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1. Introduction

In this paper we shall prove the following

Theorem. Let G be a 4-fold transitive group on Q={1,2,---,n}. If a
Sylow 2-subgroup of a stabilizer of four points in G fixes exactly seven points, then
G must be A, or M.

To prove the theorem we need the following Lemma 1, which will be proved
in the section 3.

Lemma 1. Let G be a permutation group on Q={1, 2, .-+, 23} and assume
the following :

(1) To any two distinct points i, j, of Q there corresponds a subset A(i, j)
of Q.

(2) 186 ) 21, AG, j)=A(), 7) and AG, )P4, j.

(3) If A(i, j) Sk, then A, k)= ).

(4) G is a subgroup of M,,.

(5) Let acG and A(i, j)= 1k, ky, -+, R} Then A(L, j)* =A%, j%)=
{k1a7 kza, ) kta}'

(6) If A(z, j)Dk, then there is an involution a of G such that I(a)D
fi, j, #.

(7) Let a be an involution of G. If I(a)D {z, j}, then | A(z, j) N I(a) | =1.

Then G is isomorphic to a subgroup of M,, which is one of the following groups:
(1) G=M,, and the lengths of the G-orbits are 11, 12.
(ii) G==M,, and the lenghts of the G-orbits are 1, 10, 12.
(i) G=M,*, where M,* is a subgroup of M,, of index 2, and the
lengths of the G-orbits are 1, 10, 6, 6.
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(iv) G==Ny, (M,) and the lengths of the G-orbits are 2, 9, 12.

(v) G=<Np, (M,)*, where Ny, (M,)* is a subgoup of N (M,) of index
2, and the lengths of the G-orbits are 2, 9, 6, 6.

(vi) G=PSL(2, 11) and the lengths of the G-orbits are 11, 1, 11.

(vii) G==S; and the lengths of the G-orbits are 5, 6, 2, 10.

We shall use the same notations as in [3].

2. Proof of the theorem

The proof of the theorem is obtained in the following way: If a Sylow
2-subgroup of the stabilizer of four points in G is semiregular, then G is 4, or
M,;, by [3]. Here we say that P is semiregular when P is “semiregular” on
Q—I(P) in the usual sense. Hence, by way of contradiction, we assume that
P is not semiregular. Let R be a subgroup of P such that its order is maximal
among all subgroups of P which fix more than twenty-three points and set
N=Ng(R)'®, Then N has an involution a which fixes exactly twenty-three
points and then Cp(a)’® is a subgroup of M,,. Let (,7,) be a 2-cycle of a, and
for {i, j} CI(a), let A(i, j) be the intersection of I(a) and the G;,; ;-orbit of odd
length (>1) which is uniquely determined by {z, 7, 7,7}. Then (Cy(a);,:,)*®
and {A(7, j)} satisfy the assumption of Lemma 1, and hence (Cy(a),, ;,)’ is one
of the permutation groups listed in Lemma 1. Thus we see that NV satifies the
conditions of Lemma 3 and we have a contradiction. The above result on
(Cn(a);1,)"” is useful in determining Cy(a)’“.

Let P be a Sylow 2-subgroup of the stabilizer G,,,;,. If P is semiregular,
then Gis 4, or M,; by [3]. Hence from now on we assume that P is not semi-
regular and proceed by way of contradiction.

2.1. For any point t of Q—I(P) |I(P,)| >23. In particular if |I(P,)| =23,
then NG(GI(P‘))I(P’)zM%.

Proof. Let |I(P;)| be the smallest number such that € Q—I(P) and Q a
Sylow 2-subgroup of Gp,y. Then I(Q)=I(P;). For any four points ¢, j, &, [
of I(P,) let P’ be a Sylow 2-subgroup of G, containing Q. Then P’ is con-
jugate to P. Hence by minimality of |I(P;)|, Np/(Q)?‘? is a semiregular 2-group
fixing I(P’) pointwise. Thus Ng(Q)!“P=M,, and |I(Q)|=23 by Theorem 1
in [4].

In particular if |I(P,)| =23, then by the same argument as above Ng(Q)??
=M,,, where Q is a Sylow 2-subgroup of Gyp,. Hence by the Frattini argu-
ment, Ng(Grpp)=Grepp Ne(Q) and so NG(GHP,))I(P’):NG(Q)I(P’):Mzs-

2.2. Let teQ—I(P). If |I(P,)|=23, then t is a point of a G,,,,-orbit of
even length.
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Proof. By (2.1), Ng(Grepp) P =M,. Hence a Sylow 2-subgroup of
(Ne(Grepp) ) 254 is a regular normal subgroup of (Ng(Grepp)' ¥%)123, On
the other hand since t€Q—I(P), Np(P,)’*# is a nonidentity 2-subgroup of
(Ne(Grepp)'®P),55. Hence any nonidentity 2-subgroup of (Ng(Grp,))'F%); 254
fixes exactly I(P) pointwise.

Suppose by way of contradiction that £ is a point of a G,,,,-orbit of odd
length. Let Q be a Sylow 2-subgroup of Gy, containing P, and P’ be a Sylow
2-subgroup of G, ,;,, containing Q. Since the index of G,,;,; in G,,,, is odd, P’
is a Sylow 2-subgroup of G,,;,, Hence Np/(Q)'“? is a nonidentity 2-subgroup
of (No(Grepp) ®+),234 Thus I(P')=I(P). This shows that t€I(P), contrary
to the assumption.

2.3. Since P is not semiregular, |Q2| >23. Hence there is a subgroup of P
which has more than twenty-three fixed points. Let R be a subgroup of P such that
its order is maximal among all subgroups of P which have more than twenty-three fixed
points. Here R may be the identity. Then R satisfies the following conditions:

(1) [I(R)|>22.

(2) Any imvolution of Ng(R)'® fixes exactly seven or twenty-three
points. In particular any central involution of a Sylow 2-subgroup in
No(R)!® fixes exactly twenty-three points.

(3) The stabilizer of any four points of I(R) in Ng(R)'® has an involu-
tion fixing exactly twenty-three points.

Proof. Since Sylow 2-subgroups of the stabilizer of four points in G are
conjugate in G, R is a Sylow 2-subgroup of Gy, Clearly [I(R)|>23.

For any four points ¢, j, kand [ of I(R) let P’ be a Sylow 2-subgroup of
G, ;& containing R. Since R is a Sylow 2-subgroup of G;cg), Np/(R)'® 1.
Thus (Ng(R)'“®); ; &, has a nonidentity 2-subgroup. Let Q be a Sylow 2-sub-
group of (Ng(R)'®);;x,; and x an involution of Q. Then by assumption
[1(Q)] <23 and [I(x)| <23. Hence by assumption and (2.1), |[(Q)|=7 or
23 and Ny pr®(Q) 9 < A4, or M, respectively and |I(x)|=7 or 23.

Now if any involution of Ng(R)'“® fixing at least four points fixes exactly
seven points, then |I(R)|=23 by Theorem 1 in [4], which is a contradiction.
Thus there is an involution fixing exactly twenty-three points in Ng(R)!®,
To complete the proof of (2.3) it is sufficient to prove the following lemma.

Lemma 2. Let G be a permutation group on Q={1,2, ---,n}, n>23. Let
P be a Sylow 2-subgroup of the stabilizer of any four points in G. Assume that P
satisfies the following conditions:

(1) P fixes exactly seven or twenty-three points.
(it) If |I(P)| =7, then Ng(P)'® < A4, and if |1(P)| =23, then
Ng( P)I(P)S M,
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(i) Let x be any involution of P. Then |I(x)|=7 or 23. Moreover
if |I(x)| =23, then No(G 1) <M,
Then

(1) any involution of G fixes exactly seven or twenty-three points and
any central involution of a Sylow 2-subgroup of G fixes exactly twenty-
three points,

(2) the stabilizer of four points in G has an involution fixing exactly
twenty-three points.

Proof. 1If any involution of G fixing at least four points fixes exactly seven
points, then |Q|=23 by Theorem 1 in [4], contrary to the assumption. Thus
there is an involution fixing twenty-three points.

Let y be an involution. Since |I(P)|=7 or 23, |Q| is odd and so |I(y)|
is odd. Suppose that |I(y)|=1 and y=(i,,)(5,2,):+. Since yENg(G;,4,454,)
there is a Sylow 2-subgroup P’ of G, ,,;,;, such that y& Ng(P’). By assump-
tion, Ng(P')'®" <A, or M,,. Hence |I(y’®")| =3 or 7, which is a contradic-
tion. Thus |I(y)|=1. If |I(y)| >4, then by assumption, |I(y)|=7 or 23.
Thus |I(y)|=3, 7 or 23.

Now we remark that if y and y’ are involutions such that |I(y)| =23 and
yy'=y'y, then |I(y7?)|=7 or 23 since Yy I°& Ng(Gycyy) P’ < M,,.

Since there is an involution fixing exactly twenty-three points, let a be an
involution such that |I(a)|=23. We may assume that

a = (1) (2)-++(23) (24 25)--- .

Since a€ Ng(G,4), there is an involution b of G,,,,,; commuting with a.
Then by the remark above |I(6'“”)|=7 or 23. Furthermore b fixes 24, 25 which
are not contained in I(a). Thus by assumption, |I(b)|=23. Hence we may
assume that

b= (1)(2)--+(7) (8 9) (10 11)---(22 23) (24) (25)---(39)--- .
Since ab=ba, we may assume that
a = (1) (2)--+(23) (24 25) (26 27)--+(38 39)--- .

Since <a, b><Ng(Gys2425), there is an involution ¢ of Gy,,,,s commuting with a
and b. Similarly |I(c)|=23. Since Ng(Grc))'®y No(Gre)'® and Ng(Grepy)'?
are subgroups of M,,, we may assume that
c=(1)(23)(45)(6)(7)(8)(9) (10 11) (12 14) (13 15) (16) (17) (18 19)
(20 22) (21 23) (24) (25) (26) (27) (28 29) (30 31) (32 34) (33 35)
(36 38) (37 39) (40) (41)--+(51)---.

Consequently we may assume that

a = (1) (2)-+(23) (24 25) (26 27)--+(50 51)--,
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b= (1) (2)+(7) (8 9) (10 11)--- (22 23) (24) (25) -+ (39) (40 41) (42 43)
(44 46) (45 47) (48 50) (49 51)-- .

Now let # be a central involution of a Sylow 2-subgroup of G containing
<a, b, ¢>. Then by the remark above |I(u)|=7 or 23. Suppose by way of
contradiction that |I(x)|=7. Since u commutes with a, b and ¢, I(z) is con-
tained in I(a), I(b) and I(c). This is a contradiction since |I(a) NI(b) N I(c)| =3
and [I(u)|=7. Thus |I(u)|=23. By the conjugacy of Sylow 2-subgroups
of G, any central involution of a Sylow 2-subgroup of G fixes exactly twenty-
three points. Furthermore this shows that there is no involution fixing three
points by the remark above. Thus (1) holds.

Next by assumption, for any four points there is an involution x fixing these
four points. Then [I(x)|=7 or 23. If |I(x)|=7, then by what we have
proved above, there is an involution x’ fixing exactly twenty-three points and
commuting with x. Since |I(x)|=7, I(x")DI(x). Thus (2) holds.

From now on R denotes the 2-group as in (2.3).

24. Leti, i, i, 1, be any four points of Q. Then G
orbit of odd length (+1).

ivigigiy has exactly one

Proof. Let P’ be a Sylow 2-subgroup of G,, ;,;, ;. Since |I(P’)|=7, we
may assume that I(P')={i,, ¢,, iy, %, &, %, ¢;}. Then from Ng(P')'®»=A4,,
there is an element

x = (1)) (1) (2) (2) (85 %6 7).
Since x € G,

i14243 14

Since P’ is a Sylow 2-subgroup of G

three points i, %, ¢, belong to the same G, ,,;, ;-orbit.
this orbit is of odd length. Fur-

this orbit is only

i142 4344
thermore by the conjugacy of Sylow 2-subgroups of G;
one G; -orbit of odd length (=1).

i142143 484

14243447

2.5. Let a be a 2-element of Ng(R) such that a’*® is an involution fixing
twenty-three points and let (1, 1,) be a 2-cycle of a?™®. Set T=1I1(a’®). For any
two points i, j of T' G, ;; ;, has exactly one orbit of odd length (1) by (2.5).
Hence we denote the intersection of the G, ; ; ;-orbit of odd length (+1) and T by
A, (2, j) or merely A(i, j). Then we have

(1) 1AG, j)| =1 and A, j)=A(j, 9).

(2) If A(Z, j) Dk, then Az, k).

(3) If A(z, j) Dk, then there is a 2-element x of Ng(R) such that x'®
is an involution commuting with a’™®, |I(x'®)| =23 and I(x' ®)D
{i’ ]" k’ il’ iZ} M

(4) Let x be a 2-element of Ng(R) such that x*® is an involution fixing
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twenty-three points and commuting with a’®. If x fixes i, j, i, 1,
then |A(Z, ) NI(x7)|=1.

Proof. Since <a, R><Ng(G; ;) and G;
odd length (=1), <a, R) fixes this G;

;i1i; has exactly one orbit of

;ji1ig-orbit as a set. Furthermore since

<a, R) is a 2-group, <a, R> has fixed points in this G, , ;-orbit. Thus
[A(Z j)| =1. Clearly A(%, j)=A(j, ©). Thus (1) holds.
By the 4-f01d traﬂsitivety Of G, | G"l izij: Gil izijh I = lGij isik N G,‘1 izl'jkl y

where keE{i,, 7, 4, 7, j}. Thus (2) holds.

Let k be a point of A(Z, j). Since a €Ng(G,, ;,: ;1) @ normalizes some
Sylow 2-subggroup P’ of G,,,,; ;s containing R. Since & is a point of the
Gy iy j-orbit of odd length, P’ is also a Sylow 2-subgroup of G, ;,; ;. Set
O=Np/(R). Since R isa Sylow 2-subgroup of G;r,, Q?®=+1. Then because
a€ Ng(Q) and I(R)* = I(R), there is an element x in Q such that x’® is an
involution and commutes with a’®. Since I(Q)2I(P")2 {;, j, &, iy, 1,}, I(x)2
{t, j, k, 1, i,}. Furthermore since Ng(a)"<M,, |I(x7)|=7 or 23. On the
other hand x’® fixes two points k, / which are not in T. Hence by (2.3),
| I(x7®)| =23. Thus (3) holds.

Let x be a 2-element of Ng(R) satisfying the assumption of (4). Since
a€ Ng(<x, x°, R>), there is a Sylow 2-subgroup R of {x, x*, R> such that
aENg(R). Then since RI®={x>®, there is a 2-element y of Ng(R) such
that y?®—xI® and R=(y, R>. Since ac Ng(G; ; i, i,), a normalizes a Sylow
2-subgroup P’ of G;;, ;, containing R. Set [(P')= &, J, i3, 15 Ry, Roy R}
Since Ng(P')'*"=A,, we may assume that a’®’=(3) () (i, 7,) (k, k,) (ks). Since
k; is fixed by the Sylow 2-subgroup P’ of G; ;, ;,, k; belongs to the G, ;;, ;-
orbit of odd length (= 1). Since I(x®)=1(y’“®) and any point of I(y"*®)—I(P’)
belongs to a G -orbit of even length by (2.2) A(Z, j) NI(x")= {ks}. Thus
(4) holds.

iji1d2

2.6. Let a be 2-element of Ng(R) such that a'® is an involution fixing
twenty-three points and let (i,i,) be any 2-cycle of a*™®. Set T'=I(a’®) and
N=Ng(R)"®. Then (Cy(a’®),, ;,)" is one of the groups as in Lemma 1.

Proof. By (2.5), A;, (4, §) in (2.5) and (Cy(a?®),, ,,)" satisfy the assump-
tions of Lemma 1. Hence (Cy(a?’®);, ;,)" is one of the goups as in Lemma 1.

By the assumption of the theorem, (2.3) and (2.6), N=Ng(R)'‘® satisfies
the following conditions: )

(1) Let P be a Sylow 2-subgroup of the stabilizer of any four points
in N. Then |[I(P)|=7 and Ny(P)'®< A, or |I(P)|=23 and
NN(P)I(P)SMZ:-P

(2) Any involution u of P fixes exactly seven or twenty-three points.
If [I(u)|=23, then Ny(u)’™< M,, and for any 2-cycle (ij) of
u (Cn(u); ;)'® is one of the groups as in Lamma 1,
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In Lemma 3 we shall show that there is no group satisfying the above conditions
(1) and (2). Then we shall complete the proof of the theorem.

Lemma 3. Let G be a permutaiion group on Q={1, 2, n}, n>23.
Then there is no group which satisfies the following conditions:

(1) Let P be a Sylow 2-subgroup of the stabilizer of any four points-
in G. Then |I(P)|=7 and Ng(P)'P°< A4, or |I(P)|=23 and
Ng(P)I® < M,

(2) Any involution u of P fixes exactly seven or twenty-three points.
If |I(u)|=23, then Cg(u)'™ < M,, and for any 2-cycle (ij) of u
(Co(u); ;)7 is one of the groups as in Lemma 1.

Proof. The proof will be given in various steps. Suppose by way of
contradiction that G is a counter-example to Lemma 3. The following (i) and
(i1) follow immediately from Lemma 2.

(i) Any involution of G fixes exactly seven or twenty-three points and
any central involution of a Sylow 2-subgroup of G fixes exactly twenty-three points.

(ii) The stabilizer of any four points in G has an involution fixing exactly
twenty-three points.

(i) Let Q be a 2-group fixing exactly twenty-three points. Then Q is
semiregular and elementary abelidn,

Proof. By assumption, Q is semiregular. Suppose that Q has an element
x=(ij k l)---. Then x&Ng(G; ;&,). Hence x normalizes a Sylow 2-subgroup
P’ of G; ; ;. By assumption, Ng(P')’ ®PHh< A, or M, Hence x has a 2-cycle,
which is a contradiction. Thus Q is elementary abelian.

(iv) Let a be an involution fixing twety-three points and let (i) be a
2-cycle of a. Then any involution of Cg(a); ; fixes exactly twenty-three points.
If x and y are two distinct involutions of Cg(a); ; such that xy=yx, then |I(x)N
() NIa)|=3.

Proof. Since Cg(a)’™ is a subgroup of M,,, two commuting involutions
with distinct fixed points have three fixed points in common. On the other
hand (Cg(a); ;)'* is one of the groups as in Lemma 1 which is isomorphic to a
subgroup of M,,, where M,, is embedded in M, and has orbits of lengths 11
and 12, and two commuting invoutions in M, of degree 11 have distinct fixed
points. Hence two commuting distinct involutions of (Cg(a); ;)'“” have exactly
three fixed points in common. Thus x'®=y!® or |I(x)NI(y)NI(a)|=3. If
xI@ =9I then xy is an involution fixing I(a)N {7, j} pointwise. Thus
| I(xy)| >23, contrary to the assumption (2). Hence |I(x) NI(y) NL(a)|=3.
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Since any involution of Cg(a), ; fixes seven or twenty-three points of I(a)
and at least two points 7, j which are not in /(a), by the assumption (2), any in-
volution of Cg(a); ; fixes exactly twenty-three points.

(v) We may assume that there are three involutions a, b and c of the
Sollowing forms such that |I(a)| =|I1(d)| = |I(c)| =23 and <a, b, c) is elementary
abelian.

a = (1) (2)-+(23) (24 25) (26 27)--+(50 51)---

b= (1) (2)-(7) (8 9) (10 11) -+ (22 23) (24) (25)--+(39) (40 41) (42 43)
(44 46) (45 47) (48 50) (49 51)---

¢ = (1) (2 3) (4 5) (6) (7) (8) (9) (10 11) (12 14) (13 15) (16) (17) (18 19)
(20 22) (21 23) (24) (25) (26) (27) (28 29) (30 31) (32 34) (33 35)
(36 38) (37 39) (40) (41)-++(51)-- .

Proof. By (ii), there is an involution a fixing twenty-three points. We
may assume that

a = (1) (2)--+(23 )(24 25)--- .
By (iv), there is an involution b of Cg(a),, ,»» We may assume that
b= (1) (2):++(7) (8 9) (10 11)--+(22 23) (24) (25)--+(39)-+- .

Since <a, by < Ng(Gyy,45), there is an involution ¢ commuting with a and b.
By (iv), ¢ fixes exactly twenty-three points. Hence we may assume that

¢ = (1) (2 3) (4 5) (6) (7) (8) (9) (10 11) (12 14) (13 15) (16) (17) (18 19)
(20 22) (21 23) (24) (25) (26) (27) (28 29) (30 31) (32 34) (33 35)
(36 38) (37 39) (40) (41)-+(51)---

Hence we my assume that
a = (1) (2)--+(23) (24 25) (26 27)--+(50 51)---,

b= (1) (2)-(7) (8 9) (10 11)--- (22 23) (24) (25)-+- (39) (40 41) (42 43)
(44 46) (45 47) (48 50) (49 51)--- .

From now on a, b and ¢ denote the elements as in (v).

(vi) Set T=(Ci(a)y ). Let

b= pl@® ,

=@,

x, = (1) (2) (8) (3 9) (10 12) (11 15) (13 14) (4) (18 19) (16) (5 17) (20)
(6 21) (23) (7 22),

x, = (1) (2) (10) (3 11) (8 12) (9 14) (13 15) (18) (4 19) (5) (16 17) (20)
(6 21) (22) (7 23),
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x, = (12) (3) (8) (9) (12 13) (10 14) (11 15) (4) (5 6) (7) (16 20) (17 21)
(18 19) (22) (23),

x, = (12)(3) (8 13) (9 12) (10 11) (14) (15) (5) (4 7) (6) (16) (17) (20 21)
(18 23) (19 22),

x, = (2) (8) (10) (1 12) (9 13) (3 15) (14 11) (4) (7) (17) (18) (5 23) (6 21)
(16 22) (19 20),

x, = (3) (13) (10) (2 14) (1 8) (9 11) (12 15) (4) (5) (17) (22) (6 18) (7 20)
(16 21) (19 23),

3= x,"%=(2) (3) (8) (1 9) (10 15) (11 13) (12 14) (20) (22) (4 21) (5 23)
(6) (17) (18 19) (7 16),

y, = % =(2) (3) (15) (1 14) (8 10) (9 13) (11 12) (4) (22) (20 21) (5 23)
(18) (16) (6 19) (7 17)

3o = a5 =(2 3) (1) (12) (13) (8 11) (9 10) (14 15) (4) (5) (20) (21)
(2223) (6 7) (16 19) (17 18).

Then T is isomorphic to one of the following groups, and hence we may identify T
with one of these groups:

(1) <b, ¢, x,, x,, x,>, which is isomorphic to M,, and has orbits {1, 2, 3, 8,
9, -+, 15} and {4,5,6,7,16,17, ---, 23} .

(2) <b,7, %, x,, %,%,>, which is isomrphic to M,, and has orbits {1},
{2,3,8,9, -+, 15} and {4,5,6,7,16,17, ---, 23} .

(3) <b, ¢, x,, x,>, which is isomorphic to M,* and has orbits {1}, {2, 3,
8,9, ., 15}, {4,5, 16,17, 18, 19} and {6, 7, 20, 21, 22, 23} .

©)) <b, T, V1, ¥y, XX, which is isomorphic to N(M,) and has orbits
2,3}, {1,8,9, ---, 15} and {4,5,6,7, 16,17, ---, 23} .

(5) <B, T, Vs, V2 Vopswhich is isomrphic to N(M,)* and has orbits {2, 3},
{1, 8,9, -, 15}, {4, 5, 20, 21, 22, 23} and {6, 7, 16, 17, 18, 19} .

(6) <D, T, x5, which is isomorphic to PSL(2, 11) and has orbits {1, 2, 3,
8,9, -, 15}, {7} and {4,5,6,16,17, ---, 23} .

(7) <b, T, x5, which is isomorphic to S and has orbits {1, 8,9, 10, 11},
{2, 3,12, 13, 14, 15}, {4, 5} and {6,7, 16,17, ---, 23} .

Proof. By the assumption (2), T'is isomorphic to one of the following groups:
M, M,,, M\ *, N(M,), N(M,)*, PSL(2,11) or S;. In (3.16) and (3.17) of the
section 3 we shall show that these groups have the generators and the orbits as
in (vi).

