contributions from only the KK towers whose mass
spectra depend on 0. Because in (4.3) the argument of mass spectrums is imaginary, we
transform modified Bessel functions from Bessel functions in the mass spectra. Modified

Bessel functions are given by

Io(z) =17 (ix), Ky(x)=Fi"" Hy(ix),
H,(z) = Jo(x) +iY,(2). (4.4)

We transform the mass spectrum (3.19) as an example,
)\W(n) sin2 0H
S(L; Ay )C' (15 Ayn)
/\W(n) Sin2 QH
=28 Ao FrLa(Aywon s Awon 2) - 5N () 2L F0.0 (Ao, Ay 2L)

Qw = 1+2

= 1+
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We denote Ayym) = q/zr,

zp sin? 0
Ow = 1+ —§q2F1,1(iz, qu);o,o(q, qzr) 45)
We transform the Bessel functions in Fi (g, ¢zr) and Fyo(q, g2r).
Fuaera) = i {her)Kie) - Kiesr)h@)
Foolgzr'q) = %i_l {Io(qz; ") Ko(q) — Ko(gzz)1o(q)} -
We define F, 5(u,v),
Fop(u,v) = I (u)Kg(v) — e O A"K, (u)I5(v) . (4.6)
By using (4.6) we obtain
1 Zr .
o S Rt ) Bnla 0 ol
= 1+ %Qo[q; 1] sin® Oy, (4.7)
where
2L
Qolai el = ¢F 11 (ez o) F ez q) 4

By the same way we obtain @) of Z tower, D tower, top tower, bottom tower and dark

fermion tower,

1 1 1. .
Qw = cos’OwQz = §QD = 5@0[(1; 5] sin® O

Qbottom _ Qo[q, Ct]
Tt 2(1 + Tt>

Qr = QO[Q;CF]COSQ%GH, (4.9)

.2
Qtop sin“ 0g

Y

where r; = (fi/p2)?. Finally we obtain the effective potential from (4.3),

Verr(Or, ¢, 76, ey mp, by 2, 0w §) = 2(3 — 52)I[QW] +(3 - fQ)I[QZ] + 352][QD]
_12{I[Qtop] + [[Qbottom]} - 8nF[[QF] )

UZ%; /Ooo dq ¢’ In{1 + Q(q; 0)} - (4.10)

In the following we take the 't Hooft-Feynman gauge £ = 1. Coefficients of [Q)] come from

IQ(q; 0n)] =

degree of freedom of the W, Z, D, top, bottom and dark fermions.
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Figure 7: We plot Veg(6y) for (zp,nr) = (10°,5), §; = 0.120 and £ = 1. In left panel,
plot range is from 0 to 7. In right panel, plot range is from 0 to 0.2. Global minimum is
01 = 0.120. In this case Higgs mass is my = 125 GeV.

We determine dark fermion mass parameter cp from the following condition,

AVeg
dfg

— 0. (4.11)
01

The minimum of Vig(fg) is located at 6. In the case of (zr,nr) = (10°,5) and 6; = 0.120
we obtain ¢y = 0.382. Fig. 7 is effective potential for this case.
We evaluate the Higgs mass,

1 d* Vg
fir do%

mi; = , (4.12)

where fy is defined in (3.10). Four dimensional coupling is given by ¢? = 47a/ sin? Oy =
0.652 where a@ = 1/128. In the case of §; = 0.120 we obtain Higgs mass my = 125 GeV.
Because we want to obtain the Higgs mass mpy = 126 GeV, we change 0. If the obtained
Higgs mass is smaller (larger) than the 126 GeV, we change the smaller (larger) value of
;. To reiterate this procedure we can obtain the parameter set for my = 126 GeV. In the
case of (zz,nr) = (10°,5), we obtain the parameter set, 0y = 0.114, k = 2.38 x 10° TeV,
L =483 x1075/TeV, mxk = 7.49 TeV, ¢; = 0.227 and cp = 0.382.

When we get mpy = 126 GeV, global minimum 6y is determine and all other quantities
such as the mass spectra of all KK towers, gauge couplings of all particles, and Yukawa
couplings of all fermions are determined. We calculate the first KK Z boson mass as an
example. We use (4.1),

zL
k

M
Fu(Z5, 0, M) = 25(1; MZE)C' (M) + -5 sin® 6y

2
Sé
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Figure 8: We plot F(k/zr,01,m) for (21,nr) = (10°,5), 6; = 0.114 and £ = 1. In left
panel, plot range is from 0 to 10> GeV. In right panel, plot range is from 0 to 10* GeV.
The first KK Z boson mass m,u) = 6.07 TeV. The right panel shows that Z boson mass
is 91.2 GeV.

where a variable is m. In left panel of Fig.8 we obtain the first KK Z boson mass m,u) =
6.07 TeV from F (%, 0, M) = 0. The right panel shows that Z boson mass is 91.2 GeV.

We note that in the case of np = 1,2 and 3, small z; cannot reproduce my = 126 GeV
because the small z; gives my < 126 GeV. At c¢p = 0 the lowest mode of dark fermion
tower has the largest mass. In the case of np = 1 and nyp = 3 the smallest warp factor is
2, = 1.66 x 10° and z;, = 2.0 x 10? in Fig. 1 and Fig. 2, respectively. In the case of np > 4
and z; < 10%, this case cannot reproduce the top mass. At ¢; = 0 the lowest mode of top
quark tower has the largest mass. If the mass of the lowest mode is below the observed
top mass at ¢; = 0 we cannot obtain the top mass.

Determined values for 0y, mkxk, mza), etc. are tabulated in Table 2 and 3 in the case of
np = 3 and np = 5, respectively. The smaller z; is, the smaller fy. The smaller zj, is, the
larger mgyk is. The small bulk mass parameters cp and ¢; give the large mass mpr and m;
and large contribution to the effective potential. The masses of Zg), ZW and vV are about

) mass. For large np the dark

0.8xmxxk. Dark fermion mass mr is below the half of the Zg
fermion mass mp (cp) is smaller (larger) than that for small np with the fixed Higgs mass.
The mass mpq) is plotted in Fig. 9 for various ngp. As we mentioned, when ngp > 4, one
cannot reproduce the top quark mass for z; < 10%. This constraint of top quark mass is
severe due to the independence of constructing the effective potential. Therefore we cannot
consider the dark fermions mass is too heavy in this calculation. For the small 0y (large
miK), heavy KK particles are decoupled. We can regard z;, — 1 (flat limit) or 85 — 0

as the SM limit. Strictly speaking, we cannot take the SM limit numerically as small z,

cannot reproduce m; or my = 126 GeV. If we take this limit actually, we need many dark
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Figure 9: 0y vs mp for myg = 126 GeV with nr degenerate dark fermions. This figure is
originally shown in [13].

Table 1: Parameters and masses in the case of degenerate dark fermions with np = 1. All
masses and k are given in units of TeV.

2L O MKK k Ct Cr
102 1.06 1.51 4.79 x 10" 0.413 0.395
10t 0.843 1.68 5.36 x 10*° 0.403 0.319
1010 0.668 194 6.17 x 10° 0.391 0.215
1.66 x 10° | 0.548 2.21 1.17 x10° 0.380 0.000796

fermions. In the large ng case the dark fermion mass is too small so that dark fermions

appear at low energy. Furthermore gauge symmetry is unbroken at 8y = 0.

4.1.4 Effective potential with non-degenerate dark fermions

We consider the more general situations. We can introduce ng kinds of the dark fermions
which have different bulk mass parameters. Here we introduce two kinds of the dark
fermions. The n’ dark fermions have smaller bulk mass parameter ¢ and heavier mass
mp,, the nt, dark fermions have larger bulk mass parameter i and lighter mass mp,. The

dark fermion part of the effective potential (4.10) change,

‘/egF(eHa CFha CFl7th7 nFla ka 2L QW) = _SnF1[[QF1] - 8nF2[[QF2] . (413)

We fix the difference of the bulk mass parameters and determine the cgs from the condition
(4.11). When np = nt + nk =5, a difference ¢ — ¢ = 0.01(0.03) leads to mp, —mp, =

30 to 80 GeV (80 to 240 GeV). The dark fermion masses m and m,q) in the case of
l

1)
Fy
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Table 2: Parameters and masses in the case of degenerate dark fermions with np = 3. All
masses and k are given in units of TeV. This table is originally shown in [7].

