

Title	MicroRNAによる脂肪細胞分化の制御
Author(s)	村田,有香
Citation	大阪大学, 2015, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/52325
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

MicroRNA による脂肪細胞分化の制御

2015年3月

大阪大学大学院歯学研究科

分子病態口腔科学専攻 顎顔面口腔矯正学教室

村田 有香

略語一覧

ACOT2, acyl-CoA thioesterase 2

AKR1B7, aldo-keto reductase family 1, member B7

CCND1, cyclin D1

C/EBP, CCAAT/enhancer binding protein

CoA, coenzyme A

DMEM, Dulbecco's modified Eagle's medium

EDNRA, endothelin receptor type A

EREG, epiregulin

FBS, fetal bovine serum

GAPDH, glyceraldehydes-3-phosphate dehydrogenase

GSTA4, glutathione S-transferase, alpha 4

KLF, krüppel-like transcription factor

NASH, nonalcoholic steatohepatitis

PBS, phosphate buffered saline

PPAR γ , peroxisome proliferator-activated receptor gamma

PRL2C5, prolactin family 2, subfamily c, member 5

SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SEM, standard error of the mean

siRNA, small interfereing RNA

STAT1, signal transducer and activator of transcription 1

TG, triacylglycerol

緒言

脂肪細胞は、前駆脂肪細胞が分化し脂肪滴が蓄積して肥大化したもので あり、脂肪蓄積が過剰に起こることによって、メタボリックシンドロームの主 な症状の一つである肥満や糖尿病などの代謝性疾患が生じる[1].一方で、脂肪 組織の存在は、若々しい容貌を保つために必要であると考えられる.すなわち、 類などの部位の皮下に適切な量の脂肪組織が存在することは、皮膚に張りを与 え、ふくよかな容貌を形成するのに有利である.その一方で、脂肪組織形成の ために、脂肪細胞の注入などが行われているが、生理的かつ自然な脂肪組織の 特定部位への形成は難しい.さらには、脂肪組織の形成の主体である脂肪細胞 を特定の部位に、適切に分化誘導することは未だ難しい問題である.近年、脂 肪細胞の分化に関する多くの研究が行われ、脂肪細胞分化に関与する多くの"因 子"が明らかになってきた[2-4].その多くは、C/EBP、PPAR γ、KLF など、 遺伝子により発現が制御されている"分子"である.その一方で近年、遺伝子 発現自体を制御する短い RNA、microRNA の存在がクローズアップされている [5].しかしながら、脂肪細胞分化における microRNA の役割については未だに 不明な点が多いのが現状である.

MicroRNAは、ゲノム上にその遺伝子配列が組み込まれた、内在性の19 ~25塩基の一本鎖RNAであり[6]、動植物において標的メッセンジャーRNA (mRNA)の翻訳を制御することが知られている[5,6]. MicroRNAは最初に長い 一次転写産物である、primary microRNA (pri-miRNA)として転写され、核内 でRNase III 酵素であるDroshaによりプロセシングを受け、precursor microRNA (pre-miRNA)となる. Pre-miRNAは約70塩基のステムループ状構 造をしており,核外へと出て細胞質でRNase III 酵素であるDicerによりプロセ シングを受ける. Dicerによって2本鎖を切断され,1本鎖となった成熟 microRNAは, RISC (RNA-Induced Silencing Complex) に取り込まれて複合 体を形成した後,標的mRNAの翻訳を抑制し,遺伝子発現を抑制する[7-10]. 1993年に最初に発見されたmicroRNAは[11],今では数千もの種類が見いだされ, 細胞分裂,アポトーシス,発生,代謝,ストレス応答,ホルモンシグナル伝達, 細胞分化など様々な生物学的プロセスにおいて重要な調節を行っている[12].ま た,ヒトの遺伝子の約3分の1がmicroRNAによって調節されていると報告され ている[13].

病態において,microRNA は癌,炎症,動脈硬化症などの様々な疾患と 関連していることがこれまでに報告されている[14-16].しかしながら, microRNA と肥満,糖尿病,非アルコール性脂肪肝炎などの代謝性疾患との関 連については不明な点が多く,現在多くの研究が精力的に行われている.

これまで我々は、代謝性疾患の一つである、非アルコール性脂肪肝炎 (Nonalcoholic steatohepatitis, NASH) について数多くの研究を行ってきた [17][18]. NASH は単なる脂肪蓄積だけでなく、脂肪蓄積から炎症、線維化を 伴って肝硬変、肝癌に進行する疾患であり[19]、現在米国では約 1000 万人、 日本では約 400 万人が罹患していると推定され、今後患者数が増加すると考え られている疾患である[20-22]. これまでの研究において、ヒトを用いたバリデ ーションアッセイおよび培養細胞を用いた結果から、作用が顕著であった 2 つ の microRNA (本稿では、これらを miR-XX、miR-YY と呼称する) に着目し た. すなわち、NASH 患者の肝臓から採取した生検組織を用いて、microRNA を網羅的に解析したところ、健常人と比較して miR-XX、miR-YY の発現が変 化していた. これらの microRNA の詳細な機能についてはこれまで殆ど解明さ れていなかった.そこで我々は miR-XX, miR-YY をヒト培養肝細胞 (Huh-7) あるいは iPS 由来肝細胞 (iHepa) に処置したところ, 肝細胞への顕著な脂肪 蓄積作用が認められた.これらのことから, miR-XX や miR-YY は細胞への脂 肪蓄積に密接に関与しているものと考えられた.そこで, 脂肪蓄積促進作用を 有するこれら miR-XX と miR-YY が脂肪細胞の分化にも影響を与える可能性を 考慮して,これらの microRNA による脂肪蓄積促進作用,ひいては脂肪細胞分 化における影響について検討を行うこととした.すなわち,本研究では, microRNA による脂肪細胞分化における影響とその制御系の一端を明らかにす ることを目的とした.

