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1. Introduction

Let ν (ν ∈ N, the set of positive integers) beν-codimensional complex affine
subspaces ofC (1 ≤ ν ≤ ). Assume that ν ∩ ν′ = ∅ for ν 6= ν′. Let ν be
the orthogonal complement ofν , where we use the canonical inner product〈 〉 =∑

=1 ¯ on C . Set ν = ν ∩ 2 −1, where 2 −1 = { ∈ C : | | = 1}. Then
Oh’uchi [10] proved the following result:

Theorem A. Let =
⋃
ν∈N ν be an analytic subset ofC consisting of disjoint

complex affine subspacesν . Let be a weight function onC . Then is interpo-
lating for (C ) if and only if there exist 1 . . . ∈ (C ) ( ≥ supν∈N ν) and
constantsε, > 0 such that

⊂ ( 1 . . . ) = { ∈ C : 1( ) = · · · = ( ) = 0}(1.1)

and

∑

=1

| (ζ)| ≥ ε exp(− (ζ))(1.2)

for all ∈ ν , ζ ∈ ν and ν ∈ N.

Here the directional derivative with a vector = (1 . . . ) ∈ 2 −1 is de-
fined by

=
∑

=1

∂

∂
·

Note that by the proof of Theorem A in [10] the above may be set equal to
supν∈N ν when is interpolating for (C ). For the terminologies, see§2. It ex-
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98 S. OH’UCHI

tends the result of Berenstein and Li [2, Theorem 2.5], whichdeals with the case of

ν = for all ν ∈ N.
In the present paper, we would like to discuss the case whereν are algebraic

subsets, not necessarily affine linear. Because of the difficulties to deal with in gen-
eral, we formulate this problem as follows. It is first noted that Theorem A implies
the following corollary:

Corollary 1.1. Let ( 1 . . . ) = (| |) be a radial weight function onC
and set ( 1 . . . ) = (| |), which is a radial weight function onC ( < ). Let

= {ζν}ν∈N be a discrete variety inC . Then ×C − is interpolating for (C )
if and only if is interpolating for (C ).

Corollary 1.1 can be restated as follows: Define a mapping = (1 . . . ) :
C → C by ( ) = ( = 1 . . . ). Then −1( ) is interpolating for (C )
if and only if is interpolating for (C ). Conversely, when is a linear map-
ping from C onto C with rank = , we can reduce the interpolation problem for

−1( ) to that for ′ × C − , where ′ is the image of by some linear mapping
determined by and . By [2, Theorem 2.5],′ is interpolating for (C ) if and
only if is interpolating for (C ). The main result of this paper is as follows:

Main Theorem. Suppose that ≤ . Let = {ζν}ν∈N be a discrete variety in
C and let = ( 1 . . . ) ∈ C[ 1 . . . ] . Put = max =1 ... deg . For > 0,
we assume that
(1) is interpolating for | · | (C );
(2) there exist constantsε, > 0 and a finite subset ofN such that

( )∑

κ=1

|△κ ( )| ≥ ε exp(− | | )

for all ∈ −1(ζν), ν ∈ N \ .
Here the sum is taken over all × minors △κ of Jacobian matrix . Then

−1( ) is interpolating for | · | (C ) for every ≥ .

REMARK. If : C → C is the standard projection with rank = and
( ) = | | , then the sufficiency part of Corollary 1.1 is deduced from the main theo-

rem, where = 1 and = = .

2. Preliminaries

We fix the notation. A plurisubharmonic function :C → [0 ∞) is called a
weight functionif it satisfies
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log(1 + | |2) = ( ( ))(2.1)

and there exist constants1, 2 > 0 such that for all , ′ with | − ′| ≤ 1

( ′) ≤ 1 ( ) + 2(2.2)

A weight function is said to beradial if

( ) = (| |)(2.3)

DEFINITION 2.1. LetO(C ) be the ring of all entire functions onC and let be
a weight function onC . Set

(C ) = { ∈ O(C ) : There exist constants > 0 such that

| ( )| ≤ exp( ( )) for all ∈ C }

Then (C ) is a subring ofO(C ). The following lemma is easily deduced from
(2.1) and (2.2):

Lemma 2.2. Let be a weight function onC . Then the following hold:
(1) C[ 1 . . . ] ⊂ (C ).
(2) If ∈ (C ), then∂ /∂ ∈ (C ) for = 1 . . . .
(3) ∈ O(C ) belongs to (C ) if and only if there exists a constant > 0 such
that

∫

C

| |2 exp(− ) λ <∞

where λ denotes the Lebesgue measure onC .

For the proof, see e.g. [8].

EXAMPLE 2.3. (1) If ( ) = log(1 +| |2), then (C ) = C[ 1 . . . ].
(2) If ( ) = | | ( > 0), then (C ) is the space of entire functions which are of
order = and of finite type, or which are of order< .
(3) If ( ) = | Im | + log(1 +| |2), then (C ) = Ê ′(R ), that is, the space of Fourier
transforms of distributions with compact support onR (see e.g. [7]).
(4) When ( ) = exp| | ( > 0), is a weight function if and only if ≤ 1.

In the rest of this paper, will always represent a weight function.
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DEFINITION 2.4. Let be an analytic subset ofC , and letO( ) be the space of
analytic functions on . Then we define

( ) = { ∈ O( ) : There exist constants > 0 such that

| ( )| ≤ exp( ( )) for all ∈ }

DEFINITION 2.5. An analytic subset ofC is said to be interpolating for
(C ) if the restriction map : (C ) → ( ) defined by ( ) = | is

surjective.

The semilocal interpolation theorem by [4] is useful to showan analytic subset to
be interpolating. Let be given by

= ( 1 . . . ) = { ∈ C : 1( ) = · · · = ( ) = 0}

with 1 . . . ∈ (C ). Then for ε, > 0, we define

( ; ε ) =





∈ C : | ( )| =


∑

=1

| ( )|2



1/2

< ε exp(− ( ))





which is an open neighborhood of . We recall the semilocal interpolation theorem of
[4].

Semilocal Interpolation Theorem. Let be a holomorphic function in ( ; ε )
such that

| ( )| ≤ 1 exp( 1 ( ))

for all ∈ ( ; ε ), where ε, > 0. Then there exist an entire function
∈ (C ), constantsε1, 1, , > 0 and holomorphic functions 1 . . . in

( ; ε1 1) such that

( ) − ( ) =
∑

=1

( ) ( )

and

| ( )| ≤ exp( ( ))

for all ∈ ( ; ε1 1) and = 1 . . . . In particular, = on the variety =
( 1 . . . ).
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3. Ap-interpolation on algebraic subsets

To prove the main theorem, we first show the following result:

Theorem 3.1. Every algebraic subset ⊂ C is interpolating for (C ).

We assume that is irreducible until we begin the proof of Theorem 3.1 after
Lemma 3.17. Then we have the prime ideal⊂ C[ 1 . . . ] such that = −1(0) =
{ ∈ C : ( ) = 0 for all ∈ }. Defining the terminology, we state the normaliza-
tion theorem.

