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Ⅰ. 緒言 

 

う蝕や外傷そして歯周病などにより失われた象牙質・歯髄複合体や歯周組織

を回復しうる治療法として組織再生療法が有効であると提唱されてはいるが, 

その治療法は未だ完全には確立されていない. 近年, 幹細胞研究の進展により

幹細胞を用いた組織再生療法について様々な領域で研究がすすめられている[1, 

2]. 歯科においては, 間葉系幹細胞が重要な幹細胞として位置づけられている

[3]. その理由として, 象牙質・歯髄複合体や歯周組織 (歯槽骨や歯根膜など) 

に分化することができる幹細胞として考えられているからである[4]. 間葉系

幹細胞は, 骨格筋や骨そして脂肪などの間葉系組織への多分化能を有する幹細

胞であり[5, 6], 幹細胞を含む細胞集団は, 様々な組織から得られることが報

告されている[7-16]. そして, 間葉系幹細胞は主に骨髄中の微小環境内に存在

し, 間葉系の恒常性の維持のみならず, 造血幹細胞の増殖や分化の制御も行っ

ていることが明らかとなってきている[5, 17-20]. このような間葉系幹細胞が

有する多様な働きは, 組織再生療法における有力な細胞供給源として期待され

ており, また, 倫理的観点や拒絶反応といった問題点についても自己の骨髄細

胞を用いることで解消できることから, 間葉系幹細胞は臨床応用に適した幹細

胞といえる[21]. しかしながら, その性状については依然として不明な点が多
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い.  

Friedenstein らは, 骨髄細胞の中に繊維芽細胞様の形態を持つ骨形成細胞

が存在することを 1970 年代に発見した[22]. その後の研究により, 骨髄中に

存在する付着性の線維芽細胞様細胞は, 1 つのクローンからさまざまな間葉系

細胞に分化できるということがわかってきた[23-25]. こうして, 骨髄中には

多分化能をもつ幹細胞, すなわち間葉系幹細胞が存在するという概念が生まれ

た[5, 7]. そして現在, ヒト間葉系幹細胞は 1) CD14, CD19, CD34, CD45, HLA-DR

といった血球系マーカー群の発現が陰性であること, 2) CD73 や CD90 そして 

CD105 が陽性であること, 3) 付着系細胞であり, 少なくとも骨芽細胞や軟骨芽

細胞そして脂肪細胞の 3 系統の細胞に分化できる幹細胞として, 国際細胞療

法学会によって定義付けられている[26]. しかしながら, 現状の間葉系幹細胞

は heterogeneous であり, 分離法や培養条件によって, 細胞集団の構成が大き

く左右される[27, 28]. ゆえに細胞表面タンパク質の発現量についての解析結

果はまちまちであり, 厳密に定義されたマーカーが存在しないといった問題点

がある[27, 28]. そのため, 分化誘導培地で骨芽細胞や軟骨芽細胞そして脂肪

細胞に分化できる幹細胞を便宜的に間葉系幹細胞として呼んでいるのが現状で

ある.  

 間葉系幹細胞の単離法はまだ確立されていないが, 組織再生療法への応用は
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行われてきている. たとえば, 造血幹細胞移植時に間葉系幹細胞を同時に移植

すると免疫反応の抑制が起こり, 組織片対宿主病が軽減されることが明らかに

なったことから, これを利用した細胞医薬の開発が進められている[29-33]. 

他にも間葉系幹細胞移植により生体内で骨格筋や軟骨などへの分化が可能であ

ることから, 組織再生のための細胞医薬の臨床試験が米国で開始されている

[21]. ところが, 間葉系幹細胞を高濃度で移植すると, 骨や軟骨組織の異所性

形成を誘発するという問題が生じた. これは移植に用いられる間葉系幹細胞集

団内に様々な系列に分化した前駆細胞が存在し, これら前駆細胞によって骨や

軟骨組織の異所性の形成を惹起するのではないかと推察されている[34]. この

ようなことから, 安定した組織再生療法への応用を行ううえで, 前駆細胞の混

入のない間葉系幹細胞を精製する方法の確立は重要であり, 間葉系幹細胞に特

異的なマーカーを見出すことが幹細胞精製の鍵となると考えられる.  現在ま

でに実施されている動物実験においては, マウス骨髄細胞から血球系細胞の混

入を除去することは, 他の種に比べて非常に困難であることが知られているば

かりか[25], 報告されている細胞表面マーカーの結果は一致していない[27, 

35-40]. 

現在, 間葉系幹細胞を分離する方法は, 特定の表面抗原を用いる positive 

selection 法と造血系細胞を除去する negative selection 法の 2 つに大きく
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分けることができる. positive selection 法は, 間葉系幹細胞のマーカーと推

察されている Sca-1, CD44, CD90 (Thy1.1), SH2 (CD105 もしくは endoglin), 

SH3, SH4 (CD73) に対する抗体を用いて行われている[27, 41-44]. 一方, 

negative selection 法は, マウスの骨髄に含まれる多量の血球細胞を取り除く

ためにいくつかの血球系の細胞に対する抗体を使用して行われている[41, 42, 

45]. ところが, 上記の方法により精製した幹細胞集団が, 骨芽細胞や軟骨芽

細胞そして脂肪細胞の 3 系統すべてへの分化能を有していることを検証して

いる報告は少なく, またそれらを示していたとしても in vivo での評価や, ど

の程度濃縮できたかを数値化して示している報告はあまり見当たらない.  

