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PIH1D1 Interacts with mTOR Complex 1 and

Enhances Ribosome RNA Transcription
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AR, WAEICRT 2R OREBZHOBINTEETHY, ZORE
(2 2000 FELARE, ZetMERmRbRBET DR E LTS [1], £/, i
FEHR DG B 20-30% TIXESE - R 2RO 5720, IRIBLRNETH Y,
W s HREOYU R 2§ HRRIENILSES TN D [2,3],

AR X IE MR & hi L, dx e A LT D, RERRFHEE L
T, WOORIRZRERS 7 R b — 3 A D[alE, MR AE 5 & FE ik
~OEER, B RHIAIETEN 22T B D [4], ORI oM el HE 5iE 1 X
IR B PR 2D 2 LD, DO FHEOMEIITEHEE T
b5, MIYEIERTONDES, Z v /N7 BTN AEORETHY,
NI B HART DT-0IIZ ) AR Y — DEARNEETH D [5]. -7,
2N BAEMRE VR Y = LESROERZ S AR TFRNI G D Z

SN, BIHICARRFETH DL EBZ NN, T OB 7IZ
53030 TR,

Mammalian target of rapamycin (MTOR) 34k & 72 MBS0y 7 G
EEI(ZBH4> - T % phosphatidylinositol 3-kinase-related protein kinase (PIKK)
family ®—73 7 To % [6]. PIKK family |ZiZfthiZ ATM (ataxia telangiectasia
mutated), ATR (ATM- and Rad3-related), DNA-dependent protein kinase
catalytic subunit (DNA-PKcs), suppressor with morphological effect on genitalia
1 (SMG-1), ¥ LT TRRAP (trandformatin/transcription domain-associated
protein) N EEN TS [7], mTOR X ImTORE AR 1] & TmTOR EH A&
k2] 2 5OEEKEMET S [8], mTOR EEM 1L, mTOR, mLST8
(GBL) 3 X" mTOR DO#If#iA+T& % Raptor 7> SHERK STV 5, mTOR
BEMR 21, mTOR EAIA 1 & [AAEIC mTOR B LU mLSTS (GPL) % & A
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TW5HH, Raptor lZHENTE LT, £V IZ rapamycin DALY -
T D Rictor NG EN TS, mTORBEAIK 11 S6 kinase (S6K) DV >
B LICEE G- L, Ml DO R X N7 EEICE G5 [9], ZHicxt L,
MTOREEIA 21X Akt D U U ERALICES 5 L, MISEDOFHE 21T > T D [9].

Tel2 (telomere maintenance 2) 1%, DNA fHF = » 7 R A > oMM HE5H,
Fa LI LTEY, BEEAEMIIRSIRFESINTZZ NI ETH D
[10], UT4E, Tel2 NWEILEIM O PIKK family IZHEA L, FOLELICHAE
DR T ThH D Z el Sz [11], F72, Tel2 (X R2TP HAKE Wi L
T, mTOR % & & PIKK family ®ZE{LIZBIH > T3 [6,12],

R2TP B GIRIE, RECHIMENT, a7 4 — AT, BISTRATIC XL 0 B
MO GRIE SN X X7 BEART [13], Hsp90 D~ /L FH 7 2= K
IZ Rvbl, Rvb2 (bt bk TiLZ#LE4 Pontin 35 X TUF Reptin), Tahl (t ~ TiZ
RPAP3) %= L T Pih (B hTiX PIHID1) MNfEATHZ &Ik ik an <
W5 [13-16], £7z, RZTP HEKICHE G T2 Z /37 EIZ Monad 3% Y,
Z® R2TP HAEMKL OMEERITEMIOT R F— 2 2L T\
[17-23],

R2TP A IROIERLEK Sy T D PIHIDL 1%, rRNA {1 DR HIC B 53
HERFTHY [24], REERFZ L NI7EELTHLALTWD [15,16,22].
%72, PIHID1 /% Tel2 &L DfEEHEZA L TWDHZ &5 [6], PIHIDL
% R2TP RO EE 2 HIHIA - TH 2 AlREtEN R ST\ D [25], &
7z, PIH1D1 | ¥'E WIEMIaRE CdH % U20S MIIZBWTT R h— R &40
flL, MlazEFSE2BEI08H5Z EnHEI TS [20]

PIH1D1 LISt @ R2TP &R DHEALALST T & % Pontin 38 K U Reptin 13,
%< DEY)TEEITIEIES LT AAA+ATPase Tdh 5 [26], Pontin 38 L



Reptin 1%, FFMA@CREHE, R0, BMEREAMEZR & OFiaic s
MEBRLTNWDLZ LG, BIRROARENLLTEZALNTND
[27-31], DL EDEIAE S, PIHIDL I3 O, FRISM LhDEE L 5
ZATWHEEZBILDHA, PIHIDL OFEMALICIIT H2&FENIEE L ClER”E
AR RN FRESN TV D,

FERRICB T 28N FEE LT, AF2MREEOME 2T o6
[32], FIESIE N T DB, Z v R ATV EOBERE TH D, T2,
MTOR &K LIZ IRNA DERBERB LT mw 7, & X7 EDE R
E, VRY—=LNTITh ok ez LT\ 2% [33], RNA
polymerase (Pol) I i rRNA O HIE{ATH 5 47S rRNA % 18S, 5.85 15 L
28S rRNA ([ZH#IFR 3 5., Mayer 5 1%, mTOR-S6K #% & 23 tripartile
motif-containing protein-24 ZJEME{L L, Pol | & pre-rRNA & OfEG 27
52 LIZEY RNA OB AREST L LaiE Lz [34, —7 T,
MTOR-S6K #& I DiEM:AkIL, selectivity factor 1 (SL1) @ rDNA &=+~ &
T—H —FEBA~ORAZIRHEL, Poll ZiEMALESEDZ LIk Y, rRNA
DORBEZFTETH Z L NWE SN TW5D [35], 72004, PIHID1 23 rRNA
DB D > T D Z LG Sz [24],

