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Abstract

We consider closed orientable 3-dimensional hyperbolimifolls which are
cyclic branched coverings of the 3-sphere, with branchiegbeing a two-bridge
knot (or link). We establish two-sided linear bounds depemdn the order of the
covering for the Matveev complexity of the covering manifolthe lower estimate
uses the hyperbolic volume and results of Cao-MeyerhofférBaud-Futer (who
recently improved previous work of Lackenby), and Futelf&gianni-Purcell, and
it comes in two versions: a weaker general form and a shapen. farhe upper
estimate is based on an explicit triangulation, which alkows us to give a bound
on the Delzant T-invariant of the fundamental group of thenifiadd.

1. Definitions, motivations and statements

Complexity. Using simple spines (a technical notion from piecewisedin®pol-
ogy that we will not need to recall in this paper), Matveev [R#8foduced a notion of
complexityfor compact 3-dimensional manifolds. M is such an object, its complex-
ity ¢(M) € N is a very efficient measure of “how complicatet¥f is, because:

e every 3-manifold can be uniquely expressed as a connectedafuprime ones
(this is an old and well-known fact, see [15]);

e C is additive under connected sum;

e if M is closed and primegc(M) is precisely the minimal number of tetrahedra
needed to triangulat®.

In the last item the notion of triangulation is only meant imoase sense, namely just
as a gluing of tetrahedra along faces, and an exception hag tmade for the four
prime M’s for which ¢(M) = 0, that isS®, RP3, & x S!, and L (3, 1).

Computing exactly the complexitg(M) of any given 3-manifoldM is theoretically
very difficult, even if quite easy experimentally, using qarters [25]. In the closed
prime case the state of the art is as follows:

e A computer-aided tabulation of the clos&tis with ¢(M) < 12 has been completed
in various steps [21, 25, 26] (see also [24]);
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e A general lower bound foc(M) in terms of the homology oM was established
in [27];

e Asymptotic two-sided bounds for the complexity of some dpemfinite series of
manifolds were obtained in [28, 29, 32];

e A conjectural formula for the complexity of any Seifert fidrepace and torus bun-
dle over the circle was proposed (and proved to be an upperddan [22].

Several other results, including exact computations fdinitke series, have been
obtained in the case of manifolds with non-empty boundaeg [g, 9, 10, 11]. Since
we will stick in this paper to the closed case, we do not revieem here.

Using the hyperbolic volume and deep results of Lackenby i@proved recently
for the case of hyperbolic two-bridge links in [14], and ofd=sleyerhoff [7], together
with explicit triangulation methods to be found [30, 31], wal analyze in this paper
the complexity of cyclic coverings of the 3-sphere brancladohg two-bridge knots
and links. More specifically, we will prove asymptotic twalsd linear estimates for
the complexity in terms of the order of the covering. Exphgtsome results of [12]
we will also provide a sharper lower estimate in a restrictedtext. Before giving our
statements we need to recall some terminology.

Two-bridge knots and links. If p,q are coprime integers witlp > 2 we denote
by K(p, q) the two-bridge link in the 3-spherg® determined byp andq, see [6, 17,
31]. It is well-known thatK (p, q) does not change if a multiple ofp2is added toq,
S0 one can assume thiafl < p. In addition K(p, —q) is the mirror image oK (p, q).
Therefore, since we will not care in the sequel about oriertawe can assumeg > 0.
Summing up, from now on our assumption will always be thatftiilewing happens:

1) p.geZ, p=2 O0<qg<p, (pa)=1

We recall that if p is odd thenK(p, q) is a knot, otherwise it is a 2-component
link; moreover, two-bridge knots and links are alternatigp. 189]. Planar alternating
diagrams ofK (p, q) will be shown below. Since we are only interested in the logp
of the branched coverings &f(p,q), we regard it as an unoriented knot (or link), and
we define it to be equivalent to some oth€fp’, ') if there is an automorphism of
S®, possibly an orientation-reversing one, that map@, q) to K(p/, ). It is well-
known (see [6, p.185]) thak(p’, g’) and K(p, q) are equivalent if and only i’ = p
andq’ = +g*! (mod p).

Under the current assumption (1), the two-bridge knot (ok)IiK (p, q) is a torus
knot (or link) precisely wherg is 1 or p — 1, and it is hyperbolic otherwise. The
simplest non-hyperbolic examples are the Hopf IKK2, 1), the left-handed trefoil knot
K(3, 1) and its mirror imageK (3, 2), the right-handed trefoil (but we are considering
a knot to be equivalent to its mirror image, as just explaindthe easiest hyperbolic
K(p, q) is the figure-eight knoK (5, 2).