近年, Itoh らはマグネティックマイクロビーズを用いた negative 

selection 法を行うことによって間葉系幹細胞を簡便に濃縮する方法を見出し

た[46]. 通常, 骨髄から調整した濃縮前の骨髄ストローマ細胞に含まれる間葉

系幹細胞は, 15 万個に 1 個の確率で含まれているが, 濃縮した新規細胞集団

には 1000 個に 1 個の確率で含まれていることがわかった. つまり, 間葉系

幹細胞が約 100 倍濃縮されていることが明らかとなった. さらに, この新規

細胞集団を用いて in vivo 細胞移植実験を行い, 移植 2 カ月後の移植片から

組織切片を作成し, 切片を観察したところ, 多量の硬組織の再生が確認された. 

そして, 卵円形の皮質骨様硬組織によって囲まれた内部には, 骨梁や骨髄様組
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織が観察された. さらに, 移植片をマイクロ CT にて硬組織量を測定したとこ

ろ, この新規幹細胞集団は濃縮前の骨髄ストローマ細胞と比較して約 100 倍

もの硬組織再生能を有することが明らかとなった. この硬組織再生能の高い 

"highly purified osteoprogenitors" (HipOPs) と命名された新規幹細胞集団

を本研究に用いることとした[46].  

HipOPs は間葉系幹細胞を濃縮したものではあるが, 未だ heterogeneous な

幹細胞集団である. したがって, 間葉系幹細胞の性状の解明や, 臨床応用のた

めには更なる濃縮が必要である. homogeneous な間葉系幹細胞を精製する新た

な方法を確立するためには間葉系幹細胞表面上特異的に発現する細胞表面マー

カーを見出す必要性がある[24, 27]. その細胞表面マーカーを見出す実験を構

築するために, 1 つの仮説を立てた. つまり, 骨芽細胞や軟骨芽細胞そして脂

肪細胞に分化しうる間葉系幹細胞は, その分化過程で, 細胞表面マーカーの発

現パターンを変化させるのではないかと推察した. 図 1 に示すように, in 

vitro において骨芽細胞や軟骨芽細胞そして脂肪細胞に分化しうる間葉系幹細

胞の細胞表面には 4 種類のタンパク質 (A・B・C・D) が発現しているが, 分化

過程でタンパク質の発現量が変化し, 骨芽細胞上には A , 軟骨芽細胞上には 

B , そして脂肪細胞上には C が発現していると仮定した場合, 差し引きすると 

D のみが間葉系幹細胞上に特異的に発現していることになる. つまり, D のタ
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ンパク質が間葉系幹細胞に特異的な細胞表面マーカーの可能性がある. このよ

うに, 間葉系幹細胞と分化した細胞の細胞表面上に発現するタンパク質群を差

し引きすることで間葉系幹細胞に特異的に発現する細胞表面マーカーが特定で

きると考え, 細胞表面マーカーの発現量の解析を行うこととした.  

しかしながら, 分化した骨芽細胞は, 石灰化物を産生し, この石灰化物が 

FACS 解析を妨げるという障壁が予想された. そこで, その分離法として 

Percoll® 密度勾配遠心分離法に着目した. Percoll® はポリビニルピロリド

ンでコートされた直径 15-30 nm のケイ酸コロイド粒子 (含水率 23%) より成

る試薬で, 遠心分離により特定の細胞や細胞小器官, ウイルス等を分離するた

めに用いられる. これまでにも Percoll® 濃度勾配を用いて末梢血幹細胞を分

離したという報告[47], Percoll® と磁気ビーズにより分化段階別の好中球前

駆細胞を分画採取したという報告[48], Percoll® により母体血中に有核赤血

球を回収したという報告がある[49]. また Percoll® は産婦人科の不妊治療

の場面で臨床応用されており[50-52], 細胞毒性の低い材料であるため[53], 

将来的にも臨床応用しやすいという利点がある. 本研究では Percoll® 密度

勾配遠心分離法を用いて, 石灰化物と分化した骨芽細胞の分離を試みた. さら

に, 開発した方法にて仮想の間葉系幹細胞マーカーの発現についても解析を行

い, 検討した.   
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Ⅱ. 材料および方法 

 

１．HipOPs の調整 

 

 4-6 週齢の C57BL/6J マウス (チャールス・リバー, 横浜) の大腿骨および脛

骨を採取し, 抗生物質を含んだ Alpha modification of Eagle's Minimum 

Essential Medium (α-MEM; life technologies, Carlsbad, CA, USA) に浸漬

した. 骨頭を除去した後に, シリンジを用いて α-MEM を骨髄腔内に注入し, 

骨髄を得た. セルストレーナーを用いて軟組織を除去した後, 細胞培養皿にて 

10% Fetal calf serum (FCS; ニチレイ, 東京) と 1% 抗生物質を含む α-MEM 

にて培養を開始し, 3 日後に Phosphate-Buffered Saline (PBS; Sigma-Aldrich 

Corporation, St.Louis, MO, USA) を用いて 3 回洗浄することで浮遊細胞を除

去した. その後, 2-3 日ごとに培養液を交換し, 80% セミコンフルエントにな

る ま で , 2 週 間 培 養 を 続 け た . そ し て , 0.25% Trypsin- 

Ethylenediaminetetraacetic acid (0.25% Trypsin-EDTA solution, life 

technologies) 処理にて付着細胞を回収した (骨髄ストローマ細胞）. 回収し

た骨髄ストローマ細胞と, 血球系細胞のマーカー分子に対する抗体 (抗 CD5, 

抗 CD45, 抗 CD11b, 抗 Gr-1, 抗 7-4, 抗 Ter-119, 抗 CD45R) が結合したマグネ
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ティックビーズ (Miltenyi Biotec, Bergisch Gladbach, Germany) とを反応さ

