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Abstract

Extreme mass ratio inspirals are one of the important candidates of gravitational wave source.

They are binary systems which are composed of a massive black hole and a stellar-mass compact

object at galactic centers. For the future gravitational wave astronomy, it is very important to

predict the wave forms accurately. For that purpose, we need to know the accurate motion of

the smaller object in the black hole space-time. The motion of the smaller object is different

from the motion of a test particle due to the gravitational self-force, which is the effect of

the perturbation of the space-time induced by the object itself. Therefore it is important to

calculate the perturbation of the black hole space-time induced by the accompanying small

mass.

The perturbation of a black hole space-time at the first order of (m/M) has been considered

by many authors, where M and m are the black hole mass and the mass of smaller object,

respectively. In the case of the Schwarzschild black hole (non-spinning, spherical black hole),

one can calculate the metric perturbation by solving the separated radial equations by Regge

& Wheeler (1957) and Zerilli (1970). However, in the case of the spinning Kerr black hole, the

same formalism cannot be used due to lack of spherical symmetry. On the other hand, it is

known that the perturbation of the Newman-Penrose variables, ψ0 and ψ4, can be calculated

by solving the Teukolsky equations (Teukolsky 1973). However, the construction of the metric

perturbation from ψ0 and ψ4 is a non-trivial problem, and it has been a long-standing problem

to obtain the metric perturbation.

In the first part of this thesis, we investigate a method to construct the metric perturbation
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from ψ0 and ψ4 via the Hertz potential. One problem of this method is that the ψ0 and ψ4 do

not have the information of l = 0 and l = 1 modes of the perturbations. These lower mode

perturbations are mass and angular momentum perturbation of the space-time, respectively.

To tackle this problem, we consider the perturbations of the Schwarzschild and Kerr metric

by a rotating ring, and find a procedure to include the lower mode perturbations properly.

As a result, for the first time, we obtain the explicit Kerr metric perturbation including both

mass and angular momentum perturbation, using the Hertz potential. We also consider the

perturbation of the Kerr metric by a point particle at rest, and obtain the metric perturbation

in a similar manner as the ring case.

In the second part of this thesis, we consider the visualization of space-time curvature, using

the tendex and vortex line. This method was proposed by Nichols et al. (2011). These lines

are associated with the tidal and frame-dragging effects of the space-time. We visualize our

results of the perturbed Kerr space-time and discuss the outcomes. Further, we visualize the

space-time of a black hole binary which is constructed by a different study. It is an approximate

black hole binary space-time obtained by the asymptotic matching method by Mundim et al.

(2014). Through our visualization, we find unphysical distortions of the lines produced by the

insufficient accuracy of the metric. We discuss how we can improve the asymptotic matching

to avoid these unphysical distortions of tendex and vortex lines.
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Chapter 1

Introduction

An astronomical black hole can be described by the Kerr metric. The Kerr metric is a sta-

tionary, axisymmetric exact solution of the Einstein equation. It was discovered by Kerr in

1963, about 50 years after the Schwarzschild metric was found (1916), which is the static and

spherically symmetric exact solution (non-spinning black hole). Indeed it took a long time to

find the rotating generalization of it.

After the Schwarzschild metric was found, its stability was studied. Regge and Wheeler

(1957) discussed the first order perturbations of the Schwarzschild metric, and found that the

odd-parity perturbations can be described by a separated radial ordinary differential equation.

Later, Zerilli (1970) derived the radial equation for the even-parity. The formalism by Regge,

Wheeler, and Zerilli (RWZ) allows us to calculate the first order metric perturbation. In their

formalism, it is possible to decompose the perturbation equation for metric using spherical

harmonics and Fourier transformation. In other words, the formalism relies on the spherical

symmetry of the Schwarzschild metric.

On the other hand, because the Kerr metric does not have spherical symmetry, the RWZ for-

malism cannot be applied. However, Teukolsky (1972, 1973) found a separated radial ordinary

differential equation (Teukolsky equation) using the Newman-Penrose formalism. By solving

the Teukolsky equation, one can obtain the perturbations of ψ0 and ψ4, which correspond to

1



2 CHAPTER 1. INTRODUCTION

the ingoing and outgoing gravitational radiation, respectively. The ψ0 and ψ4 are part of the

Weyl scalars, which are complex quantities defined with components of the Weyl tensor, which

is the trace-free part of the Riemann curvature tensor (see Chapter 2 for definitions). The

perturbation equation is decomposed using spin-weighted spheroidal harmonics and Fourier

transformation. For spin s = ±2, ±1, and 0, the Teukolsky equation becomes equations for

the Weyl scalars ψ0 and ψ4, electromagnetic field, and neutrino field, respectively. Despite of

the remarkable discovery of the Teukolsky equation, calculation of the metric perturbation for

the case of the Kerr metric has been a long-standing problem.

Investigating the perturbation of the Kerr metric is not only interesting theoretically, but

also important in the context of gravitational wave astronomy. Extreme mass ratio inspirals are

one of the promising and important candidates of gravitational wave sources. They are binary

systems composed of a massive black hole of massM and a stellar-mass compact object of mass

m at galactic centers. The gravitational wave is emitted while the smaller object inspirals into

the massive black hole. There are many future projects aiming to observe the gravitational

wave from such binaries with space laser interferometers, such as eLISA (Amaro-Seoane et al.

2011), DECIGO (Seto et al. 2001; Kawamura et al. 2011), and BBO (Crowder & Cornish 2005).

For a detection by a detector such as eLISA, masses have to be in the rangeM ∼ 105−107M⊙

and m ∼ 1−102M⊙, based on the constraints of the frequency and amplitude of the wave. The

mass ratio then becomes µ ≡ m/M ∼ 10−7 − 10−3. Such system emits gravitational wave for

a long time ∼ µ−1MG/c3, which corresponds to many orbital cycles before the smaller object

plunges into the massive black hole (Amaro-Seoane et al. 2014). Therefore, it is necessary

to model the motion accurately so that the phase of predicted waveform matches. Higher

accuracy is required for parameter estimation, which is to extract physical information of the

EMRI from an detected signal.

The self-force formalism has been developed to describe the motion of the small object

around a black hole. In the test particle limit, the small object obeys the geodesic motion

which is derived from the unperturbed black hole metric. However, when we take into account
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the distortion of the space-time by the small object, the motion is influenced. We write the

metric of the system as

gµν = g(0)µν + h(1)µν + h(2)µν +O(µ3), (1.1)

where g
(0)
µν is the unperturbed metric of the black hole, and h

(1)
µν and h

(2)
µν denote the first and

second order perturbation, respectively. The equation of motion of the small object can be

written as
D2zµ

dτ 2
= F µ

1 + F µ
2 +O(µ3), (1.2)

where zµ(τ) is the object’s world line. The proper time τ in the left-hand side is defined with

respect to the unperturbed metric g
(0)
µν and the derivatives are also with respect to g

(0)
µν . In the

limit of µ → 0, the right-hand side vanishes and the equation becomes the geodesic equation

under g
(0)
µν . We call F µ

n the nth-order gravitational self-force. Effects by the first-order F µ
1

and second-order F µ
2 are considered to be sufficient for parameter estimation. While many

calculations of first-order effects have been performed for the Schwarzschild black hole case,

the Kerr case is relatively less developed. The calculations for second-order effects still have a

long way to go (Amaro-Seoane et al. 2014). Below we discuss the first-order perturbation of

the metric, h
(1)
µν , which is required for both F µ

1 and F µ
2 .

It is proved that the first-order self-force on the small object can be given by the perturba-

tion h
(1)
µν which is induced by a point particle (Gralla & Wald 2008; Pound 2010). One method

to compute h
(1)
µν in the Kerr space-time is to directly solve the coupled partial differential

equations numerically. On the other hand, there is a method to compute metric perturbation

starting from the Teukolsky equation. In this method, we use the formalism by Chrzanowski

(1975) and Kegeles & Cohen (1979), to construct the metric perturbation in a radiation gauge,

via the Hertz potential. The first step is to obtain the Weyl scalars, ψ0 and ψ4, by solving

the Teukolsky equation. The second step is to obtain the Hertz potential from ψ0 and ψ4.

However, since ψ0 and ψ4 do not have the information of l = 0 and l = 1 modes, undetermined

degrees of freedom remain in the Hertz potential. The lower modes of l = 0 and l = 1 are

important, because they correspond to the mass perturbation and the angular momentum per-
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Source of the perturbation (matter)!

Metric perturbation!

CCK 

formalism!

Teukolsky 

equation!

RWZ 

equations!

(Schwarzschild case)!

ψ
0 
and ψ

4
  

(Weyl scalars)!

single, radial 
ordinary differential Eqs.!

Hertz potential!

Lower modes 
l = 0 and l = 1!

New!

Figure 1.1: Formulations and methods to calculate the first order metric perturbation of a black

hole space-time. For the Schwarzschild case, the formalism by Regge, Wheeler, and Zerilli (RWZ)

allows us to obtain the metric perturbation by solving ordinary differential equations. However, their

formalism cannot be used for the Kerr case. The thick arrows represent the method we take. In this

method we first obtain the Weyl scalars (ψ0 and ψ4) by solving the Teukolsky equation, and find the

Hertz potential using ψ0 and ψ4, in the formalism by Chrzanowski, Cohen, and Kegels (CCK). Since

these two Weyl scalars do not have the information of l = 0 and l = 1 modes, including these modes

is not a trivial problem.

turbation of the space-time, respectively. Including these information and determining other

degrees of freedom are the difficult points in this method. Fig. 1.1 summarizes the formalism

and methods.

Keidl, Friedman, & Wiseman (2007) are the first people who calculated the explicit met-

ric perturbation by matter using this method. They considered the perturbation of the

Schwarzschild space-time by a particle at rest. They considered this model because it is very

simple, though it is unphysical that a particle is at rest in the gravitational field of a black

hole. They found that the undetermined degrees of freedom in the Hertz potential reduce to
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eight complex constants, and determined them by considering the regularity of the perturbed

gravitational field. In their space-time, they found an inevitable singular line, which starts

from the particle and radially extends to the event horizon or infinity. They also investigated

the meaning of each constant, and identified which one corresponds to the mass perturbation,

angular momentum perturbation, and gauge freedom. Since their set-up is unphysical, inter-

pretation of the value of mass perturbation is unclear. The angular momentum perturbation

was not included in the model either. Despite of these problems, as a next step, Friedman’s

group studied the self-force on a particle which is on a circular orbit on the equatorial plane

of the Schwarzschild space-time (Keidl et al. 2010; Shah et al. 2011) and the Kerr space-time

(Shah, Friedman, & Keidl 2012). They numerically obtained the gauge invariant effects of the

self-force. However, they no longer used the Hertz potential to add the lower modes in those

works. They added the lower mode perturbation in a gauge that they call “Kerr gauge.” It

means that the constructed metric perturbation is not in the radiation gauge.

In the first part of this thesis, we consider the perturbation of the black hole space-time by

a circular, rotating mass ring, in order to resolve the questions which remained in the study

of Keidl, Friedman, & Wiseman (2007). There are two reasons why we consider a rotating

ring. The first reason is its simplicity. Perturbed space-time is stationary and axisymmetric,

as in the rest particle case. The second one is the angular momentum. Since the ring is

rotating, we can deal with both the mass and angular momentum perturbation of the space-

time, which are important in the orbiting particle case too. As the unperturbed black hole

space-time, the Schwarzschild metric and the Kerr metric are considered. We present an

explicit procedure to construct the metric perturbation. We also apply this procedure to the

perturbation of the Kerr metric by a particle at rest, the Kerr version of the work by Keidl,

Friedman, & Wiseman (2007). We discuss the parameters which correspond to the mass and

angular momentum perturbation in the Hertz potential. Fig. 1.2 summarizes the previous

works and our works.

This study of constructing the metric perturbation in the radiation gauge becomes impor-
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Previous works! This work 

Keidl+07! Keidl+10! Shah+12! Sano+14! Sano+15!

Black Hole! Schwarzschild! Schwarzschild! Kerr! Schwarzschild Kerr! Kerr!

Matter! Particle at rest! Particle: circular geodesics! Rotating ring! Particle at rest!

Configuration!  
 

 
 

!

Lower modes! l = 0! l = 0"#$%"l = 1 in “Kerr gauge”! l = 0"#$%"l = 1! l = 0!

Result! Metric perturbation 
in radiation gauge!

Gauge invariant effects 
of self-force!

Metric perturbation in radiation gauge!

x!
y!

z!

x
y!

z!
Spin of BH!

x!
y!

z!

x!
y!

z! Spin of BH!

Figure 1.2: Calculations of metric perturbation using the CCK formalism, which can be used

for Kerr metric perturbations. Shah, Friedman, & Keidl (2012) numerically obtained the gauge

invariant effects of the self-force on a circular orbiting particle. However, the relation to the standard

formulation for the self-force is unclear. We examine the method to obtain the metric perturbation

including the lower modes, l = 0 and l = 1, in a radiation gauge. We consider the perturbation by a

rotating ring around a black hole (BH) because the set-up is simple (stationarity and axisymmtery)

and both l = 0 and l = 1 are involved. We also consider the Kerr version of the work by Keidl,

Friedman, & Wiseman (2007) because the set-up is simple.

tant when we use the newly proposed prescription for calculating the self-force. The MiSa-

TaQuWa formulation (Mino, Sasaki, & Tanaka 1997; Quinn & Wald 1997) for the calculation

of the self-force requires the metric perturbation in the Lorenz gauge as an input. Pound,

Merlin, & Barack (2014) found local gauge transformations that allow us to move from the

radiation gauge to the Lorenz gauge. The problem of the inevitable singularity is also dealt

with. Our result in this thesis is an important preparation for the actual calculation of the

self-force using the method by Pound, Merlin, & Barack (2014).

In the last part of this thesis, we consider the visualization of the space-time curvature

using tendex and vortex line, which was proposed by Nichols et al. (2011). These lines are

basically field lines which represent the tidal effect and the frame-dragging effect of the space-
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time curvature. Since they have physical meanings, they could be of some help for intuitive

understanding of the space-time. Nichols et al. (2011) proposed this tool for the visualization

of numerical relativity simulations and for obtaining new insights. Basic properties of the lines,

dependence on the coordinate transformations, and typical patterns of the lines produced by

quasi-normal modes of a black hole were studied in the subsequent works by the same people

(Zhang et al. 2012; Nichos et al. 2012). We use the tendex and vortex lines to visualize

our results of perturbed metric. We obtain representations that are useful for explaining

the procedure to add the lower mode perturbations. We also apply the visualization to a

binary black hole space-time which was analytically constructed using the asymptotic matching

method by Mundim et al. (2014). Through our visualization, we discuss the accuracy of the

matching and other properties of the space-time, including the propagating gravitational wave.

This thesis is organized as follows. In Chapter 2, we review the Newman-Penrose formalism

and the Teukolsky equation. In Chapter 3, we review the CCK formalism. Formulae for

calculating the metric perturbation from the Hertz potential are presented. In Chapter 4, we

consider the perturbation induced by a rotating ring around a black hole (Sano & Tagoshi

2014, 2015). We present a method to include the lower modes properly. We also consider the

perturbation of the Kerr metric by a particle at rest. The visualization is discussed in Chapter

5. We conclude in Chapter 6. Throughout this thesis, we adopt the units of c = G = 1.





Chapter 2

Teukolsky equation

In this chapter, we review basic formulae including the Teukolsky equation, which are used to

obtain the metric perturbation in the Kerr background. We also discuss the symmetry of the

equations.

2.1 Tetrad formalism

We denote the tetrad by (eµ)
a, where µ = 1, 2, 3, 4 is the label of basis vectors and a is the

“slot” in the context of the abstract index notation (Wald 1984). The dual basis vectors (eν)b

are defined by

(eµ)
a(eν)a = δµ

ν , (2.1)

and they satisfy ∑
µ

(eµ)
a(eµ)b = δab. (2.2)

Below, we omit
∑

adopting the Einstein summation convention.

We denote the tetrad components of the metric gab by ηµν and assume that they are

constant:

ηµν = gab(eµ)
a(eν)

b, ηµν = gab(eµ)a(e
ν)b. (2.3)

9



10 CHAPTER 2. TEUKOLSKY EQUATION

The tetrad components of ∇bAa can be written as

Aµ;ν ≡ (∇bAa)(eµ)
a(eν)

b = [∇b(Aκ)(e
κ)a](eµ)

a(eν)
b

= (∇bAκ)(e
κ)a(eµ)

a(eν)
b + Aκ(∇b(e

κ)a)(eµ)
a(eν)

b

= (eν)
b(∂bAκ)δ

κ
µ + Aκη

κρ(∇b(eρ)a)(eµ)
a(eν)

b

= Aµ,ν + Aκη
κργρµν ,

(2.4)

where we define the directional derivative Aµ,ν ≡ (eν)
b∂bAµ and the Ricci rotation coefficients,

γρµν ≡ (∇b(eρ)a)(eµ)
a(eν)

b = −γµρν . (2.5)

This definition follows Newman & Penrose (1962). While we use this definition, other references

use different notations and definitions. See Appendix A on this matter.

2.2 Newman-Penrose formalism

In the Newman-Penrose formalism, we use null tetrad which satisfies (eµ)a(eµ)
a = 0:

(e1)
a = la, (e2)

a = na, (e3)
a = ma, (e4)

a = ma. (2.6)

Here, ma is the complex conjugate of ma. We choose them so that

−lana = mam
a = 1, lam

a = lam
a = nam

a = nam
a = 0 (2.7)

hold. Namely, the non-zero tetrad components of the metric are η12 = η21 = −1 and η34 =

η43 = 1.

The Weyl tensor Cabcd is the trace free part of the Riemann curvature tensor Rabcd (Wald

1984):

Cabcd = Rabcd − (ga[cRd]b − gb[cRd]a) +
1

3
Rga[cgd]b, (2.8)

where Rab = Radb
d is the Ricci tensor and R = Ra

a is the Ricci scalar. Any trace of the Weyl

tensor Cabcd vanishes. At a vacuum point of the space-time, Cabcd = Rabcd holds because the
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Ricci tensor Rab vanishes at such a point, according to the Einstein equation in the following

form:

Rab = 8π

(
Tab −

1

2
gabT

)
, (2.9)

where Tab is the energy-momentum tensor, and T = Ta
a. Units with c = G = 1 are used.

While the Riemann tensor has 20 independent components, the Weyl tensor has 10 indepen-

dent components. In the Newman-Penrose formalism, the independent complex components

are chosen as follows:

Ψ0 = +C1313, Ψ1 = +C1312, Ψ2 = +C1342, Ψ3 = +C1242, Ψ4 = +C4242. (2.10)

These are called the Weyl scalars.

Next, we define the spin coefficients in terms of the Ricci rotation coefficients:

κ = −γ131, ρ = −γ134, ϖ = +γ241, λ = +γ244, (2.11a)

ν = +γ242, µ = +γ243, τ = −γ132, σ = −γ133, (2.11b)

ϵ = −1

2
(γ121 − γ341), α = +

1

2
(γ214 − γ434), (2.11c)

γ = +
1

2
(γ212 − γ432), β = −1

2
(γ123 − γ343). (2.11d)

These definitions are different by sign from the definitions in Newman & Penrose (1962).

However, the value of each spin coefficients agree due to the difference of signature of the

metric. See Appendix A for details.

2.3 Kerr metric

In this section, we review the Newman-Penrose quantities in the case of the Kerr space-time.

In the Boyer-Lindquist coordinates, the Kerr metric is

ds2 = −
(
1− 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdϕ+

Σ

∆
dr2

+ Σdθ2 + sin2 θ

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
dϕ2, (2.12)
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where a is the Kerr parameter, Σ = r2 + a2 cos2 θ, and ∆ = r2 − 2Mr + a2. The Kinnersley

tetrad is used as a null tetrad associated with the Kerr metric:

la =
r2 + a2

∆
(∂t)

a + (∂r)
a +

a

∆
(∂ϕ)

a, (2.13a)

na =
∆

2Σ

[
r2 + a2

∆
(∂t)

a − (∂r)
a +

a

∆
(∂ϕ)

a

]
, (2.13b)

ma =
1√

2(r + ia cos θ)
[ia sin θ(∂t)

a + (∂θ)
a + i csc θ(∂ϕ)

a] , (2.13c)

where (∂t)
a, (∂r)

a, (∂θ)
a, and (∂ϕ)

a are the coordinate basis vectors associated with the Boyer-

Lindquist coordinates t, r, θ, and ϕ, respecitvely.

With the Kerr metric Eq. (2.12) and the Kinnersley tetrad Eq. (2.13), the non-vanishing

spin coefficients are

ρ = − 1

r − ia cos θ
, µ =

∆

2Σ
ρ, γ = µ+

r −M

2Σ
,

ϖ = ρ2
ia sin θ√

2
, τ =

ρ

ρ
ϖ, β = −ρcot θ

2
√
2
, α = ϖ − β.

(2.14)

The non-zero Weyl scalar is

Ψ2 =Mρ3 = 2γρ− 2(2β + τ)ϖ

= 2γρ− 2(2α−ϖ)τ.
(2.15)

Other Weyl scalars, Ψ0, Ψ1, Ψ3, and Ψ4, are zero for the unperturbed Kerr metric. The

first order correction to each Weyl scalar is denoted by ψ0, ψ1, ψ2, and ψ4, respectively.

Because the unperturbed Ψ0, Ψ1, Ψ3, and Ψ4 are zero, perturbations ψ0 and ψ4 are gauge

invariant quantities, and called ingoing and outgoing radiative part, respectively (Teukolsky

1972, 1973). They have the real part and the imaginary part, which correspond to the two

degrees of freedom of the gravitational radiation. However, ψ0 and ψ4 do not contain the

information on the perturbation in the mass and the angular momentum of the space-time.

That means, for a non-vacuum perturbation, ψ0 and ψ4 alone do not uniquely specify the

gravitational perturbation (Wald 1973).



2.4. PARTIAL DERIVATIVE OPERATORS 13

2.4 Partial derivative operators

In the Newman-Penrose formalism, many symbols are used to denote partial derivative op-

erators. We mention their definitions, and introduce some auxiliary symbols that we use for

later explanations. Further, we briefly discuss the notation of spin-weight raising and lowering

operators.

