<table>
<thead>
<tr>
<th>Title</th>
<th>Homology localizations after applying some right adjoint functors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yosimura, Zen-ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 21(4) P.817-P.829</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1984</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5240</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5240</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
0. Introduction

Each homology theory \(E_* \) determines a natural \(E_* \)-localization \(\eta: X \to L_\infty X \) in the homotopy category \(hCW \) of \(CW \)-complexes or \(hCW S \) of \(CW \)-spectra. It is full of interest to study the behavior of \(E_* \)-localizations after application of various functors \(T \) to the category \(hCWS \) or \(hCWS^0 \). Consider as \(T \) the 0-th space functor \(\Omega^0: hC \to hC(W) \) which is right adjoint to the suspension spectrum functor \(\Sigma^0 \). Bousfield [4] showed that the \(E_* \)-localization of an infinite loop space \(\Omega^\omega X \) is still an infinite loop space. More precisely, he proved

Theorem 0.1 ([4, Theorem 1.1]). There exists an idempotent monad \(L: hCWS_0 \to hCWS_0 \) and \(\eta: 1 \to L \) such that the map \(\Omega^\omega \eta: \Omega^\omega X \to \Omega^\omega LX \) is an \(E_* \)-localization in \(hCW \). Here \(hCWS_0 \) denotes the full subcategory of \(hCW S \) consisting of \((-1)\)-connected \(CW \)-spectra.

As remarked by Bousfield [4], this implies

Proposition 0.2. If \(f: A \to B \) is an \(E_* \)-equivalence in \(hCW \), then so is \(\Omega^\omega \Sigma^0 f: \Omega^\omega \Sigma^0 A \to \Omega^\omega \Sigma^0 B \).

On the other hand, Kuhn [7, Proposition 2.4] gave recently a simple proof of Proposition 0.2 using the stable decompositions of \(\Omega^\omega \Sigma^0 A \) and \(\Omega^\omega \Sigma^0 B \) (see [9]).

In this note we will show that Proposition 0.2 is essential to the existence theorem 0.1. Thus, by use of only Proposition 0.2 we give a direct proof of the existence theorem 0.1 along the primary line of Bousfield [1, 2 and 3]. In our proof we don't need the knowledge of very special \(\Gamma \)-spaces although Bousfield did in [4].

Let \(T: \mathcal{C} \to \mathcal{B} \) be a functor with a left adjoint \(S \) and \(\mathcal{W} \) be a morphism class in \(\mathcal{B} \). In §1 we introduce \(T^*\mathcal{W} \)- and \((\mathcal{W}, T) \)-localizations in \(\mathcal{C} \) and discuss a relation between them. Following our notation Theorem 0.1 says that there exists an \((E_*, \Omega^\omega) \)-localization in \(hCWS_0 \) where \(E_* \) stands for the morphism class of \(E_* \)-equivalences in \(hCW \). Don't confuse our notation with Bousfield's [4]. We next give three conditions (C.1)–(C.3) under which we can construct
a \((\mathcal{W}, T)\)-localization \(\eta: X \to LX\) for each \(X \in \mathcal{C}\) where \(\mathcal{C}=hC\mathcal{W}\) or \(hC\mathcal{W}S\), by the same method as Bousfield used in constructing \(E^*_\ast\)-localizations in [1, 3].

It might be indistinctly known that the 0-th space functor \(\Omega^\ast\) converts generally a cofiber sequence in \(hC\mathcal{W}S\) to a fiber sequence in \(hC\mathcal{W}\). Nevertheless we prove this fact in §2 by making use of secondary operations on mappings [10]. This result yields a key lemma for proving the existence theorem of \((E^*_\ast, \Omega^\ast)\)-localization.

In §3 we first check that the conditions (C.1)-(C.3) are satisfied for the triple \((\mathcal{W}, T, S)=(E^*_\ast, \Omega^\ast, \Sigma^\ast)\). As a result we can give a new proof of the existence theorem of \((E^*_\ast, \Omega^\ast)\)-localization in \(hC\mathcal{W}S\). Since the equivariant version of Proposition 0.2 is valid when \(G\) is a finite group (use [8, V]), we obtain the equivariant version of Theorem 0.1. Of course we may prove it by using very special \(G\)-\(\Gamma\) spaces following Bousfield's approach. Let \(G\) be a compact Lie group and \(\phi_K\) be the \(K\)-fixed point functors. Applying our method to \(T=\prod \phi_K\) we also obtain the existence theorem of \((\prod E^*_K, \prod \phi_K)\)-localization which was studied in [11, Theorem 2.1].

1. \((\mathcal{W}, T)\)- and \(T^*\mathcal{W}\)-localizations

1.1. Let \(\mathcal{B}\) be a category. We call a functor and transformation \(L: \mathcal{B} \to \mathcal{B}\), \(\eta: 1 \to L\) idempotent if \(\eta_L = L\eta\): \(LA \to L^2A\) and it is an equivalence for each \(A \in \mathcal{B}\). It is easy to show

\[(1.1) \text{ A functor } L: \mathcal{B} \to \mathcal{B} \text{ and transformation } \eta: 1 \to L \text{ is idempotent if and only if } \eta_A: A \to LA \text{ induces a bijection } \eta^*_A: \mathcal{B}(LA, LB) \to \mathcal{B}(A, LB) \text{ for any } A, B \in \mathcal{B}.\]