材料と方法

1. 成熟脂肪細胞への分化誘導実験

本研究では、マウス 3T3-L1 細胞 (Primary Cell Co., Ltd., Sapporo, Japan) による分化誘導系を用いた.

マウス 3T3-L1 細胞は, 10% ウシ胎仔血清 (FBS: fetal bovine serum, Nichirei Bioscience Inc., Tokyo, Japan), 1% MEM Non-Essential Amino Acids Solution (Gibco, Life Technologies Japan Ltd., Tokyo, Japan) および 1% Penicillin-Streptomycin solution (Sigma-Aldrich Japan, Tokyo, Japan) を含 む Dulbecco's modified Eagle's medium (DMEM, Sigma-Aldrich Japan, Tokyo, Japan) を培養液として使用し, 37℃, 5% CO₂存在下で培養した.

成熟脂肪細胞への分化誘導は、プレートにこれらの培養細胞を播種し、4 日後にコンフルエントに到達させた後 (この時点を day 0 とする)、150 nM insulin (Sigma-Aldrich Japan, Tokyo, Japan)、1 µM dexamethasone (Sigma-Aldrich Japan, Tokyo, Japan)、1 µM rosiglitazone (GlaxoSmithKline K. K., Tokyo, Japan)、100 µM 3-isobutyl-1-methylxanthine (Sigma-Aldrich Japan, Tokyo, Japan)を含む分化誘導メディウムに交換し、成熟脂肪細胞への 分化誘導を行った.4 日目 (day 4) に分化誘導メディウムを交換し、day 0 から day 6 まで経時的に採取したサンプルを以下の実験に用いた (図 1).

2. 成熟脂肪細胞分化の評価

分化誘導メディウムに交換後6日間培養し, day 6時点での成熟脂肪細胞 への分化を評価した.成熟脂肪細胞への分化の評価は,Oil Red O 染色および細 胞内 triacylglycerol (TG) 含量の測定により視覚的および定量的に行った [2,23-25].

Oil Red O 染色は、培養細胞を 4% ホルマリン溶液で 80 分間固定後、蒸 留水で洗浄し、0.3% Oil Red O 染色液で 60 分間染色することにより行った. なお、固定に用いた 4% ホルマリン溶液は、10% 中性緩衝ホルマリン液(Wako Pure Chemical Industries, Ltd., Osaka, Japan)と phosphate buffered saline (PBS, Sigma-Aldrich Japan, Tokyo, Japan)を2:3 で混合したものである.ま た、0.3% Oil Red O 染色液は、Oil Red O 試薬(Wako Pure Chemical Industries, Ltd., Osaka, Japan)を2:propanol (Kishida Chemical Co., Ltd., Osaka, Japan)に溶解して0.5% Oil Red O 溶液を調整し、この0.5% Oil Red O 溶液と蒸留水を3:2の割合で混合したものを室温で10分間放置し、フィル ターでろ過した.染色後、蒸留水で十分に洗浄を行うことにより過剰な色素を 除去し、遮光下に試料を静置し風乾させた.Oil Red O 染色による染色の程度は、 倒立位相差顕微鏡(Nikon Diaphot, Nikon Corporation, Tokyo, Japan)で観察 し、成熟脂肪細胞の形態学的な変化と脂肪蓄積を視覚的に評価した.

細胞内 TG 含量の測定は以下の通りに行った. 成熟脂肪細胞への分化誘 導を行った day 6 の細胞を PBS で十分に洗浄し, 0.1% protease inhibitor cocktail (Sigma-Aldrich Japan, Tokyo, Japan)を添加した lysis buffer (20 mM Tris-HCl, 150 mM NaCl, 4 mM EDTA, 1% Triton X-100)を加えて可溶化し た. 60 分間氷上放置した後, サンプルをマイクロチューブに回収し, ソニケー ション (5秒×4)を行って細胞を完全に溶解させた.さらに 30 分間氷上放置し, トリグリセライド測定キット (Wako Pure Chemical Industries, Ltd., Osaka, Japan)を用いて細胞内 TG 量を測定した. なお, TG 測定は測定キットに添付 されているプロトコールに基づいて予備実験を行い,本実験に最適な条件を設 定した後測定を行った. 試料中の TG 量は Bradford 法によりタンパク質量を測 定したのち補正を行い,タンパク質 1 mg あたりの TG 量(μg/mg protein)と して表示した[2,23-25].

3. miR-XX, miR-YY トランスフェクションによる影響と条件設定

miR-XX, miR-YY をもとに作製した合成 microRNA 模倣分子 miRNA mimic (Ambion, Life Technologies Japan Ltd., Tokyo, Japan) およびネガティ ブコントロールとして miRNA mimic Negative Control #1 (Ambion, Life Technologies Japan Ltd., Tokyo, Japan) を, Lipofectamin[™] RNAiMAX (Invitrogen, Life Technologies Japan Ltd., Tokyo, Japan) を用いてマウス 3T3-L1 細胞にトランスフェクションした. トランスフェクションは, 細胞を播 種後 3 日目から 24 時間行い, その後, 通常の分化誘導メディウムに交換した. Day 6 で Oil Red O 染色および細胞内 TG 含量の測定により成熟脂肪細胞への 分化を評価した.

ここで、microRNA 処置に関する条件設定の検討を行い、miR-XX、 miR-YY および Negative control の処置を細胞播種後3日目の1回だけでなく、 分化誘導メディウムに交換した3日後に再度行うという条件に設定することと した.そして、6日目に Oil Red O 染色および細胞内 TG 含量の測定により成熟 脂肪細胞への分化を評価した.

また, miR-XX, miR-YY および Negative control の処置を行った場合の 細胞数の変化を検討するために, 成熟脂肪細胞への分化誘導を行った day 6 の 細胞を回収し, Countess Automated Cell Counter (Invitrogen, Life Technologies Japan Ltd., Tokyo, Japan)を用いて細胞数を測定した. 4. DNA マイクロアレイを用いた遺伝子発現変化に関する検討

脂肪細胞の分化・増殖における microRNA の作用メカニズムを解析する ため、マウス 3T3-L1 細胞の脂肪細胞への分化の過程において、脂肪細胞分化お よび脂質代謝に関わる潜在的な標的遺伝子を、DNA マイクロアレイを用いて網 羅的に解析を行った. すなわち、miR-XX の 2 回目の処置を行ってから 24 時間 後にマウス 3T3-L1 細胞を回収し、DNA マイクロアレイを用いて Negative control 群と miR-XX 処置群での遺伝子変化を比較検討した.

