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RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

(Received 11 July 2013; accepted 14 October 2013; published online 5 November 2013)

The zero-multipole summation method has been developed to efficiently evaluate the electrostatic
Coulombic interactions of a point charge system. This summation prevents the electrically non-
neutral multipole states that may artificially be generated by a simple cutoff truncation, which often
causes large amounts of energetic noise and significant artifacts. The resulting energy function is rep-
resented by a constant term plus a simple pairwise summation, using a damped or undamped Coulom-
bic pair potential function along with a polynomial of the distance between each particle pair. Thus,
the implementation is straightforward and enables facile applications to high-performance computa-
tions. Any higher-order multipole moment can be taken into account in the neutrality principle, and
it only affects the degree and coefficients of the polynomial and the constant term. The lowest and
second moments correspond respectively to the Wolf zero-charge scheme and the zero-dipole sum-
mation scheme, which was previously proposed. Relationships with other non-Ewald methods are
discussed, to validate the current method in their contexts. Good numerical efficiencies were easily
obtained in the evaluation of Madelung constants of sodium chloride and cesium chloride crystals.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827055]

I. INTRODUCTION

Molecular simulation with molecular dynamics (MD)
and Monte-Carlo (MC) calculations is now widely used to an-
alyze various macroscopic systems, such as condensed matter
and bimolecular systems, with microscopic descriptions. In
these simulations, appropriate treatment of the electrostatic
interactions among the charged particles in the system is criti-
cal, because the interactions are essential for various phenom-
ena in a number of systems. The treatment should be accurate,
and the simple truncated evaluation cannot be used, since the
interactions are long-range.1

One of the representative approaches is the lattice sum
(LS) method, such as the Ewald method,2 when we as-
sume the periodic boundary condition (PBC). In the three-
dimensional PBC, the sum of the Coulombic interactions
φij(rij) ≡ qiqj/rij for charges qi and qj with their distance rij is
conditionally convergent in general, and its heuristic ordering
in the summation often fails (the cubic-expanding sum con-
verges, but the sphere-expanding sum diverges).3 The Ewald
energy plus the dipolar term is interpreted to be the value
of the sum obtained by spherical-shell ordering with respect
to the copies of the original unit cell,4 and the Ewald sum
holds if the crystal is supposed to be immersed in a con-
ductor which cancels the dipolar term. The Ewald method,
with the aid of computationally efficient devices including the
mesh-based approach,5 has been traditionally used in com-
puter simulations. With developments facilitated by several
pioneering works,6–8 other types of formulae have been stud-
ied. By evaluating Fourier expansions in modified Bessel
functions, Hautot9 led series using hyperbolic functions for
Madelung constants. Lekner10 utilized Bessel functions of
imaginary arguments and derived rapidly convergent sums.

Tyagi11 derived a fast convergent method, which does not in-
clude optimizing parameters such as the damping parameter
in the Ewald sum, and arrived at very accurate Madelung
energies.12, 13 Note that the main focus in the application
of these approaches is the efficient expression of the type∑

n∈Zd φij (‖xi − xj − Ln‖), for arbitrarily fixed particle co-
ordinates xi and xj ∈ Rd (if i = j, one uses Zd \ {0} instead
of Zd ). However, for actual molecular simulations that often
treat general disordered systems, we should also consider the
efficiency in evaluating the above summation with respect to
all pairs of i and j.

The PBC is required in crystal analyses, and it is also
useful to simulate a bulk state of matter since it allows us
to avoid the creation of an interface, which often causes sig-
nificant artifacts in simulations. However, in some cases, the
application of the PBC is not appropriate, such as in an in-
trinsically non-periodic system.14 Thus, the consideration of
other approaches would be valuable.

When conducting molecular simulations, we cannot
avoid the issue of the computational costs to evaluate the elec-
trostatic interactions. In fact, almost all computational costs
are for the evaluation of long-range interactions in classical
MD and MC simulations. This cost is proportional to the
square of the number of particles in a target classical system,
and would become greater if we consider quantum effects.
This is a bottleneck for simulating a large system, which is
required to prepare a realistic physical model to investigate
physical, chemical, and biological phenomena in detail.

From this computational viewpoint, a cutoff-based (CB)
approach is appealing, since it would provide an O(N) scheme
for a larger system. In addition, CB methods are useful since
they are irrelevant to the boundary conditions, in general. In

0021-9606/2013/139(17)/174107/14/$30.00 © 2013 AIP Publishing LLC139, 174107-1
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such a CB approach, often called a non-Ewald approach,14 the
reaction field (RF) method15, 16 assumes that the region out-
side the cutoff sphere is a dielectric continuum polarized by
reacting with the molecules inside the cavity. An electric field
generated by this polarization interacts with the dipoles in
the sphere, adding another term to the Coulombic form.17–20

The pre-averaging method21 was introduced by Yakub and
Ronchi, to remove the artificial cubic symmetry in the LS
method, and the energy formula was obtained using the Ewald
summation expansion and by averaging the quantities over
spherical angular coordinates in the expansion.21–24 In this
context, but based on the application of Gauss’s law, a spher-
ically averaged periodic potential was recently obtained.25

The isotropic periodic summation by Wu and Brooks26 as-
sumes the isotropic periodicity, rather than the cubic periodic-
ity, and has been developed for polar systems27 and for further
applications.28–30 Wu and Brooks proposed different versions
of their isotropic periodic sum method for homogeneous, het-
erogeneous, and finite systems.31 Wolf et al.32, 33 provided a
simple and crucial physical perspective to the potential-shift
truncation approach, in which the charge neutrality is impor-
tant to achieve accurate total energy and the potential-function
shifting procedure corresponds to the charge neutralization
procedure (except the self term), which can be attained by
placing the image charges at the cutoff surface.

This zero-charge (ZC) scheme by Wolf et al.33 is sim-
ple enough, and many applications and developments have
followed, including efforts by Zahn, Schilling, and Kast,34

Avendaño and Gil-Villegas,35 Fennell and Gezelter,36 and
others.37–55 In developing the ZC principle,56, 57 the zero-
dipole (ZD) summation method58 provides the energy derived
by counting the interactions for a neutralized subset, regard-
ing the dipoles as well as the charges. The applications of the
ZD method to several systems58–60 have shown that it can pro-
vide more accurate electrostatic energies than the ZC scheme.

In this paper, we develop this idea further to reach a more
accurate scheme, using a higher order expansion of the pair
potential function. This scheme addresses to the point that the
summation over a certain subset for which the total multipole
moments yields zero should be taken for an individual parti-
cle, in order to attain the total energy in an effective manner.
The current formalism provides a more accurate pairwise sum
expression of the excess energy, as compared with the ZD
method, as long as the physical states allow the description
of the zero-multipole (ZM) principle. This is because more
information about the charge arrangement for the physical
states is included in the newly developed energy functional.
The purpose is to develop a method appropriate for both pe-
riodic and non-periodic systems, and to construct a very sim-
ple algorithm that is readily applicable to any computational
architecture.

Section II first introduces the background of the method
and describes the physical motivation for considering the cur-
rent zero-multipole summation method, followed by a sim-
ple illustration of the main result of this section. Then, af-
ter the details of the notions of the zero-multipole state and
a technical view of the zero-multipole summation are pro-
vided, we see that the excess energy representation is criti-
cal to construct a numerically applicable scheme. To obtain

this, two strategies are employed: one for a specific analyt-
ical approximation of the potential function on a relevant
domain, and the other for a simple algebraic representation
towards the final summation form. In Sec. III, we investi-
gate the functional form of the ZM energy and the properties
of the pair potential function, and analyze the errors included
in the method. We place the current method in the context of
related methods, and provide a unified view among them. The
results of simple numerical studies are shown, and we investi-
gate the efficiency of the method, using typical crystal states.
Section IV concludes with remarks.

