

Title	ラット三叉神経系ニューロンにおけるPostsynaptic density protein 95(PSD-95)発現の生後発達
Author(s)	田中, 輝
Citation	大阪大学, 2015, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/52360
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

学位論文

ラット三叉神経系ニューロンにおける

Postsynaptic density protein 95 (PSD-95) 発現の生後発達

2015年3月

大阪大学大学院歯学研究科 統合機能口腔科学専攻

顎口腔病因病態制御学講座 口腔外科学第一教室

(指導教官:古郷 幹彦 教授)

田中 輝

摂食行動は、顎・顔面・舌のリズミカルな協調運動である。摂食行動は半自 動性運動に分類されており、運動の大部分が不随意的に遂行されている ¹⁾。哺 乳類における摂食行動には吸啜運動と咀嚼運動があり、摂食行動時のリズミカ ルな顎運動は脳幹に存在する Central Pattern Generator (以下、CPG) におい て統制されている²⁾。中枢や末梢からの入力を受けることで CPG においてリ ズムが作られ、運動ニューロンがリズミカルに活動することでリズミカルな顎 運動が誘発される¹⁾。主な中枢性の入力としては大脳皮質があり、末梢性の入 力としては閉口筋筋紡錘・歯根膜機械受容器がある。咀嚼運動の開始と制御に は大脳皮質咀嚼野からの刺激が重要であることから³⁾、咀嚼運動には大脳皮質 咀嚼野から脳幹への下行性入力が重要であることが分かる。大脳皮質から三叉 神経運動核へは直接投射することは稀であり、三叉神経運動核の運動前ニュー ロンを介した間接的な投射が主であることがサル 4,5), ネコ 6-8), ラット 9,10)で報 告されている。三叉神経運動核の運動前ニューロンは、三叉神経中脳路核、三 叉神経主感覚核、三叉神経脊髄路核、三叉神経運動核周囲の網様体(三叉神経 上領域、三叉神経間領域、三叉神経傍領域を含む)および小細胞性網様体に分 布しており¹¹⁻¹³、CPG は三叉神経運動核周囲に存在するということが近年示 唆されているが、未だにそのメカニズムについては明らかになっていない。

当教室ではこれまでに、CPG は三叉神経運動核全周囲 300µm 以内に存在す ることを明らかにしており¹⁴⁾、また同領域には大脳皮質咀嚼野から投射された 三叉神経運動核の運動前ニューロンの存在が報告されていること¹¹⁾、大脳皮質 咀嚼野およびそれに隣接した領域である大脳皮質吸啜野から脳幹へは同一領域 に投射されるという報告¹⁵⁾から、三叉神経運動核周囲の領域が吸啜・咀嚼運動 に重要であることが考えられる。また三叉神経運動核を含む脳幹標本に Nmethyl-d, aspartic acid (以下、NMDA)の薬物刺激を行うことで、三叉神経運 動根からリズミカルな神経活動を記録したことから、リズミカルな顎運動には NMDA 受容体が大きな役割を果たしていることが分かっている^{16,17}。

NMDA 受容体とは、興奮性シナプス後膜に存在する、中枢神経系の主要な 興奮性神経伝達物質であるグルタミン酸の受容体の一種である。これは三叉神 経運動核周囲において出生前や出生後早期の発達における顎運動のリズムとパ ターン形成および信号伝達に重要な役割を果たしており^{14,18,19}、Post Synaptic Density-95 (以下、PSD-95) と NMDA 受容体のサブユニットである NR2 を介 して結合していることが知られている²⁰⁾。興奮性シナプス後膜直下には、多数 のタンパク質で構成されたシナプス後肥厚部があり、シナプス後肥厚部の主な 足場タンパク質として PSD-95 がある。このタンパク質は、シナプス強度を制 御し²¹⁾、さらに NMDA 受容体と結合することにより NMDA 受容体の局在化 を制御し情報伝達の効率化に働くことで、興奮性シナプスにおけるシナプス可 塑性への関与が示唆されている²⁰⁾。したがって PSD-95 の存在は情報伝達量の 多いシナプスの存在を示しており²²⁾、リズミカルな顎運動に重要である NMDA 受容体が効率的に機能していることを示している。このことから、発 育中のラット脳幹、特に三叉神経運動核周囲の領域において、PSD-95 の経日 的分布を検索することは吸啜、咀嚼における神経回路網の形成を検討する上で 重要であると考え、免疫組織化学的に検討した。

材料と方法

1. 実験動物

実験には、出生日を P-0 (postnatal day 0) とし、P-1, 3, 5, 7, 9, 11, 13, 18, 23 の Sprague-Dawley 系ラットを用いた。明期 12 時間、暗期 12 時間の光条 件下で固形飼料を与えて、自由摂食・摂飲として飼育した。本実験は大阪大学 大学院歯学研究科動物実験委員会の規定と動物の愛護及び管理に関する法律を 遵守して行った。

2. 試料作製

P-1, 3, 5, 7, 9, 11, 13, 18, 23 で、各群 3 匹に灌流固定を行い、試料を採取した。動物をハロタン (武田薬品工業株式会社、大阪)の吸入深麻酔および、ネンブタール (50mg/kg BW) (大日本製薬、大阪)の腹腔内投与による深麻酔下で動物の心臓内にカテーテルを挿入し、ヘパリン加 0.02M リン酸緩衝生理食塩水 (phosphate-buffered saline: PBS, pH 7.4)で瀉血後、4%パラホルムアルデヒドを含む 0.1M リン酸緩衝液 (phosphate buffer: PB, pH 7.4) で灌流固定を行った。その後、三叉神経運動核を含む脳幹部を摘出し、後固定のため同固定液にて 48 時間浸漬し、その後 20%スクロースを含む 0.02M PBS に 48 時間浸漬した。試料はフリージングミクロトームにて厚さ 50 µ m の冠状断連続切