Branched coverings. If K(p, q) is a knot (i.e.p is odd) andn > 2 is an inte-
ger, then-fold cyclic covering of S® branched along< (p, q) is a well-defined closed
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orientable 3-manifold that we will denote byl,(p, q). One way of defining it is as
the metric completion of the quotient of the universal cowgrof S®\ K(p, q) under
the action of the kernel of the homomorphism(S®\ K(p, q)) — Z/nz which factors
through the Abelianizatiomr1(S®\ K (p, q)) — H1(S*\ K(p, )) and sends a meridian
of K(p, g), which generate$d;(S*\ K(p, q)), to [1] € Z/nz.

If K(p,q) is a link and a generatomi] of Z/nz is given, a similar construc-
tion defines themeridian-cyclicbranched coveringVl, m(p, q) of S* along K(p, q),
by requiring the meridians of the two components Kfp, q) to be sent to [1] and
[m] € Z/nz respectively. Note that meridian-cyclic coverings areoatslled strongly
cyclic in [36], and that the two components &f(p, q) can be switched, therefore we
do not need to specify which meridian is mapped to [1] and Wwhi [m]. Since in
the sequel we will prove estimates on the complexityMaf n(p, @) which depend om
only and apply to evenM, m(p, ), with a slight abuse we will simplify the notation
and indicate byM,(p, q) an arbitrary meridian-cyclim-fold covering of S® branched
along K(p, ). This will allow us to give a unified statement for knots atmks. We
recall thatM(p, q) is the lens spacé&(p, Q).

Continued fractions. In the sequel we will employ continued fractions, that we
define as follows:

1

[a-l; a-2; e vey akflr ak] = a-l+

a+---+
i

A —

Y

Given p, q satisfying (1), we now recall [17, p.25] that there is a uiquinimized
expansion ofp/q as a continued fraction with positive entries, namely anresgion
as p/q =[a,...,a&] with a;,...,a_1 > 0 andax > 1. (The expansion is called
minimizedbecause ifaxy = 1 then By, ..., &-1, 1] =[as, ..., &_1 + 1], as one easily
sees.) We then defindp, q) to bek if a; > 1 andk — 1 if a; = 1.

This apparently original definition df(p, q) is explained by the following result
established below (see also the proof of Proposition 2.4):

Proposition 1.1. |(p,q) is the minimum of the lengths of positive continued frac-
tion expansions of rational numbers/g’ such that Kp’, q’) is equivalent to Kp, q).

ReEMARK 1.2. I(p/qg) =1 if and only if K(p, q) is a torus knot (or link).

Main statements. The following will be established below:

Theorem 1.3. Let K(p,q) be a given two-bridge kndgor link) and let(M,(p, q))2,
be a sequence of meridian-cyclic n-fold branched coveriafjsS*’, branched along
K(p, q). Then

@ c(Mn(p, @)) < n(p—1), vn.
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If in addition K(p, q) is hyperbolic then the following inequality holds for>n7 with
K =4

3/2
3) c(Mn(p,q)) >n- <1 — Kn—n;) -max2, A(p, q) — 2.6667. . };

moreovey if K(p,q) is neither K(5, 2) nor K(7, 3), then the inequality holds for & 6
with x = 24/2.

REMARK 1.4. Combining the inequalities (2) and (3), and lettimgend to in-
finity, one gets the qualitative result that the complexityMy,(p, q) is asymptotically
equal ton up to a multiplicative constant.

Inequality (3) holds in vast generality but it does not appgabe numerically
very effective. The next result gives a substantial impnoeat of the multiplicative
constant appearing in the inequality. To state it, let usoteerby amin(p, q) be the
minimal coefficienta; appearing in the expansiop/q = [a, . . ., &].

Theorem 1.5. Let(p,q) be a pair of integers satisfyinfl), such that (p,q) > 2
and anin(p,q) = 5. For n e N let M,(p, g) be an n-fold meridian-cyclic branched cov-
ering of §, branched along the two-bridge kn@r link) K(p, g). Then the following
inequality holds

K2\ ¥? 272 2
(4) c(Mn(p,q)) > n-(l— V) -(1— W> -7.21985..-(I(p,q)—1)

wherex =4 for n > 7 and « = 2/2 for n > 6.

Before stating our next result, we recall that the T-invatri&(G) of a finitely pre-
sented groups was defined in [8] as the minimal numbesuch thatG admits a pre-
sentation witht relations of length 3 and an arbitrary number of relationsdeofyth at
most 2. A presentation with this property will be callethngular.