VI b Z&75 502, ABFZE Tl PIHID1 25 mTOR %41 L7= rRNA 855 (2B
S TWDAREMEIZ DWW THEH L, mTOR OFAfiZI1F 5 PIHIDL O & %
HOENCT L2 L2 HINICHERZIT -T2,



bkk & J5k

FHB L OHLE
Rapamycin |Z Calbiochem (553210, LalJolla, CA) L VWA L7,

PL PIH1D1 $tf& (C-9) I% Santa Cruz Biotechnology (sc-390810, Dallas,
USA) K WlEA L7, T mTOR Bk (2972S), Ht GPL Hilk (3227S),
Raptor ik (24C12) (2280S), #1 Rictor HifA (D16H9) (2140S), i p70 S6
kinase (S6K) #114(9202S), 4t Phospho-S6K (Thr389) Hifk (9205S), Ht Akt
PUIA (9272S) $ X UYHL Phospho-Akt (Serd73) Hi{k (9271S) 1% Cell
Signaling Technology (Danvers, USA) X v i A L 7=, #t GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) $i{A&i% Chemicon (MAB374,
Temecula, CA) X V@A L7z, $T Tel2 5K Rockefeller K& Dr. T. de
Lange 35 X O Dr. H. Takai X Y 38 L CIEV 7=, T Flag (M2) Hif&iZ Sigma
Aldrich (F3040, St. Louis, MO) X v A L7-,

MR
1) FLREMAR

LA kE (MDA-MB-231, SKBr, BT549, MDA-MB-231, T47 83X
MCF-7) 1% American Type Culture Collection (Manassas, USA) X D A L 7=,
154213 Dulbecco’s modified Eagle’s medium (DMEM: 1.0 g/l Glucose, L-7 /L
&I v, EJVE VRS A, Sigma Aldrich, D6046) (Z 10% Fetal Bovine Serum
(FBS : ¥ /Xy « XA F T —T A, JKFE) BLOPLAEME (100 pg/ml
streptomycin, 100 units/ml penicillin, 250 ng/ml amphotericin B, Life

Technologies, 15240-06, California, USA) ##sIN L 7=55#% AT 37°C,

5



5%CO, XJE | TI1 -7,

2) HEK293 #i i

HEK293 #fiid/Z DMEM (Sigma Aldrich) {Z 10% FBS (¥ ¢ /Xy« /NA A
—Z L) BIOHAE®E (100 pg/ml streptomycin, 100 units/ml penicillin,
250 ng/ml amphotericin B, Life Technologies) % #shN L 7= 55 #hi% AT 37°C,
5%CO, 5JE T THi & L7,

3) E¥ b MALAR LEZHMT

1EH e AR ERGHE (HMEC: Normal Human Mammary Epithelial cells)
i% Lonza (CC-2551, Walkersville, USA) X 0 AL, FLAR bRz fMAIEARS
#1 (Lonza, CC-3151) B L OVFLAR ERZMfQdsMIK 1+ »~ ~ (Lonza,
CC-4136) % AT 37°C, 5%CO, 58 F CTHE LT,

B FEA

HEK?293 #lifi 2 60 mm OMfuEZ ML (Iwaki, 13-002-004, T3E) |Z#EFE
L 24 FFfijE5#& L 7=, Flag-mTOR vector (35U K% Dr. N. Mizushima J ¥ fit
5.) [36] %, Lipofectamin 2000 (Life Technologies, 12566014) % Fu>T
HEK293 flifliZ 38 A L7z, Ein 5 4 RFREIEL 1l 5 oM ld 5 28 1 A2 4
L, 48 IRfjEEZE 2 il 7,

VA ZAY A tiilss)
5% O 2 M s g » 7 7 — (0.3% CHAPS, 120 mM NaCl, 5 mM

EDTA, 10% glycerol 35 & TF 20 mM Tris, pH7.4) |Z protease inhibitor cocktail



(Roche, 05892791001,Basel, Switzerland) % ¥ L, HfdZ2 &g L 7=,
10,000xg T 20 Zyfili oy L, EIEDOHREED & 7 K & (E R
Uiz, bz o B o 2 o R BRI ~— 3 —T v
—ZEM L7 7y R7+— R [37] ICKVERE LT,

SDS-PAGE

Kk LTI T VERHR [0.25 mol/l Tris-HCI (pH 6.8), 8% (wi/v)
SDS, 40% (w/v) Glycerol, 0.02% (w/v) BPB, 20% (v/v) 2-Mercaptoethanol] %
Mz, 95°CT5 LI 21T > 7=, 7.5~12%DKR VT 27 VLT I K7 v
(ZH R EBRREEAN LT D%, 20mA OEREZMZHZ &Ik 2

UG EVKEN LT [18].

Western Blotting

SDS-PAGE (Z X W il L7z X "7 B %, 100V OFEEZ 1 RHEINZ 2
Z & 12 & Y Polyvinylidene Difluoride Membrane (PVDF ; Millipore, Billerica,
USA) (ZHRE L 7=, —IRPUA & BOL S8 721%%, L5536 (ECLFB L OVECL
plus, Amersham, UK) (ZX v EH L7= [38].

