
Title Interpolation on countably many algebraic
subsets for weighted entire functions

Author(s) Oh'uchi, Shigeki

Citation Osaka Journal of Mathematics. 2002, 39(1), p.
97-121

Version Type VoR

URL https://doi.org/10.18910/5232

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Oh’uchi, S.
Osaka J. Math.
39 (2002), 97–121

INTERPOLATION ON COUNTABLY MANY ALGEBRAIC
SUBSETS FOR WEIGHTED ENTIRE FUNCTIONS

SHIGEKI OH’UCHI

(Received February 04, 2000)

1. Introduction

Let ν (ν ∈ N, the set of positive integers) beν-codimensional complex affine
subspaces ofC (1 ≤ ν ≤ ). Assume that ν ∩ ν′ = ∅ for ν 6= ν′. Let ν be
the orthogonal complement ofν , where we use the canonical inner product〈 〉 =∑

=1 ¯ on C . Set ν = ν ∩ 2 −1, where 2 −1 = { ∈ C : | | = 1}. Then
Oh’uchi [10] proved the following result:

Theorem A. Let =
⋃
ν∈N ν be an analytic subset ofC consisting of disjoint

complex affine subspacesν . Let be a weight function onC . Then is interpo-
lating for (C ) if and only if there exist 1 . . . ∈ (C ) ( ≥ supν∈N ν) and
constantsε, > 0 such that

⊂ ( 1 . . . ) = { ∈ C : 1( ) = · · · = ( ) = 0}(1.1)

and

∑

=1

| (ζ)| ≥ ε exp(− (ζ))(1.2)

for all ∈ ν , ζ ∈ ν and ν ∈ N.

Here the directional derivative with a vector = (1 . . . ) ∈ 2 −1 is de-
fined by

=
∑

=1

∂

∂
·

Note that by the proof of Theorem A in [10] the above may be set equal to
supν∈N ν when is interpolating for (C ). For the terminologies, see§2. It ex-
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98 S. OH’UCHI

tends the result of Berenstein and Li [2, Theorem 2.5], whichdeals with the case of

ν = for all ν ∈ N.
In the present paper, we would like to discuss the case whereν are algebraic

subsets, not necessarily affine linear. Because of the difficulties to deal with in gen-
eral, we formulate this problem as follows. It is first noted that Theorem A implies
the following corollary:

Corollary 1.1. Let ( 1 . . . ) = (| |) be a radial weight function onC
and set ( 1 . . . ) = (| |), which is a radial weight function onC ( < ). Let

= {ζν}ν∈N be a discrete variety inC . Then ×C − is interpolating for (C )
if and only if is interpolating for (C ).

Corollary 1.1 can be restated as follows: Define a mapping = (1 . . . ) :
C → C by ( ) = ( = 1 . . . ). Then −1( ) is interpolating for (C )
if and only if is interpolating for (C ). Conversely, when is a linear map-
ping from C onto C with rank = , we can reduce the interpolation problem for

−1( ) to that for ′ × C − , where ′ is the image of by some linear mapping
determined by and . By [2, Theorem 2.5],′ is interpolating for (C ) if and
only if is interpolating for (C ). The main result of this paper is as follows:

Main Theorem. Suppose that ≤ . Let = {ζν}ν∈N be a discrete variety in
C and let = ( 1 . . . ) ∈ C[ 1 . . . ] . Put = max =1 ... deg . For > 0,
we assume that
(1) is interpolating for | · | (C );
(2) there exist constantsε, > 0 and a finite subset ofN such that

( )∑

κ=1

|△κ ( )| ≥ ε exp(− | | )

for all ∈ −1(ζν), ν ∈ N \ .
Here the sum is taken over all × minors △κ of Jacobian matrix . Then

−1( ) is interpolating for | · | (C ) for every ≥ .

REMARK. If : C → C is the standard projection with rank = and
( ) = | | , then the sufficiency part of Corollary 1.1 is deduced from the main theo-

rem, where = 1 and = = .

2. Preliminaries

We fix the notation. A plurisubharmonic function :C → [0 ∞) is called a
weight functionif it satisfies
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log(1 + | |2) = ( ( ))(2.1)

and there exist constants1, 2 > 0 such that for all , ′ with | − ′| ≤ 1

( ′) ≤ 1 ( ) + 2(2.2)

A weight function is said to beradial if

( ) = (| |)(2.3)

DEFINITION 2.1. LetO(C ) be the ring of all entire functions onC and let be
a weight function onC . Set

(C ) = { ∈ O(C ) : There exist constants > 0 such that

| ( )| ≤ exp( ( )) for all ∈ C }

Then (C ) is a subring ofO(C ). The following lemma is easily deduced from
(2.1) and (2.2):

Lemma 2.2. Let be a weight function onC . Then the following hold:
(1) C[ 1 . . . ] ⊂ (C ).
(2) If ∈ (C ), then∂ /∂ ∈ (C ) for = 1 . . . .
(3) ∈ O(C ) belongs to (C ) if and only if there exists a constant > 0 such
that

∫

C

| |2 exp(− ) λ <∞

where λ denotes the Lebesgue measure onC .

For the proof, see e.g. [8].

EXAMPLE 2.3. (1) If ( ) = log(1 +| |2), then (C ) = C[ 1 . . . ].
(2) If ( ) = | | ( > 0), then (C ) is the space of entire functions which are of
order = and of finite type, or which are of order< .
(3) If ( ) = | Im | + log(1 +| |2), then (C ) = Ê ′(R ), that is, the space of Fourier
transforms of distributions with compact support onR (see e.g. [7]).
(4) When ( ) = exp| | ( > 0), is a weight function if and only if ≤ 1.

In the rest of this paper, will always represent a weight function.
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DEFINITION 2.4. Let be an analytic subset ofC , and letO( ) be the space of
analytic functions on . Then we define

( ) = { ∈ O( ) : There exist constants > 0 such that

| ( )| ≤ exp( ( )) for all ∈ }

DEFINITION 2.5. An analytic subset ofC is said to be interpolating for
(C ) if the restriction map : (C ) → ( ) defined by ( ) = | is

surjective.

The semilocal interpolation theorem by [4] is useful to showan analytic subset to
be interpolating. Let be given by

= ( 1 . . . ) = { ∈ C : 1( ) = · · · = ( ) = 0}

with 1 . . . ∈ (C ). Then for ε, > 0, we define

( ; ε ) =





∈ C : | ( )| =


∑

=1

| ( )|2



1/2

< ε exp(− ( ))





which is an open neighborhood of . We recall the semilocal interpolation theorem of
[4].

Semilocal Interpolation Theorem. Let be a holomorphic function in ( ; ε )
such that

| ( )| ≤ 1 exp( 1 ( ))

for all ∈ ( ; ε ), where ε, > 0. Then there exist an entire function
∈ (C ), constantsε1, 1, , > 0 and holomorphic functions 1 . . . in

( ; ε1 1) such that

( ) − ( ) =
∑

=1

( ) ( )

and

| ( )| ≤ exp( ( ))

for all ∈ ( ; ε1 1) and = 1 . . . . In particular, = on the variety =
( 1 . . . ).



