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Introduction  

Amelogenin is secreted by ameloblasts during tooth development, and it 

comprises more than 90 % of developing extracellular enamel matrix proteins. 

Amelogenin is the primary component of Emdogain
®
 (1, 2), which is used clinically to 

regenerate periodontal defects (3-8). Although amelogenin has traditionally been 

considered as an enamel protein, the biological activity of amelogenin in the process of 

cell differentiation has recently become widely recognized. A previous study reported 

that specific amelogenin gene splice products induced in vivo mineralization 

accompanied by the expression of bone matrix proteins, such as bone sialoprotein (BSP) 

(9). Viswanathan et al. demonstrated that recombinant amelogenin slightly enhanced 

BSP expression in cementoblasts at the lowest dose; while dramatically decreased BSP 

expression at the highest dose. They also revealed that amelogenin null mice displayed a 

dramatic reduction in the expression of BSP in cementoblasts and surrounding 

osteoblasts, indicating that amelogenin is a potential regulator of cementum-associated 

genes (10).  

At a low level of amelogenin expression has been reported in non-dental cell 

types, including stem cells, bone cells, brain and other soft tissues (11), suggesting 

additional functions of amelogenin such as a role in signal transduction in these cells. 
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Histological observations showed that amelogenin expresses in normal tissues of 

alveolar bone at a low level, and increases its expression at sites of high bone activity 

and remodeling (12). In addition, several studies suggest that amelogenin has a unique 

function to modulate osteogenic differentiation of stem cells. In mouse embryonic stem 

(ES) cells, exogenous leucine-rich amelogenin peptide was demonstrated to rescue 

partially amelogenin-null phenotype, and significantly increased the expression of BSP 

and Osterix during osteogenic differentiation (13). In human bone marrow-derived 

mesenchymal stem cells (MSCs), full-length amelogenin enhances the mRNA level of 

alkaline phosphatase (ALP), type I collagen and BSP as well as extracellular matrix 

(ECM) mineralization (14). Hu et al. (15) performed genome-wide expression profiling 

of human MSCs which were transduced with lentivirus encoding amelogenin, and 

showed up-regulation of osteogenic differentiation genes, such as bone morphogenetic 

protein-2 (Bmp2), Bmp6, Osteopontin and vascular endothelial growth factor C 

(VEGFC). However, the mechanisms by which amelogenin contribute to the 

osteogenesis of MSCs, especially, the effects of amelogenin on the mineralization has 

not been fully understood.  

Mammalian tooth development is largely dependent on sequential and reciprocal 

epithelial-mesenchymal interactions (16-18). During tooth development, amelogenin is 
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known to be involved in organizing of enamel rods (19), which plays a crucial role in 

the biomineralization and structural organization of enamel (20, 21). In this process, 

amelogenins have been identified to be nanospheres, self-assembled gydrophobic 

molecules, which regulate the growth, shape and size of hydroxyapatite crystals (20, 

22-25). After that, amelogenins are eventually degraded by the metalloprotease 

enamelysin and the serine protease KLK4 (26), then finally replaced by mineral ions of 

calcium and phosphorus, leading to fully mineralized mature enamel (27-29). Although 

amelogenins are documented to be potential epithelial-mesenchymal signaling 

molecules during tooth development (30), far less is known about the role and 

mechanism of its action.  

On the other hand, Bmp4 has been shown as one of the key signaling molecules in 

tooth development (odontogenesis) (31, 32). Expression of Bmp4 shifts from dental 

epithelium to dental mesenchyme during early tooth development that is associated with 

a shift of the tooth developmental potential from the dental epithelium to the 

mesenchyme (33). Especially, Bmp4 acts as a key Msx1-dependent mesenchymal 

odontogenic signal for driving tooth morphogenesis (34-38). In addition, mesenchymal 

Bmp4 has been demonstrated to be in charge of the induction and maintenance of 

specific signaling molecules, leading to the final tooth development (39, 40). Therefore, 
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Bmp4 could play an important role of the tooth-inductive capability. 

Induced pluripotent stem cells (iPSCs) have the ability to differentiate into all 

derivatives of the three primary germ layers including dental epithelial and 

mesenchymal cells (41, 42). Because iPSCs have great potential as tools for 

regenerative medicine/dentistry, these cells are expected to be used in the future 

regenerative dental therapy for the missing jaw bones and the lost teeth (43). However, 

only a little data, so far, is available about tooth development by the 

epithelial-mesenchymal interaction using iPSCs. Therefore, controlled expression of 

key molecules in the odontogenesis, such as amelogenin and Bmp4, in iPSCs may 

provide a new strategy to generate a bioengineered tooth.  

To investigate the direct effect of amelogenin expression on differentiation of stem 

cells, forced expression of amelogenin by the lentiviral transduction is one of the most 

powerful and cost-effective methods (44). In this system, the viral genome integrates 

into host chromosomes, and the inserted gene is maintained in the cells over the 

multiple passages to express the target gene. In addition, lentiviral vectors can infect 

efficiently non-dividing cells as well as dividing cells in contrast to conventional 

retroviral vectors (45). These properties of the lentiviral transduction facilitate 

permanent and efficient expression of the transgene in stem cells even after their 
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proliferation and differentiation. However, the undifferentiated state of stem cells often 

lose their intrinsic stemness property after the viral transduction because the method 

leads uncontrollable expression of the transgene, which often precludes a generation of 

clonal cell culture in an undifferentiated state. This problem makes it difficult to 

perform reproducible experiments of stem cells using over-expression systems.  

Tetracycline (Tet)-dependent transcriptional regulatory system is one of the best 

studied transduction systems with proven efficacy of controllable gene expression 

where transcription is reversibly turned on or off in the presence or absence of a 

tetracycline (Tet) derivative (doxycycline: Dox) (46, 47). This system (T-REx system) is 

based on the binding of Dox to the Tet-repressor (TetR) and de-repression of the 

promoter controlling expression of the gene of interest. It has been reported that the 

Tet-dependent system has been successfully used to control gene expression with the 

lentiviral transduction systems in vitro (48-53). Therefore, Tet-inducible gene 

transcription using the lentiviral transduction system could be a powerful method to 

investigate and control the functions of amelogenin in stem cells. 

In this study, I focused on the Tet-dependent lentiviral transcriptional regulatory 

system to control forced expression of exogenous amelogenin (Amelx: amelogenin, 

X-linked) and Bmp4 genes in stem cells. The objectives of this study were first to 
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establish a Tet-regulated system for Amelx expression in MSCs and iPSCs, and second 

to investigate effects of exogenous expression of Amelx on osteogenesis of MSCs, and 

third to explore a possibility to induce a bioengineered tooth by interaction of Amelx 

expressing iPSCs and Bmp4 expressing iPSCs. 
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Materials and methods  

Ethics Statement 

All animal experiments in this study strictly followed a protocol approved by the 

Institutional Animal Care and Use Committee of Osaka University Graduate School of 

Dentistry (approval number: 25-001-0).  

 

1. Establishment of a Tet-regulation system in MSCs and iPSCs 

1) Cell culture 

Immortalized clonal mouse bone marrow-derived MSCs (54) were maintained in 

the growth medium (control medium) consisting of the modified Eagle’s medium-alpha 

media (α-MEM) (Cat# 21444-05, Nacalai tesque, Kyoto, Japan) supplemented with 15% 

fetal bovine serum (FBS) (Lot# JBS-8683, Japan Bio Serum, Hiroshima, Japan) and 

Antibiotic-Antimycotic (100 units/mL of penicillin, 100 μg/mL of streptomycin, 0.25 

μg/mL of amphotericin B) (Cat# 15240-062, Life technologies, Carlsbad, CA). During 

the process of osteogenesis, osteogenic induction medium consisting of the α-MEM 

supplemented with 15% FBS (Cat# 490082, Life technologies), Antibiotic-Antimycotic 

(100 units/mL of penicillin, 100 μg/mL of streptomycin, 0.25 μg/mL of amphotericin B), 

0.1 μM dexamethasone (Cat# D2915, Sigma, St. Louis, MO); 10 mM 
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β-glycerophoshate (Cat# G9422, Sigma) and 50 μM ascorbate-2-phosphate (Cat# 

A8960-5G, Sigma) was used. 

