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Throughout this paper, A4 is a right and left artinian ring and J is the Jacobson
radical of A. All modules are assumed to be finitely generated over 4. As well
known Auslander-Reiten sequences (abbreviated AR-sequences) exist over arbi-
trary algebras and over representation-finite rings [6], [7], [27]. An AR-sequence
of modules over a ring 4 and the indecomposable decomposition of the middle
term of this sequence define a mesh in the Auslander-Reiten quiver (AR-quiver
for short) of A, and meshes determine the AR-quiver of 4. For the represen-
tation-finite rings the computation of AR-quiver gives all indecomposable modules
and all non-isomorphisms between them up to isomorphisms. In the algebra
case we have a general way to compute AR-sequences stopping at any non-
projective modules [11], [14] although the computation of the decomposition of
the middle terms is not clear. However this computation is heavily depends on
the existence of the selfduality of algebras. Hence for an arbitrary artinian ring
even for a representation-finite ring, this computation is not available. Over
such a ring we therefore have to compute AR-sequences individually.

In this paper we will compute (1) all the AR-sequences including the in-
decomposable decompositions of the middle terms (Theorem I), (2) full sub-
quivers of the AR-quiver which give the whole of the AR-quiver by gluing
together and (3) all the meshes (including values) in the AR-quiver (Theorem
IT), over a special type of representation-finite rings, namely over a ring of right
local type. As a corollary we will obtain that the AR-quiver of a ring A of right
local type is a well valued translation quiver (i.e. the value (@, b) of any arrow
of the AR-quiver maps to (b, a) by the translation between arrows associated to
the AR-translation; see section 3 for detail) iff 4 is, in addition, a ring of left
colocal type. Further for a ring A defined by a bimodule M over division
rings, we will give a necessary and sufficient condition for A to be of right local
type in terms of the dimension sequence of M.

In section 1 we first quote Sumioka’s result on a ring of right local type,
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and investigate further properties of this kind of rings for the later use. Sec-
tion 2 is devoted to the computation of AR-sequences over a ring of right local
type. Finally in section 3 we draw the form of the AR-quiver of a ring of right
local type and compute its value to obtain Theorem II. Further we give an
example of a ring of right local type but not of left colocal type, which we pre-
sented in a local conference [3], and an example of a ring of left colocal type
but not of right local type.

For a module M, we denote by |M| and by (M) the composition length
and the height (=the Lowey length) of M, respectively. And #I denotes the
cardinality of a set I.

I would like to thank Dr. M. Hoshino for his useful adivce, which enabled
me to remove the assumption in the original version that our ring in the title is
also of left colocal type, by showing me Lemmas 2.2, 2.4 and to add the section
3 in the revised version, and Professor Sumioka for his short proof of Lemma
1.7.

1. Rings of right local type

Recall that A4 is said to be a ring of right local type in case every indecom-
posable right A-module is local (i.e. its top is simple), and dually 4 is called a
ring of left colocal type in case every indecomposable left A-module is colocal
(i.e. its socle is simple). Sumioka [23], [24] had made a precise investigation
of rings of right local type and of rings of left colocal type (see also Tachikawa
[25], [26] and Yoshii [28]). His result is summarized as follows:

Theorem 1.0 (Sumioka [24]). Consider the following conditions:
(LR) (a) A is left serial;
(b) Jais a direct sum of uniserial modules ; and
(c) leJle]?| =2 for any primitive idempotent e of A with eJle]* not
homogeneous.
(L) [Dy(U): D(U),=2 for any uniserial left A-module U with |U|=2
(see [23] or [24] for the definition of D,(U)).
(R) [Dy(U): D(U)],=2 for any uniserial left A-module U with |U|=2.
Then
(1) If A is a ring of left colocal type, then A satisfies the conditions (LR)
and (L).
(2) If A is a ring of right local type, then A satisfies the conditions (LR)
and (R).
(3) If A satisfies the conditions (LR), (L) and (R), then A is a ring of right
local type and of left colocal type.

Remark 1.1. Let A be a left serial ring. Then the following are equi-
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valent (see [24, Remark 5] for detail):
(1) leJ/eJ?| =2 for every primitive idempotent e of A.
(2) A satisfies the conditions (LR) (c) and (L).

With this remark in mind we have the following corollary.

Corollary 1.2. Assume that A is a ring of right local type. Then A is a
ring of left colocal type iff |eJ|eJ?| <2 for every primitive idempoetn e of A.

Proposition 1.3. If A is a ring of right local type and e is a primitive idem-
potent of A with eJ*==0, then |efle]?| <2.

Proof. See[2]. //

By Theorem 1.0 and Proposition 1.3, we can determine the form of every
projective indecomposable right module over a ring of right local type as follows.

Proposition 1.4. Let A be a rino of right iocal type and e a primitive idem-
potent of A. Then eA has one of the following forms:

(a) eA is uniserial.

(b) eJ=K@L for some non-zero uniserial modules K, L which are not
isomorphic to each other.

(c) eJ=K@L for some non-zero uniserial modules K, L which are isomorphic
to each other.

(d) ef is a homogeneous semisimple module of length >2.

DerINITION 1.5. Let M be a subset of 4. Then d(M): =sup{n=0|M <
J} is called the depth of M. When M= {x} for some x& 4, we simply denote
d({x}) by d(x). By definition d(0)=oo.