5. ウエスタンブロット法によるタンパク質発現の解析

DNA マイクロアレイを用いた解析により変化した遺伝子群の中から,脂肪細胞分化および脂質代謝に関わる遺伝子として,Acyl-CoA thioesterase 2
(ACOT2) に着目した.

ACOT2 のマウス 3T3-L1 細胞での発現を確認するため、ウエスタンブロ ット法による解析を行った.マウス 3T3-L1 細胞に各最終濃度 20 nM の miR-XX, Negative control を day -1 (分化誘導開始の 1 日前), 3 で 24 時間処置し,分 化誘導メディウムに交換し, day6 で回収した.回収した各細胞を PBS で洗浄 後, 0.1% protease inhibitor cocktail を添加した lysis buffer を加え 30 分間氷 上放置して可溶化したのち, 15,000 rpm で 10 分遠心分離し上清を回収した. 上清のタンパク質を Bradford 法にて測定後, Laemmli 法にて 5 分間煮沸し, 各々のタンパク質量 50 μ gをウエスタンブロッティングの試料とした.これら の試料を sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) にて分離後, polyvinilidine difluoride 膜 (Millipore, Billerica, USA) に転写した.一次抗体として抗 ACOT2 polyclonal 抗体 (Proteintech Group, Inc., Chicago, USA),抗 GAPDH 抗体 (Trevigen, Gaithersburg, USA) を使用し、二次抗体として HRP conjugated goat 抗 rabbit IgG 抗体を用いて反応させた後、化学発光法(Immobilon[™] Western, Millipore, Billerica, USA) に てその発現シグナルを検出した.

6. ACOT2 遺伝子発現抑制による影響

ACOT2 の脂肪細胞分化における作用を確認するために、ACOT2 のノッ クダウンによる脂肪細胞分化への影響について検討することとした. ACOT2 遺 伝子の発現を抑制するために、ACOT2 に特異的な small interfereing RNA (siRNA) (Stealth RNAi[™] siRNA, Invitrogen, Life Technologies Japan Ltd., Tokyo, Japan)を作製した. siRNA は3つのシーケンスで作製し、これらの脂 肪細胞分化への影響について検討した結果、その中で最も効果のあるものを以 後の実験に使用した. 使用したシーケンスは ACOT2-siRNA-sequence (sense: 5'- UGG UGG CCU CGU CUU UCG CUG UCC U -3', antisense : 5'- AGG ACA GCG AAA GAC GAG GCC ACC A ·3) であり,作製したその他のシーケ ンスは ACOT2-siRNA-sequence (sense: 5'- GAG CAA GCA GGU UGU GCC AAC AGG A -3', antisense : 5'- UCC UGU UGG CAC AAC CUG CUU GCU C -3') および ACOT2-siRNA-sequence (sense:5'- GAA GAG CUG GGC GCG GCU GUU UGU A -3', antisense : 5'- UAC AAA CAG CCG CGC CCA GCU CUU C-3) である. コントロールとしては, 特定の遺伝子をターゲットとしな い siRNA である negative control-siRNA (Stealth[™] RNAi Negative control Duplexes, Invitrogen, Life Technologies Japan Ltd., Tokyo, Japan)を用いた. マウス 3T3-L1 細胞に day -1 および day3 において ACOT2-siRNA, negative control-siRNA を最終濃度 10 nM となるように Lipofectamin™ RNAiMAX (Invitrogen, Life Technologies Japan Ltd., Tokyo, Japan)を用いてトランスフ

ェクションした.トランスフェクションは24時間処置を行い,day0,4の時点 で分化誘導メディウムに交換した. Day6 で Oil Red O 染色および細胞内 TG 含 量の測定により成熟脂肪細胞への分化を評価した.さらに,day6 で細胞を回収 し,方法5.と同様の手順でウエスタンブロット法による解析を行った.

7. 統計処理

統計処理は対応のないt 検定 (Student's t-test) を行った. 結果は平均± 標準誤差 (standard error of the mean, SEM) で示し, 危険率 1%, および 5% 未満を統計学的に有意差ありとした.

研究結果

1. miR-XX, miR-YY トランスフェクションによる影響

マウス 3T3-L1 細胞を成熟脂肪細胞へと分化させる実験系を用いて, miR-XX, miR-YY の脂肪細胞分化に対する影響を検討した.

最初に、microRNA 処置に関する条件設定の検討を行った.miR-XX と Negative control を各最終濃度 10 nM となるように処置したところ、Negative control 群と比較して miR-XX 処置群では、10 nM ではほとんど変化は認められ なかった. 10 nM では濃度が低く顕著な効果が得られない可能性が考えられた ため、次に miR-XX と Negative control を各最終濃度 20 nM となるように処 置した.その結果、20 nM では、miR-XX 処置により TG 含量の増加傾向が認 められた (図 2A,B).しかしながら、microRNA の効果を確認するためには、 より顕著な効果を認める条件が望ましいと考えられた.この結果を踏まえて、 miR-XX の処置が 1 回だけでは効果が弱い可能性を考え、miR-XX の処置を、細 胞播種後 3 日目の 1 回だけでなく、分化誘導メディウムに交換した 3 日後に再 度行うこととした.その結果、miR-XX と Negative control を各最終濃度 20 nM となるように処置を 2 回行ったところ、処置を 1 回行った場合よりも、miR-XX 処置群での TG 含量の顕著な増加が認められた(図 2C).

これらの検討した結果を踏まえて,本研究では,miR-XX および Negative control の処置を各最終濃度 20 nM となるように 2 回行うという条件に設定することとした.