Proposition 1.6. For n > 2 let My(p, q) be a meridian-cyclic n-fold branched
covering of 8, branched along a two-bridge kndgor link) K(p, ). Then

T (1 (Mn(p, @))) < n(p—1).

We note that some connections between the Matveev complefitga closed
3-manifold and the T-invariant of its fundamental group evaiready discussed in [32].

The proofs of the upper and lower complexity estimates anepbetely independent
of each other. We will first prove the general lower ineqyal) in Section 2. Then we
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will establish the upper inequality (2) (together with Posjtion 1.6, which follows from
the same argument) in Section 3. Next we will prove the shidgweer inequality (4) in

Section 4. To conclude we will discuss in Section 5 sharpeetaand upper complexity
estimates for coverings of some specific knktép, q) with I1(p, q) = 2.

2. Hyperbolic volume and the twist number: The lower estimage

We begin by recalling that a manifold is hyperbolic if it halR@Emannian metric
of constant sectional curvaturel. We will use in the sequel many facts from hyper-
bolic geometry without explicit reference, see for ins&ifi2, 5, 34].

The two versions of inequality (3) are readily deduced by loiming the following
three propositions. Here and always in the seqyet 1.01494.. denotes the volume
of the regular ideal tetrahedron in hyperbolic 3-sp&Ee and “vol(M)” is the hyper-
bolic volume of a manifoldM. We will also need below the volume; = 3.66386. .
of the regular ideal octahedron IS

Proposition 2.1. If M is a closed orientable hyperbolic manifold then
vol(M) < ¢(M) - vs.

Proposition 2.2. If K(p, q) is hyperbolic then M(p, q), as defined in the state-
ment of Theorem 1.3,is hyperbolic for n= 4. Moreover the following inequality holds
for n = 7 with « = 4:

2

3/2
5) vol(Ma(p, 6)) = - (1 _ ”niz) VOI(S*\ K(p, 9)),

and if K(p,q) is neither K(5, 2) nor K(7, 3), then the inequality holds for g 6 with
K =22.

Proposition 2.3. If K(p, q) is hyperbolic then
(6) vol(S\ K(p, q)) = vs- max2, A(p, q) — 2.6667.. }.

We begin proofs by establishing the general connection datwcomplexity and
the hyperbolic volume:

Proof of Proposition 2.1. Sdt = ¢(M). Being hyperbolic,M is prime and not
one of the exceptional manifold®®, RP2, * x S!, or L(3, 1), so there exists a realiza-
tion of M as a gluing ofk tetrahedra. IfA denotes the abstract tetrahedron, this real-
ization induces continuous maps: A — M for i =1,..., k given by the restrictions
to the various tetrahedra of the projection from the digjainion of the tetrahedra to
M. Note that eacly; is injective on the interior ofA but maybe not on the boundary.
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Since the gluings used to pair the faces of the tetrahedrherconstruction oM are
simplicial, it follows that}"k_, o; is a singular 3-cycle, which of course represents the
fundamental classM] € Hz(M; Z).

We consider now the universal coverififf — M. Since A is simply connected,
it is possible to lifto; to a mapoi: A — H®. We then define the simplicial map
#i: A — H® which agrees withy{” on the vertices, where geodesic convex combina-
tions are used ifiI® to define the notion of “simplicial”. We also denote by A — M
the composition ofr;” with the projectionH® — M. It is immediate to see thazik:l T
is again a singular 3-cycle iM. Using this and taking convex combinations ¥,
one can actually check that the cycl{sj!‘zl o and Z!‘:l 7, are homotopic to each
other. Therefore, since the first cycle represemMd, [the latter also does, which im-
plies thatU!‘:l 77(A) is equal toM, other\NiseZik:1 7; would be homotopic to a map
with 2-dimensional image.

Next we note thatr;{A) is a compact geodesic tetrahedronHs, so its volume
is less tharws, see [5]. Moreover the volume af(A) is at most equal to the volume
of %i(A), because the projectioH® — M is a local isometry, and the volume ®
is at most the sum of the volumes of thgA)’s, because we have shown above that
M is covered by theri(A)'s (perhaps with some overlapping). This establishes the
proposition. O

Proof of Proposition 2.2. This is actually a direct applicatof Theorem 3.5 of
[12]. We only need to note that in [12] the result is statedhgperbolic (not necessarily
two-bridge) knots (rather than links), but it is easy to de# the proof (based on [3] and
Theorem 1.1 of [12]) works well also for hyperbolic two-hbyillinks and their meridian-
cyclic coverings. ]

Before getting to the proof of Proposition 2.3 we establisé tharacterization of
I(p, q) stated in the first section:

Proof of Proposition 1.1. Under assumption (1), we know that relevant pairs
(P, ') are those withp’ equal top andq’ equal to eitherp—q orr or p—r, where
1<r<p-1andq-r =1 (mod p).

