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Abstract

Following a suggestion made by J.-P. Demailly, for e&ch 1, we endow, by
an induction process, thie-th (anti)tautological line bundl&y, (1) of an arbitrary
complex directed manifoldX, V) with a natural smooth Hermitian metric. Then, we
compute recursively the Chern curvature form for this metend we show that it
depends (asymptotically—in a sense to be specified latdy)anthe curvature oV
and on the structure of the fibratiot — X. When X is a surface an&/ = Ty, we
give explicit formulae to write down the above curvature apraduct of matrices.
As an application, we obtain a new proof of the existence obal invariant jet
differentials vanishing on an ample divisor, f&r a minimal surface of general type
whose Chern classes satisfy certain inequalities, withusirng a strong vanishing
theorem [1] of Bogomolov.
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1. Introduction

In [7], Green and Griffiths showed, among other things, thaXiis an algebraic
surface of general type, then there exist> k > 1, such thatH(X, J mT*X) # 0,
where Jik mT*X is the bundle of jet differentials of orddr and degrean. Their proof
relies on an asymptotic computation of the Euler charasttery (JxmT *X) (which has
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1020 S. DIVERIO

been possible thanks to the full knowledge of the compasitieries of this bundle)
together with a powerful vanishing theorem of Bogomolov. [1]

More precisely, ifX is ann-dimensional smooth projective variety, affdmT*X —
X is the bundle of jet differentials of orddr and weighted degrem, they get the fol-
lowing asymptotic estimate for the holomorphic Euler clhtgestic:

mk+Dn-1
(K)"((k+ Dn — 1)!

x ((_n? c1(X)"(log k)" + O((log k)”1)> +O(mikrin=2),

X(jk,mT;(k) =

In particular, if X is a surface of general type, then the Bogomolov vanishiegrém
applies and, having cancelled thé term by Serre’s duality, they get a positive lower
bound forh®(X, JimTs) whenm > k > 1.

Nowadays, there are no general results about the existdnglmal invariant jet
differentials on a surface of general type neither, of ceur®r varieties of general
type in arbitrary dimension.

Nevertheless, thanks to a beautiful and relatively simpigi@ent of Demailly [4],
their existence should potentially lead to solve the foltayvcelebrated conjecture.

Conjecture (Green and Griffiths [7], Lang). Let X be an algebraic variety of gen-
eral type Then there exist a proper algebraic sub-varietyCY X such that every non-
constant holomorphic entire curve: fC — X, has image {C) contained in Y

A positive answer to this conjecture in dimension 2 has bdeengby McQuillan
in [8], when the second Segre numhi(X)? —c(X) of X is positive (this hypothesis
ensures the existence of an algebraic (multi)foliationXanwhose parabolic leaves are
shown to be algebraically degenerate: this is the very deeb difficult part of the

proof).

1.1. Main ideas and statement of the results. Let (X, V) be a complex directed
manifold (for precise definitions see next section) with &m n and 2<rankV =r <n.
Let w be a Hermitian metric ov. Such a metric naturally induces a smooth Hermitian
metric on the tautological line bund®x(—1) on the projectivized bundle of line &f.

Now, the Chern curvature of its duél;(1), is a (1, 1)-form onX whose restric-
tion to the fiber over a poink € X coincides with the Fubini-Study metric d? (V)
with respect tow|y,. Thus, it is positive in the fibers direction. Next, considbe
pullback 7*w on X: this is a (1, 1)-form which is zero in the fibers direction amd
course, positive in the base direction.

If X is compact so isX and hence, for alk > 0 small enough, the restriction to
V of the (1, 1)-form given by

T w + £20(0%(1))
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gives rise to a Hermitian metric od. Moreover, this metric depends on two deriva-
tives of the metricw.

Of course, we can repeat this process for the compact direntmifold (X, V),
and by induction, for eack > 1 for the tower of projectivized bundleX, k). A pri-
ori, the Hermitian metric we obtain in this fashion @, (—1), depends onKderiva-
tives of the starting metrie and on the choice 0of® = (g1, ..., g_1).

However, from a philosophical point of view, we would like &void the depen-
dence on the lastk2- 2 derivatives ofw, since the relevant geometrical data rlies
in the first two derivatives ofo, namely on its Chern curvature. Here comes Demailly’s
suggestion: as® has to be small enough, it is quite natural to look for an asymp
totic expression of the Chern curvature of the metricdg (—1) we have constructed,
when ¢® tends to zero: this idea is developed in our first theorem.

Theorem 1.1. The vector bundle ycan be endowed inductively with a smooth
Hermitian metric

(,()(k) = (]'[Ifa)(kil) + 8§®(Oxk (1)))|Vk’

where the metric oy, (1) is induced byw®~, depending on k-1 positive real num-
berse® = (g1, ..., exk_1), such that the asymptotic of its Chern curvature with respect
to this metric depends only on the curvature of V and on (théversa) structure of
the fibration % — X, as«® — 0.

As a byproduct of the proof of the above theorem, we also phtaiuction for-
mulae for an explicit expression of the curvature in termghef curvature coefficients
of V. These formulae, which are quite difficult to handle in higliémension, are
reasonably simple foX a smooth surface: in this case, it turns out that the curgatur
coefficients ofOx,(—1) are given by a sequence of products ok 2 real matrices.