Normalization Theorem. After a suitable linear change of coordinates, the fol-
lowing conditions hold:
(1) There exists ∈ {0 1 . . . −1} such that ∩C[ 1 . . . ] = {0} and the factor
ring C[ 1 . . . ]/ is a finitely generatedC[ 1 . . . ]-module.
Here we set ′ = ( 1 . . . ) ∈ C and ′′ = ( +1 . . . ) ∈ C − .
(2) There exists 0 > 0 such that| + | ≤ 0(1+| ′|) for all ∈ and = 1 . . . −
.

(3) contains irreducible polynomials

( ′
+ ) = µ

+ + 1( ′) µ−1
+ + · · · + µ( ′)

of degreeµ, where ν ∈ C[ 1 . . . ].
Let α1( ′) . . . αµ( ′) be the roots of 1( ′

+1) as a polynomial in +1. Then we
denote by ( ′) the discriminant of 1 as a polynomial in +1, that is,

( ′) =
∏

ν 6=ν′

(αν( ′) − αν′( ′))

(4) We have polynomials ∈ C[ 1 . . . + ] ( = 2 . . . − ) with ( ′) + −
( ′

+ ) ∈ .
Put 0 = \ −1(0).
(5) 0 is an open dense subset of and aµ-dimensional complex submanifold of
C \ −1(0).
Let π : C ∋ = ( ′ ′′) 7→ ′ ∈ C be the projection.
(6) π is a finiteµ-fold covering map from 0 onto C \ −1(0).

For the proof, see e.g. [6, Theorem A.1.1 in Chapter 3], [9, Proposition 7.7.3].
For ε > 0, > 0 andξ ∈ C , we define the polydisc

ε (ξ) = { ∈ C : | − ξ | < ε(1 + |ξ|)− (∀ = 1 . . . )}
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For the given ∈ ( ), we take , > 0 such that

| ( )| ≤ exp( ( )) ∀ ∈

Lemma 3.2. We haveε, , 1, 1 > 0 satisfying: for all ξ ∈ there exists
∈ O( ε (ξ)) such that − = 0 on ∩ ε and

| ( )| ≤ 1 exp( 1 ( )) ∈ ε (ξ)

Proof. If dim = = 0, consists of only one point, so the lemma is trivial.
Then we assume that 1≤ ≤ − 1. To apply the normalization theorem, we give a
suitable linear change of coordinates. Set

′
ε (ξ) = { ′ ∈ C : | − ξ | < ε(1 + |ξ|)− (∀ = 1 . . . )}

Here we need the following lemma:

Lemma 3.3. There existsε > 0 such that for all ξ ∈ we have (ξ) ∈
{1 . . . 2µ− 1} ( = 1 . . . − ) satisfying that if

= ( ′ ′′) ∈ ′
ε 2µ−2(ξ) × C − and | + − ξ + | = (ξ)(3.1)

for some = 1 . . . − , then /∈ .

Proof. It is sufficient to prove that| 1( )| ≥ 1/2 for satisfying (3.1). Factoriz-
ing 1, we have

1(ξ1 . . . ξ +1) = ( +1 − α1(ξ′)) · · · ( +1 − αµ(ξ′))

Then there exists 1(ξ) ∈ {1 . . . 2µ − 1} such that for| +1 − ξ +1| = 1(ξ) we have
| +1 − α1(ξ′)| . . . | +1 − αµ(ξ′)| ≥ 1, and hence| 1(ξ1 . . . ξ +1)| ≥ 1. In fact,
we set{|α1(ξ′) − ξ +1| . . . |αµ(ξ′) − ξ +1|} = {γ1 . . . γµ̂} (µ̂ ≤ µ) as sets, and we
assume thatγ1 < γ2 < · · · < γµ̂. Since 1(ξ) = 0, we haveγ1 = 0. Here we would
like to find the minimal positive integer1(ξ) satisfying γν ≤ 1(ξ) − 1 and γν+1 ≥

1(ξ) + 1 for someν. For example, ifγ2 ≥ 2, then we can take1(ξ) = 1. In the case
where we have suchν, 1(ξ) is maximal if and only ifγ2 ∈ (1 2), γ3 ∈ (3 4) . . .,
γµ̂−1 ∈ (2µ̂ − 5 2µ̂ − 4) andγµ̂ ≥ 2µ̂ − 2. In this case, we can take1(ξ) = 2µ̂ − 3.
If there exists no suchν, that is,γ2 ∈ (1 2), γ3 ∈ (3 4) . . . γµ̂−1 ∈ (2µ̂− 5 2µ̂− 4)
and γµ̂ ∈ (2µ̂ − 3 2µ̂ − 2), then we take 1(ξ) = 2µ̂ − 1. Hence we can take1(ξ) ∈
{1 . . . 2µ− 1} satisfying the above condition.

Here we would like to takeε ∈ (0 1) so that if | 1 − ξ1| . . . | − ξ | < ε(1 +
|ξ|)−2µ+2 and | +1 − ξ +1| = 1(ξ), then | 1( 1 . . . +1) − 1(ξ1 . . . ξ +1)| ≤
1/2. Let be the maximum of moduli of all coefficients in1 1 . . . 1 µ. We can
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write

| 1( 1 . . . +1) − 1(ξ1 . . . ξ +1)|(3.2)

≤
∑

|β|≤1

| β1
1 · · · β − ξβ1

1 · · · ξβ || +1|µ−1

+ · · · +
∑

|β|≤µ
| β1

1 · · · β − ξβ1
1 · · · ξβ |

where β = (β1 . . . β ) is a multi-index and|β| = β1 + · · · + β . Here we have the
following estimates:
(1) Since| +1 − ξ +1| = 1(ξ),

| +1| ≤ |ξ +1| + 1(ξ) ≤ |ξ| + 2µ− 1 ≤ (2µ− 1)(1 + |ξ|)

(2) Since| |, |ξ| < |ξ| + ε(1 + |ξ|)−2µ+2 ≤ 1 + |ξ|, we obtain

| β1
1 · · · β − ξβ1

1 · · · ξβ |(3.3)

≤ | β1
1 · · · β − β1

1 · · · β −1

−1
β −1ξ |

+ · · · + | 1ξ
β1−1
1 ξβ2

2 · · · ξβ − ξβ1
1 · · · ξβ |

= | − ξ || β1
1 · · · β −1

−1
β −1| + · · · + | 1 − ξ1||ξβ1−1

1 ξβ2
2 · · · ξβ |

≤ |β|ε(1 + |ξ|)−2µ+2(1 + |ξ|)|β|−1

≤ µε(1 + |ξ|)−µ+1

where the number of terms in (3.3) is|β|.
(3) The number of terms in

∑
|β|≤ν |

β1
1 · · · β − ξβ1

1 · · · ξβ || +1|µ−ν is bounded from
above by

1 + + · · · + ≤ 1 + + · · · + µ ≤ (µ + 1) µ

It follows from (3.2) and these estimates that

| 1( 1 . . . +1) − 1(ξ1 . . . ξ +1)| ≤ µ2(µ + 1)µ−1 µε

Hence, we set

ε =
1

2 µ2(µ + 1)µ−1 µ

and then the lemma holds for allξ ∈ .