INTERPOLATION FORWEIGHTED ENTIRE FUNCTIONS 101

3. Ap-interpolation on algebraic subsets

To prove the main theorem, we first show the following result:

Theorem 3.1. Every algebraic subset ⊂ C is interpolating for (C ).

We assume that is irreducible until we begin the proof of Theorem 3.1 after
Lemma 3.17. Then we have the prime ideal⊂ C[ 1 . . . ] such that = −1(0) =
{ ∈ C : ( ) = 0 for all ∈ }. Defining the terminology, we state the normaliza-
tion theorem.

Normalization Theorem. After a suitable linear change of coordinates, the fol-
lowing conditions hold:
(1) There exists ∈ {0 1 . . . −1} such that ∩C[ 1 . . . ] = {0} and the factor
ring C[ 1 . . . ]/ is a finitely generatedC[ 1 . . . ]-module.
Here we set ′ = ( 1 . . . ) ∈ C and ′′ = ( +1 . . . ) ∈ C − .
(2) There exists 0 > 0 such that| + | ≤ 0(1+| ′|) for all ∈ and = 1 . . . −
.

(3) contains irreducible polynomials

( ′
+ ) = µ

+ + 1( ′) µ−1
+ + · · · + µ( ′)

of degreeµ, where ν ∈ C[ 1 . . . ].
Let α1( ′) . . . αµ( ′) be the roots of 1( ′

+1) as a polynomial in +1. Then we
denote by ( ′) the discriminant of 1 as a polynomial in +1, that is,

( ′) =
∏

ν 6=ν′

(αν( ′) − αν′( ′))

(4) We have polynomials ∈ C[ 1 . . . + ] ( = 2 . . . − ) with ( ′) + −
( ′

+ ) ∈ .
Put 0 = \ −1(0).
(5) 0 is an open dense subset of and aµ-dimensional complex submanifold of
C \ −1(0).
Let π : C ∋ = ( ′ ′′) 7→ ′ ∈ C be the projection.
(6) π is a finiteµ-fold covering map from 0 onto C \ −1(0).

For the proof, see e.g. [6, Theorem A.1.1 in Chapter 3], [9, Proposition 7.7.3].
For ε > 0, > 0 andξ ∈ C , we define the polydisc

ε (ξ) = { ∈ C : | − ξ | < ε(1 + |ξ|)− (∀ = 1 . . . )}
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For the given ∈ ( ), we take , > 0 such that

| ( )| ≤ exp( ( )) ∀ ∈

Lemma 3.2. We haveε, , 1, 1 > 0 satisfying: for all ξ ∈ there exists
∈ O( ε (ξ)) such that − = 0 on ∩ ε and

| ( )| ≤ 1 exp( 1 ( )) ∈ ε (ξ)

Proof. If dim = = 0, consists of only one point, so the lemma is trivial.
Then we assume that 1≤ ≤ − 1. To apply the normalization theorem, we give a
suitable linear change of coordinates. Set

′
ε (ξ) = { ′ ∈ C : | − ξ | < ε(1 + |ξ|)− (∀ = 1 . . . )}

Here we need the following lemma:

Lemma 3.3. There existsε > 0 such that for all ξ ∈ we have (ξ) ∈
{1 . . . 2µ− 1} ( = 1 . . . − ) satisfying that if

= ( ′ ′′) ∈ ′
ε 2µ−2(ξ) × C − and | + − ξ + | = (ξ)(3.1)

for some = 1 . . . − , then /∈ .

Proof. It is sufficient to prove that| 1( )| ≥ 1/2 for satisfying (3.1). Factoriz-
ing 1, we have

1(ξ1 . . . ξ +1) = ( +1 − α1(ξ′)) · · · ( +1 − αµ(ξ′))

Then there exists 1(ξ) ∈ {1 . . . 2µ − 1} such that for| +1 − ξ +1| = 1(ξ) we have
| +1 − α1(ξ′)| . . . | +1 − αµ(ξ′)| ≥ 1, and hence| 1(ξ1 . . . ξ +1)| ≥ 1. In fact,
we set{|α1(ξ′) − ξ +1| . . . |αµ(ξ′) − ξ +1|} = {γ1 . . . γµ̂} (µ̂ ≤ µ) as sets, and we
assume thatγ1 < γ2 < · · · < γµ̂. Since 1(ξ) = 0, we haveγ1 = 0. Here we would
like to find the minimal positive integer1(ξ) satisfying γν ≤ 1(ξ) − 1 and γν+1 ≥

1(ξ) + 1 for someν. For example, ifγ2 ≥ 2, then we can take1(ξ) = 1. In the case
where we have suchν, 1(ξ) is maximal if and only ifγ2 ∈ (1 2), γ3 ∈ (3 4) . . .,
γµ̂−1 ∈ (2µ̂ − 5 2µ̂ − 4) andγµ̂ ≥ 2µ̂ − 2. In this case, we can take1(ξ) = 2µ̂ − 3.
If there exists no suchν, that is,γ2 ∈ (1 2), γ3 ∈ (3 4) . . . γµ̂−1 ∈ (2µ̂− 5 2µ̂− 4)
and γµ̂ ∈ (2µ̂ − 3 2µ̂ − 2), then we take 1(ξ) = 2µ̂ − 1. Hence we can take1(ξ) ∈
{1 . . . 2µ− 1} satisfying the above condition.

Here we would like to takeε ∈ (0 1) so that if | 1 − ξ1| . . . | − ξ | < ε(1 +
|ξ|)−2µ+2 and | +1 − ξ +1| = 1(ξ), then | 1( 1 . . . +1) − 1(ξ1 . . . ξ +1)| ≤
1/2. Let be the maximum of moduli of all coefficients in1 1 . . . 1 µ. We can
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write

| 1( 1 . . . +1) − 1(ξ1 . . . ξ +1)|(3.2)

≤
∑

|β|≤1

| β1
1 · · · β − ξβ1

1 · · · ξβ || +1|µ−1

+ · · · +
∑

|β|≤µ
| β1

1 · · · β − ξβ1
1 · · · ξβ |

where β = (β1 . . . β ) is a multi-index and|β| = β1 + · · · + β . Here we have the
following estimates:
(1) Since| +1 − ξ +1| = 1(ξ),

| +1| ≤ |ξ +1| + 1(ξ) ≤ |ξ| + 2µ− 1 ≤ (2µ− 1)(1 + |ξ|)

(2) Since| |, |ξ| < |ξ| + ε(1 + |ξ|)−2µ+2 ≤ 1 + |ξ|, we obtain

| β1
1 · · · β − ξβ1

1 · · · ξβ |(3.3)