First, we define four directional derivatives along the Kinnersley tetrad (2.13):

DDD ≡ ,1 = la∂a, ∆∆∆ ≡ ,2 = na∂a, δδδ ≡ ,3 = ma∂a, δδδ = ,4 = ma∂a. (2.16)

We also use auxiliary symbols,

D̃DD ≡ −2Σ

∆
∆∆∆, ∆̃∆∆ ≡ − ∆

2Σ
DDD, δ̃δδ ≡ ρ

ρ
δδδ, δ̃δδ = δ̃δδ ≡ ρ

ρ
δδδ. (2.17)

These are the (t→ −t, ϕ→ −ϕ) versions of the originalDDD, ∆∆∆, δδδ, and δδδ. The first one, D̃DD is used

in Keidl et al. (2010) and other previous papers. We follow the notation by Keidl et al. (2010).

Below we have several pairs of equations which are related each other by (la ↔ na, ma ↔ ma)

exchanges. By using the auxiliary symbols, the symmetry between two equations will be clear.

Further, note that the “tilde” versions of directional derivatives become the same as the original

ones in the case of stationary and axisymmetric space-time.

We introduce partial derivative operators ð+
(s) and ð−

(s),

ð+
(s) ≡ −(∂θ + i csc θ∂ϕ − s cot θ), (2.18a)

ð−
(s) ≡ −(∂θ − i csc θ∂ϕ + s cot θ). (2.18b)

These operators raises and lowers the spin weight s, respectively. The spin-weighted spherical

harmonics sYlm(θ, ϕ) can be obtained from the usual spherical harmonics Ylm(θ, ϕ) = 0Ylm(θ, ϕ)

using the following equations:

ð+
(s) sYlm = +

√
(l − s)(l + s+ 1) s+1Ylm, (2.19a)

ð−
(s) sYlm = −

√
(l + s)(l − s+ 1) s−1Ylm. (2.19b)
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In some references including Newman & Penrose (1966), the raising and lowering operators

are denoted by ð and ð. However, this overline does not mean the complex conjugate in this

case:

ð+
(s) sYlm = ð−

(−s) sY lm ̸= ð−
(s) sY lm. (2.20)

So we prefer the notation ð+
(s) and ð−

(s) in order to avoid confusions. We also explicitly put the

subscript (s) because ð+
(s) and ð−

(s) depend on s.

We can derive

ð−
(s+1)ð

+
(s) = csc θ∂θ(sin θ∂θ) + csc2 θ∂ϕ

2 + 2si csc2 θ cos θ∂ϕ − (s2 cot2 θ − s), (2.21a)

ð+
(s−1)ð

−
(s) = csc θ∂θ(sin θ∂θ) + csc2 θ∂ϕ

2 + 2si csc2 θ cos θ∂ϕ − (s2 cot2 θ + s). (2.21b)

Note that in the right-hand side, only the sign before s differs. The operators ð+ and ð− and

directional derivatives δδδ and δδδ are related as follows:

(δδδ − 2sβ) =
ρ√
2
[−ia sin θ∂t + ð+

(s)], (2.22a)

(δδδ + 2sβ) =
ρ√
2
[+ia sin θ∂t + ð−

(s)]. (2.22b)

These relations are useful when we solve the Teukolsky equation, particularly in stationary

and axisymmetric cases. In Keidl et al. (2010), they use L and write the equivalent equation

as

(δδδ − 2sβ) =
ρ√
2
Ls. (2.23)
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2.5 Teukolsky equation

The master equations for perturbed ψ(s=2) = ψ0 and ψ(s=−2) = ρ−4ψ4 are given by Teukolsky

(1973) as

[(DDD − 4ρ− ρ)(∆∆∆+ µ− 4γ)− (δδδ − α− 3β +ϖ − 4τ)(δδδ − 4α+ϖ)− 3Ψ2]ψ0

= 4π[−(δδδ − α− 3β +ϖ − 4τ)(δδδ − 2α− 2β +ϖ)T11 + (δδδ − α− 3β +ϖ − 4τ)(DDD − 2ρ)T13

+ (DDD − 4ρ− ρ)(δδδ − 2β + 2ϖ)T13 − (DDD − 4ρ− ρ)(DDD − ρ)T33] (2.24)

and

[(∆∆∆+ 4µ+ µ+ 3γ − γ)(DDD − ρ)− (δδδ + β + 3α− τ + 4ϖ)(δδδ + 4β − τ)− 3Ψ2]ψ4

= 4π[−(δδδ + β + 3α− τ + 4ϖ)(δδδ + 2β + 2α− τ)T22 + (δδδ + β + 3α− τ + 4ϖ)(∆∆∆+ 2µ+ 2γ)T24

+ (∆∆∆+ 4µ+ µ+ 3γ − γ)(δδδ + 2α− 2τ)T24 − (∆∆∆+ 4µ+ µ+ 3γ − γ)(∆∆∆+ µ+ 2γ − 2γ)T44],

(2.25)

respectively. Here Tµν is the tetrad components of the energy-momentum tensor Tab. By using

the auxiliary symbols Eq. (2.17), these equations can be rewritten as follows:

[(DDD − 4ρ− ρ)(∆∆∆+ µ− 4γ)− (δδδ − 2β − 4τ)(δδδ − 4α +ϖ)− 3Ψ2]ψ(2) = 4π
T(2)
Σ
, (2.26)

[(D̃DD − 4ρ− ρ)(∆̃∆∆ + µ− 4γ)− (δ̃δδ − 2β − 4τ)(δ̃δδ − 4α +ϖ)− 3Ψ2]
4

∆2
ψ(−2) = 4π

4

∆2

T(−2)

Σ
,

(2.27)

where we define T(s=2) and T(s=−2) as

T(2)
Σ

= −(δδδ − 2β − 4τ)(δδδ −ϖ)T11 + (δδδ − 2β − 4τ)(DDD − 2ρ)T13

+ (DDD − 4ρ− ρ)(δδδ + 2α)T13 − (DDD − 4ρ− ρ)(DDD − ρ)T33, (2.28)

4

∆2

T(−2)

Σ
= −(δ̃δδ − 2β − 4τ)(δ̃δδ −ϖ)

4Σ2

∆2
T22 + (δ̃δδ − 2β − 4τ)(D̃DD − 2ρ)

2Σ

−∆

ρ

ρ
T24

+ (D̃DD − 4ρ− ρ)(δ̃δδ + 2α)
2Σ

−∆

ρ

ρ
T24 − (D̃DD − 4ρ− ρ)(D̃DD − ρ)

ρ2

ρ2
T44. (2.29)
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The left hand sides of Eqs. (2.26) and (2.27) become

1

2Σ

{[
(r2 + a2)2

∆
− a2 sin2 θ

]
∂t

2 +
4Mar

∆
∂t∂ϕ +

(
a2

∆
− 1

sin2 θ

)
∂ϕ

2

− 1

∆2
∂r(∆

3∂r)−
1

sin θ
∂θ(sin θ∂θ)− 2s

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂ϕ

−2s

[
M(r2 − a2)

∆
− r − ia cos θ

]
∂t + (s2 cot2 θ ∓ s)

}
∆s/2ψ(s)

∆
. (2.30)

In the last term, the upper sign (−) is for s = 2 and the lower sign (+) is for s = −2. The

same term appears in Eq. (2.21). Eq. (2.30) is a different, but equivalent expression of Eq.

(4.7) in Teukolsky (1973). A more familiar expression is

L(s)ψ(s) = −8πT(s), (2.31)

where

L(s)ψ(s) ≡
{
−
[
(r2 + a2)2

∆
− a2 sin2 θ

]
∂t

2 − 4Mar

∆
∂t∂ϕ −

(
a2

∆
− 1

sin2 θ

)
∂ϕ

2

+∆−s∂r(∆
s+1∂r) +

1

sin θ
∂θ(sin θ∂θ) + 2s

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂ϕ

+2s

[
M(r2 − a2)

∆
− r − ia cos θ

]
∂t − (s2 cot2 θ − s)

}
ψ(s). (2.32)

The equation can be separated as

ψ(s) =
∞∑
l,m

∫ ∞

−∞
dωR

(s)
lmω(r) sS

aω
lm(θ)eimϕe−iωt, (2.33)

where sS
aω
lm(θ) is the spin-weighted spheroidal harmonics. called spin-weighted spheroidal func-

tion (Teukolsky 1973).

The separated equations for radial and angular part are

∆−s d

dr

(
∆s+1 d

dr

)
R

(s)
lmω +

[
K2 − 2is(r −M)K

∆
+ 4isωr − λ

]
R

(s)
lmω = −8πT

(s)
lmω, (2.34)

csc θ
d

dθ

(
sin θ

d

dθ

)
sS

aω
lm + (−a2ω2 sin2 θ + 2aωm− 2aωs cos θ)sS

aω
lm

+

(
−2ms cos θ

sin2 θ
− m2

sin2 θ
− s2 cot2 θ + s+ λ

)
sS

aω
lm = 0, (2.35)
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where K = (r2 + a2)ω − am, and λ is the separation constant. When aω = 0, it follows

λ = (l − s)(l + s + 1) and the spin-weighted spheroidal harmonics become the spin-weighted

spherical harmonics sYlm(θ, ϕ) = sS
0
lm(θ)e

imϕ. For fixed s, m, and aω, the minimum of l is

lmin = max(|m|, |s|). The separated ordinal differential equation for the radial part Eq. (2.34)

is the Teukolsky equation. The source term T
(s)
lmω is defined as

T
(s)
lmω ≡ 1

2π

∫ ∞

−∞
dt

∫ π

0

dθ

∫ 2π

0

dϕ sin θ sS
aω
lme

−imϕeiωtT(s). (2.36)

2.6 Summary of this chapter

We reviewed the Newman-Penrose formalism. A complex null tetrad (la, na, ma, ma) is used,

and the Weyl scalars (ψ0, ψ1, ψ2, ψ3, and ψ4) are defined as tetrad components of the Weyl

tensor, which is the trace-free part of the Riemann curvature tensor. The five complex Weyl

scalars are defined such that they are the 10 independent components of the Weyl tensor.

The first order perturbation equations for ψ0 and ψ4 are separated using the spin-weighted

spheroidal harmonics sS
aω
lm(θ). The two Weyl scalars are decomposed as Eq. (2.33). The

separated equations, the Teukolsky equations Eq. (2.34) are second order ordinary differential

equations. The ψ0 and ψ4 represent the ingoing and outgoing gravitational radiation field,

respectively. When we consider vacuum perturbation (Tab = 0, only radiation), it is known

that the real part and imaginary part of ψ0 or ψ4 have complete information (the two degrees

of freedom of gravitational radiation) to specify the perturbed space-time. However, we are

interested in non-vacuum perturbation because we want to consider a particle orbiting around

the black hole around the Kerr black hole. The source term is constructed as Eq. (2.36) with

Eqs. (2.28) and (2.29) from the energy-momentum tensor Tab.





Chapter 3

CCK formalism

The Hertz potential (Hertzian potential) was introduced as a super potential in electromag-

netism by Hertz (1889), and the general theory was developed by Nisbet (1955). The frequently

used scalar and vector potentials, ϕ and A are related with the electric and magnetic field as

E = −∇ϕ− Ȧ, B = ∇×A, where Ȧ ≡ ∂A/∂t. Further, the Hertzian potentials Πe and Πm

are introduced as potentials for ϕ andA. The potentials ϕ andA are expressed as ϕ = −∇·Πe,

A = Π̇e +∇×Πm. For a given electromagnetic field, the Hertzian potentials are not unique.

By investigating gauge transformations, Nisbet showed that the Hertzian potentials Πe and

Πm can be reduced to only two scalar functions and each function obey a second order wave

equation.

Cohen and Kegeles extended this and presented a new method to compute electromag-

netic fields in curved space-time (Cohen & Kegeles 1974). This method was further extended

by Chrzanowski, Cohen, and Kegeles. They devised a procedure to construct neutrino, elec-

tromagnetic, and gravitational perturbation of the Kerr black hole space-time (Chrzanowski

1975; Cohen & Kegeles 1975; Kegeles & Cohen 1979). Hence their formalism is called the CCK

formalism. Wald (1978) and Stewart (1979) also developed the formalism further, and made

it more rigorous.

In the CCK formalism, a radiation gauge is used. In that gauge, the first order perturbation

19
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of the space-time metric can be expressed in terms of second derivatives of the Hertz potential.

The Hertz potential obeys the Teukolsky equation with Tab = 0 (vacuum). The metric pertur-

bation in the ingoing radiation gauge (habl
b = ha

a = 0) is obtained from the Hertz potential

which is a vacuum solution for ψ(s=−2). The metric perturbation in the outgoing radiation

gauge (habn
b = ha

a = 0) is obtained from the Hertz potential which is a vacuum solution for

ψ(s=2).

Though we have explicit formulae for computing the metric perturbation from the Hertz

potential, obtaining the Hertz potential for a specific perturbation is another problem. Indeed,

finding the Hertz potential is the most important and difficult problem in this method to

construct the metric perturbation. We investigate this problem.

In the following sections below we assume that the unperturbed space-time is described by

the Kerr metric.

3.1 Ingoing radiation gauge

The ingoing radiation gauge (IRG) is defined by the conditions habl
b = haa = 0. In this gauge,

the perturbed metric hab is related to the Hertz potential as (Kegeles & Cohen 1979)

hab = −
[{
lalb(δδδ + 2β +ϖ − τ)−m(alb)(DDD + ρ− ρ)

}
(δδδ + 4β + 3τ)

+
{
−l(amb)(δδδ + 4β − 2ϖ − τ) +mamb(DDD − ρ)

}
(DDD + 3ρ)

]
Ψ+ [c.c.] , (3.1)

where [c.c.] represents the complex conjugate of the first term. The Hertz potential Ψ in the

IRG satisfies the source-free perturbation equation for ψ(s=−2) = ρ−4ψ4, Eq. (2.25):

[(∆∆∆+ 4µ+ µ+ 3γ − γ)(DDD − ρ)− (δδδ + β + 3α− τ + 4ϖ)(δδδ + 4β − τ)− 3Ψ2]ρ
4Ψ = 0. (3.2)

By using commutation relations in Appendix B.1, we obtain

−(∆∆∆+ µ+ 2γ)(DDD + 3ρ)Ψ + 3Ψ2Ψ+ (δδδ + 2α +ϖ − τ)(δδδ + 4β + 3τ)Ψ = 0. (3.3)
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or equivalently,

(∆∆∆− 2µ+ 2γ)DDDΨ+ 3ρ∂tΨ = (δδδ − 2β − τ)(δδδ + 4β)Ψ, (3.4)

3.2 Outgoing radiation gauge

The outgoing radiation gauge (ORG) is defined by the conditions habn
b = haa = 0. In this

gauge, the perturbed metric hab is related to the Hertz potential as

ρ4∆2hab = −
[{

nanb
ρ2

ρ2
(δ̃δδ + 2β +ϖ − τ)−m(anb)

ρ

ρ

−∆

2Σ
(D̃DD + ρ− ρ)

}
(δ̃δδ + 4β + 3τ)

+

{
−n(amb)

−∆

2Σ

ρ

ρ
(δ̃δδ + 4β − 2ϖ − τ) +mamb

∆2

4Σ2
(D̃DD − ρ)

}
(D̃DD + 3ρ)

]
∆2Ψ+ [c.c.] , (3.5)

where D̃DD etc., are the auxiliary symbols which are defined in Sec. 2. The symmetry between

Eqs. (3.1) and (3.5) is clear when we use them. The Hertz potential Ψ in ORG satisfies the

source-free perturbation equation for ψ(s=2) = ψ0 (Eq. (2.26)):

−(DDD − 4ρ− ρ)(∆∆∆+ µ− 4γ)Ψ + 3Ψ2Ψ+ (δδδ − 2β − 4τ)(δδδ − 4α +ϖ)Ψ = 0, (3.6)

or, using the auxiliary symbols,

−(∆̃∆∆ + µ+ 2γ)(D̃DD + 3ρ)∆2Ψ+ 3Ψ2∆
2Ψ+ (δ̃δδ + 2α +ϖ − τ)(δ̃δδ + 4β + 3τ)∆2Ψ = 0. (3.7)

The symmetry between Eqs. (3.3) and (3.7) is clear. Below we use the IRG. We can also obtain

results in the ORG in the analogous way to the IRG case.

3.3 Relations between the Weyl scalars and the Hertz

potential

In this section we present the reduced expressions for the perturbed Weyl scalars in terms of

the Hertz potential in the IRG. Each expressions are obtained by calculating derivatives of
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Eq. (3.5). See Appendix for detail. One can obtain ψ0 to ψ2 as

2ψ0 =DDDDDDDDDDDDΨ, (3.8a)

2ψ1 =DDDDDDDDD(δδδ + 4β)Ψ− 3ϖDDD(DDD + 2ρ)DDDΨ, (3.8b)

2ψ2 =DDDDDDρ(δδδ + 2β)
1

ρ
(δδδ + 4β)Ψ− 4ϖ(DDD + ρ)DDD(δδδ + 4β)Ψ + 6ϖDDDϖDDDΨ. (3.8c)

On the other hand, ψ3 and ψ4 are much more complicated. They are obtained as follows in

terms of the metric perturbation hµν :

2ψ3 = −DDD(δδδ +ϖ − τ)h22 + (∆∆∆+ µ+ µ)(DDD + ρ)h24

− 2(τ −ϖ)(δδδ − 2β +ϖ)h24 − τ(δδδ + 2β + 3τ)h24 − (ρ− ρ)ρh24

− 2ϖ2h23 − (τ − 2ϖ)(δδδ + 2β + τ)h23 − (2τ +ϖ)(∆∆∆+ µ− µ)h44,

(3.9)

2ψ4 = −(δδδ + 3α+ β − τ)(δδδ + 2α+ 2β − τ)h22 − (∆∆∆+ µ+ 2γ)(∆∆∆+ 2µ− µ)h44

+ (∆∆∆+ µ+ 2γ)(δδδ + 2α− 2τ)h24 + (δδδ + 3α + β − τ)(∆∆∆+ 2µ+ 2γ)h24. (3.10)

In the Schwarzschild case, many terms vanish because ϖ = τ = 0 and ρ = ρ. Further, after

we use Eq. (3.3) for ψ3 and ψ4, we obtain

2ψ0 =DDDDDDDDDDDDΨ, (3.11a)

2ψ1 =DDDDDDDDD(δδδ + 4β)Ψ, (3.11b)

2ψ2 =DDDDDD(δδδ + 2β)(δδδ + 4β)Ψ, (3.11c)

2ψ3 =DDDδδδ(δδδ + 2β)(δδδ + 4β)Ψ + 6γDDDρ(δδδ + 4β)Ψ, (3.11d)

2ψ4 = (δδδ − 2β)δδδ(δδδ + 2β)(δδδ + 4β)Ψ− 6γρ2∂tΨ. (3.11e)

3.4 Summary of this chapter and discussion

By using the CCK formalism, the metric perturbation hab can be calculated from the Hertz

potential. Contrary to the Regge-Wheeler-Zerilli formalism, the CCK formalism can be applied
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to the Kerr metric. The Hertz potential is a complex scalar potential that satisfies the vacuum

perturbation equation for ψ(s=±2). A radiation gauge is used, and the components of hab and

the perturbed Weyl scalars are expressed in terms of second order derivatives and fourth order

derivatives of the Hertz potential, respectively. Then, finding the Hertz potential becomes the

core of the problem of constructing the perturbed gravitational field in this method.

We can use two equations (3.8a) and (3.10) for finding the Hertz potential. Since ψ0 and ψ4

can be obtained by solving the Teukolsky equation, Eqs. (3.8a) and (3.10) can be regarded as

two differential equations for the Hertz potential. General theory about solving these equations

is discussed by Ori (2003). In the case of vacuum perturbation (Tab = 0), the Hertz potential

can be obtained as

Ψ =
∞∑
l,m

∫ ∞

−∞
dωRΨ

lmω(r)2S
aω
lm(θ)eimϕe−iωt, (3.12)

where each mode RΨ
lmω is given as fourth order differential derivative of R

(2)
lmω, the radial part

of ψ0. Based on the analysis by Wald (1978), this solution is proven to be the unique solution

that satisfies Eqs. (3.3), (3.8a), and (3.10). In the following chapters, we discuss the case of

non-vacuum perturbation, by considering the perturbation induced by a rotating ring.





Chapter 4

Metric reconstruction

In this chapter we construct the metric perturbation in the ingoing radiation gauge for specific

cases. In the method by CCK, we start from two Weyl scalars ψ0 and ψ4 and recover the

metric perturbation, via the Hertz potential. While each Weyl scalar is second derivative of

the metric, this construction method is called metric reconstruction (Ori 2003; Poisson, Pound,

& Vega 2011).

As a previous work, Keidl, Friedman, & Wiseman (2007) calculated the perturbation of

the Schwarzschild space-time by a particle at rest. They analytically constructed the metric

perturbation in the radiation gauge and made analyses about the lower mode contribution

by the Hertz potential to the space-time. This model is very special and simple. Later, they

considered cases of a particle in a circular orbit around the Schwarzschild black hole and the

Kerr black hole (Keidl et al. 2010; Shah et al. 2011; Shah, Friedman, & Keidl 2012). However,

in these study they included the lower modes in other gauge, not in the radiation gauge. We

consider obtaining the metric perturbation in the radiation gauge, for the case of a rotating

ring around a black hole. The ring is circular, and is on the equatorial plane (Fig. 4.1). Since

the perturbed space-time is stationary and axisymmetric, the calculation is much simpler than

the orbiting particle case. However, because the ring is rotating, we can consider the both of

the mass perturbation and angular momentum perturbation of the space-time in the radiation

25
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θ = 0!

Spin of BH!

θ = π!

M!m!

m << M!

r = r0 

θ = π/2!

Figure 4.1: The system of a rotating ring and a black hole. The mass of the black hole is denoted by

M . The mass and radius of the ring are m ≪ M and r0, respectively. The ring is on the equatorial

plane θ = π/2. The perturbed space-time is stationary and axisymmetric.

gauge. We also consider the perturbation of the Kerr space-time by a particle at rest, which

is the Kerr version of Keidl, Friedman, & Wiseman (2007).