NortaTION 1.6. Let a=A. Then we denote by a- the left multiplication
by a.

The following determines the form of submodules of projective indecom-
posable modules P with |PJ/PJ?| <2 over a ring of right local type. This is
taken from Harada [15]. For the benefit of the reader we give a proot which
is due to Sumioka.

Lemma 1.7. Let A be a left serial ring and e a primitive idempotent of A.
If e]=U,® U, with each U; uniserial and M <e], then there is an automorphism
a of eA such that a(M)=U, J’@U, J* for some s, t=0.

Proof. Put d: =d(M)=1. Then M=<eJ*=U, J*"'@®U, J*7}, and there
exists some u & M such that d(u)=d with u=uf for some primitive idempoent f
of A. Write u=u,+u, for some u,€U;. Then d(u;)=d for some iz, say i=1.
This implies that u,A=U, J4'. Since Af is uniserial, we have au =u, for some
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aceAe\efe. Noting that aM =u, A= U, J*~}, we have aM=aM NeJ*=U, J*7'@®
(aM N U,J*"). Hence a- gives a desired map. //

Proposition 1.8. Assume that A is a ring of right local type. Then every
indecomposable right A-module has one of the following forms:

(a) eA[(KJ'DL]J) for some primitive idempotent e of A with eJ=K®L
where K and L are uniserial modules and s, 1=0.

(b) ed/( é"a S;) for some 0=m=n, where eJ]= 6_5 S;, Sy=x---=S, are simple
and n=3. = =

Proof. (a) follows by Lemma 1.7. (b) follows by Lemma 1.13 below. //

DeriNITION 1.9. Let a=(a,)": X— b Y, be a homomorphism of right
i=1
modules and let 1<j<n. Then we say that « is j-fusible in case o;= %} B;a;
i%j
for some (8;);+;: @ Y,—Y,. Further a is said to be fusible in case a is j-fusible
i

for some 1<j<n, and « is said to be infusible if « is not fusible.

RemARK 1.10. (1) In this paper we use this definition for the case n=2
as follows:

Let X, <Y, for each i=1, 2 and let a: X,— X, be an isomorphism. Then
a is extendable to Y,—Y, or a™' is extendable to Y,— Y, iff (o, 0,0)": XY
@Y, is fusible, where o, are the inclusion maps X;— Y.

(2) In the above definition, if all Y; are indecomposable, then « is in-
fusible iff it is left minimal in the sense of Auslander-Reiten [8].

GO (8:) .

Lemma 1.11. Let X—5 P Y,—> Z—0 be an exact sequence of right
modules. Then i:I

(1) For every 1<j=n, (a,)T is j-fusible iff B; is a section.

(2) Assume that X is simple and all 'Y, are local. Then ()" is infusible
iff Z is indecomposable.

Proof. See[1]. //

The above lemma gives a characterization of a ring of right local type,
which had been obtained with the following proof before [24, Proposition 1.3].

Proposition 1.12. The following are equivalent:

(1) A is of right local type.

(2) If S is a simple right A-module, and L,, L, are local right A-modules,
then any homomorphism (o, o))" S—L,DL, is fusible.

Proof. (1)=(2). Clear from Lemma 1.11 (2).
(2)=>(1). We show that any M, is expressed as a direct sum of local modules
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by induction on |M|. It suffices to show that M has a local direct summand.

Let .S be a simple submodule of M. Then by induction hypothesis M/S= b

L;/S for some S<L,<M with all L;S local. If SXL;J for some i, the—n
L,=S®L! for some L?, which must be a local direct summand of M. Hence

we may suppose that every L; is local, and n>1. Let 3} L,= GB M with every
M, local. Then we have an exact sequence =

T
0 5%, LO®M® - OM,—5 ) o

in an obvious way. By (2), (a,, @,)7 is fusible, whence so is («;)*. Thus g, is
a section for some 7 by Lemma 1.11 (1). //

The following is an immediate consequence of the above proposition.

Lemma 1.13. Let A be a ring of right local type and e a primitive idempotent
of A with e] a homogeneous semisimple module of length >2. Then eAj/I=eA|l’
iff |I|=1"| for any I, I'=<e].

Lemma 1.14. Let X,;<Y,, for each i=1, 2, and a: X,— X, an isomorphism.
Put M to be the cokernel of the map (o, o,0)": X,=>Y ,PY,, where o; are the
inclusion maps. Then soc M=<soc Y, iff o is maximal, i.e., for any H>X, any
homomorphism from H to Y, is not an extension of o.

Proof. See [23]. //

Next we state the dual notions and the dual statements of the above. See
[24] for the proof of Lemma 1.18. 'The remaining proofs are left to the reader.

DeriniTioN 1.15. Let B8=(G)): EI"B Y,—Z be a homomorphism of right
modules and let 1=<j<n. Then we say that 8 is j-cofusible in case B;= 2 Bi;
for some (a;)74;: Y; ——>€B Y,. Further 8 is said to be cofusible in case ,8 is j-

cofusible for some 1= §n, and « is said to be coinfusible if o is not cofusible.