2L On MKK k Ct Cr Mmeq)
10? 0.485 | 245 7.79 x 10°®° 0.376 0.411 0.465
108 0.360 | 3.05 9.72x 10" 0.357 0.385 0.668
107 0.258 | 3.95 1.26 x 10" 0.330 0.353 0.993
109 0.177 | 5.30 1.69 x 106 0.296 0.309 1.54
10° 0.117 | 7.29 2.32 x 10° 0.227 0.235 2.53
2 x10* | 0.08 | 9.21 5.87 x 10* 0.137 0.127 3.88

Table 3: Parameters and masses in the case of degenerate dark fermions with np = 5. All
masses and k are given in units of TeV. This table is originally shown in [13].

zr | O | mxx k Ct CP | Mpa) My

107 | 0.473 | 2.50 | 7.97 x 108 0.376  0.459 | 0.353 1.9R2 1.97 198
103 | 0.351 | 3.13 [ 9.97 x 107 0.357 0.445 | 0.502 2.40 248 2.48
107 | 0.251 | 4.06 | 1.29 x 10" 0.330 0.430 | 0.735 3.11 3.24 3.24
106 | 0.172 | 545 | 1.74 x 105 0.292 0.410 | 1.11 417 4.37 4.38
10° | 0.114 | 7.49 | 2.38 x 10° 0.227 0.382 | 1.75 573 6.07 6.08
10* | 0.0730 | 10.5 | 3.33 x 10* 0.0366 0.333 | 2.91 800 8.61 8.61

Mz My

(nf,nk) = (3,2) and ¢k — % = 0.03 are tabulated in Table 4. For the case of (n’s, nk) =
(3,1) a difference ck — ¢t = 0.04(0.06) leads to mp, —mp ~ 300 GeV (400 GeV), which is
tabulated in Table 12 in Sec. 6. We tabulate the parameters which is various (n’, n’) with
ng = 6 and ck — ¢ = 0.06, Table 5. We also tabulate the parameters which is various
¢ — ¢ with np = 5, Table 6. As increase the number of the light dark fermions nk.,
masses of both heavy and light dark fermions become heavy. One finds that in Fig.5 the
mass difference of the dark fermions almost unaffects the effective potential Vi (0y). We
find that global minimum 6y is numerically unchanged to the accuracy of three digits by
this mass difference. Therefore we do not need to consider changing the numerical values
of mkk, k, c;, m 20 My, and NE when the dark fermions are non-degenerate.

We have constraints for parameter sets by experiments at this time. The low energy
data, the S parameter constraint, and the tree-level unitarity constraint indicate small
0y < 0.3[8][17]. The KK mass scale mgg is predicted to be 3 ~ 7TeV for 0y = 0.1 ~ 0.3.
If the dark fermion is charged and long-lived particle, its current limit is mpa) > 0.5 TeV

[18][19]. In Sec.6, however, we consider charged components of the dark fermion decay

sufficiently fast. In this case, this current limit cannot be applied for our dark fermions.
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Table 4: Parameters and masses in the case of non-degenerate dark fermions with
(nf,nk) = (3,2) and ¢l — ¢ = 0.03. Masses are given in units of TeV. The values of

Mgk, K, ¢t, Mz, ng?n, and m,a) are the same in three digits as those in Table 3 in the

degenerate case.

2L O ch Mpo) M
107 | 0.473 | 0.447 0.384 0.304
108 | 0.351 | 0.434 0.540 0.444
107 | 0.251 | 0.418 0.781 0.663
10| 0.172 | 0.398 1.17  1.02
10° | 0.114 | 0.370 1.83  1.64

10* | 0.0730 | 0.321 3.01  2.77

Table 5: Parameters and masses in the case of non-degenerate dark fermions with np = 6,

b — = 0.06. Masses are given in units of TeV.

Rl h
(nh,n%) | 2L g  mkx k ct cqooom

(6,0) | 10° | 0.113 756 241x10° 0227 | 0414 157

10* | 0.0724 105 3.36 x 10* 0.0365 | 0.379  2.57

(5,1) | 10° | 0.113 756 241x10° 0227 | 0404 1.63 125
10* | 0.0724 105 3.36 x 10° 0.0365 | 0.369 2.65 2.17
(42) |10°| 0.113 756 241x10° 0227 | 0.394 1.69 1.31
10* | 0.0724 105 3.36 x 10° 0.0365 | 0.359 273  2.25
(3,3) | 10° | 0.113 756 241x10° 0227 | 0.384 1.76 1.38
10* | 0.0724 105 3.36 x 10° 0.0365 | 0.349 281  2.33
(24) [ 10°| 0.113 756 241x10° 0227 | 0.374 182 1.44
10* | 0.0724 105 3.36 x 10° 0.0365 | 0.339 2.89  2.41
(1,5) | 10° | 0.113 756 241x10° 0.227 | 0.364 1.88 1.50
10* | 0.0724 105 3.36 x 10* 0.0365 | 0.329 2.967 2.49

Mpm
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Table 6: Parameters and masses in the case of non-degenerate dark fermions with

nr = 5, z;, = 10 and various ¢, — c. In this case, parameters are (0, mxk, k,¢;) =

(0.073,10.5 TeV, 3.33 x 10* TeV,0.0366). Masses are given in units of TeV.

o=l (nhonk) | My Mpo
0 (5.0) | 0.333 2.91

0.01 (41) 0331 293 2.8
(3,2) |0.320 294 287

(2,3) | 0.327 296 288

(14) 0325 297 290

0.02 | (41) |0.320 294 279
(3,2) 10325 297 2.82

(2,3) 10321 3.01 2.85

(14) | 0317 3.04 288

0.03 (4,1) 0327 296 2.72
(3,2) |0.321 3.01 277

(23) 0315 3.05 282

(14) | 0.309 3.10 2.87

0.04 | (41) |0.325 298 2.66
(32) |0317 3.04 273

(2,3) | 0309 3.0 279

(14) | 0301 3.6 2.85

0.05 | (41) |0.323 299 2.60
(3,2) | 0313 3.07 2.68

(2,3) 0303 315 2.76

(14) | 0203 322 284

0.06 | (41) |0.321 3.01 254
(3.2) |0.309 3.0 263

(2,3) 0207 320 273

(14) 0285 3.29 2.82
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4.2 The universality

In previous subsection we determined parameter sets k, ga, g, ¢, fi/p2 and cp from
my, O, sin? @y, my, my, and my. Free parameters are z; and np. We can determine
parameters, mgg, the mass spectra, Higgs cubic and quartic self-couplings A3, Ay and
Yukawa couplings, when we fix the warp factor z; and the number of the dark fermions
np. We plot mkx, Zg) mass, Z®M mass, v(!) mass, first KK top ¢t mass, couplings Z™Mgq,
A3 and A4 against 0y for the various np, Fig.10-15. The formula for couplings of Z™gq
are shown in Appendix A. In the case of np = 0, a parameters set for my = 126 GeV is
zp = 1.5 x 10, 0y = m/2, ¢, = 0.422 and k = 6.55 x 10'2 TeV. In the case of np = 0 a
parameter set for mg = 125 GeV is 2z = 103, 0y = m/2, ¢; = 0.421 k = 4.34 x 10! TeV.
In Fig.10-15, one finds that all plots are on the same curves. In Fig.10 and Fig.11, the
blue curves are the fitting curves. These fitting curves for mgy, Zl(%l), ZW ~W) and my)

masses are given by,

1352 GeV 1038 GeV
MKK ~ e, M) ~
KK (sin 07)0-786 AN (sin 077)0784
1044 GeV 1056 GeV
My ~———— My ~ ——
zm (sin 077)0-8087 ~®) (sin 07)0-804
1033 GeV
The fitting curves for Higgs self-couplings A3 and \4 are given by,
A3/GeV = 26.7 cos Oy + 1.42(1 + cos 20y)
Ay = —0.0106 + 0.0304 cos 20 + 0.00159 cos 40, . (4.15)
) 7(1) 7(1)