分化誘導後6日目のOil Red O 染色の結果, Negative control 群と比較 してmiR-XX 処置群で細胞内脂肪蓄積の顕著な増加が認められた(図 3A,B). この結果は細胞内 TG 含量の測定結果でも定量的に確認され,Negative control 群と比較して miR-XX 処置群で TG 含量の統計学上有意な増加が認められた(図 3C).その一方で,分化誘導後 6 日目の細胞数を比較したところ,Negative control 群と miR-XX 処置群で細胞数に明らかな変化は認められなかった(図 3D).すなわち,miR-XX は細胞数を変化させることなく,脂肪蓄積を促進して いることが明らかになった.

次に、miR-YY および Negative control を 10 nM で処置した結果, miR-YY 処置により顕著な脂肪蓄積が認められた (図 4A,B). TG 含量も miR-YY 処置群で著しく増加した (図 4C). しかしながら処置後の細胞数は, miR-YY 処置群で著しく減少した (図 4D). これらの結果から, miR-YY は 10 nM の濃 度において細胞増殖を抑制している可能性があるため, 2.5 nM に濃度を減少さ せて処置を行った. その結果, 2.5 nM という低濃度でも, miR-YY 処置により 顕著な脂肪蓄積が認められた (図 5A,B). TG 含量も Negative control 群と比較 して miR-YY 処置群で顕著な増加が認められた (図 5C). 処置後の細胞数は, Negative control 群と比較して, miR-YY 処置群で有意差はないものの, 細胞数 の減少が認められた (図 5D). すなわち, miR-YY は miR-XX と異なり, 脂肪 蓄積を促進する一方で, 細胞数の減少を引き起こすことが明らかになった.

これらの結果から、マウス 3T3-L1 細胞への miR-XX、あるいは miR-YY の処置により、マウス 3T3-L1 細胞から成熟脂肪細胞への分化が促進されること が明らかになった.しかしながら、miR-YY による細胞数の減少は非常に強力で あるため、以後の実験においては主に miR-XX による作用メカニズムについて 詳細に検討することとした.

12

2. DNA マイクロアレイによる脂肪細胞分化および脂質代謝に関わる遺伝子群の網羅的解析

マウス 3T3-L1 細胞の脂肪細胞分化の過程において, 脂肪細胞分化および 脂質代謝に関わる潜在的な標的遺伝子を網羅的に解析するため, DNA マイクロ アレイによる検討を行った. DNA マイクロアレイ解析の結果, Negative control 群と比較して miR-XX 処置群での発現の変化率が大きい遺伝子から順にリスト アップしていき、その中で脂肪細胞分化および脂質代謝に関与していることが これまでに報告されているものをピックアップした(表 1,2). その中には, miR-XX の処置によって発現が増加した主な遺伝子として, prolactin family 2, subfamily c, member 5 (PRL2C5), epiregulin (EREG), cyclin D1 (CCND1), krüppel-like transcription factor 4 (KLF4) などが含まれており, miR-XX の処 置によって発現が減少した主な遺伝子として, aldo-keto reductase family 1, member B7 (AKR1B7), glutathione S-transferase, alpha 4 (GSTA4), endothelin receptor type A (EDNRA), signal transducer and activator of transcription 1 (STAT1) などが含まれていた.これらはいずれも脂肪細胞分化 および脂質代謝に関与していることがこれまでに報告されている[26-33]. DNA マイクロアレイを用いた解析により変化した遺伝子群の中から, miR-XX と Negative control の処置のいずれにおいても遺伝子発現量が多く, さらに miR-XX 処置による変化率が多く, 尚且つ脂肪細胞分化および脂質代謝との関連 についての報告が多いものとして, Acyl-CoA thioesterase 2 (ACOT2) があった. ACOT, すなわち Acyl-CoA thioesterase は, Acyl-CoA を加水分解して脂肪酸 と Coenzyme A (CoA) に変換する酵素である. ACOT2 はミトコンドリア内に 発現し,分化とともに脂肪細胞で発現が上昇することが明らかにされている[34]. ACOT2 の発現上昇により, 脂肪酸のβ酸化や TCA 回路に用いられる CoA レベ

ルが調節されていると考えられている[34] (図 6). したがって, ACOT2 は脂肪 細胞の分化に深く関与していることが予想された. また, miR-XX を全身投与し たマウスにおいても, DNA マイクロアレイの結果 ACOT2 の発現が上昇してい たことから, miR-XX による脂肪細胞分化には ACOT2 が重要な役割を果たして いることが考えられたため, ACOT2 に着目して以後の実験を行った.

3. マウス 3T3-L1 細胞における ACOT2 の発現

マウス 3T3-L1 細胞における ACOT2 の発現を確認するため, miR-XX を 処置したマウス 3T3-L1 細胞を day6 で回収し, ウエスタンブロット法による解 析を行った. その結果, miR-XX 処置群では, Negative control 群と比較して, ACOT2 のタンパクレベルでの発現が顕著に増加していることが確認された(図 7).

4. ACOT2 遺伝子発現抑制による影響

ACOT2 の脂肪細胞分化における作用を確認するために,ACOT2 のノッ クダウンによる脂肪細胞分化への影響について検討することとした.すなわち マウス 3T3-L1 細胞において,ACOT2-siRNA および Negative control を用い て ACOT2 遺伝子発現とそれに引き続くタンパク発現を抑制することにより, 成熟脂肪細胞分化に対する影響を検討した.Day6 で細胞を回収し,ウエスタン ブロット法による解析を行った結果,ACOT2 のノックダウンによって ACOT2 のタンパク発現が抑制されていることが確認された(図 8).また,Negative control 群と比較して,ACOT2-siRNA 処置群で細胞内脂肪蓄積の顕著な減少が 認められた(図 9A,B).同様に,TG 含量も ACOT2-siRNA 処置群で統計学的 に有意な減少が認められた(図 9C). これらの結果から,ACOT2分子の発現抑制により,マウス 3T3-L1 細胞 から成熟脂肪細胞への分化が抑制されることが明らかになった. すなわち, ACOT2 が脂肪細胞の分化において非常に重要であることが明らかになった.