ReMARK 1.16. (1) In this paper we use this definition for the case n=2 as
follows:

Let X;<Y; for each i=1, 2 and let B: Y,/X,—Y,/X, be an isomorphism.
Then B is liftable to Y,—Y, or 87! is liftable to Y,—Y, iff (8=, #;): Y,
Y,—Y,/X, is cofusible, where z; are the canonical epimorphisms Y;—Y;/X,.

(2) If in the above definition all Y, are indecomposable, then B is coinfu-
sible iff it is r4ght minimal in the sense of [8].

Lemma 1.17. Let 0-X— (@) EB Y, ® )Z be an exact sequence of right
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modules. Then

(1) For every 1<j=<mn, (B,) is j-cofusible iff at; is a retraction.

(2) Assume that 7 is simple and all Y; are colocal. Then (8;) is coinfusible
iff X is indecomposable.

Lemma 1.18. Let X;<Y;, for each i=1,2, and B: Y,/ X,—Y,/X, an iso-
morphism. Put M to be the kernel of the map (Br,, 7,): Y@ Y,—>Y,|X,, where
z; are the canonical epimorphisms Y,—Y;/X;. Then top M=top Y, iff B is
comaximal, .e., for any H<X, any homomorphism from Y, to Y,/H is not a lift
of B.

By Lemma 1.17 (2) and Lemma 1.18, we get the following, which states
that a ring of right local type has a property dual to the property [25, Theorem
5.3 II] of a ring of left colocal type.

Lemma 1.19. Let A be a ring of right local type, and Y,, Y, uniserial
right A-modules such that | Y,| = |Y,|>2. Then any isomorphism top Y,—>top Y,
is comaximal or is liftable to an epimorphism Y,—Y,.

Proof. We keep the notation of Lemma 1.18. Let 8: Y,/X,—Y,/X; be an
isomorphism, where X;:=Y,J. If B is not comaximal, then M is not local by
Lemma 1.18. Thus M is decomposable. Hence the assertion follows by
Lemma 1.17(2). //

The following is a key for the computation of values of AR-quiver of a
ring of right local type.

Proposition 1.20. Let A be a ring of right local type and e a primitive
idempotent of A such that e]=K®L; K, L are non-zero and uniserial. Then the
following are equivalent:

(1) eA|(K*®LJ*=eA|(KJ**DLJ) for some s=0.

(2) eA/(K]*DLJ Y )=eA|(K]*''DLJ’) for all s=0.

(3) eA/(KPLJ)=eA|(KJPL).

(4) eA/K=eA|L.

(5) K=L.

(6) top Ke==top L.

Proof. The proof proceeds as follows: (1)=>(2)=(3)=(1), B)=4)=>
(5)=(6)=(3).
(I)=(2). An isomorphism of (1) is liftable to some automorphism ¢ of e4 which
gives rise to an isomorphism KJ*@LJ*'—-KJ**'@LJ°. This also induces an
isomorphism KJ**'@LJ**?*— K J***PLJ*** since the radical maps to the radical.
Thus «a gives eA/(KJ*V'PLJ ) =eA|(KJ***PLJ+"). Conversely, taking “over
socles” the last isomorphism implies the first one. Hence (1) implies (2).
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(2)=(3)=(1). Trivial.

(3)=(4). We may assume that |ed/K| =< |ed/L|. Let @: eA|(KJPDL)—>eA/
(K@LJ) be an isomorphism. This induces an automorphism B of eAle].
Since @ is liftable to @, Lemma 1.19 says that @ is liftable to an epimorphism
eA|L—eA|K, which induces an isomorphism +r: e4/M—>eA/K for some LM<
eJ. Further +r is liftable to an automorphism of e4, which gives rise to an iso-
morphism M—K. The since M=L@M N K)=K is uniserial, we have M=L.
(4)=(5)=>(6). Trivial.

(6)=>(3). Assume (6). Then there is an isomorphism between the radicals of
the left and right hand sides of (3), which is extendable to a desired isomorphism
by Proposition 1.12. [/

Lemma 1.21. Let A be a ring of right local type. Then A is right coserial,
i.e., every injective indecomposable right A-module is uniserial.

Proof. 'This is clear because soc’E is local for any injective indecomposable
right A-module E. [/

Let A4 be a ring of right local type. Then by Lemma 1.21, any uniserial
right A-module is quasi-iniective. Now let U be a uniserial right 4-module of
length n=2. For each 1=<i<n, we set D(U): =End (U /*"!/UJ), which clearly
is a division ring. As in Sumioka [23], we can define a ring monomorphism
wij: DI(U)—=Di(U) for all 1Si<j=mn as follows: For every xcD/(U), x is
extendable to some y&End,(UJi~/UJ’), whihc induces an element y&Di(U).
Then the correspondence p;;: x+— ¥ is easily seen to be well-defined and a mono-
morphism. Further we have commutativity relations p;;= ;s p,; for all 1=i<
t<j=n. Thus we can regard DU)=D U)=--=D*(U) by p;;’s. Under
this notation we obtain the following by Lemma 1.19.

Proposition 1.22. Let A be a ring of right local type, and U a uniserial
right A-dolule of length n>2. Then D(U)=D¥U)=---=D"(U).