せた. 反応後, マグネティックカラムに注入し, カラムから流出してきた細胞

を回収し, 間葉系幹細胞集団 (HipOPs : highly purified osteoprogenitors) 

として以下の実験に用いた[46]. なお, 本研究における全ての動物実験は, 大

阪大学大学院歯学研究科動物実験委員会の審査を受け, 承認のもとに実施した. 

(受付番号: 動歯-21-002-0 および動歯-26-011-0) 

 

２. 骨芽細胞への分化誘導と alkaline phosphatase (ALP) 染色および von 

Kossa 染色 

 

HipOPs を  10% FCS 含 有  α -MEM に  50 µg/ml ascorbic acid (AA; 

Sigma-Aldrich Corporation) と , 10 mM β -glycerophosphate ( β g; 

Sigma-Aldrich Corporation) , 10-8 M dexamethasone (Dex； Sigma-Aldrich 

Corporation) を添加した骨芽細胞分化誘導培地にて細胞を培養した. 7 日間培

養後, 10% 中性緩衝ホルマリン液で 15 分間固定した. Tris-HCl に Fast red 

violet LB Salt お よ び  Naphthol AS-MX phosphate (Sigma-Aldrich 

Corporation) を溶解させて作製した ALP 染色液を加えて 45 分間放置したの

ち, 蒸留水で 3 回洗浄した. さらに 2.5% 硝酸銀水溶液を加えて 30 分間放
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置し, 蒸留水で 3 回洗浄した.  

 

３. Percoll® 密度勾配遠心分離法 

 

HipOPs を  10% FCS 含 有  α -MEM に  50 µg/ml AA (Sigma-Aldrich 

Corporation) と 10 mM βg (Sigma-Aldrich Corporation) そして 10-8 M Dex 

(Sigma-Aldrich Corporation) を添加した骨芽細胞分化誘導培地にて細胞を培

養した. 7 日後に Trypsin-EDTA 処理にて細胞を回収した. Percoll® (GE ヘル

スケアジャパン, 東京) を Hank's balanced salt solution (HBSS; life 

technologies) にて希釈して 10% おきに 10% から 80% の Percoll® 溶液を

調製した. 遠沈管に各濃度の Percoll® 溶液層を作製し, 濃度勾配を作製し

た. そこに HipOPs の細胞懸濁液を填塞し, 3000 rpm で 10 分間, 4 ◦C にて遠

心分離を行った. 各界面の細胞層を回収し, その後 Fluorescence activated 

cell sorting (FACS) 解析を行った. 

 

４．脂肪細胞への分化誘導と Oil red O 染色 

 

 HipOPs を  10% FCS 含 有  α -MEM に  50 µg/ml AA (Sigma-Aldrich 
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Corporation) と PPARγ のリガンドとして知られる 10-2 mM rosiglitazone 

(BRL49653; Cayman Chemical, Michigan, USA) を添加した脂肪細胞分化誘導培

地にて培養した. 7 日間培養後, 脂肪滴を内在する細胞を 10% 中性ホルマリン

溶液にて固定し, Oil red O 溶液 (0.5% Oil red O 含有 isopropanol を 3 : 2 

の割合にて蒸留水で希釈したもの) を用いて 30 分間染色を行った. 染色後, 

蒸留水にて 3 回洗浄した. 

 

５. 軟骨細胞への分化誘導と ２型コラーゲン免疫組織化学染色 

 

HipOPsを 10% FCS 含有 α-MEM に 50 µg/ml AA (Sigma-Aldrich Corporation) 

と, 10-8 M Dex (Sigma-Aldrich Corporation) , 50 ng/ml recombinant human BMP2 

(R&D Systems, Minneapolis, MN, USA) を添加した軟骨細胞分化誘導培地にて

細胞を培養した. 7 日間培養後, 10% 中性ホルマリン溶液にて 30 分間固定し, 

ヤギ抗 2 型コラーゲン抗体 (Santa Cruz Biotechnology, Inc., Dallas, TX, 

USA) を反応させ, ビオチン標識ウサギ抗ヤギ IgG 抗体と Vectastain Elite 

ABC kit (Vector Laboratories Inc., Burlingame, CA, USA) にて染色した. 

 

６.脂肪細胞分化マーカーと軟骨細胞分化マーカーの定量 



 

 

11 

 

 脂肪細胞分化誘導培地および軟骨細胞分化誘導培地にて 7 日間培養した後, 

Sepasol-RNAⅠ (ナカライテスク, 京都) を用いて mRNA を抽出した. この 

mRNA から, Oligo-dT Primer (Life Technologies) および逆転写酵素 (東洋紡, 

大阪) を用いて cDNA を合成した. cDNA は, 脂肪細胞分化マーカーである 

PPARγ, 軟骨細胞分化マーカーである aggrecan に特異的なプライマー (表 1) 

および SYBR Green PCR master mix (Applied Biosystems, California, USA) そ

して ABI 7500 Fast System (Applied Biosystems) を用いて (95℃ 10 秒 / 60℃ 

30 秒) × 40 サイクルのリアルタイム PCR を行った. これらの遺伝子発現量

の定量は, 内在性コントロールとして用いた L32 遺伝子の発現量との比較に

より行った. この相対的定量化に必要な計算は, ⊿⊿ Ct 法により行った. 