For simplification, we fixξ ∈ and put ′ = ′
ε 2µ−2(ξ), ′′ = { ′′ ∈ C − :

| + −ξ + | < (ξ) for all = 1 . . . − } and = ′× ′′. By Lemma 3.2,π| ∩ :
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∩ → ′ is proper. It follows from the normalization theorem that′ \ −1(0) is
connected and

π|( ∩ )\ −1(0) : ( ∩ ) \ −1(0) → ′ \ −1(0)

is a µ̃-fold covering mapping with 1≤ µ̃ ≤ µ. For ′ ∈ ′ \ −1(0), by renumbering
α1( ′) . . . αµ( ′) we haveα1( ′) . . . αµ̃( ′) ∈ { +1 ∈ C : | +1 − ξ +1| < 1(ξ)}.
Since symmetric polynomials ofα1 . . . αµ̃ are bounded holomorphic functions in

′ \ −1(0), it follows from Riemann’s Extension Theorem that they extend to holo-
morphic functions in ′. Hence

′( ′) =
∏

1≤ < ′≤µ̃
(α ( ′) − α ′( ′))2

is holomorphic in ′.
Let π−1( ′) ∩ ∩ = {τ1( ′) . . . τµ̃( ′)} as sets such that

{(τ1( ′)) +1 . . . (τµ̃( ′)) +1} = {α1( ′) . . . αµ̃( ′)}

for ′ ∈ ′ \ −1(0), where (τ ( ′)) +1 (1 ≤ ≤ µ̃) denote the ( + 1)-th coordinate of
τ ( ′). Then there existϕ0( ′) . . . ϕµ̃−1( ′) ∈ C uniquely such that

(τ ( ′)) = ϕ0( ′) + ϕ1( ′)α ( ′) + · · · + ϕµ̃−1( ′)α ( ′)µ̃−1(3.4)

for all = 1 . . . µ̃ and ′ ∈ ′ \ −1(0). In fact, if we think (3.4) to be a system of
linear equations inϕ0( ′) . . . ϕµ̃−1( ′), the determinant (′) of its coefficient matrix
A is given by

( ′) = det




1 · · · 1
α1( ′) · · · αµ̃( ′)

...
...

α1( ′)µ̃−1 · · · αµ̃( ′)µ̃−1




=
∏

1≤ < ′≤µ̃
(α ( ′) − α ′( ′)) 6= 0 ∀ ′ ∈ ′ \ −1(0)

Then ( ′)2 = ′( ′) and Cramer’s rule gives

( ′)ϕ ( ′) =
µ̃∑

=1

( ′) (τ ( ′))

for all = 0 . . . µ̃ − 1, where ( )=1 ... µ̃; =0 ... µ̃−1 is the cofactor matrix ofA. It
follows from the normalization theorem (2) that

|α ( ′)| ≤ 0(1 + | ′|)(3.5)
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for all ′ ∈ ′ and = 1 . . . µ̃. Thus, we have

Lemma 3.4. There exist 3 > 0 and ω ∈ N depending only on 1 such that

| ′( ′)ϕ ( ′)| ≤ 3 ( )(1 + | ′|)ω

for all ′ ∈ ′ \ −1(0) and = 0 . . . µ̃−1, where ( ) = sup{| ( )| : ∈ ∩ }.

For the other rootsαµ̃+1( ′) . . . αµ( ′) of 1, setting

′′( ′) =
∏

1≤ ≤µ

µ̃+1≤ ′≤µ

(α ( ′) − α ′( ′))2

we have = ′ ′′. Since (3.5) hold for = ˜µ + 1 . . . µ, we obtain 4 > 0 satisfying

| ′′( ′)| ≤ 4(1 + | ′|)µ(µ−1)−µ̃(µ̃−1)

≤ 4(1 + | ′|)µ(µ−1)

Hence there exist 5 > 0 andω′ ∈ N independent of ˜µ such that

| ( ′)ϕ ( ′)| ≤ 5 ( )(1 + | ′|)ω′

for all ′ ∈ ′ \ −1(0). In particular, all ϕ are bounded holomorphic functions. By
Riemann’s extension theorem, they extend to holomorphic functions in ′.

Since is a weight function, we have′, ′ > 0 indepedent ofξ satisfying

( ) ≤ ′ exp( ′ (ξ))

Set

( ) = ( ′)ϕ0( ′) + ( ′)ϕ1( ′) +1 + · · · + ( ′)ϕµ̃−1( ′) µ̃−1
+1

By the definition of weight functions, there exist1, 1 > 0 independent ofξ such
that

| ( )| ≤ | ( ′)ϕ0( ′)| + | ( ′)ϕ1( ′)|| +1| + · · · + | ( ′)ϕµ̃−1( ′)|| +1|µ̃−1

≤ µ̃ 5
′ exp( ′ (ξ))(1 + | |)ω′+µ̃−1

≤ 1 exp( 1 ( ))

for all ∈ ε 2µ−2(ξ). Finally, it follows from (3.4) that

=(3.6)
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in ( \ −1(0)) ∩ ε 2µ−2(ξ). Since \ −1(0) is dense in , (3.6) holds on ∩
ε 2µ−2(ξ). The proof of Lemma 3.2 is completed.

We next solve the Cousin first problem with estimates. We shall use some results
from [9].

Lemma 3.5 ([9, Lemma 7.6.1]). Let : R2 → (0 1] be a function such that

( + ) ≤ 2 ( ) if | |∞ = max
=1 ... 2

| | ≤ 1(3.7)

Then there exist an open coveringU = { } ∈ ( ) of R2 with open cubes , a
partition of unityχ ∈ ∞

0 ( ) and 6 > 0 such that
(1) | − |∞ ≤ ( ) for all ∈ and ∈ ( );
(2) ♯{ ′ ∈ ( ) : ′ ∩ 6= ∅} ≤ 28 for all ∈ ( ).
(3) |

(
∂χ /∂ ν

)
( )| ≤ 6/

(
( )
)

for all ∈ ( ), ν = 1 . . . 2 and ∈ R2 .
(4) Let ′ be another function satisfying(3.7) and 0 < ′ ≤ . There exists a refine-
mentU ′

of U defined by a mappingρ ′ : ( ′) → ( ) with ρ ′′ = ρ ′ ◦ ρ ′ ′′

satisfying (1), (2) and (3). Moreover, if ′ ≤ ε̃ , ε̃ < 1/64, ′ ∈ ( ′), = ρ ′ ( ′)
and ∈ ′

′ , then

′

′ ⊂ { ∈ R2 : | − |∞ < ε̃ ( )}

and

⊃
{

∈ R2 : | − |∞ <

(
1
64

− ε̃

)
( )

}

For = ( 0 . . . σ) ∈ ( )σ+1 we denote =
0
∩· · ·∩

σ
. Let be a cochain

in σ(U O) and letϕ be a plurisubharmonic function inC . Then we write

‖ ‖2
ϕ =

∑

∈ ( )σ+1

∫
| |2 exp(−ϕ) λ

We also define a coboundary operatorδ : σ(U O) → σ+1(U O) by

(δ ) ∈ ( )σ+2 =
σ+1∑

ν=0

(−1)ν ( 0 ... ˇ
ν ... σ+1)

Lemma 3.6 ([9, Proposition 7.6.2]). Let − log be a plurisubharmonic function
on C . For every ∈ σ(U O) (σ > 0) with δ = 0 and ‖ ‖ϕ < ∞, we can find
a cochain ′ ∈ σ−1(U O) such thatδ ′ = and ‖ ′‖ψ ≤ 1‖ ‖ϕ, whereψ is a
plurisubharmonic function inC defined by

ψ( ) = ϕ( ) − σ log ( ) + 2 log(1 +| |2)
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and 1 is a constant independent ofϕ, and .

