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1. Introduction. This paper studies direct sums of CS-modules. We give a
number of necessary and sufficient conditions for such sums to be CS-, or
quasi-continuous, modules. This question was settled in [7], in a very satisfactory
way, in case the ring is commutative Noetherian. The case dealt with here is
more general.

Direct sums of indecomposable modules have been investigated in great detail,
in long series of papers, by M. Harada and K. Oshiro, and by B.J. Muller and
S.T. Rizvi.

The well known Matlis-Papp’s Theorem, for injective modules, was generalized
to continuous modules in [10], and to extending modules, so to quasi-continuous
modules, in [11]. The present paper generalizes such a Theorem to 1-quasi-
continuous modules. As a result, we obtain that, over a right Noetherian ring,
1-quasi-continuity is equivalent to the extending property for independent family
of modules.

All modules here are right-modules over a ring R. m° denotes the annihilator
in R of the element me M. X <°M and Y =®M signify that X is an essential
submodule, and Y is a direct summand, of M. A submodule A4 is closed in M
if it has no proper essential extensions in M.

A module M is called a CS-module (n-CS-module), if every closed submodule
A of M (A of M with U-dim(4)<n) is a direct summand. M is quasi-continuous
(n-quasi-continuous) if it is CS- (#n-CS) module, and satisfies the following; (C;)
(n-Cy)): For all X,Y<®M (for all X,Y =®M, with U-dim(X), U-dim(Y)<n),
where XnY =0, one has XY =® M. A direct sum @, N; of submodules of M
is called a local direct summand if @, N; < ®M, for all finite subsets F of I.

For a decomposition M =@, ; M;, we recall the following conditions:

(A,): For any choice of xe M; (iel), and m;e M, for distinct i;el, je N, such

that m) = x°, the ascending sequence N;,,m} (neN) becomes stationary.

(A3): For any choice of distinct i;el (je N) and m;e M;, if the the sequence

m§ is ascending, then it becomes stationary.

(IsTn) (locally semi-T-nilpotent): For every sequence f,: M; — M, _,

ne N, of non-isomorphisms, with all i, distinct, and every xe€ M;
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126 M.A. KaMAL
there exists ke /V such that ff _,---fo(x)=0.

2. The decomposition theorem. In this section, we show that every
1-quasi-continuous module, over a right Noetherian ring, is a direct sum of
uniform submodules.

Lemma 1. Let M be a 1-CS-module. Then every closed submodule of M of
the form ®7_, A;, with all A; uniform, is a direct summand.

Proof. By induction. Assume that the claim holds true for n, and let
A=@®}_yA; be a closed submodule of M. By induction, A*=:7_, 4; is a direct
summand. Write M=A*®M*, it follows that A=A*@AnM*. It is clear that
AnM* is a closed and uniform submodule of M. Since direct summands of
1-CS-modules are 1-CS-modules, we have AnM* <= ®M. Therefore 4 =®M.

Lemma 2. Let M be a 1-CS-module. Then every non-zero closed submodule
of M, of finite uniform dimension, contains a uniform summand.

Proof. Let A#0 be a closed submodule of M, with U-dim(4)<oo. Let 4,
be a uniform submodule of 4, and let U be a maximal essential extension of A4,
in A. Since U is closed in 4, and A4 is closed in M; we have that U is closed
in M. Since M is a 1-CS-module, we obtain U = ®M; and therefore U <=®A4.

Corollary 3. Let M be a module over a right Noetherian ring. If M is a
1-CS-module, then every non-zero closed submodule contains a uniform direct
summand.

Proposition 4. If M is a 1-CS-module, then M is an n-CS-module.
Proof. Lemma 1, and Lemma 2.

Lemma 5 ([7]), Lemma 17). Let M=X®Y be a module, where Y is
X-injective. Let N be a submodule of M, with NnY=0. Then there is a
homomorphism f:X—>Y such that N<X'=: {x+f(x): xeX}=X, and that
M=X®@Y.