4.1 Solving the Teukolsky equation

The first step is to obtain the perturbed Weyl scalars ψ0 and ψ4 by solving the Teukolsky

equations.

4.1.1 Stationary and axisymmetric solution

Since we consider a rotating ring and a particle at rest on the axis, the energy-momentum

tensor does not depend on t nor ϕ. In that case, Eq. (2.36) becomes

T
(s)
lmω = δ(ω)

∫ π

0

dθ

∫ 2π

0

dϕ sin θ sS
0
lme

−imϕT(s)

= δ(ω)δ0m × T
(s)
l ,

(4.1)
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where

T
(s)
l ≡ 2π

∫ π

0

dθ sin θ sYl(θ) T(s)(r, θ)

= 2π

∫ 1

−1

d(cos θ) sYl(θ) T(s)(r, θ),

(4.2)

sYl(θ) ≡ sYl0(θ, 0). (4.3)

Therefore the m ̸= 0 modes and ω ̸= 0 modes of the Teukolsky equation are source-free

equation. We solve the source-coupled modes only. It is sufficient to consider (m,ω) = (0, 0)

modes. By substituting R
(s)
lmω = δ(ω)δ0mR

(s)
l into Eq. (2.33), we have

ψ(s) =
∞∑

l=|s|

R
(s)
l (r) sYl(θ). (4.4)

The Teukolsky equation (2.34) becomes[
d

dr

(
∆s+1 d

dr

)
−∆s(l − 2)(l + 3)

]
R

(s)
l = −8π∆sT

(s)
l . (4.5)

This equation can be solved using the Green’s function. The Green’s function is found as

G
(s)
l (r, r′) =

(∆∆′)−s/2 P 2
l (x

′
<)Q

2
l (x

′
>)√

M2 − a2(l + 2)(l + 1)l(l − 1)
, (4.6)

where P 2
l and Q2

l are the associated Legendre functions, and we define ∆′ = r′2 − 2Mr′ + a2

and

x′< ≡ min(r, r′)−M√
M2 − a2

, x′> ≡ max(r, r′)−M√
M2 − a2

. (4.7)

A simple relation (∆∆′)2G
(2)
l (r, r′) = G

(−2)
l (r, r′) holds . The radial function R

(s)
l (r) is obtained

as

R
(s)
l (r) =

∫
dr′
[
G

(s)
l (r, r′)

(
8π∆′sT

(s)
l (r′)

)]
. (4.8)

R
(2)
l and R

(−2)
l are the radial parts of ψ0 and ρ

−4ψ4, respectively. First we focus on ψ0 (s = 2).

After we solve ψ0, we show that ψ4 can be obtained from ψ0 in the stationary and axisymmetric

case.
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The source term T
(s)
l (r) is defined in Eq. (4.2). Before integrating T(2) to get T

(2)
l (r), we

split T(2) into three groups of terms in accordance with order of derivatives by cos θ:

T(2) = T
[2]
(2) + T

[1]
(2) + T

[0]
(2), (4.9)

where

T
[2]
(2) ≡ − 1

ρ
(δδδ − 2β)

1

ρ
δδδ
ρ

ρ
T11, (4.10a)

T
[1]
(2) ≡

1

ρ
(δδδ − 2β)

2τ

ρ
T11 +

2

ρ
(δδδ − 2β)

1

ρ
(DDD − 2ρ− ρ)T13, (4.10b)

T
[0]
(2) ≡

2

ρρ
(ϖ − τ)(DDD + ρ)T13 −

1

ρρ
(DDD − 4ρ− ρ)(DDD − ρ)T33. (4.10c)

By integrating T(2) according to Eq. (4.2), T
(2)
l is obtained. We perform partial integrations

for T
(2)
l [2] and T

(2)
l [1]. After that, we use Eq. (2.19):

T
(2)
l [2] = −π

∫ 1

−1

d(cos θ)
ρ

ρ
T11
√
(l + 2)(l − 1)(l + 1)l 0Yl(θ), (4.11a)

T
(2)
l [1] = +

√
2π

∫ 1

−1

d(cos θ)
2

ρ
[τT11 + (DDD − 2ρ− ρ)T13]

√
(l + 2)(l − 1) 1Yl(θ), (4.11b)

T
(2)
l [0] = 2π

∫ 1

−1

d(cos θ)
1

ρρ
[2(ϖ − τ)(DDD + ρ)T13 − (DDD − 4ρ− ρ)(DDD − ρ)T33] 2Yl(θ). (4.11c)

4.1.2 Source term

We construct the energy-momentum tensor T ab of a rotating circular ring and a particle at rest.

The ring is composed by a set of mass particles in a circular, geodesic orbit on the equatorial

plane. Both are stationary and axisymmetric. First, we show the energy-momentum tensor
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for a particle:

T ab
par. =

∫
dτ uaubmδ4(x, x0(τ))

=

∫
dτ uaubm

δ4(x− x0(τ))√
−g

=

∫
dt′

uaub

dt′/dτ
mδ(t− t′)

δ3(x− x0(t
′))√

−g

=

[
uaub

ut

]
t

m
δ3(x− x0(t))√

−g
,

(4.12)

where ua andm are, respectively the four-velocity and the rest mass of the particle. The tensor

field is evaluated at coordinate x (= (t, r, θ, ϕ)). The coordinate of the particle is denoted by

x0(τ), as a four-component function of the proper time τ . And δ4(x, x0) is the covariant Dirac

distribution (delta function), g is determinant of the unperturbed Kerr metric. When we use

the Boyer-Lindquist coordinates, g = −Σ2 sin2 θ. Note that the four-velocity ua is defined only

at the position of the particle x0. Next, we integrate the expression above with respect to ϕ0

and divide it by 2π to obtain stationary and axisymmetric energy-momentum tensor for the

matter at (r0, θ0):

T ab =
1

2π

∫ 2π

0

dϕ0
uaub

ut
m
δ3(x− x0)√

−g

=
uaub

ut
m

2π

δ(r − r0)δ(θ − θ0)

Σ sin θ

=
uaub

utΣ0

m

2π
δ(r − r0)δ(cos θ − cos θ0),

(4.13)

where Σ0 = r0
2+a2 cos2 θ0. The total rest mass of the matter is m. We denote the coefficients

of the delta function by T̂µν :

Tab(eµ)
a(eν)

b = Tµν = T̂µνδ(r − r0)δ(cos θ − cos θ0). (4.14)

When we set θ0 = π/2 and ua = ut((∂t)
a+Ω(∂ϕ)

a), Tab becomes the energy-momentum tensor

of a rotating mass ring on the equatorial plane. When we set θ0 = 0 and ua = ut(∂t)
a, Tab

becomes that of a mass particle at rest on the axis of symmetry. Recall that (∂t)
a and (∂ϕ)

a
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are the coordinate basis vectors. The angular velocity Ω = Ω(M,a, r0) of the ring is fixed by

the geodesic equation. The ut is fixed by the normalization condition uau
a = −1.

We can write T
(2)
l [2], T

(2)
l [1], and T

(2)
l [0] as

T
(2)
l [2] = π

√
(l + 2)(l − 1)(l + 1)l 0Yl(θ0)×

[
− ρ

ρ
T̂11

]
θ0

δ(r − r0), (4.15a)

T
(2)
l [1] =

√
2π
√

(l + 2)(l − 1) 1Yl(θ0)× 2

[
τ

ρ
T̂11 + ρρ

d

dr

1

ρ2ρ
T̂13

]
θ0

δ(r − r0), (4.15b)

T
(2)
l [0] = 2π 2Yl(θ0)×

[
2
ϖ − τ

ρρ2
d

dr
ρT̂13 − ρ3

d

dr

1

ρ4
d

dr

1

ρ
T̂33

]
θ0

δ(r − r0). (4.15c)

Here, [ ]θ0 means value at θ = θ0. Note that the delta function δ(r − r0) which is written at

the right of d
dr

is differentiated by r. For example,[
τ

ρ
T̂11 + ρρ

d

dr

1

ρ2ρ
T̂13

]
θ0

δ(r − r0) =

[
τ

ρ
T̂11δ(r − r0) + ρρ

d

dr

(
1

ρ2ρ
T̂13δ(r − r0)

)]
θ0

. (4.16)

4.1.3 Solution

We perform integration with respect to r′ to obtain R
(2)
l (r), Eq. (4.8). Partial integration is

done for terms of T̂13 and T̂33:∫
dr′G

(2)
l (r, r′)

(
8π∆′2

[
− ρ

ρ
T̂11

]
(r′,θ0)

δ(r′ − r0)

)
= 8π

[
−T̂11

ρ

ρ

]
0

∆0
2G

(2)
l (r, r0), (4.17)

∫
dr′G

(2)
l (r, r′)

(
16π∆′2

[
τ

ρ
T̂11 + ρρ

d

dr

1

ρ2ρ
T̂13

]
(r′,θ0)

δ(r′ − r0)

)

= 16π

∫
dr′δ(r′ − r0)

[
T̂11

τ

ρ
− T̂13

1

ρ2ρ

d

dr
ρρ

]
(r′,θ0)

∆′2G
(2)
l (r, r′)

= 16π

[
T̂11

τ

ρ
− T̂13

1

ρ2ρ

d

dr
ρρ

]
0

∆0
2G

(2)
l (r, r0),

(4.18)

∫
dr′G

(2)
l (r, r′)

(
8π∆′2

[
2
ϖ − τ

ρρ2
d

dr
ρT̂13 − ρ3

d

dr

1

ρ4
d

dr

1

ρ
T̂33

]
(r′,θ0)

δ(r′ − r0)

)

= 8π

∫
dr′δ(r′ − r0)

[
−2T̂13ρ

d

dr

ϖ − τ

ρρ2
− T̂33

1

ρ

d

dr

1

ρ4
d

dr
ρ3
]
(r′,θ0)

∆′2G
(2)
l (r, r′)

= 8π

[
−2T̂13ρ

d

dr

ϖ − τ

ρρ2
− T̂33

1

ρ

d

dr

1

ρ4
d

dr
ρ3
]
0

∆0
2G

(2)
l (r, r0).

(4.19)
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Note that ∆0
2G

(2)
l (r, r0) which is written at the right of [ d

dr
]0 is differentiated by r0.

As a result, the radial function R
(2)
l (r) of the Weyl scalar ψ0 is

R
(2)
l = R

(2)
l [2] +R

(2)
l [1] +R

(2)
l [0], (4.20)

where

R
(2)
l [2] = 8π2

√
(l + 2)(l − 1)(l + 1)l 0Yl(θ0)

[
−T̂11

ρ

ρ

]
0

∆0
2G

(2)
l (r, r0), (4.21a)

R
(2)
l [1] = 16

√
2π2
√

(l + 2)(l − 1) 1Yl(θ0)

[
T̂11

τ

ρ
− T̂13

1

ρ2ρ

d

dr
ρρ

]
0

∆0
2G

(2)
l (r, r0), (4.21b)

R
(2)
l [0] = 16π2

2Yl(θ0)

[
−2T̂13ρ

d

dr

ϖ − τ

ρρ2
− T̂33

1

ρ

d

dr

1

ρ4
d

dr
ρ3
]
0

∆0
2G

(2)
l (r, r0). (4.21c)

The Weyl scalar ψ0 is obtained as

ψ0 =
∞∑
l=2

R
(2)
l (r) 2Yl(θ). (4.22)

Next, we show that the Teukolsky equation with s = −2 can be reduced to the equation

with s = 2. The coordinate components of the four-velocity have to satisfy ur = uθ = 0 so

that the matter distribution is stationary. Because of these conditions,

4Σ2

∆2
T22 = T11,

2Σ

−∆

ρ

ρ
T24 = T13,

ρ2

ρ2
T44 = T33 (4.23)

hold. Further, because we are assuming ∂tTµν = ∂ϕTµν = 0, in Eqs. (2.27) and (2.29) we can

replace D̃DD by DDD, and so on. That means

[(DDD − 4ρ− ρ)(∆∆∆+ µ− 4γ)− (δδδ − 2β − 4τ)(δδδ − 4α +ϖ)− 3Ψ2]
4

∆2
ψ(−2) = 4π

4

∆2

T(−2)

Σ
,

(4.24)

4

∆2

T(−2)

Σ
= −(δδδ − 2β − 4τ)(δδδ −ϖ)

4Σ2

∆2
T22 + (δδδ − 2β − 4τ)(DDD − 2ρ)

2Σ

−∆

ρ

ρ
T24

+ (DDD − 4ρ− ρ)(δδδ + 2α)
2Σ

−∆

ρ

ρ
T24 − (DDD − 4ρ− ρ)(DDD − ρ)

ρ2

ρ2
T44. (4.25)
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The derivative operations become the same as the ones in Eqs. (2.26) and (2.28). By substi-

tuting Eq. (4.23) into Eq. (4.25), we obtain

4

∆2
ψ(−2) = ψ(2), (4.26)

or
4ρ−4

∆2
ψ4 = ψ0. (4.27)

Finally, because −2Yl(θ) = 2Yl(θ), we have

4

∆2
R

(−2)
l (r) = R

(2)
l (r). (4.28)

Rotating ring

We consider the perturbation of the Kerr metric induced by a rotating ring which is composed

of a set of point masses in a circular, geodesic orbit on the equatorial plane. The four-velocity

is

ua = ut((∂t)
a + Ω(∂ϕ)

a), (4.29)

where (Shah, Friedman, & Keidl 2012)

ut =
r0

3/2 ±M1/2a√
r03 − 3Mr02 ± 2aM1/2r03/2

, Ω =
±M1/2

r03/2 ± aM1/2
. (4.30)

The upper sign is for the prograde rotation and the lower sign is for the retrograde rotation.

We choose the prograde rotation below. The tetrad components u1 and u3 of the four-velocity

are

u1 = ual
a = ut

[
(gtt + Ωgtϕ)l

t + (gtϕ + Ωgϕϕ)l
ϕ
]
0
= Re(u1), (4.31a)

u3 = uam
a = ut

[
(gtt + Ωgtϕ)m

t + (gtϕ + Ωgϕϕ)m
ϕ
]
0
= iIm(u3). (4.31b)

The constant part of the energy-momentum tensor in terms of u1 and u3 are as follows:

T̂µν =
uµuν
utΣ0

m

2π
. (4.32)
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Because cos θ0 = 0, we have [ρ]0 = [ρ]0 = −1/r and thus [τ ]0 = [ϖ]0. As a result, we obtain

R
(2)
l [2] = 8π2

√
(l + 2)(l − 1)(l + 1)l 0Yl(π/2)

(
−T̂11

)
∆0

2G
(2)
l (r, r0), (4.33a)

R
(2)
l [1] = 16

√
2π2
√
(l + 2)(l − 1) 1Yl(π/2)

[
T̂11

ia√
2r

+ T̂13r
3 d

dr

1

r2

]
0

∆0
2G

(2)
l (r, r0), (4.33b)

R
(2)
l [0] = 16π2

2Yl(π/2)

[
−T̂33r

d

dr
r4

d

dr

1

r3

]
0

∆0
2G

(2)
l (r, r0). (4.33c)

The real and imaginary parts of R
(2)
l are respectively

Re(R
(2)
l ) = R

(2)
l [2] +R

(2)
l [0], iIm(R

(2)
l ) = R

(2)
l [1]. (4.34)

We obtain ψ0 and ψ4 by Eqs. (4.22) and (4.27).

The radial dependence of ψ0 and ψ4 are shown in Fig. 4.2 (Sano & Tagoshi 2015). The

solid lines are for the Kerr case a = 0.99M and the dashed lines are for the Schwarzschild case

a = 0. In the Schwarzschild case, because ρ−1 = −r, Eq. (4.27) becomes (4r4/∆2)ψ4 = ψ0,

where ∆ = r2 − 2Mr. Therefore, at a point (r, θ) such that (4r4/∆2) ̸= 0 and Re(ψ4) = 0,

Re(ψ0) vanishes too. It is the same for Im(ψ4) and Im(ψ0). On the other hand, it is not the

case when a ̸= 0. In the Kerr case, because ρ−1 = −(r − ia cos θ), we have

4

∆2

(
Re(ρ−4) + iIm(ρ−4)

)
· (Re(ψ4) + iIm(ψ4)) = Re(ψ0) + Im(ψ0). (4.35)

That is why Re(ψ0) and Re(ψ4) (or Im(ψ0) and Im(ψ4)) vanish at different points in Fig. 4.2

(solid lines).

Particle at rest

We also consider the perturbed Kerr metric induced by a point mass at rest. The particle is

assumed to be (unphysically) kept at (r, θ) = (r0, θ0 = 0). This model is the Kerr version of

Keidl, Friedman, & Wiseman (2007). The four-velocity in this case is

ua = ut(∂t)
a =

√
Σ0

∆0

(∂t)
a. (4.36)
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Figure 4.2: The radial dependence of the Weyl scalars ψ0 and ψ4, at θ = π/4. The perturbation of

the Kerr space-time by a rotating ring at (10M,π/2) is considered. The solid line is for a = 0.99M ,

and the dashed line is for a = 0. The radius and the mass of the ring are r0 = 10M , m = 2π×10−2M ,

respectively. The event horizon is at r = M +
√
M2 − a2. The field is smooth at r = r0, while the

each l mode R
(±2)
l (r) is not. Reprinted figures from Y. Sano, and H. Tagoshi, (2015) (submitted).

Copyright (2015) by The American Physical Society.
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Figure 4.3: The radial dependence of the Weyl scalars ψ0 and ψ4, at θ = π/4. The perturbation of

the Kerr space-time by the particle at (10M, 0) is considered. The solid line is for a = 0.99M , and

the dashed line is for a = 0. The radius and the mass of the ring are r0 = 10M , m = 2π × 10−2M ,

respectively. The event horizon is at r = M +
√
M2 − a2. The field is smooth at r = r0, while the

each l mode R
(±2)
l (r) is not. In the Schwarzschild case, Im(ψ0) = Im(ψ4) = 0.
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Because sin θ0 = 0, we have [gtϕ]0 = −2Mar0 sin
2 θ0/Σ0 = 0, [mt]0 = [−ρ(ia sin θ)]0 = 0, and

[ϖ]0 = [τ ]0 = 0. Thus the constant part of the energy-momentum tensor is

T̂11 =
m/(2π)√
∆0Σ0

, T̂13 = T̂33 = 0. (4.37)

As a result, R
(2)
l [1] = R

(2)
l [0] = 0. Therefore we obtain

R
(2)
l = 8π2

√
(l + 2)(l − 1)(l + 1)l 0Yl(0)

(
−T̂11

r0
2 − a2 − 2ir0a

r02 + a2
∆0

2G
(2)
l (r, r0)

)
. (4.38)

We obtain ψ0 and ψ4 by Eqs. (4.22) and (4.27).

The radial dependence of ψ0 and ψ4 are shown in Fig. 4.3. In the Schwarzschild case,

Im(ψ0) = Im(ψ4) = 0.

4.2 Hertz potential without lower modes

The second step is to obtain the Hertz potential from the perturbed Weyl scalars ψ0 and ψ4,

that are obtained in the previous section, Sec. 4.1. Since the Hertz potential is obtained

by solving differential equations, degrees of freedom that correspond to the integral constant

remain. In other words, because ψ0 and ψ4 are spin-weight s = ±2 quantities, they cannot

specify the lower modes, l = 0 and l = 1. The Hertz potential without these lower modes is

obtained in this section. The remaining part is determined in the next section, as the third

step.

In the IRG (ingoing radiation gauge, Eq. (3.5)), when the perturbed space-time is stationary

and axisymmetric, we have

ψ0 =
1

2

(
∂

∂r

)4

Ψ, (4.39)

4ρ−4ψ4 =
1

2
sin2 θ

(
∂

∂ cos θ

)4

sin2 θΨ, (4.40)

where Ψ is complex conjugate of the Hertz potential Ψ. As we mentioned in Chapter 3, the

Hertz potential in IRG must satisfy the source-free perturbation equation for ψ(s=−2). In the
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case of stationary perturbed space-time, Eq. (3.4) becomes

∆2 ∂

∂r

1

∆

∂

∂r
Ψ+ sin2 θ

∂

∂cos θ

1

sin2 θ

∂

∂cos θ
sin2 θΨ = 0. (4.41)

Our task is to find Hertz potential which satisfies Eqs. (4.39), (4.40) and (4.41). (See Sec. 4.3

for discussions about what the Hertz potential should be.) First, by substituting the solution

of the Teukolsky equation ψ4 into Eq. (4.40), we obtain

∞∑
l=2

8R
(−2)
l (r)

−2Yl(θ)

sin2 θ
=

(
∂

∂cos θ

)4

sin2 θΨ. (4.42)

From Eq. (2.19b), we can obtain the following relation:

−2Yl(θ)

sin2 θ
=

1

(l + 2)(l − 1)(l + 1)l

(
∂

∂cos θ

)4

sin2 θ 2Yl(θ). (4.43)

By using this relation, Ψ can be integrated as

Ψ(r, θ) = ΨP +ΨH, (4.44)

where

ΨP =
∞∑
l=2

RP
l (r) 2Yl(θ) ≡

∞∑
l=2

8R
(−2)
l (r) 2Yl(θ)

(l + 2)(l − 1)(l + 1)l
, (4.45)

ΨH =
2A

sin2 θ

(
a(r)

6
cos3 θ +

b(r)

2
cos2 θ + c(r) cos θ + d(r)

)
, (4.46)

where A is a constant defined as A ≡ m/(r0
√
∆0). ΨP is the particular solution of the

differential equations and has modes of l ≥ 2. ΨH is the homogeneous solution and is what we

called the remaining part in the beginning of this section.

The particular solution ΨP satisfies Eqs. (4.39) and (4.41) in the region r ̸= r0. The reason

is as follows. From the Teukolsky-Starobinsky relation (Chandrasekhar 1983), we obtain(
∂

∂r

)4
R

(−2)
l (r)

(l + 2)(l − 1)(l + 1)l
=

1

4
R

(2)
l (r) (r ̸= r0). (4.47)

By using this, we can obtain ψ0 by substituting ΨP into Eq. (4.39). Further, sinceR
(−2)
l (r) is the

solution of the radial Teukolsky equation with the source term at r = r0 and 2Yl(θ) =−2 Yl(θ),
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RP(r)2Yl(θ) satisfies the source-free perturbation equation for ψ(s=−2) at r ̸= r0. Thus, it

is clear that the particular solution ΨP of the form Eq. (4.45) satisfies Eq. (4.41) in region

r ̸= r0. It is now shown that ΨP is a Hertz potential that satisfies Eqs. (4.39), (4.40), and

(4.41) everywhere except on the sphere of surface at r = r0.