Let

=




1 1 · · · 1
...

...

1 · · ·




be a matrix with polynomial elements. Then defines the sheaf homomorphism

: O ∋ 7→ ∈ O(3.8)

Lemma 3.7 ([9, Lemma 7.6.3]). The kernelker of the sheaf homomorphism
(3.8) is generated by the germs of a finite number of = ( 1 . . . ) ∈
C[ 1 . . . ] ( = 1 . . . ) satisfying

∑

=1

λ = 0

for all λ = 1 . . . and = 1 . . . .

Lemma 3.8 ([9, Lemma 7.6.4]). Let be a pseudoconvex domain and let
and be matrixes inLemma 3.7. Then if = ( 1 . . . ) ∈ O( ) satisfies

∑

=1

λ = 0

for all λ = 1 . . . , there exists = ( 1 . . . ) ∈ O( ) such that

=
∑

=1

for all = 1 . . . . In particular, ker = Im holds.

By putting = 1, Lemmas 3.7 and 3.8 imply thatO( ) is a flat C[ 1 . . . ]-
module. This fact will play an important role later.

The following lemma gives estimates of solutions of the equation = for ∈
Im :

Lemma 3.9 ([9, Lemma 7.6.5]). Let be a neighborhood of0 ∈ C . Then we
have a neighborhood ′ of 0 ∈ C and constants 7, 1 satisfying that for allη ∈
(0 1), ∈ C and ∈ O(η +{ }) , there exists ∈ O(η ′+{ }) such that =
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and

sup
η ′+{ }

| | ≤ 7(1 + | |) 1η− 1 sup
η +{ }

| |

Here η + { } = {η + : ∈ }.

We now prove a lemma important to solve the Cousin first problem with esti-
mates. Let :O → O be the sheaf homomorphism as above. ThenM = Im
is a subsheaf ofO generated by (1 . . . ) for = 1 . . . . We denote by
σ(U M ) the set of cochains ={ } ∈ ( )σ+1 ∈ σ(U M ) satisfying

‖ ‖2 =
∑

∈ ( )σ+1

∫
| |2 exp(− ) λ <∞

Lemma 3.10 (cf. [9, Lemma 7.6.10]). We assume that− log is a plurisubhar-
monic function. Then we have2, 2 > 0 and ε0 < 1/192 satisfying that for all
∈ σ(U M ) (σ > 0) with δ = 0, there exists ′ ∈ σ−1(Uε0 M 2) such

that δ ′ = ρ ε0
∗ and

‖ ′‖
2
≤ 2‖ ‖

where 2( ) = 2( ( ) − log ( ) + log(1 +| |2)).

Proof. Applying Lemma 3.9 for :={ ∈ C : | |∞ < 1}, we have ∈ (0 1)
and constants 7, 1 satisfying for all η ∈ (0 1), ξ ∈ C and ∈ O(η + {ξ}) ,
there exists ∈ O(η ′ + {ξ}) such that = and

sup
η ′+{ξ}

| | ≤ 7(1 + |ξ|) 1η− 1 sup
η +{ξ}

| |(3.9)

where ′ = { ∈ C : | |∞ < }. For ε̃ < 1/128, it follows from Lemma 3.5 (4) that
if ′ ∈ (ε̃ ), = ρ ε̃ ( ′) and ξ ∈ ε̃

′ , then

ε̃
′ ⊂ ε̃ (ξ) + {ξ} ⊂

(
1
64

− ε̃

)
+ {ξ} ⊂(3.10)

Here defining ˜ε := /(128(2 + )) (≤ 1/384) andη := (1/128− ε̃/2) (ξ), we have
ε̃ (ξ) < η, hence (3.10) implies that

ε̃
′ ⊂ η + {ξ} = η ′ + {ξ}(3.11)

On the other hand, we haveη < (1/96) (ξ) < ((1/64)− ε̃) (ξ), that is,

η + {ξ} ⊂⊂ 1
96

(ξ) ⊂
(

1
64

− ε̃

)
(ξ) ⊂(3.12)
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Then for ′ = ( ′
0 . . . ′

σ) ∈ (ε̃ )σ+1 = ρ ε̃ ( ′) := (ρ ε̃ ( ′
0) . . . ρ ε̃ ( ′

σ)) and
ξ ∈ ε̃

′ , we obtain from (3.11) and (3.12)

ε̃
′ ⊂ η ′ + {ξ} ⊂ η + {ξ} ⊂⊂ 1

96
(ξ) + {ξ} ⊂(3.13)

Hence it follows from (3.9) that for all ∈ O( ) (⊂ O(η + {ξ}) ) there exists
∈ O(η ′ + {ξ}) such that = and

sup
ε̃
′

| | ≤ 7(1 + |ξ|) 1η− 1 sup
η +{ξ}

| |(3.14)

By [9, Theorem 2.2.3], (3.12) implies that there exists8 > 0 independent ofξ such
that

sup
η +{ξ}

| | ≤ 8‖ ‖ 1((1/96) (ξ) +{ξ})

for all ∈ O( ). It follows from Schwarz’s inequality that

sup
η +{ξ}

| | ≤ 8
(
‖( )1‖ 1((1/96) (ξ) +{ξ}) + · · · + ‖( ) ‖ 1((1/96) (ξ) +{ξ})

)

≤ 8

(∫

(1/96) (ξ) +{ξ}
| |2 λ

)1/2

≤ 8

(∫
| |2 λ

)1/2

Since is a weight, by Lemma 3.5 (1) there exist′1, ′
2 > 0 independent of and

such that (′) ≤ ′
1 ( ) + ′

2 for , ′ ∈ . Then we obtain

exp(− ′
1 (ξ))

∫
| ( )|2 λ( ) ≤ ′

2

∫
| ( )|2 exp(− ( )) λ( )