Given a morphism class \(\mathcal{W}\) in a category \(\mathcal{B}\), an object \(D \in \mathcal{B}\) is called \(\mathcal{W}\)-local if each \(f: A \to B\) in \(\mathcal{W}\) induces a bijection \(f^*: \mathcal{B}(B, D) \to \mathcal{B}(A, D)\). For each \(A \in \mathcal{B}\) a morphism \(g: A \to D\) is called a \(\mathcal{W}\)-localization of \(A\) if \(g\) belongs to \(\mathcal{W}\) and \(D\) is \(\mathcal{W}\)-local. If all objects of \(\mathcal{B}\) admit \(\mathcal{W}\)-localizations, then there exists a functor \(L: \mathcal{B} \to \mathcal{B}\) and transformation \(\eta: 1 \to L\) such that \(\eta_A: A \to LA\) is a \(\mathcal{W}\)-localization for each \(A \in \mathcal{B}\). Such an \((L, \eta)\) is unique up to natural equivalence, so it is called the \(\mathcal{W}\)-localization in \(\mathcal{B}\). It follows from (1.1) that the \(\mathcal{W}\)-localization is idempotent [1].

Let \(T: \mathcal{C} \to \mathcal{B}\) be a functor and \(\mathcal{W}\) be a morphism class in \(\mathcal{B}\). An idempotent monad \(L: \mathcal{C} \to \mathcal{C}\) and \(\eta: 1 \to L\) is called the \((\mathcal{W}, T)\)-localization in \(\mathcal{C}\) if \(T\eta_X: TX \to TLX\) is a \(\mathcal{W}\)-localization for each \(X \in \mathcal{C}\).

We here restrict to a morphism class \(\mathcal{W}\) in \(\mathcal{B}\) satisfying the condition:

\[(C.0) \text{ i) Each equivalence } f: A \to B \text{ is contained in } \mathcal{W}. \]
\[\text{ ii) If two of } f: A \to B, g: B \to C \text{ and } gf: A \to C \text{ are in } \mathcal{W}, \text{ so is the third.}\]

Lemma 1.1. Let \(T: \mathcal{C} \to \mathcal{B}\) be a functor with a left adjoint \(S\), and \(\mathcal{W}\) be
a morphism class in \mathcal{B} satisfying the condition (C.0). Assume that there exists a (\mathcal{W}, T)-localization (L, η) in \mathcal{C}. If $f: A \to B$ is contained in \mathcal{W}, then so is $TSf: TSA \to TSB$. (Cf., [4, Remark following Proposition 1.2]).

Proof. Each $f: A \to B$ in \mathcal{W} induces a bijection $f^*: \mathcal{B}(B, TLX) \to \mathcal{B}(A, TLX)$ for any $X \in \mathcal{C}$ since TLX is \mathcal{W}-local. By adjointness $Sf^*: \mathcal{C}(SB, LX) \to \mathcal{C}(SA, LX)$ is bijective, too. Making use of (1.1) we easily verify that $LSf: LSA \to LSB$ is an equivalence. It is now immediate that $TSf: TSA \to TSB$ is in \mathcal{W} because \mathcal{W} satisfies the condition (C.0).

Given a functor $T: \mathcal{C} \to \mathcal{B}$ and a morphism class \mathcal{W} in \mathcal{B} we denote by $T^*\mathcal{W}$ the morphism class in \mathcal{C} which consists of all $u: X \to Y$ with $Tu \in \mathcal{W}$. We here study a relation between the $T^*\mathcal{W}$-localization and the (\mathcal{W}, T)-localization.

Proposition 1.2. Let $T: \mathcal{C} \to \mathcal{B}$ be a functor with a left adjoint S, and \mathcal{W} be a morphism class in \mathcal{B} satisfying the condition (C.0). Assume that $u: X \to Y \in \mathcal{C}$ is an equivalence whenever so is $Tu: TX \to TY$. Then an idempotent monad (L, η) is the (\mathcal{W}, T)-localization in \mathcal{C} if and only if it is the $T^*\mathcal{W}$-localization in \mathcal{C} and moreover $TSf: TSA \to TSB$ is in \mathcal{W} when so is $f: A \to B$.

Proof. The "if" part: It is sufficient to show that TLZ is \mathcal{W}-local for each $Z \in \mathcal{C}$. Given any $f: A \to B$ in \mathcal{W}, $Sf^*: \mathcal{C}(SB, LZ) \to \mathcal{C}(SA, LZ)$ is bijective since LZ is $T^*\mathcal{W}$-local. By adjointness this means that TLZ is \mathcal{W}-local.

The "only if" part: The latter part follows from Lemma 1.1. So we only have to show that LZ is $T^*\mathcal{W}$-local for each $Z \in \mathcal{C}$. Taking any $u: X \to Y$ in $T^*\mathcal{W}$, $Tu: TLX \to TLY$ is an equivalence since it is in \mathcal{W} and TLX, TLY are both \mathcal{W}-local. Under our assumption $Lu: LX \to LY$ is also an equivalence. It is immediate from (1.1) that $u^*: \mathcal{C}(Y, LZ) \to \mathcal{C}(X, LZ)$ is bijective, thus LZ is $T^*\mathcal{W}$-local.

1.2. Let G be a compact Lie group. Let $G\mathcal{W}$ denote the category of based G-spaces with G-fixed basepoint, and $GS\mathcal{A}$ the category of G-spectra indexed on an indexing set \mathcal{A} in a G-universe U. Let us write GSU for $GS\mathcal{A}$ when \mathcal{A} is the standard indexing set in U. The category $GS\mathcal{A}$ is equivalent to GSU for any indexing set \mathcal{A} in U. The suspension spectrum functor $\Sigma^\infty: G\mathcal{W} \to GS\mathcal{A}$ has a right adjoint functor $\Omega^\infty: GS\mathcal{A} \to G\mathcal{W}$ called the 0-th space functor [8, Proposition II. 2.3].

