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We propose a novel idea, zero-dipole summation, for evaluating the electrostatic energy of a classical
particle system, and have composed an algorithm for effectively utilizing the idea for molecular dy-
namics. It conceptually prevents the nonzero-charge and nonzero-dipole states artificially generated
by a simple cutoff truncation. The resulting energy formula is nevertheless represented by a sim-
ple pairwise function sum, which enables facile application to high-performance computation. By
following a heuristic approach to derive the current electrostatic energy formula, we developed an
axiomatic approach to construct the method consistently. Explorations of the theoretical details of our
method revealed the structure of the generated error, and we analyzed it by comparisons with other
methods. A numerical simulation using liquid sodium chloride confirmed that the current method
with a small damping factor yielded sufficient accuracy with a practical cutoff distance region. The
current energy function also conducts stable numerical integration in a liquid MD simulation. Our
method is an extension of the charge neutralized summation developed by Wolf et al. [J. Chem. Phys.
110, 8254 (1999)]. Furthermore, we found that the current method becomes a generalization of the
preaveraged potential method proposed by Yakub and Ronchi [J. Chem. Phys. 119, 11556 (2003)],
which is based on a viewpoint different from the neutrality. The current study presents these relation-
ships and suggests possibilities for their further applications. © 2011 American Institute of Physics.
[doi:10.1063/1.3582791]

I. INTRODUCTION

The Coulombic interaction plays an essential role in
the behaviors of materials in equilibrium or nonequilibrium
phases. For computational studies of materials in a realistic
manner, even in a classical point charge system, the appropri-
ate treatment of this interaction is thus important.1 However,
it is difficult to handle the Coulombic interaction, due to its
long-ranged nature and the existence of both positive and neg-
ative signatures for the potential function. Thus, various meth-
ods have been developed,2–4 including truncation methods,5, 6

lattice-sum methods, such as the Ewald summation,7, 8 the
reaction field method,9, 10 and the fast multipole method.11

Although each of these methods has advantageous features,
it is difficult to fulfill all of the following requirements:
(i) High accuracy and low computational cost; (ii) Freedom
from artifacts, such as those caused by the simple application
of a cutoff truncation12, 13 or the unnatural deformation of a
potential function often employed in truncation methods,14, 15

and by a periodicity assumption in the application of lattice
sum methods to inherently nonperiodic systems;16, 17 and
(iii) Ease of implementation, which enhances the availability
for use in high-performance computational architectures.

Recently, new approaches to calculate the Coulombic en-
ergy have been developed, including local molecular field
theory,18 the single sum technique,19 and Wolf’s charge-
neutralizing idea.20 Wolf proposed an effective method that is

a)Author to whom correspondence should be addressed. Electronic mail:
ifukuda@riken.jp.

compatible with the cutoff method, and full investigations21

with extensions22, 23 have been made. Mainly, ensuring the
charge neutrality in the cutoff sphere and incorporating a cer-
tain damping factor are very effective to approach the true
total energy, e.g., the Madelung energy for ion systems. Since
this method is based on a simple pairwise sum formulation, it
only requires a simple implementation and entails no massive
computational cost. In addition, this approach is formally free
from the periodicity assumption, and thus we can avoid the
relevant artifacts. Its effective features have been numerically
confirmed in various systems.21–32

The direct application of this scheme to a molecular
dynamics (MD) study, however, contains a difficulty in that
the pair potential cannot be differentiated at the cutoff length,
which causes problems, such as energy nonconservation in
N EV (microcanonical) simulations. Such problems become
emphasized as the damping parameter α is reduced, whereas
the choice of a small α value is in accordance with one of the
strategies of Wolf et al.,21 in which the contribution from the
error-function term is neglected, except for the self-term. To
overcome the problems, following the efforts including those
by Wolf et al.,21 Zahn, Schilling, and Kast,22 and Fennell
and Gezelter,23 we previously proposed33 a scheme applying
the force switching technique.34 This method, which we call
the force-switching Wolf (FSw-Wolf) method, presents a
consistently derived force function and establishes the com-
patibility between the force and potential functions, which
are sufficiently smooth to conduct a stable MD simulation.
It yields a consistent MD method endowed with a nontrivial
suitable total-energy correction. However, there is still room

0021-9606/2011/134(16)/164107/15/$30.00 © 2011 American Institute of Physics134, 164107-1
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for the improvement of the degree of approximation in
estimating the interaction. Higher accuracy with a shorter
cutoff length is not simply attained, e.g., by only a parameter
adjustment. Besides, there is no explicit appearance of the
neutralizing effect (or the mirror image charge effect on the
cutoff sphere) with respect to the force function.

Yakub and Ronchi35 have reached another type of pair-
wise potential, by taking account of the spatially uniformity
in order to avoid the artifact caused by the cubic symmetry
in the periodicity assumption. Their energy formula is based
on the Ewald summation expansion, and is obtained by aver-
aging the functions in the expansion over the spherical angu-
lar variables. This averaging corresponds to the situation of
treating an isotropic system. By applying it to a number of
physical systems, they have shown the numerical evidence
of the effectiveness in disordered systems, including a one-
component plasma and a two-component fluid.36, 37 Further-
more, their protocol (see also the recent work of Jha et al.38)
yields good results, even for nonspherical systems, such as
NaCl (fcc) (Ref. 35) and CsCl (bcc) (Ref. 36) crystal systems.
The method was also used to investigate phase transitions and
to evaluate the melting point of uranium dioxide through MD
simulations.39, 40

Such a pairwise potential function approach has recently
been reexamined, and various approaches, including the force
matching method,41, 42 isotropic periodic summation,43, 44

and the screening scheme using the Yukawa potential,45

have been intensively developed. In general, the simple
pairwise summation approach is expected to show both good
computational scalability with respect to the system size and
simple application to high-performance computation and
special purpose architectures.46

In this paper, we present an alternative method for
estimating the Coulombic interaction, by introducing a
zero-charge zero-dipole summation, which is an extension
of the zero-charge summation idea.21, 33 The current method,
the zero-dipole Wolf method, claims that the summation for
which the involved dipole moments yield zero should be
considered, in order to attain the total energy in an effective
manner. We assume that a sufficiently equilibrated system
prefers a zero dipole moment, which is realized inside any
sufficiently large sphere, and thus the excess moments must
be near the surface of the sphere. The method we propose
here provides consistency in the force, the potential function,
and the total energy, as in our previous method.33 However,
as compared with the previous method, the current method
provides a more accurate pairwise sum expression of the
excess part. In addition, the atomic force expression includes
the neutralizing effect. Another remarkable feature is that
the current scheme also results in a generalization of the
scheme of Yakub and Ronchi stated above, which is based on
a different view from the zero-dipole principle.

In Sec. II, we first discuss the physical motivation for
considering the current zero-dipole Wolf method and provide
a heuristic derivation of the energy formula. In Sec. III, we
introduce a theoretical framework to justify the formula, by
providing the notions of zero-dipole state and zero-dipole
summation, and construct a scheme for approximating the
true energy. The characteristic features of the current energy

FIG. 1. Schematic representations of states. (Left) Nonzero-charge with
nonzero-dipole state; (middle) zero-charge with nonzero-dipole state, (right)
zero-charge with zero-dipole state.

formula are investigated, and the approximation is analyzed
by decomposing it. We describe the numerical results of the
current scheme in Sec. IV, in comparison with the previously
proposed scheme. In Sec. V, we discuss the relationships to
other methods, and conclude with remarks in Sec. VI.