A general remark in analytic geometry is that the existenicglabal sections of
a Hermitian line bundle is strictly correlated with the pody properties of its Chern
curvature form. One of the countless correlations, is gikgrithe theory of Demailly’s
holomorphic Morse inequalities [2]. We summarize his maisutehere below.

1.1.1. Holomorphic Morse inequalities. Let X be a compact Kéhler manifold
of dimensionn, E a holomorphic vector bundle of rankandL a line bundle oveiX.
If L is equipped with a smooth metric of curvature fofiL), we define theg-index
set of L to be the open subset
io(L) has Y negative elgenvalueselg

X(@, L) = {X € X n — q positive eigenvalu
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for g =0,...,n. HenceX admits a partitionX = A U U2=o X(q, L), whereA ={x €
X | det(®(L)) = 0} is the degeneracy set. We also introduce

q
X(<q, L) €[ X3, L).
j=0

It was shown by Demailly in [2], that the partial alternatiagms of the dimension of
the cohomology groups of tensor powers lofwith values in E satisy the following
asymptoticstrong Morse inequalitiegas k — +oo:

n

d . k i n
— ®k n—1
> (—1Ihi(X, L* @ E) < e /X(fq’L)(—1)Q<—2 ®(L)> +O(k™Dy.

j=0

In particular, if

i n
/xm, (#W =0

then some high power dof twisted by E has a (many, in fact) nonzero section.

The idea is now to apply holomorphic Morse inequalities to #mi-tautological
line bundle Ox, (1) together with the asymptotic Hermitian metric constedcabove,
to find global sections of invariarit-jet differentials on a surfac&X: we shall deal
with the absolute cas¥ = Tyx. Our first geometrical hypothesis is to supposeo be
Kéhler-Einstein, that is with ample canonical bundle. Nth&less, standard arguments
coming from the theory of Monge-Ampeére equations, will shdwattwe just need to
assumeX to be minimal and of general type, thatkss big and numerically effective.
Finally, once sections are found, we can drop the hypothefsigefness, since the di-
mension of the space of global section of jet differentiglaibirational invariant (see,
for instance, [7] and [3]).

For eachk > 1, in R* define the closed convex corg = {a = (a,..., a) €
R* | g > er:jﬂa; forall j=1,...,k—1 anda > 0}. For X a smooth compact
surface, set

Ox, (8)*? = Fx(8)ca(X)” — Gk (@) ca(X)
(see next section for the definition of the weighted line ber@x, (a)) and

Fx(a)

my = ~ /!
aeN\ Tk Gk(a)

where Xy is the zero locus o65. Finally, callm,, the supremum of the sequengay}.
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Theorem 1.2. Notations as abovethe two following facts can occurither
e there exists ad=> 1 such that for every surface X of general ty@@x, (1) is big,
or
o the sequencémy} is positive non-decreasing and for X a surface of generat,typ
there exists a positive integer k such ti@g, (1) is big as soon as g > c(X)/c1(X)?,
where X is the minimal model of X

As a corollary, we obtain the existence of low order jet défatials, forX a min-
imal surface of general type whose Chern classes satisfgicanequalities. This will
be done in§7.2.1.

2. Projectivized jet bundles

Let (X, V) be a complex directed manifold, that is a pair consisting ismooth
complex manifoldX and a holomorphic (non necessarily integrable) subbukdte Tx
of the tangent bundle. SeX = P(V). Here, P(V) is the projectivized bundle of lines
of V and there is a natural projection X — X; moreover, if dimX = n, then dimX =
n+r —1, if rankV =r. On X, we consider the tautological line bundigg(—1) C 7*V
which is defined fiberwise as

def
Oz (=D = Co,

for (x, [v]) € X, with x € X andv € V, \ {0}. Next, setV = z;10g(—1), where
.. Tgx — n*Tx is the differential of the projection: this is a holomorplsabbundle
of Ty of rankr, so that we obtain in this way a new directed manifolt] §/).

Now, we start the inductive process in the directed manif@tegory by setting

(Xo, Vo) = (X, V), (Xu, Vi) = (X1, Vi)

In other words, Kk, V) is obtained from X, V) by iteratingk times the projectiviza-
tion construction X, V) — (X, V) described above.

In this process, the rank ofy remains constantly equal towhile the dimension
of Xy growths linearly withk: dim Xy = n+k(r — 1). Let us callmg: Xk — Xg_1
the natural projection. Then we have, as before, a taudbdine bundleOx, (—1) C
7y Vik_1 over Xg which fits into short exact sequences

(77K

@) 0= Tx/xr = Vk = Ox (-1) > 0
and
) 0— Ox, = m Vi1 ® Ox, (1) = Ty, = 0,

where Ty, /x, , = ker@ry). is the relative tangent bundle.
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More generally, ifa=(ay, ..., a) € ZX is a weight, we can form the line bundle
Ox,(a) by setting

k
Ox(a) = Q) 77 Ox, (@).
=1

We shall see later how, for appropriate choicesapbne can obtain relatively positive
line bundlesOx, (a) which, moreover, admit a non-trivial morphism @y, (ag + - - - +
a) (for the last assertion see for example [3]). In partiqusections ofOx, (a) for a
suitable choice of give rise to sections 0Dy, (m) for some largem.

