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CHAPTER 1

Introduction

In this thesis, we consider the Cauchy problem for the generalized reduced

Ostrovsky equation

(1.1)

{
utx = u+ f(u)xx, x ∈ R, t > 0,

u (0, x) = u0 (x) , x ∈ R,

where u0 is a real valued function, f(u) = uρ if ρ is an integer and f(u) = |u|ρ−1u

if ρ is not an integer. Equation (1.1) is known as a reduced version of Ostrovsky

equations [26] which models small-amplitude long waves in rotating fluids of finite

depth, under the assumption of no-high frequency dispersion. Especially, when

ρ = 2 equation (1.1) is called the reduced Ostrovsky equation [2] or the short-wave

equation [19], and when ρ = 3 equation (1.1) is called the short pulse equation

[28]. The short pulse equation is also known as approximate solutions of Maxwell’s

equations describing the propagation of ultra short pulses in nonlinear media. For

the details of physical background, see [2], [19], [26], [28] and references therein.

Recently, the Cauchy problem for (1.1) was studied by many authors. In paper

[29], the local well-posedness in Hs for s > 3/2 was obtained for the generalized

reduced Ostrovsky equation with integer ρ ≥ 2. Global existence of small solutions

to the Cauchy problem (1.1) with integer ρ ≥ 4 was also established in [29] in

H5 ∩ H3
1 with a time decay estimate of solutions ∥u(t)∥Lr ∼ t−(1/2−1/r) where

2 ≤ r < ∞. For ρ = 3, global well-posedness of small solutions was proved in

[27] by using the conservation laws. Suitable smallness conditions are necessary

for obtaining the global in time existence of solutions since Liu, Pelinovsky and

Sakovich [21], [22] showed blow-up results for the short pulse equation (ρ = 3) and

the reduced Ostrovsky equation (ρ = 2) for large data.

The purpose of this thesis is to consider the scattering problem for the gener-

alized reduced Ostrovsky equation. This thesis is based on [17], [18] and [25].

Notation and Function Spaces. Let S and S′ denote the Schwartz space and its

dual space. As usually, we denote the Lebesgue space by Lp = {ϕ ∈ S′; ∥ϕ∥Lp <∞},
where the norm ∥ϕ∥Lp =

(∫
R |ϕ (x)|p dx

)1/p
for 1 ≤ p <∞ and ∥ϕ∥L∞ = supx∈R |ϕ (x)|

for p = ∞. The weighted Sobolev space is

Hm,s
p =

{
ϕ ∈ S′; ∥ϕ∥Hm,s

p
=
∥∥∥⟨x⟩ s

2 ⟨i∂x⟩
m
2 ϕ
∥∥∥
Lp
<∞

}
,

where m, s ∈ R, 1 ≤ p ≤ ∞ and ⟨x⟩ =
√
1 + x2, ⟨i∂x⟩ =

√
1− ∂2x. We also use the

following notations Hm,s = Hm,s
2 and Hm = Hm,0, unless it causes any confusion.

The homogeneous Sobolev space is given by

Ḣm =
{
ϕ ∈ S′; ∥ϕ∥Ḣm =

∥∥∥(−∂2x)m
2 ϕ
∥∥∥
L2
<∞

}
.
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6 1. INTRODUCTION

Let C(I;B) be the space of continuous functions from an interval I to a Banach

space B. Different positive constants might be denoted by the same letter C. We

define the Fourier transform by

Fϕ = ϕ̂(ξ) =
1√
2π

∫
R
e−ixξϕ(x)dx.

Also the inverse Fourier transform is defined by

F−1ϕ =
1√
2π

∫
R
eixξϕ(ξ)dξ.

Denote the free evolution group related with equation (1.1) by

U (t) = F−1 exp

(
− it
ξ

)
F .

We introduce the following operator

J = U(t)xU(−t) = x− t∂−2
x

where ∂−m
x = F−1(iξ)−mF . It is known that the operator J is a useful tool to

obtain the L∞ - time decay estimate. However, the operator J does not act on the

nonlinear term like a first order differential operator. For this reason, we use the

operator

P = J ∂x − tL = x∂x − t∂t

instead of J , where L = ∂t − ∂−1
x is the linear part of the reduced Ostrovsky

equation. Note that P acts well on the nonlinear term like a first order differential

operator.

The thesis is organized as follows. In Section 2, we give preliminary estimates

which are needed to prove the main results. In Section 3, we show the local existence

of solutions to the generalized reduced Ostrovsky equation in the weighted Sobolev

space. In Section 4, we consider the generalized reduced Ostrovsky equation with

super critical case (ρ > 3), and we give the existence of the usual scattering states

for this case. In Section 5, we consider the sub critical case (1 < ρ < 3) and we

prove the nonexistence of the usual scattering states for this case. In Section 6, we

consider the critical case (ρ = 3), and we give the asymptotic behavior of solutions

for this case.



CHAPTER 2

Preliminary estimates

1. Linear estimates for the free evolution group of the reduced

Ostrovsky equation

We first give the Lp −Lq estimates for the free evolution group of the reduced

Ostrovsky equation. The proof of the lemma was given by P. I. Naumkin.

Lemma 2.1. The estimate

∥U (t)ϕ (x)∥Lp ≤ Ct−
1
2 (1−

2
p )
∥∥∥(−∂2x) 3

4 (1−
2
p ) ϕ

∥∥∥
Lq

is true for t > 0, where 1/p+ 1/q = 1 and 2 ≤ p ≤ ∞.

Proof. In paper [29], Stefanov, Shen and Kevrekidis prove the case 2 ≤ p <

∞. Thus, we only consider the case p = ∞. We have

U (t)ϕ = F−1e−it 1
ξFϕ =

1√
2π

∫
eixξe−it 1

ξ |ξ|−
3
2 |ξ|

3
2 Fϕdξ

=
1√
2π

lim
δ→0

∫
|ξ|≥δ

eixξe−it 1
ξ |ξ|−

3
2 |ξ|

3
2 Fϕdξ.

Hence changing the order of integration we get

U (t)ϕ =
1

2π
lim
δ→0

∫
|ξ|≥δ

eixξe−it 1
ξ |ξ|−

3
2

∫
R
e−iyξ

(
−∂2y

) 3
4 ϕ(y)dydξ

=
1

2π
lim
δ→0

∫
R

(
−∂2y

) 3
4 ϕ(y)dy

∫
|ξ|≥δ

ei(x−y)ξe−it 1
ξ |ξ|−

3
2 dξ

= lim
δ→0

∫
R
Gδ (t, x− y)

(
−∂2y

) 3
4 ϕ (y) dy,

where the kernel

Gδ (t, x) =
1

2π

∫
|ξ|≥δ

eixξ−it 1
ξ |ξ|−

3
2 dξ =

1

π
Re

∫ ∞

δ

eixξ−it 1
ξ ξ−

3
2 dξ.

Let us estimate the integral

Iδ (t, x) =

∫ ∞

δ

eixξ−it 1
ξ ξ−

3
2 dξ

for δ ∈ (0, 1) . Changing the variable of integration ξ = tη−2, we find

Iδ (t, x) = 2t−
1
2

∫ √
t
δ

0

ei
x
|x|µ

2η−2−iη2

dη,
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8 2. PRELIMINARY ESTIMATES

where µ = 4
√
|x| t. First we consider the case of x ≥ 0. We integrate by parts via

the identity

eiµ
4η−2−iη2

= H1∂η

(
ηeiµ

4η−2−iη2
)
,

where H1 =
(
1− 2i

(
η2 + µ4η−2

))−1
. Then we get

Iδ (t, x) = 2t−
1
2

∫ √
t
δ

0

eiµ
4η−2−iη2

dη = 2t−
1
2

∫ √
t
δ

0

H1∂η

(
ηeiµ

4η−2−iη2
)
dη

= 2t−
1
2 eiµ

4η−2−iη2

ηH1

∣∣∣
η=

√
t
δ

+ 8it−
1
2

∫ √
t
δ

0

eiµ
4η−2−iη2 (

η2 − µ4η−2
)
H2

1dη,

from which it follows

|Iδ (t, x)| ≤
Ct−

1
2

√
t
δ

1 + t
δ + µ4 δ

t

+ Ct−
1
2

∫ √
t
δ

0

η2 + µ4η−2

(1 + η2 + µ4η−2)
2 dη

≤ Ct−
1
2

√
t

δ

⟨
t

δ

⟩−1

+ Ct−
1
2

∫ ∞

0

⟨η⟩−2
dη ≤ Ct−

1
2

for all x ≥ 0, t ≥ 1, δ ∈ (0, 1) .

Next we consider the case of x < 0. Denote b = min
(

µ
2 ,
√

t
δ

)
and represent

Iδ (t, x) = 2t−
1
2

∫ b

0

e−iµ4η−2−iη2

dη + 2t−
1
2

∫ √
t
δ

b

e−iµ4η−2−iη2

dη = I1 + I2.

In the first integral I1 we integrate by parts using the identity

e−iµ4η−2−iη2

= H2∂η

(
ηe−iµ4η−2−iη2

)
,

where H2 =
(
1− 2i

(
η2 − µ4η−2

))−1
. Then

I1 = 2t−
1
2

∫ b

0

e−iµ4η−2−iη2

dη = 2t−
1
2

∫ b

0

H2∂η

(
ηe−iµ4η−2−iη2

)
dη

= 2t−
1
2 e−iµ4η−2−iη2

ηH2

∣∣∣
η=b

+ 8it−
1
2

∫ b

0

e−iµ4η−2−iη2 (
η2 + µ4η−2

)
H2

2dη.

Since µ4η−2 − η2 ≥ 1
2µ

4η−2 ≥ η2 for η ∈ [0, b] , we get

|I1| ≤
Ct−

1
2

√
b

1 + µ4b−2 − b2
+ Ct−

1
2

∫ b

0

η2 + µ4η−2

(1 + µ4η−2 − η2)
2 dη

≤ Ct−
1
2

√
b ⟨b⟩−1

+ Ct−
1
2

∫ ∞

0

⟨η⟩−2
dη ≤ Ct−

1
2

for all x < 0, t ≥ 1, δ ∈ (0, 1) . In the second integral I2 over the domain b < η <
√

t
δ

we integrate by parts using the following identity

e−iµ4η−2−iη2

= H3∂η

(
(η − µ) e−iµ4η−2−iη2

)
,

where

H3 =

(
1− 2i

(η + µ)
(
η2 + µ2

)
η3

(η − µ)
2

)−1

.
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Then we obtain

I2 = 2t−
1
2

∫ √
t
δ

b

e−iµ4η−2−iη2

dη = 2t−
1
2

∫ √
t
δ

b

H3∂η

(
(η − µ) e−iµ4η−2−iη2

)
dη

= 2t−
1
2 e−iµ4η−2−iη2

(η − µ)H3

∣∣∣η=√ t
δ

η=b

−4it−
1
2

∫ √
t
δ

b

e−iµ4η−2−iη2

H2
3 (η − µ) ∂η

(
(η + µ)

(
η2 + µ2

)
η−3 (η − µ)

2
)
dη.

Since |H3| ≤ ⟨η − µ⟩−2
and∣∣∣(η − µ) ∂η

(
(η + µ)

(
η2 + µ2

)
η−3 (η − µ)

2
)∣∣∣ ≤ C (η − µ)

2

for b < η <
√

t
δ , we get

|I2| ≤ Ct−
1
2 + Ct−

1
2

∫ √
t
δ

b

⟨η − µ⟩−2
dη ≤ Ct−

1
2

for all x < 0, t ≥ 1, δ ∈ (0, 1) . Thus we find

|Gδ (t, x)| ≤ Ct−
1
2

for all x ∈ R, t ≥ 1, δ ∈ (0, 1) . Therefore

|U (t)ϕ| ≤ lim
δ→0

∫
R

∣∣∣Gδ (t, x− y)
(
−∂2y

) 3
4 ϕ (y)

∣∣∣ dy
≤ Ct−

1
2

∫
R

∣∣∣(−∂2y) 3
4 ϕ (y)

∣∣∣ dy = Ct−
1
2

∥∥∥(−∂2y) 3
4 ϕ
∥∥∥
L1
.

This completes the proof of Lemma 2.1. □

In the next lemma, we show the large time asymptotics of U(t)ϕ in L2. To

state the lemma, we define the main term Φ(t) by

Φ(t) =
χ

3
2

√
2π

(
e−i( 2t

χ +π
4 )ϕ̂(χ) + ei(

2t
χ +π

4 )ϕ̂(−χ)
)

where χ =
√
t/|x|. When ϕ is a real valued function, then Φ(t) is represented as

Φ(t) = 2
χ

3
2

√
2π

ℜe−i( 2t
χ +π

4 )ϕ̂(χ).

The next lemma says that solutions of the linear problem decay rapidly in the

region x > −1, which implies that U(t)ϕ is remainder term for x > −1 and the

main term of the large time asymptotics of U(t)ϕ lies in the domain (−∞,−1).

Lemma 2.2. ([18]) Let ϕ, xϕx ∈ H1. Then the estimates

∥U(t)ϕ∥L2(0,∞) ≤ CAt−
1
2 ,

∥U(t)ϕ∥L2(−1,0) ≤ CAt−
1
3 ,

and

∥U(t)ϕ− Φ∥L2(−∞,−1) ≤ CAt−
1−α
4

are true for t ≥ 1, where A = ∥xϕx∥H1 + ∥ϕ∥H1 and α ∈ (0, 1/2).
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Proof. The free evolution group is represented as

U(t)ϕ = (2π)−
1
2

∫
R
eixξ−i t

ξ ϕ̂(ξ)dξ.

We first consider the case x ≥ 0. We note that there is no stationary point in this

case. Then, by integration by parts we have√
(2π)U(t)ϕ =

∫
R

(
1 + ixξ + i

t

ξ

)−1

∂ξ

(
ξeixξ−i t

ξ

)
ϕ̂(ξ)dξ

=

∫
R

(
ixξ − it

ξ

)
(
1 + ixξ + i tξ

)2 eixξ−i t
ξ ϕ̂(ξ)dξ −

∫
R

ξ∂ξϕ̂(ξ)

1 + ixξ + i tξ
eixξ−i t

ξ dξ.

Applying the Cauchy-Schwarz inequality to the right hand side, we find for tx ≥ 0,

|U(t)ϕ| ≤ C

∫
R

|ϕ̂(ξ)|+ |ξ∂ξϕ̂(ξ)|
1 + t/|ξ|+ x|ξ|

dξ

≤ C(
∥∥∥⟨ξ⟩ϕ̂∥∥∥

L2
+
∥∥∥⟨ξ⟩ξ∂ξϕ̂∥∥∥

L2
)

(∫
R
⟨ξ⟩−2 (1 + t/|ξ|+ x|ξ|)−2

dξ

)1/2

.

Since tβx2−β |ξ|2−2β ≤ Ct2/ξ2 + Cx2ξ2 for β ∈ (0, 2), we have∫
R
⟨ξ⟩−2 (1 + t/|ξ|+ x|ξ|)−2

dξ ≤ C

tβx2−β

∫
R
|ξ|2β−2⟨ξ⟩−2dξ ≤ Ct−2

(x
t

)−2+β

,

where β ∈ (1/2, 3/2). Hence, choosing β = 4/3 for 0 < x < t and β = 2/3 for x > t

we obtain ∫
R
⟨ξ⟩−2 (1 + t/|ξ|+ x|ξ|)−2

dξ ≤ Ct−2
(x
t

)−2/3

⟨x
t
⟩−2/3,

Therefore, we get the first estimate of the lemma

∥U(t)ϕ∥L2(0,∞) ≤ Ct−1

∥∥∥∥(xt )−1/3

⟨x
t
⟩−1/3

∥∥∥∥
L2(0,∞)

≤ Ct−1/2.

To get the second estimate of the lemma, we just apply Lemma 2.1. By Lemma

2.1 with p = 6, we obtain

∥U(t)ϕ∥L2(−1,0) ≤ C ∥U(t)ϕ∥L6(−1,0) ≤ Ct−1/3 ∥ϕx∥L6/5 ≤ CAt−1/3.

Finally, we consider the last estimate of the lemma. Consider x < −1. Denote

S(ξ, χ) = ξ/χ2 + 1/ξ, χ =
√
t/− x, then we write

(2.1) U(t)ϕ =
1√
2π

∫ ∞

0

e−itSϕ̂(ξ)dξ +
1√
2π

∫ ∞

0

e−itSϕ̂(−ξ)dξ.

Consider the first integral on the right hand side of (2.1). Note that S(χ, χ) = 2/χ

and

S(ξ, χ)− S(χ, χ) = (ξ − χ)2/χ2ξ

for ξ > 0. To estimate the integral, we define a new variable of integration z =

(ξ − χ)/χ
√
ξ. Since z′(ξ) = (ξ + χ)/(2ξ3/2χ) > 0 for all ξ > 0, there exists the

inverse function ξ(z) = (zχ+
√

4χ+ z2χ2)2/4. Denote

ψ(z) =
ξ3/2(z)ϕ̂(ξ(z))

ξ(z) + χ
.
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Since ξ(0) = χ, ψ(0) = ϕ̂(χ)/2χ and
∫∞
−∞ e−itz2

dz =
√
π/it, we get∫ ∞

0

e−itSϕ̂(ξ)dξ = 2χe−itS(χ,χ)

∫ ∞

−∞
e−itz2

ψ(z)dz(2.2)

= e−i( 2t
χ +π

4 )t−
1
2
√
πχ3/2ϕ̂(χ) + 2χe−i 2t

χ

∫ ∞

−∞
e−itz2

(ψ(z)− ψ(0))dz.

By integration by parts, the second summand of (2.2) can be rewritten as∫ ∞

−∞
e−itz2

(ψ(z)− ψ(0))dz =

∫ ∞

−∞
(1− 2itz2)−1∂z(ze

−itz2

)(ψ(z)− ψ(0))dz

= −
∫ ∞

−∞
e−itz2

4itz2
ψ(z)− ψ(0)

(1− 2itz2)2
dz −

∫ ∞

−∞
e−itz2 zψz(z)

(1− 2itz2)
dz.