We discuss the regularity on r = r0. The radial part RP
l (r) of the Hertz potential ΨP is

proportional to the radial part R
(−2)
l (r) of the ψ4, for each mode of l. This radial function

R
(−2)
l (r) is not smooth at r = r0, that originates with the Green’s function Eq. (4.6). After the

l mode summation, while ψ4 has smooth radial dependence (for θ ̸= π/2), ΨP does not. In fact,

Re(ΨP) is continuous but not smooth, and Im(ΨP) is discontinuous, at r = r0 (Fig. 4.4). This

is because the radial function RP
l (r) is multiplied by [(l+2)(l− 1)(l+1)l]−1. If, as it was done

by Keidl, Friedman, & Wiseman (2007), one could obtain ΨP by angular integration of the

closed-form expression of ψ4(r, θ) directly (not mode by mode), then the ΨP becomes smooth

at r = r0 because ψ4 is so. However, we do not expect that we can find closed-form expression

for ψ4 (and ψ0) for general cases. Thus we use ΨP in Eq. (4.45). The metric perturbation and

the perturbed Weyl scalars derived from this ΨP has discontinuity on surface r = r0.

The homogeneous solution ΨH contains four arbitrary functions of r: a(r), b(r), c(r), and

d(r). In order for ΨH to satisfy Eq. (4.39), it is readily found that those functions have to be

at most 3rd order of r. Further, ΨH has to satisfy Eq. (4.41). It is shown that the equation is

satisfied when

a(r) = a1r
2(r − 3M) + 3a1a

2r + a2, (4.48a)

b(r) = b1(r
2 − a2) + b2(r −M), (4.48b)

c(r) = −a1
2
(r2 + 4M2)(r −M)− a2

2
−
(
c1 +

a1
2
M
)
a2 + c1r

2 + c2(r −M), (4.48c)

d(r) =
b1
2
r2 +

b2
2
r + d1(r

3 − 3Mr2 + 3a2r) + d2. (4.48d)

Here a1, a2, etc. are arbitrary constants, and a is the Kerr parameter. When a = 0, these

equations reduce to the equations in TABLE III in Keidl, Friedman, & Wiseman (2007). Since

parameters a1, a2, b1, . . . , d2 can be complex, the undermined degrees of freedom in ΨH is 16.
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Figure 4.4: The radial dependence of the particular solution part of the Hertz potential ΨP obtained

by Eq. (4.45). Angular coordinate is fixed at θ = π/4. The Kerr parameter is a = 0.99M . The radius

and the mass of the ring are r0 = 10M , m = 2π × 10−2M , respectively. The event horizon is at

r =M +
√
M2 − a2.

4.3 Completion of the Hertz potential

We move on to the third step. Because ΨP does not include l = 0 and l = 1 modes, we

are motivated to complete it by adding ΨH. The first attempt was done by Keidl, Friedman,

& Wiseman (2007). In their case (Schwarzschild black hole and a particle at rest), the Weyl

scalars ψ0 and ψ4 can be obtained as closed-form expressions. So they could obtain a particular

solution ΨP by integrating Eq. (4.40) with respect to θ, and it can be shown that the solution

satisfies Eq. (4.39). Note that their ΨP is not the same as Eq. (4.45), and it diverges at sin2 θ =

0. About ΨH, they determined it by considering the finiteness of the metric perturbation on

the axis θ = 0, π. The resultant Hertz potential has a singularity along a radial line from the

particle to infinity (Fig. 4.5) or to the horizon of the black hole.

In fact, as previously reported (Barack & Ori 2001), it is impossible to obtain globally

regular solution in a radiation gauge, for non-vacuum perturbation with Tab ̸= 0. In the
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Figure 4.5: Singular regions of the Hertz potential are depicted by dotted lines. Because the system

is axisymmetric, we show the slice at sinϕ = 0. The vertical arrow is the axis of the symmetry. The

black circle is the black hole and the small black dot is the particle at (r = r0, θ = 0). Particular

solution ΨP which was obtained by Keidl, Friedman, & Wiseman (2007) diverges at sin2 θ = 0. It

is possible to cancel the singularity of regions (r < r0, θ = 0) and (θ = π) by adding homogeneous

solution ΨH. The resultant Hertz potential Ψ = ΨP +ΨH is singular on a line (r > r0, θ = 0).

subsequent sections, we present solutions which are completed by ΨH and have a singular

region. In other words, the condition of the radiation gauge breaks there. Such a gauge is

called completed radiation gauge in Pound, Merlin, & Barack (2014). Despite of this inevitable

singularity, the reason why we proceed with this method is as follows.

The standard method to calculate the self-force relies on the Lorenz gauge hab;c−1
2
gab(hd

d);c =

0. The relation between the reconstructed metric using a radiation gauge and the self-force is

studied in detail by Pound, Merlin, & Barack (2014). And they found the prescription for the

calculation of the self-force using the metric perturbation which is constructed in a completed

radiation gauge.

4.3.1 Contribution of the remaining part of the Hertz potential

For the Schwarzschild case a = 0, Keidl, Friedman, & Wiseman (2007) investigated the contri-

bution of each parameters a1, a2, etc. in ΨH to the gravitational field, using gauge transforma-

tions. They found that the metric perturbation hHab induced by parameters except for Re(b1),
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Re(b2), and Im(a2) can be cancelled by a certain gauge transformation: hHab + Lξg
Schw.
ab = 0.

Here, hHab is calculated by substituting ΨH Eq. (4.46) into the CCK formula of hab Eq. (3.1)

with Re(b1) = Re(b2) = Im(a2) = 0, and ξa is the gauge vector. Then we can say that the

difference between hPab and h
P
ab+h

H
ab is just the choice of gauge. That means, parameters except

for Re(b1), Re(b2), and Im(a2) are not physical parameters.

On the other hand, the metric perturbation hHab induced by Re(b1) and Re(b2) is found to

be the change δM in the black hole mass M after a certain gauge transformation:

hHab(Re(b1),Re(b2)) + Lξgab =
2δM

r
(dt)a(dt)b +

(
gSchw.
rr

)2 2δM
r

(dr)a(dr)b

= δM
∂gSchw.

ab

∂M
.

(4.49)

In the right-hand side, δM is given by Re(b1) and Re(b2). These two parameters correspond

to the l = 0 mode perturbation. Similarly, the metric perturbation hHab induced by Im(a2) is

found to be the first order perturbation from the Schwarzschild metric to the Kerr metric (in

the Boyer-Lindquist coordinates), namely the addition of small angular momentum:

hHab(Im(a2)) + Lξgab = −4δJ

r
sin2 θ(dt)(a(dϕ)b)

=
δJ

M

[
∂gKerr

ab

∂a

]
a=0

,
(4.50)

where a = J/M is the Kerr parameter. The δJ is given by Im(a2). This is the l = 1

mode perturbation. The specific gauge vectors of Eqs. (4.49) and (4.50) are given in Keidl,

Friedman, & Wiseman (2007). (There are some typos about Im(a2) in that paper. See Sano

& Tagoshi (2014) for correct equations. Note that the conventions of the metric signature are

different between the two papers.) After all, the contribution by the three physical parameters

are found to be

δM = −A(3MRe(b1) + Re(b2)), δJ = −AIm(a2), (4.51)

where A = m/(r0
√
∆0) is a fixed constant in Eq. (4.46).



42 CHAPTER 4. METRIC RECONSTRUCTION

4.3.2 Rotating ring

First, we consider the perturbation induced by a rotating ring around the Schwarzschild black

hole (a = 0). In order to cancel the discontinuity of hPab and corresponding Weyl scalars on

surface of sphere at r = r0, ΨH must not be smooth on the surface r = r0. Namely, the

parameters in ΨH have to be different values inside (2M < r < r0) and outside (r > r0) of the

surface of sphere. The event horizon of the Schwarzschild black hole is at r = 2M .

Interestingly, we found that the jumps of Im(ψP
1 ), Im(ψP

2 ), and Im(ψP
3 ) disappear when we

choose

Im(a2) =

 0, (2M < r < r0)

−Jring
A
, (r > r0)

, (4.52)

using Eq. (4.51) and the angular momentum of the rotating ring Jring,

Jring = mua(∂ϕ)
a = m

√
Mr02

r0 − 3M
. (4.53)

Other parameters are set to be zero. Radial dependences of Im(ψ1), Im(ψ2), and Im(ψ3) are

shown in Fig. 4.6 (Sano & Tagoshi 2014). They become continuous and smooth, after adding

the contribution by Im(a2). We explain more about the canceling of discontinuity, by taking

Im(ψ2) as an example. Fig. 4.7 shows the angular dependence of the jump of ψP
2 at r = r0,

[ψP
2 ]r0 ≡ lim

r→r+0

ψP
2 (r, θ)− lim

r→r−0

ψP
2 (r, θ). (4.54)

On the other hand, ψH
2 derived from ΨH (Schwarzschild case) is

ψH
2 =

A

r4
[(r − 3M)b2 + 3a2 cos θ] . (4.55)

Only a2 and b2 contribute to ψ2. Because Im(a2) is determined by Eq. (4.52) and other

parameters are set to be zero, the jump of Im(ψH
2 ) becomes [Im(ψH

2 )]r0 = 3AIm(a2)/r0
4 cos θ.

Therefore, this θ dependence (cos θ) perfectly match the θ dependence of [Im(ψP
2 )]r0 in the

right panel of Fig. 4.7 (Sano & Tagoshi 2014). Both the value of the parameter and angular

dependence derived from ΨH are important to cancel the discontinuity on the surface r = r0.
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Figure 4.6: The radial dependence of the imaginary part of Weyl scalars ψ1, ψ2, and ψ3, at θ = π/4.

The Kerr parameter is a = 0. The radius and the mass of the ring are r0 = 10M , m = 2π × 10−2M ,

respectively. The event horizon is at r = 2M . The top row is for the Weyl scalars which are derived

from ΨP. All of them have jump at r = r0. The bottom row is for the Weyl scalars which are derived

from ΨP+ΨH, with Im(a2) of Eq. (4.52). Other parameters are 0. In this case, the radial dependence

is smooth for any θ ̸= π/2. Reprinted figures from Y. Sano, and H. Tagoshi, Phys. Rev. D 90, 044043

(2014). Copyright (2014) by The American Physical Society.
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Figure 4.7: Angular dependence of the jump of ψP
2 at r = r0. The left panel is the real part and

the right panel is the imaginary part of [ψP
2 (r, θ)]r0 . Reprinted figures from Y. Sano, and H. Tagoshi,

Phys. Rev. D 90, 044043 (2014). Copyright (2014) by The American Physical Society.

From the result above, one might expect that the jumps of Re(ψP
1 ), Re(ψ

P
2 ), and Re(ψP

3 )

disappear when we determine Re(b1) and Re(b2) using Eq. (4.51) and the mass or energy of

the rotating ring. However, there are two problems. The first one is the number of equations.

Because we have only one equation involving Re(b1) and Re(b2) and mass perturbation δM ,

we cannot determine the two parameters. The second is the angular dependence of [Re(ψP
2 )]r0 ,

which is shown in the left panel of Fig. 4.7. It is clear that this jump does not disappear by

adding ψH
2 of Eq. (4.55), unless we allow Re(a2) to have different sign between in the northern

half (r > r0, 0 ≤ θ < π/2) and the southern half (r > r0, π/2 < θ ≤ π).

Therefore, we change the strategy. We do allow the parameters to be different value between

(r > r0, 0 ≤ θ < π/2) and the southern half (r > r0, π/2 < θ ≤ π), and determine them using

the continuity conditions of gravitational fields on surface of sphere at r = r0. By this method,

we find that we can cancel discontinuities of all Weyl scalars, metric perturbation, and the

Hertz potential. We do not use Eq. (4.51) to determine the parameters in this method. Below,

we explain our method in detail. The discussion does not depend on the Kerr parameter a
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anymore.

First, before we consider the continuity conditions on r = r0, we obtain four conditions

by demanding that the metric perturbation and the Weyl scalars should not diverge at θ = 0

and θ = π. It is achieved when the Hertz potential Ψ does not diverge on the axis. Because

ΨP does not diverge on the axis, we demand that ΨH does not diverge at θ = 0 and θ = π.

By the Taylor expansion of sin2 θΨH with respect to θ and π − θ, respectively, we obtain the

conditions for the parameters:

± c1 = ±Ma1 − b1, (4.56a)

± c2 = ±
(
2M2 − 3a2

2

)
a1 − b2, (4.56b)

3d1 = ±a1, (4.56c)

6d2 = ±2a2 − 3a2b1 − 3Mb2. (4.56d)

The upper sign is for the condition at θ = 0. The lower sign is for the condition at θ = π.

These sets of conditions are simultaneously satisfied if and only if a1 = a2 = b1 = b2 = c1 =

c2 = d1 = d2 = 0, i.e. ΨH = 0. This means that we cannot have the contribution from the mass

and the angular momentum perturbation. This also implies that we cannot obtain the regular

solution globally. Then we divide the space into three regions: (M +
√
M2 − a2 < r < r0),

(r > r0, 0 ≤ θ < π/2), and (r > r0, π/2 < θ ≤ π). We denote each region by I, N , and

S, respectively (Fig. 4.8). Following the study of determination of Im(a2) above, we add ΨH

only in N and S, i.e. ΨH(r < r0) = 0. We look for set of parameters that satisfy Eq. (4.56)

in each of regions N and S. Since these are four equations among eight unknown parameters,

the number of remaining parameters we have to determine is four.

Here, we note the symmetry of ΨP. From Eq. (4.45), we find that, just like ψ0 and ψ4, the

real and imaginary part of ΨP are symmetric and antisymmetric about the equatorial plane,

respectively. In order to eliminate the jump of ΨP at r = r0, ΨH at r > r0 must have the same
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Figure 4.8: The slice at sinϕ = 0 is shown. The vertical arrow is the axis of the symmetry. The

three regions are divided by dashed lines. The filled black circle at the center is the region within

the event horizon of the black hole. The two black dots represent the position of the ring. Reprinted

figure from Y. Sano, and H. Tagoshi, Phys. Rev. D 90, 044043 (2014). Copyright (2014) by The

American Physical Society.

symmetry about the equatorial plane. Therefore we get

aN(r) = −aS(r), bN(r) = bS(r),

cN(r) = −cS(r), dN(r) = dS(r).
(4.57)

Here, aN(r) means a(r) in N , and aS(r) means a(r) in S, etc. Because we know this symmetry

above, it is sufficient if we determine four complex parameters only in the region N or S. From

Eq. (4.56), we adopt a1, a2, b1 and b2 of ΨH in region N as independent parameters. When

the parameters satisfy Eq. (4.56), the fields corresponding to ΨH and ΨH can be written as

they include only a1, a2, b1 and b2. We need four complex equations for determining these

parameters. We choose the continuity conditions for ψ1, ψ2, h33, and Ψ. The reasons are as

follows: (1) The expression for ψ3 in a radiation gauge is more complicated than others. (2)

By definition, h22 is pure real thus gives only one equation. (3) In the Schwarzschild case, b1

does not contribute to hH23.



4.3. COMPLETION OF THE HERTZ POTENTIAL 47

The continuity conditions we impose are [FP(r, θ) + FH(r, θ)]r0 = 0, where

[F (r, θ)]r0 ≡ lim
r→r0+

F (r, θ)− lim
r→r0−

F (r, θ) (4.58)

for F = ψ1, ψ2, h33, Ψ. Because ΨH(r < r0) = 0, the equation of continuity condition becomes

[FP(r, θ)]r0 + FH(r0, θ) = 0. (4.59)

The [FP(r, θ)]r0 term in the each continuity condition is calculated from ΨP. See Appendixes C

and D for explicit expressions and the numerical evaluation of l mode summation, respectively.

The FH(r0, θ) term is analytically derived from ΨH. Then the continuity conditions are solved

simultaneously for the parameters a1, a2, b1, and b2, at an arbitrary θ. The resultant values

are shown in Sec. 4.5.1. The plots of completed gravitational fields are shown in Sec. 4.4.

Fig. 4.9 shows singular regions of ΨP, ΨH, and Ψ = ΨP +ΨH. Because the outside region

are divided into N and S, Ψ has new discontinuity surface on the equatorial plane outside the

ring. Although both ΨP and Ψ have discontinuous regions, Ψ includes lower modes of l = 0

and l = 1. We discuss more about these modes in Sec. 4.5.1.

4.3.3 Particle at rest

The procedure is the same as in the ring case. The difference is how we divide the space.

When the particle is on the axis θ = 0, we find that we can complete the Hertz potential as it

has singularity at (r > r0, θ = 0). Below we explain how we divide the space.

Due to the presence of the particle on the northern axis θ = 0, we demand the regularity

condition only of the southern axis θ = π. Then we divide the space into two regions, I

and S = (r > r0, 0 < θ ≤ π). When we do so, we can find parameters that eliminate the

discontinuities on the surface of sphere at r = r0.

Fig. 4.11 shows singular regions of ΨP, ΨH, and Ψ = ΨP + ΨH. Compared to Fig. 4.5

(result by Keidl, Friedman, & Wiseman (2007)), ΨP and ΨH are different respectively, but

the singular region of Ψ is the same. Plots of the completed gravitational field and the Hertz
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Figure 4.9: Singular regions of the Hertz potential are depicted by dotted lines. Because the system is

axisymmetric, we show the slice at sinϕ = 0. The vertical arrow is the axis of the symmetry. The black

circle is the black hole and the small black dots represent the position of the ring (r = r0, θ = π/2).

Particular solution ΨP by Eq. (4.45) is not smooth on the surface of sphere at r = r0 (dotted circle).

It is possible to cancel the discontinuity by adding homogeneous solution ΨH, which is not smooth

on the surfaces r = r0 and (r > r0, θ = π/2). The completed Hertz potential Ψ = ΨP + ΨH has a

discontinuity on the equatorial plane outside the ring radius.

θ = 0

θ = π

S

I

(r0, 0)

Figure 4.10: The slice at sinϕ = 0 is shown. The vertical arrow is the axis of the symmetry. The

two regions are divided by dashed lines. The filled black circle at the center is the region within the

event horizon of the black hole. The black dot represent the position of the particle.
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Figure 4.11: Singular regions of the Hertz potential are depicted by dotted lines. Because the system

is axisymmetric, we show the slice at sinϕ = 0. The vertical arrow is the axis of the symmetry. The

black circle is the black hole and the small black dot is the particle at (r = r0, θ = 0). Particular

solution ΨP by Eq. (4.45) is not smooth on the surface of sphere at r = r0 (dotted circle). It is

possible to cancel the discontinuity by adding homogeneous solution ΨH, which is not smooth on the

surface r = r0 and on the line (r > r0, θ = 0). The completed Hertz potential Ψ = ΨP + ΨH has a

singular region on the axis outside the particle.

potential are shown in the next section. Radial dependences are continuous and smooth at

r = r0, after adding the contribution by ΨH.

4.4 Completed gravitational fields

4.4.1 Completed Weyl tensor

The perturbed Weyl scalars for the case of a black hole and a rotating ring are shown in Fig.

4.12. The each Weyl scalar is derived from Ψ = ΨP +ΨH. The Schwarzschild case a = 0 and

Kerr case a = 0.99M are plotted for comparison.

The particle case is shown in Fig. 4.13. For the Schwarzschild case, the imaginary parts of

the Weyl scalars are zero.
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Figure 4.12: The radial dependence of the completed Weyl scalars ψ1, ψ2, and ψ3, at θ = π/4. The

perturbation of the Kerr space-time by a rotating ring at (10M,π/2) is considered. The solid line is

for a = 0.99M , and the dashed line is for a = 0. The radius and the mass of the ring are r0 = 10M ,

m = 2π × 10−2M , respectively. The event horizon is at r = M +
√
M2 − a2. All of ψ1, ψ2, and ψ3

are smooth at r = r0.

4.4.2 Completed metric perturbation

The completed metric perturbation which is derived from ΨP + ΨH is shown in Fig. 4.14 for

the ring case and Fig. 4.15 for the particle case. The metric perturbation hab does not vanish

as r → ∞ because the ingoing radiation gauge is used.
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Figure 4.13: The radial dependence of the completed Weyl scalars ψ1, ψ2, and ψ3, at θ = π/4.

The perturbation of the Kerr space-time by a particle at rest at (10M, 0) is considered. The solid

line is for a = 0.99M , and the dashed line is for a = 0. The distance and the mass of the particle is

r0 = 10M , m = 10−2M , respectively. The event horizon is at r =M +
√
M2 − a2.



52 CHAPTER 4. METRIC RECONSTRUCTION

0

-8×10-3

-6×10-3

-4×10-3

-2×10-3

 2  4  6  8  10 12 14 16

r/M

h22

0

-2×10-3

-1×10-3

 2  4  6  8  10 12 14 16

r/M

Re(h23)

0

-1×10-3

-5×10-4

5×10-4

1×10-3

 2  4  6  8  10 12 14 16

r/M

Re(h33)

0

-1×10-3

1×10-3

2×10-3

3×10-3

4×10-3

 2  4  6  8  10 12 14 16

r/M

Im(h23)

0

1×10-3

2×10-3

 2  4  6  8  10 12 14 16

r/M

Im(h33)

Figure 4.14: The radial dependence of the completed metric perturbation hµν , at θ = π/4. The

perturbation of the Kerr space-time by a rotating ring at (10M,π/2) is considered. The solid line is

for a = 0.99M , and the dashed line is for a = 0. The radius and the mass of the ring are r0 = 10M ,

m = 2π × 10−2M , respectively. The event horizon is at r = M +
√
M2 − a2. The differences by the

Kerr parameter increase as r increases.
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Figure 4.15: The radial dependence of the completed metric perturbation hµν , at θ = π/4. The

perturbation of the Kerr space-time by a particle at rest at (10M, 0) is considered. The solid line

is for a = 0.99M , and the dashed line is for a = 0. The distance and the mass of the particle is

r0 = 10M , m = 10−2M , respectively. The event horizon is at r =M +
√
M2 − a2.
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Figure 4.16: The radial dependence of the completed Hertz potential Ψ, at θ = π/4. The pertur-

bation of the Kerr space-time by a rotating ring at (10M,π/2) is considered. The solid line is for

a = 0.99M , and the dashed line is for a = 0. The radius and the mass of the ring are r0 = 10M ,

m = 2π × 10−2M , respectively. The event horizon is at r =M +
√
M2 − a2.