This relations mean that mygy, masses of ZI(D} . ZW ~M) and M couplings ¢

tr(r)’ gtL(R)’
yASY)
dr(r)’

Z(1)

Grir ey A3 and A4 are independent on the detail of the dark fermion sector.

and ¢
This property is called the universality. The dark fermion parameters cp and ng have a
important roll for determining the value of non-trivial minimum of the 1-loop Higgs effective
potential whereas cr and np are not important for some quantities which have universality.
In sec.5.2 we analyze Z’ search. We can use the parameter sets for nr = 5 as a bench mark.
The universality ensure that we need not to analyze other ng. If quantities, for example
ZW mass, are determined by experiments, we can know fy and other quantities by using

the universality even though we do not know the detail of the dark fermion sector. On the
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Figure 10: 0y vs myza and 0y vs mya) for my = 126 GeV with np degenerate dark

fermions in the left and right panels, respectively. Blue line in the left panel is fitting
function mya) ~ 1044 GeV/(sin0y)"%%®. Blue line in the right panel is fitting function
mya) ~ 1033 GeV/(sin 0)"3%2. In the ng = 0 case Wilson line phase is 7/2. The left panel
of this figure is originally shown in [13].
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Figure 11: 0y vs MY and A\ for my = 126 GeV with ny degenerate dark fermions. In
the SM ASM = 31.5GeV and A\§M = 0.0320. The fitting curves are given by (4.15). These

figures are originally shown in [13].

other hand, dark fermion mass has dependence of ng, Fig.9. And we find that we cannot
determine the detail of non-degenerate dark fermions from the 65 mkx, m,a), Table 5 To
determine the detail of dark fermions we should discuss searches for the dark fermions. In
Sec.6 we discuss searches for the dark fermions with Qx = 1/2 and predict the region 6y
in which dark fermions are discovered.

As we discussed the previous subsection, we regard the limit 5 — 0 as the SM limit.
Our Higgs self-coupling A3 and A4 for 5 — 0 are small compared with those in the SM,
Fig.11. In the SM the Higgs self-couplings are \3M = 31.5GeV and MM = 0.0320. It
is interesting to distinguish our Higgs self-couplings from those in the SM in the future

experiments. At small 6 the absolute value of the right-handed quark coupling with Z()

38



0.4} ng=0 ng=0
0.3 = -04 ] =
. 02 ng=3 _ e ng=3
;; 0.1+ ' Ne=6 z_;é_o.e -, ng=6
0.0 . -08 .
-0.1} ]
‘ ‘ ‘ Cx -1.0t, ‘ ‘ _x
0.0 0.5 1.0 15 0.0 0.5 10 15
9H eH

Figure 12: 0y vs left-handed top quark coupling with Z() and 6y vs right-handed top
quark coupling with Z(") for my = 126 GeV with np degenerate dark fermions in the left
and right panels, respectively. In the np = 0 case Wilson line phase is /2.
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Figure 13: 0y vs left-handed bottom coupling quark with Z() and 6y vs right-handed
bottom quark coupling with Z(M) for my = 126 GeV with ny degenerate dark fermions in
the left and right panels, respectively. In the np = 0 case Wilson line phase is 7/2.

is smaller than that of np = 0 case. On the other hand, at small 8y the absolute value
of the left-handed quark coupling with Z() is larger than that of np = 0 case. In the
case of np = 0 our Higgs cubic coupling is zero. Our Higgs quartic coupling )\, is negative
for 8y < 0.6 and do not cause the instability. In the gauge-Higgs unification there is no
instability problem in the Higgs couplings. For example Higgs effective potential Veg(6y)
for negative \y and 0y = /2 is the left panel in Fig.4.

We study the universality for various Higgs mass. In Fig.16 we plot the mkk against
fy. The KK mass scale mggk increases as my. The fitting curve is parametrized by
mgx = a/|sin0y|° with fixed my. The parameters o and 3 are tabulated in Table 7. We
plot mkx (0y) for my = 110,126,140 GeV in Fig. 16. The Higgs mass is measured to be
mpy = 125.34+0.4(stat.) £0.5(syst.) GeV and my = 125.36+0.37(stat) £0.18(syst) GeV by
the CMS collaborations and the ATLAS collaboration, respectively[2][3]. In our analysis
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Figure 14: 8y vs left-handed up quark coupling with Z® and 6y vs right-handed up quark
coupling with Z®) for my = 126 GeV with np degenerate dark fermions in the left and

right panels, respectively. In the ngp = 0 case Wilson line phase is 7/2.
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Figure 15: 0y vs left-handed down quark coupling with Z(") and fy vs right-handed down
quark coupling with Z(M for my = 126 GeV with np degenerate dark fermions in the left
and right panels, respectively. In the np = 0 case Wilson line phase is 7/2.

we use my = 126 GeV. Fig.16 and Table 7 indicate that changing our result for Sec.5.1,
5.2 and 6 is sufficiently small to change the values between the measured Higgs mass and
our Higgs mass.

We mention again that the universality leads to powerful predictions. Once the value
of Oy is determined from, say, m,u), many other quantities are predicted. In Sec.5.2 we
study the Z’ search. Our Zg), ZM and v become the Z’ bosons. If these particles
are discovered in the future experiments, our Higgs self-couplings are determined through
determining g by using the universality. Then if the Higgs self-couplings are determined

by the future experiments, due to this property our model is distinguishable from other
models beyond the SM.
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Figure 16: 0y vs my with various values of my. This figure is originally shown in [13].

Table 7: This table is shown in [13]. Universality relation mxk = a/|sin fy|? with various

value of mg.

8000

7000¢ \ _________ my=110GeV
6000 |
g 5000. '-._“\\‘ ---  my=126GeV
$4000 0\ My =140GeV
3000
2000 7 \\\~ s -
100y 05 10 15

On

my(GeV) | a(TeV) |
110 1.20 0.733
120 1.30 0.766
126 1.35 | 0.786
130 1.39 0.800
140 1.49 0.820

5 SO(5) x U(1) GHU in the LHC experiments
5.1 Higgs decay H — vy

When Higgs boson was discovered, signal strength for H — 7+ is larger than that in the SM.
In 2014 the signal strength of H — v divided by the corresponding SM prediction is found
the best-fit value p = 1.17£0.27 at the value of my = 125.4 GeV by ATLAS collaboration
[20] and g = 1.14703% at the value of mpy = 124.7 GeV by the CMS collaboration [21] in
8 TeV LHC experiments. H — 7 has no tree level diagram. Dominant processes are loop

diagrams. So it was expected that contributions of new physics may be hidden. In this

subsection we summarize the result of [7].

5.1.1 Couplings for H — ~vy

We evaluate Higgs couplings with W boson, top quark, dark fermions and their KK modes

in Fig. 17. We calculate HW™W ™ couplings gy oy, Yukawa couplings i and
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Figure 17: Diagram of H — vy

yrx and we define the ratios,

GEW )W () sin O C(l; )\WW))
Ly = : (5.1)
Guw My (n) COS HH e S(L Aym)
n O Cr(1; \n
Lo = SM%( L [ L sin O L( ) " )7Ct), (5.2)
yMceosOy Ty S Ay 1)
n COS = HHC’ 1 Apmy, €
T = -k — _ Iv . JkL SR P CE) g g
yP o sin §9H o r(1; Ape, cr)

where gL, and yP™ are HWW and the top Yukawa couplings in the SM, respectively.
These ratios are plotted in Fig.18 for ny = 3 and z;, = 10® (fy = 0.360). The signs of
Ly, Liny and Ipey alternate as m increase. The magnitudes of Iy, L,y and Ipm are

almost constant.
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Figure 18: The ratios Iyym) = gHW(n)W )/ Gy cos O in (5.1), Lim = yum /yPM cos Oy
in (5.2) and Ipey = ypm /Yy sin 30y in (5.3) are plotted for np = 3 and 6y = 0.360
(27 = 10%) in the range 1 < n < 100. ({J: the top quark tower, ¢: the W tower, O: the
U tower) Iy = 1.004 and I,.0) = 1.012. The sign of gy mwm, Ypm and ypm) alternates
as n increases. Iyq), Ly, Ipa) < 0. This figure is originally shown in [7].