We begin by noting that if we take positive continued fragtiexpansions of/q
and p/(p—q) we find 1 as the first coefficient in one case and a number gréste 1
in the other case. Supposing first thatq = [1, az, a3, ..., ak] it is now easy to see that
p/(p—q)=[az+1,a;s...,a], so the minimized positive expansion of (p —q) has
lengthk — 1. The same argument with switched roles shows that if the dosfficient
a; of the minimized positive expansion qf/q is larger than 1 then the length of the
expansion ofp/(p — q) is k+ 1. Therefore the minimal length we can obtain using
and p — q is indeedl(p, Q).

Supposingp/q =[a, ..., &], we next chooses with 1<s< p—-1andq-s=
(=1)*-* (mod p), and we note thats, p—s} = {r, p—r}. Now it is not difficult to see
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that p/s has a positive continued fraction expansipys = [ak, a&_1, . . ., &, a;1]. Note
that this may or not be a minimized expansion, depending oetlvena, is greater
than 1 or equal to 1, but the length of the minimized versionfis q) anyway, thanks
to the definition we have given. By the above argument, smce 1, the length of
the minimized positive expansion g¥/(p — s) is 1 more than that ofp/s, and the
proposition is established. ]

Proof of Proposition 2.3. This will be based on results of -Géyerhoff [7] and
Guéritaud-Futer [14]. Note that (6) is equivalent to the twequalities

@) vol(S*\ K(p, 0)) = 2vs
(8) vol(S*\ K(p, ) = v3- (2(p, q) — 2.6667..).

Now, Cao and Meyerhoff have proved in [7] that the figure-eighot complement
(namely S*\ K (5, 2) in our notation) and its sibling manifold (which can thescribed
as the (5, 1)-Dehn surgery on the right-handed Whitehedgl #ire the orientable cusped
hyperbolic 3-manifolds of minimal volume, and they are thdyosuch 3-manifolds.
Each has volume equal ta2=2.02988. ., which implies inequality (7) directly.

To establish (8) we need to recall some terminology intredusy Lackenby in [20].
A twist in a link diagramD c R? is either a maximal collection of bigonal regions of
R? \ D arranged in a row, or a single crossing with no incident bagaregions. The
twist number (D) of D is the total number of twists iilD. MoreoverD is calledtwist-
reducedif it is alternating and whenever C R? is a simple closed curve meetirg
transversely at two crossing only, one of the two portiorte imhich y separateD is
contained in a twist. (This is not quite the definition in [2@t it is easily recognized
to be equivalent to it for alternating diagrams.)

Lackenby proved in [20] that iD is a prime twist-reduced diagram of a hyper-
bolic link L in S then

v3- (t(D) —2) < vol(S*\ L) < 10- vz - (t(D) — 1),

wherewvjs is the volume of the regular ideal tetrahedron. These ettgnaere improved
for the case of hyperbolic two-bridge links by Guéritaud &nder [14]. More exactly,
if D is a reduced alternating diagram of a hyperbolic two-briigk L, then by [14,
Theorem B.3]

©) 2v3 - t(D) — 2.7066 . . < vol(S*\ L) < 2uvg - (t(D) — 1).

Using the first inequality in (9), the next result implies,(8hich completes the
proof of Proposition 2.3 and hence of inequality (3) in Theorl.3:

Proposition 2.4. The link K(p,q) has a twist-reduced diagram with twist number
1(p, q).
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& A w A X

y\.‘.‘k.\

&/ A w A X X S /:

Fig. 1. The Conway normal form of a two-bridge link. The num-
ber of half-twists of the appropriate type in theth portion of
the diagram is given by the positive integar. The upper pic-
ture refers to the case of evénand the lower picture to the case
of odd k.

X0 R) KX

Fig. 2. Conway diagrams oK (23, 13) andK (12, 5). Note that
the required expansions are/23 =[1,1,3,3] and 15 =[2,2,2].

Proof. The required diagran® is simply given by the so-called Conway nor-
mal form of K(p, q) associated to the minimized positive continued fractigpa@sion
[ai,..., &] of p/q. The definition of the Conway normal form differs for even and
odd k, and it is described in Fig. 1. Two specific examples are dmva in Fig. 2.

