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1. Introduction

The purpose of this note is to construct infinitely many real quadratic
number fields each having an Ag-extension which is unramified at all primes
including the infinite primes (abbrev. strictly unramified). Here, a G-extension
means a Galois extension having G as its Galois group, and S, (resp. 4,) de-
notes the symmetric group (resp. the alternating group) of degree n. In [12],
Yamamoto constructed infinitely many real quadratic number fields each having
an A,-extension which is unramified at all finite primes (abbrev. weakly un-
ramified) for each #=4, but they are always ramified at the two infinite primes.
In this note, we shall prove the following

Theorem. Let S, and S, be given finite sets of prime numbers satisfying
SiNS,=0 and 25 S,. Then there exisi infinitely many real quadratic number
fields F satisfying the following conditions :

(a) F has a strictly unramified As-extension.
(b) All primes in S, are unramified in F.
(c) All primes in S, are ramified in F.

Composing such an Aj-extension with some real quadratic number field, we

obtain infinitely many real quadratic number fields with a strictly unramified Ss-

extension. Furthermore, we describe a method for constructing infinitely many

real quadratic number fields having a strictly unramified 4,-extension for larger

n, and give some examples of real quadratic number fields with class number

one having a strictly or weakly unramified A4,-extension, for n=>5, 6, and 7.
This note is based on a part of the author’s Master’s thesis [13].

2. Proof of the theorem
Take a polynomial of the form

F(3) = 35— 20 (617 —1) —(m—4)
(m: a positive integer)
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Our proof consists in showing that under some assumptions on m Q(\/D) is
a real quadratic number field and the splitting field K of f(x) over @ is a strictly
unramified A4;-extension of it, where D is the discriminant of f(x). Imposing on
m some congruence conditions, we prove them and the conditions (b) and (c).
Our proof is based on the following two lemmas.

Lemma 1. Let k be an algebraic number field of finite degree, and f(x) be
a monic trreducible polynomial over k with integral coefficients and discriminant D.
Let K be the splitting field of f(x) over k. If, for each prime ideal p of k which
1s ramified in K, f(x) mod b has exactly one multiple root and its multiplicity is two,
then K|k(\/ D) is weakly unramified.

This can be proved easily as in Yamamoto’s proof for the case k=@Q ([12],
pp- 69). ‘

Lemma 2. Suppose that a polynomial
f(x) = *—2ax3+bx—-c, a,b,ceZ

satisfies the following conditions :
(1) f(x) is irreducible over Q.
(ii) b=c=1 (mod 2).
(i) a>0, a>>b>0, and
4(—2a-+d) (Ba+dyP>25/5 |¢]
4(2a+d) (3a—d)**>25/5 |c| ,
where d=+\/9a>—5b; This is a necessary and sufficient condition that all roots
of f(x) are real.
(iv) (a,b,5)=(b(a*—b),c,D)=1.
(v) Any prime factors of (A,B,D) are those of 2ac, where D is the discriminant,
of f(%):
D = 3125¢*—4000ab*c*+-2566°+7200a%bc* — 512a%b* — 34564°c*+256a'h® ,

and

A = 5a(3a>—5b)+ 8B —b)? ,
B = 125a— 16b(a>—b) (62*—5b) .

Then Q(\/D) is a real quadratic number field and the splitting field K of f(x) is
a strictly unramified As-extension of it.

Proof. First we show that K is an S;-extension of @, which implies that
D is not a square and K is an As-extension of quadratic number field @(\/D).
Let G be the Galois group of K/Q. Since f(x) is an irreducible polynomial of
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degree five, G is a transitive subgroup of S;. By (ii), the irreducible decomposi-
tion of f(x) mod 2 is

(1) f(x)=x+x41=(P+x+1) (*+x*+1) (mod 2).

Hence G contains a permutation 7 of type (z,7) (k, [, m), so *=(i,j)EG, i.e.,
G contains a transposition. Therefore G=S;.
Next we prove the unramifiedness of K/Q(v/D). By easy computations, we
can verify that (iii) is a necessary and sufficient condition that all roots of f(x)
are real. Therefore, K is totally real; so all infinite primes are unramified in
K/Q(\/D). To show the unramifiedness of finite primes, we verify that f(x)
satisfies the condition of Lemma 1. By (1), 2 is unramified in K. Hence each
prime divisor of 2 in Q(\/D) is unramified in K. Since the primes which are
ramified in K are prime factors of D, it is sufficient to show (*) below for each
odd prime p|D.
(*) f(*)=0 (mod p) has at most one multiple root, and if it has, then its multi-
plicity is two.
By (iv), #=0 is not a multiple root of f(x)=0, where™ denotes the reduction
modulo p. Therefore, if f(x)=0 has a multiple root, then it is a non-zero root
of f/(x)=0, so it is a non-zero root of g(x)=0;

g(x) = 5f(x)—xf'(x) = —4ax®+4bx—+5c .