TIZ LR IE A 1B IEICE > TIT o 72 [39), B D & > /X 7 BB HE W
B R BHIR EE R UTe, & & 2R BRI OFRBHZ DWW T H X
JERE ARz, BROX X7 EOHAS U< 1% mouse (sc-2025) B K&
O rabbit (sc-2027) @ normal 1gG (Santa Cruz Biotechnology) (2 XV ==— |k
SNz AIG 7 r— A —X (Pierce, 20421, Rockford, USA) Z iz, 4C



T 6 B AR LS S8 72, R, 200xg T2 45 lE OorEE L < Bi 4
B brE, RERoMiEE Ny 77 —T3EWEEH LR, 7400 —BKE
%z T95°C, 53 MBMLERZ T\, 7 Hr—AE—XIIHAE L TNDHH
VN B EGEE LT, 2o EoRIZITRIR O SDS-PAGE B X WY
Western blotting Z H v 7=,

SIRNA IC KB BIF D/ v I F T~
Tel2 3 X OV PIHID1 @ siRNA % Qiagen (Hilden, Germany) L YV iEA L
Tco TNENDZ—7 > ML Z UL ISR T,
5-CAGGGCACGGGCTCTCAGAAA-3' (Tel2-siRNA 1)

5'-CCTACGACGTAGCTGTCAATT-3' (Tel2-siRNA 2)

5'-CCCGCTGCAGATCAACTCTCA-3' (PIH1D1-siRNA)

Z 15 siRNA %, Lipofectamine RNAIMAX (Life Technologies, 13778150)
F X OV Opti-Mem Reduced-Serum Medium (Life technologies, 31985) & iR&
L, =RIZT 20 WSS S8, DNA-U R Y — DA KA ik i 2
BURBRRITIRINL, 37°C 5%CO, XUJE FICTH&E L., av br—L&
L T, AllStars Negative Control siRNA (Qiagen, S103650318) % i\ 7= [18].

T hFH A2V UHEEYE PIHIDL B RIREDOBIT
Ly FOANART Z—Z N CER BB OIER 21T > 7=, PIHID1
B fExr N —~_27 % —T&H% pENTR/D TOPO (2 A L 7=,

Gateway system (Invitrogen) = H W T ¥ B X 7 ¥ — T & %
pLenti6.3/V5-DEST (Z#H 7 A%, PIHID1 &inf 2 afH 5L F A LA
Ry B = ER LTz, (ERLL72_7 % —F L O plenti3.3/TR % ViraPower



packaging mix (Invitrogen) % FV T 293FT Mg E A L, HMOBEE TN
EEND LT UANREAER LT, MCF-7 Ml /ESL L 7= pLenti3.3/TR
Zate A VARG X, geneticin (pLenti3.3/TR)IZ X 0 AN Z L7
#%, plLenti6.3/V5-DEST Z&dp 7 A /LAY &4, blasticidin % v 7=
AU L0 EFH FEEROER 21T > 72 [40],

Pre-rRNA IZXf3 % &M RT-PCR i
& #wME RT-PCR (RT-qPCR) A 1@iEIZE > TIT > 72 [39], cDNA DOEiEIZ

I% Murayama & O [41] ICHEWELT DT T A ~—& Wi,
pre-rRNA
Forward: 5’-GAACGG TGGTGTGTCGTTC-3’
Reverse : 5’-GCGTCTCGTCTCGTCTCACT-3’
B7r o F v
Forward : 5-ATCGTCCACCGCAAATGCTTCTA-3’
Reverse: 5’-AGCCATGCCAATCTCATCTTGTT-3’
faH L7245 50%, ABIPRISM 7900 ¥ 7 7 =7 (Applied Biosystems) %
T, pre-rRNA OEETFRBLEZ B 77 F 2 CTHIIE L7 Normalized
Quantity % FLEgfiFAT L 7=,

BT FRAT

TR R EE AR ERZE TE L, SlBHHREICRB T 2 A BEERE &,
— TR E ST (ANOVA) %12 Tukey %2 W TITo 72, Y 7 b IC
IZ Graph Pad Instat (Graph pad Software inc, San Diego, USA) #H\\C, &

KT 0=0.05 [TERTE LT,



RS

LR ABRERIC 351 5 PIHID1 D FH
% b MFEMARARIZ IS 1T D PIHID1 O3Bl &%, Western blotting 72312 &
DRRET LTCAER, 97T (6 #F) ot MELEMafkiZis T PIHIDL D%
H 2R 1=, K2, MDA-MB-231, SKBr, MDA-MB-231, T47 3 X T} MCF-7
TiE PIHID1 O@mW B ZRD -, iU LT MEFFLIR LRI
(HMEC) ¥ L't FELEflakk D —>Téh 5 BT549 TiZ PIHID1 DF B &
X&)~ 72 (Fig. 1),

FFEAARERIC 31T D RPAP3 DFEHR,

R2TP AR DORERL LSy T& % RPAP3 D3¢ HLE %, Western blotting 52
FURGETLoAESR, b MMtk L OV M IEFE AR EEGRIRIZ B\ C,
RPAP3 DR BLEIZAHE R AL D> 7o (Fig. 1),

MRERE N v 7 7 — DRTE

mTOR % Raptor ¥ X U Rictor & A REZIZE L T\ 5 [8], 2415 D#
BT 1% Triton X-100 % & A9 2 MAEEME S > 7 7 — 2 v % & fifiaks
i 77— CRGITHEHES LD 23, 0.3% CHAPS % &4 3 % Alfla i fig
Ny 77 —=ThIUIMBE SN2 N2 ERRESN TS [42],