Hence it follows from (3.7) that

| (ξ)|2(1 + |ξ|2)−2 1 (ξ)2 1 exp(− ′
1 (ξ)) ≤ 9

∫
| ( )|2 exp(− ( )) λ( )

where 9 = 7 822 1(1/128− ε̃/2)−2 1
′
2 . Therefore putting ′

2 = max{ 1
′
1}, we

obtain
∫

ε̃
′

| (ξ)|2 exp(− ′
2
(ξ)) λ(ξ) ≤ 9

∫
| ( )|2 exp(− ( )) λ( )(3.15)

We prove this lemma by induction for decreasingσ. Note that it is valid when
σ = 28 + 1, since σ(U · ) = {0} by Lemma 3.5 (2). We assume that it have been
proved for all whenσ is replaced byσ + 1. By [9, Lemma 7.2.9], there existsγ ∈
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σ(U O ) such that = γ for all ∈ ( )σ+1. To obtain contorol ofγ we
pass to the refinementU ε̃ for which (3.15) is applicable. Then we can chooseγ′ ′ ∈
O( ǫ̃

′ ) ( ′ ∈ (ε̃ )σ+1) so that with =ρ ε̃
′ we have

γ′ ′ = γ =(3.16)

in ε̃
′ and

∫

ε̃
′

|γ′ ′ |2 exp(− ′
2
) λ ≤ 9

∫
| |2 exp(− ) λ

Here we need to culculate♯ρ−1
ǫ̃ ( ) to give the estimate of‖γ′‖ ′

2
. For the refinement

U ε̃2
of U ε̃ , it follows from Lemma 3.5 (4) that

ε̃
′ ⊃

{
∈ C : | − ξ|∞ < ε̃

(
1
64

− ε̃

)
(ξ)

}

for ξ ∈ ε̃2

′′ and ′ = ρε̃ ε̃2 ( ′′). On the other hand, we know

⊂ { ∈ C : | − ξ|∞ < (ξ)}

Hence it follows from Lemma 3.5 (2) that

♯ρ−1
ε̃ ( ) ≤ 28

(
ε̃

32
− 2ε̃2

)−2

=: 10

Thus we obtain

‖γ′‖2
′
2

=
∑

′∈ (ε̃ )σ+1

∫

ε̃
′

|γ′ ′ |2 exp(− ′
2
) λ(3.17)

≤ 10

∑

∈ ( )σ+1

9

∫
| |2 exp(− ) λ

= 10 9‖ ‖2

It also follows from (3.16) that γ′ = ρ ε̃
∗ . Since δ = 0 and is defined glob-

ally, we have δγ′ = δ γ′ = 0. Thus δγ′ = γ′′ belongs to σ+1(U ε̃ ker ′
2
),

and δγ′′ = 0. If we choose a × matrix as in Lemma 3.8, it follows that
ker = Im = M , so the inductive hypothesis can be applied. It shows that we
can find ˆǫ < ǫ̃, ′′

2 > ′
2 and ′

2 > 0 such that for someγ′′′ ∈ σ(U ǫ̂ ker ′′
2

)
we have‖γ′′′‖ ′′

2
≤ ′

2‖γ′′‖ ′
2

and δγ′′′ = ρε̃ ε̂
∗γ′′.

Setting γ̃ = ρε̃ ε̂
∗γ′ − γ′′′ ∈ σ(U ε̂ O ), we haveδγ̃ = ρε̃ ε̂

∗γ′′ − δγ′′′ = 0,
and for some 11 independent of we have‖γ̃‖ ′′

2
≤ 11‖ ‖ by the same method
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that we have proved (3.17). Hence Lemma 3.6 shows that for some ′′′
2 > 0 we can

find γ̂ ∈ σ−1(U ε̂ O ) so that ˜γ = δγ̂ and ‖γ̂‖ ′′′
2

≤ 1‖γ̃‖ ′′
2
≤ 1 11‖ ‖ . If we

set ′ = γ̂, it follows that

δ ′ = δγ̂ = γ̃ = ρε̃ ε̂
∗γ′ − γ′′′ = ρε̃ ε̂

∗ γ′ = ρε̃ ε̂
∗ρ ε̃

∗ = ρ ε̂
∗

Finally, it is clear that there exists 2, 2 > 0 such that‖ ′‖
2
≤ 2‖ ‖ , because

it is sufficient to consider the estimate about . The proof of the lemma is finished.

We shall apply Lemma 3.10 to the following settings. Put

( ) =
ε

2
√

2
(2
√

2 (2µ− 2) + | |)2−2µ

whereε andµ are decided before.

Lemma 3.11. has the following properties:
(1) If ∈ C and | |∞ ≤ 1, then we have ( + ) ≤ 2 ( ) for all ∈ C . Hence
there exists an open coveringU = { } ∈ ( ) satisfyingLemma 3.5.
(2) − log ( ) is a plurisubharmonic function.
(3) If ∈ U and ∩ 6= ∅, then ⊂ ε 2µ−2(ξ) holds for everyξ ∈

∩ .

Proof. The lemma is clear whenµ = 1, so we assume thatµ ≥ 2.
(1) If ∈ C and | |∞ ≤ 1, then | | ≤ | + | + | | ≤ | + | +

√
2 . Hence we have

( ) =
ε

2
√

2
(2
√

2 (2µ− 2))2−2µ

(
1 +

| |
2
√

2 (2µ− 2)

)2−2µ

≥ ε

2
√

2
(2
√

2 (2µ− 2))2−2µ

(
1 +

| + |
2
√

2 (2µ− 2)
+

1
2(2µ− 2)

)2−2µ

≥ ε

2
√

2
(2
√

2 (2µ− 2))2−2µ

(
1 +

| + |
2
√

2 (2µ− 2)

)2−2µ(
1 +

1
2(2µ− 2)

)2−2µ

≥ 1
2
· ε

2
√

2
(2
√

2 (2µ− 2))2−2µ

(
1 +

| + |
2
√

2 (2µ− 2)

)2−2µ

≥ 1
2

( + )

since (1 + 1/2ν)−ν ց exp(−1/2)> 1/2 asν → ∞.
(2) is clear.

(3) Fix ξ ∈ ∩ . It follows from Lemma 3.5 (1) that| − ξ|∞ ≤ (ξ) for all
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∈ . Hence we obtain

| − ξ | ≤ ε(2
√

2 (2µ− 2) + |ξ|)2−2µ

2
< ε(1 + |ξ|)2−2µ

for all = 1 . . . , so ∈ ε 2µ−2(ξ).

Since the polynomial ringC[ 1 . . . ] is Noetherian, the prime ideal is
finitely generated by 1 . . . ∈ C[ 1 . . . ]. Let = ( 1 . . . ) be a 1×
matrix.

Lemma 3.12. There exists˜ ∈ (C ) such that ˜ | ≡ .