We have three cases; i.e., pla, p|cand p fac. Inthe case pla: By (iv), g(x)
has degree at most one and is not zero. Hence in this case, (¥) holds.

In the following, let p f'a. If f(x)=0 and 2(x)=0 have a common root, then
it is a root of A(x);

h(x) = 4a® f(x)+(ax’ —2a*+-b) g(x) = Sacx*—4b(a®—b) x—c(6a°—5b) .
In the case p|c: By (iv)
h(x) = —4b(a*—b) 0.

Therefore, f(x)=0 and g(x)=0 do not have any common root other than zero.
In the case p fac: If g(x)=0 and %(x)=0 have a common root, then it is a root
of

25ac® g(x)+ {20acx+16b(a*—b)} h(x) = —8Ax+Bc=0 (mod p).
Hence by (v), (*) holds.

ReEMARK. The conditions of Lemma 2 are too complicated for us to use
in this form. So we slightly simplify them. Take a triple (4, b, ¢) satisfying
(ii), (iv), and @>0, @>>6>0. For such (a, b, ¢), if f(x) is reducible, then 2|a| <
le|*+3]c| and |b] <3|c|? follow from (1) and easy computations. Therefore,
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()" If 2]a| >|c|*+3]c|, or |b]>3]|c|? then f(x) is irreducible.

When 5 D, (v) is equivalent to
(v)" Any prime factors of (B, d’d’, D) are those of 2ac, where d’'=44*—5b,
because

2(6a*—5b) A+b(a®—b) B = Sac*d*d’ .
Let B,=55—2%.3%5 and B,=5%?—2"a°. Then
$B=aB,(mod d?), *B=aB, (mod d'),
and
5D=0 (mod (B,, &%), 5D=0 (mod (B, d')).

Therefore, when 5 /D, (v) is equivalent to
(vi) Any prime factors of (B, d?) and (B,, d") are those of 10ac.

Proof of the theorem. First, for each pair (S), S,), we show the existence
of such an F. We take

f(x) = 8°—2mPx34-(6m*—5) x—(m—4) ,
where m is a positive integer satisfying the following conditions:

(1) For each g, S, = {3, 29, 31} —S,,

m=—1 (mod g,) .

(2) For each ¢S5 = S,U{2,5,7, 11, 13,79, 271, 1481} —S,U S, ,
m=1 (mod ¢,) .

3) For each ¢,€8,,
gllm .

Now we verify the conditions (i)-(v) of Lemma 2. In this case,
a=m,b=6m—5,c=—(m—4),d =3m*—5,d" = 4m*—30m*+25 .

Since b>3m?>3|c|? by (i)’ f(x) is irreducible. By (2), (ii) holds. By the con-
ditions (1) and (2), m is large enough that one can easily verify that (iii) is satisfied.
Since a=b=m?=1 (mod 5), (a,b,5)=1. Since
b+(6m+24) c = 91 = 713, @®—b+(m*+4m*+4-10m+40) ¢ = 165 = 3.5-11,

we have (b(a®—b), ¢)|3+5:7-11-13, but from the conditions for m, ¢ is prime to
3:5-7-11-13. 'Therefore (b(a*—b), c)=1. Hence (iv) is satisfied. Since D=1
(mod 5), we show (vi) instead of (v). Now as greatest common divisors in Z[m],
we have

(B, d) = 5°-7-11,
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and
(B,,d') = 33-57.29%.79.271-1481,

but from the conditions for m, we have d=0 (5-7-11), and d’%£0 (mod 3-5-29-
79.271-1481). Therefore (B,, d')=1. Hence (vi) is satisfied. By Lemma 2,
it follows that (a) is satisfied. Now we verify (b) and (c). For any ¢,E.S,
a=b=1, ¢=5 (mod ¢,). Therefore,

D=5%:11-7079=0 (mod ¢,) .
For any ¢, 8§, a=b=1, ¢=3 (mod ¢,). Therefore,
D=3?.29-31?=%£0 (mod ¢,) .