Lemma 6 ([9], Theorem 7). For a module with a decomposition M =@ ;. M,,
and with all M; indecomposable, The following are equivalent:

1) M is quasi-continuous;,
2) the M; are quasi-continuous and M -injective (j#icl), and (A;) holds.

Lemma 7. Let M be a 1-quasi-continuous module. Then for every family
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{A;}i- | of uniform direct summands of M, with X7_ | A; direct, one has ®"_, A, <®M.

Proof. By induction. Let the claim hold true for n, and consider @7_, 4,,
with all 4; uniform summands of M. By induction, ®7_, 4, =®M. By Proposition
4, M is an n-CS-module; and hence ®7_qA4; =°K <®M. Write K=@"., 4,0K,.
Since direct summands of 1-quasi-continuous modules are 1-quasi-continuous
modules; then, by Lemma 6, ®/_; 4, is Kj-injective. Hence, by Lemma 5,
K=®!_, A,®K}; where 4, SK,=K,. Since 4, is a uniform direct summand of
M, it follows that A,=K}. Therefore @'_,4;=K =®M.

Lemma 8. Let M be a module over a right Noetherian ring R. Then every
local direct summand of M is a closed submodule of M.

Proof. Let L=@®,,;L; be a local direct summand of M, and let
L c*K< M. Consider an arbitrary xe K, and let J=:{reR: xreL}. Since J is
a finitely generated right ideal of R, it follows that (for some finite subset F of 1)
xJ S @;r L. Since @ rL; is a local direct summand of M, we have that
K=®,L,®K'. Hence x=a+b, where ae ®,rL;, and beK*. It is clear that
J={reR: breL}. If b#0, then there is reJ such that O0#br=ar—xr
€ @, rL;nK*=0, which is a contradiction. Thus x=ae L. Therefore L=K.

Theorem 9. Let M be a 1-quasi-continuous module over a right Noetherian
ring R.  Then every closed submodule of M is a direct sum of uniform submdules. In
particular M is a direct sum of uniform modules.

Proof. Let N be a closed submodule of M. Let ¥ =: {N, acA} be the
family of all uniform direct summands of N. By Corollary 3, % is not empty. We
call a subset J of A direct, if the sum X, ;N is direct. Consider the collection
of all direct subsets of A, ordered by inclusion. An application of Zorn’s Lemma,
yields a maximal direct subset 7 of A. Again by Corollary 3, it follows that
@;r N; €°N. Since N; =®N and since N is closed in M, we have that N; is closed
in M. Since M is a 1-CS-module, we get that N, =®M for all iel. Thus, by
Lemma 7 and since M has (1-C;), we obtain that @,,;N; is a local direct
summand of M. Therefore, by Lemma 8, @;,;N;=N.

The following is a generalization of Matlis-Papp’s Theorem.

Corollary 10. A ring R is right Noetherian if and only if every 1-quasi-continuous
R-module is a direct sum of uniform submodules.

We recall; The property (E) (extending property for independent families of
submodules) requires that @;;4; & M, yields the existance of A; =°A; such that
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@i A} =M.

Proposition 11. Let M be a module over a right Noetherian ring. Then the
following are equivalent:
1) M is 1-quasi-continuous;,
2) M has the extending property (E),
3) M is quasi-continuous.

Proof. 1)=2). Let ®;,,4; < M. Let A} be a maximal essential extension
of the 4; in M. Denote A*=@®,;A;, and consider a complement B of A* in
M. 1t follows that 4*®@B =°M. By Lemma 7, and Theorem 9, A*® B is a direct
sum of uniform submodules, which is a local direct summand of M. Therefore,
by Lemma 8 M=A"®B.

2)=>3), and 3)= 1) are obvious.

Proposition 12. Let M be a module over a right Noetherian Ring. Then the

following are equivalent:

1) every closed submodule of the form @, U, with all U; uniform, is a direct
summand,

2) M is a 1-CS-module, and every direct sum of uniform submodules of M, which
is a local direct summand, is a direct summand.

3) M isa 1-CS-module, and every local direct summand of M is a direct summand.

4) M is a CS-module.

Proof. Corollary 3, and Lemma 8.