Let $hG\mathcal{W}$ or $hGS\mathcal{A}$ be the category obtained from the homotopy category $hG\mathcal{W}$ or $hGS\mathcal{A}$ by formally inverting the weak equivalences respectively. The category $hG\mathcal{W}$ is equivalent to the homotopy category $hGC\mathcal{W}$ of G-CW complexes and cellular maps. Similarly the stable category $hGS\mathcal{A}$ is equivalent to the homotopy category $hGC\mathcal{W}\mathcal{S}\mathcal{A}$ of G-CW spectra and cellular maps.
Let us abbreviate by GC the category $G CW$ of G-CW complexes or the category GCW,J of G-CW spectra indexed on J, and by hGC its homotopy category. Let $S:B \rightarrow hGC$ be a functor and W be a morphism class in B. For a fixed infinite cardinal number σ we consider the subclass $W_{\sigma} = \{ f_{a}: A_{a} \rightarrow B_{a} \}_{a \in I}$ consisting of morphisms in W with $\#A_{a} \leq \sigma$ and $\#B_{a} \leq \sigma$, where $\#X$ denotes the number of G-cells in $X \in GC$. Note that $Sf_{a}: SA_{a} \rightarrow SB_{a}$ may be represented by an inclusion i_{a}, when replacing SB_{a} by the mapping cylinder of Sf_{a} if necessary.

We say an inclusion map $u: X \rightarrow Y \in GC$ admits an (S, W_{σ})-decomposition if there exists a transfinite sequence

$$X = X_{0} \subset X_{1} \subset \cdots \subset X_{s} \subset X_{s+1} \subset \cdots \subset X_{\gamma} = Y$$

in GC such that $X_{\lambda} = \bigcup_{\lambda < \lambda} X_{\lambda}$ when λ is a limit ordinal and $X_{s} \subset X_{s+1}$ is obtained from a pushout square

$$\begin{array}{ccc}
\vee SA_{a} & \rightarrow & X_{s} \\
\vee i_{a} \downarrow & & \downarrow \\
\vee SB_{a} & \rightarrow & X_{s+1}
\end{array}$$

(1.2)

in GC where the inclusion i_{a} is a representative of Sf_{a} for $f_{a}: A_{a} \rightarrow B_{a}$ in W_{σ}.

Let γ be the first infinite ordinal of cardinality greater than σ. For each $X \in GC$ we inductively construct a transfinite sequence

$$X = X_{0} \subset X_{1} \subset \cdots \subset X_{s} \subset X_{s+1} \subset \cdots$$

in GC where $X_{\lambda} = \bigcup_{\lambda < \lambda} X_{\lambda}$ for each limit ordinal λ and $X_{s} \subset X_{s+1}$ is given by the pushout square

$$\begin{array}{ccc}
\vee_{a \in I} \vee gSA_{a} & \rightarrow & X_{s} \\
\downarrow & & \downarrow \\
\vee_{a \in I} \vee gSB_{a} & \rightarrow & X_{s+1}
\end{array}$$

(1.3)

in which g ranges over all representative cellular maps $SA_{a} \rightarrow X_{s}$ (cf., [2]). Putting $LX = X_{\gamma}$, we see immediately

(1.4) The inclusion map $\eta_{X}: X \rightarrow LX$ admits an (S, W_{σ})-decomposition.

Each cellular map $k: SA_{a} \rightarrow LX$ passes through SB_{a} because the image of k is contained in X_{s} for some $s < \gamma$. Therefore any $f_{a}: A_{a} \rightarrow B_{a}$ in W_{σ} induces a surjection $Sf_{a}^{*}: hGC(SB_{a}, LX) \rightarrow hGC(SA_{a}, LX)$. This implies

(1.4) If an inclusion map $v: Y \rightarrow Z$ admits an (S, W_{σ})-decomposition, then $v^{*}: hGC(Z, LX) \rightarrow hGC(Y, LX)$ is surjective.
each of which is represented by some inclusion having an \((S, W_\sigma)\)-decomposition. We now assume that \(S W_\sigma\) satisfies the condition:

(C.1) Given \(u: X \to Y\) in \(S W_\sigma\) and \(f, g: Y \to Z\) such that \(fu = gu\) in \(hGC\), there exists \(w: Z \to W\) in \(S W_\sigma\) such that \(wf = wg\) in \(hGC\).

Under the condition (C.1) it is easy to show

(1.5) Each \(v: Y \to Z\) in \(S_1 W_\sigma\) induces a bijection \(v^*: hGC(Z, LX) \to hGC(Y, LX)\) (see [1, Lemma 2.5]).

By use of (1.1), (1.3) and (1.5) we obtain

Lemma 1.3. Let \(S: B \to hGC\) be a functor and \(W\) be a morphism class in \(B\). Fix an infinite cardinal number \(\sigma\) and assume that the morphism class \(S W_\sigma\) satisfies the condition (C.1). Then the inclusion map \(\eta_X: X \to LX\) give rise to an idempotent monad \((L, \eta)\) in \(hGC\).

Let \(S: B \to hGC\) be a functor with a right adjoint \(T\) and \(W\) be a morphism class in \(B\). We moreover assume that the following conditions are satisfied:

(C.2) For each \(f: A \to B\) in \(W\) the morphism \(Sf: SA \to SB\) is in \(S W_\sigma\).

(C.3) If \(u: X \to Y\) is in \(S W_\sigma\), then the morphism \(Tu: TX \to TY\) is in \(W\).