By a direct calculation, we get

|ψz(z)| =

∣∣∣∣∣ 32ξ1/2ϕ̂(ξ) + ξ3/2ϕ̂ξ(ξ)

ξ + χ
− ξ3/2ϕ̂(ξ)

(ξ + χ)2

∣∣∣∣∣ |ξz(z)|
= χα/2

∣∣∣∣∣ 32ξ
5
4−

α
2 ϕ̂(ξ) + ξ

9
4−

α
2 ϕ̂ξ(ξ)

ξ + χ
− ξ3/2ϕ̂(ξ)

(ξ + χ)2

∣∣∣∣∣
√

2ξαχ1−α

ξ + χ

√
ξz(z)

≤ Cχ
α
2

(
ξ

1
4−

α
2 |ξϕ̂ξ(ξ)|+ ξ

1
4−

α
2 |ϕ̂(ξ)|

)√
ξz(z).

Hence ∣∣∣∣∫ ∞

−∞
ψ2
z(z)dz

∣∣∣∣ ≤ Cχα

∫ ∞

0

(
ξ

1
4−

α
2 |ξϕ̂ξ(ξ)|+ ξ

1
4−

α
2 |ϕ̂(ξ)|

)
dξ

≤ Cχα

(∥∥∥ξ 1
4−

α
2 ξϕ̂ξ

∥∥∥2
L2(0,∞)

+
∥∥∥ξ 1

4−
α
2 ϕ̂
∥∥∥2
L2(0,∞)

)
≤ CA2χα.

Also, by the Cauchy-Schwarz inequality we have

|ψ(z)− ψ(0)| =
∣∣∣∣∫ z

0

ϕz(z)dz

∣∣∣∣ ≤ C
√
|z|Aχα

2 .

Therefore,∣∣∣∣∫ ∞

−∞
e−itz2

4itz2
ψ(z)− ψ(0)

(1− 2itz2)2
dz

∣∣∣∣ ≤ C|ψ(z)−ψ(0)||z|−1/2

∫ ∞

−∞

|z|1/2

1 + tz2
dz ≤ CAχα/2t−3/4

and∣∣∣∣∫ ∞

−∞
e−itz2 zψz(z)

(1− 2itz2)
dz

∣∣∣∣ ≤ C

(∫ ∞

−∞

z2dz

1 + tz2

)1/2(∫ ∞

−∞
ψ2
z(z)dz

)1/2

≤ CAχ
α
2 t−

3
4 .

Hence, the second summand on the right hand side of (2.2) can be estimated as

(2.3)

∣∣∣∣2χe−i 2t
χ

∫ ∞

−∞
e−itz2

(ψ(z)− ψ(0))dz

∣∣∣∣ ≤ CAχ1+α
2 t−3/4.
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In the same manner, the second integral on the right hand side of (2.1) can be

represented as∫ ∞

0

e−itSϕ̂(−ξ)dξ = 2χe−itS(χ,χ)

∫ ∞

−∞
e−itz2ψ1(z)dz

= ei(
2t
χ +π

4 )t−1/2
√
πχ

3
2 ϕ̂(−χ) + 2χe−

2it
χ

∫ ∞

−∞
e−itz2(ψ1(z)− ψ(0))dz,

where

ψ1(z) =
ξ3/2(z)ϕ̂(−ξ(z))

ξ(z) + χ
.

In the same manner as in the proof of (2.3), we also have

2χe−
2it
χ

∫ ∞

−∞
e−itz2

(ψ1(z)− ψ(0))dz ≤ CAχ1+α
2 t−

3
4 .

Thus, we obtain

∥U(t)ϕ− Φ∥L2(−∞,0) ≤ CAt−
3
4

∥∥χ1+α
2

∥∥
L2(−∞,−1)

.

Since ∥∥χ1+α
2

∥∥2
L2(−∞,−1)

= t1+
α
2

∫ −1

−∞
|x|−1−α

2 dx = Ct1+
α
2 ,

we arrive at the third estimate of the lemma. This completes the proof of Lemma

2.2 □

To show the lower bound of the free evolution group, we show the following

lemma.

Lemma 2.3. ([18]) Let ϕ ∈ H1 be such that xϕx ∈ H1. Then, the estimate

∥U(t)ϕ∥L2(−kt,−1) ≥
1

2

∥∥∥ϕ̂∥∥∥
L2(k− 1

2 ,t
1
2 )

+
1

2

∥∥∥ϕ̂∥∥∥
L2(−t

1
2 ,−k− 1

2 )
− CAt−

1
4+

α
4

is true for all k ≥ 1, t ≥ 1, where A = ∥xϕx∥H1 + ∥ϕ∥H1 , α ∈ (0, 1/2).

Proof. By Lemma 2.2, we get

∥U(t)ϕ∥L2(−kt,−1) ≥ ∥Φ∥L2(−kt,−1) − ∥U(t)ϕ− Φ(t)∥L2(−kt,−1)

≥ (2π)−
1
2

∥∥∥χ 3
2 (e−i( 2t

χ +π
4 )ϕ̂(χ) + ei(

2t
χ +π

4 )ϕ̂(−χ))
∥∥∥
L2(−kt,−1)

− CAt−
1
4+

α
4

for all k ≥ 1, t ≥ 1. Changing the variable of integration −x = tχ−2, dx = 2dχ, we

find

∥U(t)ϕ∥2L2(−kt,−1) ≥
1

2t

∥∥∥χ 3
2 ϕ̂(χ)

∥∥∥2
L2(−kt,−1)

+
1

2t

∥∥∥χ 3
2 ϕ̂(−χ)

∥∥∥2
L2(−kt,−1)

(2.4)

+ℜ
∫ −1

−kt

e−i( 4t
χ +π

2 )ϕ̂(χ)ϕ̂(−χ)χ3t−1dx− CA2t−
1
2+

α
2 =

∥∥∥ϕ̂∥∥∥2
L2(k− 1

2 ,t
1
2 )

+
∥∥∥ϕ̂∥∥∥2

L2(−t
1
2 ,−k− 1

2 )
+ ℜ

∫ t
1
2

k− 1
2

e−i( 4t
χ +π

2 )ϕ̂(χ)ϕ̂(−χ)dχ− CA2t−
1
2+

α
2 .



1. LINEAR ESTIMTES 13

We now consider the second summand of the last line of (2.4). By integration by

parts we have∫ t
1
2

k− 1
2

e−i 4t
χ ϕ̂(χ)ϕ̂(−χ)dχ =

∫ t
1
2

k− 1
2

(
χ2

4it
∂χe

−i 4t
χ

)
ϕ̂(χ)ϕ̂(−χ)dχ

=

[
χ2

4it
e−i 4t

χ

]t 1
2

k− 1
2

−
∫ t

1
2

k− 1
2

e−i 4t
χ ∂χ

(
χ2

4it
ϕ̂(χ)ϕ̂(−χ)

)
dχ,

from which it follows that∣∣∣∣∣∣
∫ t

1
2

k− 1
2

e−i 4t
χ ϕ̂(χ)ϕ̂(−χ)dχ

∣∣∣∣∣∣
≤ Ct−1

∣∣∣t 1
2 ϕ̂(t

1
2 )t

1
2 ϕ̂(−t 1

2 )
∣∣∣+ Ct−1

∣∣∣k− 1
2 ϕ̂(k−

1
2 )t

1
2 ϕ̂(−k− 1

2 )
∣∣∣

+Ct−1
∥∥∥|ξ| 12 ϕ̂∥∥∥2

L2
+ Ct−1

∥∥∥ξϕ̂∥∥∥
L2

∥∥∥ξϕ̂ξ∥∥∥
L2

≤ Ct−1 ∥ϕ∥2H1 + Ct−1 ∥xϕx∥2H1 = CA2t−1.

Applying this estimate to (2.4), we obtain the desired estimate. □

Using Lemma 2.3, we give the lower bound of the free evolution group.

Lemma 2.4. ([18]) Let ϕ, xϕx ∈ H1. Then the estimate

∥U(t)ϕ∥Lr(−t,0) ≥
1

2
t−

1
2 (1−

2
r )
(∥∥∥ϕ̂∥∥∥

L2(1,
√
T )

+
∥∥∥ϕ̂∥∥∥

L2(−
√
T ,−1)

)
−CAt−

1
4−

1
2 (1−

2
r )+

α
4

is true for all t ≥ T > 1, where 2 ≤ r ≤ ∞, α ∈ (0, 1/2) and A = ∥ϕ∥H1+∥xϕx∥H1 .

Proof. By the Hölder’s inequality we obtain

∥U(t)ϕ∥L2(−t,−1) ≤ ∥U(t)ϕ∥Lr(−t,−1) t
1
2 (1−

2
r ) ≤ ∥U(t)ϕ∥Lr(−t,0) t

1
2 (1−

2
r ),

where 2 ≤ r ≤ ∞. Applying Lemma 2.3 with k = 1, we obtain

∥U(t)ϕ∥Lr(−t,0) ≥
1

2
t−

1
2 (1−

2
r )
(∥∥∥ϕ̂∥∥∥

L2(1,
√
t)
+
∥∥∥ϕ̂∥∥∥

L2(−
√
t,−1)

)
− CAt−

1
4−

1
2 (1−

2
r )+

α
4

for all t ≥ 1. This completes the proof of Lemma 2.4. □

In the next lemma, we give the asymptotic expansion for the free evolution

group.

Lemma 2.5. ([25]) The following asymptotic expansion is valid for the large

time t ≥ 1 uniformly with respect to x ∈ R :

(2.5)

U(t)ϕ = ℜ
√

2

t
θ(x)e−i( 2t

χ +π
4 )χ

3
2 ϕ̂(χ) +O

(
t−

1
2−δ

(
∥xϕx∥H1+2δ + ∥ϕ∥

H
3
2
+δ

))
,

where χ =
√
t/− x, δ ∈ (0, 1/4) θ(x) = 1 when x < 0 and θ(x) = 0 when 0 ≤ x.

Proof. By the definition of U(t), we have

U(t)ϕ = F−1e−i t
ξFϕ =

1√
2π

∫ ∞

−∞
e−it( 1

ξ−
xξ
t )ϕ̂ (ξ) dξ.
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We first consider the non-stationary contributions. For the case x ≥ 0, it is easy to

see that there is no stationary point. Then, integration by parts yields

U (t)ϕ(x) =

√
2

π
ℜ
∫ ∞

0

d
dξ

(
ξe

−it
(

1
ξ−

ξ

χ2

))
ϕ̂(ξ)

1 + it
(

1
ξ + ξ

χ2

) dξ(2.6)

= −ℜ
√

2

π

∫ ∞

0

e−it
(

1
ξ−

ξ

χ2

)
ξϕ̂′(ξ)

1 + it
(

1
ξ + ξ

χ2

) dξ +
e
−it

(
1
ξ−

ξ

χ2

)
itξ
(

1
χ2 − 1

ξ2

)
ϕ̂(ξ)(

1 + it
(

1
ξ + ξ

χ2

))2
 dξ,

where χ =
√
t/x. Since

(2.7)

∣∣∣∣∣
(
1 + it

(
1

ξ
+

ξ

χ2

))−1
∣∣∣∣∣ ≤ χ2γ |ξ|γ

tγ |χ2 + ξ2|γ
≤ C

|ξ|γ

tγ

for γ = 1/2 + δ and δ ∈ (0, 1/2), we can estimate the first term on the right hand

side of (2.6) as

Ct−
1
2−δ

∫ ∞

0

|ξ|
3
2+δ

∣∣∣ϕ̂′(ξ)∣∣∣ dξ ≤ Ct−
1
2−δ

∥∥∥⟨ξ⟩− 1
2−δ
∥∥∥
L2

∥∥∥⟨ξ⟩ 1
2+δ |ξ|

3
2+δ

ϕ̂′
∥∥∥
L2

≤ Ct−
1
2−δ (∥ϕ∥H2+2δ + ∥xϕx∥H1+2δ) .

Also, using the estimate∣∣∣∣∣
(
1 + it

(
1

ξ
+

ξ

χ2

))−1
∣∣∣∣∣ ≤ C

|χ| 32+δ

t
3
4+

δ
2 |ξ| 34+ δ

2

on [2χ,∞) and (2.7) with γ = 3/4+δ/2, one can see that the last term on the right

hand side of (2.6) can be estimated as

Ct−
1
2−δ

∫ 2χ

0

|ξ|
1
2+δ

∣∣∣ϕ̂(ξ)∣∣∣ dξ + Ct−
1
2−δ

∫ ∞

2χ

|χ|1+2δ |ξ|−
1
2−δ

∣∣∣ϕ̂(ξ)∣∣∣ dξ
≤ Ct−

1
2−δ

∥∥∥⟨ξ⟩− 1
2−δ
∥∥∥
L2

∥∥∥⟨ξ⟩ 1
2+δ|ξ| 12+δϕ̂

∥∥∥
L2

≤ Ct−
1
2−δ ∥ϕ∥H1+2δ .

Therefore we get the asymptotic expansion (2.5) for x ≥ 0.

We next consider the case x < 0. We decompose the integral into the non-

stationary contributions and the stationary contribution. Put χ =
√
t/− x, then,

we have

U(t)ϕ(x) = ℜ
√

2

π

∫ ∞

0

e
−it

(
1
ξ+

ξ

χ2

)
ϕ̂(ξ)dξ = ℜ

√
2

π
(I + II + III) ,

where I =
∫ χ

2

0
e
−it

(
1
ξ+

ξ

χ2

)
ϕ̂ (ξ) dξ, II =

∫ 2χ
χ
2
e
−it

(
1
ξ+

ξ

χ2

)
ϕ̂ (ξ) dξ and III =

∫∞
2χ
e
−it

(
1
ξ+

ξ

χ2

)
ϕ̂ (ξ) dξ.

We first consider the non-stationary contributions I and III. By integration by parts,
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we get

I =

∫ χ
2

0

d

dξ

(
ξe

−it
(

ξ

χ2 + 1
ξ

))
ϕ̂(ξ)dξ

1− it
(

ξ
χ2 − 1

ξ

) =

e−it
(

ξ

χ2 + 1
ξ

)
ξϕ̂(ξ)

1− it
(

ξ
χ2 − 1

ξ

)


χ
2

ξ=0

−
∫ χ

2

0

e
−it

(
ξ

χ2 + 1
ξ

)
ξϕ̂′(ξ)dξ

1− it
(

ξ
χ2 − 1

ξ

) −
∫ χ

2

0

e
−it

(
ξ

χ2 + 1
ξ

)
ξϕ̂(ξ)it

(
1
χ2 + 1

ξ2

)
dξ(

1− it
(

ξ
χ2 − 1

ξ

))2 .

Since

(2.8)

∣∣∣∣∣
(
1− it

(
ξ

χ2
− 1

ξ

))−1
∣∣∣∣∣ ≤ |χ|2γ |ξ|γ

tγ |χ− ξ|γ |χ+ ξ|γ
≤ C

|ξ|γ

tγ

for γ = 1/2 + δ, 3/4 + δ/2 and δ ∈ (0, 1/2), it follows from the Cauchy-Schwarz

inequality that

|I| ≤ C

t
1
2+δ

(∥∥∥ξ 3
2+δϕ̂

∥∥∥
L∞

+

∫ χ
2

0

|ξ|
3
2+δ |ϕ̂′ (ξ) |+ |ξ|

1
2+δ |ϕ̂ (ξ) |dξ

)
(2.9)

≤ Ct−
1
2−δ

(
∥ϕ∥

H
3
2
+δ + ∥xϕx∥

H
1
2
+δ

)
+ Ct−

1
2−δ

∥∥∥⟨ξ⟩− 1
2−δ
∥∥∥
L2

×
(∥∥∥⟨ξ⟩ 1

2+δ |ξ|
3
2+δ

ϕ̂′
∥∥∥
L2

+
∥∥∥⟨ξ⟩ 1

2+δ |ξ|
1
2+δ

ϕ̂
∥∥∥
L2

)
≤ Ct−

1
2−δ

(
∥ϕ∥

H
3
2
+δ + ∥xϕx∥H1+2δ

)
.

Similarly, by integration by parts, we have

III =

∫ ∞

2χ

d

dξ

(
ξe

−it
(

ξ

χ2 + 1
ξ

))
ϕ̂(ξ)dξ

1− it
(

ξ
χ2 − 1

ξ

) =

e−it
(

ξ

χ2 + 1
ξ

)
ξϕ̂(ξ)

1− it
(

ξ
χ2 − 1

ξ

)
∞

ξ=2χ

(2.10)

−
∫ ∞

2χ

e
−it

(
ξ

χ2 + 1
ξ

)
ξϕ̂′(ξ)dξ

1− it
(

ξ
χ2 − 1

ξ

) −
∫ ∞

2χ

e
−it

(
ξ

χ2 + 1
ξ

)
ξϕ̂(ξ)it

(
1
χ2 + 1

ξ2

)
dξ(

1− it
(

ξ
χ2 − 1

ξ

))2 .

Since estimate (2.8) is also valid on [2χ,∞), the first and the second term on the

right hand side of (2.10) is bounded by Ct−
1
2−δ (∥ϕ∥H3/2+δ + ∥xϕx∥H1+2δ). Since∣∣∣∣∣

(
1− it

(
ξ

χ2
− 1

ξ

))−1
∣∣∣∣∣ ≤ C|χ| 32+δ

t
3
4+

δ
2 |ξ| 34+ δ

2

on [2χ,∞) for δ ∈ (0, 1/2), the last term on the right hand side of (2.10) is bounded

by

C

t
1
2+δ

∫ ∞

2χ

|χ|1+2δ |ξ|− 1
2−δ

∣∣∣ϕ̂ (ξ)∣∣∣ dξ ≤ Ct−
1
2−δ

∥∥∥⟨ξ⟩− 1
2−δ
∥∥∥
L2

∥∥∥⟨ξ⟩ 1
2+δ |ξ|

1
2+δ

ϕ̂
∥∥∥
L2

≤ Ct−
1
2−δ ∥ϕ∥H1+2δ .