 

７. 細胞表面マーカーの発現解析 

 

細胞を CD16/CD32 (BD Biosciences, Mountain View, CA, USA) にてブロッ

キングした後, ビオチン化抗 Sca-1, CD34, CD44, CD73, CD90, CD105, CD106 抗

体を各々15分間反応させる. その後, APC-streptoavidine (BD Biosciences) に

て発色させた. 各々の細胞表面マーカー分子の発現量は, guava easyCyte (EMD 

Millipore Corporation, Billerica, MA, USA) を用いて解析した. 
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８．統計処理 

 

結果は平均値 ± 標準誤差で表示した. 一連の実験では Student's t-test 

または One-way ANOVA および Tukey's test によって有意水準 5% で統計学的

検定を行った. 
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Ⅲ. 結果 

 

１. 骨芽細胞によって産生される石灰化物の FACS 解析への影響 

 

本研究では Itoh らの方法で濃縮した HipOPs [46]を間葉系幹細胞集団とし

て用いた. この間葉系幹細胞集団 HipOPs を骨芽細胞分化誘導培地にて 7 日

間培養し, ALP 染色および von Kossa 染色を行ったところ, Colony-forming 

units-osteoblast (CFU-O) の形成が確認された (図 2 A). 通常, 間葉系幹細

胞集団として骨髄ストローマ細胞が用いられるが, 骨髄ストローマ細胞を同様

の条件下で培養した場合, 28日培養の後に CFU-O が観察されることがわかって

いる. つまり, HipOPs は骨髄ストローマ細胞 (通常の間葉系幹細胞集団) と比

較して1/4の期間で CFU-O を形成することがあきらかとなった. このことから 

HipOPs は, 間葉系幹細胞が濃縮された細胞集団であることがあらためて証明

された[46]. そして, HipOPsを骨芽細胞分化誘導培地にて 7 日間培養し, 骨芽

細胞へと分化した HipOPs (Osteoblastic-HipOPs: OB-HipOPs) を回収し, FACS

解析を行った. 図 2 B のように, X 軸を Forward scatter (FSC) にて Y 軸を 

Side scatter (SSC) にて展開したところ, Y 軸近傍に偏在するパターンを示し

た. この結果は, 石灰化物のみが検出され, 生細胞を検出することができなか
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ったことを示している (図 2 B). さらに, OB-HipOPs を biotin-抗 IgG1 抗体

と反応させたのち,  APC-ストレプトアビジンにて発色させ, FACS 解析を行っ

た. その結果, 抗 IgG1 抗体蛍光強度で展開したヒストグラムにおいて, IgG1 

抗体がコントロール抗体であるにも関わらず, 偽陽性のピークが検出されるこ

とがわかった (図 2 C). 以上の結果から, 分化した骨芽細胞の細胞表面タンパ

ク質を解析するためには, 産生された石灰化物を除去することが必須条件であ

ることが明らかとなった. 

 

２. 分化した骨芽細胞により生じた石灰化物の除去法の検索 

 

石灰化物を除去する方法として, 目的の細胞を分離するために多くの分野で

広く用いられている Percoll® 密度勾配遠心分離法に着目した. 図 3 に 

Percoll® 密度勾配遠心分離法の 1 例として, 10% と 20% の Percoll® 濃度

勾配を用いて分化した骨芽細胞と産生された石灰化物を分離する方法の概略図

を示す. まず, Percoll® を HBSS にて希釈して 10% と 20% の Percoll® 溶

液を作成する. そして, 高濃度の 20% Percoll® 溶液を遠沈管へ静かに注入し, 

次に 20% Percoll® 溶液の上に低濃度の 10% Percoll® 溶液を静かに注入し

て, 10% と 20% の異なった濃度の 2 層の濃度勾配を作製した. 次に, HipOPs 
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を骨芽細胞分化誘導培地にて培養し, 骨芽細胞へと分化した OB-HipOPs を回

収後, HBSS にて懸濁した. この OB-HipOPs 細胞懸濁液を 10%-20% Percoll® 

密度勾配上へ静かに注入した後, 遠心分離した. すると, 石灰物は沈殿し, 10% 

と 20% の層の界面に, 細胞層の存在が観察された (図 3). 同様に, 20%-30%, 

30%-40%, 40%-50%, 50%-60%, 60%-70%, 70%-80% の Percoll® の濃度勾配を用

いて細胞分離を行ったところ, 石灰化物の沈殿および界面に細胞層の存在が観

察された. そして, 界面の細胞層から回収した骨芽細胞 (OB-HipOPs) に対し

て FACS 解析を行った. 図 4 に示すように, X 軸を FSC にて Y 軸を SSC に

て展開したところ, 図 2 B とは明らかにことなるパターンを示した. つまり, 

回収された OB-HipOPs は, 生細胞が検出される領域に分布していることがわ

かった. そして, 10%-20%, 20%-30%, 30%-40%, 40%-50%, 50%-60%, 60%-70% の

界面からも生細胞が検出される結果が得られた. しかしながら, 70%-80% の界

面から生細胞は検出されなかった (図 4). これらの結果から, Percoll® 密度

勾配遠心分離法を用いることで, 石灰化物が除去され, 分化した骨芽細胞を

10% から 70% の界面から回収できることがわかった.  