3. From (X,V) to (X,V)

Let (X,V) be a compact directed manifold of complex dimensioand rank/ =r.
In this section, given a Hermitian metrie on V, we construct a (family of) metric
on V depending on a “small” positive constant and we compute the curvature of
with respect to this metric, letting tend to zero.

So, fix a Hermitian metrieo on V, a pointxg € X and a unit vectowg € V, with
respect taw. Then there exist coordinates,{..., z,) centered aky and a holomorphic
normal local frameey, ..., & for V such thate (Xo) = vo and

n
(e, eu) =8 — Z CikanZjZk + O(|Z|3)
i k=1

Remark that, a3/ is a holomorphic subbundle of the holomorphic tangent spsHce
X, then there exists a holomorphic matrig;(2)) such thate, (2) = Y\, 6i,.(2)3/97.
Moreover, the Chern curvature & of V is expressed by

n r

OV)x, = Z Z Cikau de ANdZ ® ej R €.
j.k=12,pn=1

Now consider the projectivized bundie: P(V) = X — X of lines in V: its points can
be seen as pairx([v]) wherex € X, v € V\ {0} and p] = Cv. In a neighborhood of
(o, [vo]) € X we have local holomorphic coordinates given ly&, . . ., &_1) where
& corresponds to the directiogp1(2) +-- - +& 16 1(2) +&(2)] in V..

On X we have a tautological line bund@g(—1) c 7*V such that the fiber over
(X, [v]) is simply [v]: then Og(—1) C #*V inherits a metric fronV in such a way that
its local non vanishing section(z, &) = &1e1(2) + - - - + & _16_1(2) + & (2) has squared
length

2 _ 2 Z = Zi
2 =1+1E7 = Y CionZiBEE, — ) CilrZiZd

jo KA, ik

- Z Cikr uZjZk&, — Z Cikrr ZjZk + O(|2]?).

jokop ik
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So we have

nE=> & dE, — > CianziZ& dE,
"

Jka,p
— Y Cikr 2j Az + O((|2l + [£1)%d 2| + |2I7(dE]),
ik
A=Y & d& — D Canzizé, d&
A j KA1

— Y Cikn Zcdz; + O((|2l + [£1)%d 2| + |2I7(dE]),
j.k
n
38|77|L20 = Z d&, A d%')h — Z Cjkkuzjzk d&, A déﬂ — Z Cikrr dZJ' A dz
A ILaan j,k=1

+0((1z] + 1&])ldZ% + |z| |2 |d&| + (12| + |£])3|d& ),

where all the summations here are taken wjitk =1,...,nandA, pn=1,...,r — 1.
We remark that inside th®'s there are hidden terms which are useless for our further
computations. We finally obtain

_ 1 _ 1 —
O(0x(1)) =33 log |n|2 = —Wami ABIn|2 + Waami

= Z(—Su% — > Cikuzi %
A

j.k
+ SA;L <1 - |£f|2 + Z Cikrr ijk))> dfx N dgu
i,k
— Z Cikrr de A de
j.k
+0O((Izl + £])ldZ® + |z| |dZ| [d&] + (12] + |£])°|dEI?).
So we get in particular

r-1 n
OO WMo ivod = Y d&x AdE, = D Cjiar dz; A dZ,
=1 i k=1
which shows the well known fact that

OO (W ta) = | @ 125 — Oy x, (@ ®p, ® @ vp),

where FS denotes the Fubini-Study metric along the vertaxagent space ker, and
v x, IS the natural Hermitian form oiix ® V corresponding ta®(V), at the pointxo.
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Now consider the rank holomorphic subbundI& of Tx whose fiber over a point
(x, [v]) is given by

\7(x,[v]) ={r € Tg | m«t € Cuv}.

To start with, let's consider the holomorphic local frame \6fgiven by 3/0&1, . . .,
a/0& 1, 1, where

n r—-1
iz €)= (gir @+ gm(z)sx> %
A=1

i=1

so thaty formally is equal ton but here, with a slight abuse of notations, th&z
are regarded as tangent vector fieldsXo(so, 17 actually means a lifting of; from
Ox(-1) Cc n*V C n*Tx to Tg, which admitsz*Tx as a quotient). For all sufficiently
small ¢ > 0 we get an Hermitian metric ok by restricting, = 7*w + £20(0x(1))
to V; at the point Ko, [vo]) = (0, 0) with this choice of local coordinates, we have

3. )= L) ooz o)
8%_)\ 3%‘# ag}» 8%_/4 ag}n 3§/L
B

=0

= 8)\;1,82:

(0N (D Canf P -
‘“8(@' ”) =7 “’(@' ”) ”2®(OX‘1”(aa' ")
— e’

=0
=0, since®(Ox(1))xo o) (3/061, /02) =0,

and

(71, 17) = 7 (7, ) + £2O(O% (1))@, 7)
=[1(0, 0)Z + O(¢?) = 1 + O(?).

We now renormalize this local frame of by setting

190 1 9
fr=-——rr..., o1 =——, f, =C.7,
1 ¢ 08, r—1 £ 0 1 r el]
where
1
Ce=——==1+0(e).