Therefore, collecting these estimates, we obtain

(2.11) |III| ≤ Ct−
1
2−δ (∥ϕ∥H3/2+δ + ∥xϕx∥H1+2δ) .
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We finally consider the stationary contribution II. We decompose the integral II

into the leading term and the remainder term. That is,

II = ϕ̂ (χ)

∫ 2χ

χ
2

e
−it

(
1
ξ+

ξ

χ2

)
dξ +

∫ 2χ

χ
2

e
−it

(
1
ξ+

ξ

χ2

) (
ϕ̂ (ξ)− ϕ̂ (χ)

)
dξ = II′ +R.

We first consider II′. Making the change of the integral variable ξ = χξ′ (we omit

the prime) and applying the stationary phase method (see [31]), we have for large

t/χ ≥ 1,

II′ = χϕ̂(χ)

∫ 2

1
2

e−
it
χ (ξ+

1
ξ )dξ =

√
π

t
e−i( 2t

χ +π
4 )χ

3
2 ϕ̂ (χ) +O

(
χ2

t
ϕ̂(χ)

)
(2.12)

=
√
πt−

1
2 e−i( 2t

χ +π
4 )χ

3
2 ϕ̂ (χ) +O

(
t−

1
2−δ

∥∥∥χ 3
2+δϕ̂

∥∥∥
L∞

)
.

For small t/χ, we also have |II′| ≤ Ct−
1
2−δ

∥∥∥χ 3
2+δϕ̂

∥∥∥
L∞

. We next consider the

remainder term R. By integration by parts, we have

R =

∫ 2χ

χ
2

d

dξ

(
(ξ − χ) e

−it
(

1
ξ+

ξ

χ2

))
ϕ̂ (ξ)− ϕ̂ (χ)

1 + it (ξ − χ)
(

1
ξ2 − 1

χ2

)dξ(2.13)

=

(ξ − χ) e
−it

(
1
ξ+

ξ

χ2

)
ϕ̂ (ξ)− ϕ̂ (χ)

1 + it (ξ − χ)
(

1
ξ2 − 1

χ2

)
2χ

ξ=χ
2

−
∫ 2χ

χ
2

e
−it

(
1
ξ+

ξ

χ2

)
(ξ − χ) ϕ̂′ (ξ)

1 + it (ξ − χ)
(

1
ξ2 − 1

χ2

)dξ
+

∫ 2χ

χ
2

e
−it

(
1
ξ+

ξ

χ2

) (
ϕ̂ (ξ)− ϕ̂ (χ)

) it (ξ − χ)
2
(

ξ+χ
ξ2χ2 − 2

ξ3

)
(
1 + it (ξ − χ)

(
1
ξ2 − 1

χ2

))2 dξ.
Since

(2.14)

∣∣∣∣∣
(
1 + it (ξ − χ)

(
1

ξ2
− 1

χ2

))−1
∣∣∣∣∣ ≤ C

|χ|3γ

tγ |ξ − χ|2γ

on [χ/2, 2χ] for γ = 1/2 + δ and δ ∈ (0, 1/2), it follows from the Cauchy-Schwarz

inequality that the first and the second term on the right hand side of (2.13) is

bounded by

Ct−
1
2−δ

∥∥∥ξ 3
2+δϕ̂

∥∥∥
L∞

+
C

t
1
2+δ

∫ 2χ

χ
2

|χ|
3
2+3δ

∣∣∣ϕ̂′(ξ)∣∣∣ dξ
|ξ − χ|2δ

(2.15)

≤ Ct−
1
2−δ

(
∥ϕ∥

H
3
2
+δ + ∥xϕx∥

H
1
2
+δ

)
+
C
∥∥∥|ξ|2+δϕ̂′

∥∥∥
L2

t
1
2+δ|χ| 12−2δ

(∫ 2χ

χ
2

dξ

|ξ − χ|4δ

) 1
2

≤ Ct−
1
2−δ

(
∥ϕ∥

H
3
2
+δ + ∥xϕx∥H1+2δ

)
.
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By using the estimate∣∣∣ϕ̂ (ξ)− ϕ̂ (χ)
∣∣∣ ≤ ∣∣∣∣∣

∫ ξ

χ

∣∣∣ϕ̂′(η)∣∣∣ dη∣∣∣∣∣ ≤ C |ξ − χ|
1
2 |χ|−2−δ

∥∥∥|ξ|2+δϕ̂′
∥∥∥
L2

on ξ ∈ [χ/2, 2χ] and (2.14) with γ = 3/4 + δ/2, the last term on the right hand

side of (2.13) is bounded by

C

t
1
2+δ

∫ 2χ

χ
2

|χ|
3
2+3δ

|ξ − χ|1+2δ

∣∣∣ϕ̂ (ξ)− ϕ̂ (χ)
∣∣∣ dξ(2.16)

≤
C
∥∥∥|ξ|2+δϕ̂′

∥∥∥
L2

t
1
2+δ |χ|

1
2−2δ

∫ 2χ

χ
2

dξ

|ξ − χ|
1
2+2δ

≤ C

t
1
2+δ

(∥xϕx∥H1+δ + ∥ϕ∥H1+δ) ,

where we chose δ ∈ (0, 1/4) so that 1/2 + 2δ < 1. Therefore, by (2.15) and (2.16),

we obtain

(2.17) |R| ≤ Ct−
1
2−δ (∥ϕ∥H3/2+δ + ∥xϕx∥H1+2δ) .

Collecting estimates (2.9), (2.11), (2.12) and (2.17), we obtain (2.5) for x < 0. This

completes the proof of Lemma 2.6. □

2. Time decay estimate

In this section, we give the L∞ time decay estimate. To prove the time decay

estimate, we need following interpolation property.

Lemma 2.6. ([17]) The estimate∥∥∥(−∂2x)µ
2 ϕ
∥∥∥
H0,α

≤ C
(
∥ϕ∥

H
µ−β
1−β

+ ∥xϕx∥L2

)
is true, provided that the right-hand side is finite, where µ ≥ 1, 0 < α < β < 1.

Proof. By the definition of the norm and the Plancherel theorem we get∥∥∥(−∂2x)µ
2 ϕ
∥∥∥
H0,α

≤ C
∥∥∥(−∂2x)µ

2 ϕ
∥∥∥
L2

+ C
∥∥∥|x|α (−∂2x)µ

2 ϕ
∥∥∥
L2

≤ C ∥ϕ∥Hµ + C
∥∥∥|∂ξ|α|ξ|µ−2ξϕ̂1

∥∥∥
L2
,

where we denote ϕ1 = ϕx. Note that the fractional derivative is represented as

|∂ξ|αϕ(ξ) = C

∫
R
(ϕ(ξ, η)− ϕ(ξ))

dη

|η|1+α

where C = −α/(2Γ(1 − α) cos(πα/2)) and Γ is the Euler gamma function. Then,

we have ∥∥∥|∂ξ|α|ξ|µ−2ξϕ̂1

∥∥∥
L2

≤ C

∥∥∥∥∥
∫
|η|≤1

|ξ|µ−2ξ(ϕ̂1(ξ + η)− ϕ̂1(ξ))
dη

|η|1+α

∥∥∥∥∥
L2

(2.18)

+C

∥∥∥∥∥
∫
|η|≤1

(|ξ + η|µ−2(ξ + η)− |ξ|µ−2ξ)ϕ̂1(ξ + η)
dη

|η|1+α

∥∥∥∥∥
L2

+C

∥∥∥∥∥
∫
|η|≥1

(|ξ + η|µ−2(ξ + η)ϕ̂1(ξ + η)− |ξ|µ−2ξϕ̂1(ξ))
dη

|η|1+α

∥∥∥∥∥
L2

.
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Note that |a−b|1−β ≤ |a|1−β+|b|1−β for β ∈ (0, 1). Hence |a−b| ≤ |a−b|β(|a|1−β+

|b|1−β). Therefore, by the Hölder inequality, we find that∥∥∥|ξ|µ−2ξ(ϕ̂1(ξ + η)− ϕ̂1(ξ))
∥∥∥
L2

≤
∥∥∥ϕ̂1(ξ + η)− ϕ̂1(ξ)

∥∥∥β
L2

∥∥∥⟨ξ⟩µ−1
1−β ϕ̂1

∥∥∥1−β

L2

≤ C|η|β
∥∥∥∂ξϕ̂1∥∥∥β

L2

∥∥∥⟨ξ⟩µ−1
1−β ϕ̂1

∥∥∥1−β

L2

and ∥∥∥(|ξ + η|µ−2(ξ + η)− |ξ|µ−2ξ)ϕ̂1(ξ + η)
∥∥∥
L2

≤ C|η|
∥∥∥⟨ξ⟩µ−2ϕ̂1

∥∥∥
L2

for |η| ≤ 1. Thus, substituting above estimates into (2.18), we obtain∥∥∥|∂ξ|α|ξ|µ−2ξϕ̂1

∥∥∥
L2

≤ C
∥∥∥∂ξϕ̂1∥∥∥β

L2

∥∥∥⟨ξ⟩µ−1
1−β ϕ̂1

∥∥∥1−β

L2

∫
|η|≤1

dη

|η|1+α−β

+C
∥∥∥⟨ξ⟩µ−2ϕ̂1

∥∥∥
L2

∫
|η|≤1

dη

|η|α
+ C

∥∥∥|ξ|µ−1ϕ̂1

∥∥∥
L2

∫
|η|≥1

dη

|η|1+α

≤ C ∥ϕ1∥
H

µ−1
1−β

+ C ∥xϕ1∥L2 ≤ C ∥ϕ∥
H

µ−β
1−β

+ C ∥xϕx∥L2 .

This completes the proof of Lemma 2.6. □

Applying the above lemma, we can show the L∞ time decay estimate. The

estimate says that the L∞ - norm of solutions in higher order Sobolev spaces can

be estimated through the L2 - norm of J ∂xu ≃ Pu.

Lemma 2.7. ([17]) Let ε ∈ (0, 1/2) and l ≥ 0. Then the estimate∥∥∥(−∂2x) l
2 ϕ
∥∥∥
L∞

≤ Ct−
1
2

(
∥ϕ∥

H
2l+2−2ε

1−2ε
+ ∥J ϕx∥L2

)
is true, provided that the right-hand side is finite.

Proof. Since

∥ϕ∥L1 ≤ C ∥ϕ∥
H0, 1+ε

2

we have by Lemma 2.1 and Lemma 2.6∥∥∥(−∂2x) l
2 ϕ
∥∥∥
L∞

=
∥∥∥U (t)U (−t)

(
−∂2x

) l
2 ϕ
∥∥∥
L∞

≤ Ct−
1
2

∥∥∥(−∂2x) 3
4+

l
2 U (−t)ϕ

∥∥∥
L1

≤ Ct−
1
2

∥∥∥(−∂2x) 3
4+

l
2 U (−t)ϕ

∥∥∥
H0, 1+ε

2

≤ Ct−
1
2

(
∥U (−t)ϕ∥

H
2l+2−2ε

1−2ε
+ ∥x∂xU (−t)ϕ∥L2

)
.

This completes the proof of Lemma 2.7. □

3. A priori energy estimate

The following estimate was shown in [29].

Lemma 2.8. ([29]) Let u be a smooth solution of

utx = u+ F (t, x)uxx +G (t, x) .
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Then for any s > 1, there exists a constant Cs ≃ 1/ (s− 1), and a positive constant

C such that
d

dt

∥∥∥(−∂2x) s
2 u (t)

∥∥∥2
L2

≤ Cs ∥∂xF (t)∥L∞

∥∥∥(−∂2x) s
2 u (t)

∥∥∥2
L2

+2
∥∥∥(−∂2x) s

2 u (t)
∥∥∥
L2

(∥∥∥∥(−∂2x) s−1
2 G (t)

∥∥∥∥
L2

+ C ∥∂xu (t)∥L∞

∥∥∥(−∂2x) s
2 F (t)

∥∥∥
L2

)
.





CHAPTER 3

Local existence theorem for the generalized

reduced Ostrovsky equation

In the function space Hm∩Ḣ−1 local well posedness was treated in papers [21],

[22]. However we do not know local well posedness for (1.1) in the weighted Sobolev

spaces. For the convenience of the readers, we give a local existence theorem for

(1.1) which is needed in later chapters.

Proposition 3.1. ([17]) Let the initial data u0 ∈ Xm
0 ,m > 3/2, and the order

of nonlinearity ρ satisfies ρ > m + 1, or is an integer. Then there exists a time

T (u0) > 0 and a unique solution

u ∈ C([0, T ] ;Hm ∩ Ḣ−1), xux ∈ C
(
[0, T ] ;L2

)
of the Cauchy problem (1.1).

Proof. We consider the parabolic regularization

(3.1)

{
utx − u− νuxxx = (f(u))xx , x ∈ R, t > 0,

u (0, x) = u0 (x) , x ∈ R,

with ν > 0. By the contraction mapping principle, we first prove the existence of

solutions in ∥u∥Hm + ∥ux∥H0,1 + ∥u∥Ḣ−1 . Let us consider the linearized integral

equation associated with (3.1)

u (t) = Uν (t)u0 +

∫ t

0

Uν (t− s) (f(v (s)))xds,

where Uν (t) = F−1 exp
(
−it/ξ − νtξ2

)
F and ∥v∥Xm

T
≤M . We have

(3.2) ∥u∥Hm ≤ ∥u0∥Hm + C (ν)

∫ t

0

(t− s)
− 1

2 ∥v∥ρHm ds ≤ ∥u0∥Hm + C (ν)T
1
2Mρ

and

(3.3) ∥u∥Ḣ−1 ≤ ∥u0∥Ḣ−1 + C

∫ t

0

∥v∥ρ−1
L∞ ∥v∥L2 ds ≤ ∥u0∥Ḣ−1 + CT

1
2Mρ,

since the estimate ∥Uν (t) ∂jϕ∥L2 ≤ C (νt)
− j

2 ∥ϕ∥L2 is valid for j ∈ {0} ∪N. Multi-

plying integral equation by x∂x, using

(3.4) [x∂x,Uν (t)] = F−1

(
it

ξ
− 2νtξ2

)
FUν (t) = −Uν (t)

(
t
(
∂−1
x − 2ν∂2x

))
21
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we obtain

xux (t) = Uν (t)
(
x∂x − t

(
∂−1
x − 2ν∂2x

))
u0

+

∫ t

0

Uν (t− s)
(
x∂2x − (t− τ)

(
1− 2ν∂3x

))
f(v(s))ds.

Taking the L2 - norm, we get

∥xux∥L2 ≤ ∥x∂xu0∥L2 + CT ∥u0∥Ḣ−1 + C (ν) ∥u0∥L2(3.5)

+C (ν)

∫ T

0

(t− s)
− 1

2 ∥v∥ρ−1
L∞ (∥xvx∥L2 + ∥v∥L2) ds

+C (ν)

∫ T

0

T
(
∥v∥ρ−1

L∞ ∥v∥L2 + ∥v∥ρ−1
L∞ ∥vx∥L2

)
ds

≤ ∥x∂xu0∥L2 + CT ∥u0∥Ḣ−1 + C (ν) ∥u0∥L2 + C (ν)Mρ
(
T 2 + T

1
2

)
.

By virtue of (3.2), (3.3), (3.5), we find that there exists a time Tν such that (3.1)

has a unique solution u = u(ν). To prove Proposition 3.1 we need a-priori estimates

in the norms ∥u∥Hm+∥∂xu∥H0,1+∥u∥Ḣ−1 uniformly with respect to ν > 0. A-priori

estimates in the norms ∥u∥Hm + ∥u∥Ḣ−1 can be obtained by integration by parts.

We next prove a-priori estimate of ∥xux∥L2 . Multiplying equation (3.1) by x2ux
and integrating with respect to x we have

(3.6)
1

2

d

dt

∫
R
x2u2xdx =

∫
R
x2uuxdx+ ν

∫
R
x2uxuxxxdx+

∫
R
x2 (f(u))xx uxdx.

Integration by parts in view of the Schwarz inequality yields∣∣∣∣∫
R
x2uuxdx

∣∣∣∣ = ∣∣∣∣∫
R
xu2dx

∣∣∣∣ = ∣∣∣∣∫
R
(u+ xux) ∂

−1
x udx

∣∣∣∣(3.7)

≤ (∥u∥L2 + ∥x∂xu∥L2)
∥∥∂−1

x u
∥∥
L2 .

In the same manner

(3.8) ν

∫
R
x2uxuxxxdx = ν ∥ux∥2L2 − ν ∥xuxx∥2L2

and

(3.9)

∣∣∣∣∫
R
x2 (f(u))xx uxdx

∣∣∣∣ ≤ C ∥u∥ρ−1
H1

∞
(∥ux∥L2 + ∥xux∥L2) ∥xux∥L2 .

Substituting (3.7), (3.8) and (3.9) into (3.6) we get

d

dt
∥xux∥2L2 ≤ C (∥u∥L2 + ∥xux∥L2)

∥∥∂−1
x u

∥∥
L2

+C ∥ux∥2L2 + C ∥u∥ρ−1
H1

∞
(∥ux∥L2 + ∥xux∥L2) ∥x∂xu∥L2

≤ C + C ∥xux∥2L2

from which it follows that

d

dt
e−Ct ∥xux∥2L2 ≤ Ce−Ct.