II. ZERO-MULTIPOLE SUMMATION

A. Main result

The main result obtained in this section is an approxi-
mate formula of the summation

∑
i, jqiqj/rij. The formula is

represented by

1

2

∑
i

∑
j (�=i)
rij <rc

qiqj

[
1/rij −

l∑
m=0

a(l)
m r2m

ij

]
− a

(l)
0

2

∑
i

q2
i , (1)

where rc is the cutoff length and the second term in the
pairwise sum is a polynomial for which the coefficients
{a(l)

0 , . . . a
(l)
l } are determined in a certain unique manner.

The general idea and the outline of the derivation are as
follows. Having chosen a cutoff sphere, it is asserted on phys-
ical grounds that for every i the particles j in i’s cutoff sphere
almost satisfy a set of zero multipole conditions (zero lth-
moment condition). They are split into two subsets: one is
a relatively larger subset (termed a zero multipole subset) in
which the particles satisfy a zero multipole condition; and the
other is a relatively smaller subset (termed an excess subset)
in which the particles are contained in a thin shell close to
the cutoff sphere surface (see Fig. 1). The potential energy for
atom i due to all other atoms should be restricted to those in
the larger subset (viz., zero multipole subset). This sum over
the larger subset can be written as the standard cutoff sum mi-
nus the potential energy due to the smaller subset (viz., excess
subset) positioned within the thin shell. The potential energy
for particles within this thin shell can be approximated by a
polynomial, and by virtue of the zero-multipole conditions,
this energy can be approximated by the same polynomial now
evaluated over all j in the cutoff sphere. Therefore, although
the members of the smaller set are not necessarily known, the
total energy can be represented by a standard cutoff sum of the
Coulombic potential minus the polynomial, along with a con-
stant. This constant can be regarded as a “self” term [the last
term of Eq. (1)]. We can extend formula (1) using a damping
factor, and this extended form is described below.

B. Physical motivation

Let x ≡ (x1, . . . , xN) be N particle configurations in a
coordinate phase space �, and qj be the charge of particle
j that moves in space Rd (the main concern is in d = 3)
for j ∈ N ≡ {1, . . . , N}. We calculate the total Coulombic
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FIG. 1. The conventional simple cutoff method considers all charges in a cut-
off sphere with radius rc. The current zero-multipole summation method con-
ceptually deals with the particles only in the shaded region, which schemat-
ically represent the zero lth multipole subset M(l)

i . The particle in the non-

shaded region represents a member of the excess subset J (l)
i . Particle j at po-

sition xj is one of the members, and x
(i)
j is the shifted position of xj towards

the cutoff surface along the vector xj − xi; while x
(i)
j = xj for a particle be-

longing to M(l)
i .

energy E(x) for x ∈ �,

E(x)= 1

2

∑
i∈N

∑
j∈Ni

qiqj

rij

(2a)

= 1

2

∑
i∈N

∑
j∈Ni

qiqjV (rij )+ 1

2

∑
i∈N

∑
j∈Ni

qiqj

[
1

rij

−V (rij )

]
,

(2b)
where rij ≡ ‖xij‖ with xij ≡ xi − xj ∈ Rd for every i and
j ∈ Ni ≡ N − {i}. In this case, the function V , used in the
decomposition of 1/r, is specifically set as

V (r) = erfc(αr)

r
, (3)

where erfc(αr) is the complementary error function of αr,
and becomes a damping factor for the bare Coulomb potential
function as long as we use α ≥ 0. A relatively large α is used
in the conventional Ewald approach, under the PBCs, and its
damping effect enables the first term of Eq. (2b) to be evalu-
ated by a simple cutoff truncation. However, with such a large
α, the evaluation of the second term is not simple, and the key
point in the approach is to generate a Fourier expansion. Here,
we utilize the opposite aspect of the function, i.e., a small α.
In this case, the second term of Eq. (2b) can be very simply
approximated33, 58 as

1

2

∑
i∈N

∑
j∈Ni

qiqj

[
1

rij

− V (rij )

]
(4a)

= 1

2

∑
i∈N

∑
j∈N

qiqj

rij

erf(αrij ) − 1

2
lim
r→0

erf(αr)

r

∑
i∈N

q2
i , (4b)

∼ − α√
π

∑
i∈N

q2
i for small α. (4c)

In fact, erf(αr) decreases along with the value of α, and the
limit, α = 0, yields Eq. (4) to be exact. In contrast, the accu-
rate evaluation of the first term of Eq. (2b) becomes nontrivial
for such a small α, considering the fact that the limit, α =
0, leads to the bare Coulomb, V (rij ) = 1/rij , which does not
allow a simple truncation.

Together with Nakamura and Yonezawa, in our previous
approach,58 we considered that for equilibrated configurations
observed in, e.g., a physically stable system, the neutrality of
both the charges and dipoles is attained even at a certain lo-
cal level, and this physical information should be taken into
account to evaluate the interaction. However, the particle con-
figuration state inside a simply chosen distance-judged cutoff
sphere often shows physical instability and generates noise
when evaluating the true energy value. Thus, the interactions
for an individual particle i should be counted for such a neu-
tralized subset of particles, instead of counting all of the parti-
cles in a given cutoff sphere (viz., the neutralized subset does
not necessarily form a “complete” sphere). For such a (zero-
charge and) zero-dipole state, a summation method that re-
flects this neutrality condition promises to provide a good ap-
proximation to estimate the energy. In fact, the accuracy of the
method has been shown in actual numerical simulations, such
as ionic systems,58 a bulk water system,59 and a membrane
protein system with explicit membrane and solvent molecules
and ions.60

This neutralization view can be extended to higher-order
multipole moments; i.e., we can suppose that the zero lth mo-
ment condition holds locally, where local means a sub-area
that is not the total, but is sufficiently large in a realistic sys-
tem. Although the validity of this assumption should be evalu-
ated in individual cases, we can construct a theoretical frame-
work if we admit this as a physical assumption.

C. Neutralization principle

With these considerations, the neutralization principle is
specifically characterized as follows: for x ∈ � and for i ∈ N ,
there exists a zero-lth-moment (zero-multipole) subset M(l)

i

⊂ Ni such that

∀j ∈ M(l)
i , rij < rc, (5a)

∑
j∈M(l)

i ∪{i}
qjxj ⊗ m. . . ⊗ xj = 0 ∈ Rd ⊗ m. . . ⊗ Rd

for m = 0, . . . , l, (5b)

∀j ∈ Ni − M(l)
i , (rij < rc ⇒ rij � rc). (5c)

The first condition, Eq. (5a), simply means that all parti-
cles in M(l)

i are inside the cutoff sphere with the radius
(cutoff length) rc > 0. Condition (5b) means that the total
mth moment in the neutralized subset adding the tar-
get particle i, M(l)

i ∪ {i}, vanishes for all m ≤ l, viz.,
zero-multipole conditions. For example, in l = 0, this is
simply the zero-charge condition,

∑
j∈M(0)

i ∪{i} qj = 0, which
is utilized in the Wolf scheme;33, 56 the condition with
l = 1 is the (zero-charge and) zero-dipole condition,∑

j∈M(1)
i ∪{i} qj = 0 ∈ R and

∑
j∈M(1)

i ∪{i} qjxj = 0 ∈ Rd , as
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derived in the ZD method.58 Similarly, for moment l, the neu-
tralized condition is described by order-0, order-1, . . . , and
order-l tensors. Condition (5c) means that any particle (ex-
cept i) not belonging to M(l)

i , but inside the cutoff sphere, is
located close to the cutoff surface. In other words, the neu-
trality should be disrupted near the surface. For simplicity, we
often call x ∈ � a lth zero-multipole state or the ZM state.