 

３．分化した骨芽細胞を回収する最適な濃度勾配の検索 
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次に, OB-HipOPs は 10% から 70%までの濃度勾配から回収されることから, 

10%-20%, 20%-30%, 30%-40%, 40%-50%, 50%-60%, 60%-70%, 70%-80% の 

Percoll® 濃度勾配を作成しなくとも 10% と 70% の 2 層の Percoll® 濃

度勾配だけで石灰化物と OB-HipOPs を分離することが可能なのではないかと

考えた. そこで, 10% と 70% の 2 層の Percoll® 濃度勾配を遠沈管に作成

し, OB-HipOPs を填入し, 遠心分離したところ, 石灰物の沈殿および, 10% と 

70% の界面に細胞層を確認することができた. そして, FACS 解析の結果, 生

細胞が存在することが確認された (図 5 A) . さらに, 回収した OB-HipOPs 

を biotin-抗 IgG1 抗体と反応させたのち, APC-ストレプトアビジンにて発色

させ, FACS 解析を行った. その結果, 抗 IgG1 抗体蛍光強度で展開したヒス

トグラムにおいて, 図 2 C に示されるような, 石灰化物を除去していない 

OB-HipOPs で観察されていた偽陽性ピークは, この 10%-70% Percoll® 密度勾

配遠心分離法を用いて分離した OB-HipOPs では観察されないことがわかった 

(図 5 B). この結果から, 石灰化物の除去および分化した細胞の回収は, 

10%-70% Percoll® 密度勾配が試験条件の中では最適であることが明らかとな

った. 

 

４．細胞表面マーカーの発現解析 
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最後に, 10%-70% Percoll® 密度勾配遠心分離法によって分離した OB-HipOPs 

と HipOPs との間での細胞表面タンパク質発現量の差異について, 現在のとこ

ろ間葉系幹細胞マーカーとして考えられている, Sca-1, CD34, CD44, CD73, CD90, 

CD105, CD106 (仮想間葉系幹細胞マーカー) について検索を行った. 10%-70% 

Percoll® 密度勾配遠心分離法にて分離した OB-HipOPs と HipOPs をそれぞ

れ, 各 biotin-抗 Sca-1, CD34, CD44, CD73, CD90, CD105, CD106 抗体と反応

させたのち, APC-ストレプトアビジンにて発色させ, FACS 解析を行った.その

結果, OB-HipOPs では Sca-1, CD44, CD73, CD105, CD106 の発現量が大幅に減

少していることがわかった (図 6, 表 2). 特に CD105 については特徴的な発

現パターンを示していた. つまり HipOPs では CD105 を高発現している細胞

群 (CD105 
high

 細胞群) と, 低発現の細胞群 (CD105 
low

 細胞群) からなる二峰

性を示しているが, 分化した OB-HipOPs では HipOPs の CD105 
low

 細胞群と

重なる一峰性の発現パターンを示した.  

次に, 脂肪細胞および軟骨芽細胞へ分化させた HipOPs に対しても細胞表面

タンパク質発現量の検索を行った. まず, それぞれの分化誘導培地にて培養し

た HipOPs がそれぞれの系列の細胞に分化しているかどうかについて検証した.  

HipOPs を脂肪細胞分化誘導培地にて 7 日間培養後, Oil red O 染色を行った

ところ, 多数の Oil red O 陽性細胞が確認された (図 7 A). さらに, 脂肪細
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胞の分化マーカーである PPARγ の発現量をリアルタイム PCR にて検索した

ところ,  PPARγ の発現量の上昇も確認された (図 7 C). また, 軟骨芽細胞分

化誘導培地中で 7 日間培養した後, 抗 2 型コラーゲン抗体を用いての免疫染

色をおこなったところ, 多数の 2 型コラーゲン陽性細胞が確認された(図 7 B). 

さらに, 軟骨芽細胞の分化マーカーである Aggrecan の発現量をリアルタイム 

PCR にて検索したところ, Aggrecan の発現量の上昇も確認された (図 7 D). 

以上の検証結果から, HipOPs を脂肪細胞分化誘導培地にて 7 日間培養した細

胞を脂肪細胞へ分化した HipOPs (Adipogenic-HipOPs: AD-HipOPs) として, ま

た HipOPs を軟骨芽細胞分化誘導培地にて 7 日間培養した細胞を軟骨芽細胞へ

分化した HipOPs (Chondrogenic-HipOPs: Ch-HipOPs) として以下の FACS 解

析に用いた. また, 脂肪細胞分化誘導培地および軟骨芽細胞分化誘導培地にて

培養を行っても石灰物は産生されないため, Percoll® 密度勾配遠心分離法を

行う必要性はなく, 分化誘導した細胞を直接 FACS 解析に供した.  