考察

マウス 3T3-L1 細胞への miR-XX, miR-YY の処置により, マウス 3T3-L1 細胞から成熟脂肪細胞への分化が促進されることが明らかになったが, miR-XX は細胞数を変化させずに脂肪細胞の分化を誘導しているのに対し, miR-YY は miR-XX と異なり, 脂肪蓄積を促進すると同時に細胞数の顕著な減少を引き起こした.

また,これまでの研究において,マウスに miR-XX を全身投与した結果, 肝臓への脂肪蓄積が認められ,さらに内臓脂肪の増大も認められた[17][18]. 心 臓、肺、腎臓、脾臓についても確認したが,肉眼的および組織所見において顕 著な差は見られなかった.また,予備的な実験で miR-XX と同等量の miR-YY をマウスに投与したが,マウスの死亡例が認められたため,現在,より良い動 物実験法を検討中である.これらの結果を考慮して,本研究では miR-XX によ る作用メカニズムの解析を行うこととした.一方で,今回 miR-YY による作用 メカニズムについては明らかにしていないが,miR-YY の処置により毒性の作用 やアポトーシスを起こす可能性が考えられるため,今後の詳細な検討が必要で ある.

DNA マイクロアレイ解析の結果, miR-XX の処置によって発現が変化し た遺伝子のうちで, 脂肪細胞分化および脂質代謝に関わる潜在的な標的遺伝子 について注目した. miR-XX 処置によって発現増加した主な遺伝子をピックアッ プすると, prolactin family 2, subfamily c, member 5 (PRL2C5), epiregulin (EREG), cyclin D1 (CCND1), krüppel-like transcription factor 4 (KLF4) な どがあり, miR-XX の処置によって発現が減少した主な遺伝子は, aldo-keto reductase family 1, member B7 (AKR1B7), glutathione S-transferase, alpha 4 (GSTA4), endothelin receptor type A (EDNRA), signal transducer and activator of transcription 1 (STAT1) などが含まれていた. これらはいずれも 脂肪細胞分化および脂質代謝に関与していることがこれまでに報告されている. すなわち, PRL2C5 は下垂体前葉から分泌される乳腺刺激ホルモンであり, イ ンスリン分泌を促進する[26]. EREG は上皮細胞成長因子 (EGF) のファミリ ーで, PGF2a 合成と関連している[27]. CCND1 は Wnt/8-catenin 経路のター ゲット遺伝子の一つで, cell cycle の調節に関わっている[28]. KLF4 は転写因 子であり, C/EBP8 を活性化する[29]. AKR1B7 は PGF2a 合成と関連している [30]. GSTA4 は脂肪酸の 8 酸化を促進する[31]. EDNRA は血管内皮細胞由来 のエンドセリン受容体で, 脂肪細胞におけるグルコース取り込みを促進する[32]. STAT1 は, 脂肪細胞分化を抑制する[33]. これらの因子は単独, あるいは複合 的に miR-XX の脂肪細胞への分化促進に関与しているものと考えられるが, 詳 細は不明である. 今後, より詳細な検討が必要であると考えられる.

その一方で、miR-XX の処置による脂肪細胞分化の促進において、 miR-XX と Negative control の処置のいずれにおいても遺伝子発現量が多く、 さらに miR-XX 処置による遺伝子発現の変化率が多く、尚且つ脂肪細胞分化お よび脂質代謝との関連についての報告が多いものとして、今回我々は ACOT2、 Acyl-CoA thioesterase 2 に着目した[34-36]. ACOT2 は分化とともに脂肪細胞 で発現が上昇することが明らかにされており、ACOT2 の発現上昇により脂質代 謝に影響を及ぼすと考えられていた. 今回の実験により、miR-XX が ACOT2 の発現レベルを上昇させていることが示唆された. miR-XX による脂肪蓄積と分 化促進作用には ACOT2 が重要な役割を果たしていることが考えられた. そこ で、ACOT2 の脂肪細胞分化における作用を確認するために、ACOT2 のノック ダウンによる脂肪細胞分化への影響について検討した. siRNA により ACOT2 をノックダウンすることで ACOT2 分子の発現を抑制した結果,マウス 3T3-L1 細胞から成熟脂肪細胞への分化が抑制された.すなわち, ACOT2 の発現自体が 脂肪細胞の分化において非常に重要であることが明らかになった.

以上の結果から,miR-XXによるACOT2の発現調節が,miR-XXによる 脂肪細胞分化促進のメカニズムの一つである可能性が高いと考えられる(図 10). しかしながら今回の研究では,ACOT2以外の他の分子を介したメカニズムにつ いては明らかにできなかったため,今後さらなる検討が必要であると考えられ る.一方で,何らかのメカニズムにより,生理的状態あるいは病態時において miR-XXの発現自体がコントロールされている可能性があるが,そのメカニズム についても明らかにされていない.さらに我々は初めてmiR-XXがACOT2の 発現を上昇させることを見出したが,miR-XXのACOT2発現上昇の詳細なメカ ニズムについても不明である.これらのメカニズムについても今後の検討が必 要である.また,今回miR-XXによる脂肪細胞分化における影響を検討したが, その作用が生体内で病態時に限定されたものか,生理的な状況下でも起こりう るのかについては不明である.しかしながら今後の展望としては、これらの作 用を明らかにした上で,miR-XXなどを薬として応用していくこと、すなわち局 所投与などにより任意の部位に脂肪細胞を自由に分化誘導させて、脂肪組織形 成をコントロールすることが将来的に可能になるのではないかと考えられる.