II. INTRODUCTION OF THE ZERO-DIPOLE
WOLF METHOD

A. Motivation

The motivation for introducing the zero-dipole (ZD) and
zero-charge (ZC) state is based on the simple observation that
a ZC and ZD state (Fig. 1, right) is physically preferable as
compared with a ZC and non-ZD state (Fig. 1, middle), and
further, as compared with a non-ZC and non-ZD state (Fig. 1,
left). If we create a summation method reflecting the ZC and
ZD state to evaluate the electrostatic energy, then the sum
captures the characteristic of such a realistic state x and in-
corporates more information about x . To understand that such
a summation must reach a good approximation to the true
energy, we consider what kind of state is taken into account in
a conventional summation employed in a cutofflike method,
and how we should modify the method. Suppose that the total
system has no dipole and no charge. Consider first the worst
situation, i.e., we take account of a simple cutoff truncation.
Then the no-dipole, no-charge feature cannot always be cap-
tured, as long as the cutoff length is finite and small. Rather,
it expressly generates an artificial non-ZC, non-ZD state in
the cutoff sphere, especially at the surface. The physically
undesirable states thus generated will yield energy values
that are either too large or too small, leading to considerable
deviations to the true total energy (e.g., large oscillation
occurs in the energy estimation while varying the cutoff
length). In other words, the pure atomic-distance-judged
truncation, which takes into account all of the contributions
from other particles inside the cutoff sphere, is not suitable
for considering a system possessing an electrostatic structure
(in contrast to a system, e.g., possessing only masses). To
avoid the undesirable states, while retaining the simplicity of
the cutoff truncation, we need an efficient method for either
suitably clipping certain interactions from all contributions
in the cutoff sphere or appropriately attaching certain interac-
tions to all contributions in the sphere. A method that is based
on the cutoff method, but it takes account of the charge neu-
trality, is better and avoids many undesirable states. However,
it would still create the (ZC but) non-ZD state in the sphere,
which may lead to an error in the energy estimation. A ZD
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method provides a manner for clipping or attaching suitable
interactions against all interactions in the cutoff sphere, in
order to properly count the interactions on a ZC and ZD state.

B. Heuristic derivation by mirror image
charges (MICs)

In a heuristic derivation of the zero-dipole method pro-
vided here, MICs are attached on the cutoff sphere to cancel
out the artificially generated charges and dipoles in the sphere.
The introduction of a MIC itself was originally proposed by
Wolf et al. In fact, they introduced a charge-neutralized sum
by introducing a MIC against each particle in the cutoff sphere
around every fixed particle; the MIC is positioned on the cut-
off surface and has the opposite charge from that of the target
particle. Note that the “derivation” here is heuristic and not
complete, but its essence, via a simple example, would pro-
vide useful inspiration for further studies.

Consider a cutoff sphere with radius rc centered about
atom i . For any atom j with charge q j in the cutoff sphere,
we introduce two MICs with values a1 and a2, in order
to cancel out the dipole generated from atom j . To do so,
e.g., the two MICs are set to be a1 = −a2 = q jri j/2rc and
are arranged in the direction of xi j on the cutoff surface,
where xi j is a vector directed from atom j to atom i with
a length of ri j ; see Fig. 2(a). In fact, the target dipole van-
ishes: q j xi j + a1(−p) + a2 p = 0, where p = rcxi j/ri j . The
force acting on atom i from atom j and from the MICs is thus

qi q j F(ri j )
xi j

ri j
+ qi a1 F(rc)

−p

rc
+ qi a2 F(rc)

p

rc
(1a)

= qi q j f (ri j )
xi j

ri j
, (1b)

where

f (r ) ≡ F(r ) − F(rc)

rc
r (2)

with F(r ) being 1/r2 in the bare Coulomb case or a cer-
tain function value, e.g., taking into account a damping
factor. By gathering all of the similar contributions from
every atom j inside the sphere, the force acting on
atom i is

∑
j(�=i),ri j <rc

qi q j f (ri j )xi j/ri j . Thus, the en-
ergy corresponding to this force is given by E0(x) ≡

p
qixi xj qj

a1

(a) (b)

a2

b1 c2

c1 b2

FIG. 2. MICs are set at the cutoff surface of radius rc centered about particle
i. (a) Two MICs with a1 = −a2 = q j ri j /2rc are placed in order to cancel
out the dipole generated by particle j with charge q j . (b) Two MICs with
b1 = b2 = −q j /2 are placed in order to cancel out the charge generated by
particle j, and two MICs with c1 = c2 = −qi /2 are placed in order to cancel
out the charge generated by particle i itself.

1
2

∑
i

∑
j(�=i),ri j <rc

qi q j u(ri j ), where

u(r ) ≡ V (r ) + 1

2

F(rc)

rc
r2 + uc (3)

with F(r ) = −DV (r ) (the negative of the derivative of V
at r ). uc is an arbitrary constant that is independent of r .

Next, in order to cancel out the charge qi + q j , we also
introduce two MICs with values b1 and b2 regarding atom
j , and further add two MICs for atom i with values c1 and
c2. We place the MICs, e.g., as depicted in Fig. 2(b), and
set b1 = b2 = −q j/2 and c1 = c2 = −qi/2. Then, the total
charges with dipoles vanish, and the energy E0 is changed as
follows:

EH(x) ≡ 1

2

∑
i

∑
j(�=i)

ri j <rc

[qi q j u(ri j ) + qi b1u(rc) + qi b2u(rc)]

+1

2

∑
i

[qi c1u(rc) + qi c2u(rc)]

= 1

2

∑
i

∑
j(�=i)

ri j <rc

[qi q j u(ri j ) − qi q j u(rc)]

−1

2

∑
i

q2
i u(rc). (4)

The above intuitive approach is simple enough, and it
would provide a new method in the ZC and ZD condition, as
an extension of that in the ZC condition. However, there are
several essential problems in establishing the potential and the
force in a consistent manner. First, the above arbitrary con-
stant value cannot be given systematically, and the results de-
pend on it. For example, for uc such that u(rc) = 0, the self-
MIC term, viz., the second term in Eq. (4), vanishes, whereas
the MIC term should be essential for the ZD condition [the
arbitrary constant uc may correspond to an arbitrary constant
added to EH(x) in Eq. (4), but its determination for each sys-
tem in a simple and an accurate way would not be trivial].
Second, the results also depend on the combination and the or-
dering of the treatment about the target condition (ZC or ZD)
and quantity (force or potential), and the difference between
individual results is not necessarily constant. For example, if
we consider the potential energy, instead of the force, in the
first stage considering the ZD condition, and then if we con-
sider the force, instead of the potential energy, in the second
stage considering the ZC condition, we do not obtain Eq. (4),
but rather have the original energy 1

2

∑
i

∑
j(�=i)qi q j V (ri j )

[moreover, it depends on supplementary conditions; cf.
Ref. 47]. In fact, we have already encountered such a situation
in a conventional derivation of the ZC energy:21, 23, 33 if we
consider an energy via a MIC of value b1 with position S1 such
that b1 + q j = 0 and ‖xi − S1‖ = rc, then we have an en-
ergy 1

2

∑
i

∑
j(�=i),ri j <rc

qi q j [V (ri j ) − V (rc)] − 1
2 V (rc)

∑
i q2

i ;
while, if we consider a force with the same conditions
along with a more specific condition S1 = xi − rcxi j/ri j , then
we have a force,

∑
j(�=i),ri j <rc

qi q j [F(ri j ) − F(rc)]xi j/ri j ;
however, the former energy and the latter force are not
compatible.
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Although more general aspects are discussed in detail
in Ref. 47, these problems with indefiniteness and confu-
sions will not be solved, as long as we obey only these con-
siderations. The problems may originate from the fact that
the MICs considered for each qi are not real particles, but
image or ghost particles in that they interact with only qi . For
these reasons, we note that the above derivation is just one
of the possible interpretations for understanding the current
scheme, and that the scheme should be constructed on the ba-
sis of certain consistent considerations.

III. THEORY OF ZERO-DIPOLE SUMMATION

We provide a theoretical framework for the ZD energy
formula heuristically introduced in Sec. II. The framework
systematically characterizes a ZD state and provides a notion
of a ZD summation, which is a summation capturing the ZD
state and corresponding to a method for clipping out the in-
teractions in the cutoff sphere. The energy EH, aside from the
arbitrary constant, is justified as an approximate ZD sum in
a consistent manner, without introducing an artificial object,
MIC. The meaning of the approximation for the ZD sum will
become clear, and we will see that the degree of approxima-
tion is better than that for the ZC sum about a ZD state.

A. Formalism

Our method is based on the following two strategies:
(1: Conceptual) For each particle i , the summation with re-
spect to all other atoms is replaced by the one with respect to
the following neutralized subset Mi , whose existence is as-
sumed; (2: Specific) A pair potential function is redefined so
that we can simply handle the summation defined in (1) above
using a usual pairwise-sum form.