Note that both (C.2) and (C.3) imply

(C.4) If \(f: A \to B\) is in \(W\), then so is \(TSf: TSA \to TSB\).

Proposition 1.4. Let \(T: hGC \to B\) be a functor with a left adjoint \(S\) and \(W\) be a morphism class in \(B\). Fix an infinite cardinal number \(\sigma\) and assume that the three conditions (C.1), (C.2) and (C.3) are all satisfied. Then there exists a \((W, T)\)-localization \((L, \eta)\) in \(hGC\).

Proof. Under our assumptions it follows from (1.3) and (1.5) that the morphism \(T \eta_X: TX \to TLX\) is a \(W\)-localization. The result is now immediate from Lemma 1.3.

2. Homotopy theoretic fiber sequences

Given maps \(d_1, d_2: K \land I^+ \to N\) in \(G \mathcal{G}\) such that \(d_1| K \times \{1\} = d_2| K \times \{0\}\) we define a \(G\)-map \(d_1 \land d_2: K \land I^+ \to N\) as \(d_1 \land d_2(x, t) = d_1(x, 2t)\) if \(0 \leq t \leq 1/2\) and to \(d_2(x, 2-2t)\) if \(1/2 \leq t \leq 1\). Consider a sequence \(K \xrightarrow{f} L \xrightarrow{g} M \xrightarrow{h} N\) in \(G \mathcal{G}\) such that the two composite \(gf, hg\) are both \(G\)-null homotopic. Then there are \(G\)-maps \(F: CK \to M\) and \(H: CL \to N\) such that \(F| K \times \{1\} = gf\) and \(H| L \times \{1\} = hg\) where \(C\) denotes the reduced cone functor. Two maps \(hF, H(Cf)\) give
rise to a G-map $d(hF, H(Cf)): \Sigma K \to N$ obtained as $d(hF, H(Cf)) = hF \downarrow H(f \land \tau)$ where Σ denotes the reduced suspension functor and $\tau: I^+ \to I^+$ is the twisting map. The bracket $\langle f, g, h \rangle$ is defined to be the double coset of $h_\ast[\Sigma K, M]_G$ and $\Sigma f^* [\Sigma L, N]_G$ in $[\Sigma K, N]_G$ determined by $[d(hF, H(Cf))]$.

Consider the mapping cocylinder

$$E_h = \{(z, \omega) \in M \times F(I, N); h(z) = \omega(0)\}$$

of $h: M \to N$. The G-map $p: E_h \to N$ defined to be $p(z, \omega) = \omega(1)$ is a G-fibration. Let us denote by F_h the fiber of p over the basepoint of N, which is called the mapping fiber of h. The G-map $q: F_h \to M$ defined to be $q(z, \omega) = z$ is a G-fibration, too. Notice that the fiber of q is just the loop space ΩN.

Assume that there exist G-maps $b: C_f \to M$, $a: \Sigma K \to N$ making the diagram below G-homotopy commutative

$$\begin{array}{ccc}
L & \to & C_f \\
\downarrow b & & \downarrow a \\
M & \to & N
\end{array}$$

where we write C_f for the mapping cone of $f: K \to L$. According to [10, Theorem 3.3] the bracket $\langle f, g, h \rangle$ is represented by the map a. So we may choose G-maps $F: CK \to M$ and $H: CL \to N$ such as $F \downarrow K \times \{1\} = gf$, $H \downarrow L \times \{1\} = hg$ and $[d(hF, H(Cf))] = [a] \in [\Sigma K, N]_G$.

Using such a map H we define a G-map $\beta: L \to F_h$ to be

$$\beta(y) = (g(y), H(1 \land \tau) \downarrow \{y\} \times I) \in M \times F(I, N).$$

As is easily seen, the following diagram

$$\begin{array}{ccc}
K & \to & L \\
\downarrow f & & \downarrow g \\
L & \to & M \\
\downarrow a & & \downarrow h \\
\Omega N & \to & F_h \\
\downarrow q & & \\
\Omega N & \to & M
\end{array}$$

is G-homotopy commutative where a is the adjoint of a.

A sequence $K \to L \to M \to N$ in $G\Xi$ is said to be a fiber sequence in $hG\Xi$ if there exist weak equivalences $\beta: L \to F_h$, $\alpha: K \to \Omega N$ such that the diagram below is G-homotopy commutative:

$$\begin{array}{ccc}
K & \to & L \\
\downarrow \alpha & & \downarrow \beta \\
\Omega N & \to & F_h \\
\downarrow & & \downarrow \\
\Omega N & \to & M
\end{array}$$

Proposition 2.1. Let $X \to Y \to Z \to \Sigma X$ be a cofiber sequence in $hG\Sigma A$.
Then the sequence $\Omega^\infty X \to \Omega^\infty Y \to \Omega^\infty Z \to \Omega^\infty \Sigma X$ is a fiber sequence in $hG\Sigma$.