RIFLRIEIE T D MIEfE Ny 7 7 — %2R ET 2 BT, HEK293
AEIZ Flag-mTOR vector Z i8{n & A%, CHAPS & % % Triton X-100
Gl OMIIEIE Ny 77— AT X X7 B L, PIHID1 &
MTOR DfEG &Mt L7c, £ ORER, CHAPS & H OMIEE > 7 7 —
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Z W= BETIX PIHID1 & mTOR OSSN HER I u7=h3, Triton X-100 &
B OMBIEMGE > 7 7 — & AW TIEE AR SN2 o 7= (Fig. 2),
PLEDOFERENS, LI OEE TIX CHAPS &4 OMIAEHE Ny 7 7 —% H

Y

PIHID1 ® mTOR A K~DKES
AR Td D MCF-7 WIZE1T 5 PIHIDL & mTOR Ofs& # =it
FeyElz X 0 BE L7- A5 5%, PIHIDL & mTOR IZNEMICHE S L TnWDH Z &

DS E 72572 (Fig. 3A),

mTOR (%, Raptor & ¢» mTOR #H &4 1 & Rictor % ¢» mTOR #H A&
2 AR LTS [8], MCF-7 MW T PIHIDL 28 ZH AR D
Ebbiy, b LIEWS ERET 2% Matd 5 BT, $T PIHIDL fitfk
Z W= 50 B TE e 21T - 721412, $1 Raptor $U{A 3 X UL Rictor Hifk %
V7= Western Blotting fi#AT 217 - 72, = D55, PIH1D1 X Raptor (254 L,
Rictor [Zf5E L7222 L 23R S 7= (Fig.3B), F 7=, $t Raptor Hifkis &
UL Rictor $iufkz AW THIZETRR 21T > 72%, $U PIHID1 HiikEk LU
MTOR FLi&Z T Weseten Blotting fEAT 21T o7 & 2 A, FIEROFER D
B b7z (Fig. 3C),

Tel2 & MTOR BEWKE DFES

PIHID1 (X RT2P G RDRERE 7 Th 573, RT2P AL Tel2 &
BT HILIZED mTOR ZiEM (b S® % [6], £7=, Tel2 X mTOR #HA K
1 BLOmMTOR EAEMK 2 o7 LA+ 2 [11],

11



FLEMIEERIZ BT Tel2 25 mTOR AR LG 2 & HEsd % HAY
T, MCF-7 fifZ iV T Tel2 & mTOR &K DfE S % H1 Raptor HifA ¥ X
Ol Rictor fufk a2 FWTHIETLRE 21T > 72812, $U Tel2 HUEH W
Weseten Blotting f##T 21T ->7=, Z DR, Tel2 IZILEMEKICB AN TE
Raptor 3 Z OY Rictor O 7 L #5&T 5 Z L 2vrS vz (Fig. 4),

PIH1D1 ® mTOR HEEKIZx 3 5 1EA

MTOR &K 113 S6K D U »ELIZEE 5 L, mTOR #HA K 2 13 AKT @
U UEREIZBIS- LT % [8], PIHIDL 232415 mTOR #HAKDOREREIZ RS
HELTWA 0% KHd 2 HT, PIHID1 @ Small interfering RNA (siRNA)
EHWICBIFD ) v 7 By U EREITo T,

aat L7z siRNA 233K IR 2 022 a8 2 HIT, MCF-7
AfEIZ PIHID1 @ siRNA %3 A L, HLPIHID1 Hiik % Fv 7= Western Blotting
fEHTIZ K0 PIHID1 D3 BL&E & it Lo, £ DOfEIR, siRNA OFEMIC LD
MCF-7 RPN @ PIHID1 OFE 8L &Ik HRALLT £ Tl <7z (Fig. 5).
L L7285, PIHID1 @ siRNA (%, mTOR OB EITITHE L KT S 77

o Tz (Fig. 5), F£7z, PIHID1 OIMHNIfEYY, S6K DV U EEfkiE S6K D
AR I S v (Fig. 5).

PIHID1 O#IflIZ X5 mTOR HEE 2 ~OIEM %+ 2 BT,
MCF-7 Mila> AKT @ U bz fat L7z fkER, PIHIDL OJEBLMHIC &
%5 AKT OV Ut ~DB 51358 72 v > 72 (Fig. 5), ZIUHDRERNG
PIH1D1 i% mTOR # &K 2 DIEFMHALICITEE TR L AVREB I T,

=i

Tel2 ® mTOR EEWKIZKT B /EH

12



Tel2 1% S6K 35 LN Akt DOEi D Y U ER(LICBE G LT\ 5 [11], FLHE#m
JZ BT Tel2 23 mTOR A ARDHEREICE G- L TV 2 2 a3 2 H /Y
T, Tel2 @ siRNA ZHWBIZ D/ v 7 X0V EgEITo7, Ok
B, FUBMAIZ BV TS Tel2 13 S6K 38 LY Akt Dl 7 D U iz B -
LTW5Z EWRENT- (Fig.6), £72, Tel2 ®FEIIMHIC LY mTOR O
FHLEIIK T L7z (Fig. 6).

PIHID1 5T/ v 7 X7 i X % mTOR EHEIHIO U R F = —FHEk

SIRNA 75 PIH1D1 LISA DEAZIZ/ER L, S6K D U U PfbicBA G- L T\ %
ATREMEZ R ET D HAYT, PIHIDL &is T/ v 7 # 7 /2 L% mTOR {&ME
PO L AX 2 —FEBREIT o 72, 1T LD, MCF-7 #iflaz VW C7 h T4
A 7 U itk PIHIDL S Bk 2 L L 7= (Fig. 7A).