まず, AD-HipOPs と HipOPs の間での Sca-1, CD34, CD44, CD73, CD90, CD105, 

CD106 の発現量の差異について検索をおこなった.  AD-HipOPs と HipOPs を

それぞれ, 各 biotin-抗 Sca-1, CD34, CD44, CD73, CD90, CD105, CD106 抗体

と反応させたのち, APC-ストレプトアビジンにて発色させ, FACS 解析を行った. 

その結果, AD-HipOPs では Sca-1, CD73, CD105, CD106 の発現量が大幅に減少
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していることがわかった (図 8, 表 3). 特に, CD105 の発現は他の細胞表面タ

ンパク質と異なる発現パターンを示していた. 同様に, Ch-HipOPs と HipOPs 

の間での仮想間葉系幹細胞マーカーの発現量の差異についても検索をおこなっ

た. その結果, Ch-HipOPs においても Sca-1, CD73, CD105, CD106 の発現量が

大幅に減少しており, CD105 の発現パターンは特徴的であった. (図 9, 表 4). 

以上の結果から, HipOPs と, 分化した OB-HipOPs と AD-HipOPs そして

Ch-HipOPs との間での細胞表面タンパク質の発現量の差異について検索するこ

とが可能となり, Sca-1, CD44, CD73, CD105, CD106 の発現量に差異があるこ

とが明らかとなった.  
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Ⅳ. 考察 

 

間葉系幹細胞は象牙質・歯髄複合体や歯周組織といった多様な細胞に分化で

きる幹細胞として組織再生療法への応用が期待されている. しかしながら, 現

状の間葉系幹細胞は, 特定の形態学的特徴や特異的な細胞表面マーカーなどに

より定義された細胞ではなく, 少なくとも in vitro で骨芽細胞や軟骨芽細胞

そして脂肪細胞に分化しうる幹細胞集団を便宜的に間葉系幹細胞として定義さ

れているに過ぎないため, 未だに詳細な性状はわかっていない. 間葉系幹細胞

の性状を解明するためには, 間葉系幹細胞を単離する必要性があり, 間葉系幹

細胞の表面上に特異的に発現する細胞表面マーカーを見出すことが重要である. 

そこで, 間葉系幹細胞集団として骨髄ストローマ細胞から間葉系幹細胞を濃縮

して得られた細胞集団 (HipOPs) [46]を用いて細胞表面マーカーの解析を行う

こととした. また, 本研究ではマウス骨髄細胞を実験に用いた. これはマウス

骨髄細胞を用いる際多数匹の骨髄を混合して使用するため, ヒト骨髄細胞に比

べて個体差の影響を受けにくいこと, また将来的に間葉系幹細胞を維持する遺

伝子の解析を行う場合, 遺伝子改変マウスを使用することが可能だからである. 

そして, マウス骨髄細胞で間葉系幹細胞を分離し, 間葉系幹細胞の詳細な性状

や分化メカニズムを明らかにした後に, ヒト骨髄細胞へ応用することを考えて
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いる. 

HipOPs を, 骨芽細胞分化誘導培地や軟骨芽細胞分化誘導培地および脂肪細

胞分化誘導培地にて培養し, 分化誘導前の HipOPs と分化誘導後の HipOPs 上

に発現する細胞表面タンパク質の発現量を比較することで, 真の間葉系幹細胞

マーカーを特定できるのではないかとの仮説を立てた. すなわち, マウス間葉

系幹細胞集団として HipOPs を用い, 骨芽細胞分化誘導培地や軟骨芽細胞分化

誘導培地および脂肪細胞分化誘導培地にて培養して, 分化誘導をおこない, 分

化誘導前の HipOPs と分化誘導後の HipOPs 上に発現する細胞表面タンパク質

を比較することで, 真の間葉系幹細胞マーカーを特定できるのではないかと考

えた.  

まず, 7 日間の分化誘導で HipOPs が骨芽細胞や軟骨芽細胞そして脂肪細胞

に分化できることを細胞染色と分化マーカーの発現レベルにて確認した (図 2 

A, 図7). その後, これら分化した細胞に対して FACS 解析を行ったところ,  

骨芽細胞が分化する過程で多量の石灰化物を産生するため, 骨芽細胞分化誘導

培地にて培養した HipOPs の細胞表面タンパク質の解析は不可能であることが

明らかになった (脂肪細胞および軟骨芽細胞は解析可能であった). その理由

は, フローサイトメーターは石灰化物を 1 つの細胞として検知してしまうた

め, 分化した生細胞を解析することができず, FSC の小さな石灰化物のみを検



 

 

22 

 

出したからである (図 2 B). さらに石灰化物が多量に混入した OB-HipOPs を 

FACS 解析すると IgG1 抗体はコントロール抗体であるにも関わらず, 陽性領

域に蛍光強度のピークを認め, 石灰化物が自己蛍光を引き起こしていることが

明らかとなった (図 2 C). このように石灰化物がサンプルに混入していると 

FACS 解析の結果に偽陽性が生じる危険性が示されたために, 石灰化物から生

細胞を分離する新しい方法を開発する必要性が生じた.  