Proof. Consider the following diagram

$$
\begin{array}{ccc}
\Sigma \Omega^\infty X & \to & \Sigma \Omega^\infty Y \\
\varepsilon \uparrow & & \downarrow \varepsilon \\
X & \to & Y \to Z \to \Sigma X
\end{array}
$$

in $hG\Sigma$ where ε's are the adjunction maps. Both of horizontal rows are cofiber sequences in $hG\Sigma$ and the left square is commutative. So there exists a G-map $b: \Sigma \Omega^\infty w \to Z$ such that the remaining squares become G-homotopy commutative. Taking the adjoint situation the maps $b: C_{\Omega^\infty w} \to \Omega^\infty Z$ and $a: \Sigma \Omega^\infty X \to \Omega^\infty \Sigma X$ give a G-homotopy commutative diagram such as (2.1). From (2.2) and (2.3) we obtain a G-map $\beta: \Omega^\infty Y \to F_{\Omega^\infty w}$ such that the following diagram is G-homotopy commutative:

$$
\begin{array}{ccc}
\Omega^\infty X & \to & \Omega^\infty Y \\
\downarrow a & & \downarrow \beta \\
\Omega \Sigma \Sigma X & \to & F_{\Omega^\infty w} \to \Omega^\infty Z.
\end{array}
$$

By use of the desuspension theorem [8, Theorem II. 6.1] we observe that the adjoint a of a is a weak equivalence. Applying Five lemma we moreover verify that β is also a weak equivalence.

2.2. Given two sequences $\Phi: K \to L \to M \to N$, $\Phi': K' \to L' \to M' \to N'$ in $G\Sigma$ we consider a morphism $\xi = (k, l, m, n): \Phi \to \Phi'$ such that the induced diagram is G-homotopy commutative. Choose a G-homotopy $P: K \wedge I^+ \to L'$ from $f'k$ to fL and define a G-map $\mu: C_f \to C_{f'}$ by $\mu|CK = Ck|P$ and $\mu|L = f$. We here assume that there are four G-maps b, b', a and a' making the diagram below G-homotopy commutative:

$$
\begin{array}{ccc}
M & & h \\
\uparrow g & \uparrow b & \uparrow a \\
L & \to & C_f \to \Sigma K \\
\downarrow i & \downarrow \mu & \downarrow m \\
L' & \to & C_{f'} \to \Sigma K' \\
\uparrow g' & \downarrow b' & \downarrow a' \\
M' & \to & N'
\end{array}
$$

Choose G-homotopies $U: L \wedge I^+ \to M$ from bi to g, $U': L' \wedge I^+ \to M'$ from $b'i'$ to g' and $V: C_f \wedge I^+ \to M'$ from mb to $b'\mu$, and then define a G-map $b_1: C_f \to M$ by $b_1|CK = b|CK \wedge U(f \wedge 1)$ and $b_1|L = g$, and similarly a G-map b'_1:}
$C'_f \to M'$ using the homotopy U'. Combine U, U' and V to obtain a G-homotopy $Q: L \wedge I^+ \to M'$ from $m g$ to $g' l$ defined to be $Q = m U (1 \wedge \tau) \wedge V (l \wedge 1) \wedge U' (l \wedge 1)$. Putting $F = b_1 | CK$ and $F' = b_1' | CK'$ we have

Claim 2.2. $m F \wedge Q (f \wedge 1)$ is G-homotopic rel $K \wedge \partial I^+$ to $F' (CK) \wedge g' P$.

Proof. $b' \mu | CK$ is G-homotopic rel $K \wedge \partial I^+$ to $mb | CK \wedge V (f \wedge 1)$ and also $b' \nu | U (f \wedge 1)$ is so to $U' (f' k \wedge 1) \wedge g' P$. Hence the result is easily shown.

Since $[b] = [b_1] \in [C_f, M]_G$ we get a G-map $H: CL \to N$ such that $[d (h F, H (C f))] = [a] \in [\Sigma K, N]_G$ (see [10, Lemma 3.2 and Theorem 3.3]), and similarly a G-map $H': CL' \to N'$ such that $[d (h' F', H' (C f'))] = [a'] \in [\Sigma K', N']_G$. Choose a G-homotopy $R: M \wedge I^+ \to N'$ from $h' m$ to $n h$. Then we have

Claim 2.3. There exists a G-map $W: \Sigma M \to N'$ such that $R (g \wedge 1) \wedge n H (1 \wedge \tau) \wedge W (\Sigma g)$ is G-homotopic rel $L \wedge \partial I^+$ to $h' Q (f \wedge 1) \wedge H' (l \wedge \tau)$.

Proof. $n h F$ is G-homotopic rel $K \wedge \partial I^+$ to $h' m F \wedge R (g f \wedge 1)$ and similarly $H'(f' k \wedge \tau)$ is so to $h' g' P \wedge H'(f' k \wedge \tau)$. By means of Claim 2.2 the equality $[d (n h F, n H (C f))] = [d (h' F', H' (C f'))] \in [\Sigma K', N']_G$ implies that $R (g \wedge 1) \wedge n H (f \wedge \tau)$ is G-homotopic rel $K \wedge \partial I^+$ to $h' Q (f \wedge 1) \wedge H' (l \wedge \tau)$. The result is now immediate.

Using the maps R and W we define a G-map $\lambda: F_h \to F_{h'}$ to be

$$\lambda (x, \omega) = (m z, R \{z\} \times I \wedge n \omega \wedge W \{z\} \times I).$$

By means of Claim 2.3 we see easily that the following diagrams are G-homotopy commutative:

$$\begin{array}{ccc}
\Omega N \to F_h \\
\Omega n \downarrow \lambda \downarrow m \downarrow \lambda \\
\Omega N' \to F_{h'}
\end{array} \quad \begin{array}{ccc}
L \to F_h \\
L' \downarrow \lambda \downarrow m \downarrow \lambda \\
L' \to F_{h'}
\end{array}$$

where β and β' are defined as (2.2).

