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Shape Optimization of Ceramics/Metal Joint Based on
Reliability

Hidekazu MURAKAWA* and Yukio UEDA**

Abstract

Due to their brittleness and poor machinability, ceramics are used in the form of composite structure with metals.
However, stress concentration occurs in the region near the edge of interface between the ceramics and the metal. Such
high stress may cause cracking of ceramics under thermal loads and reduce the reliability under external loads. In
general, the stress concentration greatly depends on the geometry or the shape of the joint.

The authors investigated the possibility of reducing the failure probability through controlling the shape of the
Jjoint.  For this purpose, the problem is treated as an optimization problem and a shape optimization procedure in which
the failure probability is minimized is proposed. Further, it is applied to simple example problems, which can be con-

_sidered as linear thermal-elastic problems, to show that the proposed optimization technique can be an useful tool to
desigh shapes of joints between dissimilar materials.

KEY WORDS: (Shape Optimization) (Optimum Design) (Reliability) (Ceramics/Metal Joint) (Finite Element

Method)

1. Introduction

New-Ceramics have a great potential in various
engineering applications. However, most ceramics
are brittle and poor in machinability. These draw-
backs are overcome by introducing composite structure
consisting of ceramics and metal. In most cases,
ceramics and metal are joined at elevated temperature
by methods such as brazing or diffusion bonding. Due
to the large difference in thermal expansion coefficients
of the two materials, significant magnitude of residual
stress is produced during the cooling process after
joining®. Such residual stress created at the bonding
region may cause cracking or reduce the bonding
strength. - Thus, it is desirable to minimize the size of
the residual stress and various techniques are developed
for this purpose. One such technique is to introduce
an interlayer®. Another possible technique is to reduce
stress by controlling the shape of the bonding zone®.

The authors treated the problem of reducing the
residual stress through shape control as an optimum
design problem and developed a numerical method to
automatically determine the optimum shape for the
given conditions?. In this method, shape is optimized
based on a simple assumption that the ceramics break
when the maximum stress reaches the critical value.
However, the strength of the ceramics shows statistical
variations. For this reason, statistical approaches® are

widely employed in strength evaluation of ceramics
parts.

Considering such statistical nature of ceramics, a
new optimization technique based on the probabilistic
evaluation of reliability is proposed in this paper. The
failure probability is employed as an objective function
and the shape which minimizes it is sought as an
optimum shape.

2. Shape Optimization Method

2.1 Representation of shape and its modifivation

The two dimensional shape optimization problem,
shown in Fig. 1, is considered. In this report, both
ceramic and metal parts are assumed to be cylindrical
and joined coaxially, so that the problem can be treated
as axisymmetric thermal-elastic problems. The shapes
of the ceramic and the metal parts are represented by
the lines in r—z plane which correspond to surfaces and
interface of the materials.

The domain for the stress analysis is subdivided into
a finite number of elements (3 node triangular Finite
Elements are used in this report) and nodes are defined
at the corners of the elements. Since the nodes are also
defined on the surface and the interface, the shape of
the joint can be represented by their coordinates.
Further, the modification of the shape can be achieved
by moving these nodes. If the part of the boundary to
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Fig. 1 Description of shape and its modification.

be modified and the directions in which the nodes can
move are given a priori, the modified shape can be
uniquely defined by the distance of move q; of the i—th
node. In other words, the shape can be defined by «;
as design parameters.

2.2 Failure probability and constraint condition
(1) failure probability

As one of the methods to evaluate the strength of
brittle materials such as creamics, methods based on the
weakest link hypothesis and the statistics have been
proposed®. For example, if three modes of failure,
namely, those initiated from internal cracks, surface
cracks and edge cracks, are considered, the failure
probability P, can be estimated by the following equa-
tion.

P, =1—exp (—31—32—33) (1)‘

In the above equations, B,, B, and B, are hazard func-
tions for respective failure mode and defined by,

ml
B, = S (U;Gu_1> Y(o, 0,,)dv
14

To1 ]
m2
8, = (72%2) ¥, o,)a4 @
A T4
m3
8, ={ (222" ¥, o.0dL
L O3

where, o represents the maximum principal stress at
arbitrary points, and my;, gy, 0,; (i=1, 2, 3) are para-
meters for the three parameter Weibull distribution.