片をObexから上丘尾側端の範囲(舌下神経核、顔面神経核、三叉神経運動 核、三叉神経傍領域、三叉神経中脳路核を含む)で作製した。

3. 免疫組織化学染色

免疫組織化学染色は浮遊法で、ABC 法 (avidin-biotin peroxidase complex mehod)を用いた²³⁾。全ての実験で、無作為に切片を選び、一次抗体を省き、 その他は同様の手順で免疫染色を行いネガティブコントロールとした。結果は 全て陰性で、本実験で得られた結果は非特異的な反応ではないことが示され た。得られた連続切片は、切片同士を比較できるように、交互に免疫組織化学 染色と対比染色に分けて行った。免疫組織化学染色の手順を以下に示す。作製 した切片を 0.02M PBS で洗浄後、0.3%過酸化水素水を含む 0.02M PBS で 30 分間処理し、内因性 peroxidase の不活化を行った。0.02M PBS で洗浄後、 1%ウシ血清アルブミン、1%正常ヤギ血清、1%正常ウマ血清および1%正常 ブタ血清を含む 0.02M PBS に 30 分間浸漬し、ブロッキング処理を行った。 0.02M PBS で洗浄後、一次抗体としてマウス免疫抗 PSD95 モノクローナル抗 体 (1:250, Sigma-Aldrich) を用い、16 時間~18 時間反応させた。その後、 0.02M PBS で洗浄し、二次抗体としてビオチン標識抗マウス IgG (1:500, Vector)を 90 分間反応させ、0.02M PBS で洗浄後、ABC 試薬(Vectastain)

Elite ABC Kit, Vector Laboratories) を 90 分間反応させた。その後、0.02M PBS で洗浄し、さらに 0.05M トリス塩酸緩衝食塩水 (Tris-HCl buffered saline: TBS, pH 7.6) にて洗浄し、0.04% 3,3-diaminobenzidine (Sigma-Aldrich) と 0.003%過酸化水素水を含む 0.05M TBS にて可視化し、

0.08%~0.1%硫酸ニッケルアンモニウムで増感した。反応後、0.05M TBS、 0.02M PBS、蒸留水の順で洗浄後、浮遊切片を、ゼラチン表面処理を行ったス ライドガラスに貼付し、上昇エタノール系列で脱水、レモゾール(和光純薬工 業株式会社、大阪)にて透徹後、マリノール(武藤化学株式会社、東京)にて 封入した。対比染色には、ヘマトキシリン染色を用いた。ヘマトキシリン染色 の手順を以下に示す。作製した切片を 0.02M PBS、蒸留水の順で洗浄後、浮 遊切片を、ゼラチン表面処理を行ったスライドガラスに貼付し、マイヤーのヘ マトキシリン(1.5 倍法)(武藤化学株式会社、東京)の原液に 60 秒間浸漬し た後、蒸留水にて洗浄後、免疫組織化学染色時と同様に、脱水・透徹・封入を 行った。封入後、鏡検は光学顕微鏡(Olympus,東京)にて行った。なお、す べての反応は室温下にて行った。

4. 定量解析

光学顕微鏡を用いて三叉神経運動核における運動ニューロンの PSD-95 陽性

細胞をカウントし、隣り合う切片の対比染色(図 1A および B)から三叉神経運 動核内の運動ニューロンの総数を求め、それに対する PSD-95 陽性率を算出 し、P-1から P-23 の各日齢における PSD-95 陽性率の経日的な変化を検討し た。さらに、他の口腔顎顔面領域の運動神経である顔面神経核、舌下神経核の 陽性率も同様の方法で求め、PSD-95 陽性ニューロンの発現開始時期および経 日的変化について三叉神経運動核と比較検討した。また、三叉神経運動核領域 は開口筋と閉口筋で支配筋対応配列を示しており、三叉神経運動核の腹内側を 開口筋支配領域、背外側を閉口筋支配領域と区別されるので^{24,25)}(図 2)、三叉 神経運動核に関しては、開口筋・閉口筋支配領域別の検討も行った。

なお、三叉神経運動核に関しては全領域の切片を使用し、顔面神経核および 舌下神経核に関しては各領域の中央の3切片を抽出して使用した。

5. PSD-95 陽性ニューロンの発現時期の検討

三叉神経中脳路核、三叉神経傍領域における PSD-95 陽性ニューロンの発現 時期の検討を行った。なお、三叉神経中脳路核は上丘から三叉神経運動核まで 吻尾的に分布しているが、筋紡錘を支配するニューロンは全域に、歯根膜を支 配するニューロンは尾側に限局して存在しており^{26,27)}、今回の研究では両方の ニューロンが存在する三叉神経中脳路核の尾側において検討を行った。 全ての実験結果は、平均値±標準偏差で表記した。統計学的評価には、2 群間には Mann-Whitney's U-test を用い、有意水準は 5% (P<0.05) とした。回帰分析には最小 2 乗法を用い、y=ax+b として回帰式を求めた。

結果

研究① 三叉神経運動核、顔面神経核および舌下神経核における

PSD-95 陽性率の経日的変化

-1 三叉神経運動核での検討

PSD-95 陽性ニューロンの発現は P-1, 3 では認めず、P-5 から認めた。P-5 では薄い染色であったが、経日的に濃さを増し、P-23 まで染色性は増強した (図 3)。PSD-95 陽性率(%)は、0 (P-1)、0 (P-3)、4.8±0.6 (P-5)、 10.5±1.3 (P-7)、15.4±0.7 (P-9)、20.4±1.8 (P-11)、25.7±3.0 (P-13)、 57.4±2.2 (P-18)、86.9±3.6 (P-23)と経日的に増加した。P-5 から P-13 までの 回帰式は y = 2.6x - 7.9、P-13 から P-23 までの回帰式は y = 6.1x - 53.5 と表す ことができ、P-13 以降、PSD-95 陽性率の傾きの増加を認めた(図 6)。

1) -2 顔面神経核での検討

PSD-95 陽性ニューロンの発現は P-1 から認めた。P-1 では薄い染色であったが、経日的に濃さを増し、P-23 まで染色性は増強した(図 4)。PSD-95 陽
性率(%)は、5.3±1.3 (P-1)、10.4±1.6 (P-3)、18.3±3.3 (P-5)、27.2±3.3 (P-7)、39.1±2.8 (P-9)、50.6±2.5 (P-11)、59.2±4.5 (P-13)、71.4±7.3 (P-18)、78.4±3.1 (P-23)と経日的に増加した。P-1 から P-13 までの回帰式は y