Several remarks are addressed. As discussed in Ref. 58,
exactly speaking, the phase space � ≡ �l should not simply
be the bare phase space �b ≡ {x ∈ RdN | xi �= xj for i �= j
(∀i, j ∈ N )}, but a subset of all x ∈ �b having M(l)

i ⊂ Ni

such that condition (5) holds for any i ∈ N , instead of as-
suming that every x ∈ �b has such M(l)

i for all i. Although
M(l)

i is not necessarily fixed uniquely, the choice does not af-
fect the results, as shown below. Note that M(l)

i depends on
x, viz., we are considering M(l)

i ≡ M(l)
i (x). For simply con-

ducting an extensive application, it would be better to weaken
the conditions by replacing the equalities with near equalities
in the conditions (5b).

Now, in the first term of Eq. (2b), we use the currently
introduced strategy, viz., the replacement∑

j∈Ni

qjV (rij ) →
∑

j∈M(l)
i

qjV (rij ). (6)

Namely, the only contributions that should be counted are
those from the ZM subset for every i. In other words, we as-
sume the approximation∑

i∈N

∑
j∈Ni

qiqjV (rij ) ≈
∑
i∈N

∑
j∈M(l)

i

qiqjV (rij ), (7)

where the sum with respect to M(l)
i is called a zero-lth-

(multi)pole summation, or, in short, zero-multipole (ZM) sum-
mation [note that Eq. (7), which adopts the sum with respect
to i, is a weaker condition than the replacement, Eq. (6), which
concerns an individual i.] Hence, from Eqs. (2), (4), (5a), and
(7), we obtain

E(x) � 1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqjV (rij ) − Ê(x) − α√
π

∑
i∈N

q2
i , (8)

where

Ê(x) ≡ Ê(l)(x) ≡ 1

2

∑
i∈N

∑
j∈J (l)

i

qiqjV (rij ), (9)

with J (l)
i ≡ {j ∈ Ni − M(l)

i |rij < rc}.
Here, Ê(x) is the excess energy, which should be re-

moved from the ordinary cutoff truncation sum
∑

j∈Ni ,rij <rc

for every i; and in this sense we call J (l)
i an ex-

cess subset, which generates non-zero multipoles inside
a given cutoff sphere. From the above viewpoint, in-
creasing the number of conditions, as in Eq. (5b), viz.,
increasing l, enables us to enhance the expression of
the Lth ZM state x in a given system, as long as
l ≤ L. This means that the expression of M(l)

i , and thus that
of the excessive subset J (l)

i , are improved, and so the exces-
sive energy becomes accurate. Thus, we expect that the energy

value will become more accurate as l (≤L) increases. In fact,
Ê(x) was approximated in the accuracy of o(h0) in the case
of the monopole (l = 0) and of o(h1) in the case of the dipole
(l = 1),58 where h is the displacement vector (see below for
details). We keep in mind that the most appropriate moment l
should exist, depending on the system, except for unphysical
or very high energy conditions. In fact, in our previous stud-
ies, for a sufficiently equilibrated, disordered system, or even
an ordered crystal system, we found that l = 1 describes the
states better than l = 0. Thus, a system that prefers a higher
moment description should exist.

Along with the conditions (5), as well as in the dipole
case, we employ the consistency condition:

j ∈ J (l)
i ⇔ i ∈ J (l)

j for all i, j (i �= j ) ∈ N . (10)

This is required in order to subtract each excess interaction
consistently; if we decide to remove the interaction with j for
i, viz., j ∈ J (l)

i , then we should also remove the interaction
with i for j, viz., i ∈ J (l)

j .

D. Performing the scheme

In order to conduct effective applications, we should con-
struct an easily computable expression for estimating the ex-
cess energy, Ê(x), which is conceptually defined on the ex-
cess subset J (l)

i . To accomplish this, we approximate Ê(x) by
a pairwise summation formula, by using conditions (5b) and
(5c). Then, we can use a pairwise formula for both the sec-
ond term on the right-hand side of Eq. (8) and the first term
1
2

∑
i∈N

∑
j∈Ri

qiqjV (rij ), where we often denote

Ri ≡ Ri(x) ≡ {
j ∈ Ni |rij < rc

}
,

Ri ≡ Ri(x) ≡ {
j ∈ N |rij < rc

}
to simply represent the summations.

We adopt two strategies, which can be summarized as
follows:

I. Construct a certain polynomial to approximate Ê with
respect to J (l)

i .
II. Represent the polynomial on Ri .

1. Strategy (I)

a. Error description. The approximation of Ê is based
on the fact that, from the (analytical) condition (5c), J (l)

i is
small in the sense that particles belonging in J (l)

i are con-
tained in a small area. Its smallness can be captured by the
displacement from the position of the individual particle in
J (l)

i to the cutoff surface. As in Ref. 58, a displacement
vector is introduced for any x ∈ �,

h
(i)
0 ≡ x − x(i) ∈ RdN , (11)

where

x(i) ≡ (
x

(i)
1 , . . . , x

(i)
N

)
, (12)

x
(i)
j ≡

{
xi + rc

xji

rji
if j ∈ J (l)

i

xj otherwise

}
(13)
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for each i ∈ N . Namely, x
(i)
j for j ∈ J (l)

i is the shifted po-
sition of xj obtained by expanding it along vector xji to the
cutoff surface; and for j /∈ J (l)

i , we place x
(i)
j at the original

position, to maintain a consistent description (see Fig. 1). The
displacement vector is small,

h
(i)
0 ≡ (

h
(i)
0,1, . . . , h

(i)
0,N

) ∼ 0 ∈ RdN , (14)

by virtue of

∥∥h(i)
0,j

∥∥ =
{

rc − rij if j ∈ J (l)
i

0 otherwise

}
� 0. (15)

Second, we suppose a motion (or perturbation) of the dis-
placement vector, in order to specifically investigate the in-
fluence of the smallness of J (l)

i on the degree of approxima-
tion for Ê. This motion is basically done along the vector h

(i)
0 ,

and we denote its domain by I ≡ I x
i ⊂ RdN ; according to the

motion of h(i) ∈ I x
i , the positions x(i) + h(i) vary.61

b. Approximation. For the approximation with respect to
J (l)

i , we now directly use the fact that the particles in this sub-
set are close to the cutoff surface. Considering the summation
of qjV (rij ) over J (l)

i , we approximate V by a tractable poly-
nomial near the cutoff distance. Specifically, we first approx-
imate V (r) by a series of even powers of r, in order to ensure
a certain accuracy with respect to the displacement distance
rc − r . That is, we construct an expansion satisfying

V (r) =
l∑

m=0

a(l)
m r2m + o(|r − rc|l) (r → rc). (16)

When we fix the degree of the approximation with respect to
rc − r by l, and the degree of the polynomial by 2l using the
same number l, we have a unique answer for the values of
real coefficients {a(l)

m }m=0,1,...,l . We also see that the validity of
Eq. (16) is equivalent to

DmVl(rc) = DmV (rc) for m = 0, 1, . . . , l, (17)

where

Vl(r) ≡
l∑

m=0

a(l)
m r2m. (18)

The details are described in Appendix A, and the results of
the coefficients for several ls are shown in Table I. The rea-
son why we used only the even powers will be discussed in
Sec. II D 2.

On the basis of these formulations, for each i ∈ N , we
see that the contribution of atom i to the excess energy,

Êi(y) ≡ Ê
(l)
i (y) ≡

∑
j∈J (l)

i

qiqjV (‖yij‖), (19)

for any y ∈ � can be approximated by

Ĕi(y) ≡ Ĕ
(l)
i (y) ≡

∑
j∈J (l)

i

qiqjVl(‖yij‖) (20)

in the following sense: for any fixed x ∈ � and i ∈ N ,

(Êi − Ĕi)(x
(i) + h(i)) = o(‖h(i)‖l) (I x

i � h(i) → 0). (21)

This can be proved using Eq. (16), as discussed in detailed in
Appendix B.