Z @ PIH1D1 &3 BIFRIZ SiRNA Z IR0 L 724558, PIH1ID1 O F 8L I
S, TIUTFEV SBK D U Uit bl S iz (Fig. 7B), K1 7
U O LY PIHID1 OFREBILEIE L, ZHUIFEV S6BK D U Rk
178 L 7= (Fig. 7B),

PIHID1 IZ &5 mTOR EEK 1 {EMALD A =X A

PIHID1 &1 % / v 7 # 7 L= MCF-7 fllENIZ31F %5 mTOR #HA&
ROARAEZ S ILIRIEIC XV FT L7z, PIHIDL BI5 1D/ v 7 X0 I
X W MCF-7 (28T % GBL ¥ X O Raptor O3 #1321k L7227~ 7= (Fig.
8A), L/ L7Z2M 5, Bt Raptor Huikz W 7= E b OfE R, GBL O &l
HEIZWHA LTz (Fig. 8B), ZiLizxf L, #L Rictor Hiik%x H\ 7= g bk
DOFER, GBL D EIZZEALN 203> 7= (Fig. 8C), 216 D /5, PIHID1

13



OFBNIHE S NI B 5 mTOR HEEROE A H 7o i BfE X, mTOR
HEIR 2 TliEe<, mMOREAIERLICBWTEH I o TW\WA Z LRI
7= (Fig. 8D),

PIH1D1 DR EIHI A rRNA DEREIZ KIFE 5

FLIE AR IZ 35N T PIHIDL 23 rRNA OER G KT T AL i+ 5 H
[J7C, MCF-7 @ pre-rRNA % RT-gPCR % iV TR L 72, 1Z U¥IZ, siRNA
(2 &V PIHIDL BAs 1 DFBLAMH L 725512, pre-rRNA #2387 2
B ERRGE LTz, = OfE5, PIHIDL B8 1 OFRBIMHIIZ L U pre-rRNA &
FHEEICED Lz (Fig. 9), 2D Z &2>5 PIHIDL A3 rRNA 855312 B

HLTWAZ ERHRENTZ, KIZ mTOR DOFHLEIK TH % Rapamycin (20
nM) Z#AL, pre-rRNA &8T5 0G0 % 5t L7z, Rapamycin @
HIMZ LV, 2> b o —/ L siRNA BEC pre-rRNA &3 E 2L L7z (Fig.
9), 2D &5, mTOR OHIHIA IRNA S EFENITE S LT\ 5 2 &
MERd S 7z, &2 Rapamycin (21 Y mTOR Z#i#| L7= 9 2 C, siRNA
IZ &V PIHID1 s D32 MHI LT, TOREE, =2 b —/LsiRNA
TEF L OV PIHADL siRNA BEORIICH B#E AR > 7= (Fig. 9), 2D
735, PIHID1 X mTOR KAEAYIZ IRNA OBRE 2425 Z L R &N
77

14



E5t

Z NI B RK 7R IE Ao R SR X, T R O B 72 K1 &
7% [4], —AREYZRIEERIE & i U T, SR RO A R E S e
STWD [4, b DOEGMIORERL, BISGMRNIZIBWTY R Y
—LEASEMEEL TWDH Z AR LTS [43,44], mTOR HAIK 1
D T F IWAREWE T < OFER PR MEIRF 23 A TEB Y, Bz
THERMEZHLTND [8], £/, FEx OFEMILTIE mTOR HEAK 1
MEMEES TV D [45], mTOR EEE 11X Y R Y —LAEGHKIZEBIT 54
VORTEAERE L OV IRNA SO FICE S5 LT s [33-35], ZAuH O
WS, mMTOREAIKR L Z N LT U R Y — AAA RR O H RS O fi i 1%
BT 2 A9~ 2 BRI 2 Z L I S 5,

ABFFEZ BT, UM II AL E R ¥ N7 E Th % PIHIDL [16]
NERBELTWDZ EAVRENT (Fig. 1), PIHID1 i%, R2TP A KD
Ay Tdh D RPAP3 IZ Lo TREMMESNTND ZERHEINTND
[22], L22L7223 5, FLEMARIZH VT RPAP3 O ERBIIFRO -7z
(Fig. 1), 6D Z &b, FEMALIZIS VT RPAP3 LIAMIH PIHIDI

LESEDRFPIEEL TWD AR R S LD, £72, ABFZET
(XA (MCF-7 fliakk) 2 AW PIHID1 2 mTOR L&A T 52 L &
BN Lc, 202 8 b, FkMia Tl PIHIDL (3 mTOR (Zxf L T
OPOIEREZA L TWD Z ERRE I D, AWFFETIxzlmMiarkic s B
L CHEBREZHED T, mTOR EEIE L ITFLE LS OFE 4« ORI EFE L
TWDZ EMG [45], AMEICHAT 2 FH R Th 2 /R EEOEIZIB W T
t, MTOR AWK 1 NEFEBE L TW DL AREMERH 5, 4%, HFEORF L