= 4.7x - 2.9、P-13 から P-23 までの回帰式は y = 1.9x + 35.2 と表すことがで き、P-13 以降、PSD-95 陽性率の傾きは緩やかになった(図 6)。三叉神経運 動核と顔面神経核との比較では、全日齢において有意差を認めた。

-3 舌下神経核での検討

PSD-95 陽性ニューロンの発現は P-1 から認めた。P-1 では薄い染色であっ たが、経日的に濃さを増し、P-23 まで染色性は増強した(図 5)。PSD-95 陽 性率(%)は、3.1±2.8 (P-1)、7.6±2.4 (P-3)、10.6±2.2 (P-5)、14.7±1.4 (P-7)、25.2±2.1 (P-9)、43.5±3.0 (P-11)、53.5±2.5 (P-13)、61.5±2.4 (P-18)、74.3±2.1 (P-23)と経日的に増加した。P-1 から P-13 までの回帰式は y = 4.2x - 7.2、P-13 から P-23 までの回帰式は y = 2.1x + 25.6 と表すことがで き、P-13 以降、PSD-95 陽性率の傾きは緩やかになった(図 6)。三叉神経運 動核と舌下神経核との比較では、P-1, 18 を除く全日齢において有意差を認め た。

① -4 三叉神経運動核における開口筋・閉口筋支配領域での検討

PSD-95 陽性ニューロンの発現は開口筋領域、閉口筋領域ともに P-5 から認めた(図 3)。

開口筋領域における PSD-95 陽性率(%) は、0(P-1)、0(P-3)、8.1±5.0 (P-5)、11.1±2.7(P-7)、15.2±1.9(P-9)、18.2±4.3(P-11)、19.5±4.4(P-13)、48.5±6.7(P-18)、78.6±7.2(P-23)と経日的に増加した。

閉口筋領域における PSD-95 陽性率(%) は、0(P-1)、0(P-3)、3.3±2.9 (P-5)、10.2±0.8(P-7)、15.3±0.8(P-9)、21.3±0.4(P-11)、28.1±2.4(P-13)、60.8±0.4(P-18)、90.5±4.1(P-23)と経日的に増加した。

三叉神経運動核全域での検索と同様に、両領域において P-13 以降、PSD-95 陽性率の傾きの増加を認めた(図7)。2 群間での比較では、P-13,18 でのみ有 意差を認めた。

研究② 三叉神経中脳路核、三叉神経傍領域における PSD-95 陽性 ニューロンの発現時期の検討

② -1 三叉神経中脳路核での検討

三叉神経中脳路核に関しては、どの日齢においても染色性が弱く、領域 内の染色された細胞を全てカウントするのは手技的に困難であった為、 PSD-95 陽性率は算出せず、PSD-95 陽性ニューロンの発現時期の検討のみ を行った。PSD-95 陽性ニューロンの発現は P-1 から認め、それ以降 P-23 まで認めた(図 8)。

② -2 三叉神経傍領域での検討

三叉神経傍領域に関しては、周囲の網様体との境界が不明瞭であり、領域内 の染色された細胞を全てカウントするのは困難であった為、PSD-95 陽性率は 算出せず、PSD-95 陽性ニューロンの発現時期の検討のみを行った。PSD-95 陽性ニューロンの発現は、P-1 から認め、それ以降 P-23 まで認めた。三叉神経 傍領域に関しては、他の領域と違い、P-1 から強い染色性であった(図 9)。 PSD-95 は、シナプス強度を制御し²¹⁾、さらに NMDA 受容体と結合するこ とにより NMDA 受容体の局在化を制御し情報伝達の効率化に働くことで、興 奮性シナプスにおけるシナプス可塑性への関与が示唆されている²⁰⁾。リズミカ ルな顎運動に重要な NMDA 受容体は胎生期から発現するが²⁸⁾、サイレントシ ナプスと呼ばれる NMDA 受容体のみが発現し AMPA 受容体が発現していない シナプス後膜を持つニューロンが存在し、それらはシナプス前ニューロンから の刺激によっても通常の静止膜電位では応答しない為²⁹⁻³¹⁾、NMDA 受容体の 発現とシナプスの活動性を直結させることはできない。そこで、今回の研究で は、NMDA 受容体の発現率を直接検索するのではなく、NMDA 受容体の局在 化を制御し情報伝達の効率化に働くシナプスマーカーの PSD-95 に着目するこ とで²⁰⁾、吸啜・咀嚼に関する神経回路網の検討を行った。

三叉神経運動核における PSD-95 陽性率の推移

三叉神経運動核において、P-13 を境に PSD-95 陽性率の傾きの増加を認め た。ラットの切歯は P-7、臼歯は P-14 前後で萌出することから、P-13 前後は 吸啜運動から咀嚼運動への移行期であり、この移行期にシナプスの情報伝達量 が増大することで PSD-95 陽性率の傾きが増加したのではないかと考えられ る。また、PSD-95 陽性率が増大したことから応答する NMDA 受容体も増加 していると推測され、吸啜から咀嚼運動への移行は NMDA 受容体の変化によ り引き起こされたのではないかと推測された。

NMDA 受容体は、NR1 と NR2 サブユニットからなる 4 量体で、NMDA 受 容体の機能には NR2 の存在が重要であり、シナプス可塑性に関与している ³²⁾。NR2 には NR2A-D の 4 種類が存在し、大脳では主に NR2A や NR2B が 発現しており²⁹⁾、NR2A はシナプス伝達の長期増強(LTP)の誘発、NR2B は 長期抑圧(LTD)の誘発に関与するとされているが³³⁾、LTP と学習能力は正の 相関があり³⁴⁾、NR2B を過剰発現させたマウスの学習能力が向上したことから ³⁵⁾、NR2B 自体も LTP に関与していると考えられ、NR2A・NR2B の機能に関 しては結論が出ていない。