1. Conceptual strategy

Let x ≡ (x1, . . . , xN ) be N particle configurations in a
coordinate phase space � and q j be the charge of particle j
that moves in space Rd (the main concern is in d = 3) for
j ∈ N ≡ {1, . . . , N }. We assume the following conditions,
i.e., for state x ∈ � and for any particle i ∈ N , there exists
a subset Mi ⊂ Ni ≡ N − {i} such that

∀ j ∈ Mi , ri j < rc, (5a)∑
j∈Mi ∪{i}

q j = 0, (5b)

∑
j∈Mi ∪{i}

q j xi j = 0 ∈ Rd , (5c)

∀ j ∈ Ni − Mi , (ri j < rc ⇒ ri j 
 rc), (5d)

where ri j ≡ ‖xi j‖ with xi j ≡ xi − x j ∈ Rd and rc > 0 is the
cutoff length of the interactions. The conditions (5a), (5b),
and (5d) are the same as the zero-charge conditions;21, 33 viz.,
(a) all particles in Mi are inside the cutoff sphere, (b) the sum
of the charges, including qi , in Mi is zero, and (d) a particle
(except i) that does not belong to Mi but is inside the sphere
is located near the cutoff surface. The third condition (5c) is
currently introduced, requiring that the total dipole, measured

FIG. 3. The conventional simple cutoff method takes into account all charges
in a cutoff sphere with radius rc. The current zero-dipole sum method concep-
tually deals with the particles only in the shaded region, which schematically
represent the zero-dipole subset Mi .

by the coordinate with the origin xi , in Mi is zero. Namely,
Mi is now a zero-charge zero-dipole subset, which we refer
to as a ZD subset; see Fig. 3. Physically, we can imagine a
ZD subset as a member of particles inside a sufficiently large
sphere around each particle and suppose that the condition
is realized for equilibrated configurations observed in, e.g., a
sufficiently equilibrated or disordered system, as discussed in
Ref. 21. For simplicity, we often call x ∈ � as a ZD state.48

For a ZD state, a summation method that reflects this new
condition (5) promises to provide a good approximation to
estimate the energy.

Below, we set specifically

V (r ) = erfc(αr )

r
, (6)

which is a Coulomb potential function accompanying a damp-
ing factor erfc(αr ), a complementary error function of αr ,
with α ≥ 0 [V (r ) = 1/r , if α = 0], and has the corresponding
force function,

F(r ) ≡ −DV (r ) = erfc(αr )

r2
+ 2α√

π

exp(−α2r2)

r
. (7)

We calculate the total Coulombic energy E(x) for x ∈ � via
V , following the scheme suggested by Wolf et al.:

E(x)

= 1

2

∑
i∈N

∑
j∈Ni

qi q j

ri j
(8)

= 1

2

∑
i∈N

∑
j∈Ni

qi q j V (ri j ) + 1

2

∑
i∈N

∑
j∈Ni

qi q j

[
1

ri j
− V (ri j )

]

(9)

≈ 1

2

∑
i∈N

∑
j∈Mi

qi q j V (ri j ) − α√
π

∑
i∈N

q2
i . (10)

Here, in the first term of Eq. (10) we have used the currently
introduced strategy, i.e., the replacement∑

j∈Ni

q j V (ri j ) →
∑
j∈Mi

q j V (ri j ); (11)

namely, the only contributions that should be counted are
those from the ZD subset for every i (viz., which corresponds
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to the clipping idea discussed in Sec. II A). In other words,
we assume the approximation∑

i∈N

∑
j∈Ni

qi q j V (ri j ) ≈
∑
i∈N

∑
j∈Mi

qi q j V (ri j ). (12)

The sum with respect to Mi is called a zero-charge zero-
dipole summation, or, in short, a ZD summation. The second
term of Eq. (9) can be read as

1

2

∑
i∈N

∑
j∈N

qi q j

ri j
erf(αri j ) − 1

2
lim
r→0

erf(αr )

r

∑
i∈N

q2
i , (13)

and we have adopted the observations by Wolf et al.,21 in
which the first term in Eq. (13) can be negligible if one
chooses a small α, thus obtaining for Eq. (10)

1

2

∑
i∈N

∑
j∈Ni

qi q j

[
1

ri j
− V (ri j )

]
∼ − α√

π

∑
i∈N

q2
i , for small α.

(14)

Hence, we get

E(x) 
 1

2

∑
i∈N

∑
j∈Ni

ri j <rc

qi q j V (ri j ) − Ê(x) − α√
π

∑
i∈N

q2
i .

(15)

Here, we have used the relation∑
j∈Mi

=
∑
j∈Ni

ri j <rc

−
∑
j∈Ji

, (16)

where Ji ≡ { j ∈ Ni − Mi | ri j < rc}, and defined

Ê(x) ≡ 1

2

∑
i∈N

∑
j∈Ji

qi q j V (ri j ). (17)

Namely, Ê(x) corresponds to the energy excess from the or-
dinary cutoff truncation sum

∑
j∈Ni , ri j <rc

for every i , in the
sense that we should remove the quantity defined on the ex-
cess subset Ji , which corresponds to, namely, the nonzero
dipole subset in the cutoff sphere. It should be noted that we
assume, for excess subsets J1, . . . ,JN , the following consis-
tency condition:

j ∈ Ji ⇔ i ∈ J j , for all i, j ∈ N . (18)

This is required in order to subtract each excess interaction
consistently: if we decide to remove the interaction with j
for i , viz., j ∈ Ji , then we should also remove the interaction
with i for j , viz., i ∈ J j .

2. Specific strategy

For Eq. (15) to be effectual in applications, we should
find an easily computable expression for estimating Ê(x),
which is conceptually given for the excess subset Ji . To ac-
complish this, we approximate Ê(x) by a pairwise summation
formula. The approximation is based on the fact, from condi-
tion (5d), that Ji is small in the sense that particles belonging
in Ji are contained in a small area. Its smallness can be mea-
sured by the displacement from the position of the target par-
ticle to the cutoff surface. We first introduce a displacement

FIG. 4. The particle in the nonshaded region represents a member of the
excess subset Ji . Particle j at position x j is one of the members, and x (i)

j is the
shifted position of x j toward the cutoff surface along the vector x j − xi . For

a particle belonging to the zero-dipole subset Mi (shaded region), x (i)
j = x j .

vector for any x ∈ �,

h(i)
0 ≡ x − x (i) ∈ Rd N , (19)

where

x (i) ≡ (x (i)
1 , . . . , x (i)

N ), (20)

x (i)
j ≡

{
xi + rc

x ji

r ji
, if j ∈ Ji

x j , otherwise

}
(21)

for each i ∈ N . Namely, for j ∈ Ji , x (i)
j is the shifted posi-

tion of x j obtained by expanding it along vector x ji to the
cutoff surface; and for j /∈ Ji , we set x (i)

j to be the original
position, to maintain a consistent description (see Fig. 4). The
displacement vector is small,

h(i)
0 ≡ (

h(i)
0,1, . . . , h(i)

0,N

) ∼ 0 ∈ Rd N , (22)

by virtue of

∥∥∥h(i)
0, j

∥∥∥ =
{

rc − ri j , if j ∈ Ji

0, otherwise

}

 0. (23)

Second, we suppose a motion (or perturbation) of the dis-
placement vector, in order to specifically investigate the in-
fluence of the smallness of Ji upon the degree of approxima-
tion for Ê . Such a motion is basically done along the vector
h(i)

0 , and we denote its domain by I ≡ I x
i ; for details see Ap-

pendix A. According to the motion of h(i) ∈ I x
i , the positions

x (i) + h(i) are varied.
Based on these formulations, for each i ∈ N , we see that

the quantity (the contribution via atom i to the excess energy)

Êi (y) ≡
∑
j∈Ji

qi q j V (‖yi j‖) (24)

for any y ∈ � can be approximated by

Ĕi (y) ≡
∑
j∈Ji

qi q j V̌ (‖yi j‖) (25)

with

V̌ (r ) ≡ V (rc) − F(rc)

2rc
(r2 − r2

c ), (26)

in the following sense: for any fixed x ∈ � and i ∈ N ,

(Êi − Ĕi )(x
(i) + h(i)) = o(h(i)) (I x

i � h(i) → 0). (27)
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This can be proved from the smoothness of V and the defini-
tion of I x

i , as detailed in Appendix B.
Hence, for the excess energy equation (17), we find

Ê = Ĕ + �, (28)

where

Ĕ = 1

2

∑
i∈N

Ĕi , (29)

and

� ≡
∑
i∈N

ui (30)

with

ui (x
(i) + h(i)) = o(h(i)) (I x

i � h(i) → 0) (31)

for any x ∈ � and i ∈ N . Here, � is negligible, so that

Ê 
 Ĕ . (32)

In fact, for every x ∈ � and i ∈ N , we have x = x (i) + h(i)
0 ,

implying ui (x) = ui (x (i) + h(i)
0 ), which is 
 0 by virtue of the

behavior, Eq. (31), and the smallness of the displacement vec-
tor, Eq. (22) [note h(i)

0 ∈ I x
i ].