Proof. We have only ot show that y,, is surjective. Let x&D*U). Then
x is extendable to some yeEnd,(U/UJ?), which induces an element p,(x)E
DY(U). Since pu,(x) is liftalbe to y, Lemma 1.19 insists that u;,(x) is liftable to
some 2€End,(U). Put t:=z|UJ*". Then t&€D"(U) and pp(x)=p(t)=
tr pioa(t).  Thus w=p,,(2). //

DerInITION 1.23. Let A be a ring of right local type, and S a simple
right A-module with the projective cover P. 'Then analogous to [25], we say that
S is of 1st kind if PJ|PJ? is square-free, and that S is of 2nd kind if it is not of
1st kind, equivalently if PJ/PJ? is a homogeneous semisimple module of length
>2. Note that by Proposition 1.20, S is of 1st (resp. 2nd) kind iff P is of the
from (a) or (b) (resp. (¢) or (d)) in Proposition 1.4.
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For division rings DY(U) and D*(U) we have the following, which gives ano-
ther key for the computation of values of AR-quiver of a ring of right local type.

Proposition 1.24. Let A be a ring of right local type, and U a uniserial
right A-module of liength =2 with the projective cover P. Then
(1) top U s of 1st kind iff D(U)=D*U); and
(2) If top U is of 2nd kind, then
(a) U is injective, and

(b) [DY(U): D(U)),=2, [D(U): DXU)],=|PJ|FJ*|.

Proof. (1) (=). Assume that DU)=+D*U), say xD(U)\D*(U). Con-
siruct the kernel M of the map (xz, z): U/U*@U|UJ*—top U, where n: U/U]J?
—top U is the canonical epimorphism. Then by Lemma 1.18 we have top M =
top U, and MJ/MJ*=U]J/UJ*UJ/U]J? is a homogeneous semisimple module of
length 2. Thus top U is of 2nd kind.

(1) («=). Assume that top U is of 2nd kind. Choose some PJ*<I<P] so
that M:=P/I has the radical of the form S@T with S=T simple modules.
Then by Lemma 1.13 and Proposition 1.20 we have M|/S=M|T=U|U]J*.
Hence we get an exact sequence of the form

0—-M-UUP®U|UJ? S&E-)) topU—0,
where «, B are epimorphisms. Since M is indecomposable, we have aB™'e
DYU\D*U) by Lemma 1.17 (2), where @, 8 are the maps induced from «, 8,
respectively. Thus DYU)=+=D*U).

(2) (a). It is enough to show that N:=U/UJ? is injective. Let E be the
injective hull of N, and F:=soc®E. Suppose that N is not injective. Then F
is a uniserial module of length 3, and N=F]. Note that DY(N)=D*F) and
D*(N)=D¥F). Then since top N is of 2nd king, the above shows that D'(N)=
D*(N), which contradicts Lemma 1.22.

(2) (b). The following is easily verified:

Claim. Let x, -+, x,&DYU). Then {x,, -+, x,} is linearly dependent in
DY U)p2wy iff the homomorphism (x;z): (U/UJ?)™—top U is cofusible, where :
U!UJ*—top U is the canonical epimorphism.

If n=3, then Ker (; 7) is not local, whence (x; 7) is cofusible by Lemma 1.17(2).
Thus [DYU): D¥U)],=2 because D (U)==D*U) by (1) above. For the remain-
ing part we apply [4, Theorem and Lemma 2]. We may assume that |U|=2,
whence that U=P/M for some maximal submodule M of PJ. Note that in
this case DY(U)=D and D (U)=D(M) under the notation of [4]. Put X*:=
Qa"(X ) for any X< P]J, where « runs through End,P. Then the above men-

tioned statements guarantee that [DY(U): D*(U)],= | PJ]/M*| because PP<M <
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PJ and P/M is quasi-injective. Since top U=top P is of 2nd kind, Proposition
1.20 and Lemma 1.13 claim that for any maximal submodule X of PJ, P/M==
P/ X, whence M*=X*<X. Thus P’=M*=<rad(P])=PJ%ie., M*=PJ*. [/

ReMARK 1.25. In the setting of the proof of (2) (b), let v&PJ\PJ?. Then
by the above lemma, we have [DYU): D*(U)],=[Dy(v): Dyv)];, and [DYU):
D¥(U)],=[D\(v): Dyv)],, where D,(v) are division rings defined in [24]. We ex-
pect that these together with Proposition 1.4, Lemma 1.21 and Theorem 1.0
will give a complete characterization of a ring of right local type.

2. AR-sequences over a ring of right local type

Recall that for indecomposalbe right A-modules X, Y, the bimodule
ranIrr (X, Y)pexy of irreducible maps is, by definition, the factor module rad (X,
Y)/rad*(X, Y) where rad is the radical of the category of finitely generated right
A-modules, and F(X): =End 4(X)/rad (X, X). The following holds for arbitrary
artinian rings; see, for instance, [14] or [19] for the proof in the algebra case.

Lemma 2.1. Let A be an aribitrary artinian ring, and X,, ---, X,, Y in-
decomposable right A-modules with X;2x X; for any i=j, and a;;: X,—Y a ho-

momorphism for every 1=i=<n, 1<j=d;. Then the homomorphism (a); ;: Gja

X —Y is irreducible iff every a; is irreducible and {a;,, -+, @} is a linearly
independent set in Irr(X;, Y)px) for every i, where @;; is the image of «; in
Irr(X,, Y).

In the rest of this section, we assume that A is a ring of right local type. We
now give all the irreducible maps between indecomposable right 4-modules.