脳内でのNR2A/NR2Bの比率は、生後発育段階から性的成熟および高齢にか けて増大することが知られている³⁶⁾。特に、三叉神経運動核においては、 NR2A/NR2Bの比率は、P-3,4からP-11間ではNR2Bの発現低下により、著 明に増大することが報告されている³⁷⁾。生後第1週はNR2Bが優勢である が、第2週からはNR2BからNR2Aへ転換されることでNMDA受容体の機 能が変化する^{38,39)}。一方で、NR2Bをノックアウトしたマウスは、吸啜運動が できず生後まもなく死亡することが報告されている^{40,41)}。ここから、摂食行動 には NR2 が関与しており、まず NR2B が存在することで吸啜運動が可能とな り、成長とともに NR2B から NR2A へ転換されることで、吸啜運動から咀嚼 運動へと移行していく可能性が考えられる。摂食行動の変化には大脳皮質・延髄 投射の再構成といった中枢神経系や歯根膜などの求心性刺激に伴う末梢神経系 の変化の関与が示唆されており^{15,42-44}、これらの変化が生じることでシナプス への情報伝達量が増加し、NMDA 受容体の構造・機能が変化し、摂食行動に 変化が生じたと考えられる。

三叉神経運動核、顔面神経核、舌下神経核における PSD-95 陽性率の推移

今回の結果から、咀嚼筋を支配する三叉神経運動核における PSD-95 陽性ニ ユーロンの発現時期と発達様相は、顔面表情筋・舌筋を支配する顔面神経核・ 舌下神経核とは異なることが分かった。顔面神経核および舌下神経核は P-1 か らの発現、三叉神経運動核は P-5 からの発現であり、これらの違いは生後にお いて、表情筋・舌筋が咀嚼筋よりも先に機能を開始するためであると考えられ る。一般に吸啜運動は表情筋を、咀嚼運動は咀嚼筋を主に用いる運動であると 言われている ⁴⁵⁾。ラットは胎生 21 日で産まれるが、胎生 17 日目には胎仔の 顎運動が観察でき ⁴⁶⁾、出生直後から吸啜運動を開始する。ラットの切歯は P-7、臼歯は P-14 前後で萌出し、その萌出に伴って P-12 前後から咀嚼運動を開 始する 47 ことから出生直後は吸啜運動のため表情筋・舌筋が主に機能し、発育 に伴って咀嚼運動へ移行することで咀嚼筋が機能を開始すると考えられ、これ により今回の結果のように PSD-95 陽性率の経日的な変化に違いが見られたの ではないかと考えられる。

三叉神経運動核の開口筋・閉口筋支配領域における PSD-95 陽性率の推移

吸啜運動から咀嚼運動へ移行するにあたり、まず開口筋が機能し、成長とと もに閉口筋が追従して機能を開始すると推測された。しかし、今回の結果で は、2 群間で有意差を認めたのは P-13, 18 のみであり、P-13, 18 を除く各日齢 において両領域で有意差を認めなかった。

末梢性の投射経路から考えるとシナプス入力は閉口筋支配領域の運動ニュー ロンの方が多くなると予想されたが、今回の結果では P-13, 18 を除くと、両領 域での運動ニューロンへの情報伝達量に差は見られなかった。リズミカルな顎 運動を行うには、大脳皮質、大脳基底核および扁桃体などの中枢性の入力と歯 根膜、筋紡錘、口腔粘膜などの末梢性の入力が重要となる⁴⁸⁾。末梢性の入力と して、歯根膜からは歯根膜閉口筋反射、筋紡錘からは下顎張反射、口腔粘膜か らは開口反射があり、歯根膜閉口筋反射および下顎張反射は閉口筋支配領域の 運動ニューロンに働きかけ、開口反射はヒト以外の動物では開口筋・閉口筋支 配領域それぞれの運動ニューロンに働きかける^{48,49}。以上のことから、各日齢 において中枢性入力と末梢性入力が調整しあうことで両領域へのシナプス入力 が均等となり、リズミカルな吸啜・咀嚼運動が維持されているのではないかと 考えられた。P-13, 18 における2 群間でのシナプス入力の差に関しては、吸啜 から咀嚼運動へと移行する上で、各領域に対して一時的にシナプス入力に違い が生じた為ではないかと考えられた。

三叉神経中脳路核における PSD-95 発現の検討

三叉神経中脳路核ニューロンは一次求心性ニューロンであり、その細胞体が 脳内に存在し、上位中枢からシナプス入力を受けるという点が特徴的である。 三叉神経中脳路核ニューロンの細胞体には、多数の axosomatic なシナプスが 形成されており 50-52)、視床下部 53-55)、扁桃体 56)、縫線核 57,58)、小細胞性網様 体 59,60)、腹側被蓋野 61)、黒質緻密部 61)、大脳皮質 62)などから投射されている ことが知られている。三叉神経中脳路核ニューロンは末梢感覚受容器として歯 根膜機械受容器と閉口筋筋紡錘からの入力を受けている 63)。前述したように、 ラットの切歯は P-7、臼歯は P-14 前後で萌出し、その萌出に伴って P-12 前後 から咀嚼運動を開始する 47)。 歯根膜機械受容器であるルフィニ神経終末は、 切歯萌出から臼歯咬合確立期にかけて急激に成熟するが、機械受容器としての 形態学的特徴は P-4 から認められる ^{64,65)}。PGP 9.5 を用いた実験では切歯歯根 膜に成熟したルフィニ神経終末が認められるのは P-7 からである ⁶⁴⁻⁶⁶⁾。また、 PGP 9.5 陽性線維は P-1 から認められ、ニューロンの機能的マーカーである Calretinin を用いた実験では Calretinin 陽性線維も P-1 から認められ、以降経 日的に増加するが、PGP 9.5 よりは陽性を示す面積は少なかった ⁶⁶⁾。切歯萌出 開始直後に直接歯根膜に機械的刺激を行うことで歯根膜閉口筋反射が誘発され ることから ⁶⁷⁾、歯根膜機械受容器から三叉神経中脳路核ニューロンへの入力 は、ルフィニ神経終末が成熟する以前の、機械受容器としての特徴を認める P-4 から既に形成されている可能性が考えられる。このことから、P-4 以前は閉 口筋筋紡錘からの求心性ニューロンのみが、P-4 以降は閉口筋筋紡錘および歯 根膜機械受容器からの求心性ニューロンの両方が機能していると考えられる。