293FT cells (Cat# R700-07, Life technologies), which were cultured for 

producing lentivirus, was maintained in the Dulbecco’s modified Eagle’s medium 

(DMEM 4.5 g/L glucose without sodium pyruvate; Cat# 08459-35, Nacalai tesque) with 

10% FBS (Lot# JBS-8683, Japan Bio Serum, Hiroshima, Japan), 0.1 mM MEM 

non-essential amino acids (NEAA) (Cat# 11140-050, Life technologies), 6 mM 

L-glutamine (Cat# 25030-081, Life technologies), 1 mM MEM sodium pyruvate (Cat# 

S8636, Sigma), 1% penicillin/streptomycin (50 units/mL penicillin and 50 μg/mL 

streptomycin, Cat# 15140-122, Life technologies).  

Mouse gingiva-derived iPSCs (55) were used in this study and the iPSCs were 

maintained in the ES cell medium consisting of the DMEM, 15% FBS (Lot# 10437, 

Life technologies), 2 mM L-glutamine, 10
-4

 M NEAA, 10
-4

 M 2-mercaptoethanol (Cat# 

21985-023, Life technologies) and 0.5% of penicillin/streptomycin. SNLP76.7-4 feeder 

cells were supplied by Dr. Allan Bradley of the Sanger Institute (London, UK) and 

cultured in DMEM supplemented with 7% FBS (Lot# JBS-8683, Japan Bio Serum), 1% 

of 2 mM L-glutamine and 0.5% of penicillin/streptomycin. 
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2) Production of lentiviral vectors carrying Amelx or Bmp4 gene 

pENTR Directional TOPO cloning kit, pLenti6.3/Tet operator (TO)/V5 

expression vector, pLenti6.3/V5-GW/EmGFP (Emerald green fluorescent protein) 

expression vector and Virapower
TM

 Packaging Mix were used in this study. The 

pCMV-SPORT6.1 plasmid vector containing a full-length cDNA of mouse amelogenin, 

X-linked (Amelx: GenBANK﹕BC059090.1) was purchased from Open Biosystems 

(Thermo Scientific). An open reading frame of the Amelx cDNA (660 bp) was 

PCR-amplified (Forward primer CAC CAT GGG GAC CTG GAT TTT GTT; Reverse 

primer TCA TTT TTC TGT TGT GCT TTC C), and was cloned into the 

pENTR
TM

/D-TOPO vector using pENTR Directional TOPO cloning kit (Life 

technologies) to obtain the entry vector (pENTR
TM

/D-TOPO/Amelx) for the Gateway
®

 

cloning system (Life technologies). Using this entry vector, expression vector of Amelx 

[pLenti6.3/TO/V5/Amelx] was constructed by the LR recombination reaction of the 

Gateway
®

 cloning system. 

The Gateway
®

 entry vector (pENTR221) containing a full-length human Bmp4 

cDNA (GenBANK﹕EU176183.1) was purchased from Open Biosystems and the 

expression vector (pLenti6.3/TO/V5/Bmp4) was constructed using the Gateway
®

 

cloning system. The recombination of the Bmp4 cDNA in the pLenti6.3/TO/V5/Bmp4 
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was confirmed by a DNA sequence using the M13 (-21) or M13 reverse primer [M13 

(-21) forward primer TGTAAAACGACGGCCAGT; M13 reverse primer 

CAGGAAACAGCTATGAC]. Expression of Amelx or Bmp4 gene in the 

pLenti6.3/TO/V5/Amelx or pLenti6.3/TO/V5/Bmp4 was examined by reverse 

transcription-polymerase chain reaction (RT-PCR) analysis using a primer set shown in 

Table 1. 

293FT cells were cultured in 6 cm-dishes to produce the lentivirus by the 

pLenti3.3/TetR (Life technologies), pLenti6.3/TO/V5/Amelx and 

pLenti6.3/TO/V5/Bmp4 expression vectors. PLenti6.3/V5-GW/EmGFP expression 

vector (Life technologies) was used as a control vector to examine the transduction 

efficiency. 

Three microgram of Virapower
TM

 Packaging Mix (Life technologies), 1 μg of the 

expression vector and 12 μl of lipofectamin 2000 (Cat# 11668-019, Life technologies) 

were mixed in 1 ml OPTI-MEM I (Cat# 31985-062, Life technologies). After 25 

minute-incubation, the mixture was added to 293FT cells. Forty eight hours later, the 

virus-containing supernatant was collected using a 10 ml-disposable syringe, and then 

filtrated with a 0.45 μm-pore size cellulose acetate filter. 
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3) Establishment of Tet-controlled Amelx expression system in MSCs 

MSCs were cultured in 6 cm-dishes in the growth medium. When the cells 

reached 80% confluence, medium was replaced with the lentiviral stock solution of 

pLenti3.3/TetR, and the cells were cultured overnight at 37℃, 5% CO2. Then, the 

lentivirus-containing medium was replaced with fresh growth medium. After 3 days, the 

cells were treated with geneticin (500 μg/ml) (Cat# 10131-035, Life technologies). After 

5 days, survived cell colonies were picked up to generate MSC clones (MSCs-TetR) 

which strongly express TetR gene. Expression of TetR in MSCs-TetR was examined by 

RT-PCR analysis using a primer set shown in Table 1.  

MSCs-TetR were seeded at a cell density of 3×10
5
 cells in a 6 cm-dish in the 

growth medium, and were incubated overnight at 37℃, 5% CO2. Then, medium was 

replaced with the viral stock solution supplemented with 4 μg/ml polybrene (Cat# 

17736-44, Nacalai tesque). After 24 hours, cells were washed once with PBS and were 

cultured in fresh growth medium. After 5 days, cells were treated with 10 μg/ml 

blasticidin S (Cat# KK-400, Funakoshi, Tokyo, Japan) to select the colony of 

MSCs-TetR which express Amelx (MSCs-TetR/Amelx). Tet-dependent expression of 

Amelx gene in MSCs-TetR/Amelx was evaluated by RT-PCR (a primer set is shown in 

Table 1) and Western blotting analyses in the presence or absence of Dox (2 μg/mL). 
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4) Generation of blasticidin S resistance SNL feeder cells 

SNL cells (feeder cells of iPSCs) were lentivirally infected with the 

pLenti6.3/V5-GW/EmGFP expression vector which contains the blasticidin S resistance 

gene (Bla) sequence. The transduced SNL cells (SNL-Bla) were selected by blasticidin 

S (10 μg/mL). SNL-Bla feeder cells were cultured on 10 cm-dishes, and when cells 

reached 90% confluence, cells were inactivated by treatment with mitomycin-C (Cat# 

20898-21, Nacalai tesque) for 2.5 hours. Cells were then seeded in 6-well plates at a cell 

density of 2 × 10
5
 cells/well, and were cultivated overnight before use. 

 

5) Establishment of Tet-controlled Amelx/Bmp4 expression system in iPSCs 

iPSCs were cultured at a cell density of 2×10
5
 cells/well in a 6-well plate 

(containing inactivated SNL feeder cells which originally express neomycin resistance 

gene) in the ES cell medium. When iPSCs reached 50% confluent, medium was 

replaced with lentiviral stock solution of pLenti3.3/TetR, and cells were incubated 

overnight at 37℃, 5% CO2. The viral stock solution of pLenti6.3/V5-GW/EmGFP was 

also used to monitor the transduction efficiency. After the overnight incubation, the 

lentivirus-containing medium was replaced with fresh ES cell medium. After 3 days, 
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cells were treated with geneticin (500 μg/ml). After 5 days, survived colonies, which 

were expected to express the TetR gene (iPSCs-TetR), were picked up. To increase the 

expression level of TetR gene in the selected iPSCs-TetR clones, the transduction 

method was repeated 7 times on the same iPSCs-TetR clones using 10 mg/mL of a 

geneticin treatment. Expression of TetR gene in the iPSCs-TetR was evaluated by 

RT-PCR (using a primer set shown in Table 1) and Western blotting analysis. 