≤ | β1
1 · · · β − β1

1 · · · β −1

−1
β −1ξ |

+ · · · + | 1ξ
β1−1
1 ξβ2

2 · · · ξβ − ξβ1
1 · · · ξβ |

= | − ξ || β1
1 · · · β −1

−1
β −1| + · · · + | 1 − ξ1||ξβ1−1

1 ξβ2
2 · · · ξβ |

≤ |β|ε(1 + |ξ|)−2µ+2(1 + |ξ|)|β|−1

≤ µε(1 + |ξ|)−µ+1

where the number of terms in (3.3) is|β|.
(3) The number of terms in

∑
|β|≤ν |

β1
1 · · · β − ξβ1

1 · · · ξβ || +1|µ−ν is bounded from
above by

1 + + · · · + ≤ 1 + + · · · + µ ≤ (µ + 1) µ

It follows from (3.2) and these estimates that

| 1( 1 . . . +1) − 1(ξ1 . . . ξ +1)| ≤ µ2(µ + 1)µ−1 µε

Hence, we set

ε =
1

2 µ2(µ + 1)µ−1 µ

and then the lemma holds for allξ ∈ .

For simplification, we fixξ ∈ and put ′ = ′
ε 2µ−2(ξ), ′′ = { ′′ ∈ C − :

| + −ξ + | < (ξ) for all = 1 . . . − } and = ′× ′′. By Lemma 3.2,π| ∩ :
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∩ → ′ is proper. It follows from the normalization theorem that′ \ −1(0) is
connected and

π|( ∩ )\ −1(0) : ( ∩ ) \ −1(0) → ′ \ −1(0)

is a µ̃-fold covering mapping with 1≤ µ̃ ≤ µ. For ′ ∈ ′ \ −1(0), by renumbering
α1( ′) . . . αµ( ′) we haveα1( ′) . . . αµ̃( ′) ∈ { +1 ∈ C : | +1 − ξ +1| < 1(ξ)}.
Since symmetric polynomials ofα1 . . . αµ̃ are bounded holomorphic functions in

′ \ −1(0), it follows from Riemann’s Extension Theorem that they extend to holo-
morphic functions in ′. Hence

′( ′) =
∏

1≤ < ′≤µ̃
(α ( ′) − α ′( ′))2

is holomorphic in ′.
Let π−1( ′) ∩ ∩ = {τ1( ′) . . . τµ̃( ′)} as sets such that

{(τ1( ′)) +1 . . . (τµ̃( ′)) +1} = {α1( ′) . . . αµ̃( ′)}

for ′ ∈ ′ \ −1(0), where (τ ( ′)) +1 (1 ≤ ≤ µ̃) denote the ( + 1)-th coordinate of
τ ( ′). Then there existϕ0( ′) . . . ϕµ̃−1( ′) ∈ C uniquely such that

(τ ( ′)) = ϕ0( ′) + ϕ1( ′)α ( ′) + · · · + ϕµ̃−1( ′)α ( ′)µ̃−1(3.4)

for all = 1 . . . µ̃ and ′ ∈ ′ \ −1(0). In fact, if we think (3.4) to be a system of
linear equations inϕ0( ′) . . . ϕµ̃−1( ′), the determinant (′) of its coefficient matrix
A is given by

( ′) = det




1 · · · 1
α1( ′) · · · αµ̃( ′)

...
...

α1( ′)µ̃−1 · · · αµ̃( ′)µ̃−1




=
∏

1≤ < ′≤µ̃
(α ( ′) − α ′( ′)) 6= 0 ∀ ′ ∈ ′ \ −1(0)

Then ( ′)2 = ′( ′) and Cramer’s rule gives

( ′)ϕ ( ′) =
µ̃∑

=1

( ′) (τ ( ′))

for all = 0 . . . µ̃ − 1, where ( )=1 ... µ̃; =0 ... µ̃−1 is the cofactor matrix ofA. It
follows from the normalization theorem (2) that

|α ( ′)| ≤ 0(1 + | ′|)(3.5)
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for all ′ ∈ ′ and = 1 . . . µ̃. Thus, we have

Lemma 3.4. There exist 3 > 0 and ω ∈ N depending only on 1 such that

| ′( ′)ϕ ( ′)| ≤ 3 ( )(1 + | ′|)ω

for all ′ ∈ ′ \ −1(0) and = 0 . . . µ̃−1, where ( ) = sup{| ( )| : ∈ ∩ }.

For the other rootsαµ̃+1( ′) . . . αµ( ′) of 1, setting

′′( ′) =
∏

1≤ ≤µ

µ̃+1≤ ′≤µ

(α ( ′) − α ′( ′))2

we have = ′ ′′. Since (3.5) hold for = ˜µ + 1 . . . µ, we obtain 4 > 0 satisfying

| ′′( ′)| ≤ 4(1 + | ′|)µ(µ−1)−µ̃(µ̃−1)

≤ 4(1 + | ′|)µ(µ−1)

Hence there exist 5 > 0 andω′ ∈ N independent of ˜µ such that

| ( ′)ϕ ( ′)| ≤ 5 ( )(1 + | ′|)ω′

for all ′ ∈ ′ \ −1(0). In particular, all ϕ are bounded holomorphic functions. By
Riemann’s extension theorem, they extend to holomorphic functions in ′.

Since is a weight function, we have′, ′ > 0 indepedent ofξ satisfying

( ) ≤ ′ exp( ′ (ξ))

Set

( ) = ( ′)ϕ0( ′) + ( ′)ϕ1( ′) +1 + · · · + ( ′)ϕµ̃−1( ′) µ̃−1
+1

By the definition of weight functions, there exist1, 1 > 0 independent ofξ such
that

| ( )| ≤ | ( ′)ϕ0( ′)| + | ( ′)ϕ1( ′)|| +1| + · · · + | ( ′)ϕµ̃−1( ′)|| +1|µ̃−1

≤ µ̃ 5
′ exp( ′ (ξ))(1 + | |)ω′+µ̃−1

≤ 1 exp( 1 ( ))

for all ∈ ε 2µ−2(ξ). Finally, it follows from (3.4) that

=(3.6)
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in ( \ −1(0)) ∩ ε 2µ−2(ξ). Since \ −1(0) is dense in , (3.6) holds on ∩
ε 2µ−2(ξ). The proof of Lemma 3.2 is completed.

We next solve the Cousin first problem with estimates. We shall use some results
from [9].