Integrating in time, we obtain

∥xux∥2L2 ≤ ∥x∂xu0∥2L2 e
CT + C
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for 0 ≤ t ≤ T . Therefore we have a desired a-priori estimates of solutions uniformly

with respect to ν > 0. Letting ν → 0, we have ∥u∥Xm
T

≤ C. This completes the

proof of Proposition 3.1. □

Remark 3.1. When we consider (1.1) in the weighted Sobolev space, the prob-

lem becomes delicate. By (3.4) we have

x∂xUν (t)− Uν (t)x∂x = F−1

(
it

ξ
− 2νtξ2

)
FUν (t) .

Therefore

(x∂x)
2 Uν (t)− Uν (t) (x∂x)

2

= 2F−1

(
it

ξ
− 2νtξ2

)
FUν (t)x∂x

+F−1

(
− it
ξ
− 4νtξ2

)
FUν (t) + F−1

(
it

ξ
− 2νtξ2

)2

FUν (t)

= I1 + I2 + I3.
In order to estimate ∥ (x∂x)2 u∥L2 we find∥∥∥(x∂x)2 u∥∥∥

L2
≤

∥∥∥(x∂x)2 u0∥∥∥
L2

+ C ∥x∂xu0∥L2 + C ∥u0∥L2

+CT ∥x∂xu0∥Ḣ−1 + CT ∥u0∥Ḣ−1 + CT 2 ∥u0∥Ḣ−2

+C

3∑
j=1

∫ t

0

∥Ij (t− s) ∂xf(v (s))∥L2 ds.

Then, I3 can be estimated as∫ t

0

∥I3 (t− s) ∂xv
ρ (s)∥L2 ds

=

∫ t

0

∥∥∥∥∥F−1

(
i (t− s)

ξ
− 2ν (t− s) ξ2

)2

FUν (t− s) ∂xv
ρ (s)

∥∥∥∥∥
L2

ds

≤ C

∫ t

0

(
∥f(v (s))∥Ḣ−1 + (t− s)

− 1
2 ∥f(v (s))∥L2

)
ds.

The first term of the right-hand side of the above inequality is difficult to treat. This

is the reason why we avoid to use the operator P2.





CHAPTER 4

Asymptotics of solutions to the generalized

reduced Ostrovsky equation with supercritical

nonlinearity

1. Main results

Our aim in this section is to consider the asymptotic behavior of solutions

to the generalized reduced Ostrovsky equation with supercritical nonlinearity. In

Theorem 4.1, we show the existence of the usual scattering states if the order of

nonlinearity ρ > 3 + 1/2. In Theorem 4.2, an almost global existence of solutions

to the short pulse equation (ρ = 3) is given. More precisely, we show that the

lower bound for the maximal existence time T can be estimated as T ≥ exp(B/ϵ2),

where ϵ is the size of initial data. In Theorem 4.3, we consider the short pulse

equation with time dependent coefficient. Under the suitable assumption on the

time dependent coefficient, we show the existence of the usual scattering states. To

state our results precisely, we introduce the function spaces

Xm
T =

{
u (t) ∈ C

(
[0, T ) ;L2

)
; ∥u∥Xm

T
<∞

}
, Xm

0 =
{
ϕ ∈ L2; ∥ϕ∥Xm

0
<∞

}
,

where

∥u∥Xm
T
= sup

t∈[0,T )

∥u (t)∥Hm + sup
t∈[0,T )

∥J ∂xu (t)∥L2 + sup
t∈[0,T )

∥u (t)∥Ḣ−1

and

∥ϕ∥Xm
0
= ∥ϕ∥Hm + ∥∂xϕ∥H0,1 + ∥ϕ∥Ḣ−1 .

Theorem 4.1. ([17]) Assume that the initial data u0 ∈ Xm
0 , where m = 2+ ϵ,

ϵ > 0 and the order ρ of the nonlinearity satisfies ρ > max {3 + 2/(3 + 2ϵ), 3 + ϵ} ,or
is an integer, such that ρ ≥ 4. Then there exists a positive constant ε̃ such that

(1.1) has a unique global solution u ∈ Xm
∞ with the time decay

∥u (t)∥L∞ ≤ C ⟨t⟩−
1
2

for any u0 satisfying ∥u0∥Xm
0
≤ ε̃. Moreover for any u0 ∈ Xm

0 such that ∥u0∥Xm
0
≤

ε̃, there exists a unique scattering state u+ ∈ Hm−δ∩Ḣ−1, ∂xu+ ∈ H0,1−δ satisfying

∥U (−t)u (t)− u+∥Hm−δ + ∥U (−t)u (t)− u+∥Ḣ−1

+ ∥U (−t) ∂xu (t)− ∂xu+∥H0,1−δ → 0(4.1)

as t→ ∞ for small δ > 0.

25
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Next result states an almost global existence of small solutions to (1.1) with

ρ = 3. To state the result, we define a maximal existence time T ∗ by

T ∗ = sup
{
T > 0; ∥u∥Xm

T
<∞

}
.

Theorem 4.2. ([17]) Assume that ρ = 3, the initial data u0 ∈ Xm
0 , where

m > 4 and ∥u0∥Xm
0
= ε̃. Then there exist positive constants ε0 and B such that

T ∗ ≥ exp

(
B

ε̃2

)
for all 0 < ε̃ ≤ ε0.

The proof of Theorem 4.2 works also for the Cauchy problem

(4.2)

{
utx = u+ a (t) (u3)xx

u (0) = u0
,

if the coefficient a(t) ∈ C1 (R) satisfies the following time decay estimate∣∣∣∂jt a(t)∣∣∣ ≤ C (1 + |t|)−j
(log (2 + |t|))−1−γ

for j = 0, 1 and t > 0, where γ > 0. Therefore, we obtain following theorem.

Theorem 4.3. ([17]) Let the initial data u0 ∈ Xm
0 , where m > 4 and ∥u0∥Xm

0
=

ε̃. Then there exists a positive constant ε̃ such that (4.2) has a unique global solution

u ∈ Xm
∞ with the time decay

∥u (t)∥L∞ ≤ C ⟨t⟩−
1
2

for any u0 satisfying ∥u0∥Xm
0
≤ ε̃. Moreover for any u0 ∈ Xm

0 such that ∥u0∥Xm
0
≤

ε̃, there exists a unique scattering state u+ ∈ Hm−δ∩Ḣ−1, ∂xu+ ∈ H0,1−δ satisfying

(4.1) for small δ > 0.

For the convenience of the reader, we explain our strategy of the proof. The op-

erator J was introduced by [5] first to study the scattering problem for the nonlinear

Schrödinger equations and was used by many authors, see, e.g., [3]. However, the

operator J does not work well on the nonlinear term. To overcome this difficulty,

we introduce the operator P, which was used in [8] for studying the global existence

of solutions to the Schrödinger equations in three space dimensions. After that the

operator P was used often for several equations appeared in fluid mechanics such as

the modified Korteweg-de Vries equation [9], [10], the generalized Benjamin-Ono

equation [11] and the generalized Kadomtsev-Petviashvili equation [16]. According

to these papers, we use the set of operators (I, ∂x,P) in order to get desired time

decay estimates of solutions. While, we already know that local solutions of the

reduced Ostrovsky equation is local well-posed in Hs for s > 3/2. Hence, it is rea-

sonable to define our function space through the operators (I, ∂x,P, ∂2x, ∂xP,P2).

However the operator P2 is not acceptable for the case since P = x∂x − t∂−1
x − tL

and P2 ∼ (x∂x − t∂−1
x )2 is equivalent to use of ∂−2

x (See also remark 3.1). On the

other hand, our equation is ut = ∂−1
x u+ (f(u))x and we can not apply ∂−2

x to the

nonlinear term. Therefore, we need to use the set of operators (I, ∂mx ,P) instead of

(I, ∂x,P, ∂2x, ∂xP,P2). Thanks to Lemma 2.7, the set of operators works well even

if the orders of P and ∂x are different each other.
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2. Proof of Theorem 4.1

Proof. We prove that for any T > 0

∥u∥X2+ε
T

<
√
ε̃

by a contradiction argument. We assume that there exists a time T such that

∥u∥X2+ε
T

=
√
ε̃.

Taking m = 2 + ε, F = f ′(u), G = f ′′(u)u2x in Lemma 2.8 and using the Sobolev

inequality such that

(4.3) ∥ux∥L∞ ≤ C ∥u∥
1+2ε
3+2ε

L∞ ∥u∥
2

3+2ε

H2+ε ,

we find that
d

dt

∥∥∥(−∂x) s
2 u (t)

∥∥∥2
L2

≤ C ∥u (t)∥ρ−2+ 1+2ε
3+2ε

L∞ ∥u (t)∥
2

3+2ε

Hs ∥u (t)∥2Hs(4.4)

≤ C ⟨t⟩−
1
2 (ρ−2+ 1+2ε

3+2ε ) (∥u∥Hs + ∥J ∂xu∥L2)
ρ−2+ 1+2ε

3+2ε ∥u (t)∥
2

3+2ε

Hs ∥u (t)∥2Hs ,

because of Lemma 2.7. Therefore

(4.5) ∥u (t)∥2Hm ≤ ε̃2 + Cε̃
ρ+1
2

∫ t

0

⟨τ⟩−
1
2 (ρ−2+ 1+2ε

3+2ε ) dτ ≤ ε̃2 + Cε̃
ρ+1
2 ≤ 2ε̃2

since ρ > 3 + 2/(3 + 2ϵ) and ε > 0 is small. To get the a-priori estimate of∥∥∂−1
x u(t)

∥∥
L2 , we define χn ∈ S such that 0 ≤ χ̂n(ξ) ≤ 1 and

χ̂n(ξ) =

{
1 2−n+1 ≤ |ξ| ≤ 2n

0 0 ≤ |ξ| ≤ 2−n, 2n+1 ≤ |ξ| .

Multiplying (1.1) by χn∗, we get

(4.6) (χn ∗ ut + χn ∗ (f(u))x)x = χn ∗ u,

where ∗ is the convolution. Multiplying ∂−2
x both side of (4.6) and taking the dot

product with ∂−1
x (χn ∗ u), we have

(∂−1
x (χn ∗ ut), ∂−1

x (χn ∗ u)) + (χn ∗ f(u), ∂−1
x (χn ∗ u)) = (∂−2

x (χn ∗ u), ∂−1
x (χn ∗ u)).

Note that (∂−2
x (χn ∗ u), ∂−1

x (χn ∗ u)) = 0. Then, letting n → ∞ and integrating

with respect to t, we have∥∥∂−1
x u(t)

∥∥
L2 ≤

∥∥∂−1
x u0

∥∥
L2 +

∫ t

0

∥u(t)∥ρ−1
L∞ ∥u(t)∥L2 dτ(4.7)

≤ ϵ̃+ Cϵ̃
ρ−1
2

∫ t

0

(∥u∥Hs + ∥J ∂xu∥L2)
ρ−1 ⟨τ⟩ρ−1dτ ≤ Cϵ̃.

We next consider the estimate of ∥Pu(t)∥L2 . Multiplying P = x∂x − t∂t both side

of (1.1), we have

(4.8) Pu = ((Pu)t + (f(u))x − P (f(u))x)x .

In the same manner of the above, we multiply (4.8) by ∂−1
x χn∗ and take the dot

product with χn ∗ Pu, then we have Letting n→ ∞, we have

d

dt
∥Pu(t)∥L2 ≤ C ∥u(t)∥ρ−1

L∞ ∥ux(t)∥L2 + C ∥u(t)∥ρ−1
H1

∞
∥Pu(t)∥L2(4.9)

≤ Cε̃
ρ
2 ⟨t⟩

ρ−1
2 + Cε̃

ρ−1
2 ⟨t⟩−

1
2 (ρ−2+ 1+2ε

3+2ε ) ∥Pu(t)∥L2 .
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Hence,

∥Pu∥L2 ≤ Cϵ̃.

By the identity

(P − J ∂x)u = −t
(
ut −

∫ x

−∞
udy

)
= −t (f(u))x ,

we obtain

∥J ∂xu∥L2 ≤ ∥Pu∥L2 + t ∥u∥ρ−1
L∞ ∥∂xu∥L2(4.10)

≤ ∥Pu∥L2 + C ⟨t⟩1−
1
2 (ρ−1)

(∥u∥Hs + ∥J ∂xu∥L2)
ρ−1 ∥∂xu∥L2

≤ Cε̃+ Cε̃
ρ−1
2 ≤ Cε̃.

By (4.5), (4.7) and (4.10)

∥u∥Xm
T
≤ Cε̃ <

√
ε̃.

This is the desired contradiction. Hence we have a global in time solution satisfying

the estimate

∥u∥Xm
∞

≤
√
ε̃.

This completes the proof of the first part of Theorem 4.1. We now consider the

scattering problem. It is sufficient to prove that {U (−t)u (t)} is a Cauchy sequence

in C([0,∞) ;L2) ∩C([0,∞) ; Ḣ−1) since by the Sobolev inequality

∥U (−t)u (t)− U (−s)u (s)∥Hm−δ(4.11)

≤ C ∥U (−t)u (t)− U (−s)u (s)∥
δ
m

L2 ∥U (−t)u (t)− U (−s)u (s)∥1−
δ
m

Hm

≤ C ∥U (−t)u (t)− U (−s)u (s)∥
δ
m

L2 ,

and

∥U (−t) ∂xu (t)− U (−s) ∂xu (s)∥H0,1−δ(4.12)

≤ C ∥U (−t) ∂xu (t)− U (−s) ∂xu (s)∥δL2 ∥U (−t) ∂xu (t)− U (−s) ∂xu (s)∥1−δ
H0,1

≤ C ∥U (−t)u (t)− U (−s)u (s)∥δ(1−
1
m )

L2 ∥U (−t)u (t)− U (−s)u (s)∥
δ
m

Hm

≤ C ∥U (−t)u (t)− U (−s)u (s)∥δ(1−
1
m )

L2

with δ ∈ (0, 1) . By the integral equation associated with (1.1), we get

(4.13) ∥U (−t)u (t)− U (−s)u (s)∥Ḣ−1∩L2 ≤ C

∫ t

s

⟨τ⟩−
1
2 (ρ−1)

dτ

from which it follows that {U (−t)u (t)} is a Cauchy sequence in C
(
[0,∞) ;L2

)
∩

C([0,∞) ; Ḣ−1). By applying (4.13) to (4.11) and (4.12), we obtain the result of

Theorem 4.1. □
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3. Proof of Theorem 4.2

Proof. We next consider the space X4+ε
T . We take m = 4 + ε, F = f ′(u),

G = f ′′(u)u2x in Lemma 2.8, where ρ = 3, 4 or ρ > 5

d

dt

∥∥∥(−∂x)m
2 u (t)

∥∥∥2
L2

≤ Cm ∥∂xF (t)∥L∞

∥∥∥(−∂x)m
2 u (t)

∥∥∥2
L2

+2
∥∥∥(−∂x)m

2 u (t)
∥∥∥
L2

(∥∥∥(−∂x)m−1
2 G (t)

∥∥∥
L2

+ C ∥∂xu (t)∥L∞

∥∥∥(−∂x)m
2 F (t)

∥∥∥
L2

)
≤ C ∥u∥ρ−2

L∞ ∥∂xu∥L∞ ∥u∥2Hs .

We apply the estimate of Lemma 2.7 to find

d

dt

∥∥∥(−∂x)m
2 u (t)

∥∥∥2
L2

≤ C ⟨t⟩−
ρ−1
2 (∥u∥Hm + ∥J ∂xu∥L2)

ρ−1 ∥u∥2Hm

from which it follows that

(4.14) ∥u∥2Hm ≤ ε̃2 + C

∫ t

0

⟨τ⟩−
ρ−1
2 (∥u∥Hm + ∥J ∂xu∥L2)

ρ−1 ∥u∥2Hm dτ.

By the first line of (4.9) and Lemma 2.7, we have

∥Pu∥2L2 ≤ ε̃2 + C

∫ t

0

⟨τ⟩−
ρ−1
2 (∥u∥Hm + ∥J ∂xu∥L2)

ρ−1
(4.15)

× (∥Pu∥L2 + ∥u∥L2) ∥Pu∥L2 dτ.

By virtue of (4.14), (4.15), the first line of (4.10) and (4.7), we get

∥u∥Xm
T
≤ Cε̃+ ∥u∥3Xm

T

∫ t

0

⟨τ⟩
ρ−1
2 dτ ≤ Cε̃+ ∥u∥3Xm

T
log ⟨T ⟩ ,

where we put ρ = 3. From this estimate and a contradiction argument used in [24],

Theorem 4.2 follows. □

4. Proof of Theorem 4.3

Proof. We now prove that

∥u∥X4+ε
T

< (ε̃)
2
3

for any T > 0. By the contradiction we assume that there exists a time T such that

∥u∥X4+ε
T

= (ε̃)
2
3 .

In the same way as in the proof of (4.14) and (4.15), we have with m = 4 + ε

∥u∥2Hm ≤ ε̃2 + C

∫ t

0

⟨τ⟩−1
(log ⟨τ⟩)−1−γ

(∥u∥Hm + ∥J ∂xu∥L2)
2 ∥u∥2Hm dτ

≤ ε̃2 + C (ε̃)
8
3 ≤ 2ε̃2

and

∥Pu∥2L2 ≤ ε̃2 + C

∫ t

0

⟨τ⟩−1
(log ⟨τ⟩)−1−γ

(∥u∥Hm + ∥J ∂xu∥L2)
2

× (∥Pu∥L2 + ∥u∥L2) ∥Pu∥L2 dτ

≤ ε̃2 + C (ε̃)
4
3

∫ t

0

⟨τ⟩−1
(log ⟨τ⟩)−1−γ ∥Pu∥2L2 dτ
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from which with the Gronwall inequality it follows that

∥Pu∥L2 ≤
√
2ε̃.

By the identity

(P − J ∂x)u = −t
(
ut −

∫ x

−∞
udy

)
= −ta (t)

(
u3
)
x

we obtain

∥J ∂xu∥L2 ≤ ∥Pu∥L2 + t |a (t)| ∥u∥2L∞ ∥∂xu∥L2

≤ ∥Pu∥L2 + C (log ⟨τ⟩)−1−γ
(∥u∥H2+ε + ∥J ∂xu∥L2)

2 ∥∂xu∥L2

≤
√
2ε̃+ Cε̃

4
3 ≤ 2ε̃.