Next, iPSCs-TetR were seeded at a cell density of 2×10
5
 cells/well in a 6-well plate 

(containing inactivated SNL-Bla feeder cells) in the ES cell medium. When the cells 

reached 50% confluent, medium was replaced with lentiviral stock solution of 

pLenti6.3/TO/V5/Amelx or pLenti6.3/TO/V5/Bmp4 supplemented with 4 μg/ml 

polybrene, and cells were incubated overnight at 37℃, 5% CO2. After 24 hours, cells 

were washed once with PBS, and were cultured in fresh ES cell medium with 400 μg/ml 

blasticidin S. After 5 days, survived colonies, which were expected to express the Amelx 

(iPSCs-TetR/Amelx) or Bmp4 (iPSCs-TetR/Bmp4) gene, were picked up. To increase the 

expression level of Amelx or Bmp4 gene in the selected iPSCs-TetR/Amelx or 

iPSCs-TetR/Bmp4 clones, the transduction method was repeated 3 or 2 times, 

respectively. Tet-dependent expression of Amelx gene and protein in iPSCs-TetR/Amelx 

were evaluated by RT-PCR (a primer set is shown in Table 1) and Western blotting 
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analysis, respectively, in the presence or absence of Dox (2 μg/mL). Tet-dependent 

expression of Bmp4 in iPSCs-TetR/Bmp4 was evaluated by RT-PCR (a primer set is 

shown in Table 1) in the presence or absence of Dox (2 μg/mL). 

 

2. Tet-controlled transcriptional activation of Amelx during MSC 

osteogenesis 

1) Effects of forced expression of Amelx on osteogenesis of MSCs-TetR/Amelx 

MSCs-TetR/Amelx were cultured in the control or osteogenic induction medium in 

the presence or absence of Dox (2 μg/mL) for 7-35 days. Tet-dependent expression of 

Amelx and osteogenic marker genes [Osterix, Osteocalcin, Osteopontin, BSP, type I 

collagen] were evaluated by semi-quantitative RT-PCR (primer sets are shown in Table 

1) and quantitative real-time RT-PCR analyses (primer sets are shown in Table 2). 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal control. 

ALP activity was analyzed by ALP staining (56). The cells in 24-well plates were 

washed by PBS once and fixed in 10% buffered formalin phosphate for ALP assay. 

Cells were stained by incubating with 1.8 mM fast red TR (Cat# F8764-1 Sigma) and 

0.9 mM naphthol AS-MX phosphate (Cat# N4875, Sigma) in 120 mM Tris buffer (pH 

8.4) for 30 minutes at 37 °C. 



16 

 

The mineralized nodule formation was evaluated by von Kossa staining (57). 

After washing with PBS and following fixation with 10 % buffered formalin phosphate, 

the cells in 24-well plates were soaked in 5% AgNO3 (Cat# S6506, Sigma) and were 

exposed to UV light for 20 minutes. After that, the cells were washed by distilled water 

and were treated with 5% Na2S2O3 (Cat# 197-03605, Wako) for 5 minutes. 

The calcium deposition was evaluated by Alizarin Red S staining (58). After 

washing with PBS and following fixation with 10 % buffered formalin phosphate, the 

cells in 24-well plates were soaked in 40 mM Alizarin Red S (Cat# A5533-25G, 

Sigma) for 20 minutes with a gentle shaking. After washing by distilled water, 

the samples were scanned (GT-9800F, Epson, Tokyo) to obtain digital images of the 

stained samples. Next, 400 μl of 10% acetic acid (Cat# 01-0270, Sigma) were added to 

the sample and the samples were incubated at room temperature for 30 minutes to 

perform a quantitative analysis (59). Briefly, the stained sample was collected using a 

cell-scraper and was transferred into a 1.5 ml tube. After a heating treatment at 85℃ for 

10 minutes and a following cooling treatment on ice for 5 minutes, the sample was 

centrifuged at 20,000 ×g for 15 minutes. The colored supernatant (250 μl) was collected 

into a new 1.5 ml tube and 100 μl of 10% ammonia (Cat# 016-03146, Wako) was added 

to each tube. Optical density of the supernatant sample was measured at 405 nm.  
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3. Tet-controlled transcriptional activation of Amelx/Bmp4 in iPSCs 

1) Teratoma formation and histological analysis 

To investigate whether forced expression of Amelx in iPSCs-TetR/Amelx shows 

lineage-specific differentiation, in vivo differentiation assay (teratoma formation assay) 

was performed. iPSCs-TetR/Amelx were cultured on the SNL-Bla feeder cells on 6-well 

plates in the presence or absence of Dox (0.2 μg/mL). When the cells reached 70% 

confluence， the cells were transferred to low-attachment 10 cm-dishes to form 

embryonic bodies (EBs) (55), and were cultured in the mouse ES medium under a 

floating condition in the presence or absence of Dox. Medium was changed every two 

days. After 21 days of the floating culture, EBs of iPSCs-TetR/Amelx were collected by 

centrifugation at 300 rpm for 2 minutes. 

Twenty microliters of the cell suspension (0.2-0.5×10
6
 cells/testis) were injected 

into the medulla testes of eight-week-old immunodeficient mouse (C.B-17 SCID; Clea 

Japan, Tokyo, Japan) using a Hamilton syringe. The mice were thereafter housed with 

free access to water and food under specific pathogen-free conditions. After 10 weeks, 

the teratomas were excised and subjected to histological analysis. Specimens were 

embedded in paraffin, and sectioned at 3 µm for hematoxylin and eosin (H&E) staining. 
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2) Co-culture of Amelx-expressing iPSCs and Bmp4-expressing iPSCs to induce 

odontogenic differentiation 

To investigate whether interaction of Amelx-expressing iPSCs and 

Bmp4-expressing iPSCs triggers odontogenic differentiation, EBs of iPSCs-TetR/Amelx 

and iPSCs-TetR/Bmp4 were co-cultured in mouse ES medium in the presence or 

absence of Dox (0.2 μg/mL) for 21 days. The expression of ameloblast-lineage marker, 

Amelx and odontoblast-lineage marker, dentin matrix acidic phosphoprotein 1 (DMP1), 

was determined by the quantitative real-time RT-PCR analysis (primer sets are shown in 

Table 2).   

 

4. RT-PCR analysis 

Total RNA was extracted with an RNeasy Mini Kit (Qiagen, Hilden, Germany). 

After DNase I treatment (Ambion, Austin, TX), cDNA was synthesized from 1 µg of 

total RNA using Super Script III reverse transcriptase (Life technologies). The cDNA 

target was amplified by PCR using Taq DNA polymerase (Promega, Madison, WI) 

following the manufacturer’s recommendations. The primer pairs used are given in 

Table 1. PCR products were subjected to 1.5 % agarose gel electrophoresis with 



19 

 

ethidium bromide staining and visualized under ultraviolet light illumination. The 

expression of GAPDH mRNA was used as an internal control. 

For quantitative real-time PCR analysis, SYBR Green assay and TaqMan assay 

were performed using Thunderbird SYBR qPCRMix (Cat# TMMFS-001, Toyobo, 

Osaka) and TaqMan Gene Expression PCR Master Mix (Life Technologies, Applied 

Biosystems, Foster City, USA), respectively. The primer pairs used are shown in Table 

2. A PCR machine used in this study was Applied Biosystems 7300 realtime PCR 

system (Applied Biosystems, Foster City, USA). Expression of GAPDH mRNA was 

used as an internal control. Quantitative analysis of target gene expression was 

performed using the △△Ct method (60). 

 

5. Western blotting analysis 

When the cells reached 90% confluence, cells were washed once by cold PBS (-) 

(Cat# 14249-95, Nacalai tesque), and collected into 50 ml conical tubes. After 

centrifugation at 300 rpm for 5 minutes, cell pellets were lysed with RIPA buffer [50 

mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% Nonidet P-40 (NP-40), 1% sodium 

deoxycholate, and 0.1% SDS] supplemented with protease inhibitor cocktail (Nacalai 

tesque). Proteins from the cell lysates were separated on 10% SDS-polyacrylamide gel 
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electrophoresis, and transferred to a polyvinylidine difluoride membrane (Millipore). 