The integrals S dv, Sa’A , gdL represent those over the
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volume, the surface and the edge length of the ceramics
part, respectively.

The Function ¥(o, 0,;) is the heaviside step function.
For simplicity, only the failure mode due to the internal
cracks is consider in the following discussion. In
Further,
it is assumed that o,;,=0. Using the maximum princi-
pal stress o; computed for each element, the failure
probability P, can be estimated as,

F=1—exp {;S (0/05)" Y(s;, O)dv}
= |l —exp {_; vj(aj/GOI)mY(Uj, 0)} 3

where, v,=27rA; and A; is the area of the j-th element.
(2) constraining condition

In case of practical engineering problems, there are
certain restrictions so that the product can be machined
or produced and fulfill the required function. The
shape of the product is also subjected to various con-
straints. As one of the geometrical constraints, the
arc length is assumed to be constant and the optimum
shape is sought under this condition. In other words,
when the original arc length is L,, the arc length of the
optimum shape is kept aL,, where « is a given constant
and referred to as arc length factor.

2.3 Optimization problem and objective function

(1) optimization problem with subsidiary condition
The optimization problem can be stated that, to
determine the shape for which the objective function
W, which is the failure probability P, in this case, is
minimized under the given constraint condition, i.e.

W = P;=> min \ “)

under the following condition forced on the arc length
of the boundary to be optimized.

L =al, ®)

However, this condition is nonlinear and it is difficult
to satisfy a priori. To overcome this difficulty, the
optimization problem is modified to that without
subsidiary condition.
(2) optimization problem without subsidiary condition
By introducing the Lagrange multiplier 2, the sub-
sidiary condition can be embedded in the objective
function and the new objective function W* in the fol-
lowing form is derived.

W*a;, 2) = 1—exp[—>] v; '{Uj(ai)/am}m]
—A{L(a;)—eLy} 6
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Using the above objective function, the subsidiary con-
dition can be removed from the optimization problem
and the optimum solution is obtained by simply mini-
mizing the objective function W*(a;, 2). For con-
venience, Eq. (6) is rewritten in the following form.

WH*a;, ) = 1—f(2 gj("j(ai)))
—2{L(a;)—aL¢} )

where,

f=exp(2g))

gj:Vj{cj(ai)/a()l}m

> : summation over the elements in the ceramic
part where the maximum principal stress is
positive,

a; : moving distance of the i- th node which locates
on the boundary to be optlmlzqd.

2.4 Iterative procedure

Since the objective function W* given by Eq. (6) is a
highly nonlinear function in terms of g; and 2, its
stationarity conditions, i.e.

OW*/da; =0, OW*8/2 =0 (8)

also become nonlinear, it is impossible to solve these

equations in a single step. Thus, the optimum solution

is sought through an iterative procedure.

proximate values obtained after the (n)th iteration are

denoted by a7 and 2", these are corrected by 4a; and

42 in the (n--1)th iteration to get new approximations
a'*' and 2", such that,

@t = @it da,, =244 ©)

Considering the objective function W* as a function of
da; and 42, it can be expanded in Taylor series. If
the terms higher than the second order terms in 4a;
and 42 are neglected, the objective function W* is

reduced to,

W*(da;, 42) = W}, 1)+ Wi¥(da;, 42)

+ W¥(da;, 42) (10)

where, W¥, W¥ and W¥ represent the constant, the
first order and the second order terms in 4a; and 42,
respectively, i.e.