Lemma 3.5 ([9, Lemma 7.6.1]). Let : R2 → (0 1] be a function such that

( + ) ≤ 2 ( ) if | |∞ = max
=1 ... 2

| | ≤ 1(3.7)

Then there exist an open coveringU = { } ∈ ( ) of R2 with open cubes , a
partition of unityχ ∈ ∞

0 ( ) and 6 > 0 such that
(1) | − |∞ ≤ ( ) for all ∈ and ∈ ( );
(2) ♯{ ′ ∈ ( ) : ′ ∩ 6= ∅} ≤ 28 for all ∈ ( ).
(3) |

(
∂χ /∂ ν

)
( )| ≤ 6/

(
( )
)

for all ∈ ( ), ν = 1 . . . 2 and ∈ R2 .
(4) Let ′ be another function satisfying(3.7) and 0 < ′ ≤ . There exists a refine-
mentU ′

of U defined by a mappingρ ′ : ( ′) → ( ) with ρ ′′ = ρ ′ ◦ ρ ′ ′′

satisfying (1), (2) and (3). Moreover, if ′ ≤ ε̃ , ε̃ < 1/64, ′ ∈ ( ′), = ρ ′ ( ′)
and ∈ ′

′ , then

′

′ ⊂ { ∈ R2 : | − |∞ < ε̃ ( )}

and

⊃
{

∈ R2 : | − |∞ <

(
1
64

− ε̃

)
( )

}

For = ( 0 . . . σ) ∈ ( )σ+1 we denote =
0
∩· · ·∩

σ
. Let be a cochain

in σ(U O) and letϕ be a plurisubharmonic function inC . Then we write

‖ ‖2
ϕ =

∑

∈ ( )σ+1

∫
| |2 exp(−ϕ) λ

We also define a coboundary operatorδ : σ(U O) → σ+1(U O) by

(δ ) ∈ ( )σ+2 =
σ+1∑

ν=0

(−1)ν ( 0 ... ˇ
ν ... σ+1)

Lemma 3.6 ([9, Proposition 7.6.2]). Let − log be a plurisubharmonic function
on C . For every ∈ σ(U O) (σ > 0) with δ = 0 and ‖ ‖ϕ < ∞, we can find
a cochain ′ ∈ σ−1(U O) such thatδ ′ = and ‖ ′‖ψ ≤ 1‖ ‖ϕ, whereψ is a
plurisubharmonic function inC defined by

ψ( ) = ϕ( ) − σ log ( ) + 2 log(1 +| |2)
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and 1 is a constant independent ofϕ, and .

Let

=




1 1 · · · 1
...

...

1 · · ·




be a matrix with polynomial elements. Then defines the sheaf homomorphism

: O ∋ 7→ ∈ O(3.8)

Lemma 3.7 ([9, Lemma 7.6.3]). The kernelker of the sheaf homomorphism
(3.8) is generated by the germs of a finite number of = ( 1 . . . ) ∈
C[ 1 . . . ] ( = 1 . . . ) satisfying

∑

=1

λ = 0

for all λ = 1 . . . and = 1 . . . .

Lemma 3.8 ([9, Lemma 7.6.4]). Let be a pseudoconvex domain and let
and be matrixes inLemma 3.7. Then if = ( 1 . . . ) ∈ O( ) satisfies

∑

=1

λ = 0

for all λ = 1 . . . , there exists = ( 1 . . . ) ∈ O( ) such that

=
∑

=1

for all = 1 . . . . In particular, ker = Im holds.

By putting = 1, Lemmas 3.7 and 3.8 imply thatO( ) is a flat C[ 1 . . . ]-
module. This fact will play an important role later.

The following lemma gives estimates of solutions of the equation = for ∈
Im :

Lemma 3.9 ([9, Lemma 7.6.5]). Let be a neighborhood of0 ∈ C . Then we
have a neighborhood ′ of 0 ∈ C and constants 7, 1 satisfying that for allη ∈
(0 1), ∈ C and ∈ O(η +{ }) , there exists ∈ O(η ′+{ }) such that =
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and

sup
η ′+{ }

| | ≤ 7(1 + | |) 1η− 1 sup
η +{ }

| |

Here η + { } = {η + : ∈ }.

We now prove a lemma important to solve the Cousin first problem with esti-
mates. Let :O → O be the sheaf homomorphism as above. ThenM = Im
is a subsheaf ofO generated by (1 . . . ) for = 1 . . . . We denote by
σ(U M ) the set of cochains ={ } ∈ ( )σ+1 ∈ σ(U M ) satisfying

‖ ‖2 =
∑

∈ ( )σ+1

∫
| |2 exp(− ) λ <∞

Lemma 3.10 (cf. [9, Lemma 7.6.10]). We assume that− log is a plurisubhar-
monic function. Then we have2, 2 > 0 and ε0 < 1/192 satisfying that for all
∈ σ(U M ) (σ > 0) with δ = 0, there exists ′ ∈ σ−1(Uε0 M 2) such

that δ ′ = ρ ε0
∗ and

‖ ′‖
2
≤ 2‖ ‖

where 2( ) = 2( ( ) − log ( ) + log(1 +| |2)).

Proof. Applying Lemma 3.9 for :={ ∈ C : | |∞ < 1}, we have ∈ (0 1)
and constants 7, 1 satisfying for all η ∈ (0 1), ξ ∈ C and ∈ O(η + {ξ}) ,
there exists ∈ O(η ′ + {ξ}) such that = and

sup
η ′+{ξ}

| | ≤ 7(1 + |ξ|) 1η− 1 sup
η +{ξ}

| |(3.9)

where ′ = { ∈ C : | |∞ < }. For ε̃ < 1/128, it follows from Lemma 3.5 (4) that
if ′ ∈ (ε̃ ), = ρ ε̃ ( ′) and ξ ∈ ε̃

′ , then

ε̃
′ ⊂ ε̃ (ξ) + {ξ} ⊂

(
1
64

− ε̃

)
+ {ξ} ⊂(3.10)

Here defining ˜ε := /(128(2 + )) (≤ 1/384) andη := (1/128− ε̃/2) (ξ), we have
ε̃ (ξ) < η, hence (3.10) implies that

ε̃
′ ⊂ η + {ξ} = η ′ + {ξ}(3.11)

On the other hand, we haveη < (1/96) (ξ) < ((1/64)− ε̃) (ξ), that is,

η + {ξ} ⊂⊂ 1
96

(ξ) ⊂
(

1
64

− ε̃

)
(ξ) ⊂(3.12)



INTERPOLATION FORWEIGHTED ENTIRE FUNCTIONS 109

Then for ′ = ( ′
0 . . . ′

σ) ∈ (ε̃ )σ+1 = ρ ε̃ ( ′) := (ρ ε̃ ( ′
0) . . . ρ ε̃ ( ′

σ)) and
ξ ∈ ε̃

′ , we obtain from (3.11) and (3.12)

ε̃
′ ⊂ η ′ + {ξ} ⊂ η + {ξ} ⊂⊂ 1

96
(ξ) + {ξ} ⊂(3.13)

Hence it follows from (3.9) that for all ∈ O( ) (⊂ O(η + {ξ}) ) there exists
∈ O(η ′ + {ξ}) such that = and

sup
ε̃
′

| | ≤ 7(1 + |ξ|) 1η− 1 sup
η +{ξ}

| |(3.14)