The blot was blocked with TBST (10 mM Tris-HCl, pH 7.4, 100 mM NaCl, and 0.1% 

Tween-20) containing 5% skim milk, and then incubated with primary monoclonal 

antibody of TetR (1:1000; clone 9G9, Cat# 631131, Takara, Japan), amelogenin (1:1000; 

clone F11, Cat# sc-365284, Santa Cruz Biotechnology, Santa Cruz, CA), or GAPDH 

(1:10000, clone 6C5, Cat# MAB374, Millipore) at 4 °C overnight. After washing with 

TBST, the membrane was incubated with anti-mouse IgG HRP-linked antibody (1:3000, 

Cat# 7076, Cell Signaling) for 1 hour at room temperature. Signals were detected with 

Immobilon
TM

 Western Chemiluminescent HRP Substrate (Millipore) and the FPM 100 

imaging system (Fujifilm, Tokyo, Japan). 
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Results 

1. Establishment of a Tet-controlled Amelx expression system in MSCs 

1) Establishment of MSCs-TetR/Amelx 

Ten days after the transduction of MSCs with the pLenti3.3/TetR expression vector, 

few colonies were observed in the culture containing 500 μg/mL geneticin (Fig. 1A). 

The colonies were picked up and clonal culture of MSCs (MSCs-TetR) was established. 

RT-PCR result showed that the MSCs-TetR strongly expressed TetR mRNA (Fig. 1B).  

To generate Tet-controlled Amelx expression system in MSCs 

(MSCs-TetR/Amelx), supernatant with lentivirus coding Amelx was first prepared using 

293FT cells (Fig. 1D).  The transfection efficiency was monitored by evaluation of 

GFP expression. The efficiency of transfection into 293FT cells was typically > 90%, as 

indicated by GFP expression (Fig. 1C).  

Seven days after the transduction of MSCs-TetR with the pLenti6.3/TO/V5/Amelx 

expression vector, survived cells in the culture containing 10 μg/mL Blasticidin S were 

collected, and used as MSCs-TetR/Amelx (Fig. 1E). 

 

2) Inducible expression of Amelx in MSCs-TetR/Amelx by Dox addition 

When MSCs-TetR/Amelx were cultured in the presence of Dox, enhanced gene 
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expression of Amelx was confirmed after 24 hours (Fig. 2A). Western blotting analysis 

showed that Dox stimulated MSCs-TetR/Amelx to express amelogenin protein after 48 

hours. In contrast, no background expression of amelogenin protein was observed when 

MSCs-TetR/Amelx were cultured in the absence of Dox (Fig. 2B). 

 

3) Controllable expression of Amelx in MSCs-TetR/Amelx by addition and 

depletion of Dox  

To confirm the controllable expression of Amelx, MSCs-TetR/Amelx were cultured 

in the osteogenic induction medium for 17 days in four different conditions. Condition 1: 

cells were cultured in the absence of Dox for 17 days, Condition II: cells were cultured 

in the absence of Dox until day 14, then cultured in the presence of Dox form day 15 to 

17. Condition III: cells were cultured in the presence of Dox until day 14, then cultured 

in the absence of Dox form day 15 to 17. Condition IV：cells were cultured in the 

presence of Dox for 17 days. 

A quantitative real-time RT-PCR analysis showed that expression of Amelx in cells 

from day 14 to 17 in the Condition IV was markedly higher than that in the Condition I 

(Fig. 3). In the Condition II, expression of Amelx significantly increased on day 15 (one 

day after Dox addition) (ANOVA; P<0.01).  On the other hand, In the Condition III, 



23 

 

expression of Amelx markedly dropped after day 15 (one day after Dox depletion), and 

significantly decreased after day 16 (ANOVA; P<0.01). These results showed 

controllable expression of Amelx by addition or depletion of Dox. 

In addition, a coincident expression pattern of Osteocalcin was observed in the 

four culture conditions. Expression of Osteocalcin was significantly increased by Dox 

addition within 72 hours (Condition II) (ANOVA; P<0.01); while sharply decreased by 

Dox depletion within 48 hours (Condition III) (Fig. 4 A). Expression of Osterix was 

also up-regulated after the Dox addition on day 14 (Condition II); while it significantly 

decreased by the Dox depletion within 72 hours (Condition III) (Fig. 4 B). 

 

2. Effects of forced expression of Amelx on osteogenic differentiation 

of MSCs 

1) Forced expression of Amelx enhanced expression of osteogenic marker genes 

RT-PCR results showed that MSCs-TetR/Amelx, which were treated with Dox 

during osteogenic induction, increased gene expression of Osterix, BSP and Osteocalcin 

(Fig. 5). Quantitative real-time RT-PCR analysis demonstrated that the Dox addition 

significantly induced expression of BSP (Fig. 6A) and Osterix (Fig. 6B) genes after 14 

days of osteogenic induction (ANOVA; P<0.01). Expression of type I collagen (Fig. 6C) 
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was also significantly enhanced by the Dox addition on day 14 (ANOVA; P<0.01).  On 

the other hand, Dox did not stimulate expression of the osteogenic genes when 

MSCs-TetR/Amelx were cultured in the growth medium. 

 

2) Forced expression of Amelx enhanced ALP activity and mineralized nodule 

formation of MSCs-TetR/Amelx 

ALP staining results showed that the Dox addition clearly induced ALP activity of 

MSCs-TetR/Amelx after 7 days when the cells were cultured in the osteogenic induction 

medium (Fig. 7A). von Kossa staining results indicated that the Dox addition enhanced 

mineralized nodule formation of MSCs-TetR/Amelx after 21 days in the osteogenic 

induction medium (Fig. 7B).  

Results of the Alizarin Red S staining also supported the enhanced matrix 

calcification of MSCs-TetR/Amelx by Dox addition (Fig. 8A). Quantitative analysis of 

the Alizarin Red S staining showed that the Dox addition significantly induced calcium 

deposition of MSCs-TetR/Amelx after 14 days in the osteogenic induction medium 

(ANOVA; P<0.01) (Fig. 8B). 
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3) Effects of forced expression of Amelx at different osteogenic differentiation 

stages on matrix calcification of MSCs 

To examine effects of forced expression of Amelx on calcification of MSCs at 

different osteogenic differentiation stages, Dox was added to MSCs-TetR/Amelx at three 

different stages. When Dox was added on day 0-10 (early stage) of osteogenic 

differentiation, Alizarin Red S staining showed that calcium deposition significantly 

increased by the Dox addition (ANOVA; P<0.01) (Fig. 9A).  In contrast, significant 

difference in calcium deposition by the Dox addition was not observed when Dox was 

added on day 10-20 (intermediate stage) or day 20-30 (late stage) of osteogenic 

differentiation (Fig. 9B and 9C). These results suggest that forced expression of Amelx 

at the early stage of osteogenic differentiation enhances matrix calcification of MSCs. 

 

3. Establishment of a Tet-controlled Amelx/Bmp4 expression system in 

iPSCs 

1) Establishment of iPSCs-TetR 

After the transduction of iPSCs with the pLenti3.3/TetR expression vector, drug 

selection with 500 μg/mL geneticin was performed. After the colony pick-up, eight 

clonal iPSC cultures were established (iPSC-clone 1-8). RT-PCR and Western blotting 
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results indicated that the iPSC-clone 6 (Fig. 10A) showed the highest expression of TetR 

(Fig. 10B); however, the expression level of TetR in the iPSC-clone 6 was significantly 

lower than that in the positive control of HEK293. Therefore, I attempted to increase the 

expression level of TetR by repeated transduction.  

After additional 6-time transduction, the colony of iPSCs-TetR was selected with 

10 mg/mL geneticin. After expansion of the colony, clonal iPSC culture, which 

sustained high ALP activity as pluripotent character, was established (Fig. 10C). 

RT-PCR and Western blotting analysis demonstrated that the iPSCs-TetR showed higher 

expression of TetR gene and protein compared to the iPSC-clone 6 that was subjected to 

the first transduction (Fig. 10D). 

 

2) Establishment of iPSCs-TetR/Amelx 

After the transduction of iPSCs-TetR with the pLenti6.3/TO/V5/Amelx expression 

vector, drug selection with 400 μg/mL blasticidin S was performed. A survived colony 

of iPSCs was picked up and expanded to establish iPSC-TetR/Amelx clonal culture (Fig. 

11A). ALP staining showed that the iPSC-TetR/Amelx sustained robust ALP activity. 