Table 8: Functions Fyy, Fiop and Fr in the np = 3 and z7, = 105, 10® case. This suggests
most of the contributions come from the lowest modes of the top quark and W boson.
Contributions of the W boson and the top quark are denoted by Fwonly and Fiop only,
respectively. We obtain Fy + 3Fiop + 2Fr = 6.508 and 6.199 for 6 = 0.117 and 0.360.

2L HH «FW only «Ftop only «FW/FW only -F:cop/thop only FF/JT_-top only
108 0.360 | 7.873  —1.305 0.998 0.990 —0.033
10° 0.117 | 8330 —1.372 0.9996 0.998 —0.0034

5.1.2 Decay rate for H — v, gg

The decay rate is given by [22]-[24],

a’g? ms 4 F 1 2
T(H = ~y) = — A F, 4 —F o+ (2Q7)2 + 2 ) npF,
H =299 = {oagmmz 77 13 “’Jr((X)Jrz nerr|
o0 2
(mwn M
J—_-W _ 9HW W 2W Fl(TW(n)) ’
o Yy Ty
f — —F T(n) ;
o n=0 ytSM My(n) 1/2(t )
Fr= Ir : F1/2(TF<n>)> (5'4)

SM
= Yi MEm

where W© = W, t© = ¢, 7, = 4m2/m?% and the functions F(7) and F} (1) are defined
in Ref. [24]. Qg) is the U(1)x charge of Up. For large mass limit, 7 — oo, Fi(7) and
Fy)5(7) behave Fi(1) = 7 and Fyj5(7) — —3. The dark fermion multiplet ¥r contains
particles with electric charges (ng) + %)e.

The infinite sums in Fs converge. The couplings alternate as KK mode n increase,
Fig.18. All KK masses are proportional to nmgyk. For large mass limit, 7 — oo, Fi(7)
and F}/2(7) behave constant. Therefore the infinite sums converge as F ~ Y (—1)"n"! or
S (-1 ) (g = 1,2,--+).

We calculate amplitudes Fs numerically. We tabulate the result of Fs for np = 3,
zp = 10° and 10® (g = 0.117 and 0.360) and Qx = 0 in Table 8. The ratio of all
contributions divided by those of the only W boson and the top quark is 1.001 and 1.011
for 0 = 0.117 and 0.360. Therefore contributions of KK modes and the dark fermions are
small, i.e. contributions of KK modes are 0.1% (1.1%) for 85 =0.117 (0.360).

In the GHU, Higgs couplings with WW, ZZ, c¢, bb and 77 are cos @y compared with

those in the SM (i.e. ggnu ~ gsmcosfx). So all decay rates are suppressed by cos? .
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Branching fraction for the Higgs boson is defined by the ratio I'(Higgs — X)/T'(Higgs —
all). In this form the factor cos®€fy is cancelled. The signal strength is determined by
the product of the Higgs production rate and the branching fraction. Because the Higgs
production rate is proportional to cos? 8y, the GHU predicts that the signal strength
relative to the SM is ~ cos? 0. For 05 = 0.1(0.3), the signal strength relative to the SM
is about 0.99 (0.91). This result is consistent with the result of the LHC experiments.

5.2 7' search

Q
)

Figure 19: Diagram Z’. Our Z’s are Z(, ~1) and Zg).

We predict the new particles which come from the extra dimension at 14 TeV LHC
experiments[13]. First exited modes of Z boson Z!), photon (! the lowest mode of Zp
and Zl(%l) have TeV scale mass in the SO(5) x U(1) GHU. The masses Zl(%l), ZW) and ™)
and couplings of quarks with Z(1) have universality in Fig.10 and 12-15. According to
Fig. 10 these masses are 3 - 6 TeV for 65 = 0.1 - 0.2. These massive neutral gauge bosons
appear as the Z’' boson. There are no signal of Z’ boson in the experiments [28]-[30]. Tree

level diagram is Fig.19. In this section we summarize the result of [13].

5.2.1 Couplings and decay widths

Firstly we discuss our Z’ couplings with quarks and leptons. The gauge couplings are
shown in [13] . We tabulate the numerical results of Zg), ZW 4M and Z® couplings
in Table 9 and Table 10. We analyze only np = 5 case because these couplings have
universality (See subection 4.2.). Because masses of Z() and ") are almost the same,
the resonances of Z() and (! are located on almost the same invariant mass. Mass of
the second KK Z boson is also TeV scale. However Z() coupling is smaller than that in
the SM Z boson. As a result, the decay width of Z?) is narrow. The wave functions of
right-handed fermions and KK gauge bosons, Zg), ZM and vV, localize on TeV brane. On
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the other hand, the wave functions of left-handed fermions localize on the Planck brane.
When we determine the couplings, we integrate over the fifth-dimensional part of wave
functions. KK gauge boson couplings with right-handed fermions are larger than couplings
with the left-handed fermions because wave functions of KK gauge bosons overlap that of
right-handed fermions.

The decay width is tabulated in Table 9 and Table 10. The formula of the decay width
is shown in the [13]. One finds that decay widths of Zg), ZWM and vV are wider than
decay width of the SM Z boson because the Zg), ZW and v couplings with right-handed
fermions are larger than that of the SM Z boson. The decay widths of ZI(%I), ZW and vM
are 300 - 900 GeV. This width is the characteristic signal of the SO(5) x U(1) GHU.

Table 9: Masses, total decay widths and couplings of the Z’ bosons to SM particles in the
first generation for g = 0.114. Couplings to pu are approximately the same as those to e.
This table is originally shown in [13].

Z' | m(TeV) | T(GeV) | g% 94 9%, 92k 9in 9%
Z | 00912 | 244 0257 | —0.314 | —0.200 | —0.115 | 0.0573 | 0.172
zW | 573 482 0 0 0 0.641 | —0.321 | —0.978
Z0 | 6.07 342 | —0.0887 | 0.108 | 0.0690 | —0.466 | 0.233 | 0.711
A1) 6.08 886 —0.0724 | 0.0362 | 0.109 0.846 | —0.423 | —1.29
7| 914 1.75 | —0.00727 | 0.00889 | 0.00565 | —0.00548 | 0.00274 | 0.00856

Table 10: Masses, total decay widths and couplings of the Z’ bosons to SM particles in the
first generation for 6y = 0.073. This table is originally shown in [13].

Z' | m(TeV) | T(GeV) | g%, 9 9% 9in 9 9k
ZU 1 8.00 553 0 0 0 0.588 | —0.294 | —0.896
ZW | 861 494 —0.100 | 0.123 | 0.0780 | —0.426 0.213 0.650
A1 8.61 | 1.04x10% | —0.0817 | 0.0408 | 0.123 0.775 —0.388 | —1.18
Z@ | 1238 1.33 —0.0540 | 0.00660 | 0.00420 | —0.00433 | 0.00216 | 0.00675

5.2.2 Production at LHC

In our study, we calculate the dilepton production cross sections through the Z’ boson, the

Z boson and photon exchange, Fig.19. Formula of the dilepton production cross sections
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is shown in [13]. We calculate the case of the final state ™~ (The case of the final state
ete™ is the similar result of u*pu~ case.) We calculate the differential cross section for
pp — ptp~ for np =5 at 8 TeV LHC experiments, Fig.20. The black doted line represents
the SM background. The case of 8y = 0.114 (the red solid curve) is consistent with the
SM. For the case of 8y = 0.251 (the blue dashed curve), the masses and the decay widths
of Zg) ZW and 41 are (341, 3.11), (221, 3.24) and (629 GeV, 3.24 TeV), respectively.
The masses of Z’ bosons in our model are heavier than the plot range of Fig. 20. The case
of 0 = 0.251 (blue dashed curve) deviates from the SM background because of the wide
tail of resonances for our Z’. The case of § = 0.251 (blue dashed curve) at M, =2 TeV
is 87 times larger than the SM background. The region #g < 0.13 is consistent with the 8
TeV LHC experiments. In this region Zg) mass is larger than 5.1 TeV.