W§ = W¥ai, 2)

wi = — sa,—22L s, a2{L—aLy)
da, da,
— Y & 00y, ;OLy,
0g do; Oa, da,
— A2 {L—aLy}

If the ap- -
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da,
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+> 2 af (dg, >( aj;;a )]Aapdaq
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2
—i 6L da,da, —42—4da,
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The derivatives of fand g are given by,

0
=t
e
9g; -
o
agiagj
dg

dg; __ ~,,,(_V_f) (_U_)
do; %0

9o
m—2?
42% — __m(m_])(_V_f,><_aL)
do 0012 Oo1

The above objective function, which is expanded in the
Taylor series up to the second order terms, cam be
rewritten in the following matrix form.

o=ad 7]

W*(da,, 42) = W¥(a",

L{Aai}T | Kaa Kab { Aak} (1 1)
2 W42 K, K, (42
Using the stationarity condition, such that,

OW*|dda, =0, OW*[8d2 =0 12)

a set of linear algebraic equations in terms of 4a;, 42
are derived.

‘Kaa Kab {Aai} —_— {Fa} (]q)
‘Kba Kbb ! 42 Fb

By solving the above equation, 4a;, 42 are determined
and the new approximate solution a}*!, 2**' can be
obtained from Eq. (9). Further, the optimum solution
for the given arc length aL; can be obtained by repeating

“the same procedure until the convergence is reached.

2.5 Optimality of the solution

The formulation and the optimization procedure is
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shown in the preceding section. In this section, the
optimality and the meaning of the solution is examined.

In general, optimum solution is the solution whcih
minimizes the objective function among all the possible
alternatives which satisfy the given constraint condi-
tions. Thus, for the optimality in the strict sense, the
objective function must be defined in such a way that
any subjective or ambiguous element is excluded. Also,
the solution must be searched among all the possible
alternatives.

In this section, objectivity of the objective functions
which are used in the last? and the present reports are
examined. The objective function proposed in the
previous paper is shown in the following.

W*a;, 2) = ]2 Aj{wj(ai)}z_'{{L(ai)_aLO} (14)

where,
w; = 0;—0, if o0;>0, \
W‘j == 0 lf U'Jé 1)

The above function W* represents the weighted square
sum of w;=0;—a, which is the stress exceeding the
given objective allowable stress o,. Considering that
this- type of objective function involves o, and 4; as
rather arbitrary given constants and the physical mean-
ing of the square sum of w; is ambiguous, it can not be
fully acceptable as a proper objective function.

In contrast to this, the objective function proposed in
this report possesses clear physical meaning and it
represents the failure probability. Further, the Weibull
parameters o, and m, involved in the failure pro-
bability can be determined as material constants through
experiment. Therefore, the function given by Eq. (6)
can be considered as an objective measure of optimality
and the optimum solution obtained based on it has a
generally acceptable meaning.

3. Example of Shape Optimization

3.1 Example model

Numerical results of optimization are presented for
simple example problems. The model for the example
problems is shown in Fig. 2. [t consists of ceramics
(AL, O;) and metal (Cu) parts with the same size. Their
height and the diameter are 10 mm and 20 mm, respec-
tively. It is assumed that the variations of material
constants with temperature can be neglected and the
values at room temperature are used. Table 1 shows

the Young’s moduli, Poison’s ratios and thermal ex-

pansion coefficients for the two materials. The para-
meters of Weibull distribution which determines the
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Fig. 2 Example model and region to be modified.

Table 1 Mechanical properties of materials.

Al20s Cu
Young's modulus (GPa)| 370 130
Poisson's ratio 0.25 0.3
Thermal expansion coef. (1/K}| 7.9X107°| 17.7X107°

1 —
21072k
=
3
g]o-u_ f‘ T T
g Og1 = 500 MPa T
=
5 ML 0] 2

10-6F l

r
rrT
c
0 55 1.0

Stress c/crOl

Fig. 3 Failure probability of ceramic cylinder under uniform
tension.

failure probability of the ceramic part, are assumed
to be,

o6y = 500 MPu, m; =15

The above assumed values are not measured ones.
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They are arbitrarily assumed fictitious values. The
failure probability of a cylindrical specimen made of
such material under uniform tensile load is plotted
against the applied stress o in Fig. 3. The size of the
specimen is same as the above example. Its radius
and height are same and assumed to be 10 mm.