15



FEIEIZ 81 5 mTOR EAA 18 L ONPIHIDL O3 BLA Mt L TS Z & i
AR OBLE D B b BLERZE,

MTOR % & ¢ PIKK family 1%, Tel2 & R2TP AN HHT 2 Z LiC X
DLZESNTNDD [6,12], £ DFEMR A T = X LIFTHA BT 72 > T
2\, £ 2T, PIHID1 2 mTOR &K 1 H 5 WIE mTOREEEKR 2D EH
512, b LIEMFITHEES L W DanEnEmat L7-, B Raptor Hifk%
MW= DR, PIHIDL I3 7223, $t Rictor Huikz fv 7z
BAIZIZ PIHIDL I3 Sz oo 7=, F72, HUPIHIDL HifkZ v -4
FZULREClE, Raptor 38 X O mTOR (3 H =72 b O D, Rictor 1Tk S 4
minote, THHORENS, FFEMALTIX PIHIDL I mTOR &K 1
DHEFEELTND I ERRBEENT, £72, AFEERT Tel2 1% Raptor 35
L OtRictor L #5S L7= (Fig. 4), Hela #fads L O HEK293T il T & [Fl4k
DHRENDH D Z &6 [11], FUmMIakk 2 3 eMlatkiz s v T Tel2 1%
MTOR A 1 B3 LTV mTOR AR 2 OWIJFIZHEEG LT\ D Z &SR
b,

AREBIZEBWT, PIHIDL 1 mTOR AR 1 ZiEH(LEIE- b 00,
MTOR AR 2 ([TIXFBE 5 2 727> 72, mTOR #HEK 2 13 mTOR A&
ELICED2ADT7 4 — Ry 7 2ZFTNWHZ EnwEINTND [8],
rapamycin % W CHLFEHIILAN O mTOR AR 1 DI A2 INH] L 7= &,
W E DL &[RRI [8] Akt OFEBLIEHE L 7= (data not shown), Z L6 D

i

Z &5, PIHIDLIZ X% mTOR E&E 1 ~DIEMHIE mTOR HAE1& 2 ~D
BDT 4 — RNy 7 ZTHHLTWD Z ERARBIND, BIRENC 21T,
T4 Fernandez 512 K - CTEBEIEMILZ W FIRROB RPN HmE STk
D [46], S DOFEMR A T = X LOEHNIH SN D,
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PIHID1 s 1D / v 7 XD 2L Y mTOR O &I mTOR#
B L OIEWPIHEIIKT Lz (Fig. 5). IR/ v 7 #0 O FBRIZAE
M L7z siRNA 73 PIH1D1 LIS DEALIZ/EM L, S6K D U U ER{KIZEA G L T
WO AR AR ET 2 BT, 7 M I %A 7 U CFEINE PIHIDL &2 Btk
ZER LT, ZofMiuidEms, 7 874270 ey =0 ER L
TW5 72, PIHIDL EAnf DO EEITEE O MCF-7 fifa L A b7y, —
5, TR IV A 7V CREWEO—ETHDL Rx VA7V 2 ind
HZEIWZEY, TEIHA 27 VY T Ly —O & HFHE S PIHID1
BIR TR EFEHLT 5, siRNA 12X Y — Bl S 472 PIHIDL &5 1 O3B
X, R¥TH A 27 U ORIMZEY PIHIDL &5 123 @ I3 B X 41, siRNA
OIERZFTHHT Z ENATREE 72D, AWFFETIE, FEERIZ siRNA OFEH]

XU REIHA 7Y ERINL TR W Tl PIHIDL s 1 D3 BL
[IRRHIBRALLT £ CHfl SN CEY, ZHUHES S6K D U b b il
SN (Fig. 7B), LL7en s, RXxT ¥ A 27 U 2 & 5 PIHIDL B 1
DOFEHFEBUZ XV siRNA |12 X 5 PIHIDL s T OMslIFT big S, £
(ZfED SeK D U U Rfb b aliE L7z (Fig. 7B), Z D Z &5 siRNAIZ X D
PIH1D1 BA=+ Dl 23 S6K D U it 2 il L T2 Z &R S Tz,
ZORBITMZ, Tel2-R2TP HAKD mTOR OZELEIT>TNDH I L
[6,12], FLEEMIAIZHBWTH Tel2 28 mTOR ZZENLSHETWNDH I EnD
(Fig. 6), SLFEAMEIZ I\ T PIHID1 28 mTOR O ELLSND A I = X L%

4 LT mTOR &1 1 VG A il f# L T 5 ATREMEAS R S 7z, MCF-7
MNP T PIHIDL BAn T DI B 2 il 42 Z £I2 XY, mTOREHEK 1 D
O T fRIEENAE U7 2 & D (Fig. 8) , PIHADL iX mTOR HAKRDOHE S
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KRR Z T2 Z 212K D, mTOR AR L OIEFHAZHIEH L TW\Wd L&
2 Hid,

MTOR (372K L b 2 DO TY R Y — A EGRHREZHFT L T\ 5, £
DHIHLD L ONVRY—LZ 37 ED mMRNA 3 BLE 2 RS 2R <
HY, b9 120 IRNA ERZIEET 5/ TH S, PIHL 2% rRNA B
TERELTND 2 L [24], BLOmTOR HAK 1 8V R Y —LAEARK
RPN TEERICBWTEERERH ZH->TNHZ & [9] 1ITMA T, &
WFFEIZ I T PIHIDL O BNHIC L 0 S6K DV U E{b3 A EIZHfl = 7
722 &7 6, PIHIDL /& rRNA DR E ZHil#l L T\ AlREMEICE B LTz,