108
10*

100

Events/GeV

0.01

104

100 150 200 300 500 700 1000 15002000
M, [GeV]

Figure 20: The differential cross section multiplied by an integrated luminosity of 20.6 fb~*
for pp — puTp~ X at the 8 TeV LHC for 6y = 0.114 (red solid curve) and for 8y = 0.251
(blue dashed curve). The black dashed line represents the SM background. This figure is
originally shown in [13].

We predict the signal of pp — ptu~ at 14 TeV LHC experiments. In Fig.21 the
differential cross section do/dM,,, for 5 = 0.114 and 0.073 ranges 3 TeV < M, < 9TeV.
Masses and decay widths of our Z’ bosons are tabulated in Table 9 and Table 10. There

D and v(M. This signal deviates

are two peaks and the large tail of resonances for Zl({l) A
from the SM. Therefore this signal can be detected at the upgraded LHC. At M, = 3 TeV
(4 TeV) the case of 0y = 0.114 (the red solid line) are 13 (86) times as large as the SM.

For 6 = 0.114, an excess due to the broad widths of the Z’ resonances should be observed
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Figure 21: The differential cross section for pp — ptu~ X at the 14 TeV LHC for g =
0.114 (red solid curve) and for 8y = 0.073 (blue dashed curve) . The nearly straight line
represents the SM background. This figure is originally shown in [13].

above 3TeV in the dilepton invariant mass. The discovery of the Z’ bosons in the 3-
9 TeV range would give strong support for the GHU. Furthermore this is the signals of the
existence of extra dimensions. However we cannot know the detail of the dark fermions. In
the next section we study the dark fermions as a candidate of dark matters. The number
of dark fermions nr and 6y can be constrained by the relic density of dark matter and

direct searches.

6 Dark fermion as a dark matter candidate

The dark matter is required by observations of the cosmology. We summarize the result
of our paper [14]. In the SO(5) x U(1) GHU the lightest neutral component of dark
fermions can become one of the candidate of the dark matter. When we take U(1)x charge
Qx = 1/2, we have neutral and charged components of dark fermions. The charged dark
fermions are heavier than the neutral dark fermions due to loop contributions. The charged
dark fermions decay sufficiently fast, these fermions do not exist in the present universe.
In this section we consider constraints from relic density [31] and direct detections [32][33].

We analyze the dark matter decay until the freeze-out temperature. In the SO(5)x U (1)
GHU we consider both neutral and charged dark fermions. The charged dark fermion
contributes as coannihilation. The couplings of the dark fermions are very weak compared
with the SM particle for small 6 because the dark fermion couplings are proportional to

sin fy. In this situation it may be difficult that the dark fermions decay. However decays of
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the dark fermions are enhanced by the Breit-Wigner resonance. The strong enhancement

occurs at m ~ 2mp. On the other hand, the number of the dark fermions is the

7
suppression falz:tor for cross section because one of the dark fermions can only decay with
the pair of the dark fermion. Therefore this suppression factor is 1/2np which 1/2 comes
from the contribution of the antiparticle because the dark fermion is Dirac dark matter.
The dark matter is also searched directly by using collisions with nuclei. In recent years
the constraints for cross section of dark matter with nuclei become strong by experiments.
In the SO(5) x U(1) GHU main processes of the dark fermions with nucleus are Z, Zg)

and Higgs exchange processes. We find that we have a region which is consistent with the

experiments of the relic density and direct search.

6.1 The neutral and charged dark fermions

Firstly we introduce the dark fermions with Qx = 1/2 in Sec.3.2. This dark fermion has
the charged (Qgm = 1) and neutral (Qgm = 0) components. According to our analysis of
7' search, Oy ranges 0.1 - 0.2. In this region the lowest mode of ¥ has the mass range
1.5 - 4 TeV. For small 05 the dark fermions with the boundary condition 1y, = +1 couple
to SU(2), bosons very weakly. On the other hand, for small §y the dark fermions with
the boundary condition g, = —1 couple to SU(2)g bosons very weakly. The dark fermion
number is conserved so that the lightest mode of the dark fermions becomes stable. The
charged and neutral components of the dark fermions have the same mass at tree-level.
The charged components of the dark fermion are heavier than the neutral components
of the dark fermion because of the radiative correction depicted in Fig.22. The mass
difference of dark fermions must be the order of 10GeV or larger. More detail of this mass
difference between the charged and neutral components of the dark fermion is shown in
Ref.[14]. Hereafter we assume that charged components of dark fermions decay to neutral
components of the dark fermions sufficiently quickly. In the present universe only the
neutral components of dark fermions are left. We consider the both contributions of the
charged and neutral components in the relic abundance of the dark matter. On the other
hand, we consider the contribution from only the neutral components of the dark fermion

in the direct detection of the dark matter.
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Figure 22: Diagrams contributing to the fermion mass difference Amp = dmp+ — dmpo.
This figure is originally shown in [14].

6.2 Relic density

The best value [68% confidence level (CL) limits| of the relic density of the cold dark matter
observed by Planck [31]:

Qcpmh? = 0.11805 [0.1186 =+ 0.0031], (6.1)

where Hubble’s expansion-rate Hy = 100h kms~'Mpc ™!, 100h = 67.11 [67.4 & 1.4].
We analyze the relic abundance of the dark matter in the early universe [34]-[36]. To
know the time evolution of ng) which denotes the number density of I, we consider the

Boltzmann equation for F}.

6.2.1 Pair annihilations and relic density of dark fermions

We consider the case where 0 is small (z; < 105, 05 < 0.2) because of the result for
Z'" search (Sec.5.2). In such a case, mgxk is about 5.5 TeV ~ 10.5 TeV and dark fermion
becomes heavy. Because of the dark fermion coupling is proportional to sinfy, some of
annihilation amplitudes are processes are suppressed by sin®@y. Relevant processes for
dark fermion annihilation are the following s-channel processes

Fr0 Zg) — qq, U, v,

FtF= — 44O —  ¢q, 1, (6.2)

FTF~ — Zg) — qq, U, v,
and all other annihilation and co-annihilation processes are negligible. This detail is shown
in Ref.[14]

Now we calculate the relic density of the degenerate dark fermions numerically. Param-
eter sets are obtained in Sec.4, Table 2 and Table 11. In Fig.23 we plot the relic density
of the dark fermion for np = 3,4,5 and 6. In the case of the np = 3 the relic density is
smaller than the current observed limit. Especially in the case of np = 3 and z;, ~ 3 x 10*

the relic density become small because of the Breit—Wigner resonance. On the other hand,
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Figure 23: Relic density of neutral dark fermions in the case of ny degenerate dark fermion
multiplets (np = 3,4,5,6). Data points are, from right to left, z;, = 10 (2 x 10%) to 10°
with a step of 104, 10%, 107 and 10® for ng = 4,5,6 (np = 3). The current observed limit of
Qpuvh? and the lower bound of the over-closure of the universe are indicated as horizontal
lines. This figure is originally shown in [14].

in the case of the np = 4,5 and 6, the relic density is larger than the current observed
limit. We find that for the degenerate dark fermion case we do not explain the current DM

density.

6.2.2 The case of the non-degenerate dark fermions

We consider the two types of dark fermions. Some of the dark fermions are heavier,
the others are lighter. The mass difference of these dark fermions is O(100) GeV (See
Sec.4.). Only the lightest Fio(l)’s become the dark matter. Heavier one is needed to decay
sufficiently fast. The lowest modes of heavy and light dark fermions denote (F,", F}) and
(F*, FY), respectively. The lighter dark fermions obeys the boundary condition 7z = +1,
whereas heavier dark fermions obeys the boundary condition g, = —1. For small 0y
the lowest mode (F, W F v (1)) strongly couples to an SU(2), doublet compared with an
SU(2)r doublet. On the other hand, for small 6y, (FlHI),FZO(l)) strongly couples to an
SU(2) g doublet compared with an SU(2);, doublet. Heavier neutral dark fermions F} can
decay as shown in Fig. 24. Hereafter we assume that heavy dark fermions decay to light
dark fermions sufficiently quickly. More detail of the mass difference for the non-degenerate
dark fermion is shown in Ref.[14].