Hence, for the excess energy [Eq. (9)], we see

Ê = Ĕ + � (or Ê(l) = Ĕ(l) + �(l)), (22)

where

Ĕ = 1

2

∑
i∈N

Ĕi (23)

and

� ≡
∑
i∈N

ui (24)

with

ui(x
(i) + h(i)) = o(‖h(i)‖l) (I x

i � h(i) → 0) (25)

for any x ∈ � and i ∈ N . Since � is negligible, we have

Ê � Ĕ. (26)

In fact, for every x ∈ � and i ∈ N , from x = x(i) + h
(i)
0 we

have ui(x) = ui(x(i) + h
(i)
0 ), which is � 0, by virtue of the be-

havior described in Eq. (25) and the small size of the displace-
ment vector h

(i)
0 ∈ I x

i [Eq. (14)]. Note that better accuracy of
the excess energy value in the ZM state can be attained with
a larger l.

2. Strategy (II)

The remaining task is to represent Eq. (20) on Ri ,
by converting the sum into a usual pairwise cutoff form.
By intensive use of the neutrality condition, Eq. (5b), as
well as the consistency condition (10), we can evaluate the
sum

∑
i∈N

∑
j∈J (l)

i
qiqj r

2m
ij in a simple manner. Specifically,

TABLE I. Coefficients in Eq. (16) [the solution of Eq. (17)]. Here, bn ≡ DnV (rc) is the nth derivative of V at rc (n = 0, 1, . . . , l).

l 0 1 2 3 4

a
(l)
0 b0 b0 − 1

2 b1rc
1
8 b2r

2
c − 5

8 b1rc + b0 − 1
48 b3r

3
c + 3

16 b2r
2
c − 11

16 b1rc + b0
1

384 b4r
4
c − 7

192 b3r
3
c + 29

128 b2r
2
c − 93

128 b1rc + b0

a
(l)
1

1
2

b1
rc

3
4

b1
rc

− 1
4 b2

15
16

b1
rc

− 7
16 b2 + 1

16 b3rc
35
32

b1
rc

− 19
32 b2 − 1

96 b4r
2
c + 1

8 b3rc

a
(l)
2

1
8

b2
r2
c

− 1
8

b1
r3
c

5
16

b2
r2
c

− 5
16

b1
r3
c

− 1
16

b3
rc

1
64 b4 − 35

64
b1
r3
c

+ 35
64

b2
r2
c

− 5
32

b3
rc

a
(l)
3

1
16

b1
r5
c

− 1
16

b2
r4
c

+ 1
48

b3
r3
c

7
32

b1
r5
c

− 7
32

b2
r4
c

+ 1
12

b3
r3
c

− 1
96

b4
r2
c

a
(l)
4

5
128

b2
r6
c

− 5
128

b1
r7
c

− 1
64

b3
r5
c

+ 1
384

b4
r4
c
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we show ∑
i∈N

∑
j∈J (l)

i

qiqj r
2m
ij (27a)

=
∑
i∈N

∑
j∈Ri

qiqj r
2m
ij . (27b)

Aside from the details of the proof of Eq. (27), which is
completed in Appendix C, here we note that the validity
of this equivalence is due to the fact that the even power
of rij enables the purely algebraic expansion of rn

ij = [‖xi‖2

+ ‖xj‖2 − 2(xi |xj )]n/2. In contrast, an odd power of rij pre-
vents such an expansion, and so does the inclusion of an odd
power in the polynomial, Eq. (18). Namely, although we can
define any type of expansion in Eq. (16) in principle, we find
that a polynomial with only even powers has a high affinity
with the algebraic condition, Eq. (5b).

Now, we have an approximation with a specifically con-
venient form, viz.; the approximate excess energy, Eq. (23),
becomes

Ĕ(x) = 1

2

∑
i∈N

∑
j∈J (l)

i

qiqjVl(rij ) (28a)

= 1

2

l∑
m=0

a(l)
m

∑
i∈N

∑
j∈J (l)

i

qiqj r
2m
ij (28b)

= 1

2

l∑
m=0

a(l)
m

∑
i∈N

∑
j∈Ri

qiqj r
2m
ij (28c)

=1

2

∑
i∈N

∑
j∈Ri

l∑
m=0

qiqja
(l)
m r2m

ij

+ 1

2

∑
i∈N

q2
i a

(l)
0 . (28d)

In Eq. (28d), we used Ri , instead of Ri , and the fact that∑l
m=0 a(l)

m r2m
ij = a

(l)
0 for i = j.

3. Summary of formula

Therefore, from Eqs. (22) and (28), we obtain

Ê = Ě + κ + �. (29)

Here,

Ě(x) ≡ 1

2

∑
i∈N

∑
j∈Ri

l∑
m=0

qiqja
(l)
m r2m

ij (30a)

= 1

2

∑
i∈N

∑
j∈Ri

qiqjVl(rij ) (30b)

adopts a pairwise expression,

κ ≡ κ (l) ≡ 1

2
a

(l)
0

∑
i∈N

q2
i (31)

forms a constant, and � is the negligible part, as demon-
strated. Combining Eqs. (29)–(31) with Eq. (8), we conclude

that an approximation to the total energy, for x ∈ �, is given
by the ZM energy, viz.,

E(x) � E
(l)
ZM(x) (32)

with

E
(l)
ZM(x) ≡1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqj

[
V (rij ) −

l∑
m=0

a(l)
m r2m

ij

]

−
(

a
(l)
0

2
+ α√

π

)∑
i∈N

q2
i . (33)

The coefficients {a(l)
m }m=0,1,...,l (Table I) are defined by rc and

higher derivatives of V at rc. They are thus completely deter-
mined by rc and α, and can be evaluated in advance of the
simulations. If we use α = 0 (no damping case), then Eq. (33)
reduces to Eq. (1), with coefficients with different values from
those in the α > 0 case.

The force acting on each atom i is thus consistently
derived, as

F
(l)
i (x) ≡ −∇iE

(l)
ZM(x) (34a)

=
∑

j ∈ Ni

rij < rc

qiqj e
(l)(rij )

xij

rij

∈ Rd , (34b)

for any x ∈ � and for l ≥ 1, where

e(l)(r) ≡ F (r) +
l∑

m=1

2ma(l)
m r2m−1 (35)

with

F (r) ≡ −DV (r) = erfc(αr)

r2
+ 2α√

π

exp(−α2r2)

r
. (36)

III. RESULTS AND DISCUSSION

A. Energy functional form

Note that the ZM energy E
(l)
ZM(x) can also be represented

in a simple and “unified” form14 as

E
(l)
ZM(x) =1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqj

[
u(l)(rij ) − u(l)(rc)

]

− 1

2

[
u(l)(rc) + 2α√

π

]∑
i∈N

q2
i , (37)

employing the function

u(l)(r) ≡
⎧⎨
⎩V (r) −

l∑
m=1

a(l)
m r2m if l ≥ 1

V (r) if l = 0

⎫⎬
⎭ , (38)

in which the polynomial in Eq. (38) omits the m = 0 term in
Eqs. (18) and (33). Equation (37) can be obtained using the
fact that V (rc) = Vl(rc), and so a

(l)
0 = u(l)(rc); see Eq. (17).

Furthermore, this pair potential function in Eq. (37),

U (l) ≡ u(l) − u(l)(rc) = V − Vl, (39)
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FIG. 2. Pair potential functions in the ZM method with moment l = 0, 1,
2, 3, 4, from the top to bottom, respectively. A normalized unit, using a fun-
damental length, is applied for the cutoff distance, rc = 2 [Length], and the
damping parameter, α = 1 [Length−1].

dampens to zero at r = rc smoothly with increase in the
moment l, as seen

DmU (l)(rc) = DmV (rc) − DmVl(rc) (40a)

= 0 for m = 0, . . . , l. (40b)

Namely, the function

(0,∞) � r �→
{
U (l)(r) for r < rc

0 for r ≥ rc

}
(41)

has a smoothness of class Cl (l ≥ 0). In particular, the smooth-
ness for m = 0, 1 ≤ l leads to the consistent force function
given in Eq. (34) [note that the l = 0 case, i.e., the ZC case,
is exceptional regarding the force, since Eq. (41) only gives
the continuity56]. Figure 2 shows the curve of the pair poten-
tial U (l), indicating the damping with increasing values of the
moment l.