Therefore we have the desired contradiction. This completes the proof of Theorem

4.3. □



CHAPTER 5

Nonexistence result of the usual scattering states

1. Main result

In this section,we consider the Cauchy problem (1.1) with f(u) = |u|ρ−1u. That

is, we consider the Cauchy problem

(5.1)

{
utx = u+ (|u|ρ−1u)xx, x ∈ R, t > 0

u (0, x) = u0 (x) , x ∈ R .

Our aim in this section is to prove the nonexistence of the usual scattering states

for the Cauchy problem (5.1) with 1 < ρ ≤ 3. That is, we prove that it is impossible

to find a solution of (5.1) with 1 < ρ ≤ 3 in the neighborhood of the free solution

as t → ∞. Note that the lower bounds were not shown previously which are

important for proving the nonexistence of the usual scattering states (See [6] and

[23]). In these papers, finite propagation speed was used to get the lower bound

time decay estimate. Since (1.1) does not have finite propagation speed property,

we need to apply the sharp asymptotic behavior of solutions. Asymptotic behavior

of solutions to the free Schrödinger evolution group is well known and the lower

bounds for the solutions can be obtained easily (See [1]). The lower bound for the

linear combination of different Schrödinger evolution groups was obtained in [15]

which was used to prove the nonexistence of the usual scattering states for a system

of nonlinear Schrödinger equations.

Theorem 5.1. ([18]) Assume that there exists a solution u ∈ C(R; Ḣ−1 ∩ L2)

of the Cauchy problem (5.1) with 1 < ρ ≤ 3. Furthermore, we assume that if

2 < ρ ≤ 3 then the time decay estimate

∥u(t)∥L∞ ≤ C⟨t⟩− 1
2

holds. Then, these does not exist any free solution w(t) of the linear Cauchy problem

(5.1) with initial data

ϕ ∈ H2 ∩ Ḣ−1, xϕx ∈ H1

and some T > 1, ∥∥∥ϕ̂∥∥∥
L2(1,T )

+
∥∥∥ϕ̂∥∥∥

L2(−T,−1)
̸= 0

such that

lim
t→∞

∥u(t)− w(t)∥Ḣ−1∩L2 = 0,

where w(t) = U(t)ϕ.
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2. Proof of Theorem 5.1

Proof. We prove the theorem by a contradiction argument. Suppose that

there exists a free solution w(t) = U(t)ϕ of the linear Cauchy problem (5.1) with

initial data ϕ and satisfying

(5.2) lim
t→∞

∥u(t)− w(t)∥L2∩Ḣ−1 = 0.

Define the functional

Hu(t) =

∫
R
w(t, x)∂−1

x u(t, x)dx.

as in the papers [6] and [23]. In view of equation (5.1), we have ∂tU(−t)w(t) = 0

and ∂tU(−t)∂−1
x u(t) = U(−t)

(
|u|ρ−1u

)
. Also we can represent

Hu(t) =

∫
R
(U(−t)w(t))(U(−t)∂−1

x u(t))dx.

Then by a direct calculation we find

d

dt
Hu(t) =

∫
R
(U(−t)w(t))

(
U(−t)(|u|ρ−1u)

)
dx =

∫
R
w|u|ρ−1udx

=

∫
R
|w|ρ+1dx+

∫
R
(w|u|ρ−1u− |w|ρ+1)dx.

For 3 ≥ ρ > 2, we have∣∣∣∣∫
R
(w|u|ρ−1u− w|w|ρ−1w)dx

∣∣∣∣
≤ C ∥w∥L∞ (∥u∥L2 + ∥w∥L2) (∥w∥L∞ + ∥u∥L∞)

ρ−2 ∥u− w∥L2

≤ C(A+ 1)ρt−
ρ−1
2 ∥u− w∥L2 ,

where A = ∥ϕ∥H1 + ∥xϕx∥H1 . Here we used the estimate ∥w∥L∞ ≤ Ct−1/2 and the

assumption ∥u∥L∞ ≤ Ct−1/2. Next we consider the case 1 < ρ ≤ 2. By the Hölder

inequality, we have∣∣∣∣∫
R
(w|u|ρ−1u− w|w|ρ−1w)dx

∣∣∣∣ ≤ C ∥w∥
L

2
2−ρ

∥∥|u|ρ−1u− w|w|ρ−1w
∥∥
L

2
ρ

≤ C ∥w∥
L

2
2−ρ

(∥u∥L2 + ∥w∥L2)
ρ−1 ∥u− w∥L2 ≤ C(A+ 1)ρt−

ρ−1
2 ∥u− w∥L2 .

Then by Lemma 2.4, we estimate

d

dt
Hu(t) ≥

∫
R
|w|ρ+1dx− C(A+ 1)ρt−

ρ−1
2 ∥u− w∥L2

≥ 2−ρ−1t−
ρ−1
2 (∥ϕ̂∥L2(1,

√
T ) + ∥ϕ̂∥L2(−

√
T ,−1))

ρ+1

−CAρ+1t−
ρ−1
2 − 1−α

4 (ρ+1) − C(A+ 1)ρt−
ρ−1
2 ∥u− w∥L2 .

By the assumption of Theorem 5.1, there exists T > 1 such that ∥u(t)− w(t)∥L2 < ϵ

for all t ≥ T with ϵ > 0 such that

C(A+ 1)ρ ≤ 2−ρ−1(∥ϕ̂∥L2(1,
√
T ) + ∥ϕ̂∥L2(−

√
T ,−1))

ρ+1.
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Hence, by integration with respect to t, we have

(5.3) |Hu(2T )−Hu(T )| ≥ C

∫ 2T

T

t−
ρ−1
2 dt ≥ CT

3−ρ
2 ,

for large T . On the other hand, by the definition of Hu(t) and (5.2), we find

Hu(t) =

∫
R
w∂−1

x (u− w)dx ≤ C ∥w(t)∥L2

∥∥∂−1
x (u(t)− w(t))

∥∥
L2(5.4)

≤ C ∥u0∥L2

∥∥∂−1
x (u(t)− w(t))

∥∥
L2 → 0,

for t→ ∞. From (5.3) and (5.4), we obtain a desired contradiction. This completes

the proof of Theorem 5.1. □





CHAPTER 6

Asymptotics of solutions to the short pulse

equation with critical nonlinearity

1. Main result

In this section, we consider the Cauchy problem

(6.1)

{
utx = u+ (u3)xx, x ∈ R, t > 0

u (0, x) = u0 (x) , x ∈ R .

The result of section 5 says that there is no asymptotically free solution for the

short pulse equation. However, it is not clear how solutions behave in large time.

So, our aim in this section is to show the asymptotic behavior of solutions to (6.1)

under the smallness condition on the initial data.

Scattering problems for nonlinear dispersive equations in one dimension with

critical nonlinearity were intensively studied by many authors. Hayashi and Naumkin

showed the asymptotic behavior of solutions to cubic nonlinear Schrödinger equa-

tion [12], Hartree equations [13], modified KdV equation [9], and cubic Benjamin-

Ono equation [11]. Delort studies the scattering problem for the quadratic and

cubic Klein-Gordon equation [4]. Recently, Ionescu and Pusateri consider the scat-

tering problem for nonlinear fractional Schrödinger equations [20]. Even if the

initial data is sufficiently small, these equations are not tend to free solutions as

t → ∞. In fact, to find their asymptotics, we need a suitable phase correction on

free solutions.

To state our result, we introduce the function spaces

Xm
0 =

{
ϕ ∈ L2; ∥ϕ∥Xm

0
= ∥ϕ∥Hm + ∥xϕx∥H5 + ∥ϕ∥Ḣ−1 <∞

}
and

Xm
T =

{
u (t) ∈ C

(
[0, T ) ;L2

)
; ∥u∥Xm

T
<∞

}
,

equipped with the norm

∥u∥Xm
T
= sup

t∈[0,T )

⟨t⟩−ϵ
1
7 (∥u (t)∥Hm + ∥J ux (t)∥H5 + ∥u (t)∥Ḣ−1) + sup

t∈[0,T )

⟨t⟩ 1
2 ∥u(t)∥H2

∞
,

where ϵ > 0 is small. We are now in a position to state our result.

Theorem 6.1. ([25]) Let the initial data u0 ∈ Xm
0 and m > 10. Assume that

∥u0∥Xm
0

≤ ϵ and ϵ > 0 is sufficiently small. Then there exists a unique global

solution u ∈ Xm
∞ of (6.1) such that

∥u (t)∥H2
∞

≤ C ⟨t⟩−
1
2 .
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Moreover for any u0 ∈ Xm
0 there exists a unique function W ∈ H0,2

∞ such that the

following asymptotics is valid for large t ≥ 1 uniformly with respect to x ∈ R:

u (t) = ℜ
√

2

t
θ(x)W (χ) exp

(
−i
(
2t

χ
+
π

4
+

3χ√
2
|W (χ)|2 log t

))
(6.2)

+O
(
t−

1
2−δ
)
,

where δ ∈ (0, 1/12), χ =
√
t/− x, θ(x) = 1 when x < 0 and θ(x) = 0 when 0 ≤ x.

Remark 6.1. The assumption ∂−1
x u0 ∈ L2 is crucial to our proof since we use

the operator J ∂x = x∂x − t∂−1
x . The author do not know whether the assumption

can be removed or not. This problem is more challenging.

We now state our strategy of the proof of Theorem 6.1. According to Propo-

sition 3.1, there exists local solutions to (6.1) in the function space Xm
T . Thus, to

obtain the global existence theorem, we need to show the a-priori estimate of local

solutions in the norm ∥·∥Xm
T
. However, it seems to be difficult to get the estimate

⟨t⟩1/2 ∥u(t)∥L∞ ≤ C as in the same manner of [17], since the order of the nonlin-

earity of (6.1) is critical. So we need another approach to get the L∞ estimate.

In this paper, we adopt the method closely related in papers [9], [11] and [12] by

Hayashi and Naumkin. Papers [9] and [11] deal with the scattering problem for

dispersive equations with critical nonlinearity :{
ut + (−∂2x)

p−1
2 ux = (u3)x, x ∈ R, t > 0,

u (0, x) = u0 (x) , x ∈ R,

where
(
−∂2x

)m/2
= F−1 |ξ|m F . More precisely, it was shown the scattering result

for modified KdV equation (p = 3) for small initial data u0 ∈ H1,1 in [9]. While it

was shown the scattering result for Benjamin-Ono equation (p = 2) for small initial

data u0 ∈ H1,2 ∩ H3 in [11]. From these results, if p becomes smaller, then we

need more regularity on the initial data to obtain the scattering result by using the

method [9], [11] and [12] directly. Since our equation (6.1) is the case of p = −1,

we need more regularity on the initial data than [9] and [11], and we need to

construct solutions in corresponding weighted Sobolev space. However, as pointed

out in [17], it seems to be difficult to construct solutions in Sobolev space with ⟨x⟩2.
Hence, we cannot apply the operator P = t∂t − x∂x twice to the equation (6.1)

since P2 = (x∂x − t∂t)
2 and ∂2t is similar to the anti-derivatives ∂−2

x in the short

pulse case. Note that this difficulty does not arise in previous works such as [11]

and [12] . That is, there is no difficulty to use the operator P twice in these cases

since the linear part of these equations do not have an anti-derivative. To avoid

the difficulty, we use Lemma 2.7 which was the main tool in the proof of Theorem

4.1. In the same reason, we also need to avoid using two weights in our proof (See

Lemma 6.5). Thanks to these lemmas, we can avoid using the operator P twice.

2. A priori estimate

In order to obtain global solutions to (6.1), we should show the a-priori estimate

of solutions to (6.1) in the norm ∥·∥Xm
T
. In the following lemma, we give the a-priori

estimate of ∥u(t)∥Hm , ∥u(t)∥Ḣ−1 and ∥J ux(t)∥H5 .
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Lemma 6.1. ([25]) Let u be a solution obtained by Proposition 3.1 with m > 10.

Then, the following estimate

⟨t⟩−ϵ
1
7 (∥u(t)∥Hm + ∥u(t)∥Ḣ−1 + ∥J ux(t)∥H5) ≤ Cϵ,

is valid for any t ∈ [0, T ].

Proof. By Lemma 2.7, we have

d

dt
∥u(t)∥Hm ≤ C (∥u(t)∥L∞ + ∥ux(t)∥L∞)

2 ∥u(t)∥Hm ≤ Cϵ⟨t⟩−1 ∥u(t)∥Hm .

Whence, by the Gronwall inequality, we get

∥u(t)∥Hm ≤ Cϵ⟨t⟩Cϵ ≤ Cϵ⟨t⟩ϵ
1
2 .

To get the a-priori estimate of
∥∥∂−1

x u(t)
∥∥
L2 , we define χn ∈ S such that 0 ≤ χ̂n(ξ) ≤

1 and χ̂n(ξ) =

{
1 2−n+1 ≤ |ξ| ≤ 2n

0 0 ≤ |ξ| ≤ 2−n, 2n+1 ≤ |ξ| . Multiplying (6.1) by χn∗, we get

(6.3) (χn ∗ ut + χn ∗ (u3)x)x = χn ∗ u,

where ∗ is the convolution. Multiplying ∂−2
x both side of (6.3) and taking the dot

product with ∂−1
x (χn ∗ u), we have

(∂−1
x (χn ∗ ut), ∂−1

x (χn ∗ u)) + (χn ∗ u3, ∂−1
x (χn ∗ u)) = (∂−2

x (χn ∗ u), ∂−1
x (χn ∗ u)).

Note that (∂−2
x (χn ∗ u), ∂−1

x (χn ∗ u)) = 0. Then, letting n → ∞ and integrating

with respect to t, we have∥∥∂−1
x u(t)

∥∥
L2 ≤

∥∥∂−1
x u0

∥∥
L2+

∫ t

0

∥u(t)∥2L∞ ∥u(t)∥L2 dτ ≤ ϵ+Cϵ3
∫ t

0

⟨τ⟩−1+ϵ
1
2 dτ ≤ Cϵ⟨t⟩ϵ

1
2 .

We next consider the estimate of ∥Pu(t)∥H1 . Multiplying P = x∂x − t∂t both side

of (1.1), we have

(6.4) Pu =
(
(Pu)t +

(
u3
)
x
− P

(
u3
)
x

)
x
.

Multiplying (6.4) by ∂−1
x χn∗ and taking the dot product with χn ∗ Pu, we have

d

dt
∥χn ∗ Pu∥L2 ≤ C

∥∥χn ∗ (u3)x
∥∥
L2 + C

∥∥χn ∗ P(u3)x
∥∥
L2 ,

since (∂−1
x (χn ∗ Pu), χn ∗ Pu) = 0. Letting n→ ∞, we have

d

dt
∥Pu(t)∥L2 ≤ C ∥u(t)∥2L∞ ∥ux(t)∥L2 + C ∥u(t)∥2H1

∞
∥Pu(t)∥H1(6.5)

≤ Cϵ⟨t⟩−1+ϵ
1
2 + Cϵ⟨t⟩−1 ∥Pu(t)∥H1 .

We next consider the norm ∥(Pu(t))x∥L2 . Applying the classical energy method to

(6.4), we have

d

dt
∥(Pu(t))x∥L2 ≤ C ∥u(t)∥2L∞ ∥u(t)∥H2 + C ∥u(t)∥2H2

∞
∥Pu(t)∥H1(6.6)

≤ Cϵ⟨t⟩−1+ϵ
1
2 + Cϵ⟨t⟩−1 ∥Pu(t)∥H1 .

By (6.5) and (6.6), we have

d

dt
∥Pu(t)∥H1 ≤ Cϵ⟨t⟩−1+ϵ

1
2 + Cϵ⟨t⟩−1 ∥Pu(t)∥H1 .
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Whence, by the Gronwall inequality, we obtain

∥Pu(t)∥H1 ≤ Cϵ⟨t⟩Cϵ + Cϵ⟨t⟩ϵ
1
2 +Cϵ ≤ Cϵ⟨t⟩ϵ

1
3 .

It follows from the identity P = J ∂x + tL that

∥J ux(t)∥H1 ≤ ∥Pu(t)∥H1 + t ∥Lu(t)∥H1 ≤ Cϵ⟨t⟩ϵ
1
3 .

We next give the estimate of ∥(J ux)xx (t)∥L2 . Note that the following estimate

(6.7) ∥u(t)∥Hk+1
∞

≤ Ct−
1
2 (∥u(t)∥Hm+k−5 + ∥J ux(t)∥Hk−1)

is valid for 1 ≤ k, because of Lemma 2.7 with l = 2, δ = m−10 and ϕ = ⟨i∂x⟩k−1u.

Then, applying the energy method to (6.4), we have

d

dt
∥(Pu(t))xx∥L2 ≤ C ∥u(t)∥2H3

∞
∥Pu(t)∥H1 + C ∥u(t)∥2H1

∞
∥(Pu(t))xx∥L2

+C ∥u(t)∥2L∞ ∥u(t)∥H3 ≤ Cϵ⟨t⟩−1+3ϵ
1
3 + Cϵ⟨t⟩−1 ∥(Pu(t))xx∥L2 ,

by (6.7) with k = 2. Whence, by the Gronwall inequality, we have

∥(Pu(t))xx∥L2 ≤ Cϵ⟨t⟩Cϵ + Cϵ⟨t⟩3ϵ
1
3 +Cϵ ≤ Cϵ⟨t⟩ϵ

1
4 .

Thus,

∥(J ux(t))xx∥L2 ≤ ∥(Pu(t))xx∥L2 + t ∥(Lu(t))xx∥L2 ≤ Cϵ⟨t⟩ϵ
1
4 .