3.2 Condition of optimization

The shapes are optimized under the conditions which
are given as the combination of the following loading
conditions and the constraint conditions on the part
of the boundary to be modified.
loading condition

(1) uniform tensile stress of 100 MPa is acting as an

external load

(2) thermal stress due to temperature drop by 100°C

(3) both (1) and (2) are acting simultaneously
boundary to be modified

(1) side surface of the metal part 2 mm from the

interface (A-B in Fig. 2)
(2) part of the interface 2 mm from the edge (A-C
in Fig. 2)
arc length: L

L = 1.005 Ly~1.10 L,

3.3 Procedure of optimization

The procedure of optimization is shown using the
problem under the uniform tensile force. The applied
stress is 100 MPa and the side surface of the metal is
optimized in this case. The distribution of the largest
principal stress for the original shape is shown in Fig.4.
the maximum stress in the ceramics part occurs at the
point P on the edge of the interface and its value o,
is 165 MPa. The failure probability of the joint P,
is 3.07x1077. As it was mentioned earlier, the op-
timum shape is obtained through iteration based on
linealized approximation. Hence, it is necessary to
give a set of proper initial values. The following values
are used as initial values.

a; =0, 2=+410
As the first case, the shape is optimized for a=1.005.
Then, this optimum solution is used as the initial value
for the case in which @=1.01. The optimum shapes
for larger values of the arc length factor (¢ =1.02, 1.05,
1.10) are computed successively in the same manner.
The optimized shapes and the failure probability
after optimization are shown for different values of arc
length factor in Fig. 5. In case of this example, con-
cave shapes are obtained as optimum shape when
positive value is chosen as the initial value of 2 and
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Fig. 4 Distribution of the largest principal stress in the original
model under uniform external load.

Failure probability

L | L J
1.1 1.05 1.0 1.05 1.1

Fig. 5 Optimum shapes and the failure probability under
uniform external load.

convex shapes are obtained viceversa. Wheu the opti-
mum shape is concave, converged solution is obtained
reregardless of the value of the arc length factor . On
the hand, fully converged solution is not obtained if
the shape is convex and « is larger than 1.02. Such
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cases for which the convergence is not reached are
shown by open circles and those for which converged

- 200

convex shape concave shape

(MPa)

150

Maximum stress

L 1
1.1 1.05 1

2o

Fig. 6 Variation of the maximum stress in ceramics under
external load with arc length factor.

100 MPa

omax=]23

//‘O\(:

Fig. 7 Distribution of the largest principal stress in the opti-
mum shape under uniform external load (a=1.10).

Transactions of JWRI

76

Vol. 19 No. 2 1990

solution is obtained are shown by solid circles in Fig.5.
It can be seen from Fig. 5 that the failure probability
decreases with the increase of arc length factor when
the shape is concave. The failure probability becomes
1.46 x 1077 which is about the half of the failure pro-
bability before optimization. On the contrary, when
the shape is convex, it rapidly increases with the arc
length factor.

For reference, the relation between the maximum
tensile stress in ceramic part o,,,, and the arc length
factor « is shown in Fig. 6. The maximum stress is
roughly reduced by 259 when shape is concave and
a=1.10. The distribution of the largest principal
stress for the same case is shown in Fig. 7. Comparing
Figs. 4 and 7, it can be seen that the location of the point
where the maximum stress exists moves away from the
interface and the stress at the edge of the interface is
relaxed.