Hence for each ¢g=S,U S§, we have ¢ ¥'D. Therefore, ¢ is unramified in F.
Since S,E S,U S, (b) is satisfied. For each ¢,&.S,,

a=0,b=—75, c=—m+4 (mod ¢3) .
Since D=5°*+4"° (mod a), we obtain
D=—4'5°*m (mod ¢3) .

Hence ¢,||D, because ¢,# 2, 5. Therefore (c) is satisfied. Thus F satisfies the
conditions (a)—(c).

It remains to be shown that the set F(S,, S,) of such fields F satisfying the
conditions (a)—(c) is infinite. Suppose F(S,, S,) is finite:

F(Sy, S;) = {F,, -+, Fi} .

Then the set .S; of all prime numbers which are ramified in at least one F;(1=¢
<s) is finite. We take a prime number p such that p&£S, U {2, 5} U S;, and put
S3=8,U {p}. Then S;NSt=¢, and 2,5&S,. Therefore, we have F(S;, S3)
+¢. Since by definition F(S,, S3) is a subset of F(S,, S,), F'€F(S,, S,) coin-
cides with some F;. Therefore p is ramified in F;, which contradicts the choice
of p. Hence F(S,, S,) is infinite.

Corollary to the theorem. Let S,, S, be given finite sets of prime numbers
satisfying S,NS,=¢, and 2,5&S,. Then there exist infinitely many real quad-
ratic number fields L satisfying the following conditions :

(a)" L has a strictly unramified Ss-exptension.
(b)" Al primes in S, are unramified in L.
(c)' All primes in S, are ramified in L.

Proof. For S, and S,, we take F=Q(\/D) and K in the theorem. Take a
prime number p=1 (mod 4) not contained in S;U {5} which is unramified in
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F. Then L=Q(\/pD) satisfies the conditions above, and a composite field
K-Q(\/p) is a strictly unramified S;-extension of L. These statements easily
follow from the genus theory and Galois theory. The infiniteness follows from
that of such prime numbers p.

3. Notes and examples

It is natural to expect that there exist infinitely many real quadratic number
fields each having a strictly unramified 4,-extension for larger n. However, it
seems difficult to construct such fields in the same way as above, because the
number of terms of the polynomial whose roots are all real increases with its
degree. Instead, we shall look at the discriminant, as follows:

Proposition. Let f(x) be a monic irreducible polynomial over Q of degree
n with integral coefficients and square-free discriminant D. Let K be the splitting
field of f(x) over Q. Then K|Q(\/D) is a weakly unramified A,-extension.

This follows from the following three lemmas; the unramifiedness follows
from Lemma 3, and it follows from Lemma 4 and 5 that the Galois group of

K/Qis S,.

Lemma 3. Let k be an algebraic number field of finite degree, and f(x) be
a monic irreducible polynomial over k with integral coefficients and discriminant D.
Let K be the splitting field of f(x) over k, and E be the field obtained by adjoining
one root of f(x) to k. If, for each prmie ideal p of k which is ramified in K, p||Dgy,
(Dgyi : the relative discriminant of E[k), then K|k(~/D) is weakly unramified.

Lemma 3 is easily deduced from Lemma 1. We note that the unramified-
ness is based on the following fact: for each ramified prime of K, its inertia
group with respect to K/k is a cyclic group generated by a transposition.

Lemma 4. Let K be a Galois extension over @ with its Galois group G.
For each finite prime B of K, let Ty denote the inertia group with respect to Q.
Let H be the group generated by all Tg, where B runs over all finite primes of K.
Then H=G.

Proof. Let F be the fixed field of H. Then F/Q is unramified, whence
F=@Q by Minkowski’s theorem.

Lemma 5. Let H be a subgroup of S, generated by transpositions. If H is
transitive, then H=S,.

Proof. We call T a chain if T is a subset of S, consisting of transpositions
(71 25), (4, %3); ***, (¢m-1 2m) such that all ¢; (1= j<m) are mutually different, and we
put I(T)=m. Let M=max{l(T)|HDT: chain}. We claim that M=n. Sup-
pose M<<n. Take a chain ToCH such that 1(T;)=M. By the transitivity of
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H, H contains a transposition (7 j) such that /=i, for some s(1=<s<M) and j=7,
for any t(1=<z=<M). Since T, generates S,,, we can replace 7, and renumber
such that 7=z,,. Hence 1(T,U {(¢j)} >M. It is a contradiction. Therefore,
M=n. Hence H=S,.