Let $\Phi: K \to L \to M \to N$, $\Phi': K' \to L' \to M' \to N'$ be fiber sequences in $h G \mathcal{D}$. A morphism $\xi = (k, l, m, n): \Phi \to \Phi'$ is said to be a morphism between fiber sequences in $h G \mathcal{D}$ if there are four weak equivalences β, β', α and α' and a G-map λ such that the diagram below is G-homotopy commutative:

$$\begin{array}{ccc}
K \to L \\
\downarrow \alpha \downarrow \beta \\
\Omega N \to F_h \to M \to N \\
\Omega n \downarrow \lambda \downarrow m \downarrow n \\
\Omega N' \to F_{h'} \to M' \to N'
\end{array} \quad \begin{array}{ccc}
K' \to L' \\
\uparrow \alpha' \uparrow \beta' \\
\Omega N \to F_h \to M \to N \\
\Omega n \downarrow \lambda \downarrow m \downarrow n \\
\Omega N' \to F_{h'} \to M' \to N'
\end{array}$$
Proposition 2.4. Let $\psi: X \to Y \to Z \to \Sigma X$, $\psi': X' \to Y' \to Z' \to \Sigma X'$ be cofiber sequences in $hGSA$ and $\zeta = (r, s, t, \Sigma r): \psi \to \psi'$ be a morphism between cofiber sequences in $hGSA$. Then $\Omega^\infty \psi \to \Omega^\infty \psi'$ is a morphism between fiber sequences in $hG\Sigma$.

Proof. Pick up a G-homotopy $P: X \land I^+ \to Y'$ from $u'\tau$ to su and consider the G-maps $\mu: C_{\Omega^\infty u} \to C_{\Omega^\infty u'}$ given by $\mu|C_{\Omega^\infty X}=C_{\Omega^\infty r}|C_{\Omega^\infty P}$ and $\mu|\Omega^\infty Y=\Omega^\infty s$. By observing standard cofiber sequences in GSA we can easily find G-maps $b: \Sigma C_{\Omega^\infty u} \to Z$ and $b': \Sigma C_{\Omega^\infty u'} \to Z'$ in the proof of Proposition 2.1 such as tb is G-homotopic to $b'(\Sigma \mu)$. Hence we get four G-maps $b: C_{\Omega^\infty u} \to \Omega^\infty Z$, $b': C_{\Omega^\infty u'} \to \Omega^\infty Z'$, $a: \Sigma \Omega^\infty X \to \Omega^\infty \Sigma X$ and $\alpha': \Sigma \Omega^\infty X' \to \Omega^\infty \Sigma X'$ such that the diagram (2.5) is G-homotopy commutative. Making use of Proposition 2.1, (2.6) and (2.7) we immediately obtain four weak equivalences $\beta: \Omega^\infty Y \to \Omega^\infty X$, $\beta': \Omega^\infty Y' \to \Omega^\infty X'$, $\alpha=\alpha': \Omega^\infty X \to \Omega^\infty X'$ and a G-map $\lambda: F_{\Omega^\infty u'} \to F_{\Omega^\infty u}$ making the diagram (2.8) G-homotopy commutative.

3. (E^*_*, Ω^∞)- and $(\{E_K\}, \Pi_\phi K)$-localizations

3.1. Let E_\ast be an $RO(G; U)$-graded homology theory defined on the stable homotopy category $hGCWSU$. A map $u: X \to Y$ in $hGCWSU$ is called an E^*_\ast-equivalence if $u^*: U_\ast X \to E^*_\ast Y$ is an isomorphism, and also a map $f: A \to B$ in $hGCWSU$ is called an E^*_\ast-equivalence if so is $\Sigma^\infty f: \Sigma^\infty A \to \Sigma^\infty B$. Let us denote by $\mathcal{W}E$ the morphism class consisting of all E^*_\ast-equivalences in $hGCWSU$. We simply write $\mathcal{W}E$ for the class $\Sigma^\ast \mathcal{W}E$ consisting of all E^*_\ast-equivalences in $hGCWSU$. As usual we adopt the terms of $E^*_\ast T$- and (E^*_\ast, T)-localizations in place of those of $T^*\mathcal{W}$- and (\mathcal{W}, T)-localizations when $\mathcal{W}=\mathcal{W}E$. Obviously the morphism class $\mathcal{W}E$ in hGC satisfies the condition (C.0), where $hGC=hGCWSU$.

Lemma 3.1. Let σ be an infinite cardinal number which is at least equal to the cardinality of E_\ast. Then

$$\mathcal{W}E = Id_\ast \mathcal{W}_\ast E$$

where Id denotes the identity functor.

Proof. Trivially $Id_\ast \mathcal{W}_\ast E \subset \mathcal{W}E$. Taking an E_\ast-equivalence $u: X \to Y$ in hGC, it may be regarded as an inclusion $X \subset Y$. Let γ be an infinite cardinal number of cardinality greater than $\#Y-\#X$. As in the non-equivariant case (see [3, Lemma 1.13]) we can construct a transfinite sequence $X=X_0 \subset X_1 \subset \cdots \subset X_\gamma \subset X_{\gamma+1} \subset \cdots$ in GC such that i) if λ is a limit ordinal then $X_\lambda = \bigcup_{\gamma \lt \lambda} X_\gamma$, ii) if $X_\gamma = Y$ then $X_{\gamma+1} = Y$, and iii) if $X_\gamma \neq Y$ then $X_{\gamma+1} = X_\gamma \cup W$ for some $W \subset Y$ where $\#W \leq \sigma$, $W \subset X_\gamma$, and the inclusion $W \cap X_\gamma \to W$ is an E_\ast-equivalence. Clearly $Y=X_\gamma$. Hence we observe that the inclusion $u: X \to Y$ admits
an \((\text{Id}, \mathcal{W}_W^E)\)-decomposition.