When iPSCs-TetR/Amelx were cultured in the presence of Dox in the growth 

medium, enhanced gene expression of Amelx was confirmed after 48 hours (Fig. 11B). 
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Western blotting analysis also detected induced expression of amelogenin protein by 

Dox addition after 48 hours; while little background expression of amelogenin was 

observed in the absence of Dox. Quantitative real-time RT-PCR analyses indicated that 

concentrations of Dox higher than 0.2 μg/mL significantly induced Amelx at 48 and 72 

hours (ANOVA; P<0.01) (Fig. 11C). Therefore, Dox concentration of 0.2 μg/mL was 

used in the following experiments. 

 

3) Effects of forced expression of Amelx on in vivo differentiation ability of iPSCs 

When iPSCs-TetR/Amelx were cultured in the presence or absence of Dox for 21 

days, both conditions of iPSCs-TetR/Amelx produced teratoma after 10 weeks of 

transplantation (Fig. 12A). Histological observation of the teratomas showed that both 

conditions of iPSCs-TetR/Amelx produced several types of tissues from all germ layers, 

such as cartilage (Fig. 12B), gut-like epithelium (Fig. 12C) and epidermis (Fig. 12E 

and F). However, a number of ectodermal epidermis-like tissues was significantly 

higher in the teratoma from the Dox treated iPSCs-TetR/Amelx compared to the 

teratoma from iPSCs-TetR/Amelx without Dox treatment (student-t test; P<0.05) (Fig. 

13A). On the other hand, significantly lower number of mesodermal cartilage tissues 

and endodermal gut-like epithelia were observed in the teratoma from the Dox treated 
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iPSCs-TetR/Amelx compared to the teratoma from iPSCs-TetR/Amelx without Dox 

treatment (student-t test; P<0.05) (Fig. 13B and C).  

 

4) Establishment of iPSCs-TetR/Bmp4 

After the transduction of iPSCs-TetR with the pLenti6.3/TO/V5/Bmp4 expression 

vector, drug selection with 400 μg/mL blasticidin S was performed. A survived colony 

of iPSCs was picked up and expanded to establish iPSC-TetR/Bmp4 clonal culture (Fig. 

14A). ALP staining showed that the iPSCs-TetR/Bmp4 sustained robust ALP activity. 

When iPSCs-TetR/Bmp4 were cultured in the presence of Dox in the growth 

medium, enhanced gene expression of Bmp4 was confirmed after 48 hours (Fig. 14B). 

Quantitative real-time RT-PCR analyses indicated that 0.2 μg/mL of Dox significantly 

induced Bmp4 both at 48 and 72 hours (ANOVA; P<0.01) (Fig. 14C). 

 

5) Odontogenic differentiation of iPSCs by co-culture of Amelx-expressing iPSCs 

and Bmp4-expressing iPSCs 

When iPSCs-TetR/Amelx and iPSCs-TetR/Bmp4 were co-cultured in the presence 

of Dox for 21 days, expression of Amelx significantly increased compared to those in 

the absence of Dox (ANOVA; P<0.01) (Fig. 15A). In addition, the co-cultured 
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iPSCs-TetR/Amelx and iPSCs-TetR/Bmp4 in the presence of Dox showed significantly 

higher expression of DMP1 than those in the absence of Dox on day 21 (ANOVA; 

P<0.01) (Fig. 15B). 
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Discussion  

Amelogenin is comprised of three domains, N-terminal tyrosine-rich domain, 

central hydrophobic proline-rich domain, and a C-terminal hydrophilic telopeptide (61). 

Amelogenin gene sequence is present on both the human X and the human Y 

chromosomes, and exclusively on the mouse X chromosome (62). Therefore, 

production of the amelogenin protein in mouse is regulated by the Amelx (amelogenin, 

X-linked) gene. In this study, I successfully established a Tet-controlled Amelx gene 

regulation system for MSCs and iPSCs in which transcriptional activation of Amelx in 

MSCs was associated with enhanced osteogenic differentiation.  

In this study, a Tet-dependent lentiviral transcriptional regulatory system [T-REx 

system (47)] was used to establish MSCs-TetR/Amelx. When the cells were cultured in 

the presence of Dox, production of amelogenin protein was induced within 48 hours. 

Although a little leaked gene expression of Amelx was detected by the RT-PCR assay, 

there was no background expression of amelogein protein when the cells were cultured 

in the absence of Dox. Indeed, many studies pointed that the leakiness in the 

Tet-dependent regulatory systems is quite unavoidable and acceptable in the most 

experimental cases (63-66). 

Osteogenic differentiation of mineralizing cell types can be induced in the growth 
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medium supplement with dexamethasone, β-glycerophosphate and ascorbic acid (67). 

Many studies showed that enamel matrix derivative (EMD), the active component of 

Emdogain
®
, stimulates mineralizing cell types to increase ALP activity and production 

of Osteocalcin, Osteopontin, and BSP (68). In contrast, previous reports which showed 

the effects of recombinant amelogenin on osteogenic differentiation of mineralizing cell 

types are relatively contradictious. Matsuzawa et al. reported that mouse recombinant 

amelogenin up-regulated Osteocalcin and type I collagen mRNA levels in osteoblast 

cell line (ROS17/2.8 cells) (69). Zeichner-David et al. reported that mouse recombinant 

amelogenin induced Osteocalcin and BSP but down-regulated type I collagen in mouse 

periodontal ligament cells. In mouse cementoblasts, recombinant amelogenin or 

tyrosine-rich amelogenin peptide down-regulated Osteocalcin and BSP and inhibited 

mineral nodule formation (10, 70). Therefore, the effects of amelogenin on osteogenic 

differentiation may depend on the cell types and on the full-length or the 

domain-derived peptide. 

Regarding the effects of amelogenin on MSCs, increased osteogenesis phenotype 

was reported after treatment with recombinant amelogenin (14, 71) or N-terminal 

amelogenin peptide (NTAP) (71). However, little is known about the effects of forced 

expression of Amelx gene on the osteogenesis, especially on the matrix mineralization. 
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In this study, I showed that forced expression of Amelx during osteogenic differentiation 

of MSCs clearly increased ALP activity and matrix calcification. In addition, the forced 

expression of Amelx leads to induction of mature osteogenesis of MSCs by 

up-regulating osteogenic genes, such as Osterix, Osteocalcin, BSP, and type I collagen. 

The observed up-regulation of these osteogenic genes should be due to the exogenous 

Amelx expression but not be due to the direct effect of Dox because Dox did not 

significantly alter the expression of the osteogenic genes in the original MSCs (data not 

shown).  

In this study, I focused on the effects of forced expression of Amelx on MSCs 

which were undergoing osteogenic differentiation. In this sense, I first examined 

whether the expression of Amelx could be controlled by the Tet-dependent regulatory 

system even in the differentiation process of the MSCs. As a result, I found that the 

system could enhance/reduce the expression of Amelx by addition/depletion of Dox in 

the intermediate stage (day 14-17) of the osteogenic differentiation (Fig. 3).  

Osteogenic differentiation of MSCs is a well-orchestrated process, beginning with 

activation of transcription factors including Runx2 and Osterix (72). In the late stage of 

the osteoblast developmental sequence, Osteocalcin contributes as a regulator of the 

mineralization process (73). I next examined whether the controllable expression of 
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Amelx could concomitantly affect the expression of osteogenic genes, such as Runx2, 

Osterix and Osteocalcin.  Interestingly, the expression of Osterix and Osteocalcin 

altered in parallel with the controlled expression of Amelx (Fig. 4). In contrast, 

expression of Runx2 was not significantly affected by the controlled expression of 

Amelx (data not shown). It has been demonstrated that amelogenin also has cell 

signaling properties (71, 74-76). Amelogenin promotes osteogenic differentiation of 

MSCs through Wnt/beta-catenin signaling pathway by up-regulating Wnt10b expression 

(76). Olivares-Navarrete et al. recently reported that both amelogenin and NTAP induce 

osteogenic differentiation of human MSCs, and that the effects of the NTAP are 

mediated through PKC and ERK1/2 activation and β-catenin degradation (71). Shimizu 

et al. demonstrated that amelogenin stimulates BSP expression in osteoblasts through 

fibroblast growth factor 2 (FGF2) response element and transforming growth factor-β1 

(TGF-β1) activation element in the promoter of the BSP gene (75). In this study, the 

concomitant expression of Osterix and Osteocalcin with the controlled expression of 

Amelx implies that the exogenous Amelx expression affects the transcriptional activation 

of Osterix and Osteocalcin. More work will be necessary to elucidate this possibility. 