By using the above argument repeatedly, we can get ∥(J ux(t))xxx∥L2 ≤ Cϵ⟨t⟩ϵ1/5

because of (6.7) with k = 3, and then, ∥(J ux(t))xxxx∥L2 ≤ Cϵ⟨t⟩ϵ1/6 because of

(6.7) with k = 4. Finally, we get ∥(J ux(t))xxxxx∥L2 ≤ Cϵ⟨t⟩ϵ1/7 because of (6.7)

with k = 5. Therefore, we obtain the desired estimate. □

We next give the L∞ a-priori estimate of solutions to (1.1).

Lemma 6.2. ([25]) Let u be a solution obtained by Proposition 3.1 with m > 10.

Then, the following estimate

(6.8) ⟨t⟩ 1
2 ∥u(t)∥H2

∞
≤ Cϵ

is valid for any t ∈ [0, T ].

Proof. By Lemma 2.6, we have for j = 0, 1, 2,∥∥∂jxu(t)∥∥L∞ =
∥∥U(t)U(−t)∂jxu(t)∥∥L∞(6.9)

≤ t−
1
2

∥∥∥|ξ| 32+j FU(−t)u(t)
∥∥∥
L∞

+ t−
1
2−δ

(
∥J ux(t)∥H1+2δ+j + ∥u(t)∥

H
3
2
+δ+j

)
.

Thus, to get the a-priori estimate (6.8), we should show the estimate of
∥∥∥|ξ| 32+j FU(−t)u(t)

∥∥∥
L∞

.

Multiplying U(−t) both side of (6.1), we have

(6.10) (U(−t)u)t = U(−t)
(
u3
)
x
.

Put v = U(−t)u, and then, apply Fourier transform both side of (6.10) to get

v̂t(t, ξ) =
iξ

2π

∫∫
R2

e
−it

(
1
ξ−

1
ξ1

− 1
ξ2

− 1
ξ−ξ1−ξ2

)
v̂(t, ξ1)v̂(t, ξ2)v̂(t, ξ − ξ1 − ξ2)dξ1dξ2.
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Changing the variables of integration ξ1 = ξξ′1 and ξ2 = ξξ′2 (we omit the prime)

and multiplying |ξ|3/2+j
, we have

|ξ|
3
2+j

v̂t(t, ξ) =
iξ3

2π
|ξ|

3
2+j

∫∫
R2

e−i t
ξS v̂(t, ξξ1)v̂(t, ξξ2)v̂(t, ξξ3)dξ1dξ2,

where ξ3 = 1− ξ1 − ξ2, S = 1− 1
ξ1

− 1
ξ2

− 1
ξ3

and j = 0, 1, 2. Here we use the fact

that the following asymptotic expansion of the above integral is valid :

|ξ| 32+j v̂t(t, ξ) = i
3ξ4|ξ| 32+j

√
2t

|v̂(t, ξ)|2 v̂(t, ξ) + ξ4|ξ| 32+j

33
√
6t

ei
11t
ξ v̂

(
t,
ξ

3

)3

+O
(
t−1−δ (∥u(t)∥H6 + ∥u(t)∥Ḣ−1 + ∥J ux(t)∥H5)

3
)
,(6.11)

for 0 < δ < 1/12. The proof of the asymptotic expansion stated in above is slightly

technical. So we now continue the proof of Lemma 6.2, and we will prove the

asymptotic expansion (6.11) in Section 6.3. To eliminate the first term, put

(6.12) wj(t, ξ) = |ξ| 32+j v̂(t, ξ)e
−i 3ξ4√

2

∫ t
1

|v̂(τ,ξ)|2
τ dτ

and A(τ) = exp(−i3ξ
4

√
2

∫ t

1
|v̂(τ,ξ)|2

τ dτ). Then, we have

(6.13) (wj(t, ξ))t =
ξ4|ξ| 32+j

33
√
6t

ei
11t
ξ A(t)v̂

(
t,
ξ

3

)3

+O

(
ϵt−1−δ+3ϵ

1
7

)
.

Integrating (6.13) with respect to t, we get

(6.14)

|wj(t)| ≤ |wj(1)|+

∣∣∣∣∣
∫ t

1

ξ4|ξ| 32+j

33
√
6t

ei
11t
ξ A(τ)v̂

(
t,
ξ

3

)3

dτ

∣∣∣∣∣+ Cϵ

∫ t

1

τ−1−δ+3ϵ
1
7 dτ,

by Lemma 6.1. Note that

ei
11t
ξ =

1

1 + i 11tξ

d

dt

(
tei

11t
ξ

)
,

then, by integration by parts, the second term on the right hand side of (6.14) is

bounded by

|ξ|
11
2 +j

∣∣∣∣∣∣∣
∫ t

1

d

dτ

(
τei

11τ
ξ

)A(τ)v̂
(
τ, ξ3

)3
τ
(
1 + i 11τξ

)
 dτ

∣∣∣∣∣∣∣(6.15)

≤ C |ξ|
11
2 +j

∣∣∣∣∣∣∣
ei 11τ

ξ

A(τ)v̂
(
τ, ξ3

)3
1 + i 11τξ


t

τ=1

∣∣∣∣∣∣∣+ C |ξ|
11
2 +j

∣∣∣∣∣∣∣
∫ t

1

ei
11τ
ξ

A(τ)v̂
(
τ, ξ3

)3
1 + i 11τξ

dτ

τ

∣∣∣∣∣∣∣
+C |ξ|

9
2+j

∣∣∣∣∣∣∣
∫ t

1

ei
11τ
ξ

A(τ)v̂
(
τ, ξ3

)3
(
1 + i 11τξ

)2 dτ

∣∣∣∣∣∣∣+ C |ξ|
11
2 +j

∣∣∣∣∣∣∣
∫ t

1

ei
11τ
ξ

A′(τ)v̂
(
τ, ξ3

)3
1 + i 11τξ

dτ

∣∣∣∣∣∣∣
+C |ξ|

11
2 +j

∣∣∣∣∣∣∣
∫ t

1

ei
11τ
ξ

A(τ)v̂
(
τ, ξ3

)2
v̂t

(
τ, ξ3

)
1 + i 11τξ

dτ

∣∣∣∣∣∣∣ .
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To estimate the right hand side of (6.15), we note that

(6.16) ∥ξav̂(τ)∥L∞ ≤ ∥u(τ)∥Ha + ∥J ux(τ)∥Ha−1 ≤ Cϵ⟨τ⟩ϵ
1
7 ,

by (6.35) and Lemma 6.1. Also, we note that∥∥∥|ξ| 32+j
v̂t(τ)

∥∥∥
L∞

≤ Cτ−1
∥∥∥|ξ| 116 + j

3 v̂(τ)
∥∥∥3
L∞

+ Cϵτ−1−δ+3ϵ
1
7

≤ Cτ−1(∥u(τ)∥
H

11
6

+
j
3
+ ∥J ux(τ)∥

H
5
6
+

j
3
)3 + Cϵτ−1−δ+3ϵ

1
7 ≤ Cϵτ−1+3ϵ

1
7 ,

by (6.11), Lemma 6.1 and (6.16). Since |(1 + i11τ/ξ)|−1 ≤ C |τ |−δ |ξ|δ and |A′(τ)| ≤
Cτ−1|ξ|4|v̂(τ)|2, the right hand side of (6.15) is bounded by

t−1
∥∥∥|ξ| 136 + j

3 v̂(t)
∥∥∥3
L∞

+
∥∥∥|ξ| 116 + j

3 v̂(1)
∥∥∥3
L∞

+

∫ t

1

τ−δ−1
∥∥∥|ξ| 116 + δ+j

3 v̂(τ)
∥∥∥3
L∞

dτ(6.17)

+

∫ t

1

τ−2δ−1
∥∥∥|ξ| 32+ 2δ+j

3 v̂(τ)
∥∥∥3
L∞

dτ +

∫ t

1

τ−δ−1
∥∥∥|ξ| 1910+ δ+j

5 v̂(τ)
∥∥∥5
L∞

dτ

+

∫ t

1

τ−δ
∥∥∥|ξ|2+ δ

2 v̂(τ)
∥∥∥2
L∞

∥∥∥|ξ| 32+j v̂t(τ)
∥∥∥
L∞

dτ

≤ Cϵ+ Cϵ

∫ t

1

t−1−δ+5ϵ
1
7 dτ ≤ Cϵ,

where we chose 5ϵ1/7 < δ < 1/12. Therefore, by (6.14) and (6.17), we have

(6.18)
∥∥∥|ξ| 32+j FU(−t)u(t)

∥∥∥
L∞

= ∥wj(t)∥L∞ ≤ Cϵ.

Applying (6.18) to (6.9), we obtain∥∥∂jxu(t)∥∥L∞ ≤ Cϵt−
1
2 + Cϵt−

1
2−δ+ϵ

1
7 ≤ Cϵ⟨t⟩− 1

2 .

This completes the proof of Lemma 6.2. □

3. Proof of Theorem 6.1

Proof. By a contradiction argument, we shall prove that ∥u∥Xm
T
<

√
ϵ for

any T > 0. Assume that there exists T0 > 0 such that ∥u∥Xm
T0

=
√
ϵ. On the

other hand, we have ∥u∥Xm
T0

≤ Cϵ because of Lemma 6.1 and Lemma 6.2. If ϵ is

sufficiently small so that Cϵ <
√
ϵ, then we arrive at the contradiction. Thus, we

obtain a unique global solution u ∈ Xm
∞ satisfying ∥u(t)∥H2

∞
≤ C⟨t⟩− 1

2 . We next

prove the last statement of Theorem 6.1. By Lemma 2.6 and (6.12), the solution u

can be represented as

u(t) = U(t)U(−t)u(t) = ℜt− 1
2

√
2θ(x)e−i( 2t

χ +π
4 )χ

3
2 v(t, χ)(6.19)

+O
(
t−

1
2−δ

(
∥J ux(t)∥H1+2δ + ∥u(t)∥

H
3
2
+δ

))
= t−

1
2

√
2ℜθ(x)e

−i

(
2t
χ +π

4 − 3χ√
2

∫ t
1

|w0(τ,χ)|2
τ dτ

)
w0(t, χ)

+O
(
t−

1
2−δ

(
∥J ux(t)∥H1+2δ + ∥u(t)∥

H
3
2
+δ

))
.
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Thus, we need to consider w0 to get the asymptotic expansion (6.2). Integrating

(6.13) from s to t and applying the same manner as in the proof of (6.17), we get

(6.20) ∥wj(t)− wj(s)∥L∞ ≤ Cϵs−1+3ϵ
1
7 + Cϵ

∫ t

s

τ−1−δ+5ϵ
1
7 dτ ≤ Cϵs−δ+5ϵ

1
7 ,

for j = 0, 1, 2 where 5ϵ1/7 < δ < 1/12. Thus, we find that {w0(t)} is a Cauchy

sequence in H0,2
∞ . Hence, there exists W̃ ∈ H0,2

∞ such that
∥∥∥W̃ − w0(t)

∥∥∥
H0,2

∞
→ 0

as t→ ∞. Put

ψ(t) = ξ

∫ t

1

(
|w0(t, ξ)|2 − |w0(τ, ξ)|2

) dτ
τ
,

then, we get for t > s,

∥ψ(t)− ψ(s)∥L∞(6.21)

=

∥∥∥∥ξ ∫ t

s

(
|w0(t)|2 − |w0(τ)|2

) dτ
τ

+ ξ
(
|w0(t)|2 − |w0(s)|2

)∫ s

1

dτ

τ

∥∥∥∥
L∞

≤
∫ t

s

∥w0(t)− w0(τ)∥L∞ (∥w1(t)∥L∞ + ∥w1(τ)∥L∞)
dτ

τ

+ ∥w0(t)− w0(s)∥L∞ (∥w1(t)∥L∞ + ∥w1(s)∥L∞) log s

≤ Cϵ

∫ t

s

τ−1−δ+5ϵ
1
7 dτ + Cϵs−δ+5ϵ

1
7 log s ≤ Cϵs−δ+5ϵ

1
7 log s,

because of (6.20). It follows that ∥ψ(t)− ψ(s)∥L∞ → 0 as s → ∞. Thus, there

exists the real valued function Ψ ∈ L∞ such that ∥Ψ− ψ(t)∥L∞ → 0 as t → ∞.

Since

ξ

∫ t

1

|w0(τ, ξ)|2

τ
dτ = ξ

∣∣∣W̃ (ξ)
∣∣∣2 ∫ t

1

dτ

τ
+ ξ

∫ t

1

(
|w0(t, ξ)|2 −

∣∣∣W̃ (ξ)
∣∣∣2) dτ

τ

− (ψ(t, ξ)−Ψ(ξ))−Ψ(ξ),

we have ∥∥∥∥∥ξ
∫ t

1

|w0(τ)|2

τ
dτ − ξ

∣∣∣W̃ ∣∣∣2 log t+Ψ

∥∥∥∥∥
L∞

(6.22)

≤ ∥ψ(t)−Ψ∥L∞ +
∥∥∥w0(t)− W̃

∥∥∥
L∞

(
∥w1(t)∥L∞ +

∥∥∥ξW̃∥∥∥
L∞

)∫ t

1

dτ

τ

≤ Cϵt−δ+5ϵ
1
7 log t,

because of (6.20) and (6.21). Therefore, by (6.19) and (6.22), we have∥∥∥∥u (t)−√
2ℜθ(x)W̃ (χ) e

(
−i

(
2t
χ +π

4 + 3χ√
2
|W̃ (χ)|2 log t− 3√

2
Ψ(χ)

))∥∥∥∥
L∞

≤ Ct−
1
2

∥∥∥w0 − W̃
∥∥∥
L∞

+ Ct−
1
2

∥∥∥∥W̃ (
e
i 3χ√

2

∫ t
1

|w(τ)|2
τ dτ − e

−i 3χ√
2
|W̃ |2 log t+i 3√

2
Ψ

)∥∥∥∥
L∞

+Ct−
1
2−δ

(
∥J ux(t)∥H1+2δ + ∥u(t)∥

H
3
2
+δ

)
≤ Cϵt−

1
2−δ+5ϵ

1
7 + Cϵt−

1
2−δ+5ϵ

1
7 log t+ Ct−

1
2−δ+ϵ

1
7 ≤ Cϵt−

1
2−δ+5ϵ

1
7 log t.



42 6. ASYMPTOTICS OF SOLUTIONS TO THE SHORT PULSE EQUATION

Put W (ξ) = W̃ (ξ)ei3Ψ(ξ)/
√
2, then we obtain the desired asymptotics. This com-

pletes the proof of Theorem 6.1. □

4. Proof of (6.11)

In this section, we will give the proof of (6.11). Consider the integral

I = iξ3 |ξ|
3
2+j

∫∫
R2

e−i t
ξS v̂(t, ξξ1)v̂(t, ξξ2)v̂(t, ξξ3)dξ1dξ2,

where ξ3 = 1 − ξ1 − ξ2, S = 1 − 1
ξ1

− 1
ξ2

− 1
ξ3

and j = 0, 1, 2. Since the stationary

points for the integral I are (ξ1, ξ2) = (1, 1), (1,−1), (−1, 1), ( 13 ,
1
3 ), we decompose

the integral I into three parts : I = I1 + I2 + I3, where

I1 = iξ3 |ξ|
3
2+j

∫∫
R2

e−i t
ξS v̂(t, ξξ1)v̂(t, ξξ2)v̂(t, ξξ3)Φ

′
1(ξ1, ξ2)dξ1dξ2,

I2 = iξ3 |ξ|
3
2+j

∫∫
R2

e−i t
ξS v̂(t, ξξ1)v̂(t, ξξ2)v̂(t, ξξ3)Φ2 (ξ1, ξ2) dξ1dξ2

and

I3 = iξ3 |ξ|
3
2+j

∫∫
R2

e−i t
ξS v̂(t, ξξ1)v̂(t, ξξ2)v̂(t, ξξ3)Φ3 (ξ1, ξ2) dξ1dξ2.

Here, Φ1,Φ2 ∈ C∞(R2) are cut-off functions such that 0 ≤ Φ1,Φ2 ≤ 1,

Φ1(ξ1, ξ2) =

{
1 if |ξ1 − 1|+ |ξ2 − 1| ≤ 10−2

0 if |ξ1 − 1|+ |ξ2 − 1| ≥ 10−1 ,

Φ2(ξ1, ξ2) =

{
1 if |ξ1 − 1/3|+ |ξ2 − 1/3| ≤ 10−2

0 if |ξ1 − 1/3|+ |ξ2 − 1/3| ≥ 10−1 .

Φ′
1 and Φ3 are defined as follows : Φ′

1(ξ1, ξ2) = Φ1 (ξ1, ξ2) +Φ1 (ξ2, ξ3) +Φ1 (ξ3, ξ1)

and Φ3 (ξ1, ξ2) = 1 − Φ′
1 (ξ1, ξ2) − Φ2(ξ1, ξ2). To estimate I1 and I2, we state the

next lemma which was essentially shown in [9].