4.4.3 Completed Hertz potential

The completed Hertz potential Ψ = ΨP +ΨH is shown in Fig. 4.16 for the ring case and Fig.

4.17 for the particle case. For the both cases, the potential is radially monotonic and smooth.

In principle, the four parameters a1, a2, b1, and b2 can be determined using only ΨP. Since

ψP
1 , ψ

P
2 , and hP33 are r derivatives of the Hertz potential ΨP, the continuity conditions for

them are equivalent to the condition for the differentiability of ΨP up to 3rd order (namely

the continuity conditions for ΨP,
∂
∂r
ΨP,

∂2

∂r2
ΨP, and

∂3

∂r3
ΨP). However, since we already have

expressions for ψP
1 , etc. in our cases, we do not expect any benefit from this alternative method.
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Figure 4.17: The radial dependence of the completed Hertz potential Ψ, at θ = π/4. The pertur-

bation of the Kerr space-time by a particle at rest at (10M, 0) is considered. The solid line is for

a = 0.99M , and the dashed line is for a = 0. The distance and the mass of the particle is r0 = 10M ,

m = 10−2M , respectively. The event horizon is at r = M +
√
M2 − a2. The imaginary part of the

Hertz potential for the Schwarzschild case is Im(Ψ) = 0.

4.5 Analyses of parameters

4.5.1 Mass and angular momentum perturbation

In the Schwarzschild case, using Eq. (4.51), we can calculate the changes in the mass and the

angular momentum, δM and δJ , which are induced by physical parameters Re(b1), Re(b2),

and Im(a2). We consider the result of the perturbation by a rotating ring, and compare δM

and δJ with the energy and angular momentum of the ring,

Mring ≡ −mua(∂t)a, Jring ≡ mua(∂ϕ)
a. (4.60)

Because of the symmetry between the regions N and S, Eq. (4.57), each of the physical

parameters is constant in (r > r0, 0 ≤ θ ≤ π).
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Table 4.1: δM by a rotating ring

r0/M δM/M Mring/M |(Mring − δM)/Mring|

6 0.0592444 0.05923843916 1.008027909 ×10−4

10 0.0600781 0.06007874270 1.005730101 ×10−5

20 0.0613351 0.06133564195 8.821135362 ×10−6

50 0.0622144 0.06221386387 7.995806223 ×10−6

100 0.0625205 0.06252015946 5.948001469 ×10−6

Table 4.2: δJ by a rotating ring

r0/M δJ/M2 Jring/M
2 |(Jring − δJ)/Jring|

6 0.217649 0.2176559237 3.301954698 ×10−5

10 0.237451 0.2374820823 1.308149216 ×10−4

20 0.304774 0.3047792551 1.758912364 ×10−5

50 0.458263 0.4582483860 3.190540426 ×10−5

100 0.637962 0.6379608107 1.972221458 ×10−6

Interestingly, we see excellent agreement for both mass and angular momentum. It suggests

the validity of our method and results. Results with various value of r0 are shown in Tables

4.1 and 4.2 (Sano & Tagoshi 2014). This agreement is completely new result in the works for

the metric reconstruction using a radiation gauge.

Now we discuss the relation between the agreement and the continuity conditions at r = r0.

Recall that the parameters in regions N and S are obtained using the continuity conditions,

with ΨH(r < r0) = 0. It follows that [ΨH]r0 = ΨH(r0). Alternatively, we can also find

parameters so that they satisfy the continuity conditions with ΨH(r > r0) = 0. In that case,

we shall divide space-time into different three regions: N = (2M < r < r0, 0 ≤ θ < π/2),

S = (2M < r < r0, π/2 < θ ≤ π), and O = (r > r0). Then we have discontinuity on
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Table 4.3: δM by a particle

r0/M δM/M Mparticle/M

6 0.00714448 0.008164965809

10 0.00816313 0.008944271908

the equatorial plane inside the ring: (2M < r < r0, θ = π/2). Equations for the continuity

conditions are also affected. It follows that [ΨH]r0 = −ΨH(r0) and the resultant parameters

become different from the case of ΨH(r < r0) = 0. Though we can obtain gravitational field

that is smooth at the radius of the sphere r = r0, parameters Re(b1) and Re(b2), and Im(a2)

do not give the correct values of the energy and the angular momentum of the ring. They

differs by the sign (δM = −Mring, δJ = −Jring). Therefore, we conclude that, ΨH(r < r0) = 0

is the appropriate choice when we use the IRG. Probably, ΨH(r > r0) = 0 is appropriate when

we use the ORG instead.

Next, we consider the result of the perturbation by a particle at rest. Though this is the

same set-up as in Keidl, Friedman, & Wiseman (2007), The expressions for h23 and h33 are

corrected in our study. Since they used these expressions for determining the parameters, we

think their values of parameters are not correct. We obtain the mass perturbation induced by

Re(b1) and Re(b2) using Eq. (4.51), and compare with the energy of the particle, Mparticle =

−mua(∂t)a. Results with r0 = 6M and r0 = 10M are shown in Table 4.3. Contrary to the ring

case, δM and Mparticle do not agree. It might be because the set-up is unphysical: the particle

cannot be at rest in the gravitational field of the black hole.

4.6 Discussion

We discuss the singularities in the perturbed gravitational field for the ring case. The field

derived from ΨP has a surface of discontinuity at r = r0 and the completed field derived from



58 CHAPTER 4. METRIC RECONSTRUCTION

Ψ = ΨP + ΨH has a surface of discontinuity on the plane (r > r0, θ = π/2). Both have a

singular region which originates from the choice of gauge. However, there are reasons why our

choice of Ψ is preferred. First, the field from ΨP is incomplete because the mass and angular

momentum perturbation are not included. As long as we include these perturbation in terms of

parameters in ΨH, we cannot avoid introducing new singular regions in the field, the axis or the

equatorial plane. It is due to the (r, θ) dependence of ΨH, Eqs. (4.46) and (4.48). It is possible

to construct the field which has three singular regions at the same time: the sphere surface

at r = r0, the axis, and the equatorial plane. It is also possible to construct the perturbed

field which has two singular regions, sphere surface and the axis or sphere surface and the

equatorial plane. However, in each case of the above, the set of parameters is not uniquely

determined. What we discovered here is that there is a unique choice of gauge parameters in

ΨH so that the field has only one singular region. It is the equatorial plane outside the ring

(r > r0, θ = π/2).

4.7 Summary of this chapter

The Hertz potential Ψ is found using the solutions of the Teukolsky equation, ψ0 and ψ4, and

the continuity conditions for the Weyl scalars ψ1, ψ2, and ψ3, and the metric perturbation hµν .

However, it is impossible to find the globally regular Hertz potential in the case of non-vacuum

perturbation Tab ̸= 0. We obtained the Hertz potential which has a singular region. In the

case of a black hole and a rotating ring, it is a flat surface whose edge is at the ring. In the

case of a black hole and a particle at rest, the singular region is a radial line from the particle.

By adding the homogenous solution ΨH of the Hertz potential, the discontinuity on the

sphere surface r = r0 is cancelled and the perturbations of the lower modes are included. In

the case of the Schwarzschild black hole and a ring, we found an excellent agreement between

δM and δJ by the numerically-determined parameters in ΨH and the analytical Mring and

Jring. It suggests the validity of our method and results.



Chapter 5

Visualization of space-time curvature

By using a visualization tool, it becomes possible to understand and analyze the constructed

space-time more intuitively. We use tendex and vortex lines which were introduced by Nichols

et al. (2011). According to their papers, this tool is suggested for finding new understanding

of dynamics of the space-time which is obtained by numerical relativity simulations.

Dennison & Baumgarte (2012) considered approximate analytical space-time of a black

hole binary. Their space-time becomes exact in the limit of small boost (velocities of black

holes) or large binary separation.

On the other hand, we studied the construction of the perturbation of the black hole space-

time by matter, in black hole perturbation theory. Perturbed space-time becomes exact in the

limit of small mass ratio of the matter to the black hole. For the perturbed metric, we try

the visualization by tendex and vortex lines. We obtain representations that are useful for

understanding and explaining the construction method.

Further, we apply the visualization to the binary black hole space-time constructed by

(Mundim et al. 2014). The metric was analytically constructed using the asymptotic matching

technique.

This chapter is organized as follows. In Sec. 5.1 we introduce the visualization tool.

Simple examples of the visualization are presented in Sec. 5.1.1. In Sec. 5.2 we visualize the

59
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perturbed space-time curvature of a black hole and a particle at rest. In Sec. 5.3 we visualize

the perturbed space-time curvature of a black hole and a rotating ring. In Sec. 5.4 we consider

the binary black hole by Mundim et al. (2014).

5.1 Introduction to tendex and vortex line

We review the basics of the visualization tools (Nichols et al. 2011). Tidal effect and frame-

drag effect of the space-time are expressed with trace-free, symmetric spatial tensors which are

covariantly defined from the Weyl tensor Cabcd. The components of them are

Eij = C0i0j, Bij = −1

2
ϵipqC0j

pq, (5.1)

where indices i, j, p, and q run over spatial components (1, 2, 3). The ϵipq is the anti-symmetric

tensor. It is defined as ϵipq = ϵ0ipq ≡
√
−g[0 i p q], where [α β γ δ] equals to 1 (−1) if αβγδ

is an even (odd) permutation of 0123 and vanishes otherwise. The time component (0) is

along the four-velocity ua of the observer. The space-like hypersurface is defined so that ua is

orthogonal to the surface.

The tidal field Eij is the “electric part” of the Weyl tensor, and it represents the tidal force.

Let ∆ξi be the infinitesimal relative position of two free-falling observers. Then the relative

acceleration from each other (geodesic deviation) ∆ai is given as ∆ai = −Eij∆ξj. In general,

there are three eigenvectors, which satisfy ∆ai = −e∆ξi, where e is the eigenvalue. Because

Eij is a symmetric tensor, these eigenvectors are orthogonal to each other. Because Eij is trace-

free, the sum of three eigenvalues is zero. The eigenvectors represent the principal directions

of the tidal force. The tendex lines are field lines of the eigenvector field, which we call the

tendex field. The lines are colored by blue for squeezing tidal force (positive eigenvalue) and

by red for stretching tidal force (negative eigenvalue).

The frame-drag field Bij is the “magnetic part” of the Weyl tensor, and it represents the

differential frame-dragging. When there is differential frame-drag, two free-falling observers
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can rotate relative to each other. To describe this, we introduce angular momentum vector σi

for each observer. The each vector is defined not to change along the world line of the each

observer. Then the relative angular velocity ∆Ωi, namely, the change rate of difference of two

angular momentum vectors is given as ∆Ωi = Bij∆ξ
j. The eigenvectors represent directions

such as ∆Ωi = b∆ξi, where b is the eigenvalue. When the ∆ξi is an eigenvector, the two

vectors σi precess with respect to ξi, with different angular velocities, and the direction of

this resultant “twisting” effect corresponds to the sign of the eigenvalue b. Th vortex lines are

field lines of the eigenvector field, which we call vortex field. The color code is the same as

the tendex case: blue for positive and red for negative eigenvalue. The three eigenvectors are

orthogonal to each other and the sum of the three eigenvalues is zero.

5.1.1 Rotating black hole

As a simple example, in this section we show the tendex field and vortex field of a Kerr black

hole, which is considered in Appendix A of Zhang et al. (2012).

Here, we use the locally nonrotating frame. The orthonormal tetrad is given by

(et̂)
a =

√
A

Σ∆

(
(∂t)

a +
2Mar

A
(∂ϕ)

a

)
, (5.2a)

(er̂)
a =

√
∆

Σ
(∂r)

a, (5.2b)

(eθ̂)
a =

1√
Σ
(∂θ)

a, (5.2c)

(eϕ̂)
a =

√
Σ

A

1

sin θ
(∂ϕ)

a, (5.2d)

where A = (r2 + a2)2 − a2∆sin2 θ. The “space” is specified as the t constant hypersurface

where (er̂)
a, (eθ̂)

a, and (eϕ̂)
a lie. In this basis, the tidal and frame-drag field are given by

Er̂r̂ = Re(Ψ2)
2 + ξ

1− ξ
, Eθ̂θ̂ = −Re(Ψ2)

1 + 2ξ

1− ξ
, Eϕ̂ϕ̂ = −Re(Ψ2), (5.3a)

Er̂θ̂ = −µIm(Ψ2), Er̂ϕ̂ = 0, Eθ̂ϕ̂ = 0, (5.3b)
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Br̂r̂ = Im(Ψ2)
2 + ξ

1− ξ
, Bθ̂θ̂ = −Im(Ψ2)

1 + 2ξ

1− ξ
, Bϕ̂ϕ̂ = −Im(Ψ2), (5.4a)

Br̂θ̂ = µRe(Ψ2), Br̂ϕ̂ = 0, Bθ̂ϕ̂ = 0, (5.4b)

where

ξ =
∆a2 sin2 θ

(r2 + a2)2
, µ =

3
√
ξ

1− ξ
, (5.5)

and Ψ2 = −M/(r − ia cos θ)3 is the Weyl scalar. Note that µ in these equation is nothing to

do with the spin coefficients.

In Fig. 5.1, we show tendex fields and vortex fields, for the Kerr space-time with a = 0.99M .

On the t constant hypersurface, a Cartesian coordinate system is used: x = r sin θ cosϕ,

y = r sin θ sinϕ, z = r cos θ. For each of tendex and vortex, there are three families of lines.

The stretching red tendex lines are nearly radial from the black hole. Two families of squeezing

blue tendex lines are concentric, and orthogonal to the red tendex lines. Near the event horizon,

the red tendex lines acquire anisotropy. It is the effect of the spin of the black hole. On the

other hand, for vortex fields, there is a symmetry about the equatorial plane, between blue

(positive eigenvalue) lines and red (negative eigenvalue) vortex lines. There are two families

of blue and red poloidal lines and one family of toroidal lines. This toroidal lines are blue in

the northern hemisphere and red in the southern hemisphere. The intensity of color is varied

in accordance with |e| and |b|, where e and b is the tendicity and vorticity, the eigenvalues of

Eij and Bij, respectively.
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Figure 5.1: Tendex field (top row) and vortex fields (bottom row) for a Kerr space-time with

a = 0.99M . The event horizon is the surface of sphere at r =M +
√
M2 − a2.

5.1.2 Expressions in terms of the Weyl scalars

In this section we consider the relation between the Weyl scalars and Eij, Bij. The Weyl scalars

are the tetrad components of the Weyl tensor, and the tetrad is

(e1)
a = la =

r2 + a2

∆
(∂t)

a + (∂r)
a +

a

∆
(∂ϕ)

a, (5.6a)

(e2)
a = na =

∆

2Σ

[
r2 + a2

∆
(∂t)

a − (∂r)
a +

a

∆
(∂ϕ)

a

]
, (5.6b)

(e3)
a = ma =

−ρ√
2
[ia sin θ(∂t)

a + (∂θ)
a + i csc θ(∂ϕ)

a] , (5.6c)

(e4)
a = ma =

−ρ√
2
[−ia sin θ(∂t)a + (∂θ)

a − i csc θ(∂ϕ)
a] . (5.6d)



64 CHAPTER 5. VISUALIZATION OF SPACE-TIME CURVATURE

We use a local Lorenz frame. We take the following orthonormal basis:

(et̂)
a =

r2 + a2√
∆Σ

(∂t)
a +

a√
∆Σ

(∂ϕ)
a, (5.7a)

(er̂)
a =

√
∆

Σ
(∂r)

a, (5.7b)

(eθ̂)
a =

1√
Σ
(∂θ)

a, (5.7c)

(eϕ̂)
a =

a sin θ√
Σ

(∂t)
a +

csc θ√
Σ
(∂ϕ)

a. (5.7d)

The reason why we take this basis is the simplicity that we see below. We consider the

transformation from the component by the tetrad (eµ)
a to the component by the orthonormal

basis (eα̂)
a. In the case of a dual vector Aa, for instance, the transformation from Aµ to Aα̂ is

written as

Aα̂ = Aµ(e
µ)a(eα̂)

a ≡ 1√
2
AµΛ

µ
α̂, (5.8)

where (eµ)a (µ = 1, 2, 3, 4) is the dual basis for (eµ)
a:

(e1)a = −na, (e2)a = −la, (e3)a = ma, (e4)a = ma. (5.9)

By choosing the basis as Eq. (5.7), Λµ
α̂ becomes simple. The nonzero components are

Λ1
t̂ =

√
∆

2Σ
, Λ1

r̂ =

√
∆

2Σ
, Λ2

t̂ =

√
2Σ

∆
, Λ2

r̂ = −
√

2Σ

∆
, (5.10)

Λ3
θ̂ = −ρ

√
Σ, Λ3

ϕ̂ = iρ
√
Σ, Λ4

θ̂ = −ρ
√
Σ, Λ4

ϕ̂ = −iρ
√
Σ. (5.11)

Note Λ3
θ̂Λ

4
θ̂ = 1, and so on.

By performing this transformation, the components of tidal field tensor are obtained as
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follows:

Er̂r̂ = 2Re(Ψ2), (5.12a)

Eθ̂θ̂ =
1

2

(
∆

2
Re(ρ2Ψ0)− 2Re(Ψ2) +

2

∆
Re(ρ−2Ψ4)

)
, (5.12b)

Eϕ̂ϕ̂ =
1

2

(
−∆

2
Re(ρ2Ψ0)− 2Re(Ψ2)−

2

∆
Re(ρ−2Ψ4)

)
, (5.12c)

Er̂θ̂ =
√

∆

2
Re(ρΨ1)−

√
2

∆
Re(ρ−1Ψ3), (5.12d)

Er̂ϕ̂ =

√
∆

2
Im(ρΨ1) +

√
2

∆
Im(ρ−1Ψ3), (5.12e)

Eθ̂ϕ̂ =
1

2

(
∆

2
Im(ρ2Ψ0)−

2

∆
Im(ρ−2Ψ4)

)
. (5.12f)

Since the basis vectors are orthonormal, we can treat this tensor as a matrix. Then the trace-

free condition is written as Er̂r̂ + Eθ̂θ̂ + Eϕ̂ϕ̂ = 0. In a similar manner, the components of the

frame-drag field tensor are obtained:

Br̂r̂ = 2Im(Ψ2), (5.13a)

Bθ̂θ̂ =
1

2

(
∆

2
Im(ρ2Ψ0)− 2Im(Ψ2) +

2

∆
Im(ρ−2Ψ4)

)
, (5.13b)

Bϕ̂ϕ̂ =
1

2

(
−∆

2
Im(ρ2Ψ0)− 2Im(Ψ2)−

2

∆
Im(ρ−2Ψ4)

)
, (5.13c)

Br̂θ̂ =

√
∆

2
Im(ρΨ1)−

√
2

∆
Im(ρ−1Ψ3), (5.13d)

Br̂ϕ̂ = −
√

∆

2
Re(ρΨ1)−

√
2

∆
Re(ρ−1Ψ3), (5.13e)

Bθ̂ϕ̂ = −1

2

(
∆

2
Re(ρ2Ψ0)−

2

∆
Re(ρ−2Ψ4)

)
. (5.13f)

Thus, from the Weyl scalars we can calculate the tidal field Eîĵ and the frame-drag field Bîĵ in

the local Lorenz frame.
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Figure 5.2: Squeezing (blue) and stretching (red) tendex lines for the perturbation by a particle at

rest around the Schwarzschild black hole. Note that field for the unperturbed Schwarzschild metric

is subtracted. Due to the cost of numerical computation, the regions near the surface r = r0 and the

axis θ = 0, π is omitted.

5.2 Black hole and a particle at rest

In this section we consider the perturbed gravitational field induced by a particle at rest on

the z axis, in a black hole space-time (Sec 4.3.3). First, the tendex lines for the Schwarzschild

case are displayed in Fig. 5.2. Only the perturbed part of the tidal field is used. The lines

represent the tidal field by the particle at (r0 = 10M, θ0 = 0). The stretching red tendex lines

are drawn radially from the particle. We see the red lines slightly bend, which is supposed

to be the effect of the Schwarzschild background. There are two squeezing blue tendex lines

orthogonal to the red line at each point of space. One is toroidal, circular lines. The other is

poloidal, nearly circular lines on the ϕ-constant plane.

Next, we consider the vortex lines. We expect no frame-drag effect in the case of the
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Figure 5.3: Red (negative eigenvalue) vortex field on the plane (2M < r < 2(r0 − 2M), 0 < θ <

π, ϕ = 0) for the perturbation by a particle at rest around the Schwarzschild black hole. The left and

right panel differs by the viewpoint.

Schwarzschild black hole and a particle at rest. From the fact that the imaginary part of

all the Weyl scalars vanish in the Schwarzschild case, non-vanishing elements of the frame-

drag field Bîĵ are Br̂ϕ̂ = Bϕ̂r̂. Then the three eigenvalues are b0 = 0 and b± = ±Br̂ϕ̂, and

the eigenvectors ξ î± for λ± are vectors such as ξ r̂± = ±ξϕ̂±. The vector field of ξ î− on plane

(2M < r < 2(r0 − 2M), 0 < θ < π, ϕ = 0) is shown in Fig. 5.3. Note that the each vector

(short line in the figure) has ϕ component, which is perpendicular to the plane. The magnitude

of the eigenvalue is larger near the north pole θ = 0 than other region. The vector field of

ξ î+ (blue vortex) is obtained by reversing ϕ→ −ϕ. The interpretation of these vortex fields is

not clear. The possible reasons why such vortex fields appear are as follows: (1) The set-up is

unphysical. A particle cannot be at rest in the gravitational field of the black hole. (2) The

choice of space-like hypersurface is not good. The vortex field might qualitatively change when
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Figure 5.4: Tendex fields for perturbation by a particle at rest around the Kerr black hole (a =

0.99M). ϕ = 0 plane (x-z plane) is shown. Left panel: Stretching red tendex field. Right panel:

Squeezing blue tendex field.

we choose the hypersurface using Eq. (5.2). Investigating this problem is a future work.