3.4 Loading condition and optimum shape

In the preceding section, optimum shapes are com-
puted for the case in which uniform external load is
applied and it is shown that the stress is reduced when
the shape is concave and the ratio of reduction in-
creases with the arc length factor @. In other words, it
decreases with the depth of the notch. However, it is
expected that the optimum shape changes with the
loading condition. To investigate the effect of the
loading condition, shapes are optimized under different
loading conditions. Two loading conditions, namely,
the cases in which thermal load due to the temperature
drop by 100°C is acting and both thermal and external
loads are acting simultaneously, are considered. For
the case under the thermal load, the distribution of the
largest principal stress before the optimization is shown
in Fig. 8. The maximum tensile stress d,,, in the
ceramics part occurs at point P and its value is 324
MPa. The failure probability P in this case is 3.31X
10~%. The results of the optimization are shown in
Fig. 9 and 10. Unlike the case under external load,
the failure probability reduces ‘when the shape is
convex. When the shape is concave, fully converged
solution is obtained only for «=1.08 and the failure
probability is decreased compared to the original shape.
Such characteristics are also observed in the optimiza-
tion based on the objective function given by Eq. (14)
which is discussed in the previous paper?®.

When both the thermal and external loads are acting,
the distribution of the maximum principal stress for the
original shape is computed and shown in Fig. 11. The
maximum stress in the ceramic part and the failure
probability are o,,,,=479 MPa and P;=0.21 respec-



Shape Optimization of Ceramics/Metal Joint Based on Reliability

Fig. 8 Distribution of the largest principal stress in the origi-
nal model under thermal load.

1073

Illl

a=1.10
1.05
1.02

T
—

.05

Failure probability

Fig. 9 Optimum shapes and the failure probability under
thermal load.

tively. The results of the optimization are shown for
optimum shapes and failure probabilities in Fig. 12.
Similarly, the relation between the arc length factor a
and the maximum stress o, is shown in Fig. 13. It
can be seen that only concave shape is effective to reduce
the failure probability when both thermal and external
loads are acting. The failure probability and the
maximum stress when a=1.10 are P,=3.23x 1073 and
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Fig. 10 Variation of the maximum stress in ceramics under
thermal load with arc length factor.
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Fig. 11 Distribution of the largest principal stress in the
original model under combined load.

0,..=2310 MPa, respectively. The distribution of the
maximum principal stress for the same case is shown in
Fig. 14. It is seen that the high stress region in the
ceramic part shifts about 1 mm away from the interface.

3.5 Part of the optimization and its influence

Considering the machinability, the side of the metal
part was chosen to be modified and the effectiveness of
the shape optimization was discussed in the preceding
sections. To clarify the effect of the location to be
modified, the interface between ceramic and metal parts
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Fig. 12 Optimum shapes and the failure probability under
combined load.

convex shape 500 concave shape
©
G,
=
a
@ 400"
® :
4+
[%)
£
3
E
; \.
£ 300
~
L 1 ! |
1.1 1.05 1.0 1.05 1.1

Fig. 13 Variation of the maximum stress in ceramics under
combined load with arc length factor.

is chosen as the part to be optimized. It is assumed
that the thermal and the external loads are acting
simultaneously in this case. The results of the optimi-
zation are shown in Figs. 15 and 16. The failure pro-
bability is reduced when the shape of the ceramic part
at the interface is convex. On the contrary, if its shape
is concave, the failure probability increases and also
the obtained optimum shapes are not smooth.

Comparing these results with those for the cases in
which the side surface of the metal part is modified, it
can be seen that it is more effective to control the shape
of the metal part than to control that of the interface.
This conclusion agrees also with the numercal resuits
obtained by the optimization in which the stress exce-
eding the allowable limit is minimized®.
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120

Fig. 14 Distribution of the largest principal stress in the
optimum shape under combined load (¢=1.10).

Failure probability

0.05

Fig. 15 Optimum interface shapes and the failure probability
under combined load.

4. Conclusion

A shape optimization technique based on reliability
is proposed as one of the means to reduce the failure
probability of ceramics/metal joints. The mathema-
tical formulations and the details of the computational
procedures are presented in this report. Further, its
effectiveness was demonstrated through simple numeri-
cal examples and it was shown that the shape optimiza-
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Fig. 16 Variation of the maximum stress in ceramics under
combined load when the interface is modified.

tion can be an useful tool in designing ceramics/metal
joints. Also, it is shown that the optimum shapes
obtained based on the reliability show the same tendency
as those reported in the previous report? for which
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magnitude of the stress is directly used as the objective
function. '
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