In this study, the Amelx transduction during the osteogenic differentiation enhanced 

osteogenesis of MSCs, which supports the positive effects of recombinant amelogenin 
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on osteogenic differentiation of MSCs (14, 71). The exogenous expression of Amelx 

significantly enhanced expression of Osterix, type I collagen, and BSP (Fig. 5). 

Tanimoto et al. reported that recombinant amelogenin enhanced osteogenic 

differentiation of human MSCs by up-regulating osteogenic genes including ALP, BSP, 

type I collagen and Osteopontin (14). Using human MSCs, Hu et al. performed 

genome-wide expression profiling to analyze the effects of lentiviral transduction of 

human Amelx on the gene regulation (15). They detected Osteopontin, BMP-2, BMP-6, 

and VEGFC as up-regulated genes by the forced expression of Amelx. In my study, 

forced expression of Amelx did not significantly alter the expression of Osteopontin 

(Fig. 5). This discrepancy likely results from differences in the species of MSCs and/or 

experimental conditions, that is, Hu et al. cultured the MSCs in the growth medium; 

whereas in this study the effects of Amelx transduction was performed during osteogenic 

induction in the osteogenic induction medium. 

Under the osteogenic condition, approximately 2.5-fold expression of Osterix and 

type I collagen was stimulated by the exogenous Amelx expression at the intermediate 

stage (day 14) of the osteogenic differentiation (Fig. 6B and 6C). The exogenous Amelx 

expression also significantly induced the BSP expression after 14 days of osteogenic 

differentiation, and showed approximately 5.5-fold higher expression on day 21 (Fig. 
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6A). Osterix is a typical transcription factor required for osteoblast differentiation and 

bone formation (77). Type I collagen is a primary product of osteoblasts and its gene 

expression is observed at an early to intermediate stage during bone matrix formation 

(14, 78). Expression of BSP is detected in more differentiated osteoblasts at a relatively 

late stage (79). BSP is a non-collagenous protein component of mineralized tissues, 

such as cementum and bone, and is believed to be a critical molecule for promoting 

biomineralization (79, 80). From the standpoint of the roles of these molecules, the 

up-regulation of these genes by the Amelx transduction, at least in part, could contribute 

to the enhanced matrix calcification. 

However, the 2.5- or 5.5- fold increased expression of these genes may not be 

sufficient to guide MSCs aggressively into more mature osteoblasts. Indeed, matrix 

calcification of MSCs already increased by the Amelx transduction on day 10 (Fig. 9A) 

although expression of osteogenic marker genes did not markedly increase until day 7 

(Fig. 5 and 6). The full-length amelogenin has the capacity to stabilize the formation of 

amorphous calcium phosphate (ACP) (81). An abundant ACP phase is involved in a 

biomineralization in bone as a precursor phase that later transforms into the mature 

crystalline mineral (82, 83). In addition, Deshpande et al. recently demonstrated that 

amelogenin interacts with collagen fibrils and mineral particles to lead to mineralization 
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of collagen fibrils (84). Therefore, the increased ECM mineralization by the Amelx 

transduction would involve the direct effects of the resultant amelogenin protein on the 

ECM mineralization in addition to the effects of up-regulation of the osteogenic genes. 

The role of amelogenin in regulating the calcium phosphate mineral formation should 

mainly contribute in a precursor phase (the early stage) of biomineralization, so that 

explains the reason why the forced expression of Amelx did not significantly contribute 

to the calcification of MSCs when it started after the intermediate and late stages of the 

osteogenic differentiation (Fig. 9B and 9C). 

Information from the present study, along with the Tet-dependent Amelx regulatory 

systems in MSCs, will help to clarify the mechanisms by which amelogenin regulates 

key molecules associated with mineralization. Defining the role for the amelogenin in 

controlling the activity of MSCs will provide the optimal application of amelogenin 

therapy for periodontal/bone regeneration. 

iPSC is a well characterized stem cell that demonstrates pluripotency by 

contributing to lineages of cells and tissues from all three germ layers; therefore, the cell 

attracts attention in the field of regenerative medicine (85-88). In the field of dental 

research, iPSCs are expected to be used as a cell source for tooth regeneration (43). 

Because iPSCs have been shown to differentiate into ameloblasts (42, 89) and dental 
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mesenchymal cells (41, 89), the iPSC-derived dental cells may be useful to induce 

reciprocal epithelial-mesenchymal interactions to regulate the growth and 

morphogenesis of teeth. Recently, Cai et al. demonstrated that interaction of human 

iPSC-derived epithelial sheets and mouse embryo-derived dental mesenchymes led to 

generate tooth-like structures at the transplanted site of the mouse subrenal capsule (90). 

Liu et al. reported that mouse iPSCs could be induced to differentiate into 

ameloblast-like cells and odontoblast-like cells by ameloblasts serum-free conditioned 

medium (ASF-CM) and ASF-CM supplemented with BMP4, respectively (89). Based 

on these background, I attempted to develop an in vitro model of odontogenic guidance 

of iPSCs by the interaction of Amelx-expressing iPSCs and Bmp4-expressing iPSCs. 

Lentiviruses provide highly efficient gene delivery vehicles to constitutively 

express a regulatory protein for transgene expression in variety of cell types. Therefore, 

the lentiviral delivery systems have been utilized for the Tet-regulation system to 

achieve constitutive expression of TetR and target genes. However, inactivation of the 

virus promoter, such as cytomegalovirus (CMV), in ES cells after the gene delivery is 

well documented (91, 92). In addition, pluripotent stem cells (ES cells and iPSCs) 

permit lower levels of CMV genome entry into the nucleus compared to other 

differentiated cells (93, 94). Currently, most commercially available Tet-regulated 



38 

 

systems contain CMV as a promoter of the transgenes. The expression vectors used in 

this study also utilized the CMV promoter. Therefore, the most difficult hurdle I 

encountered to generate Tet-regulation system was how to avoid the naturally-occurring 

silencing of exogenous gene expression in iPSCs. That is, the transgene silencing after 

the transduction with the TetR expression vector into iPSCs is the first dilemma. To 

obtain stable expression of the transgene, iPSCs were subjected to the repeated 

transduction and the cell cloning by the drug selection for each transgene. Finally, 

Tet-controllable Amelx and Bmp4 expression in iPSCs were available after 7-times, 

3-times, and 2-times repeats of the process for TetR, Amelx, and Bmp4, respectively. The 

colonies of iPSCs-TetR/Amelx and iPSCs-TetR/Bmp4 showed robust ALP activity, which 

is a pluripotent marker for ES cells and iPSCs. In addition, the teratoma formation assay 

demonstrated in vivo differentiation ability of iPSCs-TetR/Amelx into lineages of tissues 

from three germ layers. These results suggest that the iPSCs with the Tet-regulation 

system should, at least in part, possess pluripotent characteristics as pluripotent stem 

cells. As far as I know, this is the first report which achieved the Tet-controllable 

transgene expression in the undifferentiated state of iPSCs. However, it should be noted 

that the repeated transduction could result in multiple random genome insertions, which 

may lead to unexpected functional or structural alterations of the iPSCs. In order to 
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minimize the effects of silencing of the viral promoters, human elongation factor-1 α 

(EF1 α) promoters, which are recognized to show resistant ability to the silencing, 

should be used in the future studies. 