今回の結果では、PSD-95 は P-1 から発現を認めており、前述の内容を踏ま えると、閉口筋筋紡錘からの求心性ニューロンが早期からシナプス入力を受け ていることが考えられる。三叉神経中脳路核ニューロンの内、歯根膜からの求 心性ニューロンは三叉神経運動核や三叉神経上領域に投射していることが知ら れており ^{48,68}、筋紡錘からの求心性ニューロンにおいても、三叉神経運動核や 三叉神経上領域に投射していることが報告されている ⁶⁹⁻⁷²。筋紡錘から三叉神 経運動核に投射する三叉神経中脳路核ニューロンは下顎張反射に関与している ことが分かっているが、開口反射における三叉神経中脳路核の役割は未だに明 らかではない。しかし、過去の研究から三叉神経中脳路核を刺激することで三 叉神経上領域を経由して咀嚼運動時の開口反射の強度に何らかの影響を及ぼし ている可能性が報告されている⁷²⁾。

PSD-95の発現が三叉神経運動核では P-5 からであったことを踏まえると、 三叉神経中脳路核における出生早期 (P-1 から P-4)のシナプス入力に関しては 閉口筋筋紡錘からの求心性ニューロンが受け、三叉神経運動核ではなく三叉神 経上領域へと投射し開口反射の強度に影響を及ぼすことで、吸啜運動を補助し ている可能性が示唆された。また、PSD-95 はシナプスの情報伝達量に関与し ており²²⁾、三叉神経中脳路核ではどの日齢においても弱い染色性であることか ら、三叉神経中脳路核においては他の運動核と異なり、シナプスの情報伝達量 が少ない可能性が示唆された。

三叉神経傍領域における PSD-95 発現の検討

三叉神経運動核周囲の網様体領域は三叉神経周辺領域と呼ばれており、三叉 神経運動核の背側を三叉神経上領域、外側を三叉神経間領域、腹側を小細胞性 網様体、内側を三叉神経傍領域と4つの領域に区分されている。

三叉神経傍領域は、検討した他の領域と比較すると、P-1から強い染色性を

示し、早期からシナプスの情報伝達量が多いことが推測された。この領域には 三叉神経運動核の運動前ニューロンが存在しており、早期から吸啜・咀嚼運動 に関与するため P-1 から PSD-95 が発現しているのではないかと考えられる。

咀嚼運動には三叉神経運動核、顔面神経核、舌下神経核、小細胞性網様体、 三叉神経脊髄路核吻側亜核、三叉神経主感覚核背側部、尾側橋網様体を含む橋 延髄領域が重要とされており、中枢性では大脳皮質など、末梢性では口腔から 尾側橋網様体や三叉神経主感覚核背側部が入力を受けることで咀嚼運動のリズ ムが形成される。形成されたリズムは小細胞性網様体などに存在する運動前ニ ューロンへと伝達され、次いで三叉神経運動核、顔面神経核および舌下神経核 へと伝達されることで咀嚼筋、表情筋および舌筋が協調して活動し、リズミカ ルな咀嚼運動が行われると考えられている 1,73)。小細胞性網様体には三叉神経 運動核、顔面神経核および舌下神経核の運動前ニューロンが存在しており 11,60,74-76)、特に小細胞性網様体の吻側部が口腔顔面運動の制御に重要とされて いる 60)。三叉神経傍領域は小細胞性網様体の吻側部に含まれているので 73)、三 叉神経傍領域が口腔顔面運動にとって重要であることが理解できる。これらの 事実と今回の結果から、三叉神経傍領域は出生早期から CPG の一部として吸 啜・咀嚼運動に関与していることが示唆された。

結語

三叉神経運動核において PSD-95 の発現は P-5 からであり、顔面神経核、舌 下神経核より発現時期は遅いことが分かった。また、三叉神経運動核における PSD-95 陽性率は経日的に増加しており、特に P-13 以降で著しい増加傾向を示 すことが分かった。

開閉口筋を支配する三叉神経運動核における PSD-95 陽性ニューロンの発現 時期と発達様相は顔面表情筋・舌筋を支配する顔面神経核・舌下神経核とは異 なることが分かった。

三叉神経運動核の開口筋・閉口筋支配領域における PSD-95 陽性率は、発現 以降、経日的に増加しており、三叉神経運動核全域での検索と同様に P-13 以 降で著しい増加傾向を認めた。

三叉神経中脳路核および三叉神経運動核に投射する運動前ニューロンが存在 する領域である三叉神経運動核内側の三叉神経傍領域において P-1 から PSD-95 陽性ニューロンを認めた。 稿を終えるに臨み、終始御懇切なるご指導を賜りました、大阪大学大学院歯学 研究科 統合機能口腔科学専攻 顎口腔病因病態制御学講座(口腔外科学第一 教室)古郷 幹彦教授、ならびに本研究の遂行に際し終始御懇切なる御指導と 御校閲を賜りました、大阪警察病院 歯科口腔外科 石濱 孝二部長、および 本研究の実施に際し、終始ご懇篤なる御指導、御鞭撻を賜り、快適な環境を整 え導いて下さいました、大阪大学大学院歯学研究科 分子病態口腔科学専攻 口腔分化発育情報学講座(口腔解剖学第一教室)脇坂 聡教授、本間 志保講 師に心より謝意を評します。最後に、この研究の円滑な進展のために特別な御 配慮を頂いた口腔外科学第一教室および口腔解剖学第一教室の教室員諸兄に深 く御礼を申し上げます。

文献

- 山村 健介. (2013): 摂食・嚥下の神経生理学的基盤と今後の研究課題,新潟 歯学会雑誌. 43, 1-12.
- Nakamura, Y. and Katakura, N. (1995): Generation of mastication rhythm in the brainstem, *Neurosci. Res.* 23, 1-19.
- Narita, N. et al. (2002): Effects on mastication of reversible bilateral inactivation of the lateral pericentral cortex in the monkey (Macaca fascicularis), *Arch Oral Biol.* 47, 673-688.
- Kuypers, H.G.J.M. (1958): Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee, *J Comp Neurol.* 110, 221-255.
- 5) Hatanaka, N. et al. (2005): Input-output organization of jaw movementrelated areas in monkey frontal cortex, *J Comp Neurol*. 492, 401-425.
- Rossi, G.F. Brodal, A. (1956): Corticofugal fibres to the brain-stem reticular formation: an experimental study in the cat, *JAnat.* 90, 42-62.
- Armand, J. Holstege, G. Kuypers, H.G. (1985): Differential corticospinal projections in the cat. An autoradiographic tracing study, *Brain Res.* 343, 351-355.