B. Error analysis

The excess energy approximation is more accurate as
l becomes larger in the Lth ZM state with l ≤ L. The ap-
proximation for l = 0 is represented as, for any x ∈ �

and i ∈ N ,(
Ê

(0)
i − Ĕ

(0)
i

)
(x(i) + h(i)) = o(1) (I x

i � h(i) → 0), (42)

and that for l = 1 is(
Ê

(1)
i − Ĕ

(1)
i

)
(x(i) + h(i)) = o(‖h(i)‖) (I x

i � h(i) → 0). (43)

As described in Sec. III C, the ZM method with l = 0 is equal
to the ZC scheme, and that with l = 1 is equal to the ZD
scheme. In fact, these errors are shown in Ref. 58 as those
of the ZC and ZD schemes, respectively. By the currently de-
rived ZM scheme, for l ≥ 2, we obtain a higher accuracy,(

Ê
(l)
i − Ĕ

(l)
i

)
(x(i) + h(i)) = o(‖h(i)‖l) (I x

i � h(i) → 0). (44)

In contrast, the above approximating features in the ZC
and ZD schemes are also helpful to explain the degree of an-
other approximation in the ZM scheme, i.e., Eq. (7), which
concerns the replacement strategy. That is, regarding the ZM

state x ∈ � = �l for l > 1, we obtain the following relations:

1

2

∑
i∈N

∑
j∈Ni

qiqjV (rij ) (45)

� 1

2

∑
i∈N

∑
j ∈ Ni ,

rij < rc

qiqj [u(m)(rij ) − u(m)(rc)]

−u(m)(rc)

2

∑
i∈N

q2
i (m = 0 or 1) (46)

� 1

2

∑
i∈N

∑
j∈M(l)

i

qiqjV (rij ). (47)

The near equality in Eq. (46) is indicated by the fact that the
ZC or ZD energy works well for x ∈ �0 or x ∈ �1, respectively,
as shown in many works, such as those discussed in Sec. I.
Although these results were obtained by adding the approxi-
mation represented by Eq. (4), this approximation is common
for all l. In addition, although these results have been justified
regarding the states x ∈ �0 or �1, we note that this near equal-
ity is passed on to x ∈ �l, since �0 ⊃ �1 ⊃ ··· ⊃ �l holds. The
next near equality in Eq. (47) is due to the fact that we can
restrict condition (5b) to only m = 0 or m = 1 even if l > 1,
thus obtaining the ZC or ZD scheme, respectively. Therefore,
the above relation is one of the quantitative justifications of
Eq. (7) for l > 1. The justifications for l ≤ 1 have been dis-
cussed previously.56, 58

To reiterate, the ZM method provides the uniqueness of
the coefficients of the polynomial used in it. Namely, if we
fix the value of the moment l, which is also the degree of the
accuracy of the excess energy and half of the degree of the
polynomial with even powers for approximating the potential
function V on the excess subset, then the set of the coefficients
of the polynomial, viz., the polynomial itself, is uniquely de-
termined. In this sense, for example, when we fix l = 1, the
functional form used in the ZD method [see Eq. (49) below]
is derived uniquely. This fact was not clarified in Ref. 58, and
is revealed here for the first time.

C. Relationship with other methods

For l = 0 in the current method, from the definition of
u(0) [Eq. (38)], we see

E
(0)
ZM(x) =1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqj [V (rij ) − V (rc)]

− 1

2

[
V (rc) + 2α√

π

]∑
i∈N

q2
i . (48)

Namely, the ZM energy E
(0)
ZM(x) is the energy by Wolf

et al.33 In the case of l = 1, as seen from Table I, we have
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u(1)(r) = V (r) − a
(1)
1 r2 = V (r) − DV (rc)

2rc
r2 ≡ uZD(r), and

E
(1)
ZM(x) =1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqj

[
uZD(rij ) − uZD(rc)

]

− 1

2

[
uZD(rc) + 2α√

π

]∑
i∈N

q2
i (49)

gives the ZD energy.58 Thus, the ZM method is a generaliza-
tion of the Wolf and ZD methods, which are included as spe-
cial cases of the ZM method with l = 0 and 1, respectively.

Two other schemes regarding l = 0 are discussed. First,
to consistently conduct the MD simulation [by recovering suf-
ficient smoothness of the pair function (Sec. III A)], another
type of ZC scheme, the force-switching Wolf method,56 was
derived and takes the form of

EFSW(x) ≡1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqj [V̂ (rij ) − V̂ (rc)]

− 1

2

[
V̂ (rc) + 2α√

π

]∑
i∈N

q2
i , (50)

with

V̂ (r) ≡
⎧⎨
⎩

V (r) for 0 < r < r1

V ∗(r) + V (r1) − V ∗(r1) for r1 ≤ r ≤ rc

V (r1) − V ∗(r1) for rc < r < ∞
.

(51)
Here, V ∗ is a switching function with V ∗(rc) = 0 and r1 is the
switching length, for which the limit r1 → rc gives the Wolf
method or the ZM method with l = 0. Second, the ZM method
with l = 0 and α = 0, viz., the non-damped Wolf method,
can be considered to be the same as the scheme proposed by
Harrison62 when calculating the Madelung energy for a sim-
ple structure. This can be seen by noting that the energy with
respect to atom i in Eq. (48) with α = 0 is

E
(0)
ZM,i(x) =

∑
j ∈ Ni

rij < rc

qiqj

[
1/rij − 1/rc

]− (1/rc)q2
i (52a)

= qi

⎡
⎢⎢⎢⎣
∑

j ∈ Ni

rij < rc

qj/rij − Qi/rc

⎤
⎥⎥⎥⎦ , (52b)

where Qi ≡ ∑
j∈N ,rij <rc

qj is the net charge in the
cutoff sphere of radius rc,14, 33 and yields the correction.62

Furthermore, Eq. (37) adopts a unified form utilized in
non-Ewald methods.14 Among them, the averaging notion is
useful, as shown by the pre-averaging (PA) procedure intro-
duced by Yakub and Ronchi.21 The energy formula is derived
by averaging the quantities over the spherical angular coor-
dinates in the expansion of the Ewald method. The energy

formula can be written as

EPA(x) = 1

2

∑
i∈N

∑
j ∈ Ni

rij < rm

qiqj [VPA(rij ) − VPA(rm)]

−1

2
VPA(rm)

∑
i∈N

q2
i , (53)

with

VPA(r) ≡ 1

r

{
1 + 1

2

(
r

rm

)3
}

, (54)

and rm being the radius of the volume-equivalent sphere of
the MD cubic cell with edge L, defined by (4/3)πr3

m = L3.
The energy, Eq. (53), is also obtained if we take the limits of
rc → rm and α → 0 in the ZD method, viz., the ZM method
with l = 1, noting that the 2α/

√
π term eventually vanishes

with α = 0. A similar relationship is also found in the RF
method. Its energy formula63, 64 in a slightly modified form14

can be represented by

EMRF(x) = 1

2

∑
i∈N

∑
j ∈ Ni

rij < rc

qiqj [VRF(rij ) − VRF(rc)]

−1

2
VRF(rc)

∑
i∈N

q2
i , (55)

where

VRF(r) ≡ 1

r

{
1 + εRF − 1

2εRF + 1

(
r

rc

)3
}

. (56)

The limit to infinity of the dielectric constant of the environ-
ment outside the cutoff sphere, i.e., εRF → ∞, provides the
ZD summation energy (49) with α = 0.