By [9, Theorem 2.2.3], (3.12) implies that there exists8 > 0 independent ofξ such
that

sup
η +{ξ}

| | ≤ 8‖ ‖ 1((1/96) (ξ) +{ξ})

for all ∈ O( ). It follows from Schwarz’s inequality that

sup
η +{ξ}

| | ≤ 8
(
‖( )1‖ 1((1/96) (ξ) +{ξ}) + · · · + ‖( ) ‖ 1((1/96) (ξ) +{ξ})

)

≤ 8

(∫

(1/96) (ξ) +{ξ}
| |2 λ

)1/2

≤ 8

(∫
| |2 λ

)1/2

Since is a weight, by Lemma 3.5 (1) there exist′1, ′
2 > 0 independent of and

such that (′) ≤ ′
1 ( ) + ′

2 for , ′ ∈ . Then we obtain

exp(− ′
1 (ξ))

∫
| ( )|2 λ( ) ≤ ′

2

∫
| ( )|2 exp(− ( )) λ( )

Hence it follows from (3.7) that

| (ξ)|2(1 + |ξ|2)−2 1 (ξ)2 1 exp(− ′
1 (ξ)) ≤ 9

∫
| ( )|2 exp(− ( )) λ( )

where 9 = 7 822 1(1/128− ε̃/2)−2 1
′
2 . Therefore putting ′

2 = max{ 1
′
1}, we

obtain
∫

ε̃
′

| (ξ)|2 exp(− ′
2
(ξ)) λ(ξ) ≤ 9

∫
| ( )|2 exp(− ( )) λ( )(3.15)

We prove this lemma by induction for decreasingσ. Note that it is valid when
σ = 28 + 1, since σ(U · ) = {0} by Lemma 3.5 (2). We assume that it have been
proved for all whenσ is replaced byσ + 1. By [9, Lemma 7.2.9], there existsγ ∈
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σ(U O ) such that = γ for all ∈ ( )σ+1. To obtain contorol ofγ we
pass to the refinementU ε̃ for which (3.15) is applicable. Then we can chooseγ′ ′ ∈
O( ǫ̃

′ ) ( ′ ∈ (ε̃ )σ+1) so that with =ρ ε̃
′ we have

γ′ ′ = γ =(3.16)

in ε̃
′ and

∫

ε̃
′

|γ′ ′ |2 exp(− ′
2
) λ ≤ 9

∫
| |2 exp(− ) λ

Here we need to culculate♯ρ−1
ǫ̃ ( ) to give the estimate of‖γ′‖ ′

2
. For the refinement

U ε̃2
of U ε̃ , it follows from Lemma 3.5 (4) that

ε̃
′ ⊃

{
∈ C : | − ξ|∞ < ε̃

(
1
64

− ε̃

)
(ξ)

}

for ξ ∈ ε̃2

′′ and ′ = ρε̃ ε̃2 ( ′′). On the other hand, we know

⊂ { ∈ C : | − ξ|∞ < (ξ)}

Hence it follows from Lemma 3.5 (2) that

♯ρ−1
ε̃ ( ) ≤ 28

(
ε̃

32
− 2ε̃2

)−2

=: 10

Thus we obtain

‖γ′‖2
′
2

=
∑

′∈ (ε̃ )σ+1

∫

ε̃
′

|γ′ ′ |2 exp(− ′
2
) λ(3.17)

≤ 10

∑

∈ ( )σ+1

9

∫
| |2 exp(− ) λ

= 10 9‖ ‖2

It also follows from (3.16) that γ′ = ρ ε̃
∗ . Since δ = 0 and is defined glob-

ally, we have δγ′ = δ γ′ = 0. Thus δγ′ = γ′′ belongs to σ+1(U ε̃ ker ′
2
),

and δγ′′ = 0. If we choose a × matrix as in Lemma 3.8, it follows that
ker = Im = M , so the inductive hypothesis can be applied. It shows that we
can find ˆǫ < ǫ̃, ′′

2 > ′
2 and ′

2 > 0 such that for someγ′′′ ∈ σ(U ǫ̂ ker ′′
2

)
we have‖γ′′′‖ ′′

2
≤ ′

2‖γ′′‖ ′
2

and δγ′′′ = ρε̃ ε̂
∗γ′′.

Setting γ̃ = ρε̃ ε̂
∗γ′ − γ′′′ ∈ σ(U ε̂ O ), we haveδγ̃ = ρε̃ ε̂

∗γ′′ − δγ′′′ = 0,
and for some 11 independent of we have‖γ̃‖ ′′

2
≤ 11‖ ‖ by the same method
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that we have proved (3.17). Hence Lemma 3.6 shows that for some ′′′
2 > 0 we can

find γ̂ ∈ σ−1(U ε̂ O ) so that ˜γ = δγ̂ and ‖γ̂‖ ′′′
2

≤ 1‖γ̃‖ ′′
2
≤ 1 11‖ ‖ . If we

set ′ = γ̂, it follows that

δ ′ = δγ̂ = γ̃ = ρε̃ ε̂
∗γ′ − γ′′′ = ρε̃ ε̂

∗ γ′ = ρε̃ ε̂
∗ρ ε̃

∗ = ρ ε̂
∗

Finally, it is clear that there exists 2, 2 > 0 such that‖ ′‖
2
≤ 2‖ ‖ , because

it is sufficient to consider the estimate about . The proof of the lemma is finished.

We shall apply Lemma 3.10 to the following settings. Put

( ) =
ε

2
√

2
(2
√

2 (2µ− 2) + | |)2−2µ

whereε andµ are decided before.

Lemma 3.11. has the following properties:
(1) If ∈ C and | |∞ ≤ 1, then we have ( + ) ≤ 2 ( ) for all ∈ C . Hence
there exists an open coveringU = { } ∈ ( ) satisfyingLemma 3.5.
(2) − log ( ) is a plurisubharmonic function.
(3) If ∈ U and ∩ 6= ∅, then ⊂ ε 2µ−2(ξ) holds for everyξ ∈

∩ .

Proof. The lemma is clear whenµ = 1, so we assume thatµ ≥ 2.
(1) If ∈ C and | |∞ ≤ 1, then | | ≤ | + | + | | ≤ | + | +

√
2 . Hence we have

( ) =
ε

2
√

2
(2
√

2 (2µ− 2))2−2µ

(
1 +

| |
2
√

2 (2µ− 2)

)2−2µ

≥ ε

2
√

2
(2
√

2 (2µ− 2))2−2µ

(
1 +

| + |
2
√

2 (2µ− 2)
+

1
2(2µ− 2)

)2−2µ

≥ ε

2
√

2
(2
√

2 (2µ− 2))2−2µ

(
1 +

| + |
2
√

2 (2µ− 2)

)2−2µ(
1 +

1
2(2µ− 2)

)2−2µ

≥ 1
2
· ε

2
√

2
(2
√

2 (2µ− 2))2−2µ

(
1 +

| + |
2
√

2 (2µ− 2)

)2−2µ

≥ 1
2

( + )

since (1 + 1/2ν)−ν ց exp(−1/2)> 1/2 asν → ∞.
(2) is clear.