V. (1, )
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Then (f;) is unitary at &, [vg]) with respect tow; and we have

(Z)a(f)u f,u)

—£uE, — ) CianZiZk + 61 <1 — £+ Cjiar 217k>,
ik ik
if 1<aiwp<r-—1,
0, if 1<i<r—1 and w=r or 1<pu<r-1 and r=r,
|17|3), if A=u=r,

modulo e and terms of order three inand&.
Next, we compute the curvature

ntr—=1 r

OMolia) = Y Y Vikuu 47 A dZ® £ ® f,
j,k=1 A,u=1

for ¢ — 0, where we have set,.; = &,. Recall that for a Hermitian vector bundle
E — Y, given a holomorphic trivialization, the curvature operaat a point O Y is
given by

®(E)o = a(H "aH)(0) = @ H )(0) A (#H)(0) + H(0)@3H)(0),

where H is the Hermitian matrix of Hermitian products between thenents of the
local frame. If the local holomorphic frame is unitary in @ that H(0) = Id, observ-

ing that 0 =3(H "H) = (@ H ")(0)H(0) + H"(0)(@ H)(0), we obtain
(3) O(E)o = —d H(0) A aH(0) +3aH(0).

Thus, in our case, it suffices to compute the part with secandvatives in (3) to get
the following proposition.

Proposition 3.1. Notations as giventhe Chern curvature o¥/ has the following
expression

r-1 n
6(\7) = Z (déu A dEA + Z Cikan de N dik

A=l jk=1

r-1 n
%) + 80 (Z dg, AdE, — ) Cjr dzj A dzk)> ® ' ® f,

v=1 j k=1
r—-1

n
+ <Z Cjirr dzj A dZ — Zdz}v Ad§U> ® f*® fr + O(e).

jk=1 v=1
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In particular, we get the following identities moduko

Cikip — SauCikrr, If 1<j,k<n and 1<i,pu<r-1,
Vikin = ) 0audik + 8¢ —nyudk-—n,
if n+l1<j,k<n+r—-1 and 1<i,pu=<r-1,

) _ ) Cjkrr» if 1§j,k§n,
VIRm =121, if n<j=k<n+r -1,

the remaining coefficients being zero

4. A special choice of coordinates and local frames

We now pass to the tower of projective bundle (Vi) over (X, V). We recall
that we simply setX, V) = (Xo, Vo) and, for all integetk > 0, (X, Vi) = (Xk_1, Vi_1)
together with the projectiomy_1x: Xk — Xk_1 SO that the total fibration is given by
ok = 70,101,200 TTk-1k- Xk = X.

For all k, we also have a tautological line bundi®y, (—1) and a metrico® =
o®(eq, ..., &) on Vi, with theg’s positive and small enough, obtained recursively by
settingw® = (n;_llkw(k—l) +e20(0x, (1)) |vk’

To start with, fix a pointxy € X, a w-unitary vectorvyg € V and a holomorphic
local normal frame(ego)) for (V, w) such thate (Xo) = vo.

00 = .

First step. On X3, we have local holomorphic coordinates centeredxat [(o])
given by ¢, ™) where, ¢,£) - [P+ - +£1,6% (2 +e9(2)] € P(V,). Recall
that we have, as before, a “natural” local sectipnof Ox,(—1) given by

mz e =ePe@+- - +&Me 12 +e(2)

and for alle; > 0 small enough, a holomorphic local frar(1é,\(1)) for V1 near o, [vo])
which is aw®-unitary basis forVy, p,)-

Now, choose aw®-unitary vectorvy € Vi, ) and a holomorphic local normal
frame (egl)) for V; such thate®(xo, [vo]) = v1. Then there exist a unitany x r matrix
U = (aﬁf) such that at X, [vg]) we have

r
1) 1) (1
(0= 3 el
=1

So, if we call respectively/iglk)u and c,(jliu the coefficients of curvature of; at (Xo, [vo])

with respect to the basigf”) and (e{”) we have

r
@ — 1) A(D)AQD)
Gijon = Z Viiap@iaHup:
«,B=1
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withi, j=1,...,n+(r —=21)andr, u=1,...,r

General step. For the general case, suppose forell..., ek 1 > 0 small enough
we have built a system of holomorphic coordinatess(V, . .., &) for X,_; and a
holomorphic local normal framéel ) for (Vi1, o), k > 2, such thae*D(xo,
[va], - .., [vke 2]) = vk_1 Wherewv_; is aa)(k . umtary vector Vi1 vg],... [0z - OUF

U1 = (@) such that
f(k 1 _ Za(k Dk

Then, we put holomorphic local coordinates @, ..., é®) on X, centered at the
point (Xo, [vol, - . ., [vk_1]) where

(z, 5(1)' o g(k)) . [Sl(k)e(lkfl)(z, o S(kfl)) ot S(k) (k— 1)(Z . S(kfl))
+ef Dz .. )] € P(Vicag, euey)

and also

k) (k-1 — (3 k-1 _
m(z D, £9) =Ml Ve, gt b g Mg, gY)
re V... 50Y)
is a local nonzero section @y, (—1).
As we have already done, if we call
(k) _ l 8
P e
£ = cOf,
Ek ks

A=1,...,r =1,

whereC® = 1/,/wM(fy, 7i) = 1 +O(ey), then (f 1) is a local holomorphic frame for
Vi, unitary at &o, [vo], ..., [vk-1]). We now fix ao®-unitary vectorvk € Vi vg].....[we)
and choose a holomorphic local normal fran@)({‘) for (Vi ©®) such thatel® (xo,
[va], .., [vk_1]) = vk and ar xr unitary matrixU —( ) such thatf® =3 _ 1a,(\'2 e,
So, if we call respecnvele(lgu and cg';),w the coefficients of curvature df at