These relationships among the individual methods are
summarized in Fig. 3, and suggest that Eq. (37) is in fact
a “unified” form. These last two methods seem to be irrele-
vant to the charge neutralization idea, at least in their original
derivations. Deep insight would reveal the physical basis of
these nontrivial relationships.14, 58, 65

ZD

Wolf

MRF

PANo-damped ZD

FSw-Wolf

1 cr r→

cr → ∞

RFε → ∞

0α →

Angle average

Ewald

c mr r→

ZM 1l →

0l →

Non-Ewald

Harrison

0α →

FIG. 3. Schematic relationships among the methods for calculating elec-
trostatic interactions. The shaded region shows the intimately related non-
Ewald methods, including the zero-multipole (ZM) method, zero-dipole (ZD)
method, Wolf method, Harrison method, force-switching Wolf (FSw-Wolf)
method, and pre-averaging (PA) method. No-damped ZD and MRF indicate
the ZD method with α = 0 and the modified reaction field method represented
by Eq. (55), respectively. The round arrow shows the commutativity among
the three relationships.
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Along the lines of the neutralization, Abarenkov66 pro-
posed a different idea, with the help of the regrouping
method.67 It is the interesting notion of the lattice potential
unit cell, which is a generalized unit cell, and the atomic en-
ergy Ei(x) is efficiently evaluated, under the PBC. This new
unit cell contains additional particles located at certain lat-
tice points. The charge values of these particles are sought to
neutralize the multipole moments of the cell up to an arbi-
trary higher order, and their Ewald potential contributions are
totally zero. Although we do not currently know the direct re-
lationship between this method and the ZM method, reviving
the view of the image-charges,58 which are placed on the cut-
off sphere, in the latter method might be useful to consider the
relationship.

D. Numerical considerations

To illustrate the numerical efficiency of the current
method, we will first examine its application to an NaCl
crystal system, which is simple and prototypic. An fcc cell
with the normalized unit-cell edge length and the normal-
ized charge values was used under the 3-dimensional periodic
boundary conditions, and Madelung constant was estimated.
The evaluation of Madelung constants is a classical solid-state
problem, and a simple estimation is useful for solving physi-
cal problems,62 including studies of charge transfer in metallic
alloys68 and of a valence-skipping compound.69 On the other
hand, its rigorous estimation is related to certain mathemati-
cal objects such as zeta functions,70 which are relevant to the
pursuit of the mathematical definition of the constant, owing
to the conditionally convergent feature.

Here, the energy corresponding to particle i was consid-
ered to be given, from Eq. (37), as

E
(l)
ZM,i(x) ≡

∑
j ∈ Ni

rij < rc

qiqj

[
u(l)(rij ) − u(l)(rc)

]

−
[
u(l)(rc) + 2α√

π

]
q2

i , (57)

and Madelung constant was estimated from M (l) ≡ −Rm ·
E

(l)
ZM,i(xC), with the nearest-neighbor ionic distance Rm

= 1/2, the crystal state xC, and the use of i = 1. In
this system, M(l) is irrelevant to the choice of i. The er-
ror of the constant obtained by the ZM method with mo-
ment l was estimated by (M (l) − MTheo)/MTheo, where MTheo

≡ 1.74756459463318 was used.70

The results are shown in Fig. 4. The errors show con-
vergent behaviors with increasing values of the cutoff length
rc. With increases in the moment l, which facilitates the
higher order multipole-moment neutralization, the accuracy
becomes higher on average, and faster convergent behavior is
observed. In addition, the error variations with increasing rc

become smoother. For example, the error was −0.0014 at only
rc = 1.5 for l = 4. The current method includes the damping
parameter α (with the physical dimension of the inverse of
length), and the value used in Fig. 4 was α = 1.

A more suitable value of α provided better efficiency.
Figure 5 shows the absolute value of the error for the scheme
with l = 4, using several values of α. First of all, an accuracy

1.0 1.5 2.0 2.5 3.0
�0.06

�0.04
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FIG. 4. The error of Madelung constant of the NaCl crystal with respect
to the cutoff length rc. A normalized length was used such that the nearest-
neighbor ionic distance was 1/2 (unit-cell edge length was set to 1). Madelung
constant was estimated by the ZM method with α = 1, using individual values
of the moment, l = 0, 1, 2, 3, 4.

on the order of 10−6 can be attained at rc ∼ 2. For example,
the error was 7.8 × 10−6 for α = 1.5 and 1.3 × 10−6 for
α = 1.3, both at rc = 2. By increasing the cutoff distance to
rc ∼ 5, we achieved an accuracy of about 13 decimal places;
e.g., the error was −7.5 × 10−13 for rc = 5 and α = 1.

Since it is known that a simple cubic (not spherical) trun-
cation using the minimum image convention (MIC) may pro-
duce results as good as the Ewald sums for low electrostatic
coupling71, Madelung constant was also calculated by the cu-
bic MIC, as shown in Fig. 5. The errors by the MIC calcula-
tion were not bad, e.g., the error was −3.0 × 10−4 at rc = 3,
where rc refers to the number of unit cells along one axis
(unit-cell edge length was 1). However, the convergence was
slower, as compared with the results of the ZM method. The
error of the cubic MIC at rc ∼ 6 can be attained by the ZM
method at rc ∼ 2.

Instead of the normalized length we used, when we con-
sider a physical unit of length, such as a lattice constant of R
∼ 5.6 Å, the normalized range 2 � rc � 3 corresponds to a
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FIG. 5. The absolute value of the error (log scale) of Madelung constant of
the NaCl crystal, obtained by the ZM method with moment l = 4. Several
values of the damping parameter α [Length−1] were used. The cutoff length
rc was varied from 1.5 to 6, and the nearest-neighbor ionic distance was set to
1/2. For comparison, the results obtained by the cubic MIC method is shown
by the step function, which is defined as �MIC(rc) = �n for n ≤ rc < n + 1
(n = 1, . . . , 6), where �n is the absolute value of the error when the MIC
utilizes n unit-cells along one axis.
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FIG. 6. The absolute value of the error (log scale) of Madelung constant
of the NaCl crystal, obtained by the ZM method with moment l = 4. The
dependence on α [Length−1] is explicitly shown for the indicated fixed values
of the cutoff length rc (nearest-neighbor ionic distance was 1/2).

physical range 11 Å� Rrc � 16 Å, which is a practical cut-
off distance region in molecular simulations. In this range, the
optimum α value of the ZM method was near 1.3, as seen in
Fig. 6, where the absolute value of the error was plotted
against α, with distinct rc values. In fact, the error was 9.0
× 10−8 for α = 1.3 and rc = 3. This value, α = 1.3, corre-
sponding to 1.3/R ∼ 0.23 Å−1 in a real physical unit, is nearly
in accord with the optimum values shown in previous studies,
such as those for the ZC34 and ZD58 schemes.

If impressively high accuracy is not required, then fine
optimization of α is not necessarily needed. In fact, as shown
in Fig. 6, the dependence on α is not impractical, and the cusp
simply indicates the reverse of the signature of the error. If we
satisfy the accuracy within the order of 10−5 at rc � 3, then
0 ≤ α � 1.5 gives the error within it.

The optimization of α would be needed when we require
a faster result (viz., the same accuracy with a shorter rc) or a
smaller error. As shown in Figs. 5 and 6, a faster result can
be obtained by setting a larger α in a suitable range. This is
the advantage of a larger α. However, the disadvantage of a
large α is the error saturation; e.g., the error for α = 1.5 was
not appreciably reduced regardless of increasing rc over 2.5
(Fig. 5). This is the consequence of the error represented in
Eq. (4). In contrast, regarding a smaller α, we face a slower
result but can retard the saturation. Figure 6 also suggests
that a smaller α is suited to a larger rc. The limit case is
α = 0 (see also the discussion in Ref. 72), which should be-
have nicely for longer rc, and this conforms to the idea pro-
posed by Harrison,62 utilizing no damping.