(vii) Let Q be a 2-subgroup fixing exactly twenty-three points. If Q is a
Sylow 2-subgroup of G, then Q is of order two and Ng(Q) ‘@ < M,,.

Proof. Let I(Q)=1{1,2, ---,23}. Suppose that the order of Q is at least
four. Then by (iii), Q has two involutions ¥ and y. We may assume that
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x = (1) (2)---(23) (24 25) (26 27)---,
y = (1) (2)---(23) (24 26) (25 27)--- .

Since <x, > <Ng(G 55 2 1), there is an involution 2 of G,, ,; , 5, fixing twenty-
three points and commuting with x and y. By the assumption (2), we may assume
that '

2= (1) (2)---(7) (8 9) (10 11)---(22 23) (24) (25) (26) (27)--- .
Then <x, y><Cg(2);, and |I(x) NI(y)NI(z)| =7, contrary to (iv). Thus the

order of Q is two.

By the assumption (2), Ng(Q)?@ < M,,.

From now on set T=(Cg(a)y )’ and C=C¢(a). Then by (vii), <a> is a
Sylow 2-subgroup of G;,,.

(viii) Let x and y be involutions such that both x and vy belong to Cg(a)
n CG(b) and xl(ﬂ)zyl(“). Then xl(b)____yl(b) or (ytl)l(b).

Proof. Since (xy)’““=1 and xye Cq(d), |I(xy)N I(b)|=7 or 23. Hence
(2y)’® is an involution or the identity. If (xy)’® is the identity, then x'®=
yT®.  Next suppose that (xy)’® is an involution. Assume that a’® == (xy)’ .
Since xye C, <{a, xy>I® is of order four. Hence Gy, has a subgroup {a, xy>
of order divisible by four, contrary to (vii). Thus a’“®=(xy)’® and so x’?®=

(ya)l(b)

(ix) Let (i) be any 2-cycle of a. If (C; ,)'® is not isomrophic to M,
then CT contains (C; ;) properly.

Proof. We may assume that (7 j)=(2425). Then C,, ,,><b,c>. By as-
sumption, T=(C,, ,;) is one of the groups other than (1)in (vi). Suppose by
way of contradiction that T'= C7®, Then (Cj, ;)" is a subgroup of T and
isomorphic to one of the groups other than (i) in Lemma 1, where 32 and 33 are
fixed by b and a has a 2-cycle (32 33).

Now we show that C,, ,; has an element x such that x’“>=¢’“. Since none
of groups M, *, N(M,)*, PSL(2,11) or S; as Lemma 1 contains any group as
Lemma 1 properly, if T is isomorphic to M,*, N(M,)*, PSL(2, 11) or S,, then
(Cy; 35)=T. Hence C,, j, has an element x such that x’““=¢/“”, Next suppose
that T is isomorphic to M,,. Then (Cj, 5,)'® is isomorphic to M,, or M,*. On
the other hand if a subgroup of T is isomorphic to M, *, then this subgroup is the
group (3) in (vi). Thus (Cy, 5)" =T or (Cy, 5)' is the group (3) in (vi), and
s0 Cj, 5, has an element x such that x’“=¢I“>.  Finally suppose that T is iso-
morphic to N(M,). Then (Cy, ;;)"® is isomorphic to N(M,) or N(M,)*. Similarly
if a subgroup of T is isomorphic to N(M,)*, then this subgroup is the group (5)
in (vi). Thus (Cy; 49)" =T or (Cy, 45)"® is the group (5) in (vi), and so Cy, 4
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has an element x such that x’““=¢’“°, Thus in any case Cj, ;; has an element
x such that x7®=¢I,

Then « is an involution on I(a)U {32, 33}. Since »* fixes I(a)U {32, 33}
pointwise and |I(a) U {32, 33} | =25, &* is odd order. Hence x° is an involution,
where s is a suitable odd integer. Set ¢/=x°. Then C,, ,;; has an involution ¢’ such
that ¢’7=¢!>, Then b¢’ is an involution on I(a) U {32, 33}. Since (bc’)? fixes
I(a) U {32, 33} pointwise and |I(a) U {32, 33} | =25, (bc)* is of odd oder. Hence
bc’ is of order 2r, where 7 is an odd integer. Set ¢’=b(bc’)”. Then ¢” is an
involution commuting with & and ¢’7®=¢'“. Since ¢/®=(32 34) (33 35)---,
"1 ®=(32) (33)-:+ and a?®=(32 33).-, (cc”’)'® %1, a’™®, contrary to (viii).

(x) Let x be a 2-element of C such that x'® is an involution. If there is
an involution y in C such that |1(y)| =23 and x' and y'® are conjugate in C*®,
then x is an involution fixing twenty-three points. ’

Proof. By assumption, there is an element 2 of C such that (x*)/“=9y7>,
Let R be a Sylow 2-subgroup of <{x%, y, a>. Since R'={y>’, the order of
R'® s two. By (vil), R;,;=<a>. Thus the order of R is four. This implies
that both <{¥*, a> and <y, a> are Sylow 2-subgroups of <%, y,a>. Hence x* is
conjugate to y or ya. Thus x is conjugae to the involution y or ya which fixes
exactly twenty-three points by (iv). Hence x is an involution fixing twenty-three
points.

(xi) Let x and y be distinct involutions of C —<a> such that xy=yx,
I(x")=1I(y"®) and x=+ya. If z'is an involution of C —<a) fixing twenty-three
points and commuting with x and y, then I(x')=1I(2">).

Proof. Suppose by way of contradiction that I(x®)=1(2"“). Set H=
<x,y,a>. Then H is an elementary abelian group of order eight. Since I(H*)
=1(x") £ 1(27”), any element of H —<{a) fixes the same three points of I(a) N
I(2) and four points of I(2)—(I(z) N I(a)). Since |H—<{a>|=06 and |I(z)—(I(?)
N1I(a))|=16, there are two involutions # and v of H—<a) such that « and v fix
the same points ¢, j of I(z)—(I(z)N I(a)), where (i) is a 2-cycle of a. Then u
and v are involutions of C; ; and I(u/*“*’)=1(2"*“), contrary to (iv).

(xii) CT is intransitive and has no orbit of length twenty-two. Fur-
thermore it is impossible that CT® has two orbits T' and A such that |T'|=2, |A|
=21 and (CT®)y is doubly tarnsitive on A.

Proof. Assume by way of contradiction that (xii) is false. Then we show
first that there is a 2-element

x= (1) (2) - (7) (8 16) (9 17) ---

in C such that x7® commutes with b and ¢, First suppose that C7“ is transi-
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tive. Then C7“ is M,, or contained in a group of order 23.11 (see [1], p. 235).
The latter case does not occur since C?“® has an ivnolution. Thus C?“ is M,,.
Since

b= (1) (2)(7) (8 9) (16 17) -~
and

c=(1)(23)*5)(6)(7)(8) (9) (16) (17) ---,

C has a 2-element x as above. Next suppose that C? has an orbit of length
twenty-two. Then C’“® is a subgroup of M,,. Since M,, has no proper transitive
subgroup on twenty-two points (see [1], p. 235), C1® is M,,. Since T=(C,, ,;)'®
is contained in C7> and C’* has an orbit of length one, T is isomrphic to M,,,
M, * or PSL(2, 11) by (vi). Hence by (vi), the C?“-orbit of length one is {1} or
{7}. Hence similarly to the case above C7**> has a 2-eclement x as above. Finally
suppose that C7“* has two orbits I" and A such that |T'|=2, |A|=21 and (C?“®);
is doubly transitive on A. Since T is contained in C7 and C’“ has an orbit
of length two, T is isomorphic to N(M,), N(M,)* or S, by (vi). Hence by (vi),
T is {2, 3} or {4, 5} and contained in I(8). Let M be a normalizer of a Sylow
2-subgroup of (C7®);3, in (C*®)n.  Since a Sylow 2-subgroup of (C?®);, is
a Sylow 2-subgroup of a stabilizer of two points of A in (C?“’) by a lemma of
E. Witt ([6], Theorem 9.4), M is doubly transitive on I(b)—T. Hence M has
an element # of order five and fixing exactly one point of I(a)—I(b). Since a
Sylow 2-subgroup of (CT),, is (C7);, and a semiregular 2-group on I(a)
—I(b), @ is a nonidentity automorphism of (C?®),¢, induced by conjugation by
#. Since (CT),q, is of order at most sixteen and # is of order five, (C7*°);e,
is of order sixteen. On the other hand since € is a transposition on I(b)—T', the
normalizer of (C’®);s, in CT® is S; on I(b)—T. Thus (C7“). is doubly
transitive on A and a stabilizer of two points of A in (C7®); is of order divisible
by 3:16. Hence C?*>=Ny, (M,,), and so similarly to the case above C has a
2-element x as above.

Let R be a Sylow 2-subgroup of <a, b, ¢, x> containing <{a, b,c>. Then R’
={a, b, c, x>T. Hence there is an element x’ of R such that x’7=x’“’. Since
C'*®=M,,, M,, or N, (M,,), any involution of C7** is conjugate to b or ¢in
CT®, Hence by (x), R is elementary abelian. Since I(b)=1(x'"‘*), from (xi)
we have that I(b)=1(c), which is a contradiction.

(viii) It is impossible that C*“ has an orbit of length fourteen.

Proof. Assume by way of contradiction that C7“ has an orbit of length
fourteen. Then by (vi), T is isomorphic to N(M,) or N(M,)*, which has orbits of
lengths 2, 9, 12 or 2, 9, 6, 6 respectively. Hence C7“ has orbits of lengths 9, 14.
On the other hand M,; has not a maximal subgroup having orbits of lengths 9, 14
(see [1], p- 235). Hence if C/“” has orbits of lengths 9, 14, then the maximal
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subgroup of M,, containing C?*® is transitive and so of order 23. 11 (see [1], p.
235). 'This is a contradiction since the order of C7“* is even, Thus (xiii) holds.

(xiv) It is impossible that CT*> has an orbit of length fifteen.

Proof. Assume by way of contradiction that C'“” has an orbit of length
fifteen. Then by (vi), T is isomorphic to N(M,)* or S;, which has orbits of leng-
ths 2,9, 6,6 or 5,6, 2, 10 respectively. Hence C7* has orbits of lengths 2, 6, 15
or 8,15.

First we show that if C/“ has orbits of lengths 2, 6,15 then C* is S,, where
A is the CT®-orbit of length six. In the case T=~N(M,)*, we may assume that
A={4,5,20,21,22,23}. In the acse T=S;, A={2,3,12,13,14,15}. Suppose
that (C7“),=1. Since |A|=06and C'““<M,, (CT), is an elementary abelian
2-group and so (C'“°), has exactly one orbit of length one in I(¢)—A. On the
other hand (C’“), is a normal subgroup of C’“. Hence C7“* has an orbit of
length one in I(a)— A, which is a contradiction. Thus (C’“?),=1. Hence C*
is isomorphic to C7“ and so contains T properly. First assume that T is iso-
morphic to N(M,)*. Since C7” has an orbit of length fifteen, C* has an element
of order five. Since |A|=6, C* is doubly transitive. Furthermore C* is of order
divisible by 5+ |T*| and has an odd permutation ¢*. Hence by [5], C* is iso-
morphic to S;. Next assume that T is isomorphic to S;. Since C* contains T
properly, C* is S, by [5].

Next we show that if C/“ has orbits of lengths 8, 15, then C*’ contains 4,,
where A’ is the CY®-orbit of length eight. In the case T=N(M,)* we may
assume that A’={2, 3,4, 5,20, 21,22,23}. Inthecase T=S, A'={4,5,2,3, 12,
13,14,15}. Take two points 2,4 of A’. In the case T==N(M,)*, T,=<y,, Tys>
bas orbits of lengths 1, 6 on A’— {2} and T,=<b, y,, ys> has no orbit of length
one in A’— {4}. Inthe case T=S,, T,=<b, x,, x,°> has orbits of lengths 1, 6 on
A’ — {4} and T,=<D, (bx,)*s> has no orbit of length one in A’— {2}. Since A’
is an orbit of C, C, is conjugate to C,. Hence C, is transitive on A’— {2} and so
C*' is doubly transitive on A’. Furthermore since C!® has an orbit of length
fifteen, C7“ has an element of order five. Since an element of order five fixes
exactly three points and |A’|=8, C*’ has an element of order five. Thus by [5],
C*’ contains 4,

Hence there is an involution d in C such that d is conjugate to b and has the
following form: If T is isomorphic to N(M,)*, then

d=(2) (3) 4) (5) (20 23) (21 22)---,
and if T is isomorphic to S;, then
d=(2) (3) 4) (5) (12 15) (13 14)---.

Since <b, d1®>< (C1®), 3 15 1(D)=1(d") and (bd)'* is an involution. Hence
(bd)’ is a 2-element (== 1), where s is a suitable odd integer. Since ((bd))’“” is
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conjugate to b and of order two, (bd)’ is an involution by (x). Thus (bd)*is a
central involution of a dihedral group <b,d>. Set d’=b(bd)’. Then d’ is an
involution commuting with b and has the same form as d on I(a). Furthermore
(cd)T®=(1) (6) (7) (2 3) (4 5) (20 21) (22 23)--- or (1) (6) (7) (2 3) (4 5) (12 13)
(14 15)---. Thus (¢d’)’* is an involution. Hence by the same argument as
above, d”=c(cd’)” is an involution commuting with ¢ and d"/®=d""®=41®,
where 7 is a suitable odd integer. Since b commutes with ¢ and d’, b commutes
with @”. Furthermore I(b)=1(d"?’“) and d”’#ba. On the other hand ¢ is an
involution commuting with & and d” and fixing twenty-three points. Hence by
(xi) I(b)=1I(c), which is a contradiction.

(xv) It is impossible that CT® has an orbit of length eight.

Proof. Assume by way of contradiction that C/“” has an orbit of length
eight. Then by (vi), T is isomorphic to N(M,)* or S;, which has orbits of lengths
2,9,6,6 or 5, 6,2, 10 respectively. Since C’*® has no orbit of length fiftten by
(xiv), C7“ has orbits of lengths 8,9,6 or 5, 8,10. Since the C7-orbit of length
eight is A’ as in the proof of (xiv), by the same argument as is used in (xiv) C*" is
doubly transitive on A’. Hence C/“ has an element of order seven which fixes
exactly two points. On the other hand C7“ has an orbit of length six or five,
which must be fixed by an element of order seven pointwise. Thus we have a
contradiction.

(xvi) It is impossible that C*® has an orbit of length sixteen.

Proof. Assume by way of contradiction that C7“* has an orbit of length
sixteen. Then by (vi), T is isomorphic to M,* or S;, which has orbits of lengths
1,10, 6,6 or 5, 6, 2, 10 respectively. Hence C7“ has orbits of lengths 1, 6, 16
or2,5 16 or7,16. Let A be the C?-orbit of length sixteen. Set I'=1I(a)—A
and E=(C*®);. Since |T'|=7, CT is a subgroup of S, and so a Sylow 2-sub-
group of CT is of order at most sixteen. On the other hand since (C?“”), has an
involution b, where 2€ A, and | A|=16, the order of C’* is divisible by 16-2.
Hence CT is not isomorphic to C7“°. Since CT is isomrphic to C?“°/E, E+1.

Now we show that the order of E is sixteen and any two involutions of E are
conjugate. Since T is isomorphic to M * or S;, T" contains a T-orbit of length
six or five on which T is 4, or S; respectively. Hence C?*® has an element # of
order three and fixing four points of I" and an element 7 of order five and fixing
two points of T".  Since |I(#)|=5 and |1(7)| =3, # and 7 fix exactly one point of
A. Since A is a C?“-orbit, we may assume that # and 7 fix the same point 7 of
A. Then (&, D) is transitive on A— {{} and so C/“® is doubly transitive on A.
On the other hand E is a normal subgroup of C?“ and semiregular on A. Hence
E is regular on A. Thus the order of E is sixteen. Furthermore since <{#, 7>
acts transitively on E — {1} by conjugation, any two involutions of E are conjugate.
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Let x and &’ be 2-elements of C such that x’®@=x""“ E— {1}. Then ?
and x’? are contained in {@> which is of order two. Hence the orders of x and
x’ are two or four. Assume that the order of x is four and the order of *’ is two.
Then {x, x> P={x>? and <{x, ¥,y =><{¥*>=={a) by (vii). Hence a Sylow
2-subgroup of {x, x"> is of order four. This implies that both (x> and {x’, @) are
Sylow 2-subgroups of {x, #”> and not conjugate, which is a contradiction. Thus
x and x’ are of the same order. Then since any two involutions of E are conju-
gate, every 2-elements of C—<a) have the same order. Let O be a Sylow 2-sub-
group of Cr. Then Q'®=E and Q,,,=<a). Hence Q is of order 16-2. If
every elements of Q—<a) are of order four, then a is the only one involution of
Q. Hence Q is a cyclic or generalized quaternion group. This is impossible
since Q7 is an elementary abelian goup of order sixteen and isomorphic to
Q/<ay. Hence Q is elementary abelian. Since b normalizes Cr,, we may assume
that b normalizes Q. Since b fixes exactly four points of A and Q7 is regular
on A, Corw () is of order four. Hence there are two involutions y and 2z in
Q —<a) such that both y7* and 27> commute with b and =2/, Suppose
that b commutes with neither y nor 2. Then since (y-y?)!““=(z-2°)I®=1, y®
=ya and 2*=za. Hence (y2)’=yaza=yz and yz4a. Hence we may assume
that b commutes with y. Then y fixes exactly three points of I(d) N I(a) and four
points of I(b)—(I(b) N I(a)). Hence there is a 2-cycle (¢ j) of a such that C; ;>
<b, y>. Since (C; ;)'® is a subgroup of C'“, T" is unions of C; ;-orbits. Since
|T"| =7, by the assumption (2) (C; ;)**® is isomorphic to M,* or S; and has orbits
of lengths 1, 6 or 2, 5 on I" respectively. Therefore ((C; ;)’““)r=1. However
yI® fixes T pointwise. 'Thus we have a contradiction.

(xvii) It is impossible that C'“® has an orbit of length seven.

Proof. Assume by way of contradiction that C’“* has an orbit of length
seven. Then by (vi) T is isomorphic to M,)* or S;, which has orbits of lengths
1,10, 6, 6 or 5, 6, 2, 10 respectively. Hence C’“ has orbits of lengths 7, 10, 6
or 7,16. Then CT™ has an element of order seven. Since an element of order
seven fixes exactly two points, it is impossible that C7 has orbits of lengths
7, 10, 6. By (xvi), the second case does not occur. Thus (xvii) holds.

(xvili) It is impossible that C* has an orbit of length nine.

Proof. Assume by way of contradiction that C/“ has an orbit of length
nine. Then by (vi), T is isomorphic to N(M,) or N(M,)*, which has orbits of
lengths 2, 9, 12 or 2,9, 6, 6 respectively. By (xiii) and (xv), C?“® has no orbit
of length fourteen or eight. Hence C7“ has orbits of lengths 2,9, 12 or
2,9, 6, 6, where the orbit of length two is {2, 3} and the orbit of length nine is
{1, 8,9, :-,15}. Since C“® is a subgroup of M,, the order of (C7“),,,is a
divisor of 20-48. Since an element of order five fixes exactly three points and
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there are C7®-orbits of lengths 2, 12 or 2, 6, 6, C7“ has no element of order
five. Suppose that (C7“”),,, has an element of order three. Since (C7“),>
(CT™),,, and {1, 8, 9,-++, 15} is a C7“-orbit of length nine, C’“ is of order
divisible by 3°. This is a contradiction because M,; has no subgroup of order 3°.
Thus (C?“),;, is a 2-group. Furthermore T is primitive on {1, 8,9, ---, 15}.
Hence by [5], the order of C7® is 144 and so C’“” is isomorphic to N(M,).
Hence by (ix), T is not isomorphic to N(M,). Hence T is isomorphic to N(M,)*.
Take (Cy, 55)", where 32, 33 are fixed by 4 and a has a 2-cycle (32 33). Then
by (ix), (Cs, 35)"“ is isomorphic to N(M,)* and so (Cs, 55)'®=T. Thus C,, 3 has
an element x such that c=x’“’. Then by the same argument as is used in (ix),
we have a contradiction. Thus (xviii) holds.

(xix) [t is impossible that C*® has an orbit of length thirteen or seventeen.

Proof. M,, has no element of order thirteen or seventeen. Hence (xix)
holds.

(xx) If C* has an orbit of length eleven, then C*® is isomorphic to M,,.

Proof. An element of order eleven has two 11-cycles and fixes one point.
Hence by (xii), C7“* has orbits of lengths 11,1, 11 or 11, 12. First assume
that C7“° has orbits of lengths 11,1,11. Then by (vi), T is isomorphic to
PSL(2,11). Hence by (ix), C?“” contains T properly. This is a contradiction
since PSL(2, 11) is a maximal subgroup of M,, (see [1], p. 235). Next assume
that C7* has orbits of lengths 11, 12. 'Then the maximal subgroup of M,, con-
taining C7“ is isomorphic to M, or of order 23-11 (see [1], p. 235). However
the latter case dose not occur since C7 is of even order. Suppose that C7 is
isomorphic to a proper subgroup of M,,. Since the maximal subgroup of M,,
whose order is divisible by 11 is PSL(2, 11), C?“® is isomorphic to a subgroup of
PSL(2,11). Hence T is isomorphic to PSL(2, 11) and so C/“°=T, contrary
to (ix). Hence C’“” is isomorphic to M.

(xxi) CT“ is isomorphic to M,,.

Proof. T is one of the seven groups of (vi). In the following we treat
seven cases separately.
(1) Let T be isomorphic to M,,. Then T is a maximal subgroup of
M, (see [1] p. 235). Hence if C/“ contains T properly, then C?“” is M,;, con-
trary to (xii). Thus C7“°=T and so C7“® is isomorphic to M.
(2) Let T be isomorphic to M,,. Then the lengths of the T-orbits
are 1, 10, 12. By (xii) and (xix), C’“” has no orbit of length 22, 23 or 13.
Hence C’“ has orbits of lengths 1, 10, 12 or 11, 12. By (ix), C’“” contains T
properly. Hence the first case does not occur because M,, is a maximal subgroup
of M,, (see [1], p. 235). In the second case C7® is isomorphic to M,, by (xix).
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(3) Let T be isomorphic to M,*. Then the lengths of the T-orbits
are 1, 10, 6, 6. By (xii), (xvi), (xvii) and (xix), C7“* has no orbit of length 23,
22,16, 7, 13 or 17. Hence the lentghs of the C?“-orbits are one of the
following:

(a) 1,10,6,6, (b) 1,10,12, (c) 11,6,6, (d) 11, 12.

First consider the case (a). Since C?“” contains T properly, C?® is con-
tained in Ny, (E) (see [1], p. 235), where E is an elementary abelian 2-group of
order sixteen and fixing seven points of I(a). Set A=I(E). Since C?® contains
T properly and |A|=7, (CT®), is a nonidentity elementary abelian 2-group.
Since CI®|(CT®), = A, (CT®), has an automorphisum group which is iso-
morphic to 4,. Hence (C’®), is of order sixteen and has an orbit of length
sixteen. This is a contradiction. Thus the case (a) does not occur.

Next consider the case (b). Then C’“ is isomorphic to M,. Take
(Cyz35)'”, where 32, 33 are fixed by b and a has a 2-cycle (32 33). Then by
(ix), (Csz55)"® is isomorphic to M, * and so (Cs, 5)'“=T. Thus Cy, 4, has an
element x such that c=x’““. Then by the same argument as in (ix), we have a
contradiction. Thus the case (b) does not occur.

Finally consider the cases (c) and (d). Since C?“ has an orbit of length
eleven, C1™ is isomorphic to M, by (xx). Thus the lengths of the C7“*-orbits
are 11, 12 and the case (c) does not occur.

(4) Let T be isomorphic to N(M),. Then the lengths of the T-orbits
are 2, 9, 12. By (xii), (xiii) and (xviii), C?“* has no orbit of length 23, 14 or 9.
Hence the lengths of the C7“-orbits are one of the following:

(a) 2,21, (b) 11, 12.