Proof. It follows from Lemma 3.2 and Lemma 3.11 (3) that if ∈ U and

∩ 6= ∅, then there existξ ∈ and ∈ O( ε 2µ−2(ξ)) such that − = 0
on ∩ ε 2µ−2(ξ) and

| ( )| ≤ 1 exp( 1 ( ))(3.18)

for every ∈ ε 2µ−2(ξ). We also put = 0, when ∩ = ∅. We would like to
apply Lemma 3.10 forσ = 1. Defining ∈ 1(U O) by ( 0 1) = 0 − 1, we have

0 − 1 = − = 0 on ∩
0
∩

1
. It follows from (3.18) and Lemma 3.5

(2) that there exists 12 > 0 such that‖ ‖ 12 < ∞. On the other hand, it is clear
that δ = 0, that is, ∈ 1(U M 12 ). Hence Lemma 3.10 givesε0 < 1/384,

2, 2 > 0 and ′ ∈ 0(Uε0 M 2) so that δ ′ = ρ ε0
∗ and ‖ ′‖

2
≤

2‖ ‖ 12 . It follows from the definition of weight functions that there exists 3 >

0 such that‖ ′‖ 3 ≤ 2‖ ‖ 12 . Here we put ˜ = + ′
′ in ε0

′ , where =
ρ ε0 ( ′). Then ˜ belongs toO(C ) and Lemma 2.2 (3) gives̃ ∈ (C ).

Here we make ˆ ∈ (C ) with the required properties from̃ ∈ (C )
made in Lemma 3.12. We shall use some result in the ring thoery. For an ideal ⊂
C[ 1 . . . ], we set ˜ = O(C ) ⊗C[ 1 ... ] = O(C ) .

Lemma 3.13 (cf. [6, Lemma 3.5 in Chapter 8]).For two ideals 1 and 2 in

C[ 1 . . . ], ˜( 1 ∩ 2) = 1̃ ∩ 2̃.

For ∈ C[ 1 . . . ], set ( : ) ={ ∈ C[ 1 . . . ] : ∈ } and (̃ : ) =
{ ˜ ∈ O(C ) : ˜ ∈ ˜}.

Lemma 3.14 (cf. [6, Lemma 3.6 in Chapter 9]).For an ideal ⊂ C[ 1 . . . ],

( ˜ : ) = (̃ : ).
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Note that Lemmas 3.13 and 3.14 follow from the flatness ofO(C ).

Lemma 3.15 (cf. [6, Lemma 3.13 in Chapter 8]).Let ⊂ C[ 1 . . . ] be a
primary ideal. Set = { ∈ C : ( ) = 0 for all ∈ }. Then we have( : ) = ,
if | 6≡ 0.

Proof. Since it is obvious that ⊂ ( : ), we have only to prove that ⊃ ( :
). For ∈ ( : ), it follows ∈ . Assuming that /∈ , we have ν ∈ for

someν ∈ N, since is a primary ideal. Hence it follows that| ≡ 0, which is a
contradiction.

Here we can prove the following lemma by an argument similar to the proof of
Lemma 3.12:

Lemma 3.16 (cf. [9, Theorem 7.6.11]). Let ⊂ C[ 1 . . . ] be an ideal gen-
erated by 1 . . . . If ∈ ˜ ∩ (C ), then there exist 1 . . . ∈ (C ) such
that

= 1 1 + · · · +

[9, Theorem 7.4.8] also implies that there exists˜ ∈ O(C ) with no growth con-
ditions such that˜ | ≡ .

Lemma 3.17. We haveˆ ∈ (C ) satisfying that ˆ − ˜ ∈ ˜ , that is, ˆ | ≡ .

Proof. Let ∈ C[ 1 . . . ] be the ideal generated by1 . . . and . By
Lemma 3.12, it follows that˜ − ˜ ∈ ˜ , that is, ˜ ∈ ˜ . Applying Lemma 3.16 to

, we have 1 . . . ∈ (C ) satisfying that

˜ = 1 1 + · · · + +

Here if we set ˆ = , then ˆ − ˜ = ( ˆ − ˜ ) ∈ ˜ . Hence it follows from Lemmas
3.14 and 3.15 that

ˆ − ˜ ∈ ( ˜ : ) = ˜( : ) = ˜

so that ˆ | ≡ .

Proof of Theorem 3.1. Let ⊂ C be an algebraic subset. Then there exist a
finite number of irreducible algebraic varieties1 . . . such that = 1 ∪ · · · ∪

. We shall prove Theorem 3.1 by induction on . When = 1, we have already
proved in Lemma 3.17. Here we can assume that = 2, since the proofs for ≥
3 are the same as for = 2. Then we have =1 ∪ 2 and = 1 ∩ 2. For
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∈ ( ), it follows from [9, Theorem 7.4.8] that there exists˜ ∈ O(C ) with no
growth conditions such that̃ | ≡ . Since the theorem is valid for1 (resp. 2), we
have ˆ1 ∈ (C ) (resp. ˆ2 ∈ (C )) such that ˆ1| 1 ≡ (resp. ˆ2| 2 ≡ ). Let

1 . . . 1 (resp. 1 . . . 2) generate 1 (resp. 2). If ⊂ C[ 1 . . . ] is the
ideal generated by 1 . . . 1 1 . . . 2, we have 1∩ 2 ⊂ . Since ˆ1− ˜ ∈ ˜

1

and ˆ2 − ˜ ∈ ˜
2, it follows that

ˆ1 − ˆ2 = ( ˆ1 − ˜ ) − ( ˆ2 − ˜ ) ∈ ˜
1 − ˜

2 ⊂ ˜

Applying Lemma 3.16 to , we have1 . . . 1, 1 . . . 2 ∈ (C ) satisfying

ˆ1 − ˆ2 = 1 1 + · · · + 1 1 + 1 1 + · · · + 2 2

Here we set

ˆ = ˆ1 − ( 1 1 + · · · + 1 1) = ˆ2 + ( 1 1 + · · · + 2 2)

Then sinceˆ1 − ˜ ∈ ˜
1 and ˆ2 − ˜ ∈ ˜

2, it follows from Lemma 3.13 that

ˆ − ˜ ∈ ˜
1 ∩ ˜

2 = ˜( 1 ∩ 2) = ˜

so that ˆ | ≡ . Thus the proof of Theorem 3.1 is finished.

4. Proof of the main theorem

Applying Theorem A for ={ζν}, we have 1 . . . ∈ O(C ) and constants
ε1, 3, , > 0 with

| (ζ)| ≤ exp( |ζ| )(4.1)

for all ζ ∈ C and = 1 . . . ,

( 1 . . . ) ⊃(4.2)

and

∑

=1

| (ζν)| ≥ ε1 exp(− 3|ζν | )(4.3)

for all ν ∈ N and ∈ 2 −1. Fix ν ∈ N and ∈ 2 −1. Set ˜
ν ( ) = (ζν + ),

which is an entire function onC. It follows from the chain rule that

˜ ′
ν (0) =

∑

=1

∂

∂ξ
(ζν) · = (ζν)
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Hence from (4.3), there exists (ν ) ∈ {1 . . . } such that

| ˜ ′
(ν ) ν (0)| ≥ ε1 exp(− 3|ζν | )(4.4)