As our second example, Madelung constant of another
prototypic crystal system, a CsCl crystal with a simple cu-
bic structure, was examined in a similar manner to the NaCl
case. The constants73 used were Rm = √

3/2 and MTheo

≡ 1.76267477307099. As shown in Fig. 7, sufficient accu-
racies were attained by the current ZM method, while the re-
sults of the cubic MIC were poor. Comparing with CsCl and
NaCl results obtained with the ZM method, first, smaller val-
ues of α were preferred in the CsCl case. Second, a longer
cutoff length was required in the CsCl case, as compared with
the NaCl case, in order to ensure the same accuracy. How-
ever, this is not necessarily a fair comparison if we consider
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FIG. 7. The absolute value of the error (log scale) of Madelung constant of
the CsCl crystal, obtained by the ZM method with moment l = 4. Several
values of the damping parameter α [Length−1] were used. The cutoff length
rc was varied from 2 to 10, and the unit-cell edge length was set to 1, viz.,
the nearest-neighbor ionic distance was

√
3/2. For comparison, the results

obtained by the cubic MIC method is shown by the step function, which is
defined as �MIC(rc) = �n for n ≤ rc < n + 1 (n = 2, . . . , 10), where �n is
the absolute value of the error when the MIC utilizes n unit-cells along one
axis (e.g., �2 ∼ 0.74).

the actual computational cost. Based on the fact that the cost is
proportional to the number of particles in the unit cell and that
the number in the CsCl cell is one-fourth of that in the NaCl
cell, the error obtained at rc distance for the NaCl should be
compared with the error at 41/3rc ∼ 1.6rc for the CsCl. In this
sense, the accuracies with the same computational cost were
similar between the NaCl and CsCl cases.

IV. CONCLUDING REMARKS

A novel idea, zero-multipole summation, was proposed
for evaluating the electrostatic energy of a point charge par-
ticle system in molecular simulation. By extending the ZD
scheme, any higher order multipole is taken into account to
characterize the neutralized subset of particles. This summa-
tion prevents the nonzero-multipole states that may be arti-
ficially generated by a simple cutoff truncation, which often
causes large energetic noise. Since the ZM method with the
multiple moment l = 1 is equal to the ZD method, the former
includes the latter. Furthermore, the energy form of the ZM
method with l = 0 is that of the ZC scheme of Wolf et al.
An error analysis of these methods was performed and the
intimate relationships among other non-Ewald methods were
discussed. Although the derivation of the ZM method took
several logical steps with mathematical proofs, the resulting
energy functional form is represented in a simple pairwise
fashion, allowing an easy implementation. It was clarified that
the pairwise function form is unique, as long as the original
pair function V (r) is approximated by an even-power polyno-
mial in the excess subset and the degree of the polynomial is
equal to twice the degree of the excess-energy approximation.

In this work, the Madelung energy, or the energy for
the one-snapshot crystal state, was estimated by the cur-
rent method, and the efficiency was confirmed. The sim-
plicity enables its estimation with a laptop computer. It is
important to investigate the efficiencies for more compli-
cated states, for which some numerical sequence accelerative
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transformations74 may be helpful. Another important step is
to investigate the total efficiency for many snapshots of the
states, which can be performed via an MD or MC calculation.
Nonetheless, the computational timing for such calculations
should be comparable to that of the ZD scheme previously
developed, since only an even-power polynomial with respect
to the atomic distance is added to the original pair function.
The parallel computational timing of the ZD scheme was pre-
viously discussed,59, 60 and good scalability is expected for
large systems. This is a consequence of the simple pairwise
energy function formula. In contrast, the application to a non-
periodic, disordered, or heterogeneous system is needed to
understand the relationship between the material properties
and the zero-multipole principle. This is a critical task to ob-
tain definitive knowledge about a moment l intrinsic to an ar-
bitrary given system or a moment l suitable to the system in
the current method. This is also important to reveal a spe-
cific physical condition that is essentially relevant to the zero-
multipole condition. In addition to the multipole moment l,
the method includes two parameters, the cutoff length and
the damping parameter. Although the relationships among the
non-Ewald methods were discussed in terms of the character-
istics of these parameters, more numerical investigations re-
garding the dependence of the efficiency on these parameters
will be needed to facilitate the simulations. These important
issues are now being studied, and the results will be published
elsewhere.

Due to their very simplified features, CB methods are
promising for long-term simulations of large systems, using
high performance computing schemes. Among them, some
approaches may be heuristic but effective, and other ap-
proaches may be theoretical but insufficient. Irrespective of
the previously obtained presumptions, limitations, and deriva-
tions, reconsidering these approaches with novel views, anal-
yses, and applications would be valuable for the further de-
velopment of a mature method.
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APPENDIX A: EXISTENCE AND UNIQUENESS
OF THE COEFFICIENTS

Fix any nonnegative integer l, and let V be a function
of class Cl [V given by Eq. (3) applies for any l]. The Tay-
lor expansion of the polynomial Vl(r) ≡ ∑l

m=0 a(l)
m r2m around

r = rc up to the lth order yields

Vl(r) = Ṽl(r) + o((r − rc)l) (r → rc)
with

Ṽl(r) ≡
l∑

m=0

DmVl(rc)

m!
(r − rc)m.

If this expansion coincides with the similar expansion of V ,
i.e.,

Ṽl(r) =
l∑

m=0

DmV (rc)

m!
(r − rc)m for all r > 0, (A1)

then we have the desired results,

V (r) = Vl(r) + o(|r − rc|l) (0 < r → rc), (A2)

since

V (r) = Ṽl(r) + o((r − rc)l)

= Vl(r) + o((r − rc)l) (r → rc).

The relationship in Eq. (A1) is ensured by condition (17), i.e.,

DmVl(rc) = DmV (rc) for m = 0, . . . , l, (A3)

which is equivalent to a linear equation with respect to
{a(l)

m }m=0,1,...,l :⎡
⎢⎢⎢⎢⎢⎢⎣

V (rc)

D1V (rc)

D2V (rc)
...

DlV (rc)

⎤
⎥⎥⎥⎥⎥⎥⎦

= A[l](rc)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a
(l)
0

a
(l)
1

a
(l)
2
...

a
(l)
l

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A4)

where DnV (rc) (n = 0, . . . , l) are given values and A(l)(rc) is
an (l + 1, l + 1)-matrix defined by

A(l)(rc)
0
	

1
	

2
	 · · · n

	 · · · l
	

≡

0)
1)
2)
...

m)

...
l)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 r2
c r4

c · · · r2n
c · · · r2l

c
0 2rc 4r3

c · · · 2nr2n−1
c · · · 2lr2l−1

c
0 2 4 · 3r2

c · · · 2n(2n − 1)r2n−2
c · · · 2l(2l − 1)r2l−2

c
...

...
...

...
...

...
· · · 2n(2n − 1)· · · (2n − m + 1)r2n−m

c · · ·
...

...
...

...
...

0 0 0 · · · 2n(2n − 1)· · · (2n − l + 1)r2n−l
c · · · 2l(2l − 1)· · · (l + 1)rl

c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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For any l ∈ N0 and for any rc > 0, we can see

det A(l)(rc) = det A(l)(1)r
l(l+1)

2
c

= 2l!! · 2(l − 1)!! · · · · · 2!! · 0!!r
l(l+1)

2
c �= 0,

by noticing that elementary transformations for A(l)(1) yield
its determinant to be the van der Monde determinant of the
order l + 1 , det((sj )i−1) with sj ≡ 2(j − 1) for i, j = 1, . . . , l
+ 1. Thus the linear equation, Eq. (A4), is solved uniquely
with respect to {a(l)

m } for any l and rc, and we can consider
Eq. (A3) to always be valid.

Here we have proved that if Eq. (A3) holds, then Eq. (A2)
is valid. The converse also holds. Namely, if we suppose that
Eq. (A2) is valid, then the Taylor expansion of the Cl func-
tion, V − Vl , at r = rc leads to the result that its every mth
derivative vanishes at rc for 0 ≤ m ≤ l. This means Eq. (A3).
Therefore, for l ∈ N0, we have proved that A[l](rc) is invert-
ible and that Eq. (A2) holds if and only if⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(l)
0

a
(l)
1

a
(l)
2

...

a
(l)
l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A[l](rc)−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V (rc)

D1V (rc)

D2V (rc)
...