First consider the case (a). Since T,=<b, T, x,x,>, the T,-orbits on
I(a)—{1,2,3} are {8, 9, -+, 15}, {4,5,6,7} and {16, 17, -+, 23}, whoes lengths
are 8, 4 and 8 respectively. Since T,=<b, T, ¥y, the T-orbits on I(a)— {6, 2, 3}
are {1, 8, 9}, {10, 11, ---, 15}, {4, 5, 20, 21, 22, 23}, {7, 16, 17} and {18, 19},
whose lengths are 3, 6, 6, 3, and 2 respectively. Since 1 and 6 are contained
in the same C7“-orbit, (C*“”), and (C’“), are conjugate in C7“ and so the
(C*),-orbits and (C7“).-orbits have the same lengths. Thus (C7), is transi-
tive or bas orbits of lengths eigtht and twelve on I(a)— {1, 2, 3}.

Suppose that (CY®), has two orbits on I(a)— {1, 2,3}. Then {8,9, -+, 15}
and {4,5,6,7,16,17,---,23} or {4,5,-,15} and {16, 17, .--,23} are the
(C*®),-orbits. In the first case {(C?“),, T) has an orbit {1, 8, 9, ---, 15} of
length nine and {(C'®),, T>,=(C?“”), has an orbit of length twelve. Hence
{(C*®),, T has a subgroup of order 3°. This is a contradiction since M,, has
no subgroup of order 3°. In the second case set A={4, 5, ---, 15}. Let % be
an involution of C7 and conjugate to b in (C7“),. Since b fixes three points
2, 3, 1 and exactly four points of the (C7“)-orbit A, %, fixes three points 2, 3, 1
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and exactly four points of A. We may assume that % fixes a point 9 of A which
is not fixed by . 'Then I(8)+I(%) and so |I(5) N I(%)| <3. Hence I(b) NI(x)=
{1, 2, 3}. Since b fixes four points 4, 5, 6, 7 of A and % fixes a point 9 of A, X
fixes exactly three points of A-{4, 5, 6,7, 9} = {8, 10, 11, ---, 15}. On the other
hand y, is an element of T and fixes {1, 2, 3, 9} as a set which is contained in
I(x). Hence y, fixes I(X) as a set. Then since y,=(8) (10 15) (11 13) (12 14)
on {8, 10, 11, ---, 15} and |I(ZX) N {8, 10, 11, --+, 15} | =3, I(%) =8 and so [(Z)D
{1,2,3,8,9}. Thus b fixes I(%) as a set because {1, 2,3, 8,9}°={1,2, 3, 8, 9}.
Hence <b, y,> fixes I(¥) as a set. However since % has fixed points in the
(b, y,>-orbits {10, 11, -+, 15}, I(%)> {10, 11, --+, 15}, which is a cntradiction.

Thus (C?), is transitive on I(a)— {1, 2, 3} and so C7“ is doubly transitive
on I(a)— {2,3}. Since (C*®),,is a normal subgroup of C1®, (C?*®), , is transi-
tive on I(a)— {2, 3}. Furthermore the order of C7“ is divisible by 21-20.
Hence CT has an element of five fixing exactly three points. Hence (C1®),,,
has an element of order five which has no fixed points in I(@)— {1, 2, 3}. On
the other hand T, ,,=<J, x,x,, (x,%,)°> has three orbits {8, 9, ---, 15}, {4, 5, 6, 7}
and {16, 17, ---, 23}, whose lengths are 8, 4 and 8 respectively. Hence
(C?®), , 4 is transitive on I(a)— {1, 2, 3}. Thus (C7®),, is doubly transitive on
I(a)— {2, 3}, contrary to (xii).

In the case (b) by (xix), C7“® is isomrphic to M,,.

(5) Let T be isomorphic to N(M,)*. Then the lengths of the T-orbits
are 2,9, 6, 6. By (xii), (xiii), (xiv), (xv), (xviil) and (xix), C?“° has no orbit of
length 23, 14, 15, 8, 9 or 17. Hence the lengths of the C/“*-orbits are one of
the following:

(@) 2,21, (b) 11,6,6, (c) 11, 12.

First consider the case (a). Set A={1,4,5, ---, 23} which is the C?“-orbit
of length twenty-one. Since T,=<D, T, y,, the T-orbits on I(a)— {2, 3, 1} are
{8, 9, 10, 11}, {12, 13, 14, 15}, {4, 5}, {6, 7}, {16, 17, 18, 19} and {20, 21, 22,
23}, whose lengths are 4, 4, 2, 2, 4 and 4 respectively. Since T,=<b, y, v,
the T,-orbits on I(a)— {2, 3, 4} are {1, 14, 15}, {8,9, ---, 13}, {5, 22, 23}, {6, 7,
16, 17, 18, 19} and {20, 21}, whose lengths are 3, 6, 3, 6 and 2 respectively.
Since 1 and 4 belong to the CT“-orbit A, (C¥“), and (C?“®), are conjugate in
CT® and so the (C7“”),-orbits and the (C’“”),-orbits have the same lengths.
Thus the lengths of the (C7“*’),-orbits on A— {4} are one of the following:

@l) 26,12, (a2) 2,18, (a3)8,6,6, (a4) 8,12, (a.5) 14,6,
(a.6) 20.

First consider the cases (a.1) and (a.2). Since a point 4 belongs to the
C'®-orbit of length twenty-one and {2, 3} is a C'®-orbit of length two,
|CT®: (CT),,,]=2-21. Hence |C'®: (C'®),,,; ;| <4-21, where {7, j} is the
(CT®),-orbit of length two in A. On the other hand T is of order 9-8. Hence
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(CT®), 5. 5 is of order divisible by two and so has an involution Z. Then since
(CT®), fixes a subset {2, 3, 4, 7, j} of I(%) with cardinality five, (CT®), fixes
I(x). Hence (C'“”), fixes I(£)—{2, 3, 4,4, j}. Thus I(x)—{2,3,4,4,j}isa
union of two (C’“?),-orbits of length one or a (C7“),-orbit of length two in
A— {4, 1, j}, which is a contradiction.

Next consider the cases (a.3) and (a.4). Let ¢ be a point of AN(b) and
T be the (C7);-orbit of length eight. Then we show that |T'NI(D)| 2.
Suppose by way of contradiction that |T'NI(B)|=2. Set {j, k} =T NI({).
Since |CT: (C*®),4;]=2-21 and T is of order 9.8, (C¥®),,; is of order
divisible by 3 and so has an element # of order three. Since I is a (C7“®);-orbit
of length eight and # fixes exactly five points, # fixes exactly two points of T'.
Hence we may assume that # fixes the point j of TN 1(b). Then 7 fixes a subset
{2, 3, 4,7} of I(b) with cardinality four. Hence # fixes I(b). Since I(b) contains
{2, 3, 4,1, j, k}, % has a 3-cycle (k ¥ k”) in I(b). On the other hand # is an
element of (C/“?); and & is a point of the (C7“);-orbit I". Hence {k, ¥/, "} is
contained in I' and so contained in T'NI(b). This is a contradiction since
T NIG)={j, k. Thus |TNID)|=*2.

Since T,-orbits on A— {4} are {1, 14, 15}, {8, 9, ---, 13}, {5, 22, 23}, {6, 7,
16, 17, 18, 19} and {20, 21}, the (C7“”),-orbit of length eigth is {20, 21, 1, 14,
15, 5, 22, 23}, {20, 21, 6, 7, 16, 17, 18, 19} or {20, 21, 8, 9, 10, 11, 12, 13}.
Hence by what we have proved above, the (C7“),-orbit of length eight is {20,
21, 8,9, 10, 11, 12, 13}.  Similarly since T,=<b, ¢, y,> has orbits {l, 8, 9},
{10, 11, 12, 13, 14, 15}, {4, 5, 20, 21, 22, 23}, {18, 19}, and {7, 16, 17} on
A— {6}, by what we have proved above the (C’“),-orbit of length eight is
{18, 19, 10, 11, 12, 13, 14, 15}. Therefore |[(C7”),: (CT®), | = |[(CT™),:
(CT®)s 5| =8.  Since |(CT),|=[(CT)s|=[(C**),|, 4 and 6 belong to the
(CT®),,-orbit of length eight. On the other hand T',,=T,%:° has orbits {4, 20,
22, 23} and {6, 7, 16, 19}. Hence the (C7“),-orbit of length eight is {4, 20,
22,23,6,7,16,19}. Since I'=1{20, 21, 8, 9, 10, 11, 12, 13} is a (C’“),-orbit
of length eight, by the same argument as is used above for #, (C'“®),,, has an
element 7 which is of order three and fixes 12 and exactly one more point of T'.
Since 7 is also an element of (C'”),,, ¥ fixes exactly two points of the (C7*®),,-
orbit of length eight. Hence 7 fixes exactly five points 2, 3, 4, 12, 20 because
the (C7“”),~orbit of length eight and (C7“”),,-orbit of length eight have exactly
one point 20 in common. On the other hand T has an element by,=(2) (3) (4)
(20) (21) (9 10 12) (8 13 11)---. Thus <7, by,><(CT®),;,,. Since 7 fixes one
point 12 and have two 3-cycles and by,=(21) (9 10 12) (18 13 11) on T" — {20},
(CT™), 5,4 is transitive or has tow orbits {21, 9, 10, 12} and {8, 11, 13} on
T'—{20}. In the first case sine |I'— {20} |=7, (C?““),,,, has an element of
order seven. This is a contradiction since an element of order seven fixes exactly
two points. In the second case since | {21, 9, 10, 12} =4 and | {8, 11, 13} | =3,
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there is an involution % fixing {2, 3, 4, 20, 8, 11, 13} pointwise. This is a con-
tradiction sicne y, fixes four points 2, 3, 4, 8 of I(%) but does not fix I(X).

In the case (a.5), there is an element of order seven which fixes a (C”**),-orbit
of length six pointwise. This is a contradiction.

Finally consider the case (a.6). Then C?“ is doubly transitive on A. Since
(CT®), 4 is normal in CI, (C1),, is transitive on A. Since (C’“), has an
orbit of length twenty, (C¥“), has an element of order five, which fixes the
(CT®)-orbit {2,3} pointwise. Thus (C*®),,, has an element of order five.
On the other hand since T, ,=<b, €y,>, the lengths of the T\, ,-orbits on A-{1}
are 4, 4, 2, 2, 4, 4. Hence (C'®),,, is transitive or has two orbits of length 10
on A-{1}. Furthermore since T,,,=<b, (y,y,)>, the lengths of the T, , -orbits
are 3, 6, 2, 3, 3 on A-{4}. Since (C7®),,, is conjugate to (C1®),,,, (C'®),,,
has no orbit of length ten in A-{4}. Thus (C?“),, is doubly transitve on A.
contrary to (xii).

(6) Let T be isomorphic to PSL(2, 11). Then the lengths of the
T-orbits are 11, 1, 11. By (xii), C'“ has no orbit of length twenty-three or
twenty-two. Hence C’“ has an orbit of length eleven. Thus by (xx), CT®?
is isomorphic to M,;.

(7) Let T be isomorphic to S;. Then the lengths of the T-orbits are
5,6,2,10. By (xii), (xiv), (xv), (xvi), (xvii), and (xix), C?“” has no orbit of
length 23, 15, 8, 16, 7, 13 or 17. Hence the lengths of the C?“-orbits are one
of the following:

(a) 5,6,2,10, (b)5,6,12, (c) 5,18, (d) 11, 2,10, (e) 11, 12,
(f) 2, 21.

First consider the cases (a) and (b). Let A be the C*®-orbit of length six.
Suppose that (C7“°),=1. Since |A|=6, (CT), is a 2-group and fixes exactly
one more point ¢ which is not contained in A. Since (C7), is normal in C7®,
CT fixes the point Z, which is a contradiction. Hence (C?“),=1 and so C!®
=C*. By (iv), C'® contains T properly. Hence C* contains T* properly.
Since T* is isomorphic to S;, C* is S, . Let j be a point of the C/®-orbit of
length five. Then |C7:(C**),|=5. This is a contradiction since S, has no
subgroup of index five.

Next consider the case (¢). Since the CT®-orbit of length eighteen contains
4 and the order of T, is |S;|/2, the order of C?® is divisible by 3°. This is a
contradiction since the order of M, is not divisible by 3°.

In the cases (d) and (e) by (xx), C*“ is isomorphic to M,,. Thus the
lengths of the C’“?-orbits are 11, 12 and the case (d) does not occur.

Finally consider the case (f). Then the C?“-orbit of length two is {4,5}.
Set A=1I1(a)— {4,5}. Since T,=<b, ¢, c*, the T,-orbits on A— {1} are {8, 9,
10, 11}, {2,3,12,13, 14,15}, {6, 7, 20, 21, 22, 23} and {16, 17, 18, 19}, whose
lengths are 4, 6, 6 and 4 respectively. Since T,=<b, (bc%)™*), the T,-orbits on
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A—{3} are {1,8,9,10, 11}, {2, 12, 13, 14, 15} and {6, 7, 16, 17, 18, 19, 20, 21,
22,23}, whose lengths are 5, 5 and 10 respectively. Since (CY“), is conjugate
to (CT®),, (CT™), is transitive or has two orbits of length ten on A— {3}.
Suppose that (C?7“»), has two orbits of length ten. Then {1, 2,8,9,---, 15} and
{6, 7,16, 17, ---, 23} are (CT),~orbits of length ten. Hence the {(C?“),, T >-
orbits are {1, 2, 3, 8, 9,---, 15}, {4, 5} and {6, 7, 16, 17---, 23}, whose lengths are
11, 2 and 10 respectively. This is a contradiction since an element of order
eleven has two 11-cycles. Hence (C7®), is transitive on A— {3} and so C7 is
doubly transitive on A. Since (C7*),; is normal in C'®, (CT®),, is transitive
on A. Since T,;,=<b, T, ¢%> and T,,,=<b, (bc%)*°?>, T,s, and T,;, has
the same orbits as T, and T, on A respectively. Hence in the same way above
(CT®),, is doubly transitvie on A, contrary to (xii).

(xxii) If CT® is isomorphic to M,,, then we have a contradiction.

Proof. Suppose by way of contradiction that C7“ is isomorphic to M,,.
If T is one of the groups of (vi) other than PSL (2, 11), then T has an element of
order four. Hence first we assume that T is not isomorphic to PSL(2, 11).
Then C,, ,; has a 2-element

u= (1) (2) (3) (8 10 9 11) (12 14 13 15) (4 5) (6 7) (16 18 17 19) (20 22
21 23) (24) (25)---.

Then {u, b7V E4%} is a cyclic group of order four and <{u, b>1¢gu(z 25y 18 Of
odd order because |I(a)U {24, 25} |=25. Hence a Sylow 2-subgroup of <, &)
containing b is a cyclic group of order four and has a generator which has the
same form as u on I(a)U {24, 25}. Hence we may assume that u*=b. Then
uT®=(1) (2) (3) (4 5) (6 7) (24) (25)---and so #?® is of order two. On the other
hand ¢'® is an involution of Cg(b)’® and (cu)’® is also an involution of
(Co(b)'®) because (cu)’®@=(1) (2 3) (4) (5) (6 7) (24) (25)---. Thus Cg(b)?®
has an elementary abelian group {a, %, ¢c)’®® of order eight. On the other hand
by the same argument as is used for a C¢(b)’® is isomorphic to M,,. This is a
contradiction since M, has no elementary abelian group of order eight. Thus
T must be isomorphic to PSL(2, 11). In the same way we have that for any
2-cycle (¢ j) of a (C; ;)* is isomorphic to PSL(2, 11). Since C’*” is isomorphic
to M,,, C has a 2-element

v =(1)(2) (3) (8109 11) (12 14 13 15) (4 5) (6 7) (16 18 17 19) (20
22 21 23)---.

Then (2%)7“*=b. Hence by (x), ©* is an involution fixing twenty-three points.
Let Q be a Sylow 2-subgroup of <b, v> containing <b>. Since Q'“? =)',
there is an element @ in Q such that w’®=¢/“®. Then w? is a 2-element of
C and fixes at least twenty-three points. Thus w’»=1 or @ and so w’=1b or ab,
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Thus @/® or @ is an involution fixing seven points. Since I(a)NI(b) N
I(w)=1I(a) N I(ab) N I(w)=1{1, 2, 3}, there are two points 7, j in I(b) or I(ab) such
that a has a 2-cycle (7 j) and w fixes 4, j. Thus weC; ;. Hence w'“is of order
four and contained in (C; ;)’°. However since (C; ;)** is isomorphic to PSL
(2, 11), (C; ;,)**® has no element of order four. Thus we have a contradiction.

Thus we complete the proof of Lemma 3. "Hence this completes the proof
of the theorem.

3. Proof of Lemma 1

In this section we assume that G is a permutation group as in Lemma 1.

3.1. Let x be an element of G.

(i) If x is an involution, then |I(x)|=7.

(ii) If x is of order three, then |I(x)|=5.

(iii) If x is of order four, then |I(x)|=3 and x has two 2-cycles.

(iv) If x is of order five, then |I(x)|=3.

(v) If x is of order six, then |1(x)|=1 and x has two 2-cycles and two
3-cycles.

(vi) Lety be an element of G. If x and y are of order two and |I(x)N
I(y)| >4, then I(x) = I(y).

Proof. This follows immediately from the assumption (4).

3.2. Letabeaninvolutionof G. Then we have a projective plane P(a) of order
two with the following incidence structure: _
(i) The set of points of P(a) is I(a).
(ii) For two distinct points i, j of 1(a) the line containing 1, j is {A(3, §)
U {i j}} NI(a).

Proof. By (i) of (3.1), |Z(a)|=7. By the assumption (7), each line contains
three points. Hence if A(7, j) N I(a)= {k}, then a line containing any two points
of {z, j, k} contains the remaining one point of {7, j, k} by the assumption (3).
Thus any two distinct points are contained in one and only one line.

Next let L, and L, be distinct lines. Suppose that L, has no point in
common with L,. Then there is exactly one point 7 neither on L, nor on L,.
Let j be a point on L, and let &,, &, be two distinct points on L,. Then the line
L containing j and k, is distinct from L, and L,. Hence L contains 7. In the
same way the line L’ containing j and %, contains . Thus two distinct lines L
and L’ have two points 7, j in common, which is a contradiction. Hence any
two distinct lines contain one and only one point in common. Thus (3.2) is
proved,
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From now on for an involution @ a projective plane defined in (3.2) is called
a plane P(a) or merely a plane.

3.3. If A, j) Dk, then i, j, k are collinear in every plane containing i, j, k.

Proof. Let a be any involution such that I(a) D {7, j, k}. By the assumption
(7), I(a) N A(Z, j)=1{k}. Hence i, j, k are collinear in the plane P(a).

3.4. For an involution a N(G,,)’ < PSL (3, 2).

Proof. Let x be any element of N(Gj(,) and let 7, j be any two distinct
points of I(a). Then by the assumption (5), {{A(, j)U {7 j}} NI(a)}*={A
@)U "7} NI(a). Thus £ is a collineation of the plane P(a). Hence
N(Gr)' < PSL (3, 2).

3.5. If an involution a has a 2-cycle (i, ), then there is an involution of G, ;
commuting with a.

Proof. By the assumptions (1) and (6), G, ; has an involution. Since a&
N&(G; ,), there is an involution of G; ; commuting with a.

3.6. Let a and b be involutions such that I(a) N1(b)={3, j, k}. If A(i, j) Dk,
then ab is of odd order.

Proof. Suppose by way of contradiction that ab is of even order. Then
there is an involution ¢ of G; ;, commuting with a and 5. Clearly ¢ fixes I(a).
Since i, j, k are noncollinear in P(a) and fixed by ¢, ¢ fixes I(a) pointwise by
(3.4). Thus I(a)=1I(c). In the same way I(b)=I(c). Hence I(a)=1(b), which

is a contradiction.

3.7. Let a and b be involutions such that I(a)D {i, j, k} and I(b)D{i, j, I}.
If A(z, j) >k, I and k=1, then ab is of odd order.

Proof. Suppose by way of contradiction that ab is of even order. Then
there is an involution ¢ of G;; commuting with @ and b. Clearly ¢ fixes I(a).
Since i, j, k are collinear in P(q) and ¢ fixes 7, j, ¢ fixes k. Similarly ¢ fixes /.
Thus A(z, j) NI(c)2 {k, I}, contrary to the sssumption (7).

3.8. A(s j) is an orbit of G; ;.

Proof. Let k& be a point of A(Z j) and / a point of a G; ;-orbit containing
k. Then there is an element x of G, ; such that [=k*. Since A(Z, j)*= A(, j),
Az, j)2k*=I1. Conversely let A(7, j)=k, I and k+1[. By the assumption (6),
there are involutions a and b such that I(a)D {7, j, k} and I(8)D {7, j, {}. By
(3.7), ab is of odd order. Hence a*=25 for some element x of G; ;. On the
other hand A(7, j)N I(a)={k} and A(7, j)NI(b)={I!}. Hence k*=1[. Thus
A(F, j) is an orbit of G, ;.
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3.9. |A( )| >1 for some i, j of Q.

Proof. Suppose by way of contradiction that |A(7, j)|=1 for any two
points 7, j. Let A(7, j)={k} and set A’(7, j)=A(5, j)U {3, j}. Then A'(4 j)
=A'(j, k)=A'(k, i)={i, j, k}. Conversely if A'(¢/, j")=A(4, j), then {7, j'} C
{i, j, k}. Hence A(7,j’) is one of the sets A(Z, j), A(j, k) or A(R, 7). Thus the
number of combinations of twenty-three points taken two at a time is divisible
by three. which is a contradiction. Thus |A(Z, j)| >1 for some 7, j of Q.

3.10. |A(s j)| is odd and at most nine.

Proof. By the assumption (6), there is an involution x fixing 7 and j. Then
x fixes A(Z, j). Since |A(7, j)NI(x)|=1, | A, j)]| is odd.

Now let |A(7, j)| >1. Then for distinct points k,, [, of A(%, j) there are
involutions a and b such that I(a) D {;, j, k,} and I(b))D {i, j, ,}. By (i) of (3.1)
I(a)={i, j, ky, ks, -+, k;} and I(b)={3, j, L, 1,, ---, I}. 'Then by the assumption
(7) ks, LiEA(S, 7), 2<t <5. Since I(a)+1(b), |I(a) N I(b)| <3 by (Vi) of (3.1).
Hence |{k,, &, k,, R} N {l,, L, 1, I}} | <1. Furthermore I(6*)D {7, j}. If I(b%)
=1(a), then b” commutes with a. Consequently aba-a=a-aba, and so (ab)’=1,
contrary to (3.7). Thus I(6*)==1(a). Moreover from k,*=k, =1, [,*+k,. Hence
in the same way | {&,, k,, &, ks} N {1, I, 1, [;}*| <1. Next if I(6*)=1(b), then
similarly aba-a=b-aba, and so (ab)'=1, contrary to (3.7). Thus I(b*)=1(b).
Since 1,°+1,, in the same way | {l,, L, I,, I} N {l,, L, I, L;}*| <1. Thus | {&,, &k,
ko kYN AL, L, 1, L.} N {L, L0, 1,}*| >12—3=9. Since1,j, k,, [, and [,%, where
2<t<5, do not belong to A(s, j), |A(%, j)| <23—(2+9)=12. Since |A(7, j)|
is odd, |A(5 j)|<11. If |A(4, j)| =11, then G, ; has an element of order eleven
by (3.8). This is a contradiction since an element of order eleven in M, fixes
exactly one point. Thus (3.10) is proved.

3.11. G has no element of order seven.

Proof. Suppose by way of contradiction that G has an element x of order
seven. Then we may assume that

x = (1) (2) (3 4--9) (10 11.--16) (17 18---23).

Set I',= {3, 4, ---, 9}, T,={10, 11, ---, 16} and I",= {17, 18, ---,23}. Since
1<]A(1, 2)| <9, we may assume that A(1, 2)=T, by (3.8). By the assumption
(6), there is an involution 4 fixing 1, 2, 3. Since |[I(a)|=7 and |I(a) NT,|=1,
a fixes exactly four points of T',U T, say 1,, i, 13, i, Set H=<{a, x>. Then {1},
{2} and T, are H-orbits.