The tendex field for the Kerr case is shown in Fig. 5.4. As in the Schwarzschild case,

stretching red tendex lines are radial from the particle, and there are two families of blue

tendex lines, which are orthogonal to the red lines. Fig. 5.4 shows two poloidal tendex fields

on a ϕ constant plane.

5.3 Black hole and a rotating ring

In this section we consider the perturbed gravitational field induced by a rotating ring on the

equatorial plane, in a black hole space-time (Sec 4.3.2).

First, we show the tendex and vortex lines for the Schwarzschild case in Fig. 5.5. There are



5.3. BLACK HOLE AND A ROTATING RING 69

Figure 5.5: Tendex lines (left panel) and vortex lines (right panel) for the perturbation by a rotating

ring around the Schwarzschild black hole. Note that the field for the unperturbed Schwarzschild metric

is subtracted. Due to the numerical computation cost, the regions near the surface r = r0 and the

equatorial plane θ = π/2 is omitted.

three families of tendex lines (the left panel). We see stretching red tendex lines that spreading

from the ring, on ϕ constant planes. The red lines which approach the axis bend so that they

cross the axis orthogonally. Around the axis, we see squeezing blue tendex lines along the

axis. Off the axis, these blue lines become closed. These closed blue line is more circular, near

the ring. The third family of tendex lines is r-θ constant circles. The lines are red inside the

surface r = r0 and blue outside it. The right panel of Fig. 5.5 shows the vortex lines. There

are again three families of vortex lines. We see two families of poloidal vortex lines (blue and

red). They are counterparts of each other, which are obtained by (θ → π − θ). They are

orthogonal to each other. Near the axis, we see nearly parallel lines and orthogonal lines to

the axis. The parallel ones can be understood simply: because the frame-drag effect is stronger
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near the equatorial plane where the ring is, this differential dragging makes twisting along the

axis. The direction of twisting (red and blue in color) is opposite between the northern side

θ ∼ 0 and the southern side θ ∼ π. The lines which are orthogonal to the axis curl around the

ring, as they approach the ring. This inspiraling feature becomes clearer when we plot only

one family of lines denser. Another feature of these lines are seen near the event horizon of

the black hole. The lines slightly gain toroidal component near the horizon. The third family

of the vortex lines is more toroidal. Contrary to the toroidal tendex lines, these vortex lines

are not closed circles. While the three families of lines cross orthogonally to each other, there

are two families of blue lines and one family of red lines in the northern hemisphere, and there

are two families of red lines and one family of blue lines in the southern hemisphere. On the

equatorial plane, since the third family of lines vanish (the eigenvalue is zero), there are only

two families of lines, blue and red.

The tendex fields for the Kerr case (a = 0.99M) are shown in Fig. 5.6. In order to compare

with the field by ΨP +ΨH, the fields by ΨP are also shown in the top row. The gravitational

field by ΨP has singularity (non-differentiability) on the surface r = r0(= 10M) and lacks mass

perturbation and angular momentum perturbation by the ring. The singularity is not very

clear in the figures, but we see that the behavior in large r > r0 is significantly different from

the completed version in the bottom row. In the far region r ≫ r0, we expect that stretching

red tendex lines are radial from the ring, and we indeed have such red lines for the completed

field by Ψ. Finally, despite the completed Hertz potential and associating gravitational fields

have singular plane on the equatorial plane outside the ring, (r > r0, θ = π/2), we do not find

any discontinuous behavior in the tendex field.

The vortex fields for the Kerr case (a = 0.99M) are shown in Fig. 5.7. The poloidal, blue

vortex field is shown. Compared to the tendex field, the discontinuity on the surface r = r0 by

the ΨP is clearer (Top panels). Particularly, it is the clearest near the axis (r = r0, θ ∼ 0). This

discontinuity is cancelled when the gravitational field is completed by ΨH, which includes the

lower mode perturbations. The completed version of vortex field is shown in the bottom panels
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Figure 5.6: Tendex fields for the perturbation by a rotating ring around the Kerr black hole with

a = 0.99M . The system is viewed edge-on. The ring with radius r0 = 10M is depicted as a horizontal

line. The toroidal, two families (red and blue) of lines are shown. Note that field for the unperturbed

Kerr space-time is subtracted. The fields are plotted on the plane (rh < r < 2(r0 − rh), 0 < θ <

π, ϕ = 0), where rh =M +
√
M2 − a2 is the (outer) event horizon. Left panels: Stretching red tendex

field. Right panels: Squeezing blue tendex field. Top panels: Fields derived by ΨP, without l = 0, 1

modes. Bottom panels: Fields derived by the completed Hertz potential Ψ. The discontinuity of the

gravitational field is on the equatorial plane outside the ring, (r > r0, θ = π/2). Interestingly, we do

not see that discontinuity with tendex fields.
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Figure 5.7: Vortex field for perturbation by a rotating ring around the Kerr black hole with a =

0.99M . Toroidal blue vortex field is shown. Note that field for the unperturbed Kerr space-time

is subtracted. The fields are plotted on plane (rh < r < 2(r0 − rh), 0 < θ < π, ϕ = 0), where

rh = M +
√
M2 − a2 is the event horizon. The radius and the mass of the ring are r0 = 10M ,

m = 2π × 10−2M . Top left panel: Field derived by the ΨP, without l = 0, 1 modes. The system

is viewed edge-on. Top right panel: Same as the top left panel, from a different viewpoint. Bottom

left panel: Field derived field by the completed ΨP + ΨH. The system is viewed edge-on. Bottom

right panel: Same as the bottom left panel, from a different viewpoint. The discontinuity of the

gravitational field is on the equatorial plane outside the ring, (r > r0, θ = π/2). Interestingly, we do

not see that discontinuity with vortex fields.
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in Fig. 5.7. The vectors near the northern axis continue to be nearly parallel to the axis, from

the inside to the outside of r = r0. The most characteristic feature we can observe is the spiral

pattern around the ring (r = r0, θ = π/2). This blue spiral pattern in the figure indicates

that the mass at (r = r0, θ = π/2, ϕ = 0) has momentum and its direction is perpendicularly

towards the back of the paper. Spiral pattern like this near the ring can be observed in the

top panels, too. Therefore, we can say that local effect of frame-drag by the ring is already

included in the uncompleted version of vortex field by ΨP. However, the axis-aligned vector

field far from the ring (r > r0, to the far north for red and to the far south for blue) is

not observed until the ΨH is added. When we add the ΨH, the asymptotic behavior of the

vortex field becomes similar to the vortex field of a rotating black hole (Fig. 5.1). Because

the asymptotic behavior of the vortex field is determined by the angular momentum of the

space-time, it means that the angular momentum perturbation (outside of r = r0) is added

when we add the ΨH. There are two more families of vortex field. One red vortex field are

obtained by (θ → π − θ) reversing of the blue vortex field in Fig. 5.7. The third family of

vortex field is the most toroidal one.

5.4 Black hole binary by Mundim et al.

The tendex and vortex lines could be used for visualizing various space-time. In this section,

we consider the space-time of a black hole binary by Mundim et al. (2014). They constructed

an analytic, non spinning black hole binary space-time via asymptotic matching. In the far

zone where distance from the center of mass is sufficiently larger than the gravitational wave

wavelength, the metric is solved using the multipolar post-Minkowskian expansion. In the

near zone where distance from a black hole is sufficiently larger than the size of the black hole

but sufficiently smaller than the wavelength, the metric is solved using the post-Newtonian

expansion. In the inner zone where distance from a black hole is sufficiently smaller than the

separation of the binary, the metric is solved as the perturbed black hole metric. Thus there
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are two inner zones around each black hole. Marginal regions are called buffer zones, where the

metric is described by superposition of metrics in the adjoining zones. Each metric is properly

gauge-transformed so that they match well. These gauge transformations and the matching

using carefully designed transition functions are the most important points in the construction

of this space-time.

5.4.1 Set-up

Cartesian coordinates (x, y, z) are used. The origin (0, 0, 0) is fixed at the center of mass of the

binary. Since the black holes do not have spins, the binary’s orbital plane is fixed. We set the

x-y plane to be the orbital plane and +z to be the direction of the binary’s angular momentum.

The black hole mass is denoted by m1 and m2, and the total mass is M = m1 + m2. The

positions of black holes are denoted by x⃗1 = (x1, y1, z1 = 0) and x⃗2 = (x2, y2, z2 = 0). Coor-

dinate distance from each black hole is denoted by rA =
√

(x− xA)2 + (y − yA)2 + z2, where

A = 1, 2. The separation between the black holes is defined as r12 =
√

(x1 − x2)2 + (y1 − y2)2.

5.4.2 Inner zones

In this section, we show the tendex and vortex fields of the binary whose masses are m1 =M/6

and m2 = 5M/6. The separation is r12 = 100M . First, the tendex fields around black hole 1

are shown in Fig. 5.8. In this region, the metric is described by the inner zone metric g
(IZ1)
µν .

The center of black hole 1 is at (83.3M, 0, 0). There are two families of squeezing blue tendex

lines and one family of stretching red tendex lines. As expected, stretching red field is radial

from the black hole, and squeezing blue fields are concentric.

The vortex fields are shown in Fig. 5.9. The plotted region is the same as the tendex

fields in Fig. 5.8. We show two families of vortex fields: blue and red. It is because the third

eigenvalue is more than 104 times smaller than other two eigenvalues. On x-z plane, the blue

vortex lines lie on the plane and we can see the spiral pattern, because the black hole’s velocity
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Figure 5.8: Tendex fields around black hole 1, which is at (83.3M, 0, 0) and the mass is m1 =M/6.

is +y direction. Red vortex lines also lie on x-z plane and we see the spiral pattern of opposite

direction to the blue one.

5.4.3 Near zone

In this section we show larger region. First, we present the tendex and vortex fields around

black hole 1 where the metric can be described by superposition of g
(IZ1)
µν and g

(NZ)
µν . Then

we discuss the transition function between the inner zone and the near zone. After that, we

present the tendex and vortex fields around two black holes where the metric can be described

by superposition of g
(IZ1)
µν , g

(IZ2)
µν , and g

(NZ)
µν .

We consider region around black hole 1 where the metric is described by

gµν = finner,1g
(NZ)
µν + (1− finner,1)g

(IZ1)
µν . (5.14)

The transition function is given as (Mundim et al. 2014)

finner,A = f(rA, 0.256(mA
3r12

5/M)1/7, 3.17(M2r12
5)1/7, 0.2, r12/M), (5.15)
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Figure 5.9: Vortex fields around black hole 1, which is at (83.3M, 0, 0) and the mass is m1 =M/6.

where

f(r, r0, w, q, s) =


0, r ≤ r0,

1
2

{
1 + tanh

[
s
π

(
χ(r, r0, w)− q2

χ(r,r0,w)

)]}
, r0 < r < r0 + w

1, r ≥ r0 + w

, (5.16)

χ(r, r0, w) = tan

[
π(r − r0)

2w

]
. (5.17)

We show the tendex and vortex field on the x-z plane in Fig. 5.10. Stretching red tendex field

is shown in top-left panel. Blue vortex field is shown in top-right panel. In these figures, we

find some points where plot is not seen. At such points, eigenvector does not lie on x-z plane

or eigenvalue is too small (plotted color is too white) to be seen. When we plot the integrated

tendex and vortex lines, these anomalies cause sudden breaks of the lines. We reported this

problem to Nakano, who is a co-author of Mundim et al. (2014). Nakano re-examined the

transition function and he improved it. According to him, the problem was not noticed when
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Mundim et al. (2014) designed the transition function because they only check for the case

of m1/m2 = 1, r12 = 10M . The improved transition function is different from the original

function by one parameter, s = 12:

finner,A = f(rA, 0.256(mA
3r12

5/M)1/7, 3.17(M2r12
5)1/7, 0.2, 12). (5.18)

The tendex and vortex field with the improved transition function are shown in bottom row in

Fig. 5.10. Improved red tendex field is shown in bottom-left panel. Improved blue vortex field

is shown in bottom-right panel. The improvement is significant. First, we no longer observe

anomalies and the fields are smooth. Second, gradation of the intensity of color (gradient of

eigenvalues) is smoother.

Next, we show the tendex and vortex fields around black hole 1 and 2, where the metric is

given by (Mundim et al. 2014)

gµν = fnear
[
finner,1g

(NZ)
µν + (1− finner,1)g

(IZ1)
µν

]
+ (1− fnear)

[
finner,2g

(NZ)
µν + (1− finner,2)g

(IZ2)
µν

]
,

(5.19)

where

fnear = f(x′, 2.2m2 −m1r12/M, r12 − 2.2M, 1, 1.4), (5.20)

x′ =
1

r12
(x⃗1 − x⃗2) · x⃗. (5.21)

Tendex fields are displayed in the top row of Fig. 5.11. Black hole 1 is at (83M, 0, 0) and black

hole 2 is at (−17M, 0, 0). Vortex fields are displayed in the bottom row of Fig. 5.11. The

velocities of black holes are perpendicular to the paper. Black hole 1 is at (83M, 0, 0) and its

velocity is +y direction, which is toward the back of the paper. Black hole 2 is at (−17M, 0, 0)

and its velocity is −y direction, which is toward the reader. That is the reason why the two

spiral patterns around the black holes are oppositely-directed to each other. Next, we note the

symmetry about a x constant line in this figure. By an observation, the line passes through

the midpoint of the binary: ((x1, y1) + (x2, y2))/2 = (33M, 0). With respect to the midpoint,

the magnitudes of each angular momentum is equal. It is proved as follows. Because the origin
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Figure 5.10: Left column: Red tendex field. Right column: Blue vortex field. Top row: Calculated

with transition function Eq. (5.15). Bottom row: Calculated with improved transition function

Eq. (5.18). The improvement of the matching is visualized.
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Figure 5.11: x-z plane. Top left panel: Squeezing blue tendex field. Top middle panel: Stretching

red tendex field. Top right panel: Squeezing blue tendex field on the orbital plane. Bottom left

panel: Blue (positive eigenvalue) vortex field. Bottom right panel: Red (negative eigenvalue) vortex

field. On this plane, the vortex field looks roughly symmetric about a x constant line. The center of

angular momentum (x = (x1 + x2)/2, y = (y1 + y2)/2, 0) is on this line.
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of the coordinates system is fixed at the center of mass of the binary, the ratio of magnitudes

of velocities is the inverse of mass ratio. Then ratio of magnitudes of momenta is 1.

v1/v2 = m2/m1, (m1v1)/(m2v2) = 1. (5.22)

Therefore, when we choose the midpoint as the origin of rotation, the ratio of magnitudes of

angular momenta becomes 1.

1

2

√
(x2 − x1)2 + (y2 − y1)2m1v1 =

1

2

√
(x1 − x2)2 + (y1 − y2)2m2v2. (5.23)

The pattern of vortex field in Fig. 5.11 is similar to Fig. 5.7, the case for a black hole and a

rotating ring. However, while the ring case is axisymmetric, the binary’s gravitational field is

not. Only when we take a plane as a cross section so that velocities of mass (binary or ring)

are perpendicular to the plane, the common pattern can be seen. The asymptotic behavior is

similar to the vortex fields of a rotating black hole (bottom panels of 5.1).

5.4.4 Far zone

In this section we show the gravitational wave and its propagation in far zone. The metric is

given by (Mundim et al. 2014)

gµν = ffarg
(FZ)
µν + (1− ffar)

{
fnear

[
finner,1g

(NZ)
µν + (1− finner,1)g

(IZ1)
µν

]
+(1− fnear)

[
finner,2g

(NZ)
µν + (1− finner,2)g

(IZ2)
µν

]}
, (5.24)

where

ffar = f(r, λ/5, λ, 1, 2.5), λ = π
√
r123/M. (5.25)

We show the tendex field on the orbital plane of the binary (x-y plane) because there are

two families of tendex lines which lie on the plane. Figures in this section is plotted in different

manner from the previous sections. We choose the “stronger” tendex line on the x-y plane to

plot. The meaning is as follows. Recall that tendex line is the field line of each eigenvector field
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Figure 5.12: Tendex field on the orbital plane. Top-left panel: Mass ratio is 1. Separation is

r12 = 18.0M . Top-right panel: Mass ratio is 5. Separation is r12 = 18.9M .

of Eij. At each point on the orbital plane, one vector among three eigenvectors is perpendicular

to the plane. We do not plot the tendex field of this vector. The other two eigenvectors are on

the plane. Let e1 and e2 to be the corresponding two eigenvalues. They are tendicities, and

each of them represents the strength of tidal force in direction of corresponding eigenvector.

Then we compare the magnitude of tendicities |e1| and |e2|, and choose the larger one. Finally,

the corresponding eigenvector is plotted on the x-y plane.

The tendex field to far zone is shown in Fig. 5.12. In the figure, the binary is rotating

counter-clockwise. We can see blue and red arms, which are in-spiraling counter-clockwise.

The difference between the left and right panel is the mass ratio of the binary. The left panel

is for m1 = m2 = M . We see (x, y) ↔ (−x,−y) symmetry due to the equal mass ratio. The

widths of two blue arms look the same. The right panel is for m1 =M/6, m2 = 5M/6. In this

case, the widths of two blue arms are different. Further, between blue arms we can see white
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Figure 5.13: Tendex field on the orbital plane. The mass ratio is 1. Time t is different between

the top panels and the bottom panels. Top panels: The time when the separation is r12 = 18M

(t = 5000M). Bottom panels: The time when the separation is r12 = 15M (t = 10000M). In the

right panels, nearly plane wave can be observed as a fringe pattern. It is clearly visualized that the

wavelength becomes smaller as the black holes approach each other. Note that the relation between

the intensity of color and the absolute value of eigenvalue (tendicity) is independently changed for

each figure, so that we see the gradient of tendicity.
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Figure 5.14: Vortex fields in a far region r ≫ r12. The mass ratio is 1. The left, middle, and

right plane shows the orbital plane at t = 5040M , t = 5080M , and t = 5120M , respectively. The

separation of the binary is r12 = 18M . The wavelength is estimated as λ ∼ π
√
r123/M = 2.4×102M .

The wavelength estimated from the figure is λ ∼ 2.9× 102M . The propagation speed of the pattern

which is estimated from the figures is v ∼ c = 1.

(light red) streaks, where stretching red tendicity is relatively weak.

Fig. 5.13 show tendex fields in smaller and further regions, whose range is smaller compared

to distance from the binary. We see a fringe pattern of blue and red streaks, which is the

gravitational wave.

The time evolution of the fringe pattern is shown in Fig. 5.14. At time t = 4040M , the

separation of the binary is r12 = 18.4M and at t = 5040M , r12 = 17.9M . The wavelength can

be estimated by λ ∼ π
√
r123/M (Mundim et al. 2014). It is λ4040 ∼ 248M at t = 4040M ,

and λ5040 ∼ 239M at t = 5040M . Because the propagation speed of the gravitational wave is

c = 1, we expect that the wavelength of wave at t ∼ 5040M and (x ∼ 1000M, y = 0, z = 0)

is λ ∼ λ4040. However, the resolution of Fig. 5.14 is not enough to estimate the wavelength

accurately. Estimated value is λ ∼ 2.9× 102M .

Fig. 5.15 shows squeezing blue tendex field on x-z plane. We see concentric shell-like

regions where blue tendicity is relatively large. On each shell, change in tendicity is not
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Figure 5.15: Squeezing blue tendex field on x-z plane. Two black dots represent the binary on

z = 0 plane. Roughly concentric structure of region is observed, where blue (positive) tendicity is

relatively strong. In this figure, the red tendex field is not shown.

observed clearly.
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5.4.5 Discussion and summary

Before summarizing this chapter, we discuss the visual differences according to the plotting

methods. In Fig. 5.16, integrated tendex lines on the orbital plane are shown. Two panels

in the top row show stretching red tendex lines on the orbital plane, around black hole 1.

The left panel is for the metric before the transition function finner is improved, and the right

panel is for the improved version. The improvement of matching is significantly observed in

these figure. The bottom-left panel shows tendex lines on the orbital plane, in inner zones to

the near zone. In spite of their simple-looking, it costs more time and sensibility to design

figures. For a presentation, integrated lines might be better because it’s easier to recognize

the changing of directions. However, in advance of making such a figure, we need to know well

about the space-time and decide what we are going to tell with the figure. We need to note

that impression of a figure strongly depends on which lines we plot.

On the other hand, figures such as Fig. 5.4 and 5.6 are more objective and can be made

straightforwardly. A disadvantage of this method is that it is difficult to recognize three-

dimensional structure of tendex and vortex lines.

We summarize this chapter. We discussed the properties of space-time of several systems

by drawing tendex lines and vortex lines. The systems we considered in this chapter were

(1) the Kerr black hole and a particle at rest, (2) the Kerr black hole and a rotating ring,

and (3) a binary of non-spinning black holes. The visualization was useful for explaining and

understanding the basic properties of the space-time. In addition, we found that the matching

condition of the binary space-time was inaccurate. It appeared as unphysical distortions of

the tendex and vortex fields. The matching condition was improved.
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Figure 5.16: Integrated tendex lines on the orbital plane. Top-left panel: Near zone and inner

zone around black hole 1 (m1 =M). In this panel, the metric is calculated using transition function

Eq. (5.15), which is given in Mundim et al. (2014). Circular region of weakened red tendicity (white

circle) is observed because the transition between near zone and inner zone is not perfect. Top-right

panel: Same as the top-left panel, with improved transition function Eq. (5.18). Improvement of

transition is when we compare this figure to the top-left panel. Bottom-left panel: Mass ratio is

m2/m1 = 5. We see two regions where squeezing blue tendicity is weak.



Chapter 6

Conclusion

6.1 Summary

In the first part of this thesis, we investigated a method to calculate first order perturbation

of the Kerr metric. We used the Teukolsky equation to solve the Weyl scalar ψ0 and ψ4, and

constructed the metric perturbation from them using the CCK formalism. In this method,

it has been a problem that we cannot calculate the l = 0 and l = 1 modes of perturbation

from ψ0 and ψ4. These modes are important because they correspond to the mass and an-

gular momentum perturbation of the space-time. We tackled this problem by considering the

perturbation induced by a rotating ring, and successfully calculated the metric perturbation

including the lower modes.