In the rest of the proof, we denotẽ (ν ) ν by ˜ (ν ). Put ν = { ∈ C :
˜ (ν )( ) = 0}, which contains 0 by (4.2), andν = min{1 dist(0 ν \ {0})}.
From (4.1), we have| (ν ) ν (ζν + )| ≤ exp( |ζν + | ) for | | ≤ 1. Since
|(ζν + ) − ζν | = | | = | | ≤ 1 and | · | is a weight function, there exists1,

1 > 0 independent ofν and such that

| ˜ (ν )( )| ≤ 1 exp( 1|ζν | )(4.5)

Set ν ( ) = ˜ (ν )( )/ . Since ˜ (ν ) has zero of order only one at = 0 by (4.2)
and (4.4), we obtain ν ∈ (C) and

ν (0) = ˜ ′
(ν )(0) 6= 0(4.6)

It is satisfied for| | = 1 that

| ν ( )| =
| ˜ (ν )( )|

| | = | ˜ (ν )( )| ≤ 1 exp( 1|ζν | )

Hence it follows from the Maximal Modulus Theorem that

| ν ( )| ≤ 1 exp( 1|ζν | )(4.7)

for | | ≤ 1. We denote ν ∈ (C) by

ν ( ) = ν ( ) − ν (0)
3 1 exp( 1|ζν | )

Then we have ν (0) = 0 and (4.7) gives that| ν ( )| < 1 for | | ≤ 1. Hence
the Schwarz lemma implies that| ν ( )| ≤ | | for | | ≤ 1. In particular, for ˜ ∈
( ν \ {0}) ∩ { ∈ C : | | < 1}, which is a zero of ν in { ∈ C : | | < 1}, we
have from (4.4) and (4.6)

| ˜ | ≥ | ν ( ˜ )| =
| ν (0)|

3 1 exp( 1|ζν | )
=

| ˜ ′
(ν )(0)|

3 1 exp( 1|ζν | )
≥ ε2 exp(− 4|ζν | )

whereε2 and 4 are independent ofν and . Thus the definition ofν gives that

ν ≥ ε2 exp(− 4|ζν | )(4.8)

Now, we need the Borel-Carathèodory inequality. (For the proof, see e.g. [1, Corollary
4.5.10].)
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Borel-Carathèodory inequality. Let be a function which is holomorphic in a
neighborhood of| | ≤ and has no zero in| | < . If (0) = 1 and 0 ≤ | | ≤ <

, then the following estimate holds:

log | ( )| ≥ − 2
− log max

|ω|=
| (ω)|

Since ν (0) 6= 0 from (4.6), we apply this inequality to ( ) =ν ( )/ ν (0),
= ν and = ν /2 to obtain

log

∣∣∣∣
ν ( )

ν (0)

∣∣∣∣ ≥ − 2 · ν /2

ν − ν /2
log max

|ω|= ν

∣∣∣∣
ν (ω)

ν (0)

∣∣∣∣

= −2 log max
|ω|= ν

∣∣∣∣
ν (ω)

ν (0)

∣∣∣∣

for | | ≤ ν /2. Then it follows from (4.4), (4.6) and (4.7) that

| ν ( )| ≥ | ν (0)|
(

max
|ω|= ν

∣∣∣∣
ν (ω)

ν (0)

∣∣∣∣
)−2

(4.9)

= | ν (0)|3
(

max
|ω|= ν

| ν (ω)|
)−2

≥ ε3 exp(− 5|ζν | )

whereε3 and 5 is independent ofν and . Putˆν = ε2 exp(− 4|ζν | ), whereε2 and

4 are given in (4.8). Sincêν ≤ ν by (4.8), it follows from (4.9) that for| | =
ˆ
ν/2 | ˜ (ν )( )| = | · ν ( )| ≥ ε4 exp(− 6|ζν | ), whereε4 and 6 is independent

of ν and . Thus we have proved that for every∈ 2 −1, there exists (ν ) ∈
{1 . . . } such that| (ν )(ζν + )| ≥ ε4 exp(− 6|ζν | ) for | | = ˆ

ν/2. Hence we
have

| (ζν + )| =


∑

=1

| (ζν + )|2



1/2

≥ | (ν )(ζν + )|(4.10)

≥ ε4 exp(− 6|ζν | )

for | | = ˆ
ν/2.

We now consider ◦ : C → C . Since max=1 ... deg = and ≥ ,
there existα, β > 0 such that

| ( )| ≤ α| | + β(4.11)

for all ∈ C . Then we have from (4.1) and (4.11)

| ◦ ( )| ≤ exp( | ( )| ) ≤ β exp(α | | )
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for all ∈ C and = 1 . . . , that is, ◦ ∈ | · | (C ) .
Set ν = {ξ ∈ C : |ξ − ζν | ≤ ˆ

ν/2}. Denote by ν the connected component of

| · | ( ; ε4 6) including ζν . Then (4.10) implies that ν ⊂ ν . We also have ν ∩
( ( 1 . . . ) \ {ζν}) = ∅. Namely, for ξ ∈ ( 1 . . . ) \ {ζν} there exists ∈

2 −1 such thatξ = ζν + |ξ − ζν | . It follows from the definition of ν and (4.8)
that |ξ − ζν | ≥ ν ≥ ε2 exp(− 4|ζν | ) = ˆ

ν , so thatξ /∈ ν . Now settingε5 =
ε4 exp(−β 6) and 7 = α 6, we claim that the union̂ ν of the connected components
of | · | ( ◦ ; ε5 7) including −1(ζν) is contained in −1( ν). In fact, it follows
from (4.11) that for ∈ ˆ

ν

| ◦ ( )| < ε4 exp(−β 6) exp(−α 6| | )

≤ ε4 exp

(
−β 6 − α 6 ·

| ( )| − β

α

)

= ε4 exp(− 6| ( )| )

which implies that ( )∈ | · | ( ; ε4 6). For ′ ∈ −1(ζν), the above inequality
holds on every curve through and′ in ˆ

ν . The connectedness ofν proves that
∈ −1( ν). It is clear that ˆ

ν ∩ −1( ( 1 . . . ) \ {ζν}) = ∅ for all ν ∈ N by the
above argument.

Here we need the following lemma:

Lemma 4.1 (cf. [2, Lemma 3.2]). Let 1 . . . ∈ (C ). Then there exist
constantsε, > 0 such that

∑

=1

| (ζν)| ≥ ε exp(− (ζν))

for all ν ∈ N\ and ∈ 2 −1 if and only if we have constantsε′, ′ > 0 satisfying

| det (ζν)| ≥ ε′ exp(− ′ (ζν))

for all ν ∈ N, where is the Jacobian matrix of = ( 1 . . . ).

We apply this lemma to obtainε6, 8 > 0 such that

| det (ζν)| ≥ ε6 exp(− 8|ζν | )(4.12)

for all ν ∈ N. Calculating a sum of the moduli of all × minors of ( ◦ ), we
have from (2) of Main Theorem, (4.11) and (4.12)

( )∑

κ=1

|△ ◦
κ ( )| = | det ( ( ))| ·

( )∑

κ=1

|△κ ( )|



118 S. OH’UCHI

≥ ε6 exp(− 8| ( )| ) · ε exp(− | | )

≥ (εε6
−β 8) exp(−(α 8 + )| | )

for all ∈ ⋃ν∈N\
−1(ζν).