Suppose that T',N T, is an H-orbit. Since |T,UT,|=14 and e H,,
|H|=|i,”|+|H; |=14+2r, where r is some integer. On the other hand |H|=
|3#|«|Hy|=|T,|+|H,|. Hence |H,|=4r. Thus there is an element b different
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from @ and 1 in a Sylow 2-subgroup of H, containing a. From I()2{1, 2, 3},
we get that the order of b is four or two. First assume that b is of order four.
Then by (iii) of (3.1), b fixes exactly three points and has two 2-cycles. Since b
fixes T',— {3} and |T",— {3} |=6, bhasa 2-cycleon T',. 'Thus 4?is an involution
such that 1(6*) D {1, 2} and | A(1, 2) NI(b*)| >1, contrary to the assumption (7).
Next assume that & is of order two. By the same reason, ab is also of order two.
Thus a and b have the same 2-cycle on T',. Hence|A(1, 2)N I(ab)| >1, contrary
to the assumption (7).

Therefore T, and T'; are two distinct H-orbits. Since I(a)N {T,UT,}=
{7, 1, 25, 1,} and |T,|=|T's| =7, we may assume that I(a) N T,= {i,, 7,, 7,}. Then
for some integer s c=a™ fixes 7, and does not fix 3. By (3.7), ac is of odd order.
Since I(ac)D {1, 2, i,}, the order of ac is three or five. First assume that ac is
of order three. Then by (ii) of (3.1),|(ac)|=5. Since |T';|=7, |I(ac)NT;|=1,
1<:<3. However |[I(a)NI(c)NT,|=0. Hence |I(ac)NT,|+1. Thus we
have a contradiction. Next assume that ac is of order five. Since |T;|=7,
|I(ac)NT;| >2,1<i<3. This is a contradiction since |I(ac)|=3. Thus G
has no element of order seven.

3.12. [A(45)|=1,3,50r9.
Proof. This follows immediately from (3.10) and (3, 11).

3.13. If there is a plane containing three distinct points 1, j, k, then the number
of planes containing i, j, k is one, three or five.

Proof. We may assume that {z, j, K&} ={1,2,3}. For a point ¢ of
Q—{1, 2, 3} the number of planes containing {1, 2, 3, ¢} is at most one by (vi)
of (3.1). Since |Q— {1, 2,3} |=20 and there are seven points in a plane, the
number of planes containing 1, 2, 3 is at most 20/4=>5.

Suppose by way of contradiction that the number of planes containing 1,2, 3
is even. 'Then we may assume that there is an involution x of the following form

x = (1) (2)-+(7) (8 9) (10 11)---.

We denote a set of planes containing 1, 2, 3 by S. Then x is regarded as
a permutation on S. Since | S| is even and x fixes P(x), x fixes at least one more
plane of S different from P(x). Let P(y)=P(x)be a plane of S fixed by x. We
may assume that I(y)={1, 2, 3, 8, 9, 10, 11}. Then

xy = (1) (2) (3) (8 9) (10 11)---

Hence the order of xy is two or four.
First assume that the order of xy is two. Then P(xy) is a plane of S different
from both P(x) and P(y). Since |S| is even and at most five, |S|=4, namely
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S={P(x), P(y), P(xy), P(2)}, where 2 is an involution. We may set I(xy)=
{1, 2, 3, 12, 13, 14, 15} and I(2) = {1, 2, 3, 16, 17, 18, 19}. Then the group
{x, y, 2> fixes {I(x), I(y), I(xy), I(2)} as a set. Hence <, y, 2> fixes {20, 21,
22,23} asaset. Then x, y, xy and z have two 2-cycles on {21, 21, 22, 23}
respectivly. Hence there is an involution # of <{x, y> such that # and z are the
same form on {20, 21, 22, 23}. This implies that uz is an involution fixing
{1, 2, 3, 20, 21, 22, 23} pointwise. Thus P(uz)E .S, which is a contradiction.

Next assume that xy is of order four. If xy fixes some plane of S diffe-
rent from P(y), then xy fixes three points 1, 2, 3 and has one 4-cycle on the set of
points of this plane. This contradicts (3.4). Thus xy fixes only P(y) of S.
Hence | S| is odd, which is a contradiction. Thus |S|=1, 3 or 5.

3.14. G is intransitive and has no orbit of length twenty-two.

Proof. First suppose by way of contradiction that G is transitive. Then
G is M, or contained in a group of order 23-11 (see [1], p. 235). Since G has
an involution, G must be M,, Then by (3.8) for any two points 7, j of Q
|A(z, j) | =21, contrary to (3.12).

Next suppose by way of contradiction that G has orbits of lengths one and
twenty-two. Then G is a subgroup of M,,. Since M,, has no proper subgroup
which is transitive on twenty-two points (see [1], p. 235), G is M,,. Let {7} be
the G-orbit of length one. Then by (3.8) for anty point j of Q— {1} |A(Z. )|
=21, which is also a contradiction.

3.15. If G has an orbit of length eleven, then G is (i) or (vi) of Lemma 1.

Proof. By assumption G has an element of order eleven consisting of one
fixed point and two 11-cycles. Hence the lengths of G-orbits are 11, 1, 11 or
11, 12.

First assume that G has three orbits T, T', and T';, where |T',|=1 and |T,|
= |Ty|=11. By the assumption (4), G"2 is isomorphic to G. Since for any
two points 4, j of T, there is an involution fixing 7, j, (G™2); ;4 1. Hence G™2 is
doubly transitive on T', by Theorem 11.6 and Theorem 11.7 in [6]. By [5], G™
is isomorphic to PSL(2,11) or contains M,,. Since the lengths of G-orbits are
11, 1, 11, G is isomorphic to PSL(2, 11) (see [1], p. 235).

Next assume that G has two orbits T', and T',, where |I';|=11 and |T,|==
12. By the similar reason above, G™: is isomorphic to G and G is isomorphic to
PSL(2, 11) or contains M,,. Since the lengths of G-orbits are 11, 12, G is
isomorphic to M, (see [1], p. 235).

3.16. If there are two points i, j such that |A(i, j)| =9, then G is one of the
groups (1), (i1), (i), (1v) or (v) of Lemma 1, and we have the following:
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(1) If G is isomorphic to M,,, then G is isomorphic to <a, b, ¢, y,, x,>
as a permutation group.
(i) If G 1s isomorphic to M,,, then G is isomorphic to {a, b, c, y,, %, ¥,
as a permutation group.
(iii) If G is isomorphic to M, *, then G is isomorphic to <a, b, c, y,> as
a permutation group.
(iv) If G is isomorphic to N(M,), then G is isomorphic to {a, b’1"1, ¢’111,
Y1y (%, 9,)1) as a permutation group.
(v) If G is isomorphic ot N(M,)*, then G is isomorphic to <a, b>1™1, ¢’11,
Vi, Y211 as a permutation group.
Here '
a= (1) (2) (3) (89) (10 11) (12 13) (14 15) (4) (18 19) (5) (16 17) (6)
(20 21) (7) (22 23),
b= (1) (2) (8) (39) (10 12) (11 15) (13 14) (4) (18 19) (16) (5 17) (20)
(6 21) (23) (7 22),
c= (1) (2) (10) (3 11) (8 12) (9 14) (13 15) (18) (4 19) (5) (16 17) (20)
(6 21) (22) (7 23),
x,=(12)(3) (8) (9) (12 13) (10 14) (11 15) (4) (5 6) (7) (16 20) (17 21)
(18 19) (22) (23),
y,= (1) (23) (8) (9) (10 11) (12 14) (13 15) (4 5) (6) (7) (16) (17) (18 19)
(20 22) (21 23),
y.= (12) (3) (8 13) (9 12) (10 11) (14) (15) (5) (4 7) (6) (19 22) (18 23)
(16) (17) (20 21).

Proof. Let |A(1,2)]=9 and A(1, 2)={3, 8,9, :-+, 15}. Then we may
assume that there is an involution a of the form

a= (1) (2)-+(7) (8 9) (10 11) (12 13) (14 15) (16 17) (18 19) (20 21)
(22 23).

For any point 7 of A(1, 2) there is a plane containing points 1, 2, 7, ip which there
is no point of A(1, 2)— {i} by the assumptions (6) and (7). Hence this plane
has four points in Q— {A(1, 2) U {1, 2}}. Since |Q— {A(1,2)U {1, 2}} | =12 the
number of planes containing 1, 2, 7 is at most threc. Supposc that th:re are
exactly three plancs containing 1, 2, 4, say P,, P, and P,. Let P’ be a plane
containing 1, 2, j, where j& A(1,2) and j=i. Then P’ also has four points in
Q—{A(1, 2)U {1, 2}}. Hence P’ and P, where P is one of P,, P,, P,, have at
least two points of Q— {A(1, 2)U {1, 2}} in common. Since 1, 2 are the points
of both P’ and P, P’ and P have at least four points in common. Thus P’=P,
which is a contradiction. Therefore for any point 7 of A(1, 2) there is exactly
one plane containing 1, 2, 7 by (3.13). :

Let b be an involution fixing 1, 2, 8. Then ab is of odd order by (3.7).
Since ab fixes A(1, 2) with length nine, the order of ab is not five by (vi) of (3.1).
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Hence the order of ab is three. Since b fixes A(1, 2) as a set and ab fixes exactly
five points by (ii) of (3.1), we may assume that b is of the form

b= (1) (2) (8) (39)(1012) (11 15) (13 14) (4) (18 19) (16) (5 17) (20)
(6 21) (23) (7 22).
Then
ab = (1) (2) (39 8) (10 15 13) (11 12 14) (4) (18) (19) (5 17 16) (6 21
20) (7 22 23).

Since an element of order three of PSL (3, 2) fixes exactly one point, ab does not
fix a plane containing 1, 2, 4. Thus the lengths of {ab>-orbits on the set of
planes containing 1,2, 4 are three. Hence by (3.13) the planes containing 1, 2, 4
are P(a), P(a**)=P(bab) and P(a“*®*)=P(b). Let ¢ be an involution fixing 1, 2,
10. Then in the same way ac and bc are of order three. Hence

¢ = (1) (2) (10 )(3 11) (8 12) (9 14) (13 15)---.

Then
abc = (1) (2) (3 14) (8 11) (9 12) (10 13) (15)---.

Thus (abc) (abc) = 1 and so c(ab)c=ba=(ab)™*. 'This implies that ¢ fixes {4, 18,
19}. Hence ¢c=(4) (18 19)---, (18) (4 19)--- or (19) (4 18)---. If c=(4) (18 19)--,
then P(c) is a plane containing 1, 2, 4 and different from P(a), P(bab) and P(b),
which is a contradiction. Then we may assume that ¢=(18) (4 19)--- since in
the case c=(19) (4 18)-+ the proof is similar. Thus we may assume that ¢ is of
the form

c= (1) (2) (10) (3 11) (8 12) (9 14) (13 15) (18) (4 19) (5) (16 17) (20)
(6 21) (22) (7 23).
Then

ac = (1) (2) (3 11 10) (8 14 13) (9 12 15) (4 19 18) (5) (16 )(17) (6 21
20) (7 23 22),

b° = (1) (2) (12) (3 13) (8 10) (9 15) (11 14) (19) (4 18) (17) (5 16) (20)
(6 21) (7) (22 23),

ab® = (1) (2) (3 13 12) (8 15 11) (9 10 14) (4 18 19) (5 16 17) (6 21 20)
(7) (22) (23),

a* = (1) (2) (14) (3 15) (8 13) (9 10) (11 12) (19) (4 18) (16) (5 17)
(6) (20 21) (22) (7 23),

aa® = cb = (1) (2) (3 15 14) (8 10 12) (9 13 11) (4 18 19) (5 17 16) (6)
(20) (21) (7 23 22).

We use frequently these elements in the following proofs.

Since {1, 2,4}°= {1, 2,19} and {1, 2, 4}°*= {1, 2, 18}, the number of
planes containing 1, 2, 19 or i, 2, 18 is also three. 'Thus for any i< I(ab)— {1, 2}
the number of planes containing 1, 2, 7 is three, Since ac, aa® and ab® are of
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order three and ac fixes 1, 2, 5, 16, 17, aa® fixes 1, 2, 6, 20, 21 and ab° fixes 1,
2,7, 22, 23, by the same argument as is used for the planes containing 1, 2, 4,
we have that for any point 7 of {4, 5, 6, 7, 16, 17, -+, 23} the number of planes
containing 1, 2, 7 is three.

Set A=A(1, 2), T,=1{4, 18, 19}, r,={5, 16, 17}, T;= {6, 20, 21} and
T.=1{7, 22, 23}. In the plane P(a) 1, 2, 3 are collinear, Hence from now on
we may assume that A(1, 4)=5, A(1, 6)>7 and (2, 4)=6 in I(a).

Now we show that for any point 7 of {1, 2} and j of T,UT,UT,UT, | A, )|
=3 or 5. If we prove that |A(1, 4)|=3 or 5, then since A(1, 18)=A(1, 4)**
and A(1, 19)=(Al, 4)°, |A(1, 18)|=|A(1, 19)|=|A(1, 4)|=3 or 5, and in the
remaining cases the proofs are similar. By (3.12), |A(1, 4)|=1, 3, 5 or 9.
Since A(1, 4)35, A(1, 4)2 {5} <**>=T,. On the other hand A(1,4)$2, 3,6, 7
in I(a). Hence any point of {2, 3, 6, 7} <?*> does not belong to A(1, 4). Thus
A(1, 4)=T,T,U {18, 19} or T,U {10, 11, ---, 15}. Suppose that A(1, 4)=T,
U {10, 11, ---, 15}. Then there is an involution «x fixing 1, 4, 10 and the form
of x is determined by the same argument as is used for ¢. Hence the <{a, b, x)>-
orbits have the same lengths as the lengths of the <a, b, c)-orbits. Furthermore
A(1, 4) is a G, -orbit and <a, b> has orbits {1}, {2}, {3, 9, 8}, {10, 11, -+, 15},
{4}, {18, 19}, T, Ty and T',. Hence the <a, b, x>-orbits are {1}, {4}, T, U {10,
11, ---, 15}, {2, 18, 19}, {3,8, 9}, I'; and T",. Hence the <q, b, ¢, x>-orbits are
{1}, AUT,, {2 UT, Ty and T',. Since|{2} UT,|=4, the order of {a, b, ¢, x>
is divisible by four. On the other hand |T';|=3. Hence <a, b, ¢, ¥>¢;3ur, has
an involution y. Since bc¢ fixes four points 1, 6, 20, 21 of I(y), bc fixes I(y)
pointwise by (3.4). Thus |I(bc)| >5, which is a contradiction. Hence A(1, 4)
=T, or T',U {18, 19}. Thus for any point 7 of {1, 2} and j of T,UT,UT,UT,
|A(%, j)|=3 or 5. Since A(1,5)*=A(1, 5) and A(l1, 5)>4, A(1, 5)=T, or
T U {16, 17}. Since A(1, 6)***=A(1, 6) and A(1, 6)>7, A(1, 6)=T, or T,U
{20, 21}. Since A(1, 7)**=A(1, 7) and A(1, 7)=6, A(1, 7)=T;or T, U {22, 23}.
In the same way A(2, 4)=T; or T U {18, 19}, A(2, 5)=T, or T,U {16, 17},
A(2, 6)=T, or T, U {20, 21} and A(2, 7)=T, or T, U {22, 23}.

Furthermore since for je T, UT,UT,UT, |A(1,5)|=3 or 5 and | A(1, 2)| =9,
the points 2 and j of T, UT,UT,UT, do not belong to the same G,-orbit. Hence
G, has an orbit {2} or {2} U A. Similarly G, has an orbit {1} or {1} UA.
Using this result we prove that any involution fixing I(a) fixes {1, 2, 3}. Let «
be an involution fixing I(a). Then x is one of the following forms: x=(1) (2)---,
(12)-, (1) (23)-++, (1 3) (2)-+- or (1 7) (25)-+, where i, j€ {3, 4,--+, 7}. By the
incidence structure of P(a), if x=(1) (2):++ or (1 2)--+, then x fixes {1, 2, 3}.
Assume that x=(1) (2 ¢)-+-, where i€ {3, 4, -+, 7}. Then x=G,. Since the
G,-orbit containing 2 is {2} or {2} UA(1, 2), x=(1) (2 3):-. In the same way
if x=(2) (1 7)---, where i {3, 4, -++, 7}, then i=3. Next assume that x=(1 7)
(24)-, wherei, j= {3, 4, -, 7}. Since 1, 2, 3 are collinear in P(a), 7, j +3.
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Let i=4. Then by the incidence structure of P(a), x=(1 4) (2 7) (3) (5) (6)---.
Since G, has an orbit {2} or {2} U A(1, 2), G,=G,* has an orbit {7} or {7}UA
(4, 7). Since G,><a, b>, G,-orbits consist of unions of some <a, b)-orbits.
Thus {7} is nota G,-orbit. Since |{7} UA#, 7)|=10, if {7}UA4,7)isa
G,-orbit, then {7} UA(4, 7) contains at least one {a, b>-orbit of length one.
However the <{a, b>-orbits of length one are {1}, {2} and {4}. Since 1, 4, 7
2YUAQL, 2), {1, 4, 7}*={1, 4, 2} and {{2} UA(L, 2)}*={7} UA(4, 7), any
point of {1, 2, 4} does not belong to {7} UA(4, 7). This contradiction shows
that x==(1 4) (2 7)---. Finally by the incidence structure of P(a), for =35, 6 or
7x=(15) (26) (3) (4) (7)+, (16) (25) (2) (4) (7)-or (17) 24) (3) (5) (6)--
respectively. 'Then similarly to the case =4, we have a contradiction and so
i%5, 6, 7. Thus any involution fixing I(a) fixes {1, 2, 3}.

By (3.5), there is an involution fixing 8, 9 and commuting with a. Hence
from now on let x be an involution fixing 8, 9 and commuting with a. Then by
the assertion above, x fixes {1, 2,3}. Hence x is one of the following forms:

(i) »=(1)(2)(3)(®) (),

(i) »=(12)(3)(8)(9),

(iii) 2= (1) (23) (8) (9)---,

(iv) x=(2)(13)(8) (9,

(i) Assume that x=(1) (2) (3) (8) (9)*-. ‘Then P(x) and P(a) are
distinct planes containing {1, 2, 3}. This is a contradiction since there is no
plane containing 1, 2, 3 except P(a).

(ii) Assume that x=(1 2) (3) (8) (9)---. Then by the incidence struc-
ture of P(a), x=(12) (3) (4 7) (5) (6) (8) (9)-+.0r (1 2) (3) (4) (5 6) (7) (8) (9)--.

(i) Let x=(12)(3) (4 7) (5) (6) (8) (9)--. Then A(1, 4)*=A(2, 7).
Since A(1l,4)=T, or T,U {18,19} and A(2,7)=T, or T,U {22, 23}, I,’=T,.
Thus x=(16) (17):++ or (16 17)---. First assume that

x=(12)(3)(47)(5)(6) (8) (9 (16) (17)--- .

Then
bx = (12)(39)(8) (16) (517) (224 7-++)---.

Thus (bx)? is not the identity element fixing eight points, which is a contradiction.
Next assume that

x=(12)(3) (47) (5) (6) (8) (9) (16 17)---.

Then A(1, 5)*=A(2,5). Since A(1,5)=T, or T',U {16, 17} and A(2, 5)=T, or
T, U {16, 17}, I'/*=T,. Thus x=(18 22) (19 23)--- or (18 23) (19 22).... If

x=(12)(3)(47)(5)(6) (8) (9) (18 22) (19 23) (16 17)---,
then
cx = (1 2) (5) (16) (17) (4 23) (7 19)---.
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Hence cx is an involution and so ¢ commutes with x. Since I(x)D {3, 6, 8, 9},
I(x)> {3, 6, 8, 9} <°>={3, 11, 6, 21, 8, 12, 9, 14}, contrary to (i) of (3.1). Thus

x=(12)(3)47)(5)(6)(8)(9) (16 17) (18 23) (19 22)--- .
Hence
cx = (12)(5) (16) (17) (4 22 19 7 18 23)---,

contrary to (v) of (3.1). Therefore case (ii.i) does not occur.
(ii.ii) Letx=(12)(3)(4)(56)(7)(8) (9)--.
Then
bx = (12)(4)(39)(8)-.

Hence bx is of order two or four. If bx is of order four, then (bx)® is an involu-
tion such that I((bx)*) D {1, 2} and A(1, 2) N I((bx)*) D {3, 8, 9}, contrary to the
assumption (7). Thus bx is of order two. Hence

Cx=(12) (3) 4) (5 6) (7) (8) (9) (17 21) (16 20) (22) (23) (18 19)--,

and on {10, 11, -+, 15} x=(10 11) (12 15) (13 14), (12 13) (10 14) (11 15) or
(14 15) (11 13) (10 12). If x=(10 11) (12 15) (13 14)---, then I(ax)={3,4, 7,
18, 19, 10, 11}. Hence I(ax) NI((ax))= {3, 11, 4, 19, 18, 10}, contrary to (vi)
of (3.1). If x=(14 15) (11 13) (10 12)---, then I(ax)={3, 4, 7, 18, 19, 14, 15}.
Hence I(ax)NI((ax)*)={3, 14, 15, 4, 18, 19}, which is also a contradiction.
Thus

x=(12) (3) (8) (9) (12 13) (10 14) (11 15) (4) (5 6) (7) (16 20) (17 21)
(18 19) (22 )(23) .

From now on the element x of this form is denoted by x,. Then the <q, b, c, x,>-
orbits are {1, 2}, A, T, T,UT;and T,.

By (3.5), G has an involution y fixing 16, 17 and commuting with a. Sup-
pose that ye<a, b, ¢, x,>. Since {a, b, c}"1={a, b, a*} and «, is of order two,
the index of <a, b, ¢> in <{a, b, ¢, x> istwo. Hence [<aq, b, ¢, x,>|=2-|<a, b, c)|
=2:9.2. Thus both <{a, x,> and <{a, y) are Sylow 2-subgroups of <{a, b, ¢, x>.
On the other hand a is only one involution of {a, x,> having fixed points in a
<{a, b, ¢, x,y-orbit T,UT, and <a, y)> has at least two involutions @ and y having
fixed points in T',UT,. This is a cotradiction since <a, x,> and {a, y)> are con-
jugate in <a, b, ¢, x,>. Thus y is not an element of <{a, b, ¢, x,>. By the same
argument as is used above for x, y=(1) (2 3) (16) (17)--+, (2) (1 3) (16) (17)+- or
(12)(3)(16) (17)---. Set H=<a, b, ¢, x,, y).

(it.iii) Lety=(1)(2 3)(16) (17)---. The proof in the case y=(2) (1 3)
(16) (17)--- is similar. Then {1, 2} and A are contained in the same H-orbit. By
(3.14), H is intransitive. Hence the H-orbit containing {1, 2} UAis {1,2} U A,
{1,2}UuAUT, {1,2} UAUT, {1,2}UAUT,UT,, {1,2} UAUT,UT,, {1, 2}
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UAUTUT,UT or {1,2} UAUT,UT,UT,. Since |{1,2}UAUT;|=14 (i=
1, 4), {1, 2} UAUT is not an H-orbit by (3.11). Since |{1,2} UAUT;UT,|
=17 ({5, j}={1, 4} or {2,3}), {1,2} UAUT;UT, is also not an H-orbit by the
assumption (4). Next suppose that {1, 2} UAUT;UT,UT; (i=1, 4), is an H-
orbit. Let7=1. Then T, is an H-orbit. Since x, fixes T', pointwise and four
points of {1, 2} UAUT,UT,UT,, there is an involution = which is conjugate to
x, and fixes 1 and T, pointwise. Since ab® fixes {1} U T, pointwise, ab® fixes I(2)
pointwise by (3.4). This is a contradiction since |I(ab®)|=5. Hence {1, 2} U
AUT,UT,UT; is not an H-orbit. Since ax, is an involution fixing T, pointwise,
in the same way as above {1, 2} UAUT,UT,UT; is not an H-orbit. Therefore
{1,2} UA is an H-orbit. Since | {1, 2} UA|=11, H has an element of order
eleven, which fixes exactly one point and has two 11-cycles. Hence T',UT,UT,
UT, is also an H-orbit.