As is easily shown, we have

Corollary 3.2. Let \(\sigma\) be an infinite cardinal number which is at least equal to the cardinality of \(E_\ast\). Then \(\Sigma_\eta^E\mathcal{W}_W^E\) satisfies the condition \((C.2)\).

It is known that \(\mathcal{W}_W^E\) admits a calculus of left fractions in \(hGC\) (see [1, Lemma 3.6]). In particular, \(\mathcal{W}_W^E=\text{Id}_W\mathcal{W}_W^E\) satisfies the condition \((C.1)\).

Lemma 3.3. Fix an infinite cardinal number \(\sigma\). The morphism class \(\Sigma_\eta^E\mathcal{W}_W^E\) admits a calculus of left fractions in \(hGC\mathcal{W}_W^E\). In particular, it satisfies the condition \((C.1)\).

Proof. We only show that \(\Sigma_\eta^E\mathcal{W}_W^E\) satisfies the condition \((C.1)\) because the remainders are easy. Represent \(u: X \to Y\) in \(\Sigma_\eta^E\mathcal{W}_W^E\) by a transfinite sequence \(X=X_0 \subset X_1 \subset \cdots \subset X_\eta \subset X_{\eta+1} \subset \cdots \subset X_\pi = Y\) in \(GC\mathcal{W}_W^E\), where \(X_\eta \subset X_{\eta+1}\) is given by a pushout square as \((1.2)\). Put \(V_\eta = Y \times \{0\} \cup X_\eta \land I^+ \cup Y \times \{1\}\) and consider the square

\[
\begin{array}{ccc}
V_\eta (\Sigma^\omega (B_\sigma \times \{0\} \cup A_\sigma \land I^+ \cup B_\sigma \times \{1\})) & \to & V_\eta \\
\downarrow & & \downarrow \\
\Sigma^\omega (B_\sigma \land I^+) & \to & V_{\eta+1},
\end{array}
\]

which is also pushout. The transfinite sequence

\[
Y \times \{0\} \cup X \land I^+ \cup Y \times \{1\} = V_0 \subset V_1 \subset \cdots \subset V_\eta \subset V_{\eta+1} \subset \cdots \subset V_\pi = Y \land I^+
\]
gives a \((\Sigma^\omega, \mathcal{W}_W^E)\)-decomposition for the inclusion \(\nu: V_0 \to V_\pi\). Given \(f, g: Y \to Z\) such that \(fu=gu\) in \(hGC\mathcal{W}_W^E\), there is a map \(k: V_0 \to Z\) with \(k|Y \times \{0\} =f\) and \(k|Y \times \{1\} =g\). Take the double mapping cylinder \(W\) of \(\nu\) and \(k\), then it follows immediately that the inclusion \(\nu: Z \to W\) has a \((\Sigma^\omega, \mathcal{W}_W^E)\)-decomposition and \(\nu f=\nu g\) in \(hGC\mathcal{W}_W^E\).

Without use of the existence theorem of \((E_\ast, \Omega^\omega)\)-localization Kuhn [7, Proposition 2.4] proved that \((\mathcal{W}_W^E, \Omega^\omega \Sigma^\omega)\) satisfies the condition \((C.4)\) in the non-equivariant case. By virtue of [8, Theorem V. 5.6] we can apply the method of Kuhn in the finite groups case to show

Proposition 3.4. Assume that \(G\) is a finite group. If a map \(f: A \to B\) in \(GC\mathcal{W}\) is an \(E_\ast\)-equivalence, then so is \(\Omega^\omega \Sigma^\omega f: \Omega^\omega \Sigma^\omega A \to \Omega^\omega \Sigma^\omega B\). (Cf., [7] and [5]).

Proposition 3.5. Given a homotopy pushout square
in $G\mathcal{W}SU$ such that $\Omega^\infty s: \Omega^\infty Y \to \Omega^\infty Y'$ is an E_∞-equivalence, then $\Omega^\infty t: \Omega^\infty Z \to \Omega^\infty Z'$ is an E_∞-equivalence, too.

Proof. Let ΣX be the cofiber of $\nu: Y \to Z$. Then there is a G-homotopy commutative diagram

\[
\begin{array}{ccc}
\Omega^\infty X & \to & \Omega^\infty Y \\
\downarrow & & \downarrow \\
\Omega^\infty Y' & \to & \Omega^\infty Z' \\
\end{array}
\]

Propositions 2.1 and 2.4 assert that the horizontal rows may be regarded as fiber sequences of G-CW complexes. Compare the Atiyah–Hirzebruch spectral sequences (see [6, Theorem 1]). Since the base space $\Omega^\infty \Sigma X$ is a G-homotopy commutative H-space and $\pi_0^c(\Omega^\infty \Sigma X)$ is an abelian group for each closed subgroup K of G, the result is now easily shown.

Making use of Propositions 3.4 and 3.5 we have

Corollary 3.6. Assume that G is a finite group and fix an infinite cardinal number σ. The morphism class $\Sigma^\infty \mathcal{W}\sigma^\infty$ satisfies the condition (C.3).

Let σ be an infinite cardinal number which is at least equal to the cardinality of E_∞. Lemma 3.3 and Corollaries 3.2 and 3.6 say that the morphism class $\Sigma_1^\infty \mathcal{W}\sigma^\infty$ satisfies the conditions (C.1), (C.2) and (C.3) when G is finite. So we can apply Proposition 1.4 to show the existence theorem of $(E_\infty, \Omega^\infty)$-localization.

Theorem 3.7. Assume that G is a finite group. Then there exists an $(E_\infty, \Omega^\infty)$-localization (L, η) in $hG\mathcal{W}SU$. (Cf., [4, Theorem 1.1]).