In the CCK formalism, the metric perturbation is calculated in a radiation gauge, via the

Hertz potential Ψ, which obeys fourth order differential equations with ψ0 and ψ4 as source

terms. The particular solution for the Hertz potential, ΨP is obtained in terms of ψ0 and

ψ4, and it has only l ≥ 2 modes. Further, an unphysical singularity appeared in ΨP on the

surface of sphere at the ring radius. Gravitational fields become discontinuous on the surface

if we derive them from ΨP. On the other hand, the homogeneous solution part ΨH should be

added to include the lower modes. The degrees of freedom of ΨH reduces to eight complex
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parameters. These parameters correspond to the information of l = 0 and l = 1 modes of

perturbation and the gauge freedom. We found that we can determine the parameters by

imposing the continuity condition for gravitational fields, and when we do so the gravitational

fields become smooth at r = r0. In order to do this, we divided the space into three regions:

inside the ring radius r0, the northern half outside r0, and the southern half outside r0. We

obtained the perturbed gravitational field which is smooth at r = r0. The parameters which

correspond to the mass perturbation and angular momentum perturbation give the correct

values of energy and angular momentum of the ring, respectively. This agreement is checked

for the Schwarzschild case. This suggests the validity of the method and the results. The

perturbation of the Kerr metric induced by a particle at rest is also obtained with the procedure

we found. We obtained the perturbed gravitational field which is smooth at r = r0.

In the second part of this thesis, we studied the visualization of space-time curvature with

tendex and vortex lines. The tendex lines represent the effect of the tidal force, and the vortex

lines represent the effect of the frame-dragging. These lines are drawn by evaluating the Weyl

tensor on a space-like hypersurface. We visualized the perturbed black hole space-time de-

scribed above. The visualization was useful for understanding the problem and for considering

the method how to add ΨH for the lower-mode perturbations. We also applied the visualization

to a space-time metric of a binary, which is constructed using asymptotic matching (Mundim

et al. 2014). We analyzed the metric using the visualization and found unphysical distortions

of the tendex and vortex fields. The distortions were due to the insufficient accuracy of the

matching condition. The matching condition was improved.

6.2 Future works

First, we discuss the future works on the calculation of the metric perturbation. For the case

of the Kerr black hole and a ring, we did not confirm the agreement between the physical

parameters in ΨH and the perturbations of mass and angular momentum of the space-time.
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In order to do this, we need to examine the contribution to the Kerr space-time by each

parameter, using gauge transformations. If the agreement is confirmed, it suggests the validity

of our method and results more strongly.

One of the simple set-ups other than what we considered in this thesis is the perturbation

induced by a particle on a radial geodesic around a black hole. When we take the radial orbit

on the axis of symmetry, the system is axisymmetric. The stationarity breaks. Considering

this case might be useful as a preparation for more complicated cases.

When it is applied to the case of orbiting particle, both stationarity and axisymmetry

break. Because of it, equations at almost every step become more complicated. An analytic

expression for the spin-weighted spheroidal harmonics sS
aω
lm(θ) are not known. Further, the

homogeneous solution for the Hertz potential, ΨH, depends on t, r, θ, and ϕ. It would make

it more complicated to determine the parameters. However, once we obtain the gravitational

field in a radiation gauge, it would be possible to compute the self-force with the prescription

by Pound, Merlin, & Barack (2014).

Next, we discuss the future works on the visualization of space-time curvature. There is

an interesting utilization, which is to use the lines to understand the relation between the

perturbed space-time by a moving particle and the gravitational self-force acting on the par-

ticle. If it becomes possible, the visualization might give new insights about the gravitational

self-force.





Appendix A

On different conventions of sign

There are different conventions about the sign among papers. Sometimes it causes confusion.

We summarize the relations between different conventions.

A.1 Different definitions

A.1.1 Space-time metric tensor

The metric tensor gab.

Teukolsky (1973) and Keidl, Friedman, & Wiseman (2007) use (+−−−) signature.

Wald (1984), Nakamura, Oohara, & Kojima (1987), and Pound, Merlin, & Barack (2014)

use (−+++) signature.

A.1.2 Riemann curvature tensor

The Riemann curvature tensor Rabcd in terms of metric gab.

The definition given by Wald (1984) is

Rµνρ
σ =

∂

∂xν
Γσ
µρ −

∂

∂xµ
Γσ
νρ +

(
Γα
µρΓ

σ
αν − Γα

νρΓ
σ
αµ

)
, (A.1)

91



92 APPENDIX A. ON DIFFERENT CONVENTIONS OF SIGN

where

Γρ
µν =

1

2
gρσ
(
∂gνσ
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)
. (A.2)

On the other hand, apparently, Kegeles & Cohen (1979) define the curvature tensor with

different sign. The reason is in Sec. A.1.3.

A.1.3 Ricci tensor

The Ricci tensor Rab in terms of metric gab and Riemann curvature tensor Rabcd.

Eisenhart (1960) (Eq. (8.14)), and presumably Newman & Penrose (1962) and Teukolsky

(1973) use Rbc = Rabcdg
da.

The definition given by Wald (1978) is Rac = Rabcdg
db. In Kegeles & Cohen (1979), by

comparing Eq. (2.19),

2Rαβγδ = hαγ;βδ + hβδ;αγ − hβγ;αδ − hαδ;βγ +R
(0)
ασγδh

σ
β −R

(0)
βσγδh

σ
α

and Eq. (2.20),

2Rαβ = h;αβ + hαβ;ρ
ρ − hρα;βρ − hρβ;αρ = 0,

we know that they use the same definition as Wald (1984). However, Eq. (2.20), the perturbed

Ricci tensor in terms of the metric perturbation, is different by sign from that which is derived

using the definition of Rabcd and Rab by Wald (1984). This is why we believe that the definition

of the Riemann tensor Rabcd used by Kegeles & Cohen (1979) is different from the one by Wald

(1984).

A.1.4 Weyl scalars

The Weyl scalars Ψ0, Ψ1, ..., Ψ4 in terms of Riemann curvature tensor Rabcd and basis vectors.

Teukolsky (1973), Nakamura, Oohara, & Kojima (1987), and Keidl, Friedman, & Wiseman

(2007) use Ψ0 = −Cabcdl
amblcmd etc., where the Weyl tensor Cabcd is the trace-free part of

Rabcd.
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Sano & Tagoshi (2014), Pound, Merlin, & Barack (2014), and Nichols et al. (2011) use

Ψ0 = +Cabcdl
amblcmd etc.

A.1.5 Ricci rotation coefficients

Here, we denote the rotation coefficients which are defined by Newman and Penrose (1962) by

γNP
ρµν , in order to emphasize which definition we use:

γNP
ρµν = (∇b(eρ)a)(eµ)

a(eν)
b. (A.3)

In Wald (1984), the coefficients are denoted by ωλµν :

ωλµν = (eλ)
b(eµ)

a(∇b(eν)a) = γNP
νµλ. (A.4)

In Nakamura, Oohara, & Kojima (1987), the coefficients are defined as

γNOK
ρµν = (eρ)

a(∇b(eµ)a)(eν)
b = −γNP

ρµν . (A.5)

A.1.6 Spin coefficients

The spin coefficients ρ, µ, etc. in terms of metric gab and the null tetrad.

Newman & Penrose (1962) and Nakamura, Oohara, & Kojima (1987) use ρ = lµ;νm
µmν

etc. On the other hand, Sano & Tagoshi (2014) use ρ = −lµ;νmµmν etc.

Explicitly, in Newman & Penrose (1962), ρ is defined as

ρNP = γNP
134 = l+µ;νm

µmν = (lρg+ρµ);νm
µmν , (A.6)

where g+ρµ means the metric with (+−−−) signature. On the other hand, in Nakamura,

Oohara, & Kojima (1987), ρ is defined as

ρNOK = γNOK
314 = l−µ;νm

µmν = (lρg−ρµ);νm
µmν

= −γ134,
(A.7)

where g−ρµ means the metric with (−+++) signature. As a result,

ρNOK = γNOK
314 = γNP

314 = −ρNP. (A.8)
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A.1.7 Hertz potential

The relation between the Hertz potential Ψ and the metric perturbation in a radiation gauge

is given in Chrzanowski; Kegeles & Cohen (1975; 1979) as

hIRG
ab = +DIRG

ab (Ψ), hORG
ab = +DORG

ab (Ψ), (A.9)

where differential operators DIRG
ab and DORG

ab are defined as

DIRG
ab (Ψ) ≡ −

[{
lalb(δδδ + 2β +ϖ − τ)−m(alb)(DDD + ρ− ρ)

}
(δδδ + 4β + 3τ)

+
{
−l(amb)(δδδ + 4β − 2ϖ − τ) +mamb(DDD − ρ)

}
(DDD + 3ρ)

]
Ψ+ [c.c.] , (A.10)

ρ4∆2DORG
ab (Ψ) ≡ −

[{
nanb

ρ2

ρ2
(δ̃δδ + 2β +ϖ − τ)−m(anb)

ρ

ρ

−∆

2Σ
(D̃DD + ρ− ρ)

}
(δ̃δδ + 4β + 3τ)

+

{
−n(amb)

−∆

2Σ

ρ

ρ
(δ̃δδ + 4β − 2ϖ − τ) +mamb

∆2

4Σ2
(D̃DD − ρ)

}
(D̃DD + 3ρ)

]
∆2Ψ+ [c.c.] . (A.11)

Sano & Tagoshi (2014) and Keidl, Friedman, & Wiseman (2007) follow these definitions. On

the other hand, in Keidl et al.; Shah et al.; Shah, Friedman, & Keidl (2010; 2011; 2012) a

definition with different sign is used. If we denote their metric perturbation by hShahab ,

hShahab = −DORG
ab (Ψ). (A.12)

A.2 Outcomes

A.2.1 Spin coefficients

We assume that we use the same Kinnersley tetrad, which is given in Teukolsky (1973), for

example.

The spin coefficients which are calculated from the definition in Newman & Penrose (1962)

with (+−−−) signature metric and ones which are calculated from the definition in Sano
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space-time!

gµνgµν

(−+++) (+−−−)

Γ
κ

µν

RµνρσRµνρσ Rρµν
ρ

RµνRµν

Wald (1978)! Eisenhart (1960)!

R

Tµν

Wald (1978)! Teukolsky (1973)!

Figure A.1: Relations between values in two different conventions. For the same space-time, the

values of the metric gµν differ by the convention of the signature. Accordingly, two “gµν”s are put in

different place in the figure. Dashed lines represent definitions which differ by the conventions. Solid

lines represent the common definitions between the conventions. Though gµν differs between the two

conventions, the Christoffel symbol Γκ
µν agrees. Accordingly, only one “Γκ

µν” is put in the center

column and is connected to the two “gµν”s in both sides. The dotted lines represent the Einstein

equations, which differ by the conventions because the value of energy-momentum tensor Tµν does

not depend on the conventions.

& Tagoshi (2014) with (−+++) signature metric agree. For example, ρ = −1/r for the

Schwarzschild metric and the Kinnersley tetrad:

ρST = −l−µ;νmµmν = l+µ;νm
µmν = ρNP. (A.13)
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A.2.2 Weyl scalars and the Teukolsky equation

Assume that we use the definition of Riemann curvature tensor by Wald (1984). The Weyl

scalars which are calculated from the definition in Teukolsky (1973) with (+−−−) signature

metric and ones which are calculated from the definition in Sano & Tagoshi (2014) with

(−+++) signature metric agree.

When it is the case, the Teukolsky equation agrees.

A.2.3 Einstein equation

The Einstein equation used by Teukolsky (1973) is Rab = −8π(Tab − 1
2
gabT ), where Tab is the

energy-momentum tensor and T = Tabg
ab.

The Einstein equation in Wald (1984) is Rab = 8π(Tab − 1
2
gabT ). Namely,

−REisenhart
ab = 8π

(
Tab −

1

2
g+abT

+

)
, (A.14)

= RWald
ab = 8π

(
Tab −

1

2
g−abT

−
)
, (A.15)

where

T+ ≡ Tabg
ab
+ , T− ≡ Tabg

ab
− . (A.16)

For the same space-time and the matter, the two equations agree because T+ = −T−.

A.2.4 Hertz potential

While the relation between Ψ and hab is the same in Keidl, Friedman, & Wiseman (2007) and

Sano & Tagoshi (2014), the convention of the signature of metric is different. Therefore, for a

given perturbed space-time, the Hertz potentials in the two papers differs by sign:

hSTab = +DIRG
ab (ΨST),

= −hKeidl+07
ab = −DIRG

ab (ΨKeidl+07).
(A.17)
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space-time!

(−+++) (+−−−)

RµνρσRµνρσ

Tµν

Teukolsky (1973)!

Kinnersley

tetrad!

gµνgµν

γµνργµνρ

ρ = −1/r , etc.

ψ0, ψ4

Sano and 

Tagoshi (2014)!

Newman and 

Penrose (1962)!

Newman and 

Penrose (1962)!

Sano and 

Tagoshi (2014)!

Figure A.2: The solid lines represent definitions which are common between two conventions. The

dashed lines in the left half represent definitions which we use. The dashed lines in the right half are

definitions which are used by Keidl et al. (2007), Teukolsky (1973), Newman and Penrose (1962),

etc. There are two “gµν”s in this figure because they are different by sign. Likewise, “γµνρ” and

“Rµνρσ” differ between the two conventions. In Sano and Tagoshi (2014), we used definitions of

spin coefficients and Weyl scalars with different signs from those of Teukolsky (1973), so that the

Teukolsky equation agrees. The dotted line represents the Teukolsky equation.





Appendix B

Verification of the Weyl scalars in the

radiation gauge

Derivation of expressions for the perturbed Weyl scalars in the IRG.

The relations between the gauge-independent ψ0, ψ4 and the Hertz potential are important

in the procedure of metric reconstruction, and are presented when CCK proposed the method.

In Chrzanowski (1975), equations for perturbations of the Kerr metric are presented. In Cohen

& Kegeles (1975) and Wald (1978), equations for vacuum type D space-time are presented. In

Kegeles & Cohen (1979), they derived the equations for type D space-time using spinors. An

additional term is there in the equation for ψ4. The relations between the gauge-dependent

ψ1, ψ2, and ψ3 and the Hertz potential are not shown in Chrzanowski (1975). They are shown

in Cohen & Kegeles (1975) and Kegeles & Cohen (1979). Stewart (1979) also derived formulae

using spinor, and the results are presented in GHP notation (Geroch, Held, & Penrose 1973).

He pointed out the missing term and overall factor 1
2
in Cohen & Kegeles (1975). About 30

years later, Keidl, Friedman, & Wiseman (2007) again pointed out the error about the overall

factor 1
2
by CCK, and showed the first specific reconstruction for non-vacuum source. However,

the equation for ψ3 was found to be incorrect through our work, in the Schwarzschild case (Sano

& Tagoshi 2014). In this section we summarize the relations. We assume the unperturbed
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space-time is described by the Kerr metric and present the result in the IRG.

B.1 Commutation relations

The calculation needs a lot of labor even if we use some useful commutation relations in the

Newman-Penrose formalism. Many commutation relations are available in “The Mathematical

Theory of Black Holes” Chandrasekhar (1983). We present some useful relations for our

calculation below (Not all relations are from Chandrasekhar’s book). Arbitrary function of

(t, r, θ, ϕ) is denoted by F :

DDDρF = ρ(DDD + ρ)F, DDDβF = β(DDD + ρ)F, (B.1a)

DDDϖF = ϖ(DDD + 2ρ)F, DDDτF = τ(DDD + ρ+ ρ)F, (B.1b)

∆∆∆ρF = ρ(∆∆∆− µ)F, ∆∆∆µF = µ(∆∆∆− µ− 2γ)F, (B.1c)

δδδρF = ρ(δδδ + τ)F, δδδµF = µ(δδδ + 2τ −ϖ)F, δδδϖF = ϖ(δδδ + 2β + 2τ)F, (B.2a)

δδδρF = ρ(δδδ −ϖ)F, δδδµF = µ(δδδ − 2ϖ + τ)F, δδδϖF = ϖ(δδδ + 2β − 2ϖ)F, (B.2b)

δδδτF = τ(δδδ + 2β + τ −ϖ)F, (B.2c)

(DDD − ρ)(DDD + ρ)F =DDDDDDF, (B.3a)

ρ(δδδ + 2β − τ)
1

ρ
(δδδ + 4β + τ)F = ρ(δδδ + 2β)

1

ρ
(δδδ + 4β)F, (B.3b)

(DDD − ρ)δδδF = δδδDDDF, (B.4a)

DDD(δδδ −ϖ)F = (δδδ −ϖ)(DDD + ρ)F, (B.4b)

(DDD + ρ− ρ)(δδδ + τ)F = (δδδ + τ)(DDD + ρ)F, (B.4c)

(DDD − ρ− ρ)(δδδ − τ)F = (δδδ − τ)(DDD − ρ)F, (B.4d)

(DDD − ρ)(δδδ − τ −ϖ)F = (δδδ − τ −ϖ)(DDD − ρ+ ρ)F, (B.4e)
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(∆∆∆+ µ)δδδF = (δδδ +ϖ − τ)∆∆∆F, (B.5a)

∆∆∆(δδδ −ϖ)F = (δδδ − τ)(∆∆∆− µ)F, (B.5b)

(∆∆∆− µ+ µ)(δδδ + τ)F = (δδδ +ϖ)(∆∆∆− µ)F, (B.5c)

(∆∆∆+ µ+ µ)(δδδ − τ)F = (δδδ − 2τ +ϖ)(∆∆∆+ µ)F, (B.5d)

(∆∆∆+ µ)(δδδ − τ −ϖ)F = (δδδ − 2τ)(∆∆∆+ µ− µ)F, (B.5e)

(DDD − ρ)(δδδ − 2β)F = (δδδ − 2β)DDDF, (B.6a)

(∆∆∆+ µ+ 2γ)(δδδ + 2α)F = (δδδ + 2α +ϖ − τ)(∆∆∆+ 2γ)F, (B.6b)

(DDD − ρ+ ρ)∆∆∆F + (δδδ − 2α− τ)δδδF = (δδδ + 2β + τ)δδδF + (∆∆∆− 2γ)DDDF, (B.6c)

DDD∆∆∆F = (∆̃∆∆− γ − γ)D̃DDF,

δδδδδδF = (δ̃δδ −ϖ − τ)δ̃δδF,
(B.7)

ϖρ = τρ, ϖµ = τµ, τ = −τ, γ − γ = µ− µ, 8βτ + (ρ− ρ)ρ = 0, (B.8)

µDDD + ρ∆∆∆ = ρ

(
r2 + a2

Σ
∂t +

a

Σ
∂ϕ

)
. (B.9)

B.2 Relations between the Weyl scalars and the metric

perturbation

By using Eq. (B.3), the each component of the metric perturbation in the IRG is

h22 = hΨ22 + hΨ22, (B.10a)

hΨ22 ≡ −(δδδ + 2β +ϖ + 2τ)(δδδ + 4β)Ψ, hΨ22 ≡ −(δδδ + 2β +ϖ + 2τ)(δδδ + 4β)Ψ, (B.10b)

h23 = −(DDD + ρ)(δδδ + 4β)Ψ + (ϖ − τ)DDDΨ, h24 = h23, (B.10c)

h33 = −(DDD + 2ρ)DDDΨ, h44 = h33. (B.10d)
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We substitute them into the expressions for the perturbed Weyl scalars in terms of the metric

perturbation hµν .

We start with

−2Cabcd = ∇d∇bhac +∇c∇ahbd −∇d∇ahbc −∇c∇bhad + C
(0)
aecdh

e
b − C

(0)
becdh

e
a, (B.11)

where Cabcd and C
(0)
abcd are the first order perturbation and the unperturbed part of the Weyl

tensor, respectively. This equation is given in Kegeles & Cohen (1979), with different sign.

See Appendix A for different definitions and conventions. Among independent components of

C
(0)
abcd, non-zero components are C

(0)
1342 = Ψ2 and C

(0)
1212 = C

(0)
3434 = −2Re(Ψ2).

Therefore we obtain

− 2ψ0 = h11;33 + h33;11 − h31;13 − h13;31, (B.12a)

− 2ψ1 = h11;23 + h23;11 − h21;13 − h13;21 − C
(0)
2413h

4
1, (B.12b)

− 2ψ2 = h14;32 + h32;14 − h34;12 − h12;34 + C
(0)
1342h

3
3 − C

(0)
3142h

1
1, (B.12c)

− 2ψ3 = h22;14 + h14;22 − h12;24 − h24;12 − C
(0)
1324h

3
2, (B.12d)

− 2ψ4 = h22;44 + h44;22 − h42;24 − h24;42. (B.12e)

We use the following equation to calculate each term:

hµν;ρσ = (hµν,ρ + 2hκ(µγ
κ
ν)ρ),σ

+ (hλµ,ρ + 2hκ(λγ
κ
µ)ρ)γ

λ
νσ + (hλν,ρ + 2hκ(λγ

κ
ν)ρ)γ

λ
µσ + (hµν,λ + 2hκ(µγ

κ
ν)λ)γ

λ
ρσ,

(B.13)

where γρµν is the Ricci rotation coefficient, which is defined in Eq. (2.5).