Although amelogenin is originally identified as a protein of exclusively epithelial 

origin (95, 96), later studies demonstrated that amleogenins could be detected in 

odontoblasts (97, 98), indicating that amelogenin would be a biological molecule during 

odontogenic differentiation. In this study, teratoma assay showed that the 

Amelx-expressing iPSCs predominantly produced ectodermal epidermis-like tissues 

(Fig. 12 and 13). Expression of amelogenin is a characteristics of the epithelial 

odontogenic tumors (99). The results imply that constant Amelx expression during the 

EB culture of iPSCs stimulated cell signaling and guided their differentiation into 

epithelial cell lineages. In developing embryonic teeth, epithelial cells in the oral 

epithelium differentiate into ameloblasts. On the other hand, Bmp4 is expressed in 

dental epithelium (100) and induces dental mesenchymal cell differentiation during 

early tooth development (33). I further examined whether the co-culture of the 

Amelx-expressing iPSCs and the Bmp4-expressing iPSCs stimulate the regulation of 

epithelial-mesenchymal interactions. The co-culture resulted in the increased expression 

of Amelx and DMP1 (Fig. 15). Ameloblasts robustly express Amelx at the 
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secretory-stage of the differentiation process (101). Marked increase of Amelx 

expression on day 21 may be due to the effects of the forced expression of Bmp4 

because BMPs are known as factors that regulate mature differentiation of ameloblasts 

and induce secretion of amelogenin (102). DMP1 is considered to be an odontoblast 

marker, which is expressed in odontoblasts in the late stages of tooth development (103, 

104). Therefore, these results implied that the experimental model using 

Amelx-expressing iPSCs and Bmp4-expressing iPSCs stimulated odontogenic 

differentiation of iPSCs. Control of the regulation of epithelial-mesenchymal 

interactions by the Tet-regulated expression of odontogenic genes in iPSCs may prove 

to be a useful strategy for regulating odontogenesis and tooth regeneration. 
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Conclusions  

1. Tet-controlled Amelx gene regulation systems for MSCs and iPSCs were 

successfully established.  

2. Transcriptional activation of Amelx increases osteogenic differentiation of MSCs by 

up-regulating Osterix, BSP, Osteocalcin and type I collagen genes. 

3. Interaction of Amelx-expressing iPSCs and Bmp4-expressing iPSCs may lead 

odontogenic differentiation. 
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Table 1: Primers used for RT-PCR analyses  

Gene Primers (Fw, forward; Rv, reverse) 
Ann 

Temp 
Product 
size (bp) 

Species 

TetR Fw:5’- CGCCTTAGCCATTG GATGT-3’ 54.5°C 390 mouse 

 Rv:5’- TCTGCACCTTGGTGATCAAA-3’    

Amelx Fw:5’-CAGCAACCAATGATGCCAGTTCCT-3’ 59.6°C 293 mouse 

 Rv:5’- ACTTCTTCCCGCTTGGTCTTGTCT-3’    

Bmp4 Fw: 5’-TCCACAGCACTGGTCTTGAG-3’ 56.5°C 476 human 

 Rv:5’- CGATCAACTAATCCTGACAT-3’    

BSP Fw:5’-AAAGTGAAGGAAAGCGACGA-3’ 58°C 214 mouse 

 Rv:5’-GTTCCTTCTGCACCTGCTTC-3’    

Runx2 Fw: 5’-CGGGCTACCTGCCATCAC-3’ 65°C 289 mouse 

 Rv: 5’-GGCCAGAGGCAGAAGTCAGA-3’    

Osterix Fw: 5’-CTCGTCTGACTGCCTGCCTAG-3’ 59°C 270 mouse 

 Rv: 5’-GCGTGGATGCCTGCCTTGTA-3’    

Oteocalcin Fw: 5’-CCGGGAGCAGTGTGAGCTTA-3’ 60°C 292 mouse 

 Rv: 5’-AGGCGGTCTTCAAGCCATACT-3’    

Osteopontin Fw:5’-TCACCATTCGGATGAGTCTG-3’   55°C 437 mouse 

 Rv:5’-ACTTGTGGCTCTGATGTTCC-3’    

GAPDH Fw: 5’-TGCACCACCAACTGCTTAG-3’ 67°C 418 mouse 

 Rv: 5’-GGATGCAGGGATGATGTTC-3’    
 

Ann Temp: Annealing temperature 
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Table 2: Primers used for quantitative real-time RT-PCR analyses 

Gene 
Primers (Fw, forward; Rv, reverse) 
Applied Biosystem Cat. # 

Ann Temp 
Product size 

(bp) 

Osterix Fw: 5’-CTCGTCTGACTGCCTGCCTAG-3’ 60°C 84 

 Rv: 5’-GCGTGGATGCCTGCCTTGTA-3’   

Col1agen 1a1 Fw: 5’-TGTCCCAACCCCCAAAGAC-3’ 60°C 92 

 Rv: 5’-CCCTCGACTCCTACATCTTCTGA-3’   

Oteocalcin Fw: 5’-CCGGGAGCAGTGTGAGCTTA-3’ 60°C 68 

 Rv: 5’-AGGCGGTCTTCAAGCCATACT-3’   

GAPDH Fw: 5’-TGCACCACCAACTGCTTAG-3’ 60°C 177 

 Rv: 5’-GGATGCAGGGATGATGTTC-3’   

BSP Mm00492555_m1   

Amelx Mm01166221_m1   

Bmp4 Hs00370078_m1   

DMP1 Mm01208363_m1   

GAPDH NM_008084/ Mm99999915_g1   
 

Ann Tmp: Annealing temperature 
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Fig. 1: Establishment of a Tet-controlled Amelx expression system in MSCs 

A: A MSC colony (MSCs-TetR) in the culture medium containing 500 μg/mL geneticin 

10 days after the transduction with the pLenti3.3/TetR expression vector. Bar, 60 µm.  

B: Expression of TetR repressor gene in MSCs (without transduction) and MSCs-TetR 

was determined by RT-PCR. HEK293 cells with the same transduction procedure 

(HEK-TetR) were used as a positive control. 

C: 293FT cells were introduced by the expression vector plenti6.3/V5-GW/EmGFP as 

control. After transfected 24 hours, GFP expressed strongly. Bar, 200 µm. 

D: 293FT cells were introduced by the expression vector pLenti6.3/TO/V5/Amelx to 

produce Amelx-carring lentivirus. Bar, 200 µm.  

E: MSCs-TetR were lentivirally transduced with the expression vector 

pLenti6.3/TO/V5/Amelx. MSCs-TetR/Amelx were selected by 10 μg/mL blastcidin S. 

Bar, 200 µm.  
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Fig. 2: Inducible expression of Amelx in MSCs-TetR/Amelx by Dox addition 

MSCs-TetR/Amelx were cultured in the growth medium in the presence (+) or absence (-) 

of Dox for 24-72 hours. Inducible expression of Amelx gene was detected by RT-PCR (A) 

and Western blotting (B) analyses. GAPDH was used as a loading control. 
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Fig. 3: Controllable expression of Amelx in MSCs-TetR/Amelx by Dox 

addition/depletion 

MSCs-TetR/Amelx were cultured in the osteogenic induction medium in the presence (+) 

(black bars) or absence (-) (white bars) of Dox for 17 days in four different conditions. 

(Condition I: day 0-17 Dox-; Condition II: day 0-14 Dox-, day 15-17 Dox+; Condition 

III: day 0-14 Dox+, day 15-17 Dox-; Condition IV：day 0-17 Dox+). Expression of 

Amelx was determined by a quantitative real-time RT-PCR analysis. Significant 

differences (*P<0.01, ANOVA with Tukey’s multiple comparison test, n=4) were 

evaluated with respect to the values between the bars which were connected by a line. 
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Fig. 4: Controllable expression of Osterix and Osteocalcin in MSCs-TetR/Amelx by 

Dox addition/depletion 

MSCs-TetR/Amelx were cultured in the osteogenic induction medium in the presence (+) 

(black bars) or absence (-) (white bars) of Dox for 17 days in four different conditions. 