The heavy dark fermion couplings with W and Z bosons are not small. Therefore the

dominant annihilation processes of F}, are s-channel processes of F'F' annihilation to the
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Table 11: 0, ciop, cr and mp for z; and np = 4,5 and 6, in the case of where dark
fermions are degenerate. This table is originally shown in [14].

nrg 2L On Ctop Cr mg
[TeV]
4 103 0.355 0.357 0.423 0.567
10° 0.174 0.292 0.374 1.27
10° 0.115 0.227 0.332 2.03
3 x10* | 0.0917 0.168 0.299 2.66
104 0.0737 0.0366 0.256 3.46
6 108 0.348 0.356 0.461 0.455
10° 0.171 0.292 0.434 1.00
10° 0.113 0.227 0.414 1.57
10* 0.0724 0.0365 0.379 2.57
) Ff Fy F* Fy

Figure 24: F? decay to F by emitting one Z boson or two W bosons. This figure is

originally shown in [14].

Table 12: Parameters in the non-degenerate case of dark fermions, (Nyight, heavy). Bulk
mass parameter cp and the masses mp, and mp, of F}, and F; are tabulated for various
Acp = cp, —cp, (see text) and zp. Even small Acp gives rise to large mass difference. This
table is originally shown in [14].

Acrp 0.04 0.06
(nhght, nheavy) 2L Cry mpg, mpg, Cr, megy, meg
[TeV] [TeV] [TeV] [TeV]
(1,3) 10° 0.404 1.32 1.13 | 0418 1.34 1.06
109 0.362 2.09 1.86 | 0.377 2.12 1.77
3x10* | 0.329 2.72 246 | 0.344 2.76 2.36
104 0.286 3.54 3.24 |0.240 3.58 3.14
(2,2) 10° 0.352 2.15 1.92 | 0.361 2.21 1.86
104 0.276 3.61 3.32 | 0.285 3.69 3.25
(3, 1) 10° 0.342 2.21 1.98 | 0.346 2.30 1.95
104 0.266 3.68 3.39 | 0.270 3.80 3.36
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Figure 25: Relic density of the dark fermion versus mpy = mpg for np = 4 (Mg =
1, Nheavy = 3). Thick-solid and thick-dotted lines are Acp = ¢p — c¢p, = 0.06 and 0.04,
respectively. Data points are, from right to left, z; = 10* to 10° with an interval 104,
3 x 10° and 10%. Horizontal lines around Qpyh? ~ 0.12 show the observed 68% confidence
level (CL) limit of the relic density of the cold dark matter. This figure is originally shown
in [14].

SM fermions through Z® and v(!) and co-annihilation through W®. Through the similar
procedure of the degenerate dark fermion case we can analyze the Boltzmann equation and

the annihilation cross section of the dark fermions. We denote mass difference

th — mFl

= (6.3)
In our analysis, the annihilation cross section of the non-degenerate dark fermions is sup-
pressed by a factor ng/ nl}ght compared with that of the degenerate dark fermions. As the
number of the heavy dark fermions increases, The annihilation cross section becomes small
and the relic abundance enhances.

We find that the current observed relic abundance in the parameter sets of the
(n}jE" pheaY) — (1,3) is reconstructed, Fig.25. The other parameter sets cannot do. In
the case of Acp = 0.04 and Acr = 0.06 corresponding mass differences are about 300 GeV
and about 400 GeV, respectively, Table 12. Note that the small mass regions (less than
1000 GeV) is inconsistent with the result of the Z’ search.

We plot the relic abundance in (Acg, z1,) plane to interpolate and extrapolate with
respect Acp and zp, Fig.26. Inner and outer colored regions are allowed with the 68% CL
limit and twice of the 68% CL limit Qpyh® C [0.1186 £+ 2 x 0.0031], respectively. We
obtain the current observed relic abundance in the parameter region 10* < z;, < 10° and
0.04 < Acp < 0.07. The small 2y, regions (less than 10°) is inconsistent with the result of
the Z" search. The corresponding regions of the Wilson line phase and the dark fermion

mass are 0.07 < 0y < 0.17 and 3100 < mp < 1000 GeV, respectively.
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Figure 26: Parameter region (Acp, z1) allowed by the limits of relic density. Inner and
outer colored regions are allowed with the 68% CL limit and twice of the 68% CL limit
Qpuh? C [0.1186 £ 2 x 0.0031], respectively. Mass of the dark fermion mp, and a mass
ratio n = (mp, —mp)/mp, are also indicated as solid and dashed lines, respectively. This
figure is originally shown in [14]

6.3 Direct detection
FO FU FO FO F[J FO

VA Zﬁa},)

, , , , q/\q

Figure 27: Dominant and subdominant processes of the F°-nucleus scattering. This figure
is originally shown in [14].

Let us analyze the elastic scattering between the dark fermion (F°) and a nucleus [37]-
[39]. We examine the constraint coming from direct detection experiments[32][33]. We
treat only the neutral dark fermion F° because the charged dark fermion does not exist
in the present. The dominant process is the Z boson exchange, Fig.27. The subdominant
processes are Zg) and Higgs exchange. Because the F° coupling to Z boson is small,
and the Zg) mass is heavy, contributions of Z and Zg) boson are small so that the dark
fermions are not observed by the current direct search.

Heavy target nuclei are used by the experiments [32][33]. These experiments are the

spin-independent scattering experiments. More detail of the F°-nucleon spin-independent
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Table 13: FY mass mp and the spin-independent cross section oy of the F%-nucleon scat-
tering for ngp = 4,5,6 degenerate dark fermions. This figure is originally shown in [14].

ng = 4
21 On mr (TeV) oy (cm?)
10° 0.115 2.03 5.33x10~*
5x10* | 0.101 2.36 3.78%x10~*
3x 10" | 0.092 2.66 2.99x 10~
2 x 10* | 0.085 2.92 2.53x10~*
10* 0.074 3.46 2.03x10~*
ngp = 5
zr On mp (TeV) oy (cm?)
10° 0.114 1.75 3.67x10~*
10* 0.073 2.91 1.01x10~*
ng = 6
2L On mp (TeV) oy (cm?)
10° 0.113 1.57 2.96x10~*
104 0.072 2.56 0.72x10~*

cross sections oy is in ref. [14]. Our numerical result of the F°-nucleon spin-independent
cross sections oy are shown in Table 13 and Fig. 28. In Fig. 28 the black solid line is the
strongest bound for current direct dark matter direct search and the 90% confidence limits
set by the 85.3 live-days result of the LUX experiment[33]. The black doted line is the
bound of the expectation values by the 300 live-days result of the LUX experiment. Red
circles and blue squares represent the cases of non-degenerate dark fermions (g, heavy) =
(1,3) with Acg = 0.04 and 0.06, respectively. The purple and light purple bands represent
the regions allowed by the limit of the relic abundance of dark matter at the 68 % CL and
by twice of that, respectively. When we choose the suitable mass difference Acg, our result
are consistent with the dark matter direct search. This band indicates the allowed region
for both relic density and direct detection of dark fermions exists. Thus the allowed band
region is from z;, = 10* to 4 x 10*, from mp = 3.1 TeV to 2.3 TeV and from 0y = 0.074 to
0.097. In this band the mass of Z’ bosons ranges from 8 TeV to 6.5 TeV. Therefore we find
that this allowed region is consistent with the relic density, direct search and the results of

Higgs decay and Z’ search.
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Table 14: mp,, m ), the spin-independent cross section oy of the F-nucleon scattering
R

for np =4 and (Nignt, Mheavy) = (1,3). This table is originally shown in [14].

ZI, 9[{ meg ON (Cm2>
(TeV) | (TeV)
4x10*10.097| 229 | 6.47 | 2.69x10~*
3x10* | 0.092| 246 | 6.74 | 2.35x10™*
2x10*]0.085 | 2.72 | 7.15 | 1.96x10~*

104 0.074 | 3.24 | 7.92 | 1.53x10~*

Acp = 0.06
2L O mpg
(TeV) | (TeV)
2x10* [ 0.085 | 2.61 | 7.15 | 1.76x10~%

10 0.074 | 3.13 7.92 | 1.35x10~%

oy (cm?)