A module M is called a D-R-I-module, if X is Y-injective whenever
M=X®Y. It is clear that every quasi-continuous module is a D-R-I-
module. There are D-R-I-modules, which are not quasi-continuous.

Proposition 13. Let M be a D-R-I-module. Then M is a 1-CS-module if and
only if M is 1-quasi-continuous.

Proof. Let U,, U,<®M, where the U; (i=1,2) are uniform with
UnU,=0. Writte M=U;®M,. By Lemma 5, and since U, is M,-injective, we
have M=U,® M}, where U, =®M3. Therefore U,®U, =®M.

Corollary 14. Let M be a D-R-I-module over a right Noetherian ring. Then
the following are equivalent:
1) M is a 1-CS-module;
2) M has the property (E)
3) M is a direct sum of uniform submodules.
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Proof. Propositions 11, 13.

3. Direct sums of modules. In this section we study direct sums
M=@®,;M; of CS-modules.

For a given decomposition M =@, ; M, and a subset J of the index set I,
M(J) stands for @, ; M,.

Lemma 15 ([9], Corollary 2). Let M=®; M, Then M(J) is M(I—J)-
injective, for all J < I, if and only if the M; are M -injective for all i#jel, and
(A,) holds.

Proposition 16. Let M=®,;M; be an R-module, where all the M, are
1-CS-modules and M j-injective for all i#jel. Let (A,) be hold. Then M is an
n-CS-module.

Proof. By Proposition 4, it is enough to show that M is a 1-CS-module. Let
A be a closed and uniform submodule of M. Let 0#acA, it follows that
aR < M(F); F is a finite subset of I. Since A4 is uniform, we have that
AnM(I—F)=0. By Lemma 15, M(I—F) is M(F)-injective; and thus, by Lemma 5,
M=M({—-F)®M*'(F), where A< M'(F)=M(F). Write M'(F)=®,rM;, where
M;=M; (ieF). It follows, again by Lemma 5, that 4 € N=M; (for some jeF),
and that N =®M*(F). Therefore A =®M.

Corollary 17. Let M=®,; M; be a module over right-Noetherian ring, where
all the M; are 1-CS-modules and M j-injective, i#j. Then M is a CS-module if and
only if every local summand of M is a summand.

Proof. Propositions 12, 16.

Lemma 18 ([6],Proposition 24). Let M= ®; M; where all the M; are
CS-modules and M -injective, i#jel. Then M(F) is a CS-module for all finite
subsets F of I.

Proposition 19. Let M=®,;;M; be an R-module, where all the M; are
CS-modules and M -injective, i#jel. Let (A,) hold. If every local direct summand
of M is a summand, then M is a CS-module.

Proof. Let A be a closed submodule of M. Zorn’s Lemma yields a maximal
member @,.xA, of the family of all submodules of A4 of the form ®,.; N,, which
is a local direct summand of M. By assumption @, gA4, is a direct summand of
M, hence a direct summand of 4. Write A=®,xA,DA" If A4*#0, then, for
some 0#xe A*, xR < M(F) (where F is a finite subset of ). Consider a maximal



130 M.A. KaMAL

essential extension (xR)" of xR in A* It follows that (xR)* is closed in M, with
(xR N"M(I—F)=0. By Lemma 15, M(I—F) is M(F)-injective. By Lemma S5,
M=M(I— F)®M*(F); where (xR)* < M*(F)=M(F). Since, by Lemma 18, M(F) is
a CS-module, it follows that (xR) <®M*(F). Hence A=®;xA:® (xR)'®B,
where @k 4, ®(xR)" is a local direct summand of M; which contradicts the
maximality of @, xA4,. Therefore =@, x4, <®M.

Corollary 20. Let R be a right Noetherian ring. Let M=@®;;M; be an
R-module, where the M; are 1-CS-modules and M -injective for all i#jel. Then
M is a CS-module if and only if every local direct summand of M is a direct summand.

In the following, we obtain the same equivalent conditions, 3)=>4), as in
proposition 12, for a weaker A.C.C. .