Lemma 6.3. ([25]) Consider the integral

I′l =

∫∫
R2

e−(itS+ixξ1+iyξ2+izξ3) |ξ1ξ2ξ3|−µ
Φl (ξ1, ξ2) dξ1dξ2,

where l = 1, 2. Then, the following asymptotics

(6.23) I′1 =
π
√
2

t
e−i(x+y−z) +O

(
1

t1+α

)
+O

(
|x|2β + |y|2β + |z|2β

t1+β

)
and

(6.24) I′2 = i

√
2 · 33(µ−1)π

t
√
3

e11it−i( x+y+z
3 )+O

(
1

t1+α

)
+O

(
|x|2β + |y|2β + |z|2β

t1+β

)
are valid for large time t ≥ 1 uniformly with respect to x, y, z ∈ R, where 0 < α ≤
1, 0 < β ≤ 1 and µ ≥ 0.
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Proof. First we consider the integral I′2. Note that

∇S −
(
x− z

t
,
y − z

t

)
=

((
1

ξ21
− 1

ξ23

)
− x− z

t
,

(
1

ξ22
− 1

ξ23

)
− y − z

t

)
and

H(S) = −2

(
1
ξ31

+ 1
ξ33

1
ξ33

1
ξ33

1
ξ32

+ 1
ξ33

)
,

where H(S) is the Hessian matrix of S. Since detH(S) does not have zero point in

the support of Φ2, we can use the stationary phase method. If |x− z| /t+|y − z| /t =
ε ≤ A and A is sufficiently small, the integral I′2 has the only one stationary point

(ξ′1, ξ
′
2) = (1/3, 1/3)+O (ε) in the support of Φ2 since the other zero points are not

included in the support of Φ2. Then, by the stationary phase method (see [31]),

we have for large t ≥ 1,

I′2 =
2πe−i(π

4 sgnH(S)(ξ′1,ξ
′
2)+tS(ξ′1,ξ

′
2)+xξ′1+yξ′2+z(1−ξ′1−ξ′2))

t |ξ′1ξ′2(1− ξ′1 − ξ′2)|
−µ√|detH(S)(ξ′1, ξ

′
2)|

+O(t−2)

= i
2 · 33µπei(11t−

x+y+z
3 +O(ε)+tO(ε2))

t
√

2 · 37 +O(ε)
(1 +O (ε)) +O

(
t−2
)

= i

√
2 · 33(µ−1)π

t
√
3

e11it−i( x+y+z
3 ) +O

(
1

t1+α

)
+O

(
|x|2β + |y|2β + |z|2β

t1+β

)
,

since S(ξ′1, ξ
′
2) = −11 +O(ε2), detH(S)(ξ′1, ξ

′
2) = 2 · 37 +O(ε) and sgnH(S) = −2

where sgnH(S) is the number of positive eigenvalues of H(S) minus the number of

negative eigenvalues of H(S). If A ≤ |x−z|/t+|y−z|/t, then we get I′2 = O(t−1) by

the stationary phase method when there exists the stationary point in the support

of Φ2 or integration by parts when there is no stationary point in the support of

Φ2. Because of the assumption A ≤ |x − z|/t + |y − z|/t, we have |x/t| ≥ A/4 or

|y/t| ≥ A/4 or |z/t| ≥ A/4. Without loss of generality, we assume |x/t| ≥ A/4.

Then, it follows that |I′2| ≤ Ct−1 ≤ CA−βt−1−β |x|β . Therefore, collecting these

estimates, the asymptotic expansion (6.24) is valid. In the same manner, we obtain

the asymptotic expansion (6.23) since detH(S) (1, 1) = 2 and sgnH(S) (1, 1) =

0. □

By virtue of Lemma 6.3, we give the asymptotic expansion of the integral I1
and I2.

Lemma 6.4. ([25]) The following asymptotics

(6.25)

I1 = i
3
√
2πξ4 |ξ|

3
2+j

t
|v̂(t, ξ)|2 v̂(t, ξ)+O

(
1

t1+δ

(
∥v(t)∥

H
11
6

+δ+
j
3
+ ∥xvx(t)∥

H
5
6
+δ+

j
3

)3)
and

(6.26)

I2 =

√
2πξ4|ξ| 32+j

t33
√
3

ei
11t
ξ v̂

(
t,
ξ

3

)3

+O

(
1

t1+δ

(
∥v(t)∥

H
11
6

+δ+
j
3
+ ∥xvx(t)∥

H
5
6
+δ+

j
3

)3)
are true for large time t ≥ 1 uniformly with respect to ξ ∈ R where 0 < δ < 1/4

and j = 0, 1, 2.
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Proof. By the symmetry of ξ1, ξ2 and ξ3, we can rewrite the integral I1 in

I1 = 3iξ3 |ξ|
3
2+j

∫∫
R2

e−i t
ξS v̂(t, ξξ1)v̂(t, ξξ2)v̂(t, ξξ3)Φ1 (ξ1, ξ2) dξ1dξ2.

By the identity v̂(t, ξξ1) = |ξξ1|−µF
(
−∂2x

)µ/2
v with µ = 11/6 + δ + j/3, we have

I1 = i
3ξ3 |ξ|

3
2+j

(2π)
3
2 |ξ|3µ

∫∫
R2

∫∫∫
R3

dξ1dξ2dxdydz ×(6.27)

Φ1 (ξ1, ξ2)

|ξ1ξ2ξ3|µ
e−i t

ξS−ixξξ1−iyξξ2−izξξ3
(
−∂2x

)µ
2 v(x)

(
−∂2y

)µ
2 v(y)

(
−∂2z

)µ
2 v(z).

Applying (6.23) with α = 3δ, β = δ and δ ∈ (0, 1/4) to (6.27), we get

i
3
√
2πξ4 |ξ|

3
2+j

t (2π)
3
2 |ξ|3µ

∫∫∫
R3

dxdydze−iξ(x+y−z)
(
−∂2x

)µ
2 v(x)

(
−∂2y

)µ
2 v(y)

(
−∂2z

)µ
2 v(z)

+i
3
√
2πξ3 |ξ|

3
2+j

(2π)
3
2 |ξ|3µ

∫∫∫
R3

dxdydz
(
−∂2x

)µ
2 v(x)

(
−∂2y

)µ
2 v(y)

(
−∂2z

)µ
2 v(z)×O(ξ1+3δ

t1+3δ

)
+O

ξ1+3δ
(
|x|2δ + |y|2δ + |z|2δ

)
t1+δ


= i

3
√
2πξ4 |ξ|

3
2+j

t
|v̂(t, ξ)|2 v̂(t, ξ) +O

(
|ξ| 112 +j+3δ−3µ

t1+δ

(
∥v(t)∥Hµ

1
+ ∥v(t)∥Hµ,2δ

1

)3)

= i
3
√
2πξ4 |ξ|

3
2+j

t
|v̂(t, ξ)|2 v̂(t, ξ) +O

(
t−1−δ

(
∥v(t)∥

H
11
6

+δ+
j
3
+ ∥xvx(t)∥

H
5
6
+δ+

j
3

)3)
,

for large t/ξ ≥ 1. If t/ξ is small, that is, t ≤ Cξ, then we have

|I1| ≤ C |ξ|
9
2+j−3µ ∥v(t)∥3Hµ

1
≤ C|ξ|−1−3δ ∥v(t)∥3

H
11
6

+δ+
j
3

1

≤ Ct−1−3δ
(
∥v(t)∥

H
11
6

+δ+
j
3
+ ∥xvx(t)∥

H
5
6
+δ+

j
3

)3
where we chose µ = 11/6 + δ + j/3. Thus, we obtain the asymptotic expansion

(6.25). Similarly, thanks to (6.24), we can get (6.26). This completes the proof of

Lemma 6.4. □

We finally give the estimate of the non-stationary contribution I3. As mentioned

above, we cannot use the operator P2. Namely, we cannot use two weights with

respect to x. The next lemma says that we only need one weight with respect to x

to bound the non-stationary contribution I3.

Lemma 6.5. ([25]) The estimate

(6.28) |I3| ≤ Ct−1−δ (∥xvx(t)∥H5 + ∥v(t)∥H6 + ∥v(t)∥Ḣ−1)
3

is true for δ ∈ (0, 1/12) and t ≥ 1, provided that the right-hand side is finite.
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Proof. In order to estimate I3, we introduce a cut off function Φ3,1 (ξ1, ξ2) ∈
C∞ (R2

)
such that 0 ≤ Φ3,1 ≤ 1 and

Φ3,1(ξ1, ξ2) =


1 if |ξ2 − 1| ≤ 10−2,

1 if |ξ1 − ξ3| ≤ 10−2,

0 if |ξ2 − 1| ≥ 10−1, |ξ1 − ξ3| ≥ 10−1

.

Also define Φ3,2(ξ1, ξ2) = 1 − Φ3,1(ξ1, ξ2). In addition, to denote shortly, we use

following notations:

F0(ξ1, ξ2) = v̂(t, ξξ1)v̂(t, ξξ2)v̂(t, ξξ3), F1(ξ1, ξ2) = v̂ξ(t, ξξ1)v̂(t, ξξ2)v̂(t, ξξ3),

F2(ξ1, ξ2) = v̂(t, ξξ1)v̂ξ(t, ξξ2)v̂(t, ξξ3), F3(ξ1, ξ2) = v̂(t, ξξ1)v̂(t, ξξ2)v̂ξ(t, ξξ3),

F1,2(ξ1, ξ2) = v̂ξ(t, ξξ1)v̂ξ(t, ξξ2)v̂(t, ξξ3), F1,3(ξ1, ξ2) = v̂ξ(t, ξξ1)v̂(t, ξξ2)v̂ξ(t, ξξ3).

We now consider the integral I3. Using the cut off functions Φ3,1 and Φ3,2, we

decompose the integral I3 into two parts : I3 = I3,1 + I3,2, where

I3,1 = iξ3+j |ξ|
3
2

∫∫
R2

e−i t
ξSF0(ξ1, ξ2)Φ3(ξ1, ξ2)Φ3,1(ξ1, ξ2)dξ1dξ2

and

I3,2 = iξ3+j |ξ|
3
2

∫∫
R2

e−i t
ξSF0(ξ1, ξ2)Φ3(ξ1, ξ2)Φ3,2(ξ1, ξ2)dξ1dξ2.

Let us consider the integral I3,2. Integration by parts yields

I3,2 = iξ3+j |ξ|
3
2

∫∫
R2

(
d

dξ1
e−i t

ξS

)
H1 (ξ1, ξ2)F0(ξ1, ξ2)dξ1dξ2(6.29)

= −iξ4+j |ξ|
3
2

∫∫
R2

e−i t
ξSH1 (ξ1, ξ2)F1(ξ1, ξ2)dξ1dξ2

+iξ4+j |ξ|
3
2

∫∫
R2

e−i t
ξSH1 (ξ1, ξ2)F3(ξ1, ξ2)dξ1dξ2

−iξ3+j |ξ|
3
2

∫∫
R2

e−i t
ξS∂ξ1H1 (ξ1, ξ2)F0(ξ1, ξ2)dξ1dξ2,

where

H1(ξ1, ξ2) = −ξ
t

Φ3 (ξ1, ξ2) Φ3,2 (ξ1, ξ2)

i
(

1
ξ21

− 1
ξ23

) .

To avoid two derivatives falling on the same profile, we consider the third line of

(6.29). Changing the integral variables ξ′1 = ξ3, ξ
′
2 = ξ2, and putting ξ′3 = 1−ξ′1−ξ′2,

we have

−iξ4+j |ξ|
3
2

∫∫
R2

e−i t
ξS(ξ′3,ξ

′
2)H1 (ξ

′
3, ξ

′
2)F3(ξ

′
3, ξ

′
2)dξ

′
1dξ

′
2(6.30)

= −iξ4+j |ξ|
3
2

∫∫
R2

e−i t
ξS(ξ′1,ξ

′
2)H1 (ξ

′
3, ξ

′
2)F1(ξ

′
1, ξ

′
2)dξ

′
1dξ

′
2,

since F3(ξ
′
3, ξ

′
2) = v̂(t, ξξ′3)v̂(t, ξξ

′
2)v̂ξ(t, ξξ

′
1) = F1(ξ

′
1, ξ

′
2) and S(ξ1, ξ2) = S(ξ3, ξ2).

Hereafter we omit the prime. Substituting (6.30) into (6.29), we have

I3,2 = −iξ4+j |ξ|
3
2

∫∫
R2

e−i t
ξSH̃1 (ξ1, ξ2)F1(ξ1, ξ2)dξ1dξ2

−iξ3+j |ξ|
3
2

∫∫
R2

e−i t
ξS∂ξ1H1 (ξ1, ξ2)F0(ξ1, ξ2)dξ1dξ2,
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where H̃1(ξ1, ξ2) = H1(ξ1, ξ2) + H1(ξ3, ξ2). Note that performing integration by

parts with respect to ξ2 on the above equation does not cause two derivatives

falling on the same profile. Hence, applying integration by parts with respect to

ξ2, we get

I3,2 = −iξ4+j |ξ|
3
2

∫∫
R2

d

dξ2

(
(ξ2 − ξ3) e

−i t
ξS
)
H̃1(ξ1, ξ2)H2(ξ1, ξ2)F1dξ1dξ2

−iξ3+j |ξ|
3
2

∫∫
R2

d

dξ2

(
(ξ2 − ξ3) e

−i t
ξS
)
∂ξ1H̃1(ξ1, ξ2)H2(ξ1, ξ2)F0dξ1dξ2(6.31)

= I3,2,1 + I3,2,2 + I3,2,3 + I3,2,4 + I3,2,5 + I3,2,6,

where

I3,2,1 = iξ5+j |ξ|
3
2

∫∫
R2

e−i t
ξS (ξ2 − ξ3) H̃1(ξ1, ξ2)H2(ξ1, ξ2) (F1,2 − F1,3) dξ1dξ2,

I3,2,2 = iξ4+j |ξ|
3
2

∫∫
R2

e−i t
ξS (ξ2 − ξ3) H̃1(ξ1, ξ2)∂ξ2H2(ξ1, ξ2)F1dξ1dξ2,

I3,2,3 = iξ4+j |ξ|
3
2

∫∫
R2

e−i t
ξS (ξ2 − ξ3) ∂ξ2H̃1(ξ1, ξ2)H2(ξ1, ξ2)F1,2dξ1dξ2,

I3,2,4 = iξ4+j |ξ|
3
2

∫∫
R2

e−i t
ξS (ξ2 − ξ3) ∂ξ1H̃1(ξ1, ξ2)H2(ξ1, ξ2) (F2 − F3) dξ1dξ2,

I3,2,5 = iξ3+j |ξ|
3
2

∫∫
R2

e−i t
ξS (ξ2 − ξ3) ∂ξ1H̃1(ξ1, ξ2)∂ξ2H2(ξ1, ξ2)F0dξ1dξ2,

I3,2,6 = iξ3+j |ξ|
3
2

∫∫
R2

e−i t
ξS (ξ2 − ξ3) ∂ξ1∂ξ2H̃1(ξ1, ξ2)H2(ξ1, ξ2)F0dξ1dξ2,

and

H2(ξ1, ξ2) =

(
2− i

t

ξ
(ξ2 − ξ3)

(
1

ξ22
− 1

ξ23

))−1

.

Thus, we need to estimate I3,2,1, I3,2,2, I3,2,3, I3,2,4, I3,2,5 and I3,2,6.

Estimate of I3,2,1. In order to estimate I3,2,1, we first give the estimate of H̃1

and H2. Since |1− ξ2| = |ξ1 + ξ3|, we get

(6.32)
∣∣∣H̃1(ξ1, ξ2)

∣∣∣ ≤ |ξ|
t

|ξ1|2 |ξ3|2

|ξ1 − ξ3| |1− ξ2|
≤ |ξ|

t

|ξ1|2 |ξ3|2 (|ξ1|+ |ξ3|)2γ

|ξ1 − ξ3|1+γ |1− ξ2|1+γ ,

for γ > 0. Also, by the Young inequality, we get

(6.33) |H2(ξ1, ξ2)| ≤ C
|ξ|α

tα
|ξ2|2α |ξ3|2α

|ξ2 − ξ3|2α |1− ξ1|α
,

for 0 ≤ α ≤ 1. Then, by (6.32) with γ = 3/4− α/2 + j/2 and (6.33), we have

|I3,2,1| ≤ C
|ξ|

15
2 +α+j

t1+α

∫∫
D

|ξ1|2 |ξ2| |ξ3|2α+2
(|ξ1|+ |ξ3|)

3
2−α+j (|F1,2|+ |F1,3|) dξ1dξ2

|ξ1 − ξ3|
7
4−

α
2 + j

2 |1− ξ2|
7
4−

α
2 + j

2 |ξ2 − ξ3|2α−1 |1− ξ1|α |ξ2|1−2α
,

where D = suppΦ3 ∩ Φ3,2. It follows from the Cauchy-Schwarz inequality that the

right hand side of the above inequality can be estimated as

(6.34)
C|ξ| 152 +α+j

t1+α
K(α)

∥∥∥ξ21ξ2ξ2+2α
3 (|ξ1|+ |ξ3|)

3
2−α+j (|F1,2|+ |F1,3|)

∥∥∥
L2

ξ1,ξ2

,
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where

K1(α) =

(∫∫
D

|ξ2 − ξ3|2−4αdξ1dξ2

|ξ1 − ξ3|
7
2−α+j |1− ξ2|

7
2−α+j |1− ξ1|2α |ξ2|2(1−2α)

) 1
2

.

Since |ξ1 − ξ3| ≥ 10−2, |1− ξ2| ≥ 10−2 in D and |ξ2 − ξ3| ≤ |ξ2|+ |ξ3| ≤ 1 + 3|ξ2 −
1|/2 + |ξ1 − ξ3|, we have K1(α) ≤ C for 1/4 < α < 1/2. Whence, by making the

change of the integral variables ξ′1 = ξξ1 and ξ′2 = ξξ2 (we omit the prime) and a

direct calculation, (6.34) is bounded by

C

t1+α

∥∥∥ξ21ξ2ξ2+2α
3 (|ξ1|+ |ξ3|)

3
2−α+j v̂ξ(ξ1) (|v̂ξ(ξ2)v̂(ξ3)|+ |v̂(ξ2)v̂ξ(ξ3)|)

∥∥∥
L2

ξ1,ξ2

≤ C

t1+α

∥∥∥ξ 7
2−α+j v̂ξ

∥∥∥
L2

(
∥ξv̂ξ∥L2

∥∥ξ2+2αv̂
∥∥
L∞ + ∥ξv̂∥L∞

∥∥ξ2+2αv̂ξ
∥∥
L2

)
+

C

t1+α

∥∥ξ2v̂ξ∥∥L2

(
∥ξv̂ξ∥L2

∥∥∥ξ 7
2+α+j v̂

∥∥∥
L∞

+ ∥ξv̂∥L∞

∥∥∥ξ 7
2+α+j v̂ξ

∥∥∥
L2

)
.