I’lp=4
[ ] I1F=4, ACF=0.04
| | ng=4, Acp=0.06
7x10~4 ; * np=>5
—105 -
& 5x10-4} =10 - = o

TUX 85 7

3x10~4
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u =10*
2=2x10* &
1x10744 x
ays_ .-
% 300485

45 ‘

%10 2000 3000

Dark matter mass (GeV)

Figure 28: The spin-independent cross section of the F%-nucleon elastic scattering for
10* < z; < 10°. The orange diamonds and light blue stars represent the nyp = 4 and
np = 5 cases of degenerate dark fermions with a step of 10* in 2y, respectively. Red circles
and blue squares represent the cases of non-degenerate dark fermions (7ight, heavy) = (1,3)
with Acrp = 0.04 and 0.06, respectively. The black solid line and green dashed line are
the 90% confidence limits set by the 85.3 live-days result of the LUX experiment[33] and
the 225 live-days result of the XENON100 experiment[32], respectively. The purple and
light purple bands represent the regions allowed by the limit of the relic density of DM at
the 68 % CL depicted in Fig. 26 and by twice of that. The model with dark fermions of
2.3TeV < mp, < 3.1TeV (4 x 10* > z, > 10*) gives a consistent scenario. This figure is
originally shown in [14].
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7 Conclusion

In this paper we constructed and analyzed the SO(5)xU(1) gauge-Higgs unification with
Higgs mass my = 126 GeV. The SO(5) x U(1) GHU has SU(3)cxSO(5)xU(1)x gauge
symmetry on the Randall-Sundrum warped space-time. The four dimensional Higgs boson
appears a part of the extra dimensional component of the SO(5) gauge fields. The quark
and leptons are introduced in the vectorial representation of SO(5). To realize the observed
unstable Higgs boson, the dark fermions are introduced in the spinorial representation of
SO(5). The four dimensional Higgs boson appears as the fluctuation mode of the AB
phase 6. This phase is determined by location of the global minimum of the effective
potential Veg(€y). When the effective potential is determined, the relevant parameters
were determined self-consistently. The Higgs mass and Higgs cubic and quartic couplings
are determined by V.g(fy). The shape of Vig(0y) strongly depends on the detail of the
gauge boson, top quark multiplet and dark fermion sector.

We determined parameter sets for my = 126 GeV. We demonstrated how to determine
the relevant parameters. We fixed warp factor z; and the number of the dark fermions ng
and chose the global minimum 6; in the effective potential tentatively. Then we calculated
the other relevant parameters and determined the Higgs mass. If the obtained Higgs
mass was smaller (larger) than 126 GeV, we reiterated the same procedure with smaller
(larger) 6. After we determined the relevant parameters, the global minimum 6y was
determined and all other quantities such as the mass spectra of all KK towers, gauge
couplings of all particles, and Yukawa couplings of all fermions were determined. In the
case of np = 1,2 and 3, small z;, cannot reproduce my = 126 GeV because the small z,
gives my < 126 GeV. In the case of ny > 4 and z;, < 10%, this case cannot reproduce the
top mass.

The fact myg = 126 GeV leads to important consequences in the SO(5) x U(1) GHU.
We found the universal relations which are independent on the detail of the dark fermions.
The universal relations appear among 0y, the KK mass, the masses of Zg), 7MW ~1) and
tM couplings ZMgq, the Higgs cubic and quartic couplings. If one finds the value of
m ) (0) from experiments, 6 is determined and other quantities are predicted. And we
can know the behavior of the KK mass and couplings at the SM limit (fy — 0) without
informations of the dark fermions, although, strictly speaking, we cannot take § — 0 limit.

Especially our Higgs cubic and quartic couplings are smaller than those in the SM.
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In Sec.5.1, we estimated 0y region which is consistent with the LHC experiments.
Firstly we analyzed Higgs decay H — 7~. The infinite sum of the KK modes in the loop
corrections converges. The KK mode contributions to the branching fraction are 0.2%
(2%) for 0y = 0.117 (0.360). Because the Higgs couplings in the SO(5) x U(1) GHU
have the factor cos §y compared to the SM. Higgs production rate is suppressed by cos? 0y
compared to the SM. The branching fraction is almost the same as that in the SM. Therefore
in signal strength dominant factor of deviation from the SM is cos? 0. For 05 = 0.1 (0.3)
the signal strength is also about 0.99 (0.91) compared to the SM. Secondary we examined
the prediction of KK particles at LHC experiments. First exited KK modes of Z boson
ZWM) photon vV, the lowest mode of Zp and Zg) have TeV scale mass in the SO(5) x U(1)
GHU. These massive neutral gauge bosons become Z’ boson. In the SO(5) x U(1) GHU
7' bosons is strongly coupled with right handed fermions so that Z’ bosons have large
width. The decay widths of Z3’, Z(1) and 4@ are 482, 342 and 886 GeV (553, 494 GeV
and 1.04 TeV) for 5 = 0.114 (0.073). The region 6y < 0.13 (ng) >5.1 TeV) in our
model is consistent with the result of Z’ search in the LHC experiments. We predicted Z’
are discovered in the 14 TeV LHC experiments.

In addition to the collider experiments we examined the implication of a dark matter
problem. The dark fermions with Qx = 1/2 have the neutral and charged components.
The charged dark fermion is heavier than the neutral one due to the radiative correction.
In the SO(5) x U(1) GHU the number of dark fermions is conserved and the lightest
dark fermions become stable. We evaluated the relic density of the dark matter. In
the degenerate case, it turns out that the observed relic density is not reproduced. We
found that we can reconstruct the relic density with the case of (Niight, Pheavy) = (1,3).
The relic density is consistent with the experimental bound for 10* < 2z, < 106, 0.04 <
Acp < 0.07 (400 GeV < Amp < 500 GeV). We also examined the direct detection of the
dark matter. We calculated the spin-independent scattering cross section of the lightest
neutral dark fermions with nucleons. We found that in the region 10* < 2z < 4 x 10* for
(Might Mheavy) = (1,3) our model is consistent with the result of the relic density and direct
search from Planck, XENON100 and LUX experiments. The neutral dark fermion masses
are favored in the region 3.1 TeV to 2.3 TeV (g =0.074 - 0.097). Especially for the direct
detection our model indicates dark matter is discovered in the next LUX experiments.

As we have seen, there exists the region which is consistent with the experiments of

the relic density, direct search and the results of Higgs decay H — ~vy and Z’ search.
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Oy ranges from 0.074 to 0.097. We predicted our Z’' bosons a dark fermions should be
observed by the upgraded LHC and LUX experiments in near future. It is interesting
that the parameter regions in which Z’ bosons and the dark fermions should be observed
are overlapped. We note that suppose that the Z’ bosons or the dark fermions in our
model are observed. We can predict the Higgs cubic and quartic couplings through the 65
with the universality. When 6y ranges from 0.074 to 0.097, we can predict A3 ~ 29 GeV,
Ay ~ 0.021, my,,00 = 7.7 — 9.8 TeV and ng> = 6.5 — 7.9 TeV. When the Higgs self-
couplings are measured by the future experiments, we can distinguish the gauge-Higgs

unification from the other models which include the SM.

Acknowledgements [ am very very grateful to my supervisor Prof. Yutaka Hosotani
for his great advises, encouragements and discussions. [ appreciate the discussion and
the works with the collaborators, Shuichiro Funatsu, Hisaki Hatanaka, Yutaka Hosotani
and Yuta Orikasa. And I also appreciate the works with the other collaborators, Akinori
Tanaka and Akio Tomiya. I am thankful to Yutaka Hosotani, Koji Hashimoto, Kin-ya Oda,
Masaharu Aoki and Minoru Tanaka for their great advises as five-member committee. |
thank all members of particle physics theory group at Osaka University and all office
workers in Osaka university. This work was supported in part by JSPS KAKENHI grants,
No. 13J01861.