総括

脂肪細胞の分化には miR-XX をはじめとする microRNA を介した分化誘 導経路が存在する可能性があり, その中で, miR-XX は脂肪細胞分化を促進する ことが認められた. miR-XX により発現が調節され, かつ脂肪細胞分化および脂 質代謝に関わる潜在的な標的遺伝子の一つとして ACOT2 があり,本研究から, マウス 3T3-L1 細胞の脂肪細胞への分化において, miR-XX は ACOT2 の発現レ ベルを上昇させて脂肪細胞の分化を促進している可能性が示された.

本研究の内容の一部は,第87回日本薬理学会年会(2014年,仙台), 第73回日本矯正歯科学会大会(2014年,千葉)にて発表した.

謝辞

本稿を終えるにあたり、本研究を行う機会を与えて頂きました大阪大学大学 院歯学研究科ロ腔科学専攻ロ腔分化発育情報学講座(顎顔面ロ腔矯正学教室) 高田健治名誉教授,顎口腔病因病態制御学講座(薬理学教室)上﨑善規名誉教 授,および本研究に対して御指導,御高閲を賜りましたロ腔分化発育情報学講 座(顎顔面ロ腔矯正学教室)山城隆教授に謹んで感謝の意を表します.

また本研究の遂行にあたり,終始御教示,御指導頂きました島根大学医学部 薬理学講座和田孝一郎教授,試料をご提供頂きました横浜市立大学医学部肝胆 膵消化器病学教室中嶋淳教授に深甚なる謝意を表します.

最後に本研究の進行に際して,多大な御協力を頂きました大阪大学大学院歯 学研究科ロ腔科学専攻ロ腔分化発育情報学講座(顎顔面ロ腔矯正学教室)およ び顎ロ腔病因病態制御学講座(薬理学教室)の教室員の皆様に厚く御礼申し上 げます.

文献

- Gregor MF, Hotamisligil GS (2007) Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 48: 1905-1914.
- Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78: 783-809.
- Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130: 3122S-3126S.
- 4. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7: 885-896.
- 5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297.
- 6. Vimalraj S, Selvamurugan N (2012) MicroRNAs: Synthesis, Gene Regulation and Osteoblast Differentiation. Curr Issues Mol Biol 15: 7-18.
- 7. Lee Y, Ahn C, Han J, Choi H, Kim J, et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415-419.
- Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363-366.

- Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21: 4663-4670.
- Lee Y, Kim M, Han J, Yeom KH, Lee S, et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23: 4051-4060.
- Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843-854.
- Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11: 441-450.
- Davis BN, Hata A (2009) Regulation of MicroRNA Biogenesis: A miRiad of mechanisms. Cell Commun Signal 7: 18.
- Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6: 590-610.
- 15. Sonkoly E, Stahle M, Pivarcsi A (2008) MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol 18: 131-140.
- Madrigal-Matute J, Rotllan N, Aranda JF, Fernandez-Hernando C (2013) MicroRNAs and atherosclerosis. Curr Atheroscler Rep 15: 322.
- 17. Kessoku T, Sakai E, Eguchi Y, Mizuguchi H, Wada K, Nakajima A, et al. (2014) MicroRNA-27b causes nonalcoholic steatohepatitis similar to human pathophysiology on murine high-fat diet model. 49th Annual Meeting of the European Association for the Study of the liver (EASL)

- 18. Kessoku T, Sakai E, Mizuguchi H, Eguchi Y, Wada K, Nakajima A, et al. (2014) MicroRNA-27b develop the fatty liver formation and insulin resistance at the same onset. United European gastroenterology Week 2014 (UEGW)
- 19. Schuppan D, Schattenberg JM (2013) Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol 28 Suppl 1: 68-76.
- 20. Eguchi Y, Hyogo H, Ono M, Mizuta T, Ono N, et al. (2012) Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: a multicenter large retrospective study. J Gastroenterol 47: 586-595.
- 21. Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, et al. (2011) Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 140: 124-131.
- 22. Chitturi S, Farrell GC, George J (2004) Non-alcoholic steatohepatitis in the Asia-Pacific region: future shock? J Gastroenterol Hepatol 19: 368-374.
- Green H, Meuth M (1974) An established pre-adipose cell line and its differentiation in culture. Cell 3: 127-133.
- 24. Green H, Kehinde O (1975) An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5: 19-27.

- 25. Katayama K, Wada K, Miyoshi H, Ohashi K, Tachibana M, et al. (2004) RNA interfering approach for clarifying the PPARgamma pathway using lentiviral vector expressing short hairpin RNA. FEBS Lett 560: 178-182.
- Carre N, Binart N (2014) Prolactin and adipose tissue. Biochimie 97: 16-21.
- 27. Belda BJ, Thompson JT, Sinha R, Prabhu KS, Vanden Heuvel JP (2012) The dietary fatty acid 10E12Z-CLA induces epiregulin expression through COX-2 dependent PGF(2alpha) synthesis in adipocytes. Prostaglandins Other Lipid Mediat 99: 30-37.
- 28. Fox KE, Colton LA, Erickson PF, Friedman JE, Cha HC, et al. (2008) Regulation of cyclin D1 and Wnt10b gene expression by cAMP-responsive element-binding protein during early adipogenesis involves differential promoter methylation. J Biol Chem 283: 35096-35105.
- 29. Birsoy K, Chen Z, Friedman J (2008) Transcriptional regulation of adipogenesis by KLF4. Cell Metab 7: 339-347.
- 30. Volat FE, Pointud JC, Pastel E, Morio B, Sion B, et al. (2012) Depressed levels of prostaglandin F2alpha in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity. Diabetes 61: 2796-2806.
- 31. Curtis JM, Grimsrud PA, Wright WS, Xu X, Foncea RE, et al. (2010) Downregulation of adipose glutathione S-transferase A4 leads to

increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes 59: 1132-1142.