We shall determine the form of the involution y. By the incidence structure
of P(a), y=(1) (2 3) (4) (5) (6 7) (16 )(17)-+- or y=(1) (2 3) (4 5) (6) (7) (16) (17)

Suppose that y is of the first form. Since ab fixes {1, 4, 5, 16, 17} which
is contained in I(y), ab fixes I(y). This contradicts (3.4) since the order of ab
is three and |I(ab)NI(y)| >2. Hence y must be of the second form. Then y
fixes A(1, 6) which is T', or T",U {20, 21}. Since T, is a {a, b, ¢, x,>-orbit and
T,UT,UT,UT,is an H-orbit, I'Y+T,. Thus {20, 21}’= {22, 23} and so y=
(20 23) (21 22)--- or (20 22) (21 23)---. If

y=(1)(23) (435) (6) (7) (16) (17) (20 23) (21 22)--,
then

by = (1) (16) (4 5 17) (6 22 7 21)---,
contrary to the assumption (4). Thus

y=(1)(2 3) (4 5) (6) (7) (16) (17) (20 22) (21 23)--- .
Hence

by = (1) (4 5 17) (16) (6 23 21) (7 20 22) (9 2 3-++)-- .

This shows that by is of order three. Hence y fixes 9 and so 8 because ay=ya.
On the other hand T, U T, U T',U T, is an H-orbit. Therefore y=(18 19)---. Thus
y=(1)(23)(8) (9) (4 5) (6) (7) (16) (17) (18 19) (20 22) (21 23)---.
Then
cy = (1) (4 18 19 5) (16 17) (6 23 7 21) (20 22)--- .
Hence cy is of order four. By (iii) of (3.1), |I(cy)|=3. This implies that ¢ and
9 have exactly one 2-cycle in common on {10, 11, ---, 15}. Thus

y = (1) (2 3) (8) (9) (13 15) (12 14) (10 11) (4 5) (6) (7) (16) (17) (18 19)
(20 22) (21 23).
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From now on the element y of this form is denoted by y,. Since H=<a,b,¢c,x,,y,>
is 3-fold transitive on {1, 2, 8, 9, ---, 15}, H is isomorphic to M,,, 4,, or S,, by
[5]. On the other hand T',UT,UT,;UT, is an H-orbit of length twelve. Since
A,, and S|, have no permutation representation of degree twelve, H is isomorphic
to M,,. Furthermore by (3.14), there is no group containing H as a proper sub-
group.

(ii.ii.ii) Let y=(1 2) (3) (16) (17)---. Then y=(12) (3) (4) (5 6) (7)
(16) (17)-+- or (1 2) (3) (5) (6) (4 7) (16) (17)---. Suppose that y is of the first
form. Thern x,y is not the identity element and fixes {1, 2, -+, 7} pointwise.
Hence x,y is of order two and so y commutes with x,. Since x,=(16 20) (17 21)
-~ and y fixes 16, 17, y fixes also 20,21. On the other hand y fixes I(x,) and
A(1, 2). Hence y fixes I(x,) N A(1, 2)=1{3, 8, 9} and so y has a 2-cycle (8 9) be-
casue |I(y)|=7. Thus ax,y is an involution fixing {1, 2, -++, 9} pointwise, con-
trary to (i) of (3.1). Therefore y must be of the second form. Then

2y =(1)(2)(3) (#7) (5 6).

Hence x,y is of order two or four. If x,y is an involution, then P(x,y) is the
plane containing 1, 2, 3. 'This is a contradiction since there is no plane contain-
ing 1, 2, 3 and different from P(a). Thus x,y is of order four. Since A(1, 7)=
T, or T U {22, 23}, A(2, 4)=T, or T, U {18, 19} and A(1, 7)’=A(2, 4), TY=T..
By (iii) of (3.1), x,y has exactly two 2-cycles. Hence y has a 2-cycle (20 21) on
T, Since A(1, 5)=T, or T, U {16, 17}, A(2, 5)=T, or T, U {16, 17} and A(1, 5)”
=A(2,5), I'Y=T,. Thus y=(18 22) (19 23)--- or (18 23) (19 22)---. If y is of
the first form, then cy=(1 2) (4 23) (18 22) (6 20 21)---, which contradicts (v) of
(3.1). Thus

y = (12) (3) (4 7) (5) (6) (16) (17) (20 21) (18 23) (19 22)--- .

This implies that (bc)’=bc. Hence y fixes 14, 15, and so y has a 2-cycle (10 11)
because the order of x,y is four. Then y has 2-cycles (8 13) and (9 12) since bc
=(8 12 10) (9 11 13)-+- and (bc)*=bc. Thus

y=(12)(3) (8 13) (9 12) (10 11) (14) (15) (4 7) (5) (6) (16) (17) (20 21)
(18 23) (19 22).

From now on the element y of this form is denoted by y,. Set H=<a, b, c, x,, y,>.
Then H is isomorphic to a subgroup of Ny, (M,) of index 2, which we denote
by N(M,)*, and the H-orbits are {1, 2}, A, T,UT, and T,UT,.

Suppose that H is a proper subgroup of G. First assume that {1,2} is a G-
orbit. Then A is a G-orbit. By the assumption (4), the order of G, , , is a divisor
of 20-48. Since |A|=9 and 3€ A, if G,,, has an element of order three, then
the order of G is divisible by 3°. This is a contradiction since the order of M,,
is not divisible by 3°. If G,,, has an element of order five, then this element
fixes three points 1, 2, 3 and at lcast three points of A— {3} since |A— {3} |=8,
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contrary to (iv) of (3.1). Thus G,,; is a semiregular 2-group on A— {3} by
the assumption (7). Since G contains H as a proper subgroup, |G: G,,;|=
|H: H,,3|=2-9and |H,,;|=4, G,,;is of order 8. Thus G is isomorphic to
Nu,,(M,) by [5]. Therefore G=<{a, b, ¢, x,, (¥, ¥,)”»> and the G-orbits are
{1, 2}, A, T,UT,UT,UT,.

Next assume that {1, 2} is contained in some G-orbit properly. If {1, 2}
U A is a G-orbit, then G is isomorphic to M,, by (3.15). If {1,2}UT,UT,isa
G-orbit, then the remaining G-orbits are A and I',UT; or AUT,UT,. Since
[{1, 2} UT,UT,|=38 and «,y, is of order four and contained in G,, G is of order
divisible by 8-4. Suppose that T',U I’y is a G-orbit. Since |T',UT,|=6, Gr,, Ty
has an involution. Hence for any point # of {1,2} UT,UT, or A, there is an
involution fixing ¢ and I',U T pointwise. This is a contradiction since every
involution fixing T',U I'; pointwise fixes the same seven points by (vi) of (3.1).
Next suppose that AUT,UT, is a G-orbit. Since |[AUT,UT;|=15, G has an
element of order five. Hence G, has an element « of order five. On the other
hand we have already proved that the G,-orbit containing 2 is {2} or {2} U A.
Since {2} and A are contained in the different G-orbit, {2} and A are the
G,-orbit. Hence u fixes 1, 2 and four points of A, contrary to (3.1). In the
same way it is impossible that {1, 2} UT,U T} is a G-orbit.

Next since |{1,2} UAUT,UT,|=17 and M,, has no element of order se-
venteen, {1, 2} UAUT,UT, is not a G-orbit. In the same way {1, 2} UAUT,
UT, is not a G-orbit.

Finally since |{1,2}UT,UT,UT,UT,|=14, {1, 2} UT,UT,UT,UT, is
not a G-orbit by (3.11).

Thus if G contains x=(1 2) (3) (8) (9)-*+, then G is isomorphic to M,,, Ny,
(M) or NMu(MD)*'

(iii) Assume that x=(1) (2 3) (8) (9):--. In the case x=(2) (1 3) (8) (9)---
the proof is similar. By the incidence structure of P(a), x=(1) (2 3) (4) (5) (6 7)
(8) (9):++ or (1) (2 3) (4 5) (6) (7) (8) (9)---. Suppose that x is of the first form.
Since A(1, 4)=T, or T,U {18, 19} and A(1, 4)*=A(l, 4), {16, 17}"={16, 17}
or {18, 19}. If {16, 17}*={16, 17}, then x or ax fixes {1,4,5, 16,17} pointwise.
This is a contradiction since A(1,4)2 {5, 16, 17}. Hence {16, 17}*={18, 19},
and so x=(16 18) (17 19)-:+ or (16 19) (17 18)::-. Then bx=(1) (23 9) (8) (4)
(51916 18 17)--- or (1) (23 9) (8) (4) (5 18 16 19 17)---. Hence |I((bx)’)| =8,
contrary to (ii) of (3.1). Thus «x is of the second form. Since A(1, 6)=T, or
T, U {20,21} and A(1, 6)*=A(1, 6), {22, 23}*= {22, 23} or {20,21}. If {22,23}"
= {22, 23}, then x or ax fixes {1,6,7,22,23} pointwise. This is a contradiction
since A(1, 6)21{7, 22, 23}. If x=(20 23) (21 22)---, then bx=(1) (23 9) (8)
(20 23).:, contrary to (v) of (3.1), Thus x=(20 22) (21 23)---. Furthermore
A(1, 5)=T, or T, U {16, 17} and A(1, 4)*=A(1, 5). Hence similarly x=(16) (17)
(18 19)-+-. Thus
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x = (1) (2 3) (8) (9) (4 5) (6) (7) (16) (17) (18 19) (20 22) (21 23)--.

Hence x=y,. Set H=<a,b,c,y,>. Then the H-orbits are {1}, {2} UA, T,UT,
and T,UT,. Since H<<a,b,c,x,,y,>, and <a, b, ¢, x,, y,)>~M,, H is isomorphic
to a subgroup of M,,. Furthermore since M,, has orbits of lengths 1, 10, 12 as
a subgroup of M, (see [1], p. 235), H is isomorphic to a proper subgroup of M,,.
On the other hand H is doubly transitive on {2} UA and has an element ¢y,=
(1) (13) (15) (23 10 11) (8 14 9 12)---, the order of H is a multiple of 10-9-4.
Thus H is isomorphic to a subgroup of M,, of index two, which is denoted by
M.,*.

Suppose that H is a proper subgroup of G. If {2} UA is a G-orbit, then G
is isomoprhic to M,, by [5]. In this case G=<a, b, ¢, ¥,, X,,)> and the G-orbits
are {1}, {2} UA and IUT,UT,UT,. Nextassume that G has an orbit contain-
ing {2} U A properly. If {1} U {2} UA is a G-orbit, then G must be isomorphic
to M, by (3.15). If {2YUAUT,UT,is a G-orbit, then |{2lUAUT,UT,|=
16. Since G, is of even order, the order of G is divisible by 16-2. On the other
hand {1} UT,UT, is fixed by G as a set and G™VTVTe<S,. Thus G has
an involution # fixing {1} UT,UT, pointwise. Hence bc’®=(1) (6) (20) (21)
(7 22 23), contrary to (3.4). In the same way it is impossible that {2} UAUT,
UT,is a G-orbit. If {1}U {2} UAUT,UT,is a G-orbit, Then |{1} U {2} UA
UT,UT,|=17, contrary to the assumption (4). In the sam eway it is impossible
that {1} U {2 UAUT,UT,is a G-orbit. Finally by (3.14), Q-{1} is not a G-
orbit.

Thus if G contains x=(1) (2 3) (8) (9)-+ or (2) (1 3) (8) (9)-++, then G is
isomorphic to M,*, M,, or M,,.

When G is isomorphic to N(M,) or N(M,)*, we may assume that G is iso-
morphic to <a, b, ¢, x,, (®,7,) 1)1 1=La, b>1"1, 1™, y,, x,y,> or <a, b, c, x,, y,>"1™1
={a, 1", ¢’1™, y,, y,”1"1> respectively, and these generators were used in the
proof of Lemma 3.

3.17. Assume that | A(i, j)| <5 for any two points i, j of Q. If there is two
points ', j' of Q such that | A(¥, j')| =5, then G is (vi) or (vii) of Lemma 1, and we
have the following:

(vi) If G is isomorphic to PSL(2, 11,, then G is isomorphic to {a, x,, x,>
as a permutation group.
(v) If G is isomorphic to Ss, then G is isomorphic to {a, x,, x;> as a per-
mutation group.
Here
a=(1)(2)(3) (89) (10 11) (12 13) (14 15) (4) (5) (6) (7) (16 17) (18 19)
(20 21) (22 23).
x,= (1) (2 3) (8) (9) (10 11) (12 14) (13 15) (4 5) (6) (7) (16) (17) (18 19)
(20 22) (21 23),
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%= (2) (8) (10) (1 12) (9 13) (3 15) (14 11) (4) (7) (17) (18) (5 23) (6 21)
(16 22) (19 20),

= (3) (13) (10) (2 14) (1 8) (9 11) (12 15) (4) (5) (17) (22) (6 18) (7 20)
(16 21) (19 23) .

Proof. Let |A(1,2)|=5 and A(1,2)={3, 8,9, 10, 11}. Then we may as-
sume that there is an involution a of the form

a=(1) (2)--(7) (8 9) (10 11) (12 13) (14 15) (16 17) (18 19) (20 21)
(22 23).

Let b be an involution fixing 1,2, 8. By (3. 7), ab is of order three or five.
If the order of ab is three, then the order of (G,,)*®? is a multiple of 5-3-2.
Hence (G,,)*®® contains 4, by [5]. Thus G has an element &’ such that 4’ is
conjugate to b and ab’ is of order five. Therefore we may assume that the
order of ab is five and b is of the form

b= (1) (2) (4) (8) (310) (9 11) (12) (5 14) (13 15) (16) (6 18) (17 19)
(20) (7 22) (21 23).
Hence

ab = (1) (2) (4) (3 10 9 8 11) (5 14 13 12 15) (6 18 17 16 19)
(7 2221 20 23).

Set T',= {3, 8,9, 10, 11}, T,= {5, 12, 13, 14, 15}, T,={6, 16, 17, 18, 19}, and
I,={7, 20, 21, 22, 23}. Similarly to (3.16) we may assume that A(1, 4) >335,
A(1, 6)27 and A(2,4)>6. Thensince {1,2}%°={1,2}, A(1,2)>3 and |A(1,2)|
<5, A(1,2)=T,. Similarly A(1,4)=T, and A(2,4)=T4,. Since G,,, contains
{a,by and A(1,2), A(1,4) and A(2, 4) are orbits of G, ,, G, , and G,, respectively
by (3.8), the G,, -orbits are {1}, {2}, {4}, T, T;,, Ty and T',.

Now we have one of the following cases and treat these cases separately.

(i) 1, 2, 4 belong to the same G-orbit.
(ii) Exactly two points of {1, 2, 4} belong to the same G-orbit.
(iif) 1, 2, 4 belong to distinct G-orbits.

(i) Suppose that 1, 2, 4, belong to the same G-orbit. Then the G-
orbit containing 1,2, 4 is {1, 2,4}, {1,2,4} UT, {1,2,4}UT;UT; or {1, 2, 4} '
UT,;UT;UTy, where i, j, ke {1, 2, 3, 4}.

First assume that {1, 2, 4} is a G-orbit. Then G fixes and is transitive on
A(1,2)UA(1,4)UA(2, 4). Thus the G-orbits are {1, 2,4}, T,UT,UT,and T,.
By (3.5), there is an involution x fixing 20, 21 and commuting with a. If x=
(1) (2) (4):++, then x fixes I(a) pointwise by the incidence structure of P(a). Thus
I(x)21(a) U {20, 21}, which is a contradiction. Hence we may assume that x=
(1) (24)---. By the incidence structure of P(a), x=(1) (2 4) (3 5) (6) (7) (20)
(21)---. Since I', is a G-orbit, {22,23}*={22,23}. If x fixes {22, 23} pointwise,
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then since G is transitive on {1, 2, 4} for any point 7 of {1, 2, 4} some involution
conjugate to x fixes T',U {{} pointwise, contrary to (vi) of (3.1). Thus x has a
2-cycle (22 23). Let y be an involution fixing 7, 22 and commuting with 4. In
the same way y=(7) (22) (20) (21 23)---. Thus xy=(7) (20) (21 23 22)--- and so
xy is of order three. Hence xy fixes {1, 2, 4} pointwise or has a 3-cycle on
{1,2,4}. If xy=(1) (2) (4) (7) (20) (21 23 22)---, then |I(xy) NI(a)| >4. Thus
xy fixes noncollinear four points of P(a) and hence it fixes I(a) pointwise. This
contradicts (ii) of (3.1). Hence xy has a 3-cycle on {1, 2,4}. Then xy permutes
A(1, 2) A(1,4) and A(2, 4) cyclically. Since A(1,2)=T,, A(1,4)=T, and
A(2,4)=T,, xy has no fixed point in T',UT,UT,. Thus |I(xy)|=2, contrary
to (ii) of (3.1).

Next assume that {1, 2,4} UT, is a G-orbit, where i€ {1, 2, 3,4}. Set I'=
{1,2,4} UT;. Since | {2,4} UT;|=7, the G,-orbit containing 2 is {2}, {2, 4} or
{2} UT; by (3.11). If {2, 4} is a G,-orbit, then (G,)"") has orbits of lengths
two and five. Hence G* is primitive. Since a primitive group of degree eight
is doubly transitive by [5], G* is doubly transitive. This is a contradiction. Next
suppose that {2} is a G,-orbit. Then (G"),=(G"),. If {4} and T'; are G,-orbits,
then (GT),=(G"),=(G"),. Hence |T'| is divisible by 3, which is a contradiction.
If {4} UT, is a G,-orbit, then (G"),#=(G"),. Since G, is conjugate to G,(G"),
has exactly one orbit {t} of length one, where t&T — {1, 2, 4}. On the other
hand G, contains <{ab> which fixes exactly three points 1, 2,4 of I'. Hence =1
or 2, which is a contradiction. If {2} UT; is a G,-orbit, then {4} is a G,-orbit.
Hence in the same way we have a contradiction.

Next assume that {1, 2, 4} CT;UT; is a G-orbit, where 7, j€ {1, 2, 3, 4}.
Then|{1,2,4} UT;UT;| =13 and so G has an element of order thirteen, contrary
to the assumption (4).

Finally assume that the G-orbits are {1, 2, 4} UT;UT";UT; and T';, where
{67,k 1}=1{1,2,3,4}. Then G has orbits of lengths five and eighteen. This is
a contradiction since /M,, has no subgroup having orbits of lengths five and eigh-
teen (see [1], p. 235).

Thus it is impossible that 1, 2, 4 belong to the same G-orbit.

(ii) Suppose that exactly two points of {1, 2, 4} belong to the same
G-orbit. We may assume that 1, 2 belong to the same G-orbit. Then the G-
orbit containing {1, 2} is {1,2}, {1,2} UT,, {1,2} UT,;UT,, {1,2} UT;UT,;UT%
or {1,2}UT;UT,UT,UT,, where {i,5,k,1}={1,2,3,4}. By (3.11), {1,2} UT;
is not a G-orbit. Since M,, has no element of order seventeen, {1,2} UT;UT;
UT,is not a G-orbit. Furthermore by (3.14), {1,2} UT;UT;UT,UT, is not
a G-orbit. Thus the G-orbit containing {1, 2} is {1, 2} or {1,2}UT,UT;. We
treat these cases separately.

(ii.i) Assume that {1, 2} is a G-orbit. Then A(1, 2)=T, is a G-orbit.
By (3.5), there is an involution x fixing 8, 9 and commuting with a. By the as-
sumption (7), x==(1) (2) (8) (9)--. Thus x has a 2-cycle (1 2) and so x fixes a
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point 3 by the incidence structure of P(a). Thus x=(1 2) (3) (8) (9) (10) (11)---
or (12)(3)(8)(9) (10 11)---. If x is of the first form, then I(x)DTI,. Now
I(x°?)=1I(x)** OT,**=T", and hence by (vi) of (3.1) I(x)**=1(x). This contradicts
(3.4) since PSL(3, 2) has no element of order five. Hence « is of the second form.
By the incidence structure of P(a), x=(1 2) (3) (4) (5 6) (7) (8) (9) (10 11)--- or
(12) (3) (4 7) (3) (6) (8) (9) (10 11)---.

(il.ii) Let x=(12) (3) (4) (56) (7) (8) (9) (10 11)---. Since A(1, 4)*
A(2,4), T',"=Tyand so T'*=T,. Since |I(x)|=7, |I(x) NT,]=3. Hence if x=
(20 21) (22) (23)-++, then bx=(1 2) (4) (8) (20 21 23)--, which is a contradiction
by (v) of (3.1). Next if x=(20) (21) (22 23)---, then a’x=(1 2) (4) (3 9) (8 10 11)
(7 21).--, which is also a contradiction. Thus the case (ii.i.1) does not occur.

(ii.iii) Let x=(12)(3)(47)(5)(6)(8)(9) (10 11)---. Set H=<a, b, x.
Then {1, 2} and T, are H-orbits and the remaining H-orbits consist of unions of
T, Ty and {4} UT,. Suppose that T',, Ty and {4} UT, are H-orbits. Since
| {4} UT,| =6, H has an element u of order three. Then u has at least two fixed
points in each orbits of length five. Thus |I(u)| >6, contrary to (ii) of (3.1).
Next suppose that {4} UT,UT,UT, is an H-orbit. Then | {4} UT,UT,UT,|
=16. Since H, has an involution a, H is of order divisible by 16:2. On the other
hand since | {1,2} UT,|=7,|H: H, 5ur,| is a divisor of |.S,|=7-5-9-16. Hence
Hy, »ur, has an involution, which fixes {1,2} and A(1,2)=T, pointwise, contrary
to the assumption (7). Next suppose that I';, I"; U {4} UT, are H-orbits, where
{5, }=12,3}. Then |T';U {4} UT,|=11. Hence H has an element of order
eleven. Since an element of order eleven has two 11-cycles and one fixed point,
it is impossible that {1, 2} is an H-orbit of length two. Thus we have a contra-
diction. Therefore the H-orbits must be {1, 2}, T, T,UT; and {4} UT,. Using
this result we shall determine the form of x. Since

bx =(12)(8)(311910)(2247--)-,
bx is of order four. Moreover {4} UT, is an H-orbit. Hence
x=(12)(3) (4 7) (5 (6) (8) (9) (10 11) (20 22) (21 23)---

and so

bx = (12) (8) (3 11 9 10) (22 4 7 20) (21) (23)-- .

Hence bx has exactly two 2-cycles (1 2) and (¢ ) by (iii) of (3.1), wherez, j€T", U T,.
Thus I((bx)*)=1{1, 2, 8, 21, 23,7, j}. On the other hand (bx)* is a central involution
of a dihedral group <b, x>. Hence b7“®»»=(1) (2) (8) (21 23) (¢ j) and x?@**>=
(12)(8)(2123) (4 (j). Thus {7, j}=1{5, 14,} {13, 15}, {6, 18} or {17, 19}.
Suppose that {7, j} = {13, 15} or {17, 19}. Then I(x)> {13, 15} or {17, 19}.
Since ¥ commutes with a and a"2"Ts=(5) (12 13) (14 15) (6) (16 17) (18 19), x
fixes {3, 8, 9} UT, or {3, 8, 9} UT, pointwise. Thus |I(x)| >8, contrary to (i)
of (3.1). Hence {/,j}=1{5, 14} or {6, 18} and so « fixes {5, 14,15} or {6, 18,19}
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pointwise because x commutes with a.

Suppose that x fixes 5, 14, 15. Since <b, x) is a dihedral group of order
eight and not semiregular on I', U T';— {5, 14} of length eight, {b, x> is intransitive
onT,UT,— {5, 14}. Furthermore bx has two 4-cyclesonT',U T;— {5, 14}. Hence
<b, x> has two orbits of length four on T',UT;— {5, 14}. On the other hand x
has exactly two fixed points 15, 6 and three 2-cycles on T',U T';— {5, 14}. Hence
15, 6 are contained in the same <b, x>-orbit. Thus {15, 6, 13, 18} and {12, 16,
17, 19} are <b, x>-orbits on T',U I';— {5, 14}. Hence x=(15) (6) (13 18)--- and
so x=(15) (6) (13 18) (12 19) (16 17)---because ¥ commutes with . Thus

x = (12) (3) (8) (9) (10 11) (4 7) (5) (6) (20 22) (21 23) (14) (15) (12 19)
(16 17) (13 18)..