(Condition I: day 0-17 Dox-; Condition II: day 0-14 Dox-, day 15-17 Dox+; Condition 

III: day 0-14 Dox+, day 15-17 Dox-; Condition IV：day 0-17 Dox+). Expression of 

Osteocalcin (A) and Osterix (B) was determined by a quantitative real-time RT-PCR 

analysis. Significant differences (*P<0.01, ANOVA with Tukey’s multiple comparison 

test, n=3) were evaluated with respect to the values between the bars which were 

connected by a line. 
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Fig. 5: Effects of forced expression of Amelx in MSCs-tetR/Amelx on expression of 

osteogenic marker genes 

MSCs-TetR/Amelx were cultured in growth medium (con) or osteogenic induction 

medium (os) in the presence (+) or absence (-) of Dox for 21 days. The expression of 

osteogenesis marker genes (Osteocalcin, Osterix, BSP and Osteopontin) was examined 

by RT-PCR analysis. GAPDH was used as a loading control. 
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Fig.6: Effects of forced expression of Amelx in MSCs-tetR/Amelx on expression of 

osteogenic marker genes 

MSCs-TetR/Amelx were cultured in growth medium (con) or osteogenic induction 

medium (os) in the presence (+) or absence (-) of Dox for 21 days. The expression of 

BSP (A), Osterix (B) and type I collagen (C) genes were examined by quantitative 

real-time RT-PCR analysis. GAPDH was used as an internal control. Significant 

differences (*P<0.01, ANOVA with Tukey’s multiple comparison test, n=4 for typeⅠ 

collagen, n=3 for BSP and Osterix) were evaluated with respect to the values between 

Dox (+) and (-), which were connected by a line. 
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Fig.7: Effects of forced expression of Amelx on the ALP activity and mineralized 

nodule formation 

MSCs-TetR/Amelx were cultured in the growth medium (con) or the osteogenic induction 

medium (os) in the presence (+) or absence (-) of Dox.  

A: ALP activity on day 7, 14 and 21 was examined by ALP staining.  

B: Mineralized nodule formation on day 21, 28 and 35 was detected by von Kossa 

staining. 
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Fig.8: Effects of forced expression of Amelx on the calcium deposition 

MSCs-TetR/Amelx were cultured in the growth medium (con) or the osteogenic induction 

medium (os) in the presence (+) or absence (-) of Dox for 21 days. Calcium deposition 

was determined by Alizarin Red S staining (A) and the quantitative analysis of the 

staining intensity (B). Significant differences (*P<0.01, ANOVA with Tukey’s multiple 

comparison test, n=9) were evaluated with respect to the values between Dox (+) and (-) 

on day 14 and 21. 
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Fig.9: Effects of forced expression of Amelx at different osteogenic differentiation 

stages on matrix calcification of MSCs 

MSCs-TetR/Amelx were cultured in the growth medium (con) or the osteogenic induction 

medium (os). Dox was added to MSCs-TetR/Amelx on day 0-10 (A: early stage), day 

10-20 (B: intermediate stage), or day 20-30 (C: late stage) of osteogenic differentiation, 

and Alizarin Red S staining was performed at day 10, day 20, or day 30, respectively. 

Quantitative analysis of the staining intensity was also performed. Significant differences 

(*P<0.01, ANOVA with Tukey’s multiple comparison test, n=9) were evaluated with 

respect to the values between Dox (+) and (-). 

  



63 

 

 

 

Fig. 10: Establishment of iPSCs-TetR 

A: Mouse gingiva-derived iPSCs were lentivirally infected with TetR expression vector. 

Eight clonal cultures were established after the drug selection with 500 μg/mL geneticin. 

The picture shows an iPSC colony of one of the clonal cultures (iPSC-clone 6). Bar, 40 

µm. 

B: Expression of TetR gene and protein expression in the eight clonal iPSC cultures 

(clone 1-8) were examined by RT-PCR and Western blotting analyses. HEK293 cells 

with the same transduction procedure (HEK-TetR) were used as a positive control. 

C: After additional 6-time transduction, a survived iPSC colony (upper panel) with 10 

mg/ml geneticin was picked up. Clonal culture (iPSCs-TetR: lower panel) was 

established from the colony. Inset: ALP staining image of iPSC-TetR. Bar, 40 µm. 

D: Expression of TetR gene and protein expression in the iPSCs after one-time 

transduction (clone 6) and seven-time transduction (iPSCs-TetR) were examined by 

RT-PCR and Western blotting analysis. 
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Fig. 11: Establishment of iPSCs-TetR/Amelx 

A: iPSCs-TetR were transduced with pLenti6.3/TO/V5/Amelx expression vector. After a 

drug selection with 400 μg/mL blastcidin S, clonal iPSC culture was established 

(iPSCs-TetR/Amelx). Inset: ALP staining image of the iPSCs-TetR/Amelx. Bar, 40 µm. 

B: iPSCs-TetR/Amelx were cultured in the ES medium in the presence (+) or absence (-) 

of Dox for 72 hours. Amelx gene and protein expression were observed by RT-PCR and 

Western blotting analyses. GAPDH was used as a loading control. 

C: iPSCs-TetR/Amelx were cultured in the ES medium in the presence (+) (black bars) or 

absence (-) (white bars) of Dox (0.02μg/mL, 0.2μg/mL, 1μg/mL, 2μg/mL) for 72 hours. 

Expression of Amelx gene was examined by quantitative real-time RT-PCR analysis. 

GAPDH was used as an internal control. Significant differences (*P<0.01, ANOVA with 

Tukey’s multiple comparison test, n=3) were evaluated with respect to the values 

between Dox (+) and (-) at the same time point. 
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Fig. 12: Effects of forced expression of Amelx on in vivo differentiation ability of 

iPSCs 

iPSCs-TetR/Amelx, which were cultured in the presence (Dox+) (D-F) or absence (Dox-) 

(A-C) of Dox, were transplanted under the testis of a mouse. After 10 weeks of 

transplantation, both conditions of iPSCs-TetR/Amelx produced teratoma (A, B: bars, 1 

cm). Histological observation (H&E staining) of the teratoma showed that both 

conditions of iPSCs-TetR/Amelx produced several types of tissues from all germ layers, 

such as cartilage (B: arrows), gut-like epithelium (C: arrows) and epidermis (E, F: 

arrows). Bars, 200 µm. 
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Fig. 13: Forced expression of Amelx guided differentiation of iPSCs into epidermis 

in vivo 

iPSCs-TetR/Amelx, which were cultured in the presence (Dox+) or absence (Dox-) of 

Dox, were transplanted under the testis of a mouse. After 10 weeks of transplantation, 

histological observation (H&E staining) of the teratoma was performed, and a number of 

epidermis (A), cartilage (B), or gut-like epithelium (C) in the histological section was 

counted. Significant differences (*P<0.05, student-T test: n=8) were evaluated with 

respect to the values between Dox (+) and (-). Bars, 100µm. 
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Fig. 14: Establishment of iPSCs-TetR/Bmp4 

A: iPSCs-TetR were transduced with pLenti6.3/TO/V5/Bmp4 expression vector. After a 

drug selection with 400 μg/mL blastcidin S, clonal iPSC culture was established 

(iPSCs-TetR/Bmp4). Inset: ALP staining image of the iPSCs-TetR/Bmp4. Bars, 40 µm. 

B: iPSCs-TetR/Bmp4 were cultured in the ES medium in the presence (+) or absence (-) 

of Dox for 48 hours. Expression of Bmp4 gene was determined by RT-PCR analysis. 

GAPDH was used as a loading control. 

C: iPSCs-TetR/Bmp4 were cultured in the ES medium in the presence (+) (black bars) or 

absence (-) (white bars) of Dox (0.02 μg/mL, 0.2 μg/mL, 1 μg/mL, 2 μg/mL) for 72 hours. 

Expression of Bmp4 gene was examined by quantitative real-time RT-PCR analysis. 

GAPDH was used as an internal control. Significant differences (**P<0.01，*P<0.05, 

ANOVA with Tukey’s multiple comparison test, n=3) were evaluated with respect to the 

values between Dox (+) and (-) at the same time point. 
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Fig. 15: Odontogenic differentiation of iPSCs by co-culture of Amelx-expressing 

iPSCs and Bmp4-expressing iPSCs 

EBs of iPSCs-tetR/Amelx and iPSCs-tetR/Bmp4 were co-cultured in the presence (+) 

(black bars) or absence (-) (white bars) of Dox for 21 days. Expression levels of (A) 

Amelx (ameloblast-lineage) and (B) DMP1 (odontoblast-lineage) were evaluated by 

quantitative real-time RT-PCR analyses. Significant differences (*P<0.01, ANOVA with 

Tukey’s multiple comparison test, n=3) were evaluated with respect to the values 

between Dox (+) and (-). 

 