- 32. Wu-Wong JR, Berg CE, Kramer D (2000) Endothelin stimulates glucose uptake via activation of endothelin-A receptor in neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 36: S179-183.
- 33. Annamalai D, Clipstone NA (2014) Prostaglandin F2alpha inhibits adipogenesis via an autocrine-mediated interleukin-11/glycoprotein 130/STAT1-dependent signaling cascade. J Cell Biochem 115: 1308-1321.
- 34. Momose A, Fujita M, Ohtomo T, Umemoto N, Tanonaka K, et al. (2011) Regulated expression of acyl-CoA thioesterases in the differentiation of cultured rat brown adipocytes. Biochem Biophys Res Commun 404: 74-78.
- 35. Moffat C, Bhatia L, Nguyen T, Lynch P, Wang M, et al. (2014) Acyl-CoA thioesterase-2 facilitates mitochondrial fatty acid oxidation in the liver. J Lipid Res 55: 2458-2470.
- 36. Fujita M, Momose A, Ohtomo T, Nishinosono A, Tanonaka K, et al. (2011) Upregulation of fatty acyl-CoA thioesterases in the heart and skeletal muscle of rats fed a high-fat diet. Biol Pharm Bull 34: 87-91.

 図1 マウス3T3-L1細胞の成熟脂肪細胞への分化誘導プロトコル 培養細胞をコンフルエントに到達させた後, day 0で150 nM insulin (Ins), 1 μM dexamethasone (Dex), 1 μM rosiglitazone (Rosi), 100 μM 3-isobutyl-1-methylxanthine (IBMX) を含む分化誘導メディウムに交換し, 成熟脂肪細胞への分化誘導を行った. Day4で分化誘導メディ ウムを交換し, day 6で成熟脂肪細胞への分化を評価した.

²⁰ nM

図2 条件設定の検討

マウス3T3-L1細胞にmiR-XXおよびNegative controlを処置し, TG測定を 行った.(A)Negative control(10 nM), miR-XX(10 nM)の1回処置;(B) Negative control(20 nM), miR-XX(20 nM)の1回処置;(C)Negative control(20 nM), miR-XX(20 nM)の2回処置.miR-XX(20nM)の処置を2 回行うことにより脂肪蓄積の増加傾向が認められた.

(B)

図3 miR-XX処置によるマウス3T3-L1細胞の成熟脂肪細胞への分化促進
マウス3T3-L1細胞にmiR-XX(20 nM)およびNegative control(20 nM)を
処置し, Oil Red O染色(A, B), TG測定(C)および細胞数測定(D)を行った.
(A) Negative control 20 nM; (B) miR-XX 20 nM; (C) 各測定値は, 平均±
標準誤差で表した(n=6). *: p<0.05; (D) 各測定値は, 平均±標準誤差
で表した(n=3). miR-XX処置により細胞内脂肪蓄積が増加し, 成熟脂肪
細胞への分化が促進された. 細胞数に変化は認められなかった.

図4 miR-YY処置によるマウス3T3-L1細胞の成熟脂肪細胞への分化促進
マウス3T3-L1細胞にmiR-YY(10 nM)およびNegative control(10 nM)を
処置し, Oil Red O染色(A, B), TG測定(C)および細胞数測定(D)を行った.
(A) Negative control 10 nM; (B) miR-YY 10 nM; (C) 各測定値は, 平均±
標準誤差で表した(n=6). *: p<0.05; (D) 各測定値は, 平均±標準誤差
で表した(n=3). **: p<0.01. miR-YY処置により細胞内脂肪蓄積が増加し, 成熟脂肪細胞への分化が促進された. miR-YY処置により細胞数は減少した.

図5 miR-YY処置によるマウス3T3-L1細胞の成熟脂肪細胞への分化促進
マウス3T3-L1細胞にmiR-YY(2.5 nM)およびNegative control(2.5 nM)を
処置し, Oil Red O染色(A, B), TG測定(C)および細胞数測定(D)を行った.
(A) Negative control 2.5 nM; (B) miR-YY 2.5 nM; (C)各測定値は, 平均±
標準誤差で表した(n=6). **: p<0.01; (D)各測定値は, 平均±標準誤差
で表した(n=3). miR-YY処置により細胞内脂肪蓄積が増加し, 成熟脂肪
細胞への分化が促進された. miR-YY処置により細胞数は減少した.

Cone Description	Cono Accossion	Fold
	Gene Accession	increase
prolactin family 2, subfamily c, member 5 (Prl2c5)	NM_181852	3.672185
serum amyloid A 3 (Saa3)	NM_011315	3.367436
CD53 antigen (Cd53)	NM_007651	2.202753
thrombospondin 1 (Thbs1)	NM_011580	2.166568
lipopolysaccharide binding protein (Lbp)	NM_008489	2.148915
connective tissue growth factor (Ctgf)	NM_010217	2.090627
epiregulin (Ereg)	NM_007950	2.087868
nuclear receptor subfamily 4, group A, member 1 (Nr4a1)	NM_010444	2.059057
CD55 antigen (Cd55)	NM_010016	2.0581
Rho-guanine nucleotide exchange factor (Rgnef)	NM_012026	2.044236
retinoic acid receptor responder (tazarotene induced) 1 (Rarres1)	NM_001164763	2.041146
suppressor of cytokine signaling 2 (Socs2), transcript variant 1	NM_007706	2.03834
ATPase, Na+/K+ transporting, alpha 2 polypeptide (Atp1a2)	NM_178405	2.019371
adrenomedullin (Adm)	NM_009627	2.005821
acyl-CoA thioesterase 2 (Acot2), nuclear gene encoding mitochondrial protein	NM_134188	1.973443
CD34 antigen (Cd34), transcript variant 1	NM_001111059	1.938985
ets variant gene 4 (E1A enhancer binding protein, E1AF) (Etv4)	NM_008815	1.932054
frizzled homolog 4 (Drosophila) (Fzd4)	NM_008055	1.91573
creatine kinase, mitochondrial 1, ubiquitous (Ckmt1), nuclear gene encoding mitochondrial protein	NM_009897	1.912341
cyclin D1 (Ccnd1)	NM_007631	1.910614
Kruppel-like factor 4 (gut) (Klf4)	NM_010637	1.893031
fibroblast growth factor receptor 3 (Fgfr3), transcript variant 1	NM_008010	1.863915
inhibitor of DNA binding 2 (Id2)	NM_010496	1.861815
dual specificity phosphatase 6 (Dusp6)	NM_026268	1.844081
acid phosphatase 5, tartrate resistant (Acp5), transcript variant 2	NM_001102404	1.842465
oxidized low density lipoprotein (lectin-like) receptor 1 (Olr1)	NM_138648	1.810867
suppressor of variegation 3-9 homolog 1 (Drosophila) (Suv39h1)	NM_011514	1.802061
cell division cycle 6 (Cdc6), transcript variant 1	NM_011799	1.768399
phosphodiesterase 4B, cAMP specific (Pde4b), transcript variant 1	NM_019840	1.768212
serum amyloid A 1 (Saa1)	NM_009117	1.762458
matrix metallopeptidase 1b (interstitial collagenase) (Mmp1b)	NM_032007	1.761906
proviral integration site 1 (Pim1)	NM_008842	1.741448