(3) Fix ξ ∈ ∩ . It follows from Lemma 3.5 (1) that| − ξ|∞ ≤ (ξ) for all
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∈ . Hence we obtain

| − ξ | ≤ ε(2
√

2 (2µ− 2) + |ξ|)2−2µ

2
< ε(1 + |ξ|)2−2µ

for all = 1 . . . , so ∈ ε 2µ−2(ξ).

Since the polynomial ringC[ 1 . . . ] is Noetherian, the prime ideal is
finitely generated by 1 . . . ∈ C[ 1 . . . ]. Let = ( 1 . . . ) be a 1×
matrix.

Lemma 3.12. There exists˜ ∈ (C ) such that ˜ | ≡ .

Proof. It follows from Lemma 3.2 and Lemma 3.11 (3) that if ∈ U and

∩ 6= ∅, then there existξ ∈ and ∈ O( ε 2µ−2(ξ)) such that − = 0
on ∩ ε 2µ−2(ξ) and

| ( )| ≤ 1 exp( 1 ( ))(3.18)

for every ∈ ε 2µ−2(ξ). We also put = 0, when ∩ = ∅. We would like to
apply Lemma 3.10 forσ = 1. Defining ∈ 1(U O) by ( 0 1) = 0 − 1, we have

0 − 1 = − = 0 on ∩
0
∩

1
. It follows from (3.18) and Lemma 3.5

(2) that there exists 12 > 0 such that‖ ‖ 12 < ∞. On the other hand, it is clear
that δ = 0, that is, ∈ 1(U M 12 ). Hence Lemma 3.10 givesε0 < 1/384,

2, 2 > 0 and ′ ∈ 0(Uε0 M 2) so that δ ′ = ρ ε0
∗ and ‖ ′‖

2
≤

2‖ ‖ 12 . It follows from the definition of weight functions that there exists 3 >

0 such that‖ ′‖ 3 ≤ 2‖ ‖ 12 . Here we put ˜ = + ′
′ in ε0

′ , where =
ρ ε0 ( ′). Then ˜ belongs toO(C ) and Lemma 2.2 (3) gives̃ ∈ (C ).

Here we make ˆ ∈ (C ) with the required properties from̃ ∈ (C )
made in Lemma 3.12. We shall use some result in the ring thoery. For an ideal ⊂
C[ 1 . . . ], we set ˜ = O(C ) ⊗C[ 1 ... ] = O(C ) .

Lemma 3.13 (cf. [6, Lemma 3.5 in Chapter 8]).For two ideals 1 and 2 in

C[ 1 . . . ], ˜( 1 ∩ 2) = 1̃ ∩ 2̃.

For ∈ C[ 1 . . . ], set ( : ) ={ ∈ C[ 1 . . . ] : ∈ } and (̃ : ) =
{ ˜ ∈ O(C ) : ˜ ∈ ˜}.

Lemma 3.14 (cf. [6, Lemma 3.6 in Chapter 9]).For an ideal ⊂ C[ 1 . . . ],

( ˜ : ) = (̃ : ).
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Note that Lemmas 3.13 and 3.14 follow from the flatness ofO(C ).

Lemma 3.15 (cf. [6, Lemma 3.13 in Chapter 8]).Let ⊂ C[ 1 . . . ] be a
primary ideal. Set = { ∈ C : ( ) = 0 for all ∈ }. Then we have( : ) = ,
if | 6≡ 0.

Proof. Since it is obvious that ⊂ ( : ), we have only to prove that ⊃ ( :
). For ∈ ( : ), it follows ∈ . Assuming that /∈ , we have ν ∈ for

someν ∈ N, since is a primary ideal. Hence it follows that| ≡ 0, which is a
contradiction.

Here we can prove the following lemma by an argument similar to the proof of
Lemma 3.12:

Lemma 3.16 (cf. [9, Theorem 7.6.11]). Let ⊂ C[ 1 . . . ] be an ideal gen-
erated by 1 . . . . If ∈ ˜ ∩ (C ), then there exist 1 . . . ∈ (C ) such
that

= 1 1 + · · · +

[9, Theorem 7.4.8] also implies that there exists˜ ∈ O(C ) with no growth con-
ditions such that˜ | ≡ .

Lemma 3.17. We haveˆ ∈ (C ) satisfying that ˆ − ˜ ∈ ˜ , that is, ˆ | ≡ .

Proof. Let ∈ C[ 1 . . . ] be the ideal generated by1 . . . and . By
Lemma 3.12, it follows that˜ − ˜ ∈ ˜ , that is, ˜ ∈ ˜ . Applying Lemma 3.16 to

, we have 1 . . . ∈ (C ) satisfying that

˜ = 1 1 + · · · + +

Here if we set ˆ = , then ˆ − ˜ = ( ˆ − ˜ ) ∈ ˜ . Hence it follows from Lemmas
3.14 and 3.15 that

ˆ − ˜ ∈ ( ˜ : ) = ˜( : ) = ˜

so that ˆ | ≡ .

Proof of Theorem 3.1. Let ⊂ C be an algebraic subset. Then there exist a
finite number of irreducible algebraic varieties1 . . . such that = 1 ∪ · · · ∪

. We shall prove Theorem 3.1 by induction on . When = 1, we have already
proved in Lemma 3.17. Here we can assume that = 2, since the proofs for ≥
3 are the same as for = 2. Then we have =1 ∪ 2 and = 1 ∩ 2. For
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∈ ( ), it follows from [9, Theorem 7.4.8] that there exists˜ ∈ O(C ) with no
growth conditions such that̃ | ≡ . Since the theorem is valid for1 (resp. 2), we
have ˆ1 ∈ (C ) (resp. ˆ2 ∈ (C )) such that ˆ1| 1 ≡ (resp. ˆ2| 2 ≡ ). Let

1 . . . 1 (resp. 1 . . . 2) generate 1 (resp. 2). If ⊂ C[ 1 . . . ] is the
ideal generated by 1 . . . 1 1 . . . 2, we have 1∩ 2 ⊂ . Since ˆ1− ˜ ∈ ˜

1

and ˆ2 − ˜ ∈ ˜
2, it follows that

ˆ1 − ˆ2 = ( ˆ1 − ˜ ) − ( ˆ2 − ˜ ) ∈ ˜
1 − ˜

2 ⊂ ˜

Applying Lemma 3.16 to , we have1 . . . 1, 1 . . . 2 ∈ (C ) satisfying

ˆ1 − ˆ2 = 1 1 + · · · + 1 1 + 1 1 + · · · + 2 2

Here we set

ˆ = ˆ1 − ( 1 1 + · · · + 1 1) = ˆ2 + ( 1 1 + · · · + 2 2)

Then sinceˆ1 − ˜ ∈ ˜
1 and ˆ2 − ˜ ∈ ˜

2, it follows from Lemma 3.13 that

ˆ − ˜ ∈ ˜
1 ∩ ˜

2 = ˜( 1 ∩ 2) = ˜

so that ˆ | ≡ . Thus the proof of Theorem 3.1 is finished.