Appendices

A Zgq couplings
This section is originally shown in [13]. The couplings of Zgq is given by

200 VT [ et en(o) (G G + S F I

+%h§<n) (Foufon + foJu, = Jufu) + g (f5ufe, + Fiufy,)

g
‘f‘ﬁhg(n) (2fBLfBL + thLftL + 2ft/Lft/L - fULfUL) }

002 bu @) { G (P Fx, = Fo o = o o)

_'_%hg(") (fDLfDL - fXLfXL - bebe) + }ALZ(”) (fDLfb’L - fXLfb’L)

4+ 98 B (forfor, = foofor = foo fo, — fxofx.) }}

394 7
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+(L—>R). (A.1)

where fs and hs are defined by followings.

The mode functions of the Z tower are

he o (2) {(1+83)(1 4 cos ) — 253} C (25 Azm)
{L}Z?‘(n)(z) _ 1 1 {(1+53)(1 = cosby) — 2:92}6’(2; Agm))
hym (2) \/1 + 55) V27 5m) —\/5(1 + 35)) sin0gS(z; Aym)) 7
ho —254¢6C(2; Agm))
*Lodz
Tymn) = / k‘ {6450(2 )\Z(n))
1
+ (1 + s3)[cos® 0gC(z; Ay )? + sin’ 015(z; /\Z(n))Q}. (A.2)
Wave functions for the KK tower of an up-type quark ¢ (top) are given by
Ur(z, 2 a?icgi(z’ Aum)) fUL (2)
By(z, 2) k2 | a0 (2, 000) | ) 2 | fi ) |
’ ’ ’ () = Viz e t; ' (x) ,
o) |7 | 6o ) | 5<Z> Lt
th(z, 2) a,’ Sy (2, \pmy) ft/ (Z)
Ur(z, z) Vi a?;&?; (2, Agem) %n)(z)
Bgr(z, z k2?2 | a2, N\ n 0 (2) |
tR( )| 5 5 1(31)( o) [0 ) = Va2 [ 1850 | gy
/]%(33, Z) \/% a’t SR (Z, )\t(n)) tr (Z)

. (n)2 ~(2) 2 (n)2 (n)2y ~(1) 2 (n)2 (1) 2
T'¢(n) :/ dZ{aU CL (Z,)\t(n)) +(CLB + a; )CL (Z,)\t(n)) +at, SL (Z,)\t(n)) }
1
L
= / dz{ag)25g)(z, A )? + (afg)2 + agn)z)Sg)(z, A )* + a§7)20g)(z, )\t<n>)2}.
1
(A.3)

Here Cg)(z, ANmy) = CrL(z; Mmy, 1), Sg)(z, Aoy ) = Sr(2; Aymy, €1), ete., and other towers of

Qv = %e fermions have been suppressed. The common factors are given by

NN BT e R o
Q) _ (1 —cosfy)/V2
a%n; (14cosfu)/vV2 |
Ay —sin GHC'S)/SS)
O = Cull M) 5 55 = Sp(1i A, ) (A4)

59



where \,m) satisfies (3.38).
For a down-type quark b (bottom) we have

br(z, 2) , a%nicéi(za Apm) sz; (2)
Xp(z,2) 5 Vkz ay C’L2 (z, Aym)) b(Ln)(x) — VE2 f)(%(z) b(Ln ()
_D/L(J},Z) \/m a(g)C£)(Z,)\b(n>) (Dlj(Z)
n 2 n

(. 2) a’ 517 (2 Ay v (%)
bR(l’, Z) G%R;S}%; (27 )\b(n)> szg; (Z)
Xr(z,2) 5 \/EZ2 ay Sp (2, Apm) b(”)(@ — \/EZ2 fXR(Z) b(n)(x)
Drlw,2) | = o | afS2(z ho) | ) | e
Vr(, 2) abtl)og)(»za Ap(n)) flf; (2)

o [~V e

al (1 —cosf)/V2

a?; B (1 + cos QH)/\/§ ’

@y sin 0,CY /512

Cg) = C(1; Ay, &), Sg) = Sl Ay, )

ZrL
Py = / dz{ag"ﬂcg)<z,xb<n))2+(a<) + a0 (2, Ay )2 + a8 (2, )\b<n))2}
1

o (M2 (1) 2 (2 ()2 o) 5 | (22 2
- / dz{ab S (2, A + (@2 + 028D (2, Ay )2 + a2 C2 (2, Ay }.(A.5>
1

where A\ satisfies (3.39).

B Generators and the Wilson line phase

We define the generators of SU(2)} and SU(2)% as S**F which appears after the elec-

troweak symmetry breaking,
S = T + BTR 4+ ~AT?, (B.1)

where T, T%% and T% are SO(5) generators. Coefficients «, 3 and « are determined by

algebra [S¢,S%] = ietbe

2+ % =a
ﬂ+§=ﬁ
(a+B)y=1. (B.2)



Then we get,

(14 cosf)

IR N

a=
g (1 — cos@)
v = \/Li sin 6, (B.3)

where 6 is the parameter in the region § = 0 - 27. SU(2), generators S*% is orthogonal to
SU(2)};. This @ is corresponding to . The coefficient of Tt + T2~ is (1 + cos @) /2 which
is the same of #y dependence of W boson mode function. We can also construct the Z
boson generators (A.2). These relations (B.3) can be derived by another way. Suppose we

: : T
define unitary transformation Q = "

S = Qa)TQ Ha) = T (a)
S = Qa)T*Q a) ()
St = Qa)TQ Ha) = Td(a), (B.4)

where S are SO(5)/SO(4)" generators. We solve these equations and redefine § = a/v/2 —
m. We can get eq.(B.3) again. This means Wilson line phase rotates the axis of the
symmetry by unitary transformation. When the symmetry is broken by Wilson line phase,

we should consider this rotation.

C Calculation of effective potential

We can evaluate d dimensional 1-loop Higgs effective potential from the mass spectrums,

Vet = W/ dyyd 1lnp(zy) (C.1)

where p is mass spectrum function which is satisfied p(m) = 0. Let us first consider 1-loop

effective potential with KK spectrum m,(0y) ,

Vir =3 [ 526 3, In (b} + m2),
2~ ("—;a). (C.2)

We ignore the positive sign for bosons and the negative sign for fermions in this formula.

We define a function,

f(A)E/(idZ;dln(pz—i-A).
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We differentiate this function with A,

d dp 1
& @ = [
rr-9) 1

= (dm) 72 AT (C.3)
We integrate from zero to A,
20(1—9)
f(A) = f(0) = EWAQ' (C.4)
Therefore, we get the effective potential with only a dependent 0y part,
1 IO
Vet = (47) d/2 Zm (C.5)

Next, we consider to evaluate Y. mJ. We define spectral function p(z) which is analytic

on the complex plane and is satisfied p(m,) = 0 on the real axis. For example, p is

pPlz) 1 (C.6)

p(2) ~ an(z —my), o)~ T

We integrate all m,(0y) on Rez > 0 along a contour C,

/ dzzdp Z —2mimp. (C.7)

Let us estimate the left side of this equation,

a _ ! P2
;m" T 2mi dZde(z)’

= 2m/ckzd In p(2) (C.8)

Suppose this integral is satisfied with [2?!np| < 1/R for |z| — co. We can integrate along
the imaginary axis,

ng -4 dzzd In p(2),

271

= 5 (/ //)dzzd In p(2), (C.9)

where Contours C”_ and C’_ are negative value of Imz and positive value of Imz, respectively,

Lo z=1y, y:0— o090,
C' . z=—iy, y:00—0. (C.10)
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When the p is even function p(iy) = p(—iy),

ng = — {62“1/ dyydillnp(z’y) + 62“1/
~ 271

dyy“lnp(—iy)} :

d
= 5= zsm—/ dy y™ np(iy). (C.11)
Therefore,
L(1—91 7rd
Ve = W— / dyy™ Tnp(iy),
_ d—1
— m/ dyy* " Inp(iy). (C.12)

where we use the formula of gamma function,

r (g) T (1 - g) - sn:%i' (C.13)
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