Since

(6.35) ∥ξav̂∥L∞ ≤ C
∥∥∥(−∂2x) a

2 v
∥∥∥
L1

≤ C ∥v∥Ha + C ∥xvx∥Ha−1

for a ≥ 1, we have for 1/4 < α < 1/2,

|I3,2,1| ≤
C

t1+α

(
∥v(t)∥

H
7
2
+α+j + ∥xvx(t)∥

H
5
2
+α+j

)3
.

Estimate of I3,2,2. By the Young inequality, we have

(6.36)

|∂ξ2H2(ξ1, ξ2)| =

∣∣∣∣∣∣∣
t

ξ

2
(

1
ξ22

− 1
ξ23

)
− 2 (ξ2 − ξ3)

(
1
ξ32

+ 1
ξ33

)
(
2− i tξ (ξ2 − ξ3)

(
1
ξ22

− 1
ξ23

))2
∣∣∣∣∣∣∣ ≤ C

|ξ|2β

t2β
|ξ2ξ3|4β−1

(|ξ2|+ |ξ3|)2

|ξ2 − ξ3|4β+1 |1− ξ1|2β

for 0 ≤ β ≤ 1/2. It follows from (6.32) with γ = 1/2− 2β + j/2 and (6.36) that

|I3,2,2| ≤ C
|ξ|

13
2 +2β+j

t1+2β

∫∫
D

|ξ1|2 |ξ2|4β−1 |ξ3|4β+1
(|ξ2|+ |ξ3|)2(|ξ1|+ |ξ3|)1−4β+j |F1| dξ1dξ2

|ξ1 − ξ3|
3
2−2β+ j

2 |1− ξ2|
3
2−2β+ j

2 |1− ξ1|2β |ξ2 − ξ3|4β
.

As in the same manner in the proof of the estimate of I3,2,1, the right hand side of

the above inequality is bounded by

CK2(β)

t1+2β

∥∥∥ξ 5
2−2β
1 ξ4β−1

2 ξ4β+1
3 (|ξ2|+ |ξ3|)2(|ξ1|+ |ξ3|)1−4β+j v̂ξ(ξ1)v̂(ξ2)v̂(ξ3)

∥∥∥
L2

ξ1,ξ2

≤ CK2(β)

t1+2β

∥∥∥ξ 7
2−6β+j v̂ξ

∥∥∥
L2

(∥∥ξ4β+1v̂
∥∥
L∞

∥∥ξ4β+1v̂
∥∥
L2 +

∥∥ξ4β−1v̂
∥∥
L2

∥∥ξ4β+3v̂
∥∥
L∞

)
+
CK2(β)

t1+2β

∥∥∥ξ 5
2−2β v̂ξ

∥∥∥
L2

(∥∥ξ4β+1v̂
∥∥
L∞

∥∥ξ2+j v̂
∥∥
H2 +

∥∥ξ4β−1v̂
∥∥
L2

∥∥ξ4+j v̂
∥∥
L∞

)
,

where

K2(β) =

(∫∫
D

dξ1dξ2

|ξ1 − ξ3|3−4β+j |1− ξ2|3−4β+j |ξ2 − ξ3|8β |1− ξ1|4β |ξ1|1−4β

) 1
2

.

Since K2(β) ≤ C for 0 < β < 1/8, it follows from (6.35) that

|I3,2,2| ≤
C

t1+2β
(∥v(t)∥Ḣ4β−1 + ∥v∥H4+j + ∥xvx(t)∥H3+j )

3
,
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for 0 < β < 1/8.

Estimate of I3,2,3. Since |ξ1| ≤ |ξ1 − ξ3| + |1 − ξ2|, |ξ1 − ξ3| ≥ 10−2 and

|1− ξ2| ≥ 10−2 in D, we have for γ ≥ 0,∣∣∣∂ξ2H̃1(ξ1, ξ2)
∣∣∣ ≤ C

|ξ|
t

∣∣∣∣ 1ξ21 − 1

ξ23

∣∣∣∣−2 ∣∣∣∣ 1ξ33
∣∣∣∣+ C|H̃1(ξ1, ξ2)|(6.37)

≤ C
|ξ|
t

|ξ1|4 |ξ3|
|ξ1 − ξ3|2 |1− ξ2|2

+ C|H̃1(ξ1, ξ2)| ≤ C
|ξ|
t

|ξ1|3 |ξ3|
|ξ1 − ξ3| |1− ξ2|

+C|H̃1(ξ1, ξ2)| ≤ C
|ξ|
t

|ξ1|2 |ξ3| (|ξ1|+ |ξ3|)1+2γ

|ξ1 − ξ3|1+γ |1− ξ2|1+γ .

Thanks to (6.33) and (6.37) with γ = 1/4 + j/2, I3,2,3 is bounded by

|ξ|
13
2 +α+j

t1+α

∫∫
D

|ξ1|2 |ξ2| |ξ3|1+2α
(|ξ1|+ |ξ3|)

3
2+j |F1,2| dξ1dξ2

|ξ1 − ξ3|
5
4+

j
2 |1− ξ2|

5
4+

j
2 |ξ2 − ξ3|2α−1 |1− ξ1|α |ξ2|1−2α

≤ CK3(α)

t1+α

∥∥∥ξ2−α
1 ξ2ξ

1+2α
3 (|ξ1|+ |ξ3|)

3
2+j v̂ξ(ξ1)v̂ξ(ξ2)v̂(ξ3)

∥∥∥
L2

ξ1,ξ2

≤ CK3(α)

t1+α
∥ξv̂ξ∥L2

(∥∥∥ξ 7
2−α+j v̂ξ

∥∥∥
L2

∥∥ξ1+2αv̂
∥∥
L∞ +

∥∥ξ2−αv̂ξ
∥∥
L2

∥∥∥ξ 5
2+2α+j v̂

∥∥∥
L∞

)
,

where

K3(α) =

(∫∫
D

|ξ1|2α |ξ2 − ξ3|2−4αdξ1dξ2

|ξ1 − ξ3|
5
2+j |1− ξ2|

5
2+j |1− ξ1|2α |ξ2|2(1−2α)

) 1
2

.

Since |ξ2 − ξ3| ≤ 1 + 3|ξ2 − 1|/2 + |ξ1 − ξ3|, we have K3(α) ≤ C for 1/4 < α < 1/2.

Thus, by (6.35), we obtain for 1/4 < α < 1/2,

|I3,2,3| ≤
C

t1+α

(
∥v(t)∥

H
5
2
+2α+j + ∥xvx(t)∥

H
3
2
+2α+j

)3
.

Estimate of I3,2,4. Note that∣∣∣∂ξ1H̃1(ξ1, ξ2)
∣∣∣ ≤ C

|ξ|
t

∣∣∣∣ 1ξ21 − 1

ξ23

∣∣∣∣−2 ∣∣∣∣ 1ξ31 +
1

ξ33

∣∣∣∣+ C|H̃1(ξ1, ξ2)|(6.38)

≤ C
|ξ|
t

|ξ1| |ξ3| (|ξ1|+ |ξ3|)2

|ξ1 − ξ3|2 |1− ξ2|
+ C|H̃1(ξ1, ξ2)| ≤ C

|ξ|
t

|ξ1| |ξ3| (|ξ1|+ |ξ3|)2+2γ

|ξ1 − ξ3|1+γ |1− ξ2|1+γ

in D. Then, by (6.33) and (6.38) with γ = 1/4 + (j − α)/2, I3,2,4 is bounded by

|ξ|
13
2 +α+j

t1+α

∫∫
D

|ξ1| |ξ2| |ξ3|1+2α
(|ξ1|+ |ξ3|)

5
2−α+j (|F2|+ |F3|) dξ1dξ2

|ξ1 − ξ3|
5
4+

j−α
2 |1− ξ2|

5
4+

j−α
2 |ξ2 − ξ3|2α−1 |1− ξ1|α |ξ2|1−2α

≤ CK4(α)

t1+α

∥∥∥ξ1ξ2ξ1+2α
3 (|ξ1|+ |ξ3|)

5
2−α+j

(|v̂(ξ1)v̂ξ(ξ2)v̂(ξ3)|+ |v̂(ξ1)v̂(ξ2)v̂ξ(ξ3)|)
∥∥∥
L2

ξ1,ξ2

≤ CK4(α)

t1+α
∥ξv̂ξ∥L2

(∥∥∥ξ 7
2−α+j v̂

∥∥∥
L2

∥∥ξ1+2αv̂
∥∥
L∞ + ∥ξv̂∥L∞

∥∥∥ξ 7
2+α+j v̂

∥∥∥
L2

)
+
CK4(α)

t1+α
∥ξv̂∥L∞

(∥∥∥ξ 7
2−α+j v̂

∥∥∥
L2

∥∥ξ1+2αv̂ξ
∥∥
L2 + ∥ξv̂∥L2

∥∥∥ξ 7
2+α+j v̂ξ

∥∥∥
L2

)
,
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where

K4(α) =

(∫∫
D

|ξ2 − ξ3|2−4αdξ1dξ2

|ξ1 − ξ3|
5
2−α+j |1− ξ2|

5
2−α+j |1− ξ1|2α |ξ2|2(1−2α)

) 1
2

.

Since K4(α) ≤ C for 1/4 < α < 1/2, it follows from (6.35) that

|I3,2,4| ≤
C

t1+α

(
∥xvx(t)∥

H
5
2
+α+j + ∥v(t)∥

H
7
2
+α+j

)3
,

for 1/4 < α < 1/2.

Estimate of I3,2,5. By (6.36) and (6.38) with γ = 1/4 − 3β + j/2 where

0 < β < 1/12, we have

|I3,2,5| ≤ |ξ|
11
2 +2β+j

t1+2β

∫∫
D

|ξ1| |ξ2|4β−1 |ξ3|4β (|ξ2|+ |ξ3|)2(|ξ1|+ |ξ3|)
5
2−6β+j |F0| dξ1dξ2

|ξ1 − ξ3|
5
4−3β+ j

2 |1− ξ2|
5
4−3β+ j

2 |ξ2 − ξ3|4β |1− ξ1|2β

≤ CK5(β)

t1+2β

∥∥∥ξ1ξ4β−1
2 ξ4β3 (|ξ2|+ |ξ3|)2(|ξ1|+ |ξ3|)

5
2−6β+j v̂(ξ1)v̂(ξ2)v̂(ξ3)

∥∥∥
L2

ξ1,ξ2

≤ CK5(β)

t1+2β

∥∥∥ξ 7
2−6β+j v̂

∥∥∥
L2

(∥∥ξ1+4β v̂
∥∥
L∞

∥∥ξ4β v̂∥∥
L2 +

∥∥ξ4β−1v̂
∥∥
L2

∥∥ξ4β+2v̂
∥∥
L∞

)
+
CK5(β)

t1+2β
∥ξv̂∥L∞

(∥∥ξ4β+1v̂
∥∥
L2

∥∥∥ξ 5
2−2β+j v̂

∥∥∥
L2

+
∥∥ξ4β−1v̂

∥∥
L2

∥∥∥ξ 9
2−2β+j v̂

∥∥∥
L2

)
,

where

K5(β) =

(∫∫
D

dξ1dξ2

|ξ1 − ξ3|
5
2−6β+j |1− ξ2|

5
2−6β+j |ξ2 − ξ3|8β |1− ξ1|4β

) 1
2

.

Since K5(β) ≤ C, it follows from (6.35) that

|I3,2,5| ≤
C

t1+2β

(
∥xvx(t)∥H1+4β + ∥v(t)∥Ḣ4β−1 + ∥v(t)∥

H
9
2
−2β+j

)3
,

for 0 < β < 1/12.

Estimate of I3,2,6. Since |ξ1| ≤ |ξ1 − ξ3| + |1 − ξ2|, |ξ1 − ξ3| ≥ 10−2 and

|1− ξ2| ≥ 10−2 in D, we get for 0 ≤ γ,∣∣∣∂ξ1∂ξ2H̃1(ξ1, ξ2)
∣∣∣ ≤ C

|ξ|
t

∣∣∣∣ 1ξ21 − 1

ξ23

∣∣∣∣−3 ∣∣∣∣ 1ξ31 +
1

ξ33

∣∣∣∣ ∣∣∣∣ 1ξ33
∣∣∣∣+ C

|ξ|
t

∣∣∣∣ 1ξ21 − 1

ξ23

∣∣∣∣−2 ∣∣∣∣ 1ξ43
∣∣∣∣

+C|H̃1(ξ1, ξ2)|+ C|∂ξ1H̃1(ξ1, ξ2)|+ C|∂ξ2H̃1(ξ1, ξ2)| ≤ C
|ξ|
t

|ξ1|3 (|ξ1|+ |ξ3|)2

|ξ1 − ξ3|3 |1− ξ2|2

+C
|ξ|
t

|ξ1| (|ξ1|+ |ξ3|)3+2γ

|ξ1 − ξ3|1+γ |1− ξ2|1+γ ≤ C
|ξ|
t

|ξ1| (|ξ1|+ |ξ3|)3+2γ

|ξ1 − ξ3|1+γ |1− ξ2|1+γ .

By (6.33) and the above inequality with γ = j/2, we have

|I3,2,6| ≤
|ξ|

11
2 +α+j

t1+α

∫∫
D

|ξ1| |ξ2|2α |ξ3|2α |ξ2 − ξ3|1−2α
(|ξ1|+ |ξ3|)3+j |F0| dξ1dξ2

|ξ1 − ξ3|1+
j
2 |1− ξ2|1+

j
2 |1− ξ1|α

.
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It follows from the Hölder inequality that

|I3,2,6| ≤ CK6(α)

t1+α

∥∥∥ξ1−α
1 ξ2α2 ξ2α3 |ξ2 − ξ3|1−2α

(|ξ1|+ |ξ3|)3+j v̂(ξ1)v̂(ξ2)v̂(ξ3)
∥∥∥
L4

ξ1,ξ2

≤ CK6(α)

t1+α

∥∥ξ4−α+j v̂
∥∥
L∞ ∥ξv̂∥L4

∥∥ξ2αv̂∥∥
L4

+
CK6(α)

t1+α

∥∥ξ1−αv̂
∥∥
L4

(
∥ξv̂∥L4

∥∥ξ3+2α+j v̂
∥∥
L∞ +

∥∥ξ1−αv̂
∥∥
L4

∥∥ξ4+j v̂
∥∥
L∞

)
,

for 0 < α < 1/2, where

K6(α) =

(∫∫
D

|ξ1|
4α
3 dξ1dξ2

|ξ1 − ξ3|
4
3 (1+

j
2 ) |1− ξ2|

4
3 (1+

j
2 ) |1− ξ1|

4α
3

) 3
4

.

Note that K6(α) ≤ C for 0 < α < 3/4 and∥∥∥|x|1/2 (−∂2x) a
2 v
∥∥∥2
L2

=
(
|x|1/2

(
−∂2x

) a
2 v, |x|1/2

(
−∂2x

) a
2 v
)

= −
(
∂x |x|

(
−∂2x

) a
2 v, ∂−1

x

(
−∂2x

) a
2 v
)
≤ C (∥v∥Ha + ∥xvx∥Ha) ∥v∥Ḣ−1+a

from which

∥ξav̂∥L4 ≤ C
∥∥∥(−∂2x) a

2 v
∥∥∥
L

4
3
≤ C ∥v∥Ha + C

∥∥∥|x|1/2 (−∂2x) a
2 v
∥∥∥
L2

(6.39)

≤ C ∥v∥Ha + C ∥v∥Ḣ−1+a + C ∥xvx∥Ha .

Then, by (6.35) and (6.39) with a = 2α, 1− α, 1, we obtain

|I3,2,6| ≤
C

t1+α
(∥v(t)∥H4+j + ∥v(t)∥Ḣ−1+2α + ∥v(t)∥Ḣ−α + ∥xvx(t)∥H3+j )

3
,

for 0 < α < 1/2.

Collecting these estimates, we obtain

(6.40) |I3,2| ≤
C

t1+δ
(∥xvx(t)∥H5 + ∥v(t)∥H6 + ∥v(t)∥Ḣ−1)

3
,

for 0 < δ < 1/12. In the same manner as in the proof of (6.40), we can obtain the

estimate of I3,1 since there exists C > 0 such that |ξ2 − ξ3| ≥ C and |ξ1 − 1| ≥ C in

the support of Φ3 ∩ Φ3,1. More precisely, we integrate by parts with respect to ξ2
instead of ξ1 in (6.29), and then, we integrate by parts with respect to ξ1 instead

of ξ2 in (6.31). After that, by using the same manner in the case of I3,2,1, I3,2,2,

I3,2,3, I3,2,4, I3,2,5 and I3,2,6, we obtain

(6.41) |I3,1| ≤
C

t1+δ
(∥xvx(t)∥H5 + ∥v(t)∥H6 + ∥v(t)∥Ḣ−1)

3
,

for 0 < δ < 1/12. Because of (6.40) and (6.41), we get (6.28). This completes the

proof of Lemma 6.5. □

We finally give the proof of (6.11).
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Proof of (6.11). By Lemma 6.4 and 6.5, we have

I = I1 + I2 + I3

= i
3ξ4|ξ| 32+j

√
2t

|v̂(t, ξ)|2 v̂(t, ξ) + ξ4|ξ| 32+j

33
√
6t

ei
11t
ξ v̂

(
t,
ξ

3

)3

+O
(
t−1−δ (∥v(t)∥H6 + ∥v(t)∥Ḣ−1 + ∥xvx(t)∥H5)

3
)
.

Since v = U(−t)u and ∥xvx(t)∥H5 = ∥xU(−t)ux∥H5 = ∥J ux∥H5 , we obtain desired

asymptotic expansion. □
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