From now on the element x of this form is denoted by x,.
Similarly if x fixes 6, 18, 19, then

x = (12) (3) (8) (9) (10 11) (4 7) (5) (6) (20 22) (21 23) (18) (19) (14 17)
(15 16) (12 13) .

From now on the element x of this form is denoted by x,”. Then both <{a, b, x,>
and {a, b, x,”> are isomorphic to S;.

Set H=<a, b, x,> and suppose that H is a proper subgroup of G. The proof
in the case H={a, b, x,’> is similar. Since H"1=S, and T, is a G-orbit, H 1=
G™1. Moreover Hr,=1 and G contains H properly. Hence Gr,#+1 and so G
has a nonidentity element # fixing T", pointwise. Then [I(x)|>5. Hence
u is of order three or two. If u is of order three, then u fixes the G-orbit {1, 2}
pointwise. Thus |I(u)|>7, contrary to (ii) of (3.1). Thus u is of order two.
Then since ab fixes T, ab fixes I(u). Thus (ab)’™ is of order five, contrary to
(3.4). Thus there is no group which contains H properly and satisfies the as-
sumption of Lemma 1.

(ii.ii) Assume that {1,2} UT';UT,is a G-orbit, where i, j€ {1, 2, 3, 4}.
Then the remaining G-otbits are unions of {4}, T'y and I';, where k, /€ {1, 2, 3 ,4}
—{7,j}. Hence the G-orbit containing {4} is of length one, six or eleven. Since
[ {1, 2} UT;UT,|=12, if G has an orbit of length six or eleven, then G is a sub-
group of a group which is isomorphic to M,, (see [1], p. 235) and if G has an
orbit of length one, then G is a subgroup of M,,, However it is impossible that
G has orbits of lengths six, five and twelve and isomorphic to a subgroup of M,,
(see [1], p. 235). Next suppose that G has an orbit of length eleven. Then by
(3.15), G is isomorphic to M,,. Let 7, 7, be two points of the G-orbit of length
eleven. Then G, ;, has orbits of lengths nine and twelve on Q— {7,, 7,}. By
(3.8), |A(i, 2,)| =9, contrary to the assumption. Hence G is a proper subgroup
of M,,. 'Thus the lengths of the G-orbits are 1, 12, 5, 5 or 1, 12, 10. Hence G
is a subgroup of M, (see [1], p. 235) and has orbits {4}, {1, 2} UT;UT;, T, T';
or {4}, {1,2}UT,UT;, T, UT,. Since |{1,2} UT;UT,|=12, G has an element
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of order three. On the other hand since G™+V™ is a subgroup of M,, of degree
ten, an element of order three fixes exactly one point of ', UT",. Hence it is
impossible that G has two orbits I', and T, of length five. ThusT,UT; isa G-
orbit. Since G fixes a point 4 and two points 1, 2 belong to the same G-orbit,
A(4, 1)=T, and A(4, 2)=T, are contained in the same G-orbit. Thus the G-
orbits are {4}, {1, 2} UT,UT, and T,UT, or {4}, {1,2} UT,UT, and T,UT,.
First assume that {4}, {1, 2} UT,UT; and I',UT, are G-orbits. Since | {1, 2}
UT,UT;|=12 and G"1Y"is a subgroup of M,, of degree ten, G, ; has an element
of order three which has no fixed point on I'; UT,— {3}. Hence the lengths of
the G, ;-orbits in T", U T',— {3} are multiples of three. Thus |A(4, 3)| =3 because
A(4, 3)27 and |A(4, 3)| <5. On the other hand | {1,2} UT,UT,|=12 and G,
is of even order. Hence G is of order divisible by 4-2 Then since |G,: G,;|=
10 and A(4, 3) is a G, ;-orbit of length three, G has an involution fixing {4, 3} U
A(4, 3) pointwise, contrary to the assumption (7). Next assume that {4}, {1, 2}
UT,UT, and T,UT, are G-orbits. Then for two points 1 and 3 of the G-orbit
{1,2} UT,UT, A4, 1) and A(4, 3) are contained in the same G-orbit. However
this is a contradiction since A(4, 1)=T, and A(4, 3) contains a point 7 of T',.

(iif) Suppose that 1, 2, 4 belong to distinct G-orbits. Furst assume
that G has no orbit of length one. Then the lengths of the G-orbits are 6, 6, 6,
5o0r 6,6, 11. By (3.15), the latter case dose not occur. Hence G has orbits of
lengths 6, 6, 6, 5. But there is no maximal subgroup of M,, containing G (see
[1], p. 235). Thus G has an orbit of length one.

Next assume that G has at least two orbits of length one. Then we may
assume that {1} and {2} are G-orbits. By (3.5), there is an involution x fixing
8, 9 and commuting with a. Then x fixes 1, 2 and two points 8, 9 of A(1, 2),
contrary to the assumption (7).

Thus G has exactly one orbit of length one. Hence we may asssume that
{1} is a G-orbit. Then the remaining G-orbits are unions of {2} UT;, {4} UT,,
T and T, where {2} UT; and {4} UT', are not contained in the same G-orbit
and {1, j, k, I}={1, 2, 3, 4}. 'Thus the length of the G-orbit containing {2} or
{4} is 16, 11 or 6. We treat these cases separately.

(iii.i) Suppose that there is a G-orbit of length sixteen. Then the G-
orbits are {1}, {#,} UT;UT; and {z,} UT,, where {t,, t,}=1{2, 4} and {3, j, &, I}
={1,2,3,4,}. Since |{#,} UT;UT;UT|=16 and the order of G,, is even, G is
of order divisible by 16-2. On the other hand since | {z,} UT;|=6, a Sylow 2-
subgroup of G2V is of order at most sixteen. Hence Gi,yyr, is of even order.
Thus there is an involution x fixing {t,} UT, pointwise. Since |I(x)|=7, I(x)
={1, 1,} UT,. Then ab fixes I(x) and (ab)’® is of order five, contrary to (3.4).
Thus G has no orbit of length sixteen.

(iii.ii) Suppose that there is a G-orbit of length eleven. Since {1} is
a G-orbit of length one, G is isomorphic to PSL(2, 11) and the G-orbits are {1},
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{2} UT;UT; and {4} UT UT,, where {7, j, k, [}=1{1,2,3,4}. Now we deter-
mine the generators of G. Assume that {2} and I';=A(l, 2) are contained in
the same G-orbit. Then G has an orbit {2} UT,UT; where i€ {2, 3, 4}. Let
{t}=T;N1I(a). Then A(1l,2)=T, and A(l, t) are contained in the same G-orbit.
On the other hand by the incidence structure of P(a), I(a) N A(1, ?) is different
from {2}, {3} and {#}. Thus {{2}UT,UT,} NI(a)2{2 3, ¢}, which is a con-
tradiction. Similarly {4} and I',=A(1, 2) are not contained in the same G-orbit.
Thus the G-orbits are {1}, {2} UT,UT;and {4} UT,UT,, where {;, j}= {3, 4}.
Now we assume that the G-orbits are {1}, {2} UT,UT,, and {4}UT,UT,.
When the G-orbits are {1}, {2} UT,UT, and {4} UT,UT,, the generators are
deternimed in the similar way and this group is isomorphic as a permutation
group whose orbits are {1}, {2} UT,UT; and {4} UT,UT,. Let x be an
involution fixing 8, 9 and commuting with a. Since A(1, 2)=8, 9 and I(x) =1,
x does not fix 2. Furthermore since {2} UT,U T is a G-orbit, x=(1) (2 5) (6)--+
or (1) (2 6) (5)--. Now we assume that x=(1) (2 5) (6) (8) (9)--. Then by the
incidence structure of P(a), x=(1) (2 5) (3 4) (6) (7) (8) (9):-. Hence

bx = (1) (8) (14 2 5-+-) (10 4 3-++)--- .

Since b and «x fix 1, 8, A(1, 8) NI(b)= {2} and A(1, 8) NI(x)= {2}, the order of
bx is odd by (3.7). Furthermore since A(1, 8) is a G|, ;-orbit and |A(1, 8)| <5,
the order of bx is three or five. If bx is of order three, then x fixes 14, 10 and so
fixes 15, 11 because ax=xa. Thus |I(x)| >7, contrary to (i) of (3.1). Therefore
bx is of order five and so |I(bx)|=3. Hence b and x fix exactly one more point
other than 1, 8 in common. Therefore x fixes exactly one point of {12, 16, 20}.
Assume that x fixes 16. Then x fixes 17 because ax=xa. Thus I(x)={1, 6, 7,
8,9,16,17}. Since A(1,8)=2 and {2} UT,UT, is a G-orbit, A(1, 8)= {2} UT,
UT, by (3.8). Since three points 1, 6, 7 are collinear, A(1, 8)6. Since three
points 1, 2, 8 are collinear in P(b), A(l, 8)316. Thus A(1, 8)=17 in P(x).
Furthermore since A(1, 8)<*>=A(1, 8) and |A(1, 8)| <5, A(1, 8)={2, 5, 14,
17, 19}. 'Therefore

x= (1) (25) (34)(6) (7) (8) (9) (16) (17) (14 19) (15 18)---.
Hence
ax = (1) (2 5) (3 4) (6) (7) (89) (16 17) (14 18) (15 19)---

and
bax = (1) (2518 6 14) (1319 16 17 15..+)---.

This shows that bax is of order five. Hence ax fixes 13 and so fixes 12.
Furthermore since |I(bax)|=3, b and ax fix exactly one more point other than
1, 12 in common. Hence ax fixes 20 and so fixes 22. Thus

x = (1) (25) (3 4) (6) (7) (8) (9) (16) (17) (14 19) (15 18) (12 13) (20 21)---,
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Therefore x=(10 23) (11 22) or (10 22) (11 23) on {10, 11, 22, 23}. If xis of
the first form, then bx=(3 23 20 21 10 4)---. This is a contradiction since bx is
of order five. Thus

x = (1) (2 5) (3 4) (6) (7) (8) (9) (16) (17) (14 19) (15 18) (12 13) (20 21)
(10 22) (11 23).

The element x of this form is denoted by x,. Then <{a, b, x,> is isomorphic to
PSL(2, 11).  Since any subgroup of M,, which is isomorphic to PSL(2, 11) and
has orbits of lengths 1, 11, 11 is isomorphic as a permutation group to <a, b, x,>,
we need not show the form of x when x=(1) (2 6) (5) (8) (9)-+- or (1) (2 5) (6) (8)
(9):+- and « fixes 16 or 20.

(iii. iii) Suppose that there is a G-orbit of length six. Then by (iii.

Assume that {t} UT;is a G-orbit, where t€ {2, 4} and i€ {3, 4}. Let =2
and 7=3. The proofs in the remaining cases are similar. For two points 2 and
6 of {2} UT,, A(1, 2) and A(l, 6) are contained in the same G-orbit. Since
A(1, 2)=T, and A(1, 6)=7, T'; and T\, are contained in the same G-orbit. Thus
G-orbits are {1}, {2} UT,, I',UT, and {4} U T,. Let x be an involution fixing
12, 13 and commuting with a. Since A(1, 4)=12, 13, x does not fix the point
4 by the assumption (7). Furthermore {4} UT, is a G-orbit. Hence by the
incidence structure of P(a) x=(1) (4 5) (2 3) (6) (7)--- or (1) (4 5) (2) (3) (6 7).
If x is of the first form, then 2 and 3 belong to the same G-orbit, which is a
contradiction. If x is of the second form, then 6 and 7 belong to the same
G-orbit, which is also a contradiction.

Thus the G-orbit containing {2} is {2} UT, or {2} UT, and the G-orbit
containing {4} is {4} UT, or {4} UT,. Suppose that the stabilizer of two points
in G*VTi contains a four group, where {t} UT; is a G-orbit, ¢ {2, 4} and
ie{l1, 2}. Since GV is doubly transitive on {t} UT;, G*3VTi contains 4, by
[5]. Then since A has no permutation representation of degree five, T';UT, is
a G-orbit. Furthermore since A4, is isomorphic to M, * of degree ten, G'sV"
is doubly transitive on I';UT,. On the other hand since A(1, 6)=7, A(1, 6)
is a G,sorbit containing 7 by (3. 8). Thus A(1, 6)=T,UT,—{6} and so
|(Al, 6)|=9. This is a contradiction. Thus the stabilizer of two points in
G™VT: does not contain a four group. We use this result in the following proof.

First assume that {2} UT, and {4} UT,are G-orbits. Let x be an involution
fixing 16, 17 and commuting with a. Since {2} UT,is a G-orbit, {2, 3}*={2, 3}.
Suppose that x fixes {2, 3} pointwise. Since A(1, 2)=T,, I(x)D {1, 2, 3} and
I(ax)D> {1, 2, 3}, x and ax have no fixed point in T',— {3} by the assumption
(7). Hence x=(1)(2) (3) (8 10) (9 11)--- or (1) (2) (3) (8 11) (9 10):+-. Thus
{a, x)*VT1 is a four group contained in (G®V™),,, contrary to the remark above.

Similarly x does not fix {4, 5} pointwise, Hence x=(1) (2 3) (4 5) (6) (7) (16)
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(17)---. Then x fixes two more points other than 1, 6, 7, 16 and 17. Since
{2} UT, and {4} UT, are G-orbits of even length, it is impossible that x has a fixed
point in both {2} UT, and {4} UT,. Hence now we assume that x has no fixed
fixed point in {2} UT,. The proof in the case |I(x) N {{4} UT,} | =0 is similar.
Then x=(1) (2 3) (4 5) (6) (7) (8 9) (10 11)---, (1) (2 3) (4 5) (6) (7) (8 10)
(9 11)--- or (1) (2 3) (4 5) (6) (7) (8 11) (9 10)--- . If x is of the first form, then
axb=(1)(2103)(8) (9 11)-+-, contrary to (v) or (3.1). Hence x is of the second
or third form. If x is of the third form, then ax=(1) (2 3) (4 5) (6) (7) (8 10)
(9 11)---. Hence set &’=x or ax in the second or third case respectilvely. Then
x"b=(1) (210 8 3) (9) (11) (5 4 14---)---. Hence x’b is of order four and so x’b
has exactly two 2-cycles and three fixed points by (ii) of (3.1). Hence x’b=(1)
(21083)(9) (11) (4 5 14 12) (13 15)---. Then <, (¥’ b)*>“I"T2 is a four group
contained in (G“}"2) , ., contrary to the remark above.

Next assume that {2} UT, and {4} UT, are G-orbits. Let x be an involution
fixing 16, 17 and commuting with a. Since {2} U T, is a G-orbit, {2, 5}*= {2, 5}.
If x fixes {2, 5} pointwise, then by the incidence structure of P(a) x fixes I(a)
pointwise. Thus I(x)21(a)U {16, 17}, contrary to (i) of (3, 1). Hence x has a
2-cycle (2 5). Then by the incidence structure of P(a), x=(1) (25) (3 4) (6)
(7) (16) (17)-+-. 'Then by the same argument as above we have a contradiction.
Thus we complete the proof of (3.17).

Let

o, =(143)(2567) (810) (9 11) (12 22 14 18 20 13 23 15 19 21)
(16 17)

and

a,=(176)(2)(35)(4) (18179 16) (10 23 20 18 12) (11 2221 19 16)

(14 15).
Then

(cm—l)‘r1 =_xz"2 ~ (1) (2 3) (8} (9) (10 11) (12 14) (13 15) (4 5) (6) (7) (16)
(17) (18 19) (20 22) (21 23),

b°1 = (3) (13) (10) (2 14) (1 8) (9 11) (12 15) (4) (5) (17) (22) (6 18)
(7 20) (16 21) (19 23),

b%z = (2) (8) (10) (1 12) (9 13) (3 15) (14 11) (4) (7) (17) (18) (5 23)
(6 21) (16 22) (19 20).

Then these elements belong to the group of (i) of (3.16), <a, (ax,)™, b"1> =S,
and {a, x,%, b°2)==PSL(2, 11). We used in the proof of Lemma 3 these genera-
tors.

Next we need the follwing (3.18) and (3.19), which are frequently used
in the proof in (3.20).
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3.18. Let
a=(i,) (%) (JiJJs) " -

and let b be an involution of the form

b= (@) (@) () (J2ja) - -
If A(3,, 1,) D, or A2y, j,) D1, (2=1, 2 or 3), then (ab)’=1 and a®=a™".

Proof. If A(i, j,) 21, then A(s, 7,) D j, by the assumption (3), t=1, 2 or 3.
Hence we may assume that A(7;, 7,)37,, t=1,2 or 3. Then since A(Z, 7,)*=
A(2y 1), Aiyy )2 {j 1 jo» Js}.  Since

ab = (&) (i) (i) ()= »
| I((ab)*)| =5. Hence the order of (ab)® is 1, 2 or 3 by the assumption (4). If (ab)’
is of order two, then I((ab)?) D {z,, .} and I((ab)?) N A(%,, 25)2 {j» ja» Js} » CONtrary
to the assumption (7). If (ab)* is of order three, then ab is of order six.
However |I(ab)| >3, contrary to (v) of (3.1). Hence (ab)’=1 and so bab=a"".
Since b is an involution, a®=a"!.

3.19. Assume that |A(i, j)| <3 for any two pointsi, jof Q. Let x,y be
involutions such that xy=yx and I(x)==1(y). Then I(x)NI(y) consists of three
points, say i, 1,, 15, and A, 1,)= {i,}.

Proof. Since I(x)=1(y), |I(x)NI(y)|=3. Set I(x)NI(y)= {t, 2, i:}.
Then I(<x, y>)={i,, ©,, 5}. Thus <{x, y> is of order four and has orbits of
lengths one, two and four. Since <x, y) fixes {7,, 7,}, A(Z,, %,) consists of unions
of <x, y>-orbits. Since |A(z,, 7,)| <3, A(Z,, 7,) does not contain the {x, y>-orbit
of length four. Furthermore for any <{x, y)>-orbit of length two there is an
involution in {x, y)> fixing the <{x, y>-orbit of length two pointwise. Hence by
the assumption (7), A(7, 7,) does not contain the {x, y>-orbit of length two.
Thus A(Z,, 7,) is the <{a, x>-orbit {i;} of length one.

3.20. It is impossible that | A(i, j)| <3 for any two points i, j of Q.

Proof. Suppose by way of contradictin that | A(7, j)| <3 for any two points
i, j of Q. By (3.9), we may assume that A(l, 2)={3, 8, 9}. Then by the
assumption (6), there are two involutions @ and b fixing 1, 2,3 and 1, 2,8
respectively. Then by (3. 7), ab is of odd order. Since |A(1, 2)|=3, ab is of
order three. Thus we may assume that

a=(1)(2) 4) (3) (8 9) (5) (10 11) (6) (1213)(7) (14 15) (16 17) (18 19)
(20 21) (22 23)
and
b= (1)(2) 4)(8) (39) (10) (5 11) (12) (6 13) (14) (7 15) (16 17) (18 20)
(19 22) (21 23),
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Then

ab = (1) (2) (4) (3 9 8) (5 11 10) (6 13 12) (7 15 14) (16) (17) (18 22 21)
(19 20 23).

Set I',={3, 8, 9}, I',=1{5, 10, 11}, T',=1{6, 12, 13}, T'={7, 14, 15}, A,={18,
21, 22}, and A,={19, 20, 23}. Then <a, b)>-orbits are {1}, {2}, {4}, T, T,
T, Ty A,UA,; and {16, 17}. Similarly to (3. 16) we may assume that A(1, 4)>
5, A(1, 6)27 and A(2, 4)26. Then A(l 2)=T,, A(1, 4)=T, and A(2, 4)=T..

Since A(16, 1)*°=A(16, 1), A(16, 1)={2}, {4}, {17}, {2, 4, 17}, T, T,, T,
T, A,or A,. If A(16, 1)=2, then A(1, 2)>16, which is a contradiction. Simi-
larly A(16, 1)p4. Suppose that A(16, 1)=T,. Then A(17, 1)=A(16, 1)*=T,.
Hence A(1, 6)=1{7, 16, 17}. 'This implies that there is an involution x fixing
1, 6, 16. By the assumption (7),

x = (1) (6) (16) (7 17)--- .

Hence
abx = (1) (16) (14 17 7.-+)---.

Thus abx is not an involution. On the other hand since A(16, 1)={6, 12, 13}
and «x fixes 16, 1, 6,

x = (16) (1) (6) (12 13)--- .

Since ab=(16) (1) (6 13 12)---, abx is of order two by (3. 18), which is a contradic-
tion. Thus A(16, 1)==T,. Similarly A(16,1)%T,. Hence A(16, 1)={17}, T,
T, A, or A,. Since A(17,1)=A(16, 1)%, A(17, 1)={16,}, T';, T',, A, or A,. In
the same way A(16, 2)={17}, T, Ty, A, or A,, A(17, 2)={16}. T,, Ty, A, or
A, A(16, 4)={17}, T,, Ty, A, or A, and A(17, 4)={16}, T, T, A, or A,.

Now A(16, 17)<**>=A(16, 17). Hence A(16, 17)= {1}, {2}, {4},
{1, 2,4}, T, T, TyorT,. In the following we treat these cases for A(16, 17)
separately.

(i) Assume that A(16, 17)=T",. The proof in the ‘case A(16, 17)=

T, or T is similar. Then by the assumption (6), there is an involution x of the
form

x = (16) (17) (3) (8 9)-- .

Since ab=(16) (17) (3 9 8)::-, (ab)*=(ab)™* by (3. 18). Since I(ab)={1, 2, 4,
16, 17}, x fixes {1, 2, 4} and so x=(1) (2) (4):+-, (1) (24)---, (2) (1 4)- or (4)
(12)---. Suppose that x=(1) (2) (4):--. Then I(a)NI(x)2{1, 2, 3, 4} and
I(a)=I(x), contrary to (vi) of (3. 1). Next suppose that x=(1) (2 4)-:-. Then
A(1, 3)"=A(1, 3). Since A(l, 3)22, A(1, 3)22"=4. Thus A(1, 3)N(I(a)2
{2, 4}, which is a contradiction since a is an involution fixing 1, 3. Similarly

x£(2) (14)- . Thus
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x=(12)(3)(4) (89)(16) (17)---.
Since
ax = (12) 3) (4) (8) (9) (16 17)--,
x commutes with ¢. Therefore by the incidence structure of P(a),
x=(12)(3) (4) (5 6)(7) (89) (16) (17)-- .
Then because (ab)*=(ab)™*
x=(12)(4)(3)(89)(56) (10 13) (11 12) (7) (14 15) (16) (17)---.
Since |I(x)|=7, x fixes exactly two points of {18, 19, 20, 21, 22, 23}. Without
loss we may assume that x fixes 18, 19. Then

x=(12)(4) (3)(89)(56) (11 12) (10 13) (7) (14 15) (16) (17)
(18) (19) (21 22) (20 23).
Since I(<a, x>)=1{3, 7, 4},A(3, 4)=1{7}, A3, 7)= {4} and A4, 7)= {3} by (3. 19).
Now A(16, 4)={17}, T,, T's, A, or A, and A(16, 1)={17}, T, T, A, or

A,. Since(16,17)=T,, A(16,4)= {17} and A(16, 1)5={17}. Since A(16, 4)*=
A(16, 4) and T',"=T, A(16, 4)=%T,, T. Thus I'(16, 4)=A, or A,. On the other
hand A(16, 1)={17}, T, T, A, or A,. Since A(16, 17)=T",, A(16, 1)= {17}.
Suppose that A(16, 1)=T",. Then A(17, 1)=A(16, 1)*=T',. Hence A(1, 3)=
{2, 16, 17}. 'Then by the assumption (6), there is an involution

u= (1) (16) (3) (8 9) (2 17)---.
Since A(16, 1)=T, and ab=(16) (1) (3 9 8)---, (ab)“=(ab)™* by (3. 18). Hence

u=(1) (16) (2 17) (3) (4) (8 9)--- .
Since A(3, 4)= {7}, u fixes 7 and so

au = (1) (3) (4) (217 16) (7) (8) (9)---,
contrary to (ii) of (3. 1). Thus A(16, 1)=T',. Next suppose that A(16, 1)=T,.
Since A(17, 1)=A(16, 1)*=T,, A(1, 5)=1{4, 16, 17}. Then by the assumption
(6) there is an involution

u = (1) (16) (5) (10 11) (4 17)---.
By (3. 18), (ab)“=(ab)~*. Hence

u= (1) (16) (4 17) (2) (5) (10 11)---.
This implies that A(16, 4)=A(16, 17)*=T“. However u fixes 1, 2. Hence
T',“=T,, which is a contradiction since A(16, 4)=A, or A,. Thus A(16, 1)=A,
or A,. Since A(16,.2)=A(16, 1)*,A(16, 2)=A, or A,.