Here the proof of [5, Theorem 1] implies the following:

Lemma 4.2. For 1 . . . ∈ (C ), let ′ be a union of connected compo-
nents of ( 1 . . . ) which are -codimensional manifolds, so that

( )∑

ϑ=1

( )∑

κ=1

|△ϑ κ( )| ≥ ε exp(− ( ))

for all ∈ ′, where the sum is taken over all× minors of the Jacobian ma-
trix . If we can choose constantsε′′, ′′ > 0 such that every connected component
of ( ; ε′′ ′′) including a connected component of′ does not intersect the other
connected components of( 1 . . . ), then we have constantsε′′′ < ε′′, ′′′ > ′′

satisfying: Let be a connected component of′ and let be the connected compo-
nent of ( ; ε′′′ ′′′) including . Then there exists a holomorphic retract from

onto such that| − ( )| ≤ 1 for all ∈ .

By settingε′′ = ε5, ′′ = 7 and ′ =
⋃
ν∈N\

−1(ζν), we can apply this lemma

to obtainε7, 9 > 0 and a holomorphic retract ν from ˜
ν onto −1(ζν) such that

| − ν( )| ≤ 1(4.13)

for all ν ∈ N \ , where ˜
ν (ν ∈ N) is the union of the connected components of

| · | ( ◦ ; ε7 9) including −1(ζν). It is clear that ˜
ν ∩ ˜

ν′ = ∅ for ν 6= ν′.
For ∈ | · | ( −1( )), it follows from Theorem 3.1 that there exists̃ ∈

| · | (C ) such that ˜ |S
ν∈

−1(ζν ) ≡ |S
ν∈

−1(ζν ). Then we define

˜( ) =





∗
ν ( ) if ∈ ˜

ν and ν ∈ N \ ,
˜ ( ) if ∈ ˜

ν and ν ∈ ,
0 if ∈ | · | ( ◦ ; ε7 9) \

⋃
ν∈N

˜
ν .

Since | · | is a weight function, (4.13) implies that there exist2, 2 > 0 such that
˜ ( ) ≤ 2 exp( 2| | ) for all ∈ | · | ( ◦ ; ε7 9). Hence it follows from the semilo-
cal interpolation theorem that we obtain ∈ | · | (C ) with | −1( ) ≡ . Thus

−1( ) is interpolating for | · | (C ).

5. Examples and remarks

The following is an easy example for the main theorem:
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EXAMPLE 5.1. Set ={ν}ν∈Z ⊂ C. By applying Theorem A (or [3, Corollary
3.5]) to ( ) = sin 2π ∈ | · |(C), we know that is interpolating for | · |(C). Put

( 1 . . . ) = 2
1 + · · · + 2, which satisfies

∑

=1

∣∣∣∣
∂ ( )
∂

∣∣∣∣ ≥ | grad ( )| = 2| |

If ∈ −1(ν), we have| |2 ≥ |ν|. In particular, forν ∈ Z \ {0}, it follows that

∑

=1

∣∣∣∣
∂ ( )
∂

∣∣∣∣ ≥ 2
√
|ν| ≥ 2

Hence the main theorem implies that−1( ) is interpolating for | · | (C ) for all ≥
2. (In this case, ={0}.)

In the case where = = 1, we can improve the main theorem as follows:

Corollary 5.2. Let = {ζν}ν∈N be a discrete variety inC and let ∈ C[ ] .
Put = deg . For > 0, we assume that is interpolating for | · | (C). Then

−1( ) is interpolating for | · | (C) for every ≥ .

Finally, we remark that the term ‘≥ ’ in the main theorem is sharp in the
sense of the following open problem:

Open Problem ([5, Problem 1]). Let be another weight function onC satis-
fying ≥ everywhere. Assume that an analytic subset ofC is interpolating for

(C ). Then is interpolating for (C )?

We prove this remark by giving an example for which−1( ) is not interpolating
for | · | (C ) for < . Let = {ζν}ν∈N be a discrete variety inC. Then Nevan-
linna’s counting function is defined as follows: (ζ ) = ♯{ν ∈ N : |ζν − ζ| ≤ }
and

( ζ ) =
∫

0

( ζ ) − (0 ζ )
+ (0 ζ ) log

EXAMPLE 5.3. Assume that = = 1. Put ={ν}ν∈N ⊂ C. As in Example 5.1,
it follows that is interpolating for | · |(C). Set ( ) = 4, so deg = 4. Then we
have

−1( ) =

{
4
√
ν · exp

(
π

2

)}

ν∈N; =0 1 2 3
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Corollary 5.2 implies that −1( ) is interpolating for | · | (C) for every ≥ 4.
Here we claim that −1( ) is not interpolating for | · | (C) for any < 4. In

fact, we have ( 0 −1( )) = 4ν when 4
√
ν ≤ < 4

√
ν + 1, so ( 0 −1( )) = 4[ 4],

where [ ] = max{ ∈ Z : ≤ }. Since ( 0 −1( )) = 0 for all ∈ [0 1) and
[ 4] ≥ 4 − 1 for all ∈ R, we obtain

( 0 −1( )) =
∫

0

4[ 4]

≥
∫

1

4( 4 − 1)

= 4 − 4 log − 1

Hence for every < 4 there do not exist two constants ,> 0 such that

( 0 −1( )) ≤ +

for all ≥ 0. Then it follows from [3, Corollary 4.8] that −1( ) is not interpolating
for | · | (C) for any < 4.

References

[1] C.A. Berenstein and R. Gay: Complex Variables: An Introduction, Graduate Text in Math.125,
Springer, New York-Berlin-Heidelberg, 1991.

[2] C.A. Berenstein and B.Q. Li:Interpolating varieties for weighted spaces of entire functions inC , Publications Matem̀atiques,38 (1994), 157–173.
[3] C.A. Berenstein and B.Q. Li:Interpolating varieties for spaces of meromorphic functions, J.

Geom. Anal.5 (1995), 1–48.
[4] C.A. Berenstein and B.A. Taylor:Interpolation problem inC with applications to harmonic

analysis, J. Analyse Math.38 (1981), 188–254.
[5] C.A. Berenstein and B.A. Taylor:On the geometry of interpolating varieties, Seminaire Lelong-

Skoda (1980/1981), Lecture Notes in Math.919 (P. Lelong and H. Skoda, eds.), Springer, New
York-Berlin-Heidelberg, 1983, 1–25.

[6] J-E. Björk: Rings of Differential Operators, North-Holland Mathematical Library, 21, North-
Holland, Amsterdam-Oxford-New York, 1979.

[7] L. Ehrenpreis: Fourier Analysis in Several Complex Variables, Pure and Applied Mathematics,
A Series of Texts and Monographs,17 Wiley-Interscience, New York-London-Sydney-Toronto,
1970.
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