(Xo» [vo), - - -, [vk—1]) with respect to the basiéf,\(k)) and (eﬁk)) we have

c® § : () 75K
(5) IJ)\M yl]aﬂa)«x up?
«o,f=1

with i, j=1,...,n+k(r —1) andi, pu=1,...,r
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5. Curvature of Ox, (1) and proof of Theorem 1.1

We now use (4) and (5) to get the induction formulae to deriveexpression for
the curvature of0x, (1), whene® = (g1, ..., ex_1) tends to zero.
We start by observing that (4) shows hoy?), depends ortiy, . we rewrite here

the dependence modukq:

(6)
s _
Ijku
]/(S) _ if 1<i,j<n+(s—-1)(-1) and 1<A,pu <r-1,
AL 81k + 8 —n—(s— 1) ~1)b(j -n—(s- D) i
if i,j>n+(s—-0F—-1)+1,i,j<n+s(r—1) and 1<i,pu=<r-1,
© _ M i 1<i,j<n+(s—1)( 1),

— ) Sijrr

Yirr Z121, if n+(s—1)(F —1)+1<i=] <n+s(r—1),

the remaining coefficients being zero. Recall also that, )y (

(S) (s) (9 (S)
G = Z Vijap@raBup-
o, =1

Now, we have

n+(k—1)(r—1)

K
™ BOx D)oo fvch . 61D = de(k) - Y ckMdaadg,

A=1 ij=1

where we have Sseth.s_1y¢—1)s = f;‘,{s), A=1,...,r =1, and to get the expression of
this curvature with respect to the coefficients of curvatofeV/ it suffices to perform
the recursive substitutions (5) and (6) and to stop w}&u = Gijau-

Thus, Theorem 1.1 is proved.

5.1. The case of surfaces.In the case rank = dim X = 2, we have a nice
matrix representation of these formulae. First of all, nibi@ in this case the identities
(6) become much simpler:

q(jslll)_cl(fzzl)v if 1<i,j<s+1,

y. =
L) 2, if i=j=s+2,

© e i 1<i,j s+,
-1, if i=j=s+2.
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Now, for eachs > 1, let vs = 1f(s) + vzf(s), with |v1|2 +[v2|2 = 1. Then we have

a® = 7! andal) = 72 and so, for instancel = —v2 and al) = v! would work. It
follows that

(s) ®) 1,212 4,08 112 (s) ®) 112 4 (8 22)2

Cij11 = Yij11lvs|® + %2005l Cij22 = ¥ij11l V517 ¥ij20lvs 1™

So, if we set
22 1,2
_ [ lvsl® lvg]
Iv;fl2 Ivszl2

R;-T Ry T---- R -T-C, if 1<i,j<2,

we have that

Ci(js)— 1 ) .
Re-T-Rea T -Ra-T-( 7 ), if 3<i=j<s+2

and we are interested in the second element of the vélﬂ‘ﬁr”: in fact, in the surface
absolute case, formula (7) can be rewritten in the form

k+1
(K _ . —(s—
@(Oxk(l)) =d$(k) /\dg( ) _ § :Cgkgzl) d.‘;:(s Z)Adg(s 2)
s=3

©)

2
k1 -
Z cl%) dz A dzj.

ij=1

We shall see in the next sections how this explicit formulae be use to compute
Morse-type integrals, in order to obtain the existence ofzeom global section of the
bundle of invariant jet differentials.

6. Holomorphic Morse inequalities for jets

Let X be a smooth surface and = Tx. From now on we will suppose thdty is
ample, so that we can take as a metricXnhe Kahler-Einstein one, and we will work
always modulogk (this will be possible thanks to Lebesgue’s dominated cayemce
theorem).

6.1. The Kahler-Einstein assumption. So, let Ky be ample. Then we have a
unique Hermitian metrieo on Ty, such that Riccip) = —» and, for this metric,

7.[2
wum:7@m>q
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where

2
def @
Vol,(X) € | =,
¥ 2!

Now, consider the two Hermitian matricesj{1) and €ij22). The Kéhler-Einstein as-
sumption implies that

(Gij11) + (Gij22) = (—=6j)

and so they are simultaneously diagonalizable. Let
A0
0 u

A+ =Cr111+ Co211= Cr111+ Cr10=—1

be a diagonal form fordji1). Then

thanks to the Kéhler symmetries. If the eigenvaluesogbd) are A, u’ then A’ + A =
w+u =—1, thus a diagonal form forc{ ) is

w O

0 A)
As a consequence, far, 8 € C, the eigenvalues of the matrix(cij11) + B(Gij22) are
ai+Bu andau + BA and so

det(Ciji1) + B(Cij22)) = (@A + Bu)(ap + BA)
= af(A® + %) + (e + B7)

9
© = aBl(r +pu)? — 2.u] + Au(a® + B7)
=af + (e — B)
and
tr(ee(Cij11) + B(Cij22)) = (@A + Bu) + (e + BA)
(10) =(@+B)(+w)

= —(a+p).