By (3. 5), there is an involution y fixing 10, 11 and commuting with a.

Since y fixes 1(a), y=(1) (), (1 4)-+, (1) (4 i)---, () (1 1) --or (1) (4 ),
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1,7€142,3,5,6,7}. Since A(1, 4)2 {10, 11}, the first case does not occur. In
the remaining cases y7® is determined by the incidence structure of P (a).
(i.i) Assume that y=(14)(10) (11)---. Then y=(14) (5) (2) (7) (3 6)
(10) (11)---0r (1 4) (5) (2 7) (3) (6) (10) (11)---.
(i.i.1) Suppose that y=(14) (5) (2) (7) 3 6) (10) (11)::-. Then
by = (14)(2) (5 11) (10)---.

This shows that by is of order two or four. Since (by)* fixes {1, 4} U A(1, 4)
pointwise, the order of by is not four. Hence by is of order two and so y
commutes with b and so ab. Then y fixes {16, 17}. However A(16, 17)=T,
and T +T,. Thus we have a contradiction.

(i1.ii) Suppose that y=(14)(5) (27) (3) (6) (10) (11)---. Then A(4, 7)
=A(1, 2’=T,". This is a contradiction since |A(4, 7)|=1.

(i.ii) Assume that y=(1) (4 7) (10 11)--+, 7€ 1{2, 3, 5, 6, 7}.

(i.iii) Let 7=2. Then A(1, 4’=A(1, 2). Since A(1, 4)=T,>10,
A(1, 2)>10°=10, which is a contradiction.

(ii.ii) Let ¢=3. Then y=(1) (4 3) (2 5) (6) (7) (10) (11)---.
Since A(1, 10)<®»>= A(1, 10) and A(1, 10)>4, A(1, 10)= {4, 3, 9}. Hence
y fixes 9 and so 8. This implies that y fixes the subset {3, 4, 7, 8, 9} of I(ax).
Hence by (vi) of (3. 1), y fixes I(ax) and consequently y has a 2-cycle (14 15).
Thus

by = (1)(2511) (3 94) (8) (10) (7 14 15) (13 6--+)---.

This shows that by is of order three. Hence y has a 2-cycle (12 13) and by fixes
exactly two points of {16, 17, .-+, 23}. 'Therefore y has a common 2-cycle (i j)
in {16, 17, ---, 23} with b. If (¢j)=(16 17), then |I(ay)| > 9, which is a con-
tradiction. Next suppose that (¢ j)=(21 23). Since by is of order three and ay
is of order two, y=(21 23)(20 22) (16 18) (17 19)---or (21 23) (20 22) (16 19) (17
18)---and so xy=(1562) (3 4) (89) (16 18)---or (1 5 6 2) (3 4) (8 9) (16 19)---
respectively, contrary to (iii) of (3.1). Thus (z j)=(18 20) or (19 22). Since by
is of order three and ay is of order two, y is one of the following form:
.= (1) (4 3) (25) (6) (7) (8) (9) (10) (11) (12 13) (14 15) (18 20) (19 21)
(16 22) (17 23),
.= (1) (4 3) (2 5) (6) (7) (8) (9) (10) (11) (12 13) (14 15) (19 22) (18 23)
(16 20) (17 21)

or y;/=v,°, where i=1 or 2 and 6=(16 17). We assume that y=y, or y,. The
proof in the case y=y,’ or y,’ is similar. Then

aby, = (1) (2 5 11 10) (3 9 8 4) (6 12) (13) (7 14) (15) (18 16 22 19) (17
23 21 20),
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aby, = (1) (25 11 10) (3 9 8 4) (6 12) (13) (7 14) (15) (18 19 16 20)
(17 21 23 22).

Set u,=x%%"1 and u,—x°%2. Then

u, = (1 5) (3) (9) (4 8) (11 12) (10 6) (2 13) (14) (7 15) (22) (23) (16)
(20 19) (18) (17 21),

u, = (15) (3) (9) (4 8) (11 12) (10 6) (2 13) (14) (7 15) (20) (21) (19)
(23 17) (16) (18 22).

Now A(16, 1)=A, or A,. Assume that A(16, 1)=A,. The proof in the
case A(16, 1)=A, is similar. Then A(16, 5)=A(16, 1)= {18, 17, 22}. Hence
A(16, 17)=5. However A(16, 17)=T,. Thus we have a contradiction. Next
A(16, 5)=A(16, 1)*>=A,. Hence A(16, 11)=A(16, 5)**=A,**=A, and A(16, 10)
=A(16, 11)**=A,**=A,. Thus A(16, 1)=A(16, 5)=A(16, 11)=A(16, 10)=A,.
This implies that A(16, 18)2{1, 5, 10, 11}, which is a contradiction. Thus
(1) (4 3)-.

(iiiii) Let 7=5. Then y=(1) (4 5) (2) (3) (6 7) (10) (11)---0r (1) (4
5) (2 3) (6) (7) (10) (11).--. If y is of the first form, then I(<{a, y>)={1, 2, 3}.
Hence by (3.19) A(1, 2)={3}, which is a contradiction. Hence y is of the
second form. Then

by = (1) (4511) (10) (92 3---) (13 6-++) (15 7-++)---.

This shows that by is of order three. Hence y fixes 9 and so 8. Furthermore
y=(12 13) (14 15)--or (12 15) (13 14).--. If y=(12 13) (14 15)---, then xy=
(13 2) (8 9) (14) (15)--, contrary to (v) of (3.1). Next suppose that y=(12 15)
(13 14)-.-. Since |I(ay)|=7 and |I(by)|=35, ay and by fix exactly four and two
points of {16, 17, .-+, 23} respectively. Thus y=(16 17) (18 19).--, (16 17) (20
21)---or (16 17) (22 23)---. However in any case {16, 17}’={16, 17} and T";”+T,,
which is a contradiction.

(i.ii.iv) Leti=6or 7. Then y=(1) (4 6) (57) (2) (3) (10) (11)---0r
(1) (4 7) (5 6) (2) (3) (10) (11)---. Then I(<a, y>)=1{1, 2, 3}. Hence by (3.19)
A(1, 2)= {3}, which is a contradiction.

(i.iii) Assume that y=(4) (1 2) (10) (11)---2= {2, 3, 5, 6, 7}.

(idii.i) Let 7=2. Then A(1, 4)’=A(1, 2). Since A(1, 4)=T,>10,
A(1, 2)10°=10. This is a contradiction.

(i.iiiii) Let z=3. Then y=(4) (1 3) (10) (11)---. Hence A(4, 3)=
A(4,1)”. However |A(4, 3)| =1 and|A(4, 1)| =3. Thus we have a contradic-
tion.

(iiii.iil) Let7i=5. Then y=(4) (15) (2) (6) (37) (10) (11)---or (4)
(15) (2 6)(3) (7) (10) (11)---. If y is of the first form, then I({a, y>)=1{2, 4, 6.}.
Hence by (3.19) A(2, 4)={6}, which is a contradiction. Hence y is of the
second form. Then
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by = (4) (15 11) (10) (13 2 6++-) (9 3++-) (15 7+--)e--.

This shows that by is of order three. Hence y=(12) (13) (8 15) (9 14)---or (12)
(13) (8 9) (14 15)---. Assume that y=(12) (13) (8 15) (9 14)---. Then ay fixes
exactly three points 3, 4, 7 of {1, 2, ..., 15} and by fixes exactly three points 4,
10, 12 of {1, 2, .-+, 15}.  Since |I(ay)|=7 and |I(by)|=5, ay and by fix exactly
four and two points of {16, 17, ---, 23} respectively. Thus y=(16 17) (18 19)--,
(16 17) (20 21)---or (16 17) (22 23)---. However in any case {16, 17}”= {16,
17} and T =T, which is a contradiction since A(16, 17)=T",. Hence y=(12)
(13) (8 9) (14 15)---.
Then

sy=(16) (2 5)(4) (3) (8) (9) (10 13) (11 12) (7) (14) (15)--~.
This shows that xy is of order two. Hence

y=(4) (15) (2 6) (3) (7) (10) (11) (12) (13) (8 9) (14 15) (16 18) (17 19)

(20 22) (21 23)

or the same permutation with 16 and 17 interchanged. We assume that y is of
the first form. The proof in the second case is similar. Since A(16, 1)=A, or
A,, first assume that A(16, 1)=A,. Then A(16, 18)=1. Since <{x, y> fixes
{16, 18}, A(16, 18)2 {1} <*">={1, 5, 6, 2}, which is a contradiction. Next
assume that A(16, 1)=A,. Then A(16, 19)=1. Since <{x, ay) fixes {16, 19},
A(16, 19)= {1} <**>={2, 1, 5, 6}, which is also a contradiction.

(iiiiv) Let #=6. Then y=(4) (1 6) (25) (3) (7) (10) (11)---. Then
y is of the same form as y=(4) (1 5) (2 6) (3) (7) (10) (11)--+in the case (i.iii.iii)
with 1 and 2 interchanged. Hence in the same way we have a contradiction.

(i.iii.v) Let7=7.Then y=(4) (1 7) (5 3) (2) (6) (10) (11)---. Then
I(<a, x))=1{2, 4, 6}. Hence by (3.19) A(2, 4)= {6}, which is a contradiction.

(i.iv) Assume that y=(1¢) (4 j)---, 4, j€ {2, 3, 5, 6, 7}.

(i.iv.i) Let7=2. Then y=(12) (47) (3) (5) (6) (10) (11)---. 'This
shows that A(1, 2)”=A(1, 2). Hence y=(8) (9)---or (8 9)---. If y is of the first
form, then

by=(12)(39)(8) (511) (154 7--+)--,

Then |I((by)?)| =7 and (by)’+1. Hence (by)’ is of order two and fixes {1, 2} U
A(1, 2) pointwise, contrary to the assumption (7). Next if y is of the second
form, then

xy=(1) (2) (4 7) (8) (9) (3)---.
Hence xy is an involution fixing {1, 2} U A(1, 2) pointwise, contrary to the
assumption (7).

(i.iv.ii) Let7=3. Then y=(1 3) (4 6) (2) (5) (7) (10) (11):--. Since
b fixes a subset {2, 5, 10, 11} of I(y), b fixes I(y) by (vi) of (3.1). Hence I(y)>
7¢=15 and so I(y) 14 because ay=ya. Thus
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y=(13) (4 6) (2) 5) (7) (10) (11) (14) (15)---.
Since I(ax)={4, 3, 8,9, 7, 14, 15}, I(ax)’={6, 1, 8°, 97,7, 14, 15}. 'Then <{ab)>
fixes the aubset {1, 7, 14, 15} of I(ax)”. Hence <ab) fixes I(ax)”. Since
{6} <*>={6, 12, 13}, {12, 13} CI(ax)’. Thus {8, 9}’={12, 13}. Furthermore
since A(16, 17)=T', and I';’ T, y does not fix {16, 17}.  Thus the <{a, b, x, y)>
-orbits are {1, 2,4} UT,UT,UT,, T, and {16, 17} UA,UA,. Since | {1, 2, 4}
UT,UT,UT,|=12 and <a, b, x, y>, has an element ab of order three, the order
of <a, b, x, y)> is a multiple of 3°. By the assumption (4), a Sylow 3-subgroup
of <a, b, x,y> is an elementary abelian group of order 3°. Since I',is a<a, b, x, y>
-orbit of length three, the order of <a, b, x, y>r, is a multiple of three. Further-
more {a, b, x, y>r, is normalized by ab. Hence <a, b, x, y>r, has an element u
of order three and commuting with ab. Since A,UA,U {16, 17} isa <a, b, x,y)>
-orbit of length eight and | I(x)| =5, u fixes exactly two points of A,U A,U {16,
17}. 'Thus u fixes 16, 17 because (ab)u=u(ab). On the other hand by the
assumption (4), <ab, u) has an orbit T" of length nine. Since{1,2,4>UT,UT,UT,
is the only one <a, b, x, y)>-orbit of length at least nine, T" is contained in {1, 2,
4}UT,UT,UT,. Since <{ab, u) is of order nine, {ab, u) is regular onT". Hence
T'=T,UT,UT,. Thus <ab, u) fixes {16, 17} and does not fix T",=A(16, 17),
which is a contradiction.

(iiv.ii) Let¢=5. Then y=(15) (4) (10) (11)---. Since 1,5, 4 are
collinear in P(a), this is a contradiction. ‘

(iiv.iv) Let=6. Then y=(16) (4 3) (2) (5) (7) (10) (11):--. Since
b fixes a subset {2, 5, 10, 11} of I(y), b fixes I(y) by (vi) of (3.1). Hence I(y)
57=15, and so I(y) =14 because ay=ya. Then y fixes a subset {3, 4, 7, 14,
15} of I(ax)=1{3, 4, 7, 14, 15, 8, 9}. Hence by (vi) of (3.1), y fixes I(ax) and
so y has a 2-cycle (8 9). Then

by =(2) (10) (5 11) (14) 389 4) (131 6-+)---.
This shows that by is of order four. Hence y has a 2-cycle (12 13). Thus

y = (16)(43)(2) (5 (7) (10) (11) (14) (15) (8 9) (12 13)--,

¥y =(25)#3) (1) (6) (7) (12) (13) (14) (15) (8 9) (10 11)---,

ay*= (2 5) (4 3) (1) (6) (7) (12 13) (14 15) (8) (9) (10) (11)---.
Then ay” is y in (i.ii.ii). Hence y is not of this form.

(i.iv.v) Leti=7. Then y=(17) 4 2) (3) (5) (6) (10) (11)---. Then
A(1, 2)’=A(4, 7), which is a contradiction since |A(1, 2)|=3 and |A(4,7)|=1.

(ii) Assume that A(16, 17)={1, 2, 4}. Then there is an involution
x=(16) (17) (1) (2 4):--. Then by (3.18), (ab)*=(ab)™*. Furthermore A(2. 4)*
=A(2,4). Hence x=(6) (12 13)---, (12) (6 13):--or (13) (6 12)---. Since in the
second and third cases we have the first form by transforming x by (ab)* and ab
respectively, we may assume that
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x=(16) (17)(1) (2 4) (6) (12 13)---.
Then
ax=(1) (2 4) (6) (12) (13) (16 17).--.
Thus ax is of order two. Hence from (ab)*=(ab)™?, we have that
x=(1) (24) (3 5) (6) (7) (8 11) (9 10) (12 13) (14 15) (16) (17)---.

Since |I(x)|=7, x fixes two points of {18, 19, ---, 23}. Without loss we may
assume that x fixes 18, 19. Thus

x=(1) (24) (35) (6) (7) (8 11) (9 10) (12 13) (14 15) (16) (17) (18)
(19) (21 22) (20 23),

Next there is an involution y fixing 16, 17, 2. 'Then by the same argument
as is used above for x

y=(14)(2)(5) 36)(7)(813)(912) (10 11) (14 15) (16) (17)---.
Then

xy=(142)356)(7) (810 12) (9 11 13) (14) (15) (16) (17)---.
Thus «xy is of order three. Hence y is one of the following elements:

y.=(14)(2) (5) (3 6) (7) (8 13) (9 12) (10 11) (14 15) (16) (17) (20)
(21) (18 22) (19 23),

y,=(14)(2) (5) (3 6) (7) (8 13) (9 12) (10 11) (14 15) (16) (17) (22)
(23) (18 21) (19 20).

Suppose that y=y,. The proof in the case y=1y, is similar. Then
¥, = (14)(2) (3 12) (5 10) (9 13) (11) (8 6) (15) (7 14) (16) (17) (18)
(21 22) (23) (19 20),
xy,"* =(142)(31013)(5129) (6 8 11) (7 14 15) (16) (17) (18) (21)
(22) (19 20 23).

Since A(l, 6)=>7 and A(1, 16) 217, A(6, 18) 216 or 17 in the plane P(x).
Without loss we may assume that A(6, 18)> 16. Then A(7, 18)= 17. Thus
A(16,18)=6 and A(17,18)27. Since A(16, 18)='=A(16, 18) and A(17, 18)=%
=A(17, 18), A(16, 18)={6, 8, 11} and A(17, 18)={7, 14, 15}. Furthermore
since A(21, 22) <=21">=A(21, 22), A(21, 22)={16}, {17}, {18}, {16, 17, 18},
{1, 2, 4}, {6, 8, 11}, {7, 14, 15} or {19, 20, 23}. On the other hand we have
shown that for I(<a, b>)=1{1, 2, 4} and I(ab)—I(<a, b>)={16, 17}, A(16, 1)=
{17}, A(1, 2) A(1, 4), A, or A,, where A,UA, is a <a, b>-orbit of length six.
Furthermore in the case (i) we have proved that A(16, 17)%= A(1, 2), A(1, 4) and
A2, 4). Since I({x, y,">)=1{16, 17, 18} and I(xy,**)—I({x, y,"*>)={21, 22},
by the same argument for <{x, y,%®> as is used for <a, b>, A(21, 18)={22}, A(18,
16), A(18, 17), {3, 10, 13} or {5, 12, 9} and A(21, 22)%=A(16, 17), A(16, 18),
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A(17, 18). Thus A(21, 18)={22}, {6, 8, 11}, {7, 14, 15}, {3, 10, 13} or {5,
12, 9}, and A(20, 21)= {16}, {17}, {18}, {16, 17, 18} or {19, 20, 23}. On the
other hand since A(21, 22)=A(21, 28)”:= {18}, {3, 13, 10}, {7, 14, 15}, {6, 11,
8} or {5, 9, 12}, A(21, 22)={18}. Hence there is an involution  fixing 21, 22
and commuting with x. Thus u=(21) (22) (18) (16)---or (21) (22) (18) (16 7)---,
ie{l,6,7,17,19}. We consider »’® in terms of the incidence structure of
P(x).

(ii.i) Assume that u=(21) (22) (18) (16)---. Then I(<x, u)>)D {16, 18}.
Hence by (3.19) |A(16, 18)|=1, which is a contradiction since A (16, 18)=
{6, 8, 11}.

(ii.ii) Assume that u=(21) (22) (18) (16 7)---, i€ {1, 6, 7, 17, 19}.

(it.iii) Leté=1. Then u=(21) (22) (18) (16 1) (6 19) (7) (17):--, Then
I(<x, up)={17, 18, 7}. Hence by (3.19) A(17, 18)= {7}, which is a contradiction
since A(17, 18)=1{7, 14, 15}.

(i.iiii) Let z=6. Then u=(21)(22)(18)(16 6)(17)(7)(1 19)--- or (21)
(22) (18) (16 6) (17 7) (1) (19):+-. If u is of the first form, then I({x, u>)={17,
18,7}. Hence by (3.19) A(17, 18)={7}, which is a contradiction. Next suppose
that u is of the second form. Then A(16, 17)=A(6, 7). Hence |A(6, 7)|=3.
On the other hand since I(<a, >)=1{1, 6, 7}, A(6, 7)=1{1} by (3, 19). Thus we
have a contradiction.

(iiiiiti) Let 7=7. Then u=(21) (22) (18) (16 7) (17 6) (1) (19)---.
Then A(16, 17)*=A(6, 7). Thus |A(6, 7)| =3, which is a contradiction since
A6, 7)={1}.

(ii.ii.iv) Let 7=17. Then u=(21) (22) (18) (16 17) (6 7) (1) (19)---.
Thus u fixes A(16, 17)={1, 2, 4}. Hence {2, 4}“={2, 4}. However this is a
contradiction since A(2, 4)= {6, 12, 13} and 6*=7 & A(2, 4)

(iiii.v) Let 7=19. Then u=(21) (22) (18) (16 19) (1 6) (7) (17)---.
Then I(<{x, u>)={17, 18, 7}. Hence by (3.19) A(17, 18)= {7}, which is a con-
tradiction.

(iii) Assume that A(16, 17)=T,. By (3.5), there is an involution x
fixing 16, 17 and commuting with a. Since A(16,17)=T,, we may assume that
x=(16) (17) (7) (14 15)---. Then by (3.18), (ab)*=(ab)™'. Hence x fixes {1, 2, 4}.
If x fixes {1, 2,4} pointwise, then I(a) NI(x)2 {1, 2, 4, 7} and I(a)=I(x), which
is a contradiction by (vi) of (3.1). Thus x=(12)(4)-, (1 4) (2)::- or (2 4) (1)---.
Assume that x=(1 2) (4):-. The proof in the case x=(1 4) (2)--- or (2 4) (1)---

is similar. Since ax=xa and (ab)*=(ab)™*,
x=(12)4)(3)(56)(7)(89)(10 13) (11 12) (14 15) (16) (17)---.

This shows that x fixes exactly two points of {18, 19, .-, 23}. Hence we may
assume that

x = (12) (3) (4) (5 6)(7) (8 9) (10 13) (11 12) (14 15) (16) (17) (18) (19)
(21 22) (20 23) .
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Thus this element x is the element x in the proof of the case (i). Moreover since
I(<a, x>)=1{3, 4, 7}, by (3.19) A, j)={k}, where {7, j, k}={3, 4, 7}.

Now A(16, 1)={17}, T, T, A, or A, and A(16,4)= {17}, T, T, A, or A,.
Since A(16, 17)=T,, A(16, 1)= {17} and A(16, 4)=%={17}. Furthermore in the
proof of the case (i) to show that A(16,4)=T,, T'; and A(16, 1),=+T, we did not
require that A(16, 17)=T,. Hence by the same argument as in the case (i) A(16,4)
=A, or A, and A(16, 1)=T,, A, or A,. We shall treat these cases separately.

(iii.i) Assume that A(16, 1)=T, and A(16, 4)=A,. The proof in the case
A(16, 1)=T, and A(16, 4)=A, is similar. Since A(17, 1)=A(16, 1)*=T,"=T,,
A(1, 5)=1{4, 16, 17}. 'Thus there is an involution y fixing 1, 5, 16. Then since
A(16, 1)={5, 10, 11},

¥ = (1) (5) (16) (4 17) (10 11)--- .
Since A(16, 1)={5, 10, 11}, (ab)’=(ab)™* by (3.18). Thus

y = (1) (2) (5) (10 11) (16) (4 17)---.
Hence A(16, 4)”’=A(16, 17) and so A”=T,. Furthermore y-fixes {1, 2} point-
wise. Since A1, 2)=T", y=(3) (8 9)+--, (8) (3 9)- or (9) (3 8)-- .
' (iii.ii) Suppose that y=(3) (8 9) (1) (2) (5) (10 11) (16) (4 17)---. Then

ay = (1) (2) 3) (8) (9) (3) (10) (11) (4 17 16)---.
which is a contradiction by (ii) of (3.1).

(1ii.iii) Suppose that y=(8) (3 9) (1) (2) (5) (10 11) (16) (4 17)--+ or
(9) (3 8) (1) (2) (5) (10 11) (16)--

First assume that y=(8) (3 9) (1) (2) (5) (10 11) (16) (4 17)---. Since
x@™ = (12) (4) (8) (3 9) (10 12) (5 13) (11 6) (14) (7 15) (16) (17) (21)
(18 22) (23) (19 20),,

"y = (12) (417) (16) (8) (3) (9 -
Then x“»™"y is of order two. Hence form (ab)’=(ab)™* and A =T, it follows
that

y = (1) (2) (5) (10 11) (16) (4 17) (8) (3 9) (13) (6 12) (14 21) (7 22) (15
18) (23) (19 20)
which is denoted by y,.
Next assume that y=(9) (3 8) (1) (2) (5) (10 11) (16)---. Since
%%t = (1 2) (4).(9) (3 8) (11 13) (6 10) (5 12) (15) (7 14) (16) (17) (22)
(21 18) (20) (23 19),
x*ty = (12) (4 17) (16) (9) (3) (8)-- -

Then x*®y is of order two. Hence form A”=T, and (ab)’=(ab)™", we have that
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y= (1) (2) (5) (10 11) (9) (3 8) (16) (4 17) (20) (7 21) (12) (6 13) (15 22)
(19 23) (14 18),

which is denoted by y,.
Then
ay, = (1) (2) (5) (10) (11) (3 9 8) (4 17 16) (7 22 23) (6 12 13) (18 20 14)
(19 15 21),
ay, = (1) (2) (5) (10) (11) (3 8 9) (4 17 16) (7 21 20) (6 13 12) (18 23 15)
(19 14 22).