Lemma 2.2. Let a: X—Y be an epimorphism between local right A-modules.
Then o is irreducible iff Ker « is simple.

Proof. (=). This part holds for an arbitrary ring by [16, Lemma 1.3],
and this is trivial in our case.

(«). By assumption Y is not projective, so we have an AR-sequence (*)
stopping at Y, which gives rise to a commutatiae diagram

)—— Ker o g - X avY——*O
’)’l S) & l =
*) 0— T E Y— 0,

Consider the left sequare (.S), which is a pushout and pullback diagram. Then
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since (B8, ¥) is fusible by Proposition 1.12, § is a section by Lemma 1.11 (1).
Thus « is irreducible. [/

RemARk 2.3. If A4 is not of right local type, then the implication (<=) is
not ture in general. For instance, let 4° be the algebra defined by the quiver
1-2<-3. Then the canonical epimorphism (k—>k<0)— (k—>0<-0) gives a coun-
terexample.

()" » (B:) ,
Lemma 24. Let 0>X —> @ Y, —> Z—0 be an AR-sequence with each

Y, indecomposable. Then B; is an epimorphism for some i, and n=<2.

Proof. We may suppose that n=2. Since Z is local, B; is an epimor-
phism for some ¢, say =1. Then this sequence yields a pushout and pullback
diagram:

al
X Y,
a’ 61
Y’ zZ
BI
where Y:= @ Y, a':=(a;){s1 and B':=—(B,;);+;- Since a’ is also an epi-
i%1

morphism, Y” is local, whence n<2. //

The next gives all the irreducible monomorphisms between indecompo-
sables, which follows by the above lemma considering “left boundaries” of
Figures 2 and 3 below. Since we do not use this later and also follows by
Theorem I, the precise proof is left to the reader.

Lemma 2.5. Let a: X—Y be a monomorphism between indecomposable
right A-modules. Then a is irreducible iff we have a commutative diagram

0—-K—U—X—0
-| el e
0— K—P—>Y—0

with exact rows such that P is indecomposable projective and B is an irreducible
map, i.e., an inclusion map of some direct summand of PJ. (Hence P is necessarily
the projective cover of Y.) If this is the case, X is uniserial since so is U.

The following gives all the AR-sequences over a ring of right local type.

Theorem 1. Let A be a ring of right local type. Then an exact sequence
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of right A-modules is an AR-sequence iff it is isomorphic to one of the following
sequences:

(IJ'D_ ) eA/e];-H@e]/] ( 2) IJ‘Z) A/J'—>O

(I 0—efleJ™

where eA is uniserial and i=1.

(I1) 0 K v =8 A KKK eA|KJ* — 0

where e[=K@L and K, L (#0) are uniserial, s=0, KJ° 0.

(I 0 edj(KT"@Ly+) oo =5, 2

eA[(KJOLJ") @ eA|(KJ* DLJ™™)
&) eA|(KJ*®LJ) — 0

where e[ =K®L, and K, L are uniserial, s, t =0 and KJ*, LJ* 0.

(IV) 085 a5 eais—0
where e]=8,D:--DS,, S: =S8,=<-:-=< 8, are simple and n>2.
T
(V) 0 ed)(S,0@S) 2=, (S, @S,)Ded(S:DBS)
(&8)

—> eA/(S,D--DBS;) =0

where eJ=5,D-DS,, S:=8,==--=8, are simple and n>2, 2=<i=<n (for con-
venience we set S,;P---DS;=0).

In the above, &y, & are the canonical epimorphisms and py are the inclusion
maps, and e is a primitive idempotent of A.

ReMARK 2.6. In the above list of sequences, the middle term is indecom-
posable in the case (I), 7=1, and in the case (II), s=0.

Proof of Theorem I. Let (e): 0—>K3>E>SC—>0 be an exact sequence.
Then by definition (e) is an AR-sequence if

(1) (e) is non-split;

(2) K and C are indecomposable; and

(3) 7 is right almost split.

Let (e) be any one of the sequences in the theorem. First it is easy to see
that (e) is exact. The statements (1) and (2) are trivial because each component
map of o is non-isomorphism and K, C are local. Hence noting that all the
non-projective indecomposables appear as the module C, it only remains to
prove the statment (3). By definition the statement (3) is trivially equivalent to
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the following:

(3") For any non-isomorphism ¢«: X—C from any indecomposable module
X, there exists a homomorphism B: X—E with a=70.

In the cases (I), (IT), (IV) we directly construct the desired homomorphism
B, and at the same time we construct the @ for any non-epimsrphism o in the
cases (IIT) and (V) for the later use. For the cases (III) and (V) we show the
statemt statement (3) as follows. Let E, and E, be indecomposable modules in

the middle term E so that (¢) has the form 0K (0~ pap né&) o
By Lemma 2.4 it suffices to show that (&, &) is irreducible. To this end we can
apply Lemma 2.1 since by Lemma 2.2, & and &, are irreducible. If E| X E,,
then the assertion is trivial. Hence we have only to show that the set {§,, &}
is linearly independent in Irr(E,, C)re, under the assumption that there is an
isomorphism @: E,—E,.

(i) Proof of (3’) for the cases (I), -, (V) when a is not an epimor-
phism

We may asume that X=fA/I for some primitive idempotent f of 4 and for
some I < f] and that a=a- for some a€e]f.