On the other hand, the approximate excess energy
becomes

Ĕ(x) = 1

2

∑
i∈N

∑
j∈Ji

qi q j V̌ (ri j ) (x ∈ �) (33)

= − 1

2

∑
i∈N

∑
j∈Ji

qi q j
F(rc)

2rc
r2

i j

+ 1

2

[
V (rc) + 1

2
F(rc)rc

] ∑
i∈N

∑
j∈Ji

qi q j . (34)

For this reason, we should estimate the summations∑
i∈N

∑
j∈Ji

in Eq. (34). The summation in the second term
is easily calculated, since the excess charge equals the total
charge in the cutoff sphere:∑

j∈Ji

q j =
∑
j∈Ni

ri j <rc

q j −
∑
j∈Mi

q j (35a)

=
∑
j∈Ni

ri j <rc

q j + qi , (35b)

deduced from Eqs. (16) and (5b). Meanwhile, the summation
in the first term in Eq. (34) can be evaluated with the aid of
the consistency condition (18) and the fact that

∑
j∈Mi ∪{i}

q j x j = 0 ∈ Rd (36)

holds for every x ∈ � and i ∈ N [Note that Eqs. (36) and (5c)
are interchangeable in condition (5)]. The results are∑

i∈N

∑
j∈Ji

qi q jr
2
i j =

∑
i∈N

∑
j∈Ni

ri j <rc

qi q jr
2
i j , (37)

viz., the summation can be replaced by an ordinary pairwise
summation. As shown in Appendix C, Eq. (37) can be ob-
tained purely algebraically from conditions (5a), (5b), (36),
and (18).

Therefore, from Eqs. (28), (34), (35), and (37), we obtain

Ê = Ě + κ + �. (38)

Here,

Ě(x) ≡ 1

2

∑
i∈N

∑
j∈Ni

ri j <rc

qi q j

[
V (rc) − F(rc)

2rc
(r2

i j − r2
c )

]
(39)

is a pairwise expression,

κ ≡ 1

2

[
V (rc) + 1

2
F(rc)rc

] ∑
i∈N

q2
i (40)

is a constant, and � is the negligible part, as demonstrated.
Combining Eqs. (38)–(40) with Eq. (15), we conclude

that an approximation to the total energy, for x ∈ �, is given
by the ZD energy, viz.,

E(x) 
 EZD(x) (41)

with

EZD(x) ≡ 1

2

∑
i∈N

∑
j∈Ni

ri j <rc

qi q j

[
V (ri j ) − V (rc) + F(rc)

2rc
(r2

i j − r2
c )

]

−
[

V (rc)

2
+ 1

4
F(rc)rc + α√

π

]∑
i∈N

q2
i . (42)

This is simply the expression, EH(x), heuristically obtained in
Eq. (4), except for the self-energy term (−α/

√
π )

∑
i∈N q2

i .
Since the self-energy term comes from the decomposition of
1/r using V (r ), represented by Eq. (9), and from the approxi-
mation given by Eq. (14), the result, Eq. (42), can be a justifi-
cation of EH. Besides, in the current scheme the constant term
is uniquely fixed by κ [Eq. (40); in other words, we should
have chosen uc = 0 in Eq. (3)]. Thus, we have consistently
determined the energy formula for the ZD state. Furthermore,
the current considerations clarify the structure of the approx-
imation for the energy function. Namely, in addition to the
approximation in Eq. (14), two other kinds of approximations
have currently been used: one is Eq. (12), regarding the re-
placement strategy; and the other is Eq. (32), regarding the
neglect of the o(h(i)) term, �. These approximations are ana-
lyzed in Subsection III B.

B. Features

1. On the approximations

First, we discuss the second approximation, viz., the ne-
glect of �, and demonstrate that it is still more accurate than
that in the scheme using the ZC energy. The following first
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two terms in the ZC energy,

1

2

∑
i∈N

∑
j∈Ni

ri j <rc

qi q j [V (ri j ) − V (rc)] − 1

2

∑
i∈N

q2
i V (rc)

− α√
π

∑
i∈N

q2
i , (43)

can be obtained by an approximation of the ZD summation
for a ZD state. Specifically, using the three conditions (5a)
and (5b), and (5d), as in Ref. 33, we can derive these terms
for atom i with an approximation of the ZD sum:∑

j∈Mi

qi q j V (ri j ) 

∑
j∈Ni

ri j <rc

qi q j [V (ri j ) − V (rc)] − q2
i V (rc).

(44)

We can now view this approximation through an approxima-
tion of the i th excess energy Êi (x) ≡ ∑

j∈Ji
qi q j V (ri j ) [re-

call Eq. (24)]. That is, the excess energy, the second term on
the right side in the following exact relation,∑

j∈Mi

qi q j V (ri j ) =
∑
j∈Ni

ri j <rc

qi q j V (ri j ) −
∑
j∈Ji

qi q j V (ri j ),

(45)

can be approximated by

Ẽi (x) ≡
∑
j∈Ni

ri j <rc

qi q j V (rc) + q2
i V (rc) (46)

as follows: for any x ∈ � and i ∈ N ,

(Êi − Ẽi )(x
(i) + h(i)) = o(1) (I x

i � h(i) → 0), (47)

which is described in Appendix B. Thus, as seen in Eq. (28),
we have

Ê = Ẽ + �̃, (48)

where Ẽ ≡ 1
2

∑
i∈N Ẽi and �̃ ≡ ∑

i∈N ũi , with ũi (x (i)

+ h(i)) = o(1) (h(i) → 0). Although �̃ 
 0, as stated to de-
rive Eq. (32), the accuracy of the approximation of Ê by Ẽ is
of the o(1) level in the above ZC scheme, which is lower than
that of Ê by Ĕ with the o(h(i)) level in the current ZD scheme.

On the other hand, the above approximating feature in
the ZC scheme is also helpful to explain the first approxima-
tion in the ZD scheme, viz., Eq. (12) concerning the replace-
ment strategy. That is, on the ZD state we obtain the following
relations:

1

2

∑
i∈N

∑
j∈Ni

qi q j V (ri j ) (49)


 1

2

∑
i∈N

∑
j∈Ni ,

ri j <rc

qi q j [V (ri j ) − V (rc)] − V (rc)

2

∑
i∈N

q2
i

(50)


 1

2

∑
i∈N

∑
j∈Mi

qi q j V (ri j ). (51)

The first near equality [in Eq. (50)] is indicated by the fact that
the ZC energy works well, as investigated by Wolf et al.21 and
intensively examined in many reports, as discussed in Sec. I.
The second near equality is due to the preceding discussion.
The above relation is one of the quantitative justifications of
Eq. (12). Of course, as stated in Sec. II A, the qualitative is-
sues supporting the direct justification of Eq. (12) are that the
ZD sum captures the features of the whole system with zero
dipole and zero charge, and that the ZD sum prevents the en-
ergy error, which is due to the non-ZD or non-ZC state arti-
ficially generated by a simple scheme, such as a pure cutoff
truncation.