The author was taught Lemma 4 and 5 by Osada [5].

From this point of view, for our purpose it is sufficient to find polynomials
over @ with integral coefficients and square-free discriminants. This enables
us to give examples easily.

Now we give examples of real quadratic number fields with class number
one having a strictly or weakly unramified 4,-extension which is an S,-extension
of @ for n=>5, 6, and 7. We have many examples, so we give a few examples
in each case. In most cases, the first example is a field whose discriminant
seems to be minimum among such fields. For example, it is true for @ (\/1609).
(See 2(a) below.) We can prove it, using the following fact due to Hunter [3]:

“The minimum discriminant of quintic fields with one real and four im-
aginary conjugate fields is 1609.”

In the following, A* denotes the class number in the narrow sense.

1. Strictly unramified cases.
(a) n=>5.
ht=1. Q(/P): p = 36497, 81509, ---, 255877, ---, 422069, ---.
ht=2. Q(/m): m= 81589, .-, 119649, ---, 274129, ---.
(b) n=6.
ht=1. Q(\/p): p = 592661, 1134389, ---.
ht=2. Q(/m): m= 1202933, ---.
(c) n=7.
At = 1. The author does not know any examples.
ht=2. Q(/m): m= 20134393, ---.
2. Weakly unramified cases.
(a) n=>5.
ht=1. Q(p): p= 1609, 1777, 2297, 3089, ---, 11317%, ...
ht =2. Q(/m): m = 2869%*, 3017, 3233, ---, 4897, ---, 11469, ---.
(b) n=6.
ht=1. Q(p): p=29077,40277, ---, 104173, ---.
ht=2. Q(/m): m= 31133, 39269, ---, 107417, ---, 192649, ---.
(¢) n=7.
ht=1. Q(/p): p = 1180241, ---, 1946657, ---, 2532637, ---.
ht=2. Q(/m): m = 1264157, ---, 5543633, ---, 8058989, ---.
(* **: Given in [12] and [2] respectively.)

From the same point of view, it seems that we can obtain many such ex-
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amples for larger n. Therefore, though we are lacking in examples, we may
expect the following conjecturally statement:

“For each natural number #=5, there exist infinitely many real quadratic

number fields with class number one each having an unramified 4,-extension for
both strictly and weakly unramified cases.”

(1]
(2]
(3]
(4]
(5]
(6]
[7]
(8]
(91
[10]
[11]
[12]

[13]

References

H. Cohn: A numerical study of quintics of small discriminant, Comm. Pure.
Appl. Math. 8 (1955), 377-386.
G. Fuyjisaki: Omn an example of an unramified extension (in Japanese), Sugaku 9
(1957), 97-99.
J. Hunter: The minimum discriminant of quintic fields, Proc. Glasgow Math.
Assoc. 3, Part 2 (1957), 57-67.
S. Lang: Algebraic number theory, Addison-Wesley, 1970.
H. Osada: Private communication.
M. Pohst: The minimum discriminant of seventh degree totally real algebraic
number fields, Number theory and algebra, 235-240, Academic Press, New York,
1977.
M. Pohst, P. Weiler and H. Zassenhaus: On effective computation of fundamental
units. 11, Math. Comp. 38 (1982), 293-329.
T. Sasaki, Y. Kanada, and S. Watanabe: Calculation of discriminant of high
degree equation, Tokyo J. Math. 4 (1981), 493-499.
K. Uchida: Unramified extensions of quadratic number fields 1, 11, Tohoku Math.
J. 23 (1970), 138-141, 220-224.
H. Wada: Applications of computers to number theory (in Japanese), Lecture
Note in Math. No. 7 (1980), Sophia Univ.

A table of ideal class numbers of real quadratic fields, Lecture Note
in Math. No. 10 (1981), Sophia Univ.
Y. Yamamoto: On unramified Galois extensions of quadratic number fields, Osaka
J. Math. 7 (1970), 57-76.
K. Yamamura: On unramified extensions of algebraic number fields (in Japanese),
Master’s thesis, 1984, Tokyo Univ.

Department of Mathematics
Faculty of Science,
University of Tokyo
Hongo, Tokyo 113, Japan