4. Proof of the main theorem

Applying Theorem A for ={ζν}, we have 1 . . . ∈ O(C ) and constants
ε1, 3, , > 0 with

| (ζ)| ≤ exp( |ζ| )(4.1)

for all ζ ∈ C and = 1 . . . ,

( 1 . . . ) ⊃(4.2)

and

∑

=1

| (ζν)| ≥ ε1 exp(− 3|ζν | )(4.3)

for all ν ∈ N and ∈ 2 −1. Fix ν ∈ N and ∈ 2 −1. Set ˜
ν ( ) = (ζν + ),

which is an entire function onC. It follows from the chain rule that

˜ ′
ν (0) =

∑

=1

∂

∂ξ
(ζν) · = (ζν)
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Hence from (4.3), there exists (ν ) ∈ {1 . . . } such that

| ˜ ′
(ν ) ν (0)| ≥ ε1 exp(− 3|ζν | )(4.4)

In the rest of the proof, we denotẽ (ν ) ν by ˜ (ν ). Put ν = { ∈ C :
˜ (ν )( ) = 0}, which contains 0 by (4.2), andν = min{1 dist(0 ν \ {0})}.
From (4.1), we have| (ν ) ν (ζν + )| ≤ exp( |ζν + | ) for | | ≤ 1. Since
|(ζν + ) − ζν | = | | = | | ≤ 1 and | · | is a weight function, there exists1,

1 > 0 independent ofν and such that

| ˜ (ν )( )| ≤ 1 exp( 1|ζν | )(4.5)

Set ν ( ) = ˜ (ν )( )/ . Since ˜ (ν ) has zero of order only one at = 0 by (4.2)
and (4.4), we obtain ν ∈ (C) and

ν (0) = ˜ ′
(ν )(0) 6= 0(4.6)

It is satisfied for| | = 1 that

| ν ( )| =
| ˜ (ν )( )|

| | = | ˜ (ν )( )| ≤ 1 exp( 1|ζν | )

Hence it follows from the Maximal Modulus Theorem that

| ν ( )| ≤ 1 exp( 1|ζν | )(4.7)

for | | ≤ 1. We denote ν ∈ (C) by

ν ( ) = ν ( ) − ν (0)
3 1 exp( 1|ζν | )

Then we have ν (0) = 0 and (4.7) gives that| ν ( )| < 1 for | | ≤ 1. Hence
the Schwarz lemma implies that| ν ( )| ≤ | | for | | ≤ 1. In particular, for ˜ ∈
( ν \ {0}) ∩ { ∈ C : | | < 1}, which is a zero of ν in { ∈ C : | | < 1}, we
have from (4.4) and (4.6)

| ˜ | ≥ | ν ( ˜ )| =
| ν (0)|

3 1 exp( 1|ζν | )
=

| ˜ ′
(ν )(0)|

3 1 exp( 1|ζν | )
≥ ε2 exp(− 4|ζν | )

whereε2 and 4 are independent ofν and . Thus the definition ofν gives that

ν ≥ ε2 exp(− 4|ζν | )(4.8)

Now, we need the Borel-Carathèodory inequality. (For the proof, see e.g. [1, Corollary
4.5.10].)
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Borel-Carathèodory inequality. Let be a function which is holomorphic in a
neighborhood of| | ≤ and has no zero in| | < . If (0) = 1 and 0 ≤ | | ≤ <

, then the following estimate holds:

log | ( )| ≥ − 2
− log max

|ω|=
| (ω)|

Since ν (0) 6= 0 from (4.6), we apply this inequality to ( ) =ν ( )/ ν (0),
= ν and = ν /2 to obtain

log

∣∣∣∣
ν ( )

ν (0)

∣∣∣∣ ≥ − 2 · ν /2

ν − ν /2
log max

|ω|= ν

∣∣∣∣
ν (ω)

ν (0)

∣∣∣∣

= −2 log max
|ω|= ν

∣∣∣∣
ν (ω)

ν (0)

∣∣∣∣

for | | ≤ ν /2. Then it follows from (4.4), (4.6) and (4.7) that

| ν ( )| ≥ | ν (0)|
(

max
|ω|= ν

∣∣∣∣
ν (ω)

ν (0)

∣∣∣∣
)−2

(4.9)

= | ν (0)|3
(

max
|ω|= ν

| ν (ω)|
)−2

≥ ε3 exp(− 5|ζν | )

whereε3 and 5 is independent ofν and . Putˆν = ε2 exp(− 4|ζν | ), whereε2 and

4 are given in (4.8). Sincêν ≤ ν by (4.8), it follows from (4.9) that for| | =
ˆ
ν/2 | ˜ (ν )( )| = | · ν ( )| ≥ ε4 exp(− 6|ζν | ), whereε4 and 6 is independent

of ν and . Thus we have proved that for every∈ 2 −1, there exists (ν ) ∈
{1 . . . } such that| (ν )(ζν + )| ≥ ε4 exp(− 6|ζν | ) for | | = ˆ

ν/2. Hence we
have

| (ζν + )| =


∑

=1

| (ζν + )|2



1/2

≥ | (ν )(ζν + )|(4.10)

≥ ε4 exp(− 6|ζν | )

for | | = ˆ
ν/2.

We now consider ◦ : C → C . Since max=1 ... deg = and ≥ ,
there existα, β > 0 such that

| ( )| ≤ α| | + β(4.11)

for all ∈ C . Then we have from (4.1) and (4.11)

| ◦ ( )| ≤ exp( | ( )| ) ≤ β exp(α | | )
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for all ∈ C and = 1 . . . , that is, ◦ ∈ | · | (C ) .
Set ν = {ξ ∈ C : |ξ − ζν | ≤ ˆ

ν/2}. Denote by ν the connected component of

| · | ( ; ε4 6) including ζν . Then (4.10) implies that ν ⊂ ν . We also have ν ∩
( ( 1 . . . ) \ {ζν}) = ∅. Namely, for ξ ∈ ( 1 . . . ) \ {ζν} there exists ∈

2 −1 such thatξ = ζν + |ξ − ζν | . It follows from the definition of ν and (4.8)
that |ξ − ζν | ≥ ν ≥ ε2 exp(− 4|ζν | ) = ˆ

ν , so thatξ /∈ ν . Now settingε5 =
ε4 exp(−β 6) and 7 = α 6, we claim that the union̂ ν of the connected components
of | · | ( ◦ ; ε5 7) including −1(ζν) is contained in −1( ν). In fact, it follows
from (4.11) that for ∈ ˆ

ν

| ◦ ( )| < ε4 exp(−β 6) exp(−α 6| | )

≤ ε4 exp

(
−β 6 − α 6 ·

| ( )| − β

α

)

= ε4 exp(− 6| ( )| )

which implies that ( )∈ | · | ( ; ε4 6). For ′ ∈ −1(ζν), the above inequality
holds on every curve through and′ in ˆ

ν . The connectedness ofν proves that
∈ −1( ν). It is clear that ˆ

ν ∩ −1( ( 1 . . . ) \ {ζν}) = ∅ for all ν ∈ N by the
above argument.