B.3 Second derivatives of the metric perturbation

By using Eq. (B.13), we can obtain components of second derivatives of hab, in terms of

directional derivatives DDD, ∆∆∆, δδδ, δδδ and spin coefficients. In equations below, h12 and h34 are



B.3. SECOND DERIVATIVES OF THE METRIC PERTURBATION 103

dropped because they are zero both in the IRG and the ORG:

h11;33 = (δδδ − 2β −ϖ)(δδδ − 2ϖ)h11 + 4ρ(δδδ − 2β −ϖ)h13 + 2ρ2h33, (B.14a)

h22;44 = (δδδ + 2α +ϖ)(δδδ + 2ϖ)h22 − 4µ(δδδ + 2α + τ)h24 + 2µ2h44, (B.14b)

h33;11 = 2ϖ2h11 − 4ϖ(DDD + ρ)h13 +DDDDDDh33, (B.14c)

h44;22 = 2τ 2h22 + 4τ(∆∆∆− µ+ 2γ)h24 + (∆∆∆+ 3γ − γ)(∆∆∆+ 2γ − 2γ)h44, (B.14d)

h31;13 = −(δδδ − 2β −ϖ)ϖh11 +DDD(δδδ − 2β −ϖ)h13 +DDDρh33, (B.15a)

h42;24 = (δδδ + 2α +ϖ)τh22 + (∆∆∆+ 3γ − γ)(δδδ + 2α+ τ)h24 − (∆∆∆+ 3γ − γ)µh44, (B.15b)

h13;31 = h31;13, (B.15c)

h24;42 = h42;24, (B.15d)

h11;23 = (δδδ −ϖ)(∆∆∆− µ− 2γ − 2γ)h11 + 2τµh11

+ 2ρτh33 + 2(δδδ −ϖ)(τh13 + τh14) + 2ρ(∆∆∆− µ− 2γ)h13, (B.16a)

h22;14 = (δδδ +ϖ)(DDD + ρ)h22 + 2ϖρh22

+ 2µϖh44 − 2(δδδ +ϖ)(ϖh23 +ϖh24)− 2µ(DDD + ρ)h24, (B.16b)

h23;11 = −2ϖ(DDD + ρ)h33 + 2ϖ(ϖh13 +ϖh14) +DDDDDDh23 + 2ϖϖh13, (B.16c)

h14;22 = 2τ(∆∆∆+ µ− 2µ)h44 + 2τ(τh24 + τh23) + (∆∆∆+ µ− µ)(∆∆∆− 2γ)h14 + 2ττh24, (B.16d)

h21;13 = ϖµh11 −ϖρh33 − µ(DDD + ρ)h13 − (δδδ −ϖ)(ϖh13 +ϖh14) +DDDρh23, (B.17a)

h12;24 = τρh22 − τµh44

+ ρ(∆∆∆− µ+ 2γ)h24 + (δδδ +ϖ)(τh24 + τh23)− (∆∆∆+ µ− µ)µh14, (B.17b)

h13;21 = −ϖ(∆∆∆− µ− 2γ − 2γ)h11 + (DDD − ρ)τh33

− 2ϖ(τh14 + τh13) +DDD(∆∆∆− 2γ)h13 −ϖ(δδδ − 2α)h13 −ϖ(δδδ − 2β)h13, (B.17c)

h24;12 = τ(DDD + ρ)h22 − (∆∆∆+ 2µ− µ)ϖh44

+ 2τ(ϖh23 +ϖh24) + (∆∆∆+ µ− µ)DDDh24 − τ(δδδ − 2α)h24 − τ(δδδ − 2β)h24, (B.17d)
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h12;34 = −µ(δδδ − 2α−ϖ)h13 + (δδδ + 2β)ρh23

− µ(δδδ − 2α−ϖ)h14 + (δδδ + 2β)ρh24 + µµh11 + ρρh22, (B.18a)

h34;12 = [−ϖ(∆∆∆− µ− 2γ)h13 + τ(DDD + ρ)h23 − τϖh33] + c.c., (B.18b)

h32;14 =DDD(δδδ + 2β −ϖ)h23 +DDDρh22

− 2ρϖh24 − (δδδ + 2β −ϖ)ϖh33 + 2µ(ϖh13 +ϖh14), (B.18c)

h14;32 = (∆∆∆− γ − γ)(δδδ − 2α + τ)h14 − (∆∆∆− γ − γ)µh11 − 2τµh13

+ 2ρ(τh23 + τh24) + (δδδ + 2β −ϖ)τh44. (B.18d)

B.4 Reduced expressions for the Weyl scalars

We substitute the expressions of hµν;ρσ in the previous section into Eq. (B.12). When we use

the IRG, since h11 = h13 = h14 = 0, many terms vanish in equation for ψ0. On the other hand,

equation fro ψ4 become very complicated. In this section, we discuss the relation between

what we obtained with the results that are presented in Stewart (1979) and Keidl, Friedman,

& Wiseman (2007).

For ψ0, we have

2ψ0 = −2ρ2h33 −DDDDDDh33 + 2DDDρh33

= −(DDD − 2ρ)DDDh33

= (DDD − ρ)(DDD − ρ)(DDD − ρ)(DDD + 3ρ)Ψ

=DDDDDDDDDDDDΨ.

(B.19)

This is consistent with Eq. (4.27) in Stewart (1979) and Eq. (95) in Keidl, Friedman, &

Wiseman (2007).
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For ψ1, in a similar manner as ψ0, we have

2ψ1 = −2ρτh33 + 2ϖ(DDD + ρ)h33 −DDDDDDh23 −ϖρh33 +DDDρh23 + (DDD − ρ)τh33

= (2ϖ + τ)(DDD + ρ− ρ)h33 −DDD(DDD − ρ)h23

=DDDDDDDDD(δδδ + 4β)Ψ− 3ϖDDD(DDD + 2ρ)DDDΨ.

(B.20)

We prefer this form because (δδδ + 4β) = (ρ/
√
2)ð−

(2) is isolated in the first term. Our result

is consistent with Eq. (4.27) in Stewart (1979) and Eq. (96) in Keidl, Friedman, & Wise-

man (2007),

8ψ1 = −2(DDD + ρ− ρ)(DDD + ρ− ρ)h23

− (DDD + ρ− ρ)(δδδ − 2α + 2β − 2ϖ − τ)h33

− (δδδ − 3α + β − 3ϖ − τ)(DDD − ρ)h33. (B.21)

For ψ2, in a similar manner as ψ0 and ψ1, we have

2ψ2 = −2ρ(τh23 + τh24)− (δδδ + 2β −ϖ)τh44

−DDD(δδδ + 2β −ϖ)h23 −DDD(ρh22) + 2ρϖh24 + (δδδ + 2β −ϖ)ϖh33

+ τ(DDD + ρ)h23 − τϖh33 + τ(DDD + ρ)h24 − τϖh44

+ (δδδ + 2β)ρh23 + (δδδ + 2β)ρh24 + ρρh22

= −(DDD − ρ)ρh22 −DDD(δδδ + 2β −ϖ)h23 − 2ρτh23 + (δδδ + 2β −ϖ)(ϖ + τ)h33

+ τ(DDD + ρ)h23 + (δδδ + 2β)ρh23 − (δδδ + 2β)τh33

+ τ(DDD + ρ)h24 + (δδδ + 2β)ρh24 − (δδδ + 2β)τh44

=DDDDDDρ(δδδ + 2β)
1

ρ
(δδδ + 4β)Ψ− 4ϖ(DDD + ρ)DDD(δδδ + 4β)Ψ + 6ϖDDDϖDDDΨ.

(B.22)

In this form, ρ(δδδ+2β)ρ−1(δδδ+4β) = (ρ2/2)ð−
(1)ð

−
(2) and (δδδ+4β) = (ρ/

√
2)ð−

(2) are isolated in the
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first and second term, respectively. Our result is consistent with Eq. (4.27) in Stewart (1979),

12ψ2 = −(DDD + 2ρ− ρ)(DDD + 2ρ− ρ)hΨ22 − 2(DDD + 2ρ− ρ)(δδδ + 2β −ϖ − τ)h23

− 2(δδδ + 2β − 3ϖ − τ)(DDD + ρ− ρ)h23 − (δδδ + 2β − 3ϖ − τ)(δδδ + 4β − 4ϖ − τ)h33

− (DDD + 2ρ− ρ)(DDD + 2ρ− ρ)hΨ22 + (δδδ + 2β + 2τ)(DDD + 2ρ− 2ρ)h24

+ (DDD + 2ρ− ρ)(δδδ + 2β + 2ϖ + 2τ)h24 − (δδδ + 2β + 2τ)(δδδ + 4β −ϖ + 2τ)h44. (B.23)

The last four terms are proportional to Ψ. The sum of these four terms vanish. Then the

equation becomes Eq. (97) in Keidl, Friedman, & Wiseman (2007).

For ψ3, we have

2ψ3 = −DDD(δδδ +ϖ − τ)h22 + (∆∆∆+ µ+ µ)(DDD + ρ)h24

− 2(τ −ϖ)(δδδ − 2β +ϖ)h24 − τ(δδδ + 2β + 3τ)h24 − (ρ− ρ)ρh24

− 2ϖ2h23 − (τ − 2ϖ)(δδδ + 2β + τ)h23 − (2τ +ϖ)(∆∆∆+ µ− µ)h44. (B.24)

By considering the Schwarzschild case ϖ = τ = 0, ρ = ρ, we have

2ψ3 =DDDδδδ(δδδ + 2β)(δδδ + 4β)Ψ + 6γDDDρ(δδδ + 4β)Ψ, (B.25)

and find that Eq. (98) in Keidl, Friedman, & Wiseman (2007),

8ψ
(Keidl+07)
3 = −(DDD + 3ρ− ρ)(δδδ + 2α+ 2β − τ)hΨ22 − (δδδ + α + β −ϖ − τ)(DDD + 2ρ− ρ)hΨ22

− 2(δδδ + α + β −ϖ − τ)(δδδ + 2β −ϖ − τ)h23

=DDDδδδ(δδδ + 2β)(δδδ + 4β)Ψ

(B.26)

is not consistent with our result. There is not a term proportional to Ψ in their equation.

The second equality holds for the Schwarzschild case. If we use the expression by Keidl,

Friedman, & Wiseman (2007) instead, ψ3 derived from Ψ = ΨP +ΨH fails to become smooth

on the surface r = r0. On the other hand, it is likely that there are typos in Eq. (4.27) of
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Stewart (1979). If we “correct” them by (D31δ
′
01

2δ0−3 → D31δ
′
01

2δ′0−3) in the first term and

(χ→ χ) after first bracket [ ], the expression becomes identical to Eq. (98) of Keidl, Friedman,

& Wiseman (2007), apart from the lack of terms proportional to Ψ:

8ψ
(Stewart79)
3 = −(DDD + 3ρ− ρ)(δδδ + 2α + 2β − τ)h22 − (δδδ + α + β −ϖ − τ)(DDD + 2ρ− ρ)h22

− 2(δδδ + α + β −ϖ − τ)(δδδ + 2β −ϖ − τ)h23

−∆∆∆(δδδ + 2β − 2α + 2τ +ϖ)h44 − (δδδ + 3β − α + 3τ +ϖ)(∆∆∆+ 2µ− µ)h44

+∆∆∆(DDD + 2ρ− 2ρ)h24 + (DDD + 3ρ− ρ)(∆∆∆+ 2µ+ 2γ)h24

+ (δδδ + α + β −ϖ − τ)(δδδ + 2β + 2τ + 2ϖ)h24 + (δδδ + 3β − α + 3τ +ϖ)(δδδ + 2α− 2τ)h24.

(B.27)

In order to check whether our result is consistent with the expression above, it is necessary

to use Eq. (3.3), the condition that the Hertz potential satisfies the source-free perturbation

equation for ψ(s=−2).

For ψ4, we have

2ψ4 = −(δδδ + 2α+ϖ)(δδδ + 2ϖ)h22 + 2(δδδ + 2α +ϖ − τ)τh22

+ 4(δδδ + 2α +ϖ − τ)µh24 + 2(∆∆∆+ 3γ − γ)(δδδ + 2α + τ)h24 − 4(∆∆∆+ µ+ 2γ)τh24

− (∆∆∆+ 3γ − γ)(∆∆∆+ 2γ − 2γ)h44 − 2(∆∆∆+ µ+ 2γ)µh44. (B.28)

This is consistent with Eq. (4.27) in Stewart (1979),

2ψ4 = −(δδδ + 3α+ β − τ)(δδδ + 2α+ 2β − τ)h22 − (∆∆∆+ µ+ 2γ)(∆∆∆+ 2µ− µ)h44

+ (∆∆∆+ µ+ 2γ)(δδδ + 2α− 2τ)h24 + (δδδ + 3α + β − τ)(∆∆∆+ 2µ+ 2γ)h24. (B.29)

In order to check whether our result is consistent with the expression by Keidl, Friedman, &

Wiseman (2007), it is necessary to use Eq. (3.3). In the Schwarzschild case, our expression

can be reduced to

2ψ4 = (δδδ − 2β)δδδ(δδδ + 2β)(δδδ + 4β)Ψ− 6γρ2∂tΨ, (B.30)
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which is consistent with Eq. (99) of Keidl, Friedman, & Wiseman (2007),

2ψ4 = (δδδ + 3α + β − τ)(δδδ + 2α + 2β − τ)(δδδ + α + 3β − τ)(δδδ + 4β + 3τ)Ψ

+ 3Ψ2

[
τ(δδδ + 4α)− ρ(∆∆∆+ 4γ)− µDDD +ϖ(δδδ + 4β) + 2Ψ2

]
Ψ. (B.31)

Without imposing a = 0, the first term becomes

(δδδ + 3α+ β − τ)(δδδ + 2α+ 2β − τ)(δδδ + α+ 3β − τ)(δδδ + 4β + 3τ)Ψ

= ρ3(δδδ − 2β − τ)
1

ρ
(δδδ − τ)

1

ρ
(δδδ + 2β − τ)

1

ρ
(δδδ + 4β + 3τ)Ψ

= ρ3(δδδ − 2β)
1

ρ
δδδ
1

ρ
(δδδ + 2β)

1

ρ
(δδδ + 4β)Ψ.

(B.32)

Further, in the stationary and axisymmetric case, the second term becomes zero:

[τ(δδδ + 4α)− ρ(∆∆∆+ 4γ)− µDDD +ϖ(δδδ + 4β) + 2Ψ2]Ψ

= [4τα− 4ργ + 4ϖβ + 2Ψ2] Ψ

= [4τα− 4ργ + 4ϖβ + 4γρ− 4(2α−ϖ)τ ] Ψ

= 0.

(B.33)



Appendix C

Gravitational fields in terms of the

Hertz potential

In this chapter we show expressions in terms of the Hertz potential ΨP, for some of the Weyl

scalars and the metric perturbation.

Since the angular part of ΨP is 2Yl(θ), ψ
P
1 can be written as

ψP
1 =

1

2

∞∑
l=2

[
− 1√

2

∂3

∂r3
ρRP

l

√
(l + 2)(l − 1) 1Yl − 3ϖ

∂

∂r

1

ρ2
∂

∂r
ρ2
∂

∂r
RP

l 2Yl

]
. (C.1)

This expression is obtained by substituting Ψ = ΨP into Eq. (3.8b). Because of the stationarity

and axisymmetry, ∂
∂t

and ∂
∂ϕ

in DDD and δδδ are dropped. Thus DDD = ∂
∂r
. And the derivative with

respect to θ becomes the spin-weight lowering operator ð−
(2), according to Eq. (2.22b). And

then the operator changes 2Yl to 1Yl, according to Eq. (2.19b). In a similar manner, expressions

for ψP
2 , h

P
22, and h

P
23 are obtained:

ψP
2 =

1

2

∞∑
l=2

[
1

2

∂2

∂r2
ρ2RP

l

√
(l + 2)(l − 1)(l + 1)l 0Yl

+
4√
2

ϖ

ρ

∂

∂r
ρ
∂

∂r
ρRP

l

√
(l + 2)(l − 1) 1Yl + 6ϖ

∂

∂r
ϖ
∂

∂r
RP

l 2Yl

]
, (C.2)

hP22 = −
∞∑
l=2

Re

(
ρ2RP

l

√
(l + 2)(l − 1)(l + 1)l 0Yl −

4√
2
ϖρRP

l

√
(l + 2)(l − 1)1Yl

)
, (C.3)
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hP23 =
∞∑
l=2

[
1√
2

1

ρ

∂

∂r
ρρRP

l

√
(l + 2)(l − 1) 1Yl + (ϖ + τ)

∂

∂r
RP

l 2Yl

]
. (C.4)

On the other hand, hP33 is obtained as

hP33 = −
∞∑
l=2

1

ρ2
∂

∂r
ρ2
∂

∂r
RP

l 2Yl. (C.5)



Appendix D

Numerical evaluation

D.1 Spin-weighted spherical harmonics

The analytic expression of sYlm(θ, ϕ) is given by Torres Del Castillo (2003). After some rear-

rangements, we have

sYlm = (−1)m
√

2l + 1

4π

√
(l +m)! (l −m)!

(l + s)! (l − s)!

(
cos

θ

2

)2l

×
kmax∑

k=kmin

(−1)k
(l − s)!

(l − s− k)! k!

(l + s)!

(l −m− k)! (s+m+ k)!

(
tan

θ

2

)2k+m+s

eimϕ,

(D.1)

where kmin = max{0,−m− s}, kmax = min{l − s, l −m}.

Because our perturbed space-time is axisymmetric, we need only m = 0 modes:

sYl ≡ sYl0 =

√
2l + 1

4π

√
l! l!

(l + s)! (l − s)!

(
cos

θ

2

)2l

×
kmax∑

k=kmin

(−1)k
(l − s)!

(l − s− k)! k!

(l + s)!

(l − k)! (s+ k)!

(
tan

θ

2

)2k+s

. (D.2)
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Figure D.1: Plot of −2Y56(θ) by Maple. Left panel: Eq. Eq. (D.2). Right panel: Eq. Eq. (D.4).

By using Maple, a closed-form expression is obtained:

sYl =

√
2l + 1

4π

√
l! l!

(l + s)! (l − s)!

(
cos

θ

2

)2l [
1 + tan2

(
θ

2

)]l
Γ(l + |s|+ 1)

Γ(l + 1)

× P

(
l,−|s|, 1− tan2(θ/2)

1 + tan2(θ/2)

)
×


(
tan θ

2

)s[− (tan θ
2

)2]−s/2

(s ≥ 0)(
tan θ

2

)−s
[
−
(
tan θ

2

)2]s/2
(−1)−s (s < 0)

,

(D.3)

where P (l, s, x) = P s
l (x) is the Legendre function and Γ(x) is the gamma function. Since θ is

confined in 0 ≤ θ ≤ π in our coordinate system, tan(θ/2) ≥ 0 holds. Therefore

sYl = (−i)s
√

2l + 1

4π

√
l! l!

(l + s)! (l − s)!

Γ(l + |s|+ 1)

Γ(l + 1)
P (l,−|s|, cos θ) . (D.4)

is obtained.

Numerical evaluation of Eq. (D.2) by Maple becomes inaccurate when l ≳ 50. On the other

hand, Eq. (D.4) does not have such a problem. See Fig. D.1.
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D.2 Summation

We consider an algorithm to evaluate infinite summation such as

ψ0 =
∞∑
l=2

R
(2)
l (r) 2Yl(θ). (D.5)

As an example we take the perturbed Weyl scalar ψ0(r, θ) in this section. We consider the

perturbed Schwarzschild space-time by a particle at rest for explicity.

Actually, analytical evaluation of this sum is possible in this case (Keidl, Friedman, &

Wiseman 2007). However, we do not expect that it is possible in the cases of more complicated

models. Therefore we need numerical evaluation of this summation.

The typical plot of R
(2)
l (r) 2Yl(θ) as a function of l is shown in Fig. D.2. The coordinates

(r, θ) are fixed at (8M, π/4). The value oscillates, mainly due to the angular harmonics

2Yl(θ). Because the amplitude of this oscillation decreases with l, we evaluate the summation

by truncating at some lmax, which has to be large enough. However, determining appropriate

value of lmax is not very simple. For example, if we set lmax = 50 by observing the left panel

of Fig. D.2, the resultant plot of Re(ψ0) artificially blows up near r = r0. Even if we set

lmax = 100, it still blows up. See the left panel of Fig. D.3. On the other hand, at points far

from r = r0, lmax = 50 seems to be large enough so that the value converges. That means

to compute 50 ≲ l ≤ 100 modes at such region (r, θ) is a waste. The middle and right panel

of Fig. D.3 show the radial dependence of R
(2)
l (r) at different point r. We observe that the

value R
(2)
l (r) for smaller |r− r0| decays at larger l. Thus, for efficiency, we should truncate at

different lmax, depending on r and probably also on θ.

We do not give lmax as a function of (r, θ), instead we introduce a procedure to judge if the

sum converges at each point (r, θ). Below we consider how to judge it. One might think that

it converges when the following relation holds:

∣∣∣R(2)
lmax 2Ylmax

∣∣∣≪ ∣∣∣∣∣
lmax∑
l=2

R
(2)
l 2Yl

∣∣∣∣∣ . (D.6)
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Figure D.2: The left panel: The l dependence of R
(2)
l 2Yl at (r, θ) = (8M,π/4). The amplitude of

the oscillation decreases with l. The right panel: The lmax dependence of
∑lmax

l=2 R
(2)
l 2Yl at (r, θ) =

(8M,π/4).

However, since the mode R
(2)
l 2Yl oscillates with l, it is actually less accurate to truncate at

l = lmax which gives small |R(2)
l 2Yl|. It is because such an lmax gives an extremal value of∑lmax

l=2 R
(2)
l 2Yl, thus that value is relatively far from the convergent value. See Fig. D.2 again.

The right panel shows the lmax dependence of
∑lmax

l=2 R
(2)
l 2Yl. It is more accurate to truncate

when the difference between two consecutive extremal values is small compared to their average:∣∣∣∣∣
li∑
l=2

R
(2)
l 2Yl −

li+1∑
l=2

R
(2)
l 2Yl

∣∣∣∣∣≪ 1

2

∣∣∣∣∣
li∑
l=2

R
(2)
l 2Yl +

li+1∑
l=2

R
(2)
l 2Yl

∣∣∣∣∣ , (D.7)

where li gives the ith extremal value
∑li

l=2R
(2)
l 2Yl.

Finally, when lmax becomes large enough, we take the average of two consecutive extremal

values as the numerical evaluation of the infinite summation.
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Figure D.3: The left panel: The radial dependence of Re(ψ0), by evaluating with constant lmax.

The angular coordinate is fixed at θ = π/4. The solid line is for lmax = 50 and the dashed line is for

lmax = 100. At 9.9M ≲ r ≲ 10.1M , lmax = 100 is not large enough. The middle and right panel:

The l dependence of R
(2)
l (r) at different value of r. The left panel: The solid line is for r = 5M , the

dashed line is for r = 8M , and the dotted line (the rightmost one) is for r = 9M . The right panel:

The solid line is for r = 15M , the dashed line is for r = 12M , and the dotted line (the rightmost

one) is for r = 11M . The position of the particle is r0 = 10M . The value R
(2)
l (r) for smaller |r − r0|

decays at larger l.
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