そこで, Percoll® 密度勾配遠心分離法を用いて石灰化物と OB-HipOPs の分

離を試みた. 結果, 10%-70% の 2 層の Percoll® 濃度勾配で十分に石灰化物

を除去し, 分化した細胞を回収することに成功した. 10%-70% の 2 層の 

Percoll® 濃度勾配によって回収された細胞に対して FACS 解析を行ったとこ

ろ, Percoll® を用いていない場合と比較すると, FCS の小さい石灰化物が認

められず, また分化した生細胞が回収できていることが明らかとなった (図 5 

A). さらに FACS 解析おいて, 石灰化物を除去していない OB-HipOPs で観察

されていた偽陽性ピークが, この Percoll® 密度勾配遠心分離法を用いて分

離したOB-HipOPs では観察されなかった (図 5 B). この結果から, 10%-70% 

Percoll® を用いることで, 骨芽細胞分化誘導培地で分化させた細胞を FACS 

解析する際に, 石灰化物による偽陽性を陽性細胞として計測してしまうことか

ら回避できることが示された.  
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近年, 骨関連遺伝子改変マウスを作製し, 骨細胞を 99% の純度で取り出す

ことに近年成功したという報告があった[54]. しかし, この方法は遺伝子操作

が介入しており, 安全性という点で問題があると思われる. 一方, 本研究にお

ける骨芽細胞回収の方法は遺伝子操作等の処理は必要としない簡便な方法であ

り, また, Percoll® の濃度勾配を 10%-70% の中で細かく変化させることで, 

骨芽細胞のより詳細な分化段階をみることができる可能性があり, 本法は非常

に有用であるといえる.  

ところで, これまでのさまざまな研究グループにより, 間葉系幹細胞マー

カーについて解析されてきた[17, 55-57]. 間葉系幹細胞上には, CD11b,   

CD31 および CD45 といった血球系細胞上に発現している細胞表面マーカーが

発現していないという共通した見解が得られている. 一方で, ヒトおよびラ

ットの間葉系幹細胞は, 血球系細胞マーカーである CD34 の発現が陰性であ

るとの報告があるが, マウス間葉系幹細胞の CD34 の発現については陽性で

あるという報告や陰性であるという報告があり一致した見解が得られていな

い[35, 55, 56]. MHC class Ⅰ と Sca-1 の発現は, 多くの研究グループから

の報告で陽性であるという一致した見解が得られており, また, 間葉系幹細

胞は CD44 や CD49e そして CD62 などといった接着分子を発現していること

も報告されている[5, 55, 56, 58, 59]. CD73, CD90, CD105, CD117(c-kit), 
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STRO-1 については, それぞれの研究グループごとでその発現強度において異

なった結果が報告されている[5, 26, 57, 60-62]. このように間葉系幹細胞の

細胞表面に発現するタンパク質については異なった見解が認められる. その

理由のひとつとして, 現在, 間葉系幹細胞として研究に用いられている細胞

集団は heterogeneous であることが考えられる. 間葉系幹細胞は分離法や培

養条件に大きく左右されることから, 厳密に定義されたマーカーが未だに存

在しないためである. 本研究では骨髄ストローマ細胞と比較して硬組織再生

能が高く, 濃縮された間葉系幹細胞集団である HipOPs を解析に用いて, 仮

想マウス間葉系幹細胞マーカーと考えられている Sca-1, CD34, CD44, CD73, 

CD90, CD105 および CD106 の発現について解析することとした.  

FACS 解析の結果, HipOPs と比較して OB-HipOPs (前駆骨芽細胞と骨芽細胞

を含む) では Sca-1, CD44, CD73, CD105, CD106 の発現が著明に減少すること

がわかった (図 6, 表 2). また, 分化した AD-HipOPs と Ch-HipOPs におい

て, Sca-1, CD73, CD105, CD106 の発現が減少することがわかった (図 8, 9

および表 3, 4). 間葉系幹細胞から骨芽細胞や軟骨芽細胞そして脂肪細胞への

分化の過程において, 細胞表面マーカーの発現パターンが変化するならば, 

図 1 に示すコンセプトから Sca-1, CD73, CD105, CD106 が間葉系幹細胞マー

カーの候補となりうる可能性がある. また, 図 6, 8, 9 を比較すると, CD44 
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の発現は AD-HipOPs や Ch-HipOPs への分化過程で, その発現量に変化がな

かったのに対し, OB-HipOPs への分化過程では減少を認めた. この結果から 

CD44 が骨芽細胞の分化に関わっている可能性が示唆された. CD44 はリンパ球

や顆粒球などの造血系細胞以外にも組織マクロファージや繊維芽細胞, ケラ

チノサイト, 上皮細胞など多様な細胞に発現していることが知られており

[63], 細胞運動やがん細胞の浸潤, 増殖にも関与している接着分子である

[64]. またリガンドはオステオポンチンであることが報告されている[65]. 

したがって, CD44 は骨芽細胞の分化過程において重要な働きがあると考えら

れているが, 分化する過程で CD44 の発現が減少するという結果が得られて

いる. 本研究の目的は細胞と石灰化物の分離であり, 10%-70% 濃度勾配を用い

ることで生細胞を余すところなく回収することができた. また一方, 10%-70% 

の分画から採取される細胞の中に分化途上から成熟した骨芽細胞まで, 様々

な分化段階の骨芽細胞が含まれているため, 分化段階別の骨芽細胞上の細胞

表面タンパク質の解析においては, より細かい分画毎の今後さらなる詳細な

解析が必要であると考えている.  