First suppose that y=y,. Since A(10, 11)<*?1>=A(10, 11) and | A(10, 11)|
=1or 3, A(10, 11)={1}, {2}, {5}, {1, 2, 5}, {3, 8, 9}, {4, 16, 17}, {7, 22, 23}
or {6, 12, 13}.

In the cases (i) and (ii) we have proved that for I(<{a, 8>)={1, 2, 4} and
I(ab)—I(<a, b>)={16, 17}, A(16, 17)+A(1, 2), A(1, 4), A(2,4) and {1, 2, 4}.
Since I(<a, y>)=1{1, 2, 5} and I(ay,)—I(a, y,>)=1{10, 11}, by the same argu-
ment for <{a, y,> as is used for <a, b in the cases (i) and (ii), A(10, 11)= {1, 2, 5},
A(1, 2), A(1,5), A(2,5) where A(1,2)={3, 8,9} and A(1,5)={4,16,17}. Since
A(2,5)27 and A(2, 5)*1=A(2, 5), A(2,5)=1{7,22,23}. Hence A(10,11)={1},
{2}, {5} or {6, 12, 13}. Futhermore since A(10, 1)=A(1, 5)“?’= {4, 16, 17},
A(10, 11)== {1}. Similarly A(10, 11)% {2}. Thus A(10, 11)= {5} or {6, 12, 13}.
Suppose that A(10, 11)= {6, 12, 13}. Then A(10, 5)=A(10, 11)*= {6, 12, 13}.
Thus A(10, 12)5 {11, 5}. Furthermore in the plane P(b) A(12, 10)=8. Thus
A(12, 10)=1{8, 11, 15}. Hence A(11, 13)=A(12, 10)*={9, 12, 6}. However
since A(10, 11)=1{6, 12, 13}, A(10, 13)=>11. Thus we have a contradiction.
Hence A(10, 11)={5}.

Next suppose that y=y,.. Since A(10, 11)<*?2>=A(10, 11), A(10, 11)=
{1}, {2}, {5}, {1, 2,5}, {3,8,9}, {4, 16, 17}, {7, 20, 21} or {6, 12,13}. Since
A(2, 5)27 and (2, 5)":=A(2, 5), A(2, 5)={7, 12, 20}. Hence by the same ar-
gument as is used above, A(10, 11)={5}.

Now we assume that A(10, 11)= {5} and y=y,. In the following if we in-
terchang 8 and 9, then we have the proof for the case A(10,11)={5} and y=y,.
By (3.5), there is an involution # fixing 10, 11 and commuting with 4. Since
A(10, 11)=1{5}, u fixes 5. If u fixes 1 or 2, then ay, fixes I(), contrary to (3.4).
Hence u=(10) (11) (5) (1 2)--- or (10) (11) (5) (1 9) (2)---, 4, j= {3, 4,6, 7}. If
u=(10) (11) (5) (1 2)---, then by the incidence structure of P(a),

u=(10) (11) (5) (1 2) (4 7) (3) (6)-~

Since u fixes A(1, 2), u=(8) (9)--- or (8 9)---. If u=(8) (9)-++, then
ay,u = (12) (5) (10) (11) (3 9 8)---,

contrary to (v) of (3.1). Hence u=(8 9)-++ and
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ay,u = (1.2) (5) (10) (11) (3 8) (9)--- .
Then ay,u is of order two and so (ay,)*=(ay,)”*. Hence

u = (10) (11) (5) (1 2) (4 7) (3) (6) (8 9) (12 13).--.
Then

au = (1) (2) (3) (8) (9) (10 12 11 13).--,
contrary to (iii) of (3.1), Next suppose that u=(10) (11) (5) (12) (2j)--+, ¢, jE
{3, 4, 6,7}. Then by the incidence structure of P(a), u=(10) (11) (5) (14) (27)
(3) (6)-++ or (10) (11) (5) (1 7) (2 4) (3) (6):-. Then A(1, 2)“=A(4, 7) and so
|A(4, 7)|=3. This is a contradiction since A(4, 7)= {3}.

case A(16, 1)=A, and A(16, 4)=A, is similar. Since A(16, 2)=A(16, 1)*=A,"
=A,, A(16,18)=>1,2. Moreover by the incidence structure of P(x), A(16, 18)=3.
Thus A(16, 18)={1, 2, 3}. Hence A(16,22)=A(16, 18)**= {1, 2,9} and A(16,21)
=A(16, 22)**={1, 2, 8}. On the other hand since A(16, 1)=A, and A(16, 18)=
{1, 2, 3}, there is an involution

u = (16) (18) (1) (2 3) (21 22)--- .
Then A(16, 22)=A(16, 21)“=2“=3, which is a contradiction.

A(16, 1)=A(16, 4)=A, is similar. Since A(16, 2)=A(16, 1)*=A,, A(16, 18)=
{1, 2,4}. Hence there is an involution y fixing 16, 1, 18. 'Then since A(16, 1)
=A,
C y=(1)(16) (18) 21 22) 2 4)---.
Hence by (3.18), (ab)’=(ab)™*. Hence
y=(1) (2 4) (16) (17) (18) (21 22)--- .
Thus y fixes 16, 17. Hence y fixes A(16, 17) and so y=(7) (14 15)--+, (14) (7 15)--
or (15) (7 14)---. If y=(7) (14 15)--+, then I(xy)2 {16, 17, 18, 21, 22, 7, 14, 15}
and x=y, which is a contradiction. Hence y=(14) (7 15)-:- or (15) (7 14)---.
First assume that y=(14) (7 15)---. 'Then
by = (1) (2 4) (16 17) (14) (7) (15)--- .
Thus by is of order two. Furthermore A(1, 2)*’=A(1, 4) and A(2, 4)”’=A(2, 4).
Hence
y=(1) (24) (810) (3 11) (59) (12) (6 13) (14) (7 15) (16) (17) (18)
(21 22) (20) (19 23).
Then

xy = (16) (17) (18) (21) (22) (7 15 14) (14 2) (3 11 12) (19 23 20)
(5 13 8) (6 9 10).
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Next assume that y=(15) (7 14)---. Since

b* = (1) (2) (4) (9) (3 8) (11) (5 10) (13) (6 12) (15) (7 14) (19 21)
(18 23) (20 22) (16 17),
by = (1) (2 4) (16 17) (15) (7) (14)--- .

Thus 4% is of order two. Hence from the same reason as above,

y=(1) (24) (9 11) (3 10) (5 8) (13) (6 12) (15) (7 14) (16) (17) (18)
(21 22) (23) (19 20) .

Then

xy = (16) (17) (18) (21) (22) (7 14 15) (1 4 2) (3 10 13) (19 20 23) (5 12
9) (6 8 11).

Now we show that A(21, 22)={18}. Assume that y is of the first form.
We have already proved that for I(<a, b>)={1, 2, 4} and I(ab)—I(<a. b>)=
{16, 17}, A(16, 17)= {1}, {2}, {4} or T, and A(16, 1)={17}, A(1, 2), A(1, 4),
A, or A,, where T, is the <{a, b>-orbit of length three and different from A(1, 2),
A(1,4) and A(2,4) and A,U A, is the <{a, b)>-orbit of length six. Since I({x, y>)
={16, 17, 18} and I(xy)—I({x, y>)= {21, 22}, by the same argument for {x, y>
as is udsed for <a, b>, A(21, 22) is {16}, {17}, {18} or the {x, y>-orbit wihch is
of length three and different from A(16, 17), A(16, 18) and A(17, 18), and A(21,18)
={22}, A(18,16), A(18,17), {5,13,6} or {6,9,10}, where A(16,17)={7,14,15},
A(16,18)=1{1, 2,4} and {5, 13,6} U {6, 9, 10} is the <{x, y>-orbit of length six. In
the plane P(x) A(16,17)=7, A(16,18)=4 and A(7,4)>3. Hence A(17,18)23.
Since (17, 18y”=A(17, 18), A(17,18)={3, 11, 12}. Thus A(21,22)={16}, {17},
{18} or {19, 23, 20} and A(21, 18)={22}, {1, 2, 4}, {3, 11, 12}, {5, 8, 13} or
{6,9, 10}. Onthe other hand A(21, 22)=A(21, 18)«“*= {18}, {1, 2,4}, {8, 5,13},
{10, 9, 6} or {12,3,11}. Thus A(21, 22)={18}. Next assume that y is of the
second form. Then A(16,17) and A(16, 18) are the same set as above and
A(17,18)=1{3, 10, 13}. Hence similarly A(21, 22)={18}.

Assume that y is of the first form. The proof for the second form of y is
similar. Since A(21, 22)={18}, there is an involution # fixing 21, 22, 18 and
commuting with x. Then u fixes I(x). If u fixes 16 or 17, then xy fixes I(u),
contrary to (3.4) Thus u=(16 17)--- or (16 7) (17 j)---, 4, j=1{3, 4, 7, 19}.

First assume that u=(21) (22) (18) (16 17)---. Then by the incidence struc-
ture of P(x),

u = (21) (22) (18) (16 17) (3 4) (17) (19)--- .

Furthermore A(16, 17)“=A(16, 17). Hence {14, 15}*={14, 15}. If u fixes {14,
15} pointwise, then I(x) N I(w?*)=1{21, 22, 18, 7, 14, 15}, contrary to (vi) of (3.1).
If u has a 2-cycle (14 15), then

au = (16) (17) (7) (14) (15) (18 19)--- ,
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Thus au is an involution. Then ab fixes the subset {16, 17, 7, 14, 15} of I(au).
Hence ab fixes I(au), contrary to (3.4).

Next suppose that u=(21) (22) (18) (16 7) (174)++, 1, j=1{3,4,7,19}. Then
by the incidence structure of P(x), u=(21) (22) (18) (16 3) (17 4) (7) (19)-+- or
(21) (22) (18) (16 4) (17 3) (7) (19)---. Then A(16, 17)*=A(3,4). This is a
contradiction since |A(16, 17)|=3 and |A(3, 4)|=1.

(iv) Assume that A(16, 17)={1}. The proof in the case A(16, 17)=
{2} or {4} is similar. We have proved that A(16, 1)={17}, T',, T, A, or A,,
A(16, 2)={17}, T, Ty, A, or A, and A(16, 4)={17}, T,, T's, A, or A, Hence
by assumption, A(16, 1)={17}, A(16, 2)= {17} and (16, 4)={17}. Furthermore
since A(17, 1)=A(16, 1)*, A(17, 1)={16}. Suppose that A(16, 2)=T',. Since
A(17, 2)=A(16, 2)%, A(17, 2)=T,. Thus A(2, 6)=1{4, 16, 17}. Hence there is
an involution # fixing 2, 6, 16. Then since A(16, 2)=T,,

u = (16) (2) (6) (12 13) (4 17)---.
Then by (3.18), (ab)“=(ab)~'. Hence u fixes 1. Thus u fixes A(16, 1). This
is a contradiction since A(16, 1)={17} and 17°€ A(16, 1). Thus A(16, 2)+
T';. In the same way A(16, 4)%T,. Therefore A(16, 2)=T,, A, or A, and
A(16, 4)=T",, A, or A,.

Now let x be an involution fixing 16, 17 and commuting with a. Since
A(16, 17)={1}, x fixes 1. If x fixes 2 or 4, then ab fixes at least four points of
I(x) and so fixes I(x), contrary to (3.4). Next if x fixes 3 or 5, then by the in-
cidence structure of P(a), x fixes 2 or 4. 'This is a contradiction. Thus x fixes
three points 1, 6, 7 of I(a). Hence x=(24) (3 5), (23) (4 5) or (25) (3 4) on
I(a)—A{1, 6, 7}. First we determine the form of x in each cases.

(iv.i) Assume that x=(16) (17) (1) (6) (7) (2 4) (3 5)---. Then A(1, 2)*
=A(1,4). Hence {8, 9}*={10, 11}. If ¥=(8 10) (9 11)---, then

abx = (1) (2 4) (16) (17) (3 11 8 59 10)---,
contrary to (vi) of (3.1). Hence x=(8 11) (9 10)::-. Then
abx = (1) (2 4) (16) (17) (3 10) (8 5) (9 11)---.
This shows that abx is of order two and so (ab)*=(ab)™*. Hence
x= (1) (24)(35)(811) (9 10) (6) (12 13) (7) (14 15) (16) (17)--- .

Since |I(x)| =7, x fixes exactly two points of {18, 19, ---, 23}. Without loss we
may assume that x fixes 18, 19. Then

x= (1) (24) (3 5) (8 11) (9 10) (6) (12 13) (7) (14 15) (16) (17) (18) (19)
(21 22) (20 23),

which is denoted by x,.
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(iv.ii) Assume that x=(16) (17) (1) (6) (7) (2 3) (4 5)---. 'Then {1}
and {16, 17} are {a, b, x)>-orbits, and the remaining orbits are unions of {2} UT,,
{4}UT,; Ty, T,and A,UA,. If {8,9}*={12, 13} or {14, 15} then {2} UT,UT,
or {2} UT,UT, is a <a, b, x>-orbit of length seven, contrary to (3.11). Thus
{8, 9}*+ {12, 13}, {14, 15}. In the same way {10, 11}*= {12, 13}, {14, 15}.
Next if {8, 9, 10, 11}*<A,UA,, then {2, 4} UT,UT,UA,UA, or {2,4} UT,U
T,UAUAUT; (=3 or 4) is a <a, b, x>-orbit. Then |{2, 4} UT,UT,U
AUA,|=14 and |{2,4} UT,UT,UA,UA,UT;|=17, contrary to (3.11) and
the assumption (4) respectively. Thus {8, 9}*={8, 9}, {8, 9}*={10, 11} or
{10, 11}*={10, 11}.

First assume that {8, 9}*={8, 9}. If x fixes {8, 9} pointwise, then

bx = (1) (8) (23 9) (16 17)---,
contrary to (vi) of (3.1). Hence x has a 2-cycle (8 9). Then

ax = (1) (2 3) (45) (6) (7) (8) (9) (16 17)--,
bax = (1) (2 3 9) (8) (16) (17) (11 4 5-+-) (13 6-+-) (15 7++-)-- .

Thus bax is of order three and so ax=(11) (10) (12 13) (14 15)--- or (11) (10)
(12 15) (13 14)---. If ax is of the first form, then x fixes {1, 6, 7, 16, 17, 12,
13, 14, 15} pointwise, contrary to (i) of (3.1). Thus ax is of the second form.
Hence

x=(1)23) 4 S) 6)(7)(89) (10 11) (12 14) (13 15) (16) (17)--- .
Then
bx = (1)(2389)(451011) (12 14) (6 15 7 13) (16 17)---.

This shows that bx is of order four. Furthermore since x fixes exactly two points
of {18, 19, --+, 23}, we may assume that x is of the from

x=(1)(23)(45)(6)(7)(89)(10 11) (12 14) (13 15) (16) (17) (18) (19)
(20 22) (21 23),
which is denoted by x,.

Next assume that {8, 9}*= {10, 11}. Then x=(8 11) (9 10)--- or (8 10)
(9 11)---. If x is of the first form, then

abx = (1) (2345 8)(16) (17)---,
contrary to (iv) of (3.1), Thus x is of the second form. Then

ax = (1) (2 3) (4 5) (6) (7) (16 17) (8 11) (9 10)--- ,
bax = (1) (2 3 10 9) (4 5 8 11) (16) (17)--- ,
(bax)* = (1) (2 10) (3 9) (4 8) (5 11) (16) (17)--- .

Thus bax is of order four and (bax)® is an involution commuting with b and ax.
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Since I(b)= {1, 2, 4, 8, 10, 12, 14}, (bax)* fixes {12, 14} pointwise. ~Since
[ I(bax)| =3, bax—=(1 2 14)-:+ and so ax=(12 14)---. Hence

x=(1)(2 3) (4 5) (6) (7) (16) (17) (8 10) (9 11) (12 15) (13 14)---.

This implies that x and ax fix exactly two and four points of {18, 19, ---, 23}
respectively. Hence we may assume that x is of the form

x = (1) (2 3) (4 5) (6) (7) (16) (17) (8 10) (9 11) (12 15) (13 14) (18) (19)
(20 21) (22 23),

which is denoted by .
Finally assume that {10, 11}*={10, 11}. If x fixes {10, 11} pointwise,
then

bx = (1) (4 5 11) (10) (16 17)---,
contrary to (v) of (3.1). Thus x has a 2-cycle (10 11). Then

ax = (1) (23) (4 5) (6) (7) (16 17) (10) (1),
bax = (1) (4 5 11) (10) (16) (17) (9 2 3+++)-+- .

This shows that bax is of order three. Hence ax fixes 9 and so 8. Thus x=x,.

(iv.iii) Assume that x=(16) (17) (1) (6) (7) (25) (3 4)---. Then {1}
and {16, 17} are <a, b, x>-orbits and the remaining orbits are unions of {2} UT,,
{4}uT, I, T, and A,UA,. Hence by the same argument as in the case (iv.ii),
x is one of the following elements:

x,= (1) (25) (34)(6) (7) (89) (10 11) (12 14) (13 15) (16) (17) (18)
(19) (20 22) (21 23),

x, = (1) (2 5) (34) (6) (7) (8 10) (9 11) (12 15) (13 14) (16) (17) (18)
(19) (20 21) (22 23) .

We have proved that A(1, 2)=T,, A, or A, and A(16, 4)=T,, A, or A,.

In the following we treat these cases separatly and show that there is no group
which satisfies the assumption of Lemma 1 and contains <a, b, x,>, 1 <7<5.

(iv.iv) Assume that A(16, 2)=A,. The proof in the case A(16, 2)=
A,, A(16, 4)=A, or A(16, 4)=A, is similar.

(iv.iv.i) Assume that there is an involution x,, Then A(16, 4)=
A(16, 2)"1=A,. Hence A(16, 18)2 {2, 4}. Moreover in the plane P(x,) A(1, 6)2
7 and A(1, 16)=17. Hence (16, 18)=6 or 7. Thus A(16, 18)={2, 4, 6} or
{2, 4, 7}. If A(16, 18)={2, 4, 6}, then there is an involution « fixing 16, 18, 2.
Since A(16, 2)=A,,

u = (16) (18) (2) (21 22) (4 6)--- .

Then A(16, 13)= A(16, 4)*®*=A**=A,. Hence A(16, 18)=>13, which is a
contradiction. Similarly A(16, 18)={2, 4, 7}. Thus the proof in the case
(iv.iv.i) is complete,
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(iv.iv.ii) First assume that there is an involution x,. Then A(16, 3)=
A(16, 2y 2= A"2={18, 20, 23}. Hence A(16, 18)2{2, 3}. Moreover in the
plane P(x,) A(16, 18)>6 or 7. Hence A(16, 18)=12, 3, 6} or {2,3,7}. If
A(16, 18)={2, 3, 6}, then there is an involuion u fixing 16, 18, 2. Since
A(16, 2)=A,

u = (16) (18) (2) (21 22) (3 6)--- .

On the other hand A(16,22)=A(16, 18)? = {2, 9, 13} and A(16,21)=
A(16, 22)#={2, 8, 12}. 'Then since A(16, 22)*=A(16, 21), {9, 13}*={8, 12}.
If u=(8 9) (12 13)--, then

abu = (16) (2) (22) (9) (6 12 3 8)--- ,
contrary to (iii) of (3.1). Next if #=(8 13) (9 12)---, then
au = (2) (3 6) (8 12) (9 13)--- .

Thus au is of order two. Hence I(u)2 {2, 18, 16}<*>={2, 18, 19, 16, 17}.
Thus I(u) NI(x,)2 {16, 17, 18, 19} and I(u)*+I(x,), contrary to (vi) of (3.1).
Similarly A(16, 18)= {2, 3, 7}. Thus there is no group containing ,.
Next assume that there is the involution x,. Since x, is the same permuta-
tion as x, with 3 and 5 interchanged, by the same argument as is used for x,
there is no group containing x,.
(iv.iv.iii) First assume that there is the involution x,. Since

abx, = (1) (23 11 8) (4 5 9 10) (6 14 7 12) (13 15) (16) (17) (18 23 19 21)
(20 22)

A(16, 11)=A(16, 2)@*°= {19, 22,23} and A(16, 8)=A(16, 11)*=s= {21, 10, 19}.
Hence A(16, 19)D {11, 18}. Since x, fixes A(16, 19), A(16, 19)2 {11, 8} <s>=
{11, 9, 8, 10}, which is a contradiction.

Next assume that there is the involution x;. Since x; is the same permuta-
tion as x, with 3 and 5 interchanged, by the same argument as is used for x,
there is no group containing x;.

(iv.v) Assume that A(16, 2)=T, and (16, 4)=T",. Then A(17, 2)=

A(16,2)°=T,. Hence A(2, 3)=1{1, 16, 17} and consequently there is an involution
u fixing 2, 3, 16. Since A(16, 2)=T,,

u=(16) (2) 3) (89) (1 17)---.
Then since A(16, 2)=T,, (ab)“=(ab)™* by (3.18). Hence u fixes 4. Then
au = (2) (4) (3) (9) (1 17 16).--- .

Thus au is of order three. In the cases (i), (ii) and (iii) we haye proved that
for I(<a, bY)=1{1, 2, 4} and I(ab)—I(<a, b>)={16, 17}, A(16, 17)= {1}, {2} or
{4}. Since I(<a, w)=1{2, 3, 4} and I(ab)—I(<a, b>)=18, 9}, by the samg
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argument for <{a, u) as is used for <a, b> A(8, 9)=1{2}, {3} or {4}. If A(8,9)=
{2}, then A(2, 8)=9. Since b fixes A(2, 8), A(2, 8)29°=3. Thus A(2, 8)D
{3, 9} and so |A(2, 8)|=3. However since au fixes A(2, 8) and A(2, 8) N I(au)
=13, 9}, |A(2, 8)| +3. Thus we have a contradiction. In the same way
A(8, 9)= {4}. Thus A(8, 9)={3}.

Now there is an involution v fixing 8, 9 and commuting with a. Then v
fixes 3 and I(a). If v fixes 2 or 4, then au fixes at least four points of I(v).
Hence au fixes I(v), contrary to (3.4). Hence v=(8) (9) (3) (5) (6)---. Since
av=va and I(<a, v>)={3, 5, 6}, by (3.19) A(3,5)={6}. If there is the involution
x; (2<i<5), then A(3, 5)"i=A(2,4). 'This is a contradiction since |A(2, 4)|=3.
Next suppose that there is the involution x,. Since u fixes {16, 4} pointwise
and A(16, 4)=T,, u=(5) (10 11)---, (10) (5 11)-++ or (11) (5 10)---. If u=(5)
(10 11)--+, then

au = (2) (4) (3) (8) 9) (5) (10) (1 17 16)---,

contrary to (ii) of (3.1). Next suppose that u=(10) (5 11)---. Then
bu = (2) (4) (117 16) (3 8 9) (5) (10) (11)---.

Thus bu is of order three. Then since A(2, 4)*=A(2, 4) and |I(au) | =|I(bu)|=5,
u=(2)4) (3) (89)(117)(16) (10) (5 11) (13) (6 12)--- .

Thus A(5, 8)=A(3, 5)*1={6}**1={13}. Since v fixes 5, 8, v fixes 13 and so
12. Thus I(v)NI(v™)= {3, 5, 6, 12, 13}, contrary to (vi) of (3.1). Finally
suppose that u=(11) (5 10)---. Then

b*u = (2) (4) (1 17 16) (3 9 8) (5) (10) (11)-- .

Hence by the same argument as above we have a contradiction.
Thus the proof of Lemma 1 is complete.

RemARK. Let G be one of the groups of Lemma 1. Then it is not difficult
to prove that G satisfies the assumptions of Lemma 1.
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