FEERZ, MCF-7 fillci1) % pre-rRNA O3B &E(E, PIHIDL I2Xk - T
MTOR (KAFHIZHE ST\ D Z E RN EnT (Fig. 9., LL7aRD,
FLIFEMINE I 3V T PIHID1 @ mTOR i Eif&H#E 1 PIHID1 23 [E#2#Y1Z mTOR
BAER LIC/ERT 2K A2 T, PIHIDL 25 R2TP AR Tel2 &
i L T mTOR #HAMWITIEN T 2N AT DR Z 6D
(Fig.5, 6) , LU D, AEBRR (Fig. 9) Ti, Tel2 2/ L7z mTOR
(2 X 5 rRNABRBFRET O FTREMEIEZ & S 0TV 7220, mTOR K AERY 72 rRNA
DOERFFENICE LT, PIHIDL OEBERIEM, & L <IE Tel2-R2TP #i4
BENLTAEHOELON LV EETHLI0ZWALNICT HOITITE
RO DRMETH D,

Zhai %13 nucleolar remodeling complex (NoRC) DA L > > ZIZHEEH
L, NoRCIZ X% rRNA BB A Lo v 7 Ol & fkrd 2K & L
T PIHID1 # % /. L7z [24], AWFZEIZ LY, pre-rRNA OizE X mTOR IZ
KXV RESND Z ERENT=T28, PIHID1 12X % pre-rRNA OEEE [
MTOR EIEHI TH D L E 2 b5 (Fig. 10), Proud 5%, mTOR (TkE/ Mk

18



IZAFTEL, pre-rRNA O 7't 71X mTORKFHITH D Z L aWiE L
7= [47], PIH1D1 3 X O Pontin 132/ IMRIZAFAET % [48,49], — 77 T Houry
51X, R2TP A RN EEANC pre-IRNA O 7t v v 7 &g+ 25 Z L &
WEL TV D [16],

Kim & (3 Cancer Genome Atlas D7 — % & » F & HW\\ T2 A Z 58T 21T\,
R2TP # A4 1R D mRNA &3 EHHifE & bl U CHsEfMa CHREICE W &
s L7z [50], 1% 513 R2TP #HAMRDmEIEH L mTOR Ak 1 Dy 7
TR ETEMAL L, IEEOMBIEHICEE CThH5H 2 & 2RI LT\ 5,
MTOR A L1L U R Y — DAEGHCENICEE TH 57210 T2 <, Ml
FEAIZH - TS [9], Choi 513 MVF-7 ARl 35\T S6K DR,
BFEDRZIE D MRSt BT 5 2 & 2t Lz [51], ARFEBRIZEBWT,
MCF-7 #2317 % PIHIDL &An 1D/ v 7 X7 A%, MDA % il i
I5 Akt ([ZEL 527 (Fig. 5), MlAEFRICLEEL B R)hoTc
(data not shown), ZAU 5 OFERLG, FLEEMAL TIX PIHIDL [ 3HHRu A= /71
WEHET 2 EERRN T TRV ENEXBND, 41, R2TP HAK
3 JL OV PIHIDL DA AEfERERE IS 31T D& EFNZDOWT, H2R DT M E
LEZD,

AWFFROFER, BLOTFRE SN TS Tel2-R2TP #EAEAD mTOR
BEER L ITx 54%%E], ->F v Pontin <° Reptin 7% Tel2 D&M 2 Hil4# L,
MTOR IZfB) & 27 % 2 & [52-54] & &+ 5 &, mTOR A 1A 11X PIHID1
DESZRIENRFTH L L EZ DBID, mTOR EHEKIL, FIERKIZH W
THRBAZRIK - TH Y [8], RRTP HAKZLET 5 Z L1k 5 mTOR
OIHIA, PHEERAZ B T EnHE SN TS [23] Lox LR b,
R2TP A KD/ X IEFHRICE EN TV OIRFHH D720
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R2TP HERZ DS DAIER & LITERIETIIRIEN A RE < 2> TLE
I AIBEMEN B 5, PIHIDL 13 1EF ML COIBIME V7= (Fig .1), PIHID1
AR IHE L, mTORBEAK 1L DIEMTH 5 U AR Y — D AE A A Hii]
TLZLICXY, RBER O WRREM A AR 2 0vd LivZewn
(Fig. 11), A% OMZEOHERD, PIHID1 & mTOR &K 1 OBIfR%E L
SN L, Hio 2 OIRRBINOBRBICEN S Z LA SNn 5,
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Fig. 1: EFELEHRRKIZEHTS PIHIDL &Y RPAP3 DHE
ErEEELR LK #EE (HMEC) LU E MELEZMAR % (MDA-MB-231, SKBr,
BT549, MDA-MB-231, T478 K UMCE-7) IZH 1T 5PIH1D1E K URPAP3MD %
8%, Western blottingixIZ&YURH L=, BEFBDOREIZLE(CIZGAPDHE A
Lvi=(Normal : EMIEE ZLBR £ R #HA3, Cancer: ERELIZMAEHE) o
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Lysate IP: Flag

Flag-mTOR - + - +
CHAPS + - + - + - + _
TritonX-100 - + _ + - + _ +
PIH1D1 T —_—

Raptor w

-—
-7
| 8 y ':
Flag ’.--j” '."::IP'*;*‘ “

Fig. 2: MKREME N> 7 7 —DORE

HEK?293 #liflc 22 vector & L < IZ Flag-mTOR vector % &{nE A L7z, &
A% 48 IF[H] THIE 2 0.3% CHAPS % L < 13 1% Triton X-100 &4 O Hifiel s
fift > 7 7 —Z WM LTz, Bt Flag $UEZ U THRELR L7121,
P PIH1D1 HUA, Pt Raptor HLikds L UL Flag HitiAk % F T Western blotting
AT o7,
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A C