For k =1, the curvature ofDx, (1) is simply

2
O(Ox,(1)) =de® A dE® — 3 ¢ dz A dZ,

ij=1
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and so

. 3 . 3
(I—G)(Oxl(l))) = 3!('-) Ddz AdZ A - AdED A dED,
27 27

where we have seb dzp’f)\/x, which is, of course, a functioX; — R. In particular,
i\® —a
/ (—) Ddz AdZ A--- Ade® A dED
X, \ 27

= 3 (%@(oxl(l))f

(c£(X) — (X)),

[

in fact, this integral overX; is just the top self-intersection @h(Ox, (1)), and this is
easily seen to bei(X) — c(X) by means of exact sequences (1) and (2).
Moreover, we have that

. 3 .
| - y =W, (1 |
(E) daAndziA---AdED AdET = no'l(?de) A <5@(0x1(1))),

so that
/ (i—>3dz AZIA - A dED A dEY
N\ 22 | 1
—/ < (Lav,) A (2o
- Xl”o,l 72 ¢ 2 %
1
= Eci(x)
by Fubini.

6.2. A “negative” example: quotients of the ball. Here, we wish to make an
example to clarify why, if we deal with smooth metrics, we @ao use the relatively
nef weighted line bundles introduced above.

Suppose you want to show, using ju8k, (1), the existence of glob#-jet differ-
entials on a surfacX. From our point of view, a good possible “test” case is when
X is a compact unramified quotient of the unit bBY c C?; surfaces which arise in
this way are Kéhler-Einstein, hyperbolic and with ampleaogient bundle: the best
one can hope (these surfaces have even lots of symmetraratiffals).
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So, letB, = {z< C?| |z| < 1} endowed with the Poincaré metric

wp = —'535 log(1— |z?)

i <dz®d2+ [(dz 2)|? >

“2\1-1z2 (1 |zP)?

Consider a compact unramified quotiedt= B,/I" with the quotient metric, saw.
Then, w has constant curvature; in particular, the functibn X; — R we defined in
§6.1 is constant.

This constant can be quite easily directly computed by handsre, we shall
compute it as a very simple application of the celebratedoBugov-Miyaoka-Yau in-
equality cs < 3c, for surfaces of general type with ample canonical bundleichvisays
moreover that the equality holds if and only if the surface iquotient of the balB,.

Using computations made i§6.1, we have

2\ 3
%(cl(xf — (X)) = (2._) Ddz AdZiA - Ade® A dED
X1 T

S 03

| _ —(1)

=D — ) dzAdzi A A dED A dE
/)(1(271> 1 1 3 3

c1(X)?D,

NI

so that, making the substitution (X)? = 3c,(X), we find D = 2/9.

Now, a somewhat tedious computation of the 1l-index set of comvatures leads
to the following result for the “Morse” integrals faPx, (1) and low values ok, using
the new information aboub.

We have already done this integral K6.1: in this special case it gives
(2/3)c1(X)? > 0 and so the existence of 1-jet differentials.

In this case (the line bundle is no longer relatively nef) wen'tl have the
equality Xz, < 1) = X, and so we have to determine the open ¢4, < 1). This
is an easy matter: using notations §§.1 and setting moreovep;|> =x, 0 < x <1,
one sees from the expression of the curvature that

(X2,§1)2{0<X<§],

since the trace of the “horizontal” part is always positiee k = 2. Then we have

. 4
[ (5-e0cw)
(X2,<1) T
_ i\* 1 2 e
_4!<Z> /(X2]<l)(1—3x)<—§x+§> dzz A ---AdE
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2/3

(Y [ amn Adg® [ 30— 1x+ 2) dx
T 27'[ X1 ! 0 3 9

i\ 2 —a
=4!<Z)/X8—1dzl/\~--/\d§()

8
= 2—7c1(X)2 >0,

where we make the substitution in t§&-complex plane

i @ dxdd
z'—ﬂds@) AdE® s XY

Hence the existence of 2-jet differentials (the optimalemdied result should be
(10/27)c1(X)?, by replacingc,(X) = (1/3)c1(X)? in the expression of the leading term
of the Euler characteristig (E;mTyx) of the bundle of invariant 2-jet differentials on
X, see [3]).

Here the situation becomes much more involved. Several atatipns (which
can be found in our PhD thesis [6]) give

. 5
| 715933
J (5:00x@) =~ 12200650 <.
X3(<1,0xy(1) \ <7 \ ,

~0.37

and so we are not able to check the existence of 3-jet diffeerby this method.
Here are some considerations.

First, the value of the above integrals is, at least in thest ¢ases, decreasing
while morally one should expect an increasing sequence¢istence ofk-jet differ-
entials implies obviously the existence &« 1)-jet differentials).

Second, we suspect that, in fact, this sequence continubs twon-increasing in
general, since going up with, adds more and more regions of negativity along the
fiber direction Ox, (1) is not relatively positive oveiX, for k > 2). Moreover, recall
that we are working here on a quotient of the ball, so that we the most favorable
“horizontal” contribution in terms of positivity: thus, ¢hproblem really relies in the
fibers direction.

From these considerations, we deduce that to get a GredithSrtype result about
asymptotic (onk) existence of section, we are naturally led to study eitherdmooth
relatively nef line case (weighted line bundl€, (a)), or to leave the “smooth world”
and to study singular Hermitian metrics @¥, (1) which reflects the relative base locus
of this bundle.

The rest of this paper will be devoted to the first of these tiff@ient approaches.

6.3. Minimal surfaces of general type. If we relax the hypothesis on the canon-
ical bundle of the surfac&, and we just take it to be big and nef, then our previous
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computation gives the same results.