- Yasui, Y. et al. (1985): Cerebral cortical projections to the reticular regions around the trigeminal motor nucleus in the cat, *J Comp Neurol.* 241, 348-356.
- 9) Valverde, F. (1962): Reticular formation of the albino rat's brain stem cytoarchitecture and corticofugal connections, *J Comp Neurol*. 119, 25-53.
- 10)Zhang, G.X. Sasamoto, K. (1990): Projections of two separate cortical areas for rhythmical jaw movements in the rat, *Brain Res Bull.* 24, 221-230.
- 11)Yoshida, A. et al. (2009): Corticofugal projections to trigeminal motoneurons innervating antagonistic jaw muscles in rats as demonstrated by anterograde and retrograde tract tracing, *J Comp Neurol.* 514, 368-386.
- 12)Mizuno, N. et al. (1983): A light and electron microscopic study of premotor neurons for the trigeminal motor nucleus, *J Comp Neurol*. 215, 290-298.
- 13)安井 幸彦, (1993): 咀嚼系神経回路, *日本咀嚼学会雑誌*. 3, 17-22.
 14)Enomoto, A. et al. (2002): Localozation of premotoneurons for an NMDA-

induced repetitive rhythmic activity to TMNs, *Neuroreport.* 13, 2303-2307.

- 15)Iriki, A. Nozaki, S. Nakamura, Y. (1988): Feeding behavior in mammals: corticobulbar projection is reorganized during conversion from sucking to chewing, *Dev Brain Res.* 44, 189-196.
- 16)Kogo, M. Funk, G.D. and Chandler, S.H. (1996): Rhythmical oral-motor activity recorded in an *in vitro* brainstem preparation, *Somatosens Mot Res.* 13, 39-48.
- 17)Kogo, M. Tanaka, S. Chandler, S.H. and Matsuya, T. (1998): Examination of the relationships between jaw opener and closer rhythmical muscle activity in an *in vitro* brainstem jaw-attached preparation, *Somatosens Mot Res.* 15, 200-210.
- 18)Koizumi, H. et al. (2002): Differential discharge patterns of rhythmic activity in trigeminal motoneurons during fictive mastication and respiration *in vitro*, *Brain. Res Bull.* 58, 129-133.
- 19)Ishihama, K. et al. (2003): Oral-motor patterns of rhythmic trigeminal activity generated in fetal rat brainstem *in vitro*, *Dev Brain Res.* 145, 163-166.

- 20)Kornau, H.C. et al. (1995): Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95, *Science*. 269, 1737-1740.
- 21)Chen, X. et al. (2011): PSD-95 is required to sustain the molecular organization of the postsynaptic density, *J Neurosci.* 31, 6329-6338.
- 22)Futai, K. et al. (2007): Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95-neuroligin, *Nat Neurosci.* 10, 186-195.
- 23)Hsu, S.M. Raine, L. Fanger, H. (1981): The use of antiavidin antibody and avidin-biotin-peroxidase complex in immunoperoxidase technics, *Am J Clin Pathol.* 75, 816-821.
- 24)Mizuno, N. Konishi, A. Sato, M. (1975): Localization of masticatory motoneurons in the cat and rat by means of retrograde axonal transport of horseradish peroxidase, *J Comp Neurol.* 164, 105-115.
- 25)Lynch, R. (1985): A qualitative investigation of the topographical representation of masticatory muscles within the motor trigeminal nucleus of the rat: a horseradish peroxidase study, *Brain Res.* 327, 354-358.

- 26)Linden, R.W. (1978): Properties of intraoral mechanoreceptors represented in the mesencephalic nucleus of the fifth nerve in the cat, J Physiol. 279, 395-408.
- 27)Nomura, S. Mizuno, N. (1985): Differential distribution of cell bodies and central axons of mesencephalic trigeminal nucleus neurons supplying the jaw-closing muscles and periodontal tissue: a transganglionic tracer study in the cat, *Brain Res.* 359, 311-319.
- 28)Ishihama, K. Kogo, M. Wakisaka, S. Turman, J.E.Jr. (2005): Prenatal development of NMDA receptor composition and function in trigeminal neurons, *Arch Histol Cytol.* 68, 321-335.
- 29)高宮 考悟. (2011): 学習・記憶におけるシナプス可塑性の分子機構(総説), 生 化学. 83, 1016-1026.
- 30)Kullmann, D.M. (1994): Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation, *Neuron*. 12, 1111-1120.
- 31)Liao, D. Hessler, N.A. Malinow, R. (1995): Activation of postsynaptically silent synapses during pairinginduced LTP in CA1 region of hippocampal slice, *Nature.* 375, 400-404.
- 32)Sprengel, R. et al. (1998): Importance of the intracellular domain of NR2

subunits for NMDA receptor function in vivo, Cell. 92, 279-289.

- 33)Liu, L. et al. (2004): Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity, *Science*. 304, 1021-1024.
- 34)Kleschevnikov, A.M. Marchbanks, R.M. (1993): Behavioral parameters of the spatial memory correlate with the potentiation of the population spike, but not with the population excitatory postsynaptic potential, of the CA1 region in rat hippocampal slices, *Neurosci Lett.* 152, 125-128.
- 35)Tang, Y.P. et al. (1999): Genetic enhancement of learning and memory in mice, Nature. 401, 63-69.
- 36)Cui, Z. et al. (2013): Increased NR2A:NR2B ratio compresses long-term depression range and constrains long-term memory, *Sci Rep.* 3, 1036.
- 37)Turman, J.E.Jr. Lee, O.K. Chandler, S.H. (2002): Differential NR2A and NR2B expression between trigeminal neurons during early postnatal development, *Synapse*. 44, 76-85.
- 38)Xing, G.G. et al. (2006): Postnatal switching of NMDA receptor subunits from NR2B to NR2A in rat facial motor neurons, *Eur J Neurosci*. 24, 2987-2992.
- 39)Matta, J.A. et al. (2011): mGluR5 and NMDA receptors drive the

experience- and activity-dependent NMDA receptor NR2B to NR2A subunit switch, *Neuron*. 70, 339-351.