Proposition 21. Let M=®,,M; be an R-module, where the M, are
uniform. Let (A3) hold. If ®;;M; complements direct summands, then the
Sfollowing are equivalent:

1) M is a CS-module,
2) M is a 1-CS-module, and every local summand of M is a summand.

Proof. 1))=2). Let L=@®),,L; be a local direct summand of M. Since M
is a CS-module, we have L <°L'<® M. Since @,;M; complements direct
summands, there exists a subset K of I such that L*=@®,.x N,, and with N, =M,
for all ke K. Hence, without loss of generality, we may consider L =°M. We
show that M= L. If M#L, then we shall derive a contradiction to (4;) by
inductively constructing a sequence {m,} such that m,e M; \L for distinct i,, and
that m{ cmf < ---camd--- . To this end assume that m,,m,,---,m, have been
constructed. Since L =°M, there exist s,,5,,--,5,€ R such that O#ms,eL
(i=1,2,---,n). Since m,s,e L(F) =®M, for some finite subset F of J, we have
M=L(F)®M(K), K< I. Thus m,=I+Z,xy; where [e L(F) and 2, y;e M(K). It
is clear that m? < y? for each ie K. But since m,s, € L(F), we deduce that m? < y?;
ie K. Observe that not all y; are in L (due to m,¢L). Then for some iyeK,
¥i,=m, will satisfy the desired condition.
2)=>1). Let A be a closed submodule of M. By Zorn’s Lemma, let @, ,;4; be a
maximal local direct summand of M, which is a submodule of 4. By assumption,
M=@® ;A,®M(K); where K=l Thus A=® ;;4;®AnMK). Now if
ANM(K)#0, then AnM(F)#£0 for a finite subset F of K. It follows that 4~M(F),
hence A, contains a uniform submodule U. Let U* be a maximal essential extension
of U in AnM(K). It is clear that U* is closed in M. Since M is a 1-CS-module,
we get that U* =®M; and thus A 2 @ jes A;® U, which is a local summand of
M. This contradicts the maximality of @;,4; , therefore A=@ ., 4;=®M.
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Corollary 22. For a module M=®, M, where the M; are uniform, for all
iel, the following are equivalent:
1) M is quasi continous;
2) M is 1-quasi-continuous, and every local summand of M is a summand.

Proof. One can easily show that (C;) implies @, M; complements direct
summands. Hence by Lemma 6 and Proposition 21, 1) = 2) follows.
2)=1). Let A be a closed submodule of M. By the same argument as in
Theorem 9, there exists @ c; 4 <°A; where all 4; are uniform summands of M. By
Lemma 7, @;,;4; is a local direct summand of M. Hence, by assumption,
@A =®M, and thus A=@;,;4;<®M. Therefore M is a CS-module. To
show (C;) holds, let X, Y <®M with XnY=0. From the above argument, we
may consider X and Y are direct sums of uniform submodules. Hence, by Zorn’s
Lemma, X® YO M(K) =°M for some K = 1. Thus by Lemma 7, X® YOM(K) as
an indecomposable decomposition is a local direct summand of M, hence a direct
summand by assumption. Therefore X® YOM(K)= M.

Corollary 23. Let M= @ M; be a module, where all the M; are uniform. Let
(A;) be hold. Then the following are equivalent:
1) M has (n-C;), and the decomposition complements direct summands,
2) M has (Cy).

Proof. 1)=2). Let X,Y <®M, with XnY=0. Since the @;;M; comple-
ments direct summands, we may consider X=®,sX and Y= @, Y,; where X,
and Y, are uniform for all s, k. By Zorn’s Lemma, there exists J < I such that
XOYOMW) =M. By (n-C3), @5 XD Dk YiDM(J) is a local direct summand
of M. If X®YOM(J))# M, then, by the same argument as in proposition 21, we
can derive a contradiction to (4;). Therefore X@® Y@OM(J)=M.
2)=1) is obvious.

Proposition 24. Let M= ® ;. ;M; be a module, where all the M; are uniform
with end (M) local. Let M; be M -injective for all j#icl. Then the following are
equivalent:

1) M is a 1-CS-module,
2) (A,) holds.