Let $hG\mathcal{W}SU_0$ denote the full subcategory of $hG\mathcal{W}SU$ consisting of (-1)-connected G-CW spectra. The 0-th space functor $\Omega^\infty: hG\mathcal{W}SU_0 \to hG\mathcal{W}$ satisfies the assumption in Proposition 1.2. So we get

Corollary 3.8. Assume that G is a finite group. Then there exists an $E_\infty \Omega^\infty$-localization (L, η) in $hG\mathcal{W}SU_0$. (See [4]).

3.2. Let G be a compact Lie group and \mathcal{F} be a collection of closed subgroups of G which are not conjugate subgroups each other. We partially order a list \mathcal{F} by writing $H \leq K$ if H is subconjugate to K. Let $\mathcal{E}_\mathcal{F} = \{E_K\}_{K \in \mathcal{F}}$ be a family of homology theories defined on $hG\mathcal{W}SU$. A family $\mathcal{E}_\mathcal{F}$ is said...
to be order preserving if \(E_{K^*}X = 0 \) implies \(E_{H^*}X = 0 \) for each pair \(H \leq K \) in \(\mathcal{F} \). Write \(\mathcal{W}^{E\mathcal{F}} \) for the morphism class \(\prod_{K \in \mathcal{F}} \mathcal{W}^{E_K} \) in \(\prod_{K \in \mathcal{F}} hCGW \) or in \(\prod_{K \in \mathcal{F}} hCGWSU \).

For each closed subgroup \(K \) of \(G \) the \(K \)-fixed point functor \(\phi_K: G\mathcal{F} \to \mathcal{F} \) or \(G\mathcal{A} = S\mathcal{A} \) has a left adjoint functor \((G/K)^+ \wedge - \) (see [8, Proposition II. 4.6]). Abbreviate by \(\mathcal{C} \) the category \(C\mathcal{W} \) or \(C\mathcal{WSU} \) and similarly by \(GC \). The fixed points functor \(\phi_{\mathcal{F}} = \prod_{K \in \mathcal{F}} \phi_K: GC \to \prod_{K \in \mathcal{F}} \mathcal{C} \) has a left adjoint \(\psi_{\mathcal{F}}: \prod_{K \in \mathcal{F}} \mathcal{C} \to GC \) defined to be \(\psi_{\mathcal{F}}(\{X_K\}) = \bigvee_K (G/K)^+ \wedge X_K \). We here show that \((\mathcal{W}^{E\mathcal{F}}, \phi_{\mathcal{F}} \psi_{\mathcal{F}}) \) satisfies the condition (C.4).

Lemma 3.9. Assume that a family \(\mathcal{E}_\mathcal{F} = \{E_K\} \) is order preserving. Given \(E_K^\ast \)-equivalences \(f_K: X_K \to Y_K \) in \(h\mathcal{C} \) for all \(K \in \mathcal{F} \), then \(\phi_{\mathcal{F}} \psi_{\mathcal{F}}(\{f_K\}): (\bigvee_K (G/K)^+ \wedge X_K) \ast \to (\bigvee_K (G/K)^+ \wedge Y_K) \ast \) is also an \(E_K^\ast \)-equivalence for each \(H \in \mathcal{F} \).

(Cf., [11, Lemma 2.2]).

Proof. Under the hypothesis on \(\mathcal{E}_\mathcal{F} \) it follows that \(1 \wedge f_K: (G/K)^H \wedge X_K \to (G/K)^H \wedge Y_K \) is an \(E_K^\ast \)-equivalence since \((G/K)^H = \phi \) unless \(H \leq K \).

Let \(\mathcal{E}_\mathcal{F} = \{E_K\} \) be an order preserving family and \(\sigma \) be an infinite cardinal number which is at least equal to the cardinality of \(\bigoplus_{K \in \mathcal{F}} E_{K^*} \). By similar arguments to Lemma 3.3 and Corollaries 3.2 and 3.6 involving Lemma 3.9 we easily verify that \(\psi_{\mathcal{F}} \mathcal{W}^{E\mathcal{F}} \) in \(hGC \) satisfies the conditions (C.1), (C.2) and (C.3). Applying Proposition 1.4 we obtain

Theorem 3.10. Let \(G \) be a compact Lie group and \(\mathcal{E}_\mathcal{F} = \{E_K\} \) be a family of homology theories defined on \(hCGWSU \). Assume that \(\mathcal{E}_\mathcal{F} \) is order preserving. Then there exists an \((E_{\mathcal{F}}, \phi_{\mathcal{F}}) \)-localization \((L, \eta) \) in \(hCGW \) or in \(hCGWSU \) where \(\phi_{\mathcal{F}} = \prod_{K \in \mathcal{F}} \phi_K \) denotes the fixed points functor.

If a list \(\mathcal{F} \) contains precisely one subgroup from every conjugacy class of closed subgroups of \(G \), then it is said to be complete. As is well known, the fixed points functor \(\phi_{\mathcal{F}} \) satisfies the assumption in Proposition 1.2 when \(\mathcal{F} \) is complete. Hence we have

Corollary 3.11. Assume that a list \(\mathcal{F} \) is complete and a family \(\mathcal{E}_\mathcal{F} = \{E_K\} \) is order preserving. Then there exists an \(\mathcal{E}_{\mathcal{F}} \phi_{\mathcal{F}} \)-localization \((L, \eta) \) in \(hCGW \) or in \(hCGWSU \). (Cf., [12, Theorem 2.1]).

References

Department of Mathematics
Osaka City University
Sugimoto, Sumiyoshi-ku
Osaka 558, Japan