Since thea;’s are positive, it is quite obvious that the Conway normalggam D
always gives an alternating diagram, besides being of eoprigne. The twists of this
diagram are almost always the obvious ones obtained by grgupgether the firsgy
half-twists, then the next;, and so on. An exception has to be made, however, when
a; equals 1, because in this case the first half-twist can bepgwith the nexta,
to give a single twist (as in Fig. 2-left). Note that > 1 by assumption, so no such
phenomenon appears at the other end. Since our definitidopof)) is preciselyk if
ap > 1 andk — 1 if ay =1, we see that indeed the diagram always I{@sq) twists.

Before proceeding we note thataf = 1 then the Conway normal form fd¢ (p, q)
is actually the same, as a diagram, as the mirror image of tirev& normal form
for K(p, p—q). The picture showing this assertion gives a geometric fpobahe fact
that if p/q=[1,az,...,8] then p/(p—Qq) =[az+1,a;3,...,a], used in Proposition 1.1.
So we can proceed assuming tl@at> 1. In particular, each bigonal region & \ D
is one of the § — 1)+ (@ — 1)+ - -+ (ax — 1) created when inserting tha, a, . .., a
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Rir1
N

R, \

X
X

& = ﬁ
y y
R, .. R3
i x N \/\ /

Ry N\ \ Ry R+

Fig. 3. Labels for the non-bigonal regions of the complemznt

a Conway normal diagram; agaknis even in the upper part of
the figure and odd in the lower part.

half-twists of the normal form.

To prove thatD is twist-reduced, let us look for a curve as in the definition,
namely one that intersecf3 transversely at two crossings. Near each such intersection
y must be either horizontal or vertical (see Fig. 1). Let ust falsow that if it meets
some crossing of D horizontally thenc is the crossing arising from the single half-
twist that corresponds to some coefficient equal to 1. If this is not the case, then
either to the left or to the right of there is a bigonal region o?\ D. Theny must
meet horizontally the crossing at the other end of this bédjorgion, which readily
implies thaty cannot meet the diagram in two points only.

Having shown thats can only be vertical when it intersects vertices, excephat t
vertices arising from they;’s with a; = 1, let us give labelsRy, Ry, ..., Rk, Re1 tO
the non-bigonal regions of? \ D, as in Fig. 3, and let us construct a graphwith
verticesRy, Ry, ..., R, Rw+1 and an edge joininR to R; for each segment through a
crossing ofD going from R to R;j. By assumptiony must correspond to a length-2
cycle in . Now for oddk the connections existing ifv are precisely as follows:

e ana;_;-fold connection betweey and Ry; for j =1,..., (k+1)/2;
e anay;-fold connection betweemR; and Ryj+; for j =1,..., (k—1)/2;
e a single connection betwedR; and Rj.; if 2 < j <k -1 anda; = 1.

Then the only length-2 cycles are the evident ones eithard®i R, and some
Ro; or betweenR; and someRyj+1, and the curvey corresponding to one of these
cycles does bound a portion of a twist &Y, as required by the definition of twist-
reduced diagram.

A similar analysis for everk completes the proof. O

The proof of Proposition 2.3 is complete. O
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Proof of inequality (3). Combining (7) and the first ineqtyalin (9) with Propo-
sition 2.4 we get

vz-max2, A(p, q) — 2.6667..} < vol(S*\ K(p, q)).

Together with (5), this formula implies that

2\ 3/2
(1 — %) -vz-max2, A(p, q) — 2.6667..}-n < vol(Mn(p, q))

with x =4 andn > 7 in general, and withc = 2¢/2 andn > 6 wheneverK(p, q) is
neither K (5, 2) nor K(7, 3). The conclusion now readily follows from Propositiari.
O

REMARK 2.5. It was pointed out by Guéritaud and Futer in [14] that ltheer
bound in (9) is asymptotically sharp. But it is numericallgtrvery effective in some
cases. As an example we will discuss below the gagg=k+1/m, where the lower
bound given by (9), which translates into our (8), is worsanttthe Cao-Meyerhoff
lower bound given by (7), sincKp, q) = 2.

REMARK 2.6. On the basis of some computer experiments, we congedthat
the Whitehead link complement (name§ \ K(8, 3), with vol(S® \ K(8, 3)) =vg =
3.66386..) has the smallest volume among all two-bridge two-compbtiaks.

3. Minkus polyhedral schemes and triangulations: The upperestimate

The proof of (2) and Proposition 1.6 is based on a realizatibM,(p, q) as the
quotient of a certain polyhedron under a gluing of its facHsis construction extends
one that applies to lens spaces and it is originally due to M8nI80]. We will briefly
review it here following [31].