Case (I). Since C=edje]’ is local, Im a=<eJ/eJ’. Hence a:: X—e]le]’
is defined and is a desired map.

Case (II). Since Im a<eJ/K]J’, we can define the maps a’ and & by the
following commutative diagram

X

’

a

- L®KIK]* = eJ|K]
- a

(‘Sv /1')

eA|K] DKIK]? - eAIKJ?

which is completed by the «: 2[06 3] above, where 7d is the identity map of
‘
KJK]J® and B is the composite L-K @L—-(KPL)/ K] =e]| K]+ —eA|K]J*+

of the canonical maps. Hence ya' is a desired map.

Case (III). Im a=ZeJ/(KJ'PLJ)SL/L]'®K/K]J’. Hence we can define
the maps &’ and o by the following commutative diagram:
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N
|
__— LILI'®KIK]" = eJ/(L]'®K]")

- a

—

CAJ(KT DL )@eA|(K L)

eA|(KJ*BLJ")

Define the maps B: L/LJ'—eA|(KJ**'@LJ*) and «v: K|K]*—eA/(K]*PL]J**") as

the composite maps of the canonical maps: L/LJ'—(K@L)/L]'=eJ|L]*—e]/

(KDL —eA|(KJPDLJY); and K/KJ*—(KPL)/K]'=e]|K]*—>e] /(K] D

L] —eA|(KJ*DLJ**), respectively. (Note that 3, ¢ are non-isomorphisms.)

Then as easily seen the homomorphism §: :|:€ O] completes the above com-
v

mutative diagram, whence the homomorphism 8¢’ is a desired map.

Case (IV). Since eJ/S is semisimple, 0=a(fJ)=al. Hence a- gives a
desired map X—eA.

Case (V). Again since ¢J/(S,P---PS;) is semisimple, both (a-,0)T and
(0, a+)T gives a desired map, whose components are non-isomorphisms.

(ii) Proof of (3’) for the cases (I), (II), (IV) when « is an epimorphism

Since the projective cover of X is isomorphic to e4, we may assume that
X=eA|I for some I <e], and that ¢=a- for some acede\e]Je.

Case (I). I=eJ’, for some j=i+1. Since a(eJ’)<eJ'<eJ*, a-: X—
eAleJ**! is defined and is a desired map.

Case (II). al<KJ’. If al=K]J’, then since a is a unit, a'KJ'=1I,
i.e., Ker =0, a contradiction. Hence al <KJ**'. Thus (a-, 0)": X—ed/K]J***
@K/K]J*® is a desired map.

Case (IV). In this case X=eA is projecitve, whence there is nothing to
show.

(iii) Proof of (3) for the cases (III), (V)

Suppose that our assertion is not true. Then &=§&,n+6 for some iso-
morphism %: E,—E, and for some fe&rad’(E,, C). Let §=yB with B&rad

(Ey, L), yErad(L, C), where L= Eé L; with all L; local and B8=(B,)", v=(7,)-
i=1

Then since |C|—|E,|=1 and L, are local, every ; B, is not an epimorphism,
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whence we have v, 8;=§& 8,1+ &¢; for some §,rad(E,, E)) and {;Erad(E,, E,)
by (i) above. Thus &—&7=¢,8+&,8, where §:=31§; and {:=33¢,. Con-
sequently & ==&\ for some isomorphism A because 1;,—8 and 5+ are isomor-
phisms. This shows that (&, &,) is cofusible, a contradiction to the fact that
Ker(&,, &)=XK is indecomposable. [/

3. The AR-quiver of a ring of right local type

DrriNiTION 3.1. A translation quiver is a pair (Q, 7) of a quiver Q and a
bijection 7: R—L of subsets of the set Q, of vertices of Q satisfying the condi-
tions k

(a) O has no loop > and no multiple arrow -=3-; and

(b) For any xER, (7x)t=x",
where we denote by y* and by y~ the set {z&Q,| there exists an arrow y—z
in O} and {2€Q,| there exists an arrow z—7y in O}, respectively for every
y€0,. The full subquiver formed by {x, 74} Ux~ for any xR is called the
mesh starting at 7x and stopping at x. For each arrow a: y—x in Q with x&R
we denote by oo the unique arrow 7x—>7y in Q.

A valued translation quiver is a translation quiver (Q, 7) together with a
pair (d, d’) (called a value of (Q, 7)) of maps from Q,(: =the set of arrows of Q)
to the set of natural numbers satisfying the condition

(¢) d(ca)=d'(a) for any a: y—x in O, with x&R. If further the follow-
ing is satisfied, then it is called a well valued translation quiver:

(d) d'(ca)=d(a) for any a: y—x in Q, with xER.

o‘Vy\f[

For each a0, the diagram v <_ __ _ _* x, denoted by T'(ca, ), is
N
called a triangle stopping at «, and the diagram x~ ——-———— 77 'x, denoted by

T(a, o™ a), is called a triangle starting at o, where we set Tx, 77'x, o or o '@
to be zero if it is not defined. A triangle T'(«x, B3) is said to be projective, injective
or proper if =0, B8=0 or a, B0, respectively. Proper triangles are identified
with their corresponding full subquiver of Q. We define o T'(ax, B): =T (o, a8)
. 1 YT SR ._Jd(a) if a0
if @0, 0 T(a, B): = T(c™'at, o™'B) if B0 and d(T(a, B)): {d'(,e) i oy
which is called a value of T'(a, B) and is well-defined by the condition (c). The
map d: T(a, B)—d(T(a, B)) is called a value of triangles of (O, 7). Note that
giving a value (d, d’) to a translation quiver (Q, ) is equivalent to giving a value
of triangles of (O, 7). The condition (d) is equivalent to the condition
(@) d(cT)=d(c™'T) for all proper triangles 7.