2. Force

The force acting on each atom i is derived from Eq. (42),
by

Fi (x) ≡ −∇i EZD(x) (52a)

=
∑
j∈Ni

ri j <rc

qi q j

[
F(ri j ) − F(rc)

rc
ri j

]
xi j

ri j
∈ Rd (52b)

for any x ∈ �. We see that the first term∑
j∈Ni , ri j <rc

qi q j F(ri j )xi j/ri j is the usual cutoff pair-

wise expression originating from 1
2

∑
i∈N

∑
j∈Ni

qi q j V (ri j ),
but we may wonder what the second term

F̌i (x) ≡
∑
j∈Ni

ri j <rc

qi q j
F(rc)

rc
xi j , (53)

currently added, actually represents. This is, in fact, an ap-
proximation of the excess force

F̂i (x) ≡
∑
j∈Ji

qi q j F(ri j )
xi j

ri j
. (54)

Namely, we have

Fi (x) 

∑
j∈Ni

ri j <rc

qi q j F(ri j )
xi j

ri j
− F̂i (x) (55a)

=
∑
j∈Mi

qi q j F(ri j )
xi j

ri j
. (55b)

The situation is analogous to that of the energy: a compu-
tationally efficient expression EZD, which may not be physi-
cally understandable (but see Sec. V), is an approximation of a
physically understandable expression, which may not be com-
putationally efficient. The latter expression is the right side of
Eq. (15), which is the usual cutoff pairwise quantity minus
the excess quantity (aside from a constant). The subtraction
of the excess quantity represents the neutralizing effect, which
appears in both the energy and force formulas in the current
scheme. The approximation at issue can be represented by

F̂i − F̌i = vi , (56a)

vi (x
(i) + h(i)) = o(1) (I x

i � h(i) → 0) (56b)
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for any x ∈ � and i ∈ N , as proved in a similar manner
to that for the preceding excess-energy approximation (see
Appendix B).

3. Properties of pair functions

The behaviors of the pairwise functions should be clari-
fied only on the interval (0, rc], in terms of the cutoff scheme.
The pair force function f given by

f (r ) ≡ F(r ) − F(rc)

rc
r, (57)

which defines an atomic force Fi , is positive and (strictly)
monotone decreasing on (0, rc] if F is so [the target function,
Eq. (7), applies for any α ≥ 0], and f reaches 0 at r = rc.
Then, the corresponding pair potential function given by

u(r ) ≡ V (r ) + 1

2

F(rc)

rc
r2 (58)

is strictly monotonic decreasing on the interval. Using such a
normal pair function, we find that the total energy, Eq. (42),
can be expressed as

EZD(x) = 1

2

∑
i∈N

∑
j∈Ni

ri j <rc

qi q j [u(ri j ) − u(rc)]

−1

2

[
u(rc) + 2α√

π

] ∑
i∈N

q2
i . (59)

The current shifted pair potential function u − u(rc) is pos-
itive on (0, rc] and reaches zero at r = rc in a C1 manner
[which ensures Eq. (52)].

The right side of Eq. (59) is a form equivalent to the
Wolf energy expression (43) using the current induced func-
tion u, rather than the original function V . As the param-
eter α is large, this pair potential u − u(rc), indicated in
Figs. 5(a) and 5(b), approaches the original Wolf pair po-
tential V − V (rc) in Eq. (43): the difference δ(r ) ≡ |u(r )
− u(rc) − (V (r ) − V (rc))| = F(rc)(r2

c − r2)/(2rc) is strictly
monotone decreasing with respect to α for each rc > r > 0,
and δ converges uniformly on (0, rc] to 0 as α → ∞. Thus,
and also from the decrease in u(rc) − V (rc) [the difference be-
tween the constant-term factors; cf. Figs. 5(c) and 5(d)] mono-
tonically to 0 with respect to α, we see that EZD(x) approaches
Eq. (43) as α increases. Similarly, the energy of the FSw-
Wolf method33 and EZD are closer as α → ∞ under ordinary
conditions. Note that, in this context, the resemblance among
the damping-function approaches with large damping factors
has been pointed out in Ref. 23, regarding shifted-force and
shifted-potential functions.

IV. NUMERICAL SIMULATION

The specific performance of the current method as a MD
scheme is discussed via numerical investigations. To measure
the validity of the current theory, we used a simple system
and performed fundamental tests. A comparison between the
current method and the Ewald method was made. We also
confirmed the efficiency enhancement of the current zero-

dipole MD scheme, the ZD-Wolf method, against the zero-
charge MD scheme, the FSw-Wolf method, which we previ-
ously reported.33

We examined a NaCl system composed of 2304 ions, us-
ing the three-dimensional periodic boundary conditions. To
investigate the accuracy of the method, we sampled various
particle configurations of the system and calculated the error
of the electrostatic energy. Using a simulation protocol, as de-
scribed in Ref. 33, nx = 1000 liquid configurations obeying
the Born–Mayer–Huggins potential49 were selected through
the N T V (canonical) MD simulations at a temperature of
1100 K. The energy error in the current method at config-
uration x was estimated through the difference between the
current Coulombic energy EZD(x) and the reference energy
E(x), which was evaluated by the Ewald method,7 and we
averaged the error ratio over each configuration as

�ZD ≡ 1

nx

∑
x

|EZD(x) − E(x)|/|E(x)|. (60)

In the Ewald method, the damping parameter was 0.35 Å−1

and the cutoff length of the real part evaluation was 12 Å.
Figure 6 shows the results for several values of the

cutoff length rc and the damping parameter α in the cur-
rent method. We see that a larger rc yields more accurate
results, as expected. A large α shows a small error even
in a small rc, along with rapid convergence. In contrast, a
small α exhibits an error decrease from a considerably large
value at small rc toward a very small value at large rc, ac-
companying a relatively large oscillation, which is consid-
ered to be relevant to a certain structure in a liquid phase.
The oscillating behaviors of the errors stated above are not
unusual, and, in fact, were observed in the FSw-Wolf ZC
scheme.33

However, the accuracy itself is significantly improved in
the current method, as shown in Table I. Here, the energy error
ratio of the FSw-Wolf method, �FSw, was calculated in a sim-
ilar manner as above [viz., using the energy of the FSw-Wolf
method, EFSw(x), instead of EZD(x) in Eq. (60), along with
the same ion configurations]. Note that the discussions in Sec.
III regarding the accuracy enhancement of the ZD scheme
against the ZC scheme are applicable when both schemes em-
ploy the same pair potential function V and the same cut-
off length, viz., the same α and the same rc in the current
case. To confirm this, the two values �ZD ≡ �ZD(α, rc) and
�FSw ≡ �FSw(α, rc) in Table I can be used. In a practical cut-
off range, as used in typical MD simulations, the error in the
current method is smaller than 10−1–10−3 of the error in the
FSw-Wolf method. A smaller α improves the accuracy, and
a larger α provides less improvement. In fact, the two energy
formulas for the two methods approach for large α, as stated
in Sec. III B 3. On the other hand, as is relatively apparent in
a higher α case, such as α = 0.2 Å−1, the improvement will
be less with a significant large cutoff length. However, this is
not surprising, but is rather natural in that any correct cutoff
method with rc → ∞ should give the same results (although
the approach may not be monotonic). Although it suffers
from these limitations, the current method is valuable, since it
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(a) (b)

(c) (d)

FIG. 5. (a) Potential functions with cutoff length rc = 8 Å: solid lines show the pair potential u(r ) − u(rc) in the current ZD energy with (right) damping factor
α = 0 (Å−1), (middle) α = 0.05, and (left) α = 0.15 (the difference between α = 0 and 0.05 is invisible). Dashed lines show the original Wolf pair potential
V (r ) − V (rc) with (right) α = 0, (middle) α = 0.05, and (left) α = 0.15. For comparison, the bare Coulomb potential 1/r without the cutoff is indicated by
a dotted line. (b) The same potential functions in (a), but with a larger cutoff length, rc = 14 Å. (c) The dependence of the constant terms in the ZD energy,
(dotted line) 2α/

√
π , (thin bold line) u(rc), and (thick bold line) u(rc) + 2α/

√
π , on the parameter α; and those in the ZC energy, (thin dashed line) V (rc),

(thick dashed line) V (rc) + 2α/
√

π . The cutoff length rc is 8 Å. (d) The same quantities in (c), but with a larger cutoff length, rc = 14 Å.

provides a higher accuracy in a practical cutoff length in a MD
study, as shown by the difference between the two methods.