Input  IP:Control IP: PIH1D1

Input IP: Control IP: Raptor IP:Rictor

— || - PIH1D1 —" — Raptor
-_— || s | Rictor
W - mTOR
— mTOR
Input IP: Control IP:PIHIDI i || —— PIHID1
—_—— ww | Raptor
—_— Rictor

Fig. 3: ¥LEMMMRIZI T 5 PIHID1 & mTOR OfE&

MCF-7 #lild % 0.3%CHAPS & A7 DA iE /N v 7 7 — 2 W TR L7z,
(A, B) #i PIH1D1 HifA&3 L O normal mouse 19G % W THIZILE 21T -
7=, (A) ¥t PIHID1 #iifkds L OB mTOR #ifk, & L <1 (B) Ht Raptor
Pk ds X Ot Rictor HTiA % H VT Western blotting %475 7=,

(C) ¥t Raptor HLi&, $i Rictor Hif&Fs &L O normal rabbit IgG % FH v THIEZIL
(%47 > 7= 1%, BT Raptor HLIA, i Rictor HLiA, FTmTORHUIA I L UL PIHID1
PUA % H T Western blotting 2475 7=,
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Input IP: Control IP: Raptor IP: Rictor

Tel2

Fig. 4: ILEABARIZIT 5 Tel2 & mTOR EAEKDORE A

MCF-7 #ifid 2 0.3%CHAPS & A ORI v 7 7 — % AW THE LT,
H1 Raptor HiL{K, #T Rictor Hi{&35 I OY normal rabbit IgG % F > CTHuE itk %
1o 7%, B Tel2 Hiik & F\ T Western blotting 247> 7=,
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Control siRNA PIH1D1siRNA
_ + + Serum

| momm  — PIHID1

| — — — —
S6K 5
)
—— - PS6K | B
— — < | AL1 =
=
)
=
— | —— —— P_Akt 8

e A S A ( [, TOR

Fig. 5: FLEMINIZHIT 2 PIHIDL BETFIZX$ 5 siRNA 25 PIHID1 @
BRI KT TR

MCF-7 il iZ PIH1D1 @ siRNA % fiiEFEAFAE T C 48 REf/EAH S w7214,
2 R ME I X 2 AN 2 7=, R4 IZ mTOR # A& 1 (MTORCL) DI
M%7~ d S6K B L TN mTOR 414 2 (MTORC2) DiEtE% ~3 Akt DU
21t % Western blotting V£1Z & 0 fEt L 7=,
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Control siRNA Tel2 siRNA

_ + - + Serum
e | e mem— Tel2
=
D S | ey S6K 3
=
@
: =
| — — e 1 Akt 3
=
S - o —— — P_‘Akt N

“C- s | MTOR

Fig. 6: ILEBAIRANICISIT 5 Tel2 BB FIZxHT 5 SiRNA 25 mTOR HEHE
DIEHEIZ RIE T &

MCF-7 iz Tel2 @ siRNA % IMyEFEFE T C 48 KefEH S &7 b 2
IRFET MBI K 28 & N 2 7=, R mTOR #4441 (MTORC1) Oif
PE% 777 S6K 3 X U mTOR A K 2 (NTORC2) DiEtE% R~7 Akt DU
21t % Western blotting V£1Z & 0 fEt L 7=,
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Fig. 7: PIHID1 &f5F/ v 7 # v 2 &% mTOR IEHIHI DO L X F 2 —
EBR

(A) 7~ 7V A 7V FREE PIHIDL & R Bk DR,

(B) 7 b TV A 7 U FHEME PIHIDL &3 BikkIZ PIHIDL s 12635
SiRNA ZIfLiE (Serum) FETFHET, R¥ A 27 U (DOX) 771E - FEFFAE
T TA8RFEEH S ¥ e B 2 R &2 X 2 Rl 2 N 2 7o, Bl 1 S6K
DV BR{t.% Western blotting 412 X 0 Biat L7,
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A Input B IP: Raptor C IP: Rictor
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— e GpL -- Raptor A | cictor
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Fig. 8: TLEHIRIZ 1T 5 PIHIDL BEF D/ v 7 #7235 mTOR HAE
DRI RIE T

MCF-7 il PIHID1 @ siRNA % & A L 7= 48 IKf[fi]#% @ (A) Raptor, Rictor
B L OGBL » Bl & (B) MTOR A A1 DRk (GBL & Raptor DA (C)
MTOR # A1k 2 DRERL (GBL & Rictor D#EA) % Western blotting ¥12 & ¥
Bt L7z, KF o 1gG 1351 GPL HilA D IEFE RN 72k A % 7k, (D) PIHID1
BARTF& 7 v 7 F0 2 LTz MCR-T filfidic351F 2 mTOR # A RO,
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Fig. 9: PIH1D1 ORI rRNA DEBIZ RIE T2

MCF-7 i/l lZ Rapamycin (Rapa, 20 nM) f£1E, JE/F4E T T PIH1D1 @ siRNA
ZE N L7-, A 48 B # @ pre-rRNA % RT-gPCR % fiWCHIlE L 7=,
T — X% B-actin ® mMRNA E(ZHt-> THIIE L7z, 7 7 7 OEITFEHIEE X
DR %751 (n=4), *:P<0.01 vs. control (Rapa FE7F7E ) (ANOVA:
Tukey test)
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Fig. 10: $LEEMAZIZIIT 5 PIHIDL DEMA

AHFIEER X OB EORENS PIHIDL X U R Y — LD ERROEE A 72 AT v
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