また, CD105 は血管内皮細胞に強く発現し, 血管新生及び造血において重要

な役割を果たしていることから血管内皮細胞のマーカーとして考えられてい

る[66, 67]. この CD105 の発現パターンでは, 骨芽細胞や軟骨芽細胞そして
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脂肪細胞に分化する過程で二峰性から一峰性に変化していることが観測され

た. そして, 分化後の HipOPs が示す細胞集団は, 分化する前の HipOPs の 

CD105 
low

 の細胞集団と重なっていることがわかる. このことから CD105 
high

 

細胞群が分化前の細胞に特異的な細胞集団, すなわち間葉系幹細胞群である

ことが推察された. そこで, CD105 
high

 細胞群と CD105 
low

 細胞群を 

FACSaria にてソーティングし, limiting dilution 法にて幹細胞の含まれる

確率を計測したところ, CD105 
high

 細胞群は HipOPs と比較して幹細胞の含ま

れる確率が高いという結果が得られた (未発表データ). これについてはこれ

から更なる検証を重ねる予定にしている. 今後, CD105 だけでなく, 他の間葉

系幹細胞マーカー候補, 例えば CD13, CD29, CD31, CD45, CD117, SSEA4[35, 60, 

68-70], のみならず包括的に様々な細胞表面タンパク質の発現について検索

を行い, 最終的には見出した特異的マーカーにて間葉系幹細胞を分離したい

と考えている.  

ところで, 骨芽細胞は, 多量の 1 型コラーゲンを形成し, そこにオステオ

カルシンやアルカリフォスファターゼなどの細胞外タンパク質を分泌し類骨を

形成する. その後, 類骨上にリン酸カルシウムが沈着, 蓄積し, ハイドロキシ

アパタイトが形成され石灰化がすすんでいく. こうして軽量であるが強度のあ

る成熟した骨が形成されていく[71]. 上記のような働きを持つ骨芽細胞は間葉
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系幹細胞由来であり, その分化段階で前骨芽細胞 (pre-osteoblast) という前

段階を経て成熟した骨芽細胞へ分化すると推測されている. 骨芽細胞の分化は， 

bone morphogenetic proteins (BMPs) ，insulin-like growth factor 1 (IGF-1) ，

fibroblast growth factor2 (FGF-2) , parathyroid hormone (PTH) , tumor 

necrosis factor-α (TNF-α) , Wnt などのホルモンやサイトカイン, そして

細胞外マトリックスなどの刺激によって, 様々なシグナル伝達経路が活性化さ

れ, 骨芽細胞の分化が誘導される[72]. その中でも, 骨芽細胞の分化を制御す

る主たる転写因子として Runx2 (runt-related trancription facter 2) と 

Osterix が知られている. 例えば, Runx2 の遺伝子を欠損させた Runx2
-/-

マウ

スは, 骨芽細胞の分化が起きないことが報告されており[73, 74], 骨芽細胞分

化には Runx2 が必須であることがわかっている. さらに, 骨基質の合成を含む

成熟した骨芽細胞の適切な機能のために必要であることもわかっている[75]. 

また, Osterix は Runx2 とともに, 骨芽細胞分化のために必要な転写因子であ

り, 骨芽細胞分化の際, Runx2 の下流で機能することが知られている[76, 77]. 

それぞれの発現については, 前駆骨芽細胞は Runx2 を発現していること, そし

て, より分化の進んだ段階では Runx2 と osterix の両方を発現していること

がわかっている[24]. 本研究では骨芽細胞分化と細胞表面タンパク質の発現量

について解析を行ってきたが, 骨芽細胞分化に関連する転写制御因子の発現レ
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ベルとあわせて考察することでより詳細な骨芽細胞の分化過程を理解できるの

ではないかと考えている. この前骨芽細胞は間葉系幹細胞から成熟した骨芽細

胞までの分化途中のすべての細胞を含んだ細胞集団であるため, 必然的に不均

一な集団となっている. 確かに前骨芽細胞は存在し, 生物学的な議論をするう

えで重要なものであるが, 1 つの分化段階を経るのみなのか, 多数の分化段階

を経るのか, それを裏付ける研究成果は今のところ得られていない. したがっ

て, 間葉系幹細胞から骨芽細胞までの分化過程についてはほとんど理解されて

いないというのが現状である. Percoll® の濃度勾配を用いてマウス頭蓋骨の

骨芽細胞集団を 3 つの分画に分離, 解析した報告があるが[78, 79], 骨芽細胞

が分化する際により細かい段階を経るかどうかについては検討する必要があ

る.     

今後, 研究成果である Percoll® 密度勾配遠心分離法を用いて, 間葉系幹

細胞から前骨芽細胞を経て骨芽細胞に至るまでの各分化段階で発現する細胞表

面マーカーと転写制御因子群との関連性を示し, より詳細な骨芽細胞の分化段

階を解明したいと考えている. また, この解析の過程で, 間葉系幹細胞特異的

なマーカーを発見することができれば, 間葉系幹細胞の単離および解析が可能

となり, 歯科のみならず, 整形外科も含めた広範な領域における再生医療の発

展に大きく貢献できるものと考えている. 
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Ⅴ. 結論 

 

 10%-70% の Percoll® の濃度勾配という簡便な方法を用いることで, 分化

した骨芽細胞を石灰化物から分離・回収することができた. そして, 本法を用

いて間葉系幹細胞から分化する過程での細胞表面タンパク質の発現について解

析したところ, Sca-1, CD73, CD105, CD106 が間葉系幹細胞マーカーの候補で

あることが示唆された.  
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