表1 DNAマイクロアレイを用いた網羅的解析において発現が増加した遺 伝子

miR-XX処置を行ったマウス3T3-L1細胞を回収し, DNAマイクロアレイを 用いてNegative control群とmiR-XX処置群での遺伝子変化を比較検討し た. DNAマイクロアレイを用いた網羅的解析により変化した脂肪細胞分化 および脂質代謝に関わる遺伝子群のうち, 脂肪細胞分化および脂質代 謝に関与していることがこれまでに報告されており, Negative control群と 比較してmiR-XX処置群での発現が1.74倍(log2X, X=0.8)以上に増加した 遺伝子を示す.

Gene Description	Cono Accossion	Fold
	Gene Accession	increase
natriuretic peptide receptor 1 (Npr1)	NM_008727	0.57428
dickkopf homolog 2 (Xenopus laevis) (Dkk2)	NM_020265	0.572471
aldo-keto reductase family 1, member B7 (Akr1b7)	NM_009731	0.553844
glutathione S-transferase, alpha 4 (Gsta4)	NM_010357	0.551271
interleukin 1 beta (II1b)	NM_008361	0.543772
major facilitator superfamily domain containing 2A (Mfsd2a)	NM_029662	0.541809
chemokine-like receptor 1 (CmkIr1)	NM_008153	0.530848
lipase, family member K (Lipk), transcript variant 1	NM_001205349	0.530183
epithelial stromal interaction 1 (breast) (Epsti1), transcript variant a	NM_029495	0.514737
endothelin receptor type A (Ednra)	NM_010332	0.476219
chemokine (C-C motif) ligand 5 (Ccl5)	NM_013653	0.469792
signal transducer and activator of transcription 1 (Stat1), transcript variant 2	NM_009283	0.450286
epithelial cell adhesion molecule (Epcam)	NM_008532	0.448999
glutathione S-transferase, alpha 3 (Gsta3), transcript variant 1	NM_001077353	0.422778
secreted frizzled-related protein 2 (Sfrp2)	NM_009144	0.398325

表2 DNAマイクロアレイを用いた網羅的解析において発現が減少した遺 伝子

miR-XX処置を行ったマウス3T3-L1細胞を回収し, DNAマイクロアレイを 用いてNegative control群とmiR-XX処置群での遺伝子変化を比較検討し た. DNAマイクロアレイを用いた網羅的解析により変化した脂肪細胞分化 および脂質代謝に関わる遺伝子群のうち, 脂肪細胞分化および脂質代 謝に関与していることがこれまでに報告されており, Negative control群と 比較してmiR-XX処置群での発現が0.39倍(log2X, X=-1.3)以下に減少し た遺伝子を示す.

図6 脂肪細胞分化および脂質代謝におけるACOT2の関与 ACOT2はミトコンドリア内に発現し、分化とともに脂肪細胞で発現が上昇 することが明らかにされている. ACOT2の発現上昇により、脂肪酸のβ酸 化やTCA回路に用いられるCoAレベルが調節されていると考えられている. これらのことから、脂肪細胞分化にはACOT2が重要な役割を果たしてい ると考えられる. 20 nM

Negative miR-XX control

ACOT2 GAPDH

図7 マウス3T3-L1細胞におけるACOT2の発現

マウス3T3-L1細胞にmiR-XX処置を行い、day6でサンプルを回収し、ウエ スタンブロッティングを行った.miR-XX処置により、ACOT2のタンパク質の 発現が増加していることが確認された.GAPDHはタンパク質量が等しいこ とを示す.

	Negative control	ACOT2- siRNA
ACOT2	And the second second	
GAPDH	•	

図8 ACOT2ノックダウンによるACOT2のタンパク発現抑制

マウス3T3-L1細胞にACOT2-siRNA処置を行い, day6でサンプルを回収し, ウエスタンブロッティングを行った. ACOT2のノックダウンにより, ACOT2の タンパク質の発現が抑制されていることが確認された. GAPDHはタンパク 質量が等しいことを示す.

図9 ACOT2ノックダウンによるマウス3T3-L1細胞の成熟脂肪細胞への分 化抑制

マウス3T3-L1細胞にACOT2-siRNA(10 nM)およびNegative control(10 nM)を処置し, Oil Red O染色(A, B)およびTG測定(C)を行った.(A) Negative control 10 nM; (B)ACOT2-siRNA 10 nM; (C)各測定値は, 平均 土標準誤差で表した(n=4). *: p<0.05. ACOT2のノックダウンにより細胞 内脂肪蓄積が減少し, 成熟脂肪細胞への分化が抑制された.

(B)

図10 マウス3T3-L1細胞の脂肪細胞への分化におけるACOT2の関与 脂肪細胞の分化にはmicroRNAを介した分化誘導経路が存在する可能 性があり、その中でmiR-XXは脂肪細胞分化を促進することが認められた. miR-XXの処置による脂肪細胞分化の促進において、様々な分子を介し た数多くの作用があると考えられるが、その中でACOT2を介した作用が miR-XXの処置による脂肪細胞分化促進のメカニズムの一つであることが 明らかになった.