- 40)Kutsuwada, T. et al. (1996): Impairment of suckling response, trigeminal neuronal pattern formation, and hippocampal LTD in NMDA receptor epsilon 2 subunit mutant mice, *Neuron*. 16, 333-344.
- 41)Tovar, K.R. Sprouffske, K. Westbrook, G.L. (2000): Fast NMDA receptormediated synaptic currents in neurons from mice lacking the epsilon2 (NR2B) subunit, *J Neurophysiol.* 83, 616-620.
- 42)Moyers, R. E. (1973): Development of the dentition and the occlusion, *In* handbook of orthodontics. 4th ed, Year Book Medical Publishers Co,

Chicago, 99-146.

- 43)飯沼 生. (1985): イヌ離乳期の咀嚼機構に関する実験的研究, 小児歯誌. 23, 361-377.
- 44) 生野 伸一. (1989): 吸啜から咀嚼への移行期におけるイヌの咀嚼中枢の発達 について、小児歯誌. 27, 595-606.
- 45)長谷川 成男. (1983): *咀嚼の話*, 東京医科歯科大学, 歯学部顎口腔総合研究 施設編. 日本歯科評論社, 東京, 129-135.

46) Narayanan, C.H. Fox, M.W. Hamburger, V. (1971): Prenatal development

of spontaneous and evoked activity in the rat (Rattus norvegicus albinus), *Behaviour*. 40, 100-134.

- 47)Westneat, M.W. Hall, W.G. (1992): Ontogeny of feeding motor patterns in infant rats: an electromyographic analysis of suckling and chewing.
 Behav Neurosci. 106, 539-554.
- 48)安井 幸彦. (1997): 顎運動の神経機構,藤田 和也 (編): *顎関節症-生理的 咬合の判定基準*-. デンタルフォーラム社, 1-8
- 49)山村 健介.山田 好秋. (2000): 顔面・口腔領域に誘発される反射の変調 について,新潟歯学会雑誌. 30, 53-54.
- 50)Imamoto, K. Shimizu, N. (1970): Fine structure of the mesencephalic nucleus of the trigeminal nerve in the rat, *Arch Histol Jpn.* 32, 51-67.
- 51)Inagaki, N. et al. (1987): The histaminergic innervation of the mesencephalic nucleus of the trigeminal nerve in rat brain: a light and electron microscopical study, *Brain Res.* 418, 388-391.
- 52)Liem, R.S. Copray, J.C. van Willigen, J.D. (1991): Ultrastructure of the rat mesencephalic trigeminal nucleus, *Acta Anat (Basel)*. 140, 112-119.
- 53)Nagy, J.I. Buss, M. Daddona, P.E. (1986): On the innervation of trigeminal mesencephalic primary afferent neurons by adenosine

deaminase-containing projections from the hypothalamus in the rat, *Neuroscience*. 17, 141-156.

- 54)Yamamoto, T. Shiosaka, S. Daddona, P.E. Nagy, J.I. (1988): Further observations on the relationship between adenosine deaminasecontaining axons and trigeminal mesencephalic neurons: an electron microscopic, immunohistochemical and anterograde tracing study, *Neuroscience*. 26, 669-680.
- 55)Moga, M.M. et al. (1990): Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat, *J Comp Neurol.* 295, 624-661.
- 56)Krettek, J.E. Price, J.L. (1978): Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat, *J Comp Neurol.* 178, 225-254.
- 57)Copray, J.C. et al. (1991): Origin, distribution and morphology of serotonergic afferents to the mesencephalic trigeminal nucleus of the rat, *Neurosci Lett.* 121, 97-101.
- 58)Li, J. et al. (2000): Serotonergic innervation of mesencephalic trigeminal nucleus neurons: a light and electron microscopic study in the rat,

Neurosci Res. 37, 127-140.

- 59)Minkels, R.F. et al. (1991): Projections of the parvocellular reticular formation to the contralateral mesencephalic trigeminal nucleus in the rat, *Brain Res.* 547, 13-21.
- 60)Ter, Horst, G.J. et al. (1991): Projections from the rostral parvocellular reticular formation to pontine and medullary nuclei in the rat: involvement in autonomic regulation and orofacial motor control, *Neuroscience*. 40, 735-758.
- 61)Copray, J.C. et al. (1990): Dopaminergic afferents to the mesencephalic trigeminal nucleus of the rat: a light and electron microscope immunocytochemistry study, *Brain Res.* 514, 343-348.
- 62)Iida, C. et al. (2010): Corticofugal direct projections to primary afferent neurons in the trigeminal mesencephalic nucleus of rats, Neuroscience. 169, 1739-1757.
- 63)Gottlieb, S. Taylor, A. Bosley, M.A. (1984): The distribution of afferent neurones in the mesencephalic nucleus of the fifth nerve in the cat, J Comp Neurol. 228, 273-283.
- 64)Nakakura-Ohshima, K. et al. (1993): Postnatal development of

periodontal innervation in rat incisors: an immunohistochemical study using protein gene product 9.5 antibody, *Arch Histol Cytol.* 56, 385-398.

- 65)Nakakura-Ohshima, K. et al. (1995): Postnatal development of periodontal ruffini endings in rat incisors: an immunoelectron microscopic study using protein gene product 9.5 (PGP 9.5) antibody, J Comp Neurol. 362, 551-564.
- 66)Asahito, T. et al. (1999): Postnatal expression of calretininimmunoreactivity in periodontal Ruffini endings in the rat incisor: a comparison with protein gene product 9.5 (PGP 9.5)-immunoreactivity, *Arch Histol Cytol.* 62, 57-69.
- 67)高宮 哲二. (1985): ラットロ腔の機械的刺激による閉口反射の経日的変化, Jpn. J. Oral Biol. 27, 1065-1086.
- 68)Shigenaga, Y. et al. (1988): Morphology of single mesencephalic trigeminal neurons innervating periodontal ligament of the cat, *Brain Res.* 448, 331-338.
- 69)Shigenaga, Y. et al. (1990): Two types of jaw-muscle spindle afferents in the cat as demonstrated by intra-axonal staining with HRP, *Brain Res.* 514, 219-237.