DerINITION 3.2. Let A be a ring with AR-sequences. Then the AR-
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quiver IT" of 4 is a valued translation quiver defined as follows:

(a) The set T of vertices is the set of isomorphism classes of indecom-
posable right A-modules. (We identify indecomposables with their isomor-
phism classes.)

(b) Forany X, Y in T, the number of arrows from X to Y is at most one,
and there exists an arrow X—Y iff Irr(X, Y)=0.

() If 0-X—Y—>Z—0 is an AR-sequence, then translation is defined as
vZ:=X.

(d) The value is defined as d(a):=[Irr(X, Y): F(Y)], and d'(a): =[Irr
(X, Y): F(X)], for each arrow a: X—>Y.

ReMARK 3.3. (1) In the above definition, the condition (¢) in Definition
3.1 is verified by Lemma 3.4 below.

(2) If A is an artin algebra, then the AR-equiver is a well vlaued trans-
lation quiver.

The following two lemmas are well know in the algebra case, which remain
valid also in our aritnian case. See for instance [20].

Lemma 34. Let 0-X— @ Y,»Z—0 be an AR-sequence of right A-

i=1
modules, where all 'Y; are indecomposable. Then for any indecomposable module
Y ,, we have

[er(X, Y): F(Y)], = #{{| Y=Y} = [Irr (Y, Z): F(Y)],.

Lemma 3.5. (1) Let Z, be an indecomposable projective module and Z]—
é Y, with each Y, indecomposable. Then for any indecomposable module Y ,,
i=1

we have
[(Ier(Y,Z): F(Y)], =8| Y=Y} .

(2) Let X, be an indecomposable projective module and X|[soc X= G”B Y;
i=1

with each Y, indecomposable. Then for any indecomposable module Y ,, we have
[Irr(X, Y): F(Y)], =844 Y=Y} .

Theorem II. Let A be a ring of right local type and e a primitive idem-
potent of A.  Then

(1) The AR-quiver of A with the precise form of the full subquiver consisting
of the meshes stopping at all the local modules thar are factor modules of eA has the
follwoing form: (In the figures we write a value of a triangle inside the triangle if
the value is greater than 1, and triangles without indications of values have the value
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1. Further the symbols [ and ] indicate that * is projective and that * is in-
Jective, respectively.)

(@) In the case that eA is uniserial. Put h:=h(eAd). See Fig. 1.

Fig. 1.

(b) In the case that e]=K@L for some non-zero uniserial modules K, L
which are not isomorphic to each other. Put s:=h(K), t:=h(L). See Fig. 2.

(c) In the case that e[=K@L for some non-zero uniserial modules K, L
which are isomorphic to each other. Put h:=WK). See Fig. 3.

(d) In the case that e]=S,D---PS,, S\=---=S8, are simple and n>2. See

Fig. 4, where ( ‘1) ); —s, ( 1 ) = A)(S; D BS,) (Syy @+ DS,: =0), for all
3
0= n.
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ed|(K]* DL])----

eA|(KJ BL]? )----

L] -~~~ ed|L]

ed[(KJ*'@L)]

————— ed/(K]*®L)]
i NN
— A L] e -eA|(KJ*®L])---eA|(K]DL))
/2\ 2 2 2
0f=-== === [ed---- eA/(KJ* QL] )= -===-=~~ -¢A|(K] BLJ)-eA|(K

(in the case that K is simple)

Fig. 3.
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[ 1)_/:_2__7( 12'){_7;}\__-_-_‘___--,_-_-

n

Fig. 4.

(2) The following is the list of all the valued meshes of the AR-quiver of A:

DT, NN
) N » 2
Q) Z‘_\_ﬁ« coa) SN i) \’/\/ )

ST
o (ix) \ /_2551
(4, ) :
Here X----Y and —— denote that X=7Y, and that this arrow o has the value
(d(a), d'(a))=(a,b), respectively, while arrows without the value notation have
the value (1, 1).
(3) A is of left colocal type iff every valued mesh has one of the forms (i), -+,
(v) in (2) above.

Proof. (1) This follows by Theorem I, Proposition 1.20 and Proposition
1.24.

(2) Let T=T(e,B), X id Yﬁ Z be any proper triangle in Figures 1, ---, 4.
Note that the triangles with value =2 appear only in the bottom of Fig. 3 and in
Fig. 4. Then we see that if d(¢T)=2 or d(¢7'T)=2, then d(T)=2 or Y is not
uniserial. On the other hand we can observe that if ¢7 or ¢ ™7 is in the shaded
part, then d(7)=1 and Y is uniserial, whence d(¢T)=1=d(c™*T). This and
Figures 1, -+, 4 give our list of all valued meshes. (Note that the condition (d")
in Definition 3.1 is satisfied except for two triangles in Fig. 4.)