To see this, it suffices to select an ample cladson X and, for everye > 0,
to solve the “approximate” Kahler-Einstein equation Ri@}i= —w + §O(A) (the exis-
tence of such a metri@ on Tx is a well-known consequence of the theory of Monge-
Ampére equations).

Once we have such a metric we just observe that, with theiontabf this sec-
tion, we haver + u = —1+ O(3), so that

det(Cij11) + B(Cij22)) = aB(1 + O(8)) + Ap(e® — B?)
and

tr(oe(Gij11) + B(Cij22)) = —(a + B)(1 — O(9)).

It is then clear that our integral computation will now havdiral error term which is
in fact a O(§), and thus we obtain the same results, by leténggnd to zero.

7. Proof of Theorem 1.2

In this section we compute explicitly the Chern curvaturehef weighted line bun-
dles Ox, (a) on a surfaceX and we find conditions for them to be relatively positive.
Next, thanks to holomorphic Morse inequalities, we studyabesequences of positive
self-intersection and finally we prove Theorem 1.2.

7.1. Curvature of weighted line bundles. We recall some notations and formu-
lae. Letvs = v} fl(s) +v2 fz(s) € Vs, with [v}]2+ [v2|2 =1 and setxs = [v}[?, 0 < xs < 1.

Then, if
_(1—Xs Xs (1 -1
RS"( Xs 1—xs>' T"(o 1 )
and
Ro-T- - ~Rq-T:<8p’q V""‘), p>=q=>1,
Pra @pg
whereapq, Bpq: Ypq andédpq are functions of X, ..., Xp), we have that, fok > 2,

k-1
—(K _
O(0x, (1) =de® AdEY + (ar15 — 1) dEO A dE
-1
2
+ Z(_lgk—l,lcij 11 — ak-1,1Gij22) dZ A dZ;.
ij=1
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More generally, fora= (ay, ..., &) € Z* (or possiblye R¥), we have

k-1 /k-1
O(Ox, (@ . .. &) = acds® A dg® + Z(Z 81 Y+ as> dz® A dE®

s=1 \ j=s
(11) 2 /k-1
+Z Z—a|+1,3|,1Cij11—a4+101|,10i122 dz Adzj,

i,j=1\1=0

def

=A@, %)
where y, q(Xq, - - -, Xp) dzdap,q — Bp.q (we also set formallyg 1 = fo,1 = 1). Observe
that, for the (2x< 2)-matrix (A;;), we have
k—1 def
[}
tr(Aj) = Z As+1Ws 1, Wpq(Xgs -5 Xp) = &pq+ Bpas
s=0

thanks to the Kahler-Einstein assumption and formula (10).
Now, definedX = 6%(xs, ..., x—1) to be the function given by

k-1
(oo Xd) > 3 Bpaayys + s

j=s
This is thes-th “vertical” eigenvalue of the weighted curvature.

REMARK 7.1. As theGé"s are linear combinations of thg; s's, we have that
they all are of degree one in each variable. Hence they arid mbstriction to each
edge of the cube [0, 1] are harmonic. In particular they attain their minimum on
some vertex of this cube.

In R¥, define the closed convex cone

K
ajzZZa,ijl,...,k—landakzo .

N= [a e RX
I=j+1

We have the following three lemmas.

Lemma 7.1. The function9¥ are positive if(and only if) a € n.
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Proof. First of all, observe that the structure of the fourdiionsay g, Bp.q. Vp.q

andép g (and hencey,q) depends only orp — g. Now, it is immediate to check by
induction that we have the following expression for theq's and thedp 4's:

p
Ypg = — Z @h,q
h=q

and

p
Spa=1—) Bna-
h=q

Next, observe that for al$ > 1,

(1 -1
RS(O)-T—<0 1)

/0 1
r)T=(5 1),

s0 that, ifj > 1 thenyj.1 1(s,0) =y 1(s) andyj.1 (s, 1) = —1—2y; 1(¢)— Y071 Y, 1(e);
moreover,y; 1(0) = 1 andy; 1(1) = 2.

The lemma is clearly true fok =1, so we proceed by induction do We have,
for s> 2,

and

k-1
0K = 05(Xs, ..., X ;@) = as + Z aj+1Yj,s
i=s
k-1
=ag+ Z aj1Yj-sr1,1= 08 *(Xs, . .., Xe_1; D),

j=s

whereb = (a, . . ., &) € R** is again in the correspondinﬁt: it remains then to
show that, for a generdd > 2, the lemma is true fo@'l‘. Recall that, by Remark 7.1,
it suffices to check positivity on the vertices of the cube 1, 1. Let » denote an
arbitrary sequence of 0 and 1 of length- 2: we shall treat the two cases, Q) and

(x, 1) separately. For the first one, we have

k-1
Ok(x, 0;8) =@y + Y ajiayja(+, 0)
i=1
k=2
=+ Z aj+1Yj,1(*) + acYi—1,1(+, 0)
=1



SMOOTH METRICS ONJET BUNDLES 1039

k-2

=ay+ ) ajyja(x) +aYi-2,1(+)
=1
k-3

=ay+ Y Ay a(x) + @1+ a)Yi2,1(+)
=1

=0, (% b')

for a newb’ e Rk-1 which is easily seen to be in the correspondﬁ‘lg Similarly, for
the second case, we have

k-1
5, L;a) =@+ ) ajuyjalx, 1)
i=1
k-2
= + Z aj+1Yj,1(%) + aYi-1,1(*, 1)
i=1

k-2 k-3
=a+ Z aj+1Yj,1(*) + ax (- Z Yh,1(*) — 2¥k—2,1(x) — 1)
j=1 h=1
k-3
= (g — &) + Y _(@j+1 — &)Y} 1(%) + (A1 — 2a)Yk—2,1(%)
=1

- 0:{(71(*; b”),

where agairb” € R is a new weight which satisfies the (strict) inequalities rdaf
M. The lemma is proved. O

The reason why we choosein the interior of the conét, is that with such a

choice the vertical eigenvalues of the curvat@@x, (a)) are positive for all sufficiently
small ¢®.