Proof. 1)=2). By Lemma 15, (4,) is equivalent to M(/—j) is M injective
for all jel. To show this, we have to extend an arbitrary homomorphism
f: N> M(I—)) from a non-zero submodule N of M, to all M;. If fis monomor-
phism, then N=f{N) is a uniform submodule of M(/—j). Since M a 1-CS-module, we
have f{N) <°K =®M(I—j). Since K is uniform; thus K=~ M, for some kel—j, by
the Krull-Schmidt-Azumaya Theorem. It follows that K is M -injective, and thus
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there exists fi M;— K< M(I—j) extends f. On the other hand if f is not
monomorphism, then N*nM;#0, where N*=:{x+f(X): xe N}=N. Since M is a
1-CS-module and N* is uniform, we get that N*<°L =®M. Consequently End (L)
is local, which yields L to have the exchande property. Hence M=L®M(I—j)
(due to LnM;#0). Let n: LOM(I—j) - M(I—) be the projection, it follows that
n(x+f(x))=0; ie. —n(x)=f(x) for all xe N. Therefore —m,, extends f.

2)=1) follows from Proposition 16.

Lemma 25. Let M=M,®M, be a module, where the M, are uniform and
with End (M) local, i=1,2. Then the following are equivalent:
1) M is a CS-module, and monomorphisms M;— M; are isomorphisms; i#j.
2) the M; are M-injective, i#j.

Proof. 1)=2). Let fe Hom(E(M)), E(M)) be an arbitrary element, i#j. Let
X=:{xeM; fix)eM;}. Then A =:{x+f(x): xeX} is a closed and uniform
submodule of M, by [6], Lemma 1. Since M is a CS-module, M=A®M, or
M=A®M; (due to end (M) local). If M=A®M, then M;=fX); and hence
f''M;—> X = M, is by assumption an isomorphism, ie. X=M, On the other
hand, if M=A®M;, then X=M,
2)=1) is obvious.

The following is an immediate consequence of Lemma 6, Proposition 24, and
Corollary 25. It was observed in [9] where the proof was technical.

Corollary 26. For a module M=® M, where the M; are uniform and
End (M)) are local for all iel, the following are equivalent:
1) M is quasi-continuous,
2) M is 1-quasi-continuous,
3) M is 1-CS-module, and monomorphisms M;— M; are isomorphisms for i#j.

Corollary 27. Let M= @ M,;, where the M; are uniform and M j-injective for
all i#jel. Then the following are equivalent:
1) M is quasi-continuous,
2) M is 1-CS-module, and @, M; complements uniform direct summands.

Proof. A similar argument, to the one given in Proposition 24, shows that
(4,) holds. Hence 2)=1) follows. 1)=>2) is trivial.

Corollary 28. For a module M= @®;; M;, where the M; are uniform for all
iel, the following are equivalent:
1) M is quasi-continuous,
2) M is l-quasi-continuous, and @ .; M; complements uniform summands.
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Proposition 29. Let M= ®; ; M; be an R-module, where all the M; are uniform
and M -injective; i#jel. If all M, but a finite number, are non-singular, then M
is quasi-continuous.

Proof. First we show that M is a 1-CS-module. Let 4 be a closed and
uniform submodule of M. Let O#ae4; then aR = M(F), F is a finite subset of
I. By Lemma 15, M(F) is a quasi-continuous module; and thus aR =¢(aR)* = ®M(F).
Hence M(F)=(aR)*®@M(F—k), for some ke K. Then, without loss of generality,
we may assume that M =M, AM(I—k), where AnM,#0. Let x; be the projection
of M onto M, iel. For each aed a=mna)+Z,,,nl{a), with m(a)#0. Since
AnM, <=M, it follows that = (a)/=0 for some essential right ideal J of R. Since
all, but a finite number, of the M, are non-singular, we obtain that the set
{iel: n{a)#0, aeA} is finite. Hence 4 = M(K), for some finite subset K of
I. Therefore A =®M(K) =®M.

The above argument also shows @;;M; complements uniform direct
summands. Hence, by Corollary 27, M is quasi-continuous.
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