(3) By Corollary 1.2, A4 is of left colocal type iff the above case (d) does
not occure. [/

Notice that Theorem II makes it possible to draw the whole of the AR-
quiver by gluing together the above figures. Now the following is an immediate
consequence of Theorem II.
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Theorem 3.6. The AR-quiver of a ring A of right local type is a well valu-
ed translation quiver iff A is also a ring of left colocal type.

This suggests us the following.

Conjecture. If A is both of right local type and of left colocal type, then
A has a selfdulity.

Corollary 3.7. If A is given by the form <(I; Aé) for some division rings

F, G and some F-G-bimodule M with [M: Gl,=n=1, then A is of right local type
iff the dimension sequence of M is (n, 1,2,2,---,2,1) (n+2 terms) (if n=1, it is
(1, 1, 1)).  Further in this case A is of left colocal type iff n<2.

Proof. (=). The AR-quiver of A has just the form in Fig. 4 without the
shaded parts, and (?) is projective, ((1)) is injective, where e:((l) g) Let

Ty, Ty, +++, T,4, be the triangles in Fig. 4 in the same order. (Notice that T is
projective and T,,, is injective.) Then by [12], the desired dimension sequence
is given by (d(Ty), ++*, d(T y1y))-

(«). By [12], A has exactly z—+2 non-isomorphic indecomposable modules.
Since |ef|=n, there exists #+2 non-isomorphic local right modules, which
shows that 4 is or right local type.

The rest follows by Corollary 1.2. //

ExampLE 3.8. In the algebra case, it is known that 4 is of right local type
iff A is left serial and e] is a direct sum of at most two uniserial modules for
every primitive idempotnet ¢ of 4 (note that the lateer is equivalent to saying
that the conditions (LR) and (L) in Theorem 1.0 are satisfied). However this
does not hold in the artinian case. We give countereaxmples of both implica-
tions, which at the same time are an example of a ring of right local type but
not of left colocal type and an example of a ring of left colocal type but not of
right local type. Let d be any dimension sequence of length 5. Then [21, section
13] and [12, Proposition 1] guarantee that there exists an F-G-bimodule M over
division rings F, G such that the dimension sequence of Mis d. Let A be a ring
defined by M as in Corollary 3.7.

(1) (This example had been reported in Japanese [3]). If d=(3,1,2,2,1),
then A is of right local type but not of left colocal type by Corollary 3.7. Fur-
ther 4 gives a counterexample of the implication (=).

(2) If d=(2,1,3,1,2), then A4 is of left colocal type but not of right local
type. In fact A°? is a ring defined by a bimodule over division rings having
the dimension sequence (1, 2, 2, 1, 3) and it has an indecomposable injective
module I with |I/soc I|=3, which gives 5 colocal modules. Thus 4 is of left
colocal type, and 4 is not of right local type by Corollary 3.7. Further A gives
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a counterexample of the implication (<=).

RemARk 3.9. (1) Rings defined as in Corollary 3.7 by a bimodule over
division rings having dimension sequence d of length 5 is called rings of type I(5)
having dimension sequence d. As easily seen these rings are characterized as
hereditary rings with just 2 non-isomorphic simples and just 5 non-isomorphic
indecomposables. Thus if 4 is of type I(5), then so are 4°* and D,(4):=End,
(E\DE,), where E, and E, are the injective indecomposable right 4-modules.
More precisely, if 4 has dimension sequence (ay, **+, g5), then 4° has (a,, a,, --+),
and D,(4) has (as, -+, a;). It should be noted that a dimension sequence of
length 5 is completely determined by the first two terms.

(2) The AR-quiver of a ring of type I,(5) is as follows:

(3) -+ () ) 1)+ () o)

NSNS NSNS
EDEO RO RO
[(?)\“3'/@)\'2‘/((1))] [<(1))\'i'/<;>\'é'/<(l)>]
b)) G i) G

@) (3w ()2 () (0
N SN/ N O N/
SO ENH IO ENHIE

In the above, modules X are presented by the dimension type ([Xe,: F],, [Xe,:

G],)" where el———((l) g), e2=<8 (1) . (Notice that for non-simple indecomposables
X, Xe,=top X and Xe,=XJ=soc X.) Further the dimension sequences are
just the sequence of values of triangles, and dimension sequences (a, b, ---) and
(b, a, --+) are placed horizontally to express left modules and right modules. The
last two quivers are the same. The AR-quiver of a ring 4 and that of D,(4) are
placed diagonally (left-up to right-down).

(3) As well known a ring is serial iff it is of (left and right) local type.
By Lemma 1.21, rings of local type are coserial. Hence serial rings are coserial.
But the converse is not true as the above AR-sequence of a ring of type I,(5)
having dimension sequence (2, 2, 1, 3, 1) shows.

(4) A ring is called a right Tachikawa ring if every indecomposable right
module is local or colocal, and is called a Tachikawa ring if both 4 and A4 are
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right Tachikawa rings. A ring of right local and left colocal type is an exrmple
of Tachikawa rings. However the AR-sequence of a ring of type I,(5) having
dimension sequence (3,1, 2,2, 1) and that of its oppsite ring tell us that a ring
of right local type does not need to be a Tachikawa ring.
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