- 70)Lingenhöhl, K. Friauf, E. (1991): Sensory neurons and motoneurons of the jaw-closing reflex pathway in rats: a combined morphological and physiological study using the intracellular horseradish peroxidase technique, *Exp Brain Res.* 83, 385-396.
- 71) Taylor, A. Durbaba, R. Rodgers, J.F. (1993): Projection of cat jaw muscle spindle afferents related to intrafusal fibre influence, *J Physiol*. 465, 647-660.
- 72)佐藤 正彦. 村上 俊樹. (1997): 三叉神経中脳路核刺激に応答する上三叉神経核領域ニューロンの機能的役割に関する研究, 歯学. 84, 601-607.
- 73)Lund, J.P. Kolta, A. (2006): Generation of the central masticatory pattern and its modification by sensory feedback, *Dysphagia*. 21, 167-174.
- 74) Takeuchi, Y. et al. (1979): Mesencephalic and pontine afferent fiber systems to the facial nucleus in the cat: a study using the horseradish peroxidase and silver impregnation techniques, *Exp Neurol.* 66, 330-342.
- 75)Travers, J.B. Norgren, R. (1983): Afferent projections to the oral motor nuclei in the rat, *J Comp Neurol.* 220, 280-298.
- 76)Takada, M. et al. (1984): Distribution of premotor neurons for the hypoglossal nucleus in the cat, *Neurosci Lett.* 52, 141-146.

図表説明

図 1. 連続切片のヘマトキシリン染色および免疫染色との比較 (P-18)

A がヘマトキシリン染色、B が PSD-95 の免疫染色の結果である。破線内は三 叉神経運動核を示している。

図 2. 連続切片のヘマトキシリン染色および免疫染色との比較 (P-18)

A がヘマトキシリン染色、B が PSD-95 の免疫染色の結果である。破線内は三 叉神経運動核を示している。三叉神経運動核は支配筋対応配列をしているの で、背外側および腹内側で細胞が密集しており、図の赤線によって腹内側を開 ロ筋支配領域、背外側を閉口筋支配領域に区分できる。

図 3. 三叉神経運動核における、PSD-95 陽性ニューロン発現の経日的な変化 AはP-1、BとGがP-5、CとHがP-9、DとIがP-13、EとJがP-18、F とKがP-23における PSD-95 の免疫染色の結果である。破線内は三叉神経運 動核を示しており、B, C, D, E, Fにおける赤枠内の強拡大図がG, H, I, J, Kで ある。PSD-95 陽性ニューロンはP-5 から発現を認め、経日的に染色性は増強 している。赤矢印は陽性の細胞を示す。 図 4. 顔面神経核における、PSD-95 陽性ニューロン発現の経日的な変化 A と G は P-1、B と H が P-5、C と I が P-9、D と J が P-13、E と K が P-18、F と L が P-23 における PSD-95 の免疫染色の結果である。破線内は顔面 神経核を示しており、A, B, C, D, E, F における赤枠内の強拡大図が G, H, I, J, K, L である。PSD-95 陽性ニューロンは P-1 から発現を認め、経日的に染色性 は増強している。赤矢印は陽性の細胞を示す。

図 5. 舌下神経核における、PSD-95 陽性ニューロン発現の経日的な変化 A と G は P-1、B と H が P-5、C と I が P-9、D と J が P-13、E と K が P-18、F と L が P-23 における PSD-95 の免疫染色の結果である。破線内は舌下 神経核を示しており、A, B, C, D, E, F における赤枠内の強拡大図が G, H, I, J, K, L である。PSD-95 陽性ニューロンは P-1 から発現を認め、経日的に染色性 は増強している。赤矢印は陽性の細胞を示す。

図 6. 三叉神経運動核、顔面神経核、舌下神経核における、経日的な PSD-95 陽性率の変化

三叉神経運動核、顔面神経核、舌下神経核において、PSD-95 陽性率は、発現 以降、経日的に増加している。三叉神経運動核では、P-13 以降で PSD-95 陽性 率の傾きの増加を認めるが、顔面神経核および舌下神経核では、P-13以降で傾 きは緩やかになっている。三叉神経運動核と顔面神経核は全日齢において有意 差を認める。三叉神経運動核と舌下神経核はP-1,18を除く全日齢において有 意差を認める。

図 7. 三叉神経運動核の開口筋領域、閉口筋領域における、経日的な PSD-95 陽性率の変化

両領域ともに、PSD-95 陽性ニューロンは P-5 から発現を認め、経日的に染色 性は増強している。三叉神経運動核全域での検索と同様に P-13 以降で PSD-95 陽性率の傾きの増加を認める。P-13, 18 において 2 群間での有意差を認める。

図 8. 三叉神経中脳路核における、PSD-95 陽性ニューロン発現の経日的な変化

A と G は P-1、B と H が P-5、C と I が P-9、D と J が P-13、E と K が P-18、F と L が P-23 における PSD-95 の免疫染色の結果である。破線内は三叉 神経中脳路核を示しており、A, B, C, D, E, F における赤枠内の強拡大図が G, H, I, J, K, L である。PSD-95 の発現は P-1 から認め、それ以降 P-23 まで認め るが、どの日齢においても弱い染色性である。赤矢印は陽性の細胞を示す。 図 9.三叉神経傍領域における、PSD-95 陽性ニューロン発現の経日的な変化 A と G は P-1、B と H が P-5、C と I が P-9、D と J が P-13、E と K が P-18、F と L が P-23 における PSD-95 の免疫染色の結果である。破線内は三叉 神経運動核を示しており、三叉神経運動核の内側が三叉神経傍領域である。A, B, C, D, E, F における赤枠内の強拡大図が G, H, I, J, K, L である。PSD-95 陽 性ニューロンの発現は、P-1 から認め、それ以降 P-23 まで認める。三叉神経傍 領域に関しては、他の領域と違い、P-1 から強い染色性である。赤矢印は陽性 の細胞を示す。

<u></u>33

次 3

<u></u>¥4

<u>义</u>5

义 2 2

<u></u>

<u></u>
※
8

8 刻