DlV (rc)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

APPENDIX B: PROOF OF EQ. (21)

Fix any given x ∈ � and i ∈ N , and denote the motion of
the displacement vector by a map

I x
i → � ⊂ RdN ,

h(i) �→ x[i] ≡ (
x

[i]
1 , . . . , x

[i]
N

)
d= x(i) + h(i) ≡ (

x
(i)
1 + h

(i)
1 , . . . , x

(i)
N + h

(i)
N

)
.

To show Eq. (21), first we see that

(Êi − Ĕi)(x
[i])

=
∑

j∈J (l)
i

qiqj (V − Vl)(r
[i]
ij ), (B1)

where

r
[i]
ij ≡ ∥∥x[i]

i − x
[i]
j

∥∥ = rc − ∥∥h(i)
j

∥∥ (j ∈ J (l)
i ).

From Eq. (16), we have

u(s) ≡ V (rc − s) − Vl(rc − s) = o(|s|l) (s → 0),

where s ∈ Jc ≡ (−∞, rc). Note ‖h(i)
j ‖ = ‖πj‖(h(i)) ∈ [0, rc)

⊂ Jc, with

πj : RNd → Rd , (a1, . . . , aN ) �→ aj ,

being a projection. Thus for j ∈ J (l)
i ,

(V − Vl)(r
[i]
ij ) (B2a)

= u(‖h(i)
j ‖) (B2b)

= o
(∥∥h(i)

j

∥∥l)
(Jc � ∥∥h(i)

j

∥∥ → 0). (B2c)

From Eqs. (B1) and (B2), considering the fact that
‖πj‖(I x

i ) ⊂ Jc and u(0) = 0 [see the condition for m = 0 in
Eq. (17)], we have

(Êi − Ĕi)(x
[i])

=
∑
j∈Ji

qiqj o
(∥∥h(i)

j

∥∥l)
(Jc � ∥∥h(i)

j

∥∥ → 0)

=
∑
j∈Ji

qiqj o(‖h(i)‖l) (I x
i � h(i) → 0)

= o(‖h(i)‖l),

where we have used the Euclidian norms on both ‖h(i)
j ‖ for

h
(i)
j ∈ Rd and ‖h(i)‖ for h(i) ∈ RdN .

APPENDIX C: PROOF OF EQ. (27)

Fix an arbitrary m ∈ {0, . . . , l}. By expanding r2m
ij , we get

∑
i∈N

∑
j∈J (l)

i

qiqj r
2m
ij (C1a)

=
∑
i∈N

∑
j∈J (l)

i

qiqj [‖xi‖2 + ‖xj‖2 − 2(xi |xj )]m (C1b)

=
m∑

n=0

n∑
k=0

∑
i∈N

∑
j∈J (l)

i

aijnk (C1c)

=
∑

(n,k)∈Gm

∑
i∈N

∑
j∈J (l)

i

aijnk +
∑

(n,k)∈Gc
m

∑
i∈N

∑
j∈J (l)

i

aijnk, (C1d)

where

aijnk ≡
(

m

nk

)
(−2)kqiqj (xi |xi)

m−n(xj |xj )n−k(xi |xj )k,

(
m

nk

)
≡ m!

(m − n)!(n − k)!k!
.

Here, to efficiently use condition (5b), we have introduced
subsets,

Gm ≡ {(n, k) | k ∈ {0, . . . , n}, n ∈ {0, . . . , m}, 2n − k ≤ m}
and

Gc
m ≡ {(n, k) | k ∈ {0, . . . , n}, n ∈ {0, . . . , m}, 2n − k > m}.

Now, to evaluate Eq. (C1d), we observe∑
j∈J (l)

i

qj (xj |xj )n−k(xi |xj )k (C2a)

=
∑

j∈J (l)
i

qj

d∑
α1=1

· · ·
d∑

αn−k=1

x2
j,α1

· · · · · x2
j,αn−k

×
d∑

β1=1

· · ·
d∑

βk=1

xi,β1 · · · · · xi,βk
xj,β1 · · · · · xj,βk

(C2b)
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=
d∑

β1=1

· · ·
d∑

βk=1

xi,β1 · · · · · xi,βk

×
d∑

α1=1

· · ·
d∑

αn−k=1

∑
j∈J (l)

i

qj x
2
j,α1

· · · · ·x2
j,αn−k

xj,β1 · · · · ·xj,βk
.

(C2c)

We can easily represent the results for even the n − k = 0 or
k = 0 case from Eq. (C2c).

Here, if (n, k) ∈ Gm (note Gm is always non-empty), then
the summation with respect to j can be performed by using the
following relationship, derived from Eqs. (5a) and (5b), for a
zero mth-moment condition:∑

j∈J (l)
i

qj xj,α1 · · · · · xj,αm

=
∑
j∈Ri

qj xj,α1 · · · · · xj,αm
, 0 ≤ m ≤ l, (C3)

for any α1, . . . , αm ∈ {1, . . . , d}. This is because the total
number of coordinate components xj, α arising in the product
in the summation

∑
j∈J (l)

i
in Eq. (C2c) is 0 ≤ 2(n − k) + k

= 2n − k ≤ m ≤ l. Thus,∑
j∈J (l)

i

qj x
2
j,α1

· · · · · x2
j,αn−k

xj,β1 · · · · · xj,βk

=
∑
j∈Ri

qj x
2
j,α1

· · · · · x2
j,αn−k

xj,β1 · · · · · xj,βk
,

and so∑
j∈J (l)

i

qj (xj |xj )n−k(xi |xj )k =
∑
j∈Ri

qj (xj |xj )n−k(xi |xj )k,

leading to∑
(n,k)∈Gm

∑
i∈N

∑
j∈J (l)

i

aijnk =
∑

(n,k)∈Gm

∑
i∈N

∑
j∈Ri

aijnk.

Unfortunately, if (n, k) ∈ Gc
m (except for m = 0), then

it happens to become 2n − k > l. However, the consistency
condition (10) allows us to proceed. In fact, first, according to
this condition, we have∑

(n,k)∈Gc
m

∑
i∈N

∑
j∈J (l)

i

aijnk =
∑

(n,k)∈Gc
m

∑
i∈N

∑
j∈J (l)

i

ajink,

where

ajink =
(

m

nk

)
(−2)kqiqj (xi |xi)

n−k(xj |xj )m−n(xi |xj )k.

Second, when we expand
∑

j∈J (l)
i

qj (xj |xj )m−n(xi |xj )k , as
done in Eq. (C2), the total number of coordinate components
in the summation

∑
j∈J (l)

i
is 0 ≤ 2(m − n) + k = 2m − (2n

− k) < m ≤ l. Thus, similar to the situation above, we obtain∑
(n,k)∈Gc

m

∑
i∈N

∑
j∈J (l)

i

aijnk =
∑

(n,k)∈Gc
m

∑
i∈N

∑
j∈Ri

ajink.

Since it is clear that
∑

i∈N
∑

j∈Ri ajink = ∑
i∈N

∑
j∈Ri aijnk ,

we get

∑
i∈N

∑
j∈J (l)

i

qiqj r
2m
ij

=
∑

(n,k)∈Gm

∑
i∈N

∑
j∈J (l)

i

aijnk +
∑

(n,k)∈Gc
m

∑
i∈N

∑
j∈J (l)

i

aijnk

=
∑

(n,k)∈Gm

∑
i∈N

∑
j∈Ri

aijnk +
∑

(n,k)∈Gc
m

∑
i∈N

∑
j∈Ri

aijnk

=
∑
i∈N

∑
j∈Ri

qiqj r
2m
ij .
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