When we have an accurate electrostatic phase-space en-
ergy function, fundamentally, we can attain physically reli-
able results, provided that the total potential energy function,
including the electrostatic one, is reliable. However, in addi-
tion to the accuracy of the energy function, in order to use
the function safely in the MD scheme, we need stability in in-

tegrating the MD equations of motion. This kind of stability
comes from the smoothness of the energy function. To inves-
tigate the stability, we performed N EV MD simulations of
the NaCl system. The initial configurations were those ob-
tained in the N T V MD simulation stated above, and the ve-
locity Verlet integrator with a time step of 2 fs was used,
via the myPresto program.50 Figure 7 shows the trajectory
of the total energy (the kinetic energy plus the total potential

TABLE I. The error ratio (%) of the electrostatic energy in the FSw-Wolf method �FSw (upper line) and that in
the current method �ZD (lower line), using the same values of the parameters, cutoff length rc (Å), and damping
factor α (Å−1).

rc 9 10 11 12 13 14 15 16

α = 0.05 8.749 49.039 5.124 29.109 9.446 15.593 8.984 7.339
0.629 0.016 0.296 0.062 0.150 0.057 0.064 0.049

α = 0.1 4.554 17.846 1.161 7.513 1.781 2.707 1.152 0.831
0.569 0.029 0.232 0.042 0.106 0.022 0.028 0.025

α = 0.15 1.862 4.400 0.127 1.117 0.129 0.185 0.080 0.058
0.387 0.059 0.082 0.030 0.054 0.022 0.021 0.027

α = 0.2 0.603 0.646 0.061 0.154 0.064 0.063 0.071 0.070
0.212 0.090 0.047 0.069 0.073 0.070 0.070 0.070
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FIG. 6. The electrostatic energy of the current ZD-Wolf method against the
Ewald method is shown via �ZD, the energy error ratio (no dimension),
which was averaged over 1000 configurations for a liquid NaCl system of
2304 ions. The parameters rc (Å) and α (Å−1) indicate the cutoff length and
the damping factor, respectively, involved in the energy formula in the ZD
method.

energies) obtained in the simulation. A typical cutoff length
of rc = 12 Å was used and the potential damping parameter
was α = 0.15 Å−1. Several values for α, which affects the
smoothness of the function (flatness near the cutoff length),
nevertheless gave very similar results (not shown). The to-
tal energy deviations for the current method are sufficiently
small. This situation is comparable to that observed in the
FSw-Wolf method (ZC MD scheme), which is fairly good
and better than that in the pure cutoff method (non-ZD and
non-ZC MD scheme).33 These results indicate that the cur-
rent ZD-Wolf method (ZD and ZC MD scheme) can afford a
reliable MD protocol.

The degree of accuracy of the energy surface in the phase
space may not necessarily correspond to that of another prop-
erty of the system in general. Structural property is one of the
important properties of the system, and we have calculated
the radial distribution functions (RDFs) for the liquid NaCl

FIG. 7. Total-energy trajectory of the NEV MD simulation for the NaCl liq-
uid system, obtained by the velocity Verlet integrator with a 2 fs timestep.
The cutoff length is 12 Å and α = 0.15 Å−1.

FIG. 8. Radial distribution functions (no dimension) with respect to the
atomic distance r (Å) for the liquid NaCl system of 2304 ions, obtained by
the current ZD-Wolf method (solid line) and the particle mesh Ewald method
(dotted line). The error ratio defined by the two functions is shown by the
dashed line.

system as an example, using the coordinate data produced in
N T V MD simulations at 1100 K. Figure 8 shows the nor-
malized RDF obtained by the ZD-Wolf method, gZD, and that
by the particle mesh Ewald method,51 g. These two functions
agree well in a whole range of the atomic distance, r . In fact,
the error ratio, |gZD(r ) − g(r )|/|g(r )|, is less than 10−2, which
is comparable to the error ratio of the energy indicated in
Fig. 6.

V. DISCUSSION: RELATION TO THE PREAVERAGING
(PA) METHOD

The current method based on the ZD condition is, in fact,
intimately related to other methods based on other conditions.
We discuss the relationships between them to observe them
from different viewpoints.

One of the characteristic points of the current scheme is
that the current energy, Eq. (42), becomes a generalization
of the results obtained from the PA procedure introduced
by Yakub and Ronchi.35 Their energy formula was obtained
by using the Ewald summation expansion and by averaging
the quantities in the expansion over the spherical angular
coordinates (ϕ, θ ). This corresponds to a situation treating a
uniformly distributed system. The energy formula is

EPA(x) ≡ 1

2

∑
i∈N

∑
j∈Ni

ri j <rm

qi q j
1

ri j

{
1 + 1

2

ri j

rm

[(
ri j

rm

)2

− 3

]}

− 3

4rm

∑
i∈N

q2
i , (61)

where rm is the radius of the volume-equivalent sphere of the
MD cubic cell with edge L:

4

3
πr3

m = L3. (62)

Namely, the energy is based on the PA potential VPA(r )
≡ (1/r ){1 + ( 1

2 )(r/rm)3}, and the pairwise sum is defined by
a pair potential VPA(r ) − VPA(rm). Now, we can straightfor-
wardly see that the energy of the current scheme, Eqs. (42) or
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(59), perfectly gives Eq. (61) when we set α = 0 and rc = rm,
noting that the current potential u then corresponds to VPA.

The PA method is very successful; it gives an accurate
energy in, e.g., crystal systems and one-component plasma.
However, the fact that the cutoff length intrinsic to the PA
formalism is rm seems inconvenient, in terms of a MD study,
for the following reasons: first, rm > L/2 does not permit the
ordinary minimum image convention technique in calculat-
ing the interactions, although some algorithms to suitably per-
form this cutoff may exist; second, the cutoff length rm should
be set proportional to the MD cell size L , which could be a
severe practical limitation if one treats a large system, e.g.,
with a size of several nanometers, as in biological studies.

On the contrary, our scheme indicates that we are not re-
quired to take rc = rm, if we obey the zero-dipole principle.
Namely, we can use the usual minimum image convention
by taking rc < L/2, without any special care even for high-
performance computational architectures, and can apply the
method to arbitrarily large systems, without the constraint on
the cutoff length. For example, in the simulation of the current
ZD method discussed in Sec. IV, a cutoff length larger than
20 Å may lead to a very small error, especially in the condition
of α = 0 and rc = rm [
 26.4 (Å) > L/2 
 21.3 (Å), half of
the length of the MD cubic cell used], yielding the PA method.
Here, note that the α = 0 case (not shown in Fig. 6) gave al-
most identical results to those of the α = 0.05 case, which is
due to the fact that the pair potential function shapes and the
constant term values in the former case are almost identical,
respectively, to those in the latter case, as seen in Fig. 5. Thus,
the α = 0.05 results suggest those in the ideal conditions of
α = 0 and rc = rm. However, in the actual simulation shown
in Fig. 6, we see that a smaller rc with a positive α value pro-
vides a sufficiently high accuracy, viz., it is a practical solu-
tion with respect to the efficiency. These observations will be
useful in considering more realistic applications, especially to
large systems.

The reason why the current scheme includes Yakub–
Ronchi’s PA potential method, which is derived by the spher-
ical average rationale, would be that the isotropic property,
which indicates the absence of a special direction in a sys-
tem in an electromagnetic sense, leading to angular symmetry
and allowing the spherical average, implies a zero-dipole va-
lidity in the system, especially at the local level. In contrast,
the converse is not always true, i.e., a ZD state does not nec-
essary imply an isotropic state, considering a certain perfect
ionic crystal. These views might also explain why the PA
method yields, as stated in Ref. 35, “surprisingly positive”
results in perfect crystal systems, which are not isotropic: the
PA method becomes a ZD method with α = 0 and rc = rm,
and then it will be applicable to a ZD state, which is not nec-
essarily isotropic. It should be noted that although we have
stated the existence of the ZD state that is not isotropic, we do
not affirm that any anisotropic state becomes a ZD state; e.g.,
totally dipolar systems, such as ferroelectric solid materials,
exhibit non-ZD states.