Let us begin from the case whekg(p,q) is a knot, i.e.p is odd, whenceM,(p,q)
is uniquely defined byp, g, n. Recall that by the assumption (1),<0q < p. Then we
consider the 3-ball

B ={(x,y,2) eR®: x?+y?+ 22 < 1}

and we draw on its boundany equally spaced great semicircles joining the north pole
N = (0, 0, 1) to the south pol&= (0, 0,—1). This decompose8B? into n cyclically
arranged congruent lundsy, ..., Lh,_;. Now we insertp — 1 equally spaced vertices
on each semicircle, thus subdividing it info identical segments, which allows us to
view each lunel; as a curvilinear polygon with 2 edges. Next, we denote W the
vertex on the semicirclé; N Lj_; which is q segments down fronN, and by P/ the
vertex which isq segments up frong (indices are always meant moduh). We then
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Fig. 4. The Minkus polyhedral scheme ftM,(p, q).

draw insideL; an arc of great semicircle joining to P/,,, thus bisecting.; into two
regions that we denote bR, and R',;, with R, incident toN and R, incident to S.
Fig. 4 illustrates the resulting decomposition a2, which is represented &&%U {oo}
with S=oc0. In the picture we assumg > p/2.

Summing up, we have subdivide®B® into 2n curvilinear polygonsR,, R’ for
i =0,...,n—1, each havingp + 1 edges. The polygong, are aroundN and the
polygonsR are aroundS, and there is a marked vertdX shared byR and R,; (we
will not need to useP/ again). It is now possible to show that the manifdit\(p, q)
is obtained fromB2 by identifying R with R on 9B for i =0,...,n — 1 through
an orientation-reversing simplicial homeomorphism whichtches the verte®, of R,
with the vertexP._; of R.

As an example, Fig. 5 shows the Minkus polyhedral constroatiothe Hantzsche-
Wendt manifold, that igVi3(5, 3) in our notation.

Proof of inequality (2) for oddp. Referring to the above polyhedral construction
of Mn(p, q), we subdivide eaclRr into p — 1 triangles by taking diagonals from the
north pole N, and eachR’ so that the gluing betwee® and R’ matches the sub-
division. Note that the “diagonals” are only meant in a comalborial sense, they cannot
be taken as arcs of great circles. Since we have subdividedRth taking diagonals
from N, we can now take (combinatorial) cones with vertex\atand bases at the tri-
angles contained in th&'. Note that the “lateral faces” of these cones are the tremngl
contained in theR's, together with some triangles in the interior Bf. Being based
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Fig. 5. The Minkus polyhedral scheme fiM3(5, 3).

on a triangle, each cone is a tetrahedron, so we have a ssibdivof B3 into n(p — 1)
tetrahedra. By construction the gluings 8B2 restrict to gluings of the faces of these
tetrahedra, therefor®,(p, q) has a (loose) triangulation made wfp — 1) tetrahedra,
and the proof is now complete. O

Proof of inequality (2) for everp. To establish (2) for evep, i.e. for 2-component
two-bridge links, we extend to this case the Minkus polyhkedeastruction, see [31].
The way to do this is actually straight-forward: to realibe tmeridian-cyclic covering
M m(p, q) of S® branched alond& (p, q) we subdivided B® precisely as above, but we
denote byR andR/,,, the two regions into which the lunk; is bisected. Then we glue
R to R by an orientation-reversing simplicial homeomorphismahatg the vertex?; of
R with the vertexP,_, of R/. This construction is illustrated in Fig. 6. This realizati
of Mnm(p, ) again induces a triangulation with(p — 1) tetrahedra, which proves (2)
also in this case. O

Proof of Proposition 1.6. Let us carry out only the “first Hadff the subdivision
we did above of the Minkus polyhedral realization idf,(p, ). Namely, we subdivide
the regionsR,, R on 9B? into triangles, but then we do not add anything insBf
This yields a cellularization oM, (p, q) with 2-cells being triangles and with a single
3-cell. Therefore there is a triangular presentationzefM,(p, q)) with precisely the
same number of relations as the number of triangles in thislagzation. And this
number isn(p — 1), because there ara@ — 1) triangles ond B3, but they get glued
in pairs. O
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p—1

Fig. 6. The Minkus polyhedral scheme ftf, m(p, Q).