REMARK 7.2. The above lemma says in particular thatig 91, then for all
¢ > 0 we can endowOy, (&) with a smooth Hermitian metrity (namely, the one we
are working with) such tha®, (Ox,(a)) > —ew along the fiber ofXy — X, for some
Hermitian metrico on Ty, (recall that we are always working modutd). In partic-
ular, the conedt is contained in the cone of relatively nef (ovi) line bundles.

Lemma 7.2. If ¥ >0for all s=1,...,k—1, andae N with at least one of
the g's is strictly positive thentr(A;j) > 0 in the cube[0, 1]1.
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Proof. First of all, we recover the expression of thgy's in terms of they; s's.
We havewp, p = (2 +Yp,p)/3 and

wp,j-1=0pj-1+Ppj-1=Xj-1(Bp,j — ap,j) tap,j
Yp.j-1*2Bp,j —ap,j
3Yp,j

=apj — YpjXj-1=apj* P

_ Ypj1t2wp
3 1

as, Xj—1 = —(Yp,j—1+2Bp,j —p,j)/3Yp,;j (this is easily seen from the very definitions).
Then, by induction, we obtain

2 p—q+1 1 p 2 I—q
mas(5) X (5)
I=q

Now, tr(Ajj) = le(;_ol as+ws 1 and so
k—1 k-1 s s -1
2 1 2
Yewazar (535 (5) )
s=0 S
1

=1

k-1 2 S l - 2 1-1
=ap+ Z (5) 8s+1 t+ 3 Z_ <§> As+1Ys,|
s=1 l,s=1
k-1 s k-1 -1
2 1 2
Sapt Z (é) Asyp + 3 (5) (9|k —a)
s=1 =1
2 k—1 k=2 5\ st 1Kl o1t )
“fae(3) aeX(§) wavsX(3) & O

Lemma 7.3. Let D: X; — R be as in§6.1. If 6 >0forall s=1,...,k -1,
a e Nk with at least one of the j& strictly positive and D= 2/9, then det(Aj) > 0
in the cube[0, 1]¢ 1.

Proof. Set

o k—1

e

a(a) = a1+Za,+1a|,1
=1

and

k-1
B(@) &« ap + Z a+1P,1-
I=1
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Then, formula (9) yields
det(Aij) = «(a)B(a) + («(a) — A(a))°D

= 2@+ B@Y ~ 3-((@) ~ f@).

But now, we observe that(a) + g(a) = tr(Aj) and thata(a) — g(a) = 9'1‘; the end of
the proof of Lemma 7.2 shows that () > (1/3)9%, so that detdj) > 0. O

Proposition 7.4. If ae 91, then the line bundl&y, (1) is big as soon as the top
self-intersectionOy, (a)*2 is positive

Proof. Without loss of generality, we can suppose thag integral and that e
M. Then Lemma 7.1 ensures that all the “vertical” eigenvalaes positive: in this
case, thanks to Lemma 7.2, we conclude that the curvatu@ypfa)<*? can have at
most one negative “horizontal” eigenvalue.

Thus, X(< 1, Ox (a)) = Xk and so

i k+2 i k+2
/Xk(gl,oxk(a)) <g®(0xk(a))> = /Xk <g®(0xk(a)))

= Oxk(a k+2,
If Ox (@2 > 0, then, by Demailly’s holomorphic Morse inequalitie®x, (a) is big
and so isOx, (1) (recall that ifa € N, then there is a non-trivial morphisify, (a) —
Ox.(1a))). 0

7.2. End of the proof. Let uj =c1(Ox,(1)) be the first Chern class of the anti-
tautological line bundle orK;. Define the (real) polynomial&, Gy: RK — R by

(@l + - - - + &) *? = Fe(@)eu(X)? — G(@)ea(X).

Observe that these two polynomials do not depend on thecpkati surfaceX, but
only on the relative structure of the fibratiokk — X, which is universal.

Lemma 7.5. Suppose that for each k 1, there exists a minimal surface of gen-
eral type X such tha©x, (1) is not big Then if a € 91, we have the inequalities

3F(@) > Gk(@ =0

and G #0.
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Proof. SinceFy and Gy are independent of the particular surface chosen, we can
supposeX to be a compact unramified quotient of the bBjYl. In this case,D = 2/9
and, fora e 91 rational,

i k+2
(Aqup + - - - + AU )2 = /;( (ZG)(OXk(a))) >0

by Lemmas 7.1, 7.2 and 7.3; on the other hand, by Bogomolowatkig-Yau,c;(X)? =
3cy(X) and alsocy(X)? > 0. Hence, by continuity