To confirm that the ZD method is actually applicable
to the perfect-crystal anisotropic state, we calculated the
Coulombic energy of the NaCl fcc crystal. We estimated the
energy of the crystal state xC, using 73 unit cells (2744 ions)

FIG. 9. The electrostatic energy of the current ZD-Wolf method against the
Ewald method is shown via Eq. (63), the energy error ratio (no dimension),
which was obtained for NaCl crystal configuration. The parameters rc (Å)
and α (Å−1) are the same as those in Fig. 6. The inset shows the absolute
values (logarithmic scale) of the error ratio Eq. (63).

with the periodic boundary conditions, and the error of the
energy obtained by the ZD method was estimated by

(EZD(xC) − E(xC))/E(xC), (63)

where the reference energy value E(xC) was calculated by the
Ewald method, as in the liquid study. The results are shown
in Fig. 9. As in the liquid-states results, oscillating behav-
ior toward the convergence is observed (in the linear scale
for the error, the amplitude of the oscillation is smaller as
the parameter α is large). However, in contrast to the liquid
case, a larger α shows a smaller error, and it can take a very
small value with increasing rc; e.g., as shown in the inset,
the absolute value of the error for α = 0.2 is 1.4 × 10−6 at rc

= 16 Å.
Finally, we point out that the pair potentials repre-

sented by VRF(r ) ≡ (1/r ){1 + [(ε − 1)/(2ε + 1)](r/rc)3} and
VRF(r ) − VRF(rc) used in the reaction field method52, 53 tend
to VPA(r ) and VPA(r ) − VPA(rm), respectively, as the dielec-
tric constant parameter ε goes to ∞ and the cutoff rc tends to
rm. In addition, note that VRF(r ) [or VRF(r ) − VRF(rc)] with
ε → ∞ corresponds to u(r ) [or u(r ) − u(rc), respectively]
with α = 0, which is the pair potential represented by Eq. (58)
used in the current ZD method.

VI. CONCLUDING REMARKS

We have proposed a novel idea, zero-charge zero-dipole
summation, for evaluating the electrostatic energy, and we
composed an algorithm for effectively executing the idea.
Namely, our method employs two strategies: (i) for each par-
ticle i , the summation

∑
j∈Ni

q j V (ri j ) is replaced by the one
with respect to the neutralized subset,

∑
j∈Mi

q j V (ri j ); and
(ii) the pair potential function V is redefined, in order that
the above neutralized summation can be managed through a
simple pairwise-sum form. While our method is conceptu-
ally based on the charge neutralizing summation idea devel-
oped by Wolf et al., we emphasize the importance of an ax-
iomatic approach, which leads to a unique, consistent result.
In fact, the heuristic derivation of the current scheme, with the
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mirror image charge arrangements, still seems to be incom-
plete, although it is interesting in that it provides a specifically
geometric view.

In this work, the quantitative features of our method illus-
trated by a numerical simulation using a simple liquid sodium
chloride system, along with the mathematical details of our
method, were discussed in a fundamental manner. The current
method, with a small damping factor α, provides a sufficient
accuracy in a practical cutoff distance region. Specifically, the
electrostatic energy error is smaller, by several orders of the
magnitude, than that of our previous force-switching Wolf
MD method. These results conform to the general fact that
the difference in the methods is clearer for a small damping
factor and a small cutoff length. Although we have empha-
sized the theoretical aspects of the current method, numerical
investigations for the physical properties, including structural
characteristics, dynamical behaviors, and thermodynamic free
energies, must still be addressed.

We revealed that the errors originate from several fac-
tors: the validity of the replacement of the all pair summa-
tion with the neutral-subset summation, the accuracy of an
analytical expression of the energy in the excess region, and
the neglect of the term corresponding to the Fourier part in
the Ewald summation. Numerical simulations comparing the
zero-charge scheme and the zero-dipole scheme have sug-
gested that increasing the energy accuracy in the excess re-
gion is important. The addition of the zero-dipole condition
into a zero-charge condition must lead to an enhancement of
the charge distribution expression for a physically reasonable
state.

Numerical examinations of the electrostatic energy-
surface traceability result in a major investigation of how
many states actually apply to the zero-dipole condition cur-
rently introduced. With the exceptions of a state such as that
with very high energy accompanying a large dipole or a sys-
tem containing a significant quantity of explicit nonvanishing
dipoles, the current method could provide a good approxima-
tion in many realistic applications. For the latter case, for ex-
ample, it may be satisfactory if we apply a special treatment
to such a target dipole. In any case, more numerical exami-
nations in the current method will be necessary to clarify its
applicability, as well as limitations, to various systems. We
shall apply the current method to biomolecular systems and
investigate these issues.

If we possess an accurate energy surface, then fundamen-
tally, we can attain physically reliable results. In this sense,
our method can be used for, e.g., a Monte Carlo calculation. In
addition to the reliability of the phase-space energy function,
in order to use the function safely in a MD scheme, numer-
ical integration for a MD equation must be stable. We have
confirmed that the current function performs well stably in
a liquid MD simulation, using a standard Verlet integration
scheme. Noting that our energy function has just C1 smooth-
ness, more detailed investigations in various simulation condi-
tions and with higher order integrators54 will facilitate further
studies. Combining the force-switching scheme33, 34 and the
current method will provide a smoother function.

We have found that the current summation eventually be-
comes a generalization of the preaveraged potential method

proposed by Yakub and Ronchi, which is based on the Ewald
summation and conducted by an isotropic averaging proce-
dure to solve the problem regarding the cubic symmetry in the
periodic boundary conditions. It may be surprising to reach
similar results from two distinct bases, the symmetry in the
preaveraged method, and the electric neutrality in the cur-
rent method. However, this correspondence may be the rea-
son why the preaveraged method is significantly positive in a
nonisotropic system as well as an isotropic system. Further-
more, the current idea opens the door to use the damping fac-
tor and an arbitrary cutoff length in the preaveraged method.
In particular, the free choice of the cutoff length significantly
enhances the utility of the method in a large system, which is
used in, e.g., a crucial topic in biological studies.

In this paper, we have introduced the zero-charge zero-
dipole summation method in estimating the Coulomb energy
and force. Along this line, the method that takes into account
higher-order moments can be constructed and will be dis-
cussed elsewhere. It could provide a more accurate expres-
sion of the excess energy. In addition, a method for assigning
suitable parameter values is worthwhile. The current scheme
may be coupled with the function optimization approach, thus
providing an improved expression for estimating the energy.
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APPENDIX A: DESCRIPTION OF THE DISPLACEMENT
VECTOR

For arbitrarily fixed x ∈ � and i ∈ N , the domain of
the displacement vector, I ≡ I x

i ⊂ RNd , should satisfy the
following conditions:

(i) I ⊂ � − x (i) ≡ {
x − x (i) ∈ RNd | x ∈ �

}
,

(ii) 0 /∈ I,

(iii) I + x (i) ⊂ J1 × · · · × JN ,

where Jj ≡
{

a line connecting x j and x (i)
j , if j ∈ Ji

{x j }, otherwise

}
,

(iv) x − x (i) ∈ I.

Here, condition (i) ensures that x (i) + h(i) is in the phase
space, in order to avoid the collisions between the particles
during the motion of h(i) ∈ I . Condition (ii) is required to es-
tablish a function sum in any case with respect to the excess
subset, such as ∑

j∈Ji (x (i)+h(i))

f j (x
(i) + h(i)).
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It should be noticed that the zero-dipole subset Mi depends
on x ∈ �, although this notion may not be emphasized in the
text. Hence, Ji also depends on x , viz., we are considering
Ji ≡ Ji (x), and in this case, Ji (x (i) + h(i)). If h(i) = 0, how-
ever, then Ji (x (i) + 0) becomes an empty set, and thus the
above sum is not well defined. Condition (iii) may be the sim-
plest setting and enables us to prevent particle j ∈ Ji from
falling out of the cutoff sphere. Condition (iv) is a trivial re-
quirement to include the initial value h(i)

0 ≡ x − x (i) in I . In
addition, we require that

(v) ∀h(i) ∈ I, Mi (x
(i) + h(i)) = Mi (x),

viz., we can keep the set Mi constant during the motion of
h(i).

Now, we specifically define I x
i by

I x
i ≡

∏
j∈N

I ( j) ∩ (�b − x (i)), (A1)

where I ( j) ≡ {λ j (x j − x (i)
j ) ∈ Rd | λ j ∈ (0, 1]}. By this defi-

nition, the above five conditions can be satisfied, as is straight-
forwardly confirmed. The constancy of the subsets also holds:
for ∀h(i) ∈ I x

i , x (i) + h(i) ∈ � and Ri (x (i) + h(i)) = Ri (x) as
well as Ji (x (i) + h(i)) = Ji (x), where

Ri ≡ Ri (x) ≡ { j ∈ Ni | ri j < rc}. (A2)

Besides, to establish the asymptotic behavior of I x
i � h(i)

→ 0, we require that 0 ∈ RNd is an accumulation point of
I x
i . Namely, it must be verified that for any ε > 0, there ex-

ists h(i) ∈ I x
i such that 0 < ‖h(i)‖ < ε. We can show that this

requirement can be met by taking h(i) ≡ λ(x − x (i)) with

0 < λ < min{γ1, γ2, 1},

γ1 ≡ ε/
√

N

max
j∈Ji

∥∥x j − x (i)
j

∥∥ > 0,

γ2 ≡ min
j,k∈Ri

rc − rik

rc − ri j
> 0.