4. A sharper lower estimate

As already noticed, the lower bound on the volume given byd8s not seem to
provide very effective estimates in some instances. Far thason we discuss here a
sharper lower bound, which will lead to Theorem 1.5. Its prisobased on Proposi-
tion 2.1 together with a result of Futer-Kalfagianni-Puirg&2]. To state it we asso-
ciate to any two-bridge knot or link (p, g) with u € {1, 2} components a link having
[(p, g)+un components, denoted M., p, ) and called theaugmentatiorof K(p, q).
We only defineKaug(p, q) for I(p, g) = 2 and to do so we change (if necessary) the
pair (p, q), without changingK(p, q), so that the first coefficiers; in the expansion
p/q=1[as,...,&] is larger than 1. This implies that=1(p, q) is the twist number of
the Conway normal form oK (p, ¢). Then we defineK ¢ p, q) by modifying K(p, q)
as follows:
e Forallj=1,...,1(p, q) we encircle the two strands & (p, q) participating in
the j-th sequence of half-twists df(p, q) by a small unknotted knot;
e Forallj=1,...1(p,q) we remove from thg-th sequence of half-twists df (p,q)
as many full twists as possible.

To illustrate the definition oK,,¢(p, q) we consider the cadép,q) =2, sop/q =
k +1/m. Depending on the parity df and m we get the links shown in Figs. 7 to 9.
We include Rolfsen’s [33] notation and note th&tis the Borromean rings, a well-
known hyperbolic 3-component link with volumesg2=7.32772. .. It already follows
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) o

Fig. 7. K(p, q) for p/q=k+ 1/m andk = 2i, m= 2j, and its
augmentation3 = 65.

%) St

Fig. 8. K(p, q) for p/q=k+1/mandk =2 +1, m=2j, and
its augmentation3’ = 8. Takingk =2i andm = 2j + 1 leads to
B’ again.

2i+1

R =) eiv=)

2j+1

Fig. 9. K(p,q) for p/g=k+1/mandk =2 +1, m=2j +1,
and its augmentatios”.

from [1] (see also [5, p.269-270]) that
vol(S*\ B) = vol(S*\ B') = vol(S*\ B”)

(but see below for more on volume).
We are eventually ready to state [12, Proposition 3.1]:

Proposition 4.1. If I(p, ) = 2 then $\ Kaup, q) is hyperbolic and

vol(S*\ Kaug(p, ) = 2vg(1(p, 0) — 1).
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Proof of Theorem 1.5. This is now just a combination of Prijmss 2.1, 2.2
and 4.1, Theorem 1.1 of [12], and the following facts:
e K(p,q) is obtained by Dehn surgery dha.gp, q) along the small unknotted cir-
cles, with coefficients

_L, +L, e (_1)'#;
[a1/2] [a2/2] [a(p, a)/2]

e The links Kaug(p, ) can be obtained as belted sums of the Borromean #hgsad
their two variants3’ and B”, as investigated by Adams in [3];

e |t follows from the results in [1] that while performing theslbed sums, the sizes
and shapes of the cusps relevant to our surgeries do not €hang

e The geometric size and shape of a cusp in a hyperbolic linkptemment is deter-
mined by two linearly independent elementsand .« of R?, where the cusp is obtained
as the quotient oR? under the action of the lattice generated Joyand ;.. Moreover
A is the holonomy of the longitude of the link component cgorexling to the cusp,
whereasyu is the holonomy of the meridian. Any slope on the cusp can lpressed
as k times the longitude plué times the meridian for somk, h € Z, and its length
in the geometric cusp is the Euclidean normkofi +h - u;

e One can see using SnapPea [35] that taking maximal disjaigps at the two
“small circles” in B, B and B” the holonomy of the longitude is always+(2, 0),
while the holonomies of the meridians are given by:

n1= (0! \/é)r MEI_ = (_\/zv \/é), /'Léli = (—\/é, \/E),
n2=0,v2), w,=(0,v2),  uy=2,v2);

e Even if originally obtained using numerical approximatiotme information pro-
vided by SnapPea is completely reliable, having been cliecking exact arithmetic
in algebraic number fields with the program Snap [13]; altwely one can work out
the cusp shapes fds by hand, using the fact that its hyperbolic structure is iolet
by a suitable gluing of two regular ideal octahedra in hypicb3-space [34], and then
use the analysis in [1] foB8’ and B” to see how the cusps change;

e Taking into account the parity ofi and the cusp on which surgery must be per-

formed one easily sees that the length of the surgery slopkviys,/2(1 +a?), which
is larger than 2 if a > 5;

e By the previous point, the lower volume estimate of [12, Theeo 1.1] applies;
° 2v8/v3 =7.21985. .. ]

5. Sharper estimates for some examples

Our upper and lower estimates for the complexityMyf(p, q) hold in general but
they can be improved for specific cases. An improvement ofdiver estimate was al-
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ready discussed in the previous section, but it only holgsnasotically, whereas here
consider definite instances.