Here we need the following lemma:

Lemma 4.1 (cf. [2, Lemma 3.2]). Let 1 . . . ∈ (C ). Then there exist
constantsε, > 0 such that

∑

=1

| (ζν)| ≥ ε exp(− (ζν))

for all ν ∈ N\ and ∈ 2 −1 if and only if we have constantsε′, ′ > 0 satisfying

| det (ζν)| ≥ ε′ exp(− ′ (ζν))

for all ν ∈ N, where is the Jacobian matrix of = ( 1 . . . ).

We apply this lemma to obtainε6, 8 > 0 such that

| det (ζν)| ≥ ε6 exp(− 8|ζν | )(4.12)

for all ν ∈ N. Calculating a sum of the moduli of all × minors of ( ◦ ), we
have from (2) of Main Theorem, (4.11) and (4.12)

( )∑

κ=1

|△ ◦
κ ( )| = | det ( ( ))| ·

( )∑

κ=1

|△κ ( )|
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≥ ε6 exp(− 8| ( )| ) · ε exp(− | | )

≥ (εε6
−β 8) exp(−(α 8 + )| | )

for all ∈ ⋃ν∈N\
−1(ζν).

Here the proof of [5, Theorem 1] implies the following:

Lemma 4.2. For 1 . . . ∈ (C ), let ′ be a union of connected compo-
nents of ( 1 . . . ) which are -codimensional manifolds, so that

( )∑

ϑ=1

( )∑

κ=1

|△ϑ κ( )| ≥ ε exp(− ( ))

for all ∈ ′, where the sum is taken over all× minors of the Jacobian ma-
trix . If we can choose constantsε′′, ′′ > 0 such that every connected component
of ( ; ε′′ ′′) including a connected component of′ does not intersect the other
connected components of( 1 . . . ), then we have constantsε′′′ < ε′′, ′′′ > ′′

satisfying: Let be a connected component of′ and let be the connected compo-
nent of ( ; ε′′′ ′′′) including . Then there exists a holomorphic retract from

onto such that| − ( )| ≤ 1 for all ∈ .

By settingε′′ = ε5, ′′ = 7 and ′ =
⋃
ν∈N\

−1(ζν), we can apply this lemma

to obtainε7, 9 > 0 and a holomorphic retract ν from ˜
ν onto −1(ζν) such that

| − ν( )| ≤ 1(4.13)

for all ν ∈ N \ , where ˜
ν (ν ∈ N) is the union of the connected components of

| · | ( ◦ ; ε7 9) including −1(ζν). It is clear that ˜
ν ∩ ˜

ν′ = ∅ for ν 6= ν′.
For ∈ | · | ( −1( )), it follows from Theorem 3.1 that there exists̃ ∈

| · | (C ) such that ˜ |S
ν∈

−1(ζν ) ≡ |S
ν∈

−1(ζν ). Then we define

˜( ) =





∗
ν ( ) if ∈ ˜

ν and ν ∈ N \ ,
˜ ( ) if ∈ ˜

ν and ν ∈ ,
0 if ∈ | · | ( ◦ ; ε7 9) \

⋃
ν∈N

˜
ν .

Since | · | is a weight function, (4.13) implies that there exist2, 2 > 0 such that
˜ ( ) ≤ 2 exp( 2| | ) for all ∈ | · | ( ◦ ; ε7 9). Hence it follows from the semilo-
cal interpolation theorem that we obtain ∈ | · | (C ) with | −1( ) ≡ . Thus

−1( ) is interpolating for | · | (C ).

5. Examples and remarks

The following is an easy example for the main theorem:
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EXAMPLE 5.1. Set ={ν}ν∈Z ⊂ C. By applying Theorem A (or [3, Corollary
3.5]) to ( ) = sin 2π ∈ | · |(C), we know that is interpolating for | · |(C). Put

( 1 . . . ) = 2
1 + · · · + 2, which satisfies

∑

=1

∣∣∣∣
∂ ( )
∂

∣∣∣∣ ≥ | grad ( )| = 2| |

If ∈ −1(ν), we have| |2 ≥ |ν|. In particular, forν ∈ Z \ {0}, it follows that

∑

=1

∣∣∣∣
∂ ( )
∂

∣∣∣∣ ≥ 2
√
|ν| ≥ 2

Hence the main theorem implies that−1( ) is interpolating for | · | (C ) for all ≥
2. (In this case, ={0}.)

In the case where = = 1, we can improve the main theorem as follows:

Corollary 5.2. Let = {ζν}ν∈N be a discrete variety inC and let ∈ C[ ] .
Put = deg . For > 0, we assume that is interpolating for | · | (C). Then

−1( ) is interpolating for | · | (C) for every ≥ .

Finally, we remark that the term ‘≥ ’ in the main theorem is sharp in the
sense of the following open problem:

Open Problem ([5, Problem 1]). Let be another weight function onC satis-
fying ≥ everywhere. Assume that an analytic subset ofC is interpolating for

(C ). Then is interpolating for (C )?

We prove this remark by giving an example for which−1( ) is not interpolating
for | · | (C ) for < . Let = {ζν}ν∈N be a discrete variety inC. Then Nevan-
linna’s counting function is defined as follows: (ζ ) = ♯{ν ∈ N : |ζν − ζ| ≤ }
and

( ζ ) =
∫

0

( ζ ) − (0 ζ )
+ (0 ζ ) log

EXAMPLE 5.3. Assume that = = 1. Put ={ν}ν∈N ⊂ C. As in Example 5.1,
it follows that is interpolating for | · |(C). Set ( ) = 4, so deg = 4. Then we
have

−1( ) =

{
4
√
ν · exp

(
π

2

)}

ν∈N; =0 1 2 3
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Corollary 5.2 implies that −1( ) is interpolating for | · | (C) for every ≥ 4.
Here we claim that −1( ) is not interpolating for | · | (C) for any < 4. In

fact, we have ( 0 −1( )) = 4ν when 4
√
ν ≤ < 4

√
ν + 1, so ( 0 −1( )) = 4[ 4],

where [ ] = max{ ∈ Z : ≤ }. Since ( 0 −1( )) = 0 for all ∈ [0 1) and
[ 4] ≥ 4 − 1 for all ∈ R, we obtain

( 0 −1( )) =
∫

0

4[ 4]

≥
∫

1

4( 4 − 1)

= 4 − 4 log − 1

Hence for every < 4 there do not exist two constants ,> 0 such that

( 0 −1( )) ≤ +

for all ≥ 0. Then it follows from [3, Corollary 4.8] that −1( ) is not interpolating
for | · | (C) for any < 4.
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