APPENDIX B: PROOFS OF APPROXIMATIONS

We prove some formulas regarding the approximations
used in the text. Fix any given x ∈ � and i ∈ N , and denote
the motion of the displacement vector by a map:

ϕ = (ϕ1, . . . , ϕN ) : I x
i → � ⊂ Rd N ,

h(i) �→ x [i] ≡ (
x [i]

1 , . . . , x [i]
N

)
d= x (i) + h(i)

≡ (
x (i)

1 + h(i)
1 , . . . , x (i)

N + h(i)
N

)
.

1. Proof of Eq. (27)

Equation (27) can be shown as follows. We see that

(Êi − Ĕi )(x
[i]) (B1a)

=
∑
j∈Ji

qi q j (V − V̌ )
(
r [i]

i j

)
, (B1b)

where

r [i]
i j ≡ ∥∥x [i]

j − x [i]
i

∥∥ = ∥∥y′ + h(i)
j

∥∥ ( j ∈ Ji )

with

y′ ≡ rcx ji/‖x ji‖ ∈ Rd\{0}.
From the differentiability of a map, Rd\{0} � y �→ v(y)
≡ V (‖y‖), at y′, we have

u(h) ≡ v(y′+ h) − v(y′) − Dv(y′)(h) = o(h) (Iy′ � h → 0),

where Iy′ ≡ Rd\{−y′}. Thus, for j ∈ Ji , by noticing the fact
that u(0) = 0 and π j (I x

i ) ⊂ Iy′ , with

π j : RNd → Rd , (a1, . . . , aN ) �→ a j

being a projection, we obtain u(h(i)
j ) = o(h(i)) (I x

i � h(i)

→ 0). Hence, we have

V
(∥∥y′ + h(i)

j

∥∥) = V (‖y′‖) + DV (‖y′‖)
(
y′|h(i)

j

)
/‖y′‖

+o(h(i))

for j ∈ Ji , so that

V
(
r [i]

i j

) = V (rc) + DV (rc)
(
r [i]

i j −rc
) + o(h(i))

(
I x
i � h(i) → 0

)
= V̌

(
r [i]

i j

) +
[

V (rc) + DV (rc)
(
r [i]

i j − rc
) − V (rc)

− DV (rc)

2rc

((
r [i]

i j

)2 − r2
c

)] + o(h(i))

= V̌
(
r [i]

i j

) − DV (rc)

2rc

(
rc − r [i]

i j

)2 + o(h(i))

= V̌
(
r [i]

i j

) + o(h(i)),

where rc − r [i]
i j = ‖h(i)

j ‖ has been used to obtain the last line.
Thus, Eq. (B1) leads to Eq. (27).

2. Proof of Eq. (47)

Equation (47) can be shown as follows. Notice that the

quantity
≈
Ei defined in the following is equal to Ẽi (which

depends on x):

≈
Ei (x) ≡

∑
j∈Ji

qi q j V (rc)

= qi V (rc)

⎛
⎝∑

j∈Ri

q j −
∑
j∈Mi

q j

⎞
⎠

= qi V (rc)

⎛
⎝∑

j∈Ri

q j + qi

⎞
⎠ = Ẽi (x),

where we have used Eq. (16) and condition (5b). Thus, for
∀h(i) ∈ I x

i ,

(Êi − Ẽi )(x
(i) + h(i)) = (Êi−

≈
Ei )(ϕ(h(i))) (B2a)

=
∑
j∈Ji

qi q j [V (‖ϕi j (h
(i))‖) − V (rc)], (B2b)
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where ϕi j ≡ ϕi − ϕ j . Since limh(i)→0,h(i)∈I x
i \{0} ϕ j (h(i)) =

limh(i)→0,h(i)∈I x
i \{0} π j (h(i)) + x (i)

j = x (i)
j , we have

lim
h(i)→0

h(i)∈I x
i \{0}

ϕi j (h
(i)) = x (i)

i − x (i)
j = rcxi j/ri j (B3)

for j ∈ Ji . It follows from Eqs. (B2) and (B3) [and the conti-
nuity of V ] that

lim
h(i)→0

h(i)∈I x
i \{0}

(Êi − Ẽi )(x
(i) + h(i)) = 0.

This implies Eq. (47).

3. Proof of Eq. (56)

Equation (56) can be proved similarly to Eq. (47). Notice

F̆i (x) ≡
∑
j∈Ji

qi q j
F(rc)

rc
xi j

= qi
F(rc)

rc

⎛
⎝∑

j∈Ri

q j xi j −
∑
j∈Mi

q j xi j

⎞
⎠

= qi
F(rc)

rc

∑
j∈Ri

q j xi j = F̌i (x),

using
∑

j∈Mi
q j xi j = ∑

j∈Mi ∪{i} q j xi j = 0 due to condition
(5c). Thus, for ∀h(i) ∈ I x

i ,

vi (x
(i) + h(i)) = (F̂i − F̆i )(ϕ(h(i))) (B4a)

=
∑
j∈Ji

qi q j

[
F(‖ϕi j (h

(i))‖)
ϕi j (h(i))

‖ϕi j (h(i))‖ − F(rc)

rc
ϕi j (h

(i))

]

(B4b)

with ϕi j ≡ ϕi − ϕ j . From Eqs. (B4) and (B3) and the conti-
nuity of F, we get

lim
h(i)→0

h(i)∈I x
i \{0}

vi (x
(i) + h(i)) = 0,

implying vi (x (i) + h(i)) = o(1) (I x
i � h(i) → 0).

APPENDIX C: PROOF OF EQ. (37)

For any x ∈ �, using condition (18), we have

∑
i∈N

∑
j∈Ji

qi q j‖x j‖2 (C1a)

=
∑
j∈N

∑
i∈J j

qi q j‖x j‖2 (C1b)

=
∑
i∈N

∑
j∈Ji

qi q j‖xi‖2. (C1c)

Thus,∑
i∈N

∑
j∈Ji

qi q jr
2
i j

=
∑
i∈N

∑
j∈Ji

qi q j [‖xi‖2 + ‖x j‖2 − 2(xi |x j )]

= 2

⎡
⎣∑

i∈N

∑
j∈Ji

qi q j ‖xi‖2 −
∑
i∈N

⎛
⎝qi xi

∣∣∣∣∣∣
∑
j∈Ji

q j x j

⎞
⎠

⎤
⎦ ,

(C2)

where (·|·) is the standard inner product on Rd . With
the aid of Eq. (35), we can express the first term in Eq.
(C2) as

∑
i∈N

∑
j∈Ji

qi q j‖xi‖2 = ∑
i∈N qi‖xi‖2 ∑

j∈Ri q j ,
where Ri ≡ { j ∈ N | ri j < rc}. On the other hand, because
it follows from Eq. (36) that

∑
j∈Ji

q j x j = ∑
j∈Ri

q j x j

− ∑
j∈Mi

q j x j = ∑
j∈Ri

q j x j + qi xi = ∑
j∈Ri q j x j ,

the second term in Eq. (C2) is
∑

i∈N (qi xi |
∑

j∈Ji
q j x j )

= ∑
i∈N

∑
j∈Ri qi q j (xi |x j ). Hence, we have∑

i∈N

∑
j∈Ji

qi q jr
2
i j

=
∑
i∈N

∑
j∈Ri

qi q j ‖xi‖2 +
∑
i∈N

∑
j∈Ri

qi q j ‖xi‖2

−2
∑
i∈N

∑
j∈Ri

qi q j (xi | x j ).

Notice that the second term is equal to∑
i∈N

∑
j∈Ri qi q j‖x j‖2 [as can be seen using the alge-

bra similar to Eq. (C1); obviously, j ∈ Ri ⇔ i ∈ R j for all
i, j ∈ N ], so that∑

i∈N

∑
j∈Ji

qi q jr
2
i j

=
∑
i∈N

∑
j∈Ri

qi q j [‖xi‖2 + ‖x j‖2 − 2(xi |x j )]

=
∑
i∈N

∑
j∈Ri

qi q jr
2
i j =

∑
i∈N

∑
j∈Ri

qi q jr
2
i j .
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