We begin by showing that the upper boumh— 1) for the complexity ofM,(p,q)
given by (2) can be significantly improved for oda in the special casé(p, q) = 2
using a more specific fundamental polyhedron instead of thekdi polyhedron. Note
that if I(p, q) =2 thenp/q=k+1/m, so (p, q) = (km+ 1, m).

Proposition 5.1. Let k m = 2 be integers Suppose they are not both qddo
K(km+1,m) is a knot Then with the usual notation

(10) c(Mp(km+1,m)) <n-(min{k, m} +k+m—3), Vvn.

Proof. It follows from [18] thatM,(mk+1,m) can be realized by gluing together
in pairs the faces of a polyhedron witm 4aces, half being + 1)-edged and half
being fn + 1)-edged polygons. More precisely, this polyhedron is iokth by taking
n polygons withk + 1 (respectivelym+ 1) edges cyclically arranged around the north
(respectively, south) pole of the sphere, and fblygons ( with k + 1 andn with
m+ 1 edges) in the remaining equatorial belt. In addition,hepalygon incident to a
pole is glued to one in the equatorial beldust as in Lemma 3.1 of [29], we can now
triangulate the polygons incident to the poles by takingydials emanating from the
poles, and the polygons in the equatorial belt so that trengtlations are matched
under the gluing. If we now subdivide the whole polyhedrontéling cones from the
north pole, the number of tetrahedra we obtain is given byntlmaber of triangles not
incident to this pole, which is

n-(k+1-2)+2n-(m+1-2)=n-(k+2m-—3).

Similarly, if we take cones from the south pole we get(2k + m — 3) tetrahedra, and
the conclusion readily follows. O

1As a minor fact we note that there are misprints in Figs. 1 aral PL8] for the case where the
integers involved have different parity, and in fact the tary patterns of; and F; do not match.
Using the notation of [18], so that the integers involved mre 2k + 1 ands = 2|, one way of fixing
these figures is as follows. Keep calling., F, F.1, ... from left to right them-gons incident to
the north poleN, so thatF; has the edges; on its left andxj.; on its right, both emanating from
N. Similarly, call.. ., Kj, Kj.1, ... from left to right thes-gons incident to the south polg so that
K; has the edgey; on its left andy;.; on its right, both emanating fror®. Then the onlym-gon
adjacent to bothF; and K; should beF;.,, not F;, while the onlys-gon adjacent to botlK; and
Fi+1 should beK;, as in [18]. Now the boundary pattern &f should be given, starting froNl and
proceeding counterclockwise, by the word

1,1 1 1
XiYi Z1%aoko1 Xiv2k-2 - XiaXie2Xiig,

while the boundary pattern foK; should be given, starting fron$ and proceeding clockwise, by
the word

YiXisa-1 (Vi YD)

which allows to reconstruct the edge labelling completely.
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Turning to the lower bounds, we suppose addm q) =2, so (,q) = (km+1,m).
Proposition 4.1 implies that

(11) k,rLiToo vol(S®\ K(km+ 1, m)) = vol(S*\ B) = 2vg = 7.32772. ..

But fixing smallk and m, and using the computer program SnapPea [35] to calculate
the volume ofS* \ K(km+ 1, m), one gets more specific values, and hence one can
employ the usual machinery to deduce better complexityneséis. For instance, let
us considerK (5, 2) = 4, the figure-eight knotK (7, 3) =5, and K(9, 4) = 6, where
notation is again taken from [33]. Note that

VO|(§ \ 41) = 2u3,

vol(S?\ 5,) = 2.81812. .,

vol(S®\ 6;) = 3.16396. . .

Then Propositions 2.1 and 2.2 imply the lower estimatesaioetl in the following
result, which also includes the upper estimates coming fRyoposition 5.1:

Corollary 5.2. The following bounds hold for g 7:

472 3/2
(12) 1-—) 20 <c(Mn(5, 2)< 3n;
A
(13) (1 — ?> -2.77664 .. -n < c(My(7, 3)) < 4n;

and for n> 6:

(14) -

3/2
2 2
(1— V2 ) -3.11739.. -n < ¢(Mn(9, 4)) < 5n.

As a matter of fact, using an explicit formula for vbi{(5, 2)) and a fundamental
polyhedron with triangular faces, it was already shown i8] that for sufficiently large
n one has 8 < c(Mp(5, 2)) < 3n.

Note that the general formula (2) giveskm as an upper estimate fa{M,(km+
1, m)), whence #, 6n and &, respectively, for the cases considered in the previous
Corollary. Therefore the upper bounds, 3n and 5 in (12)—(14) are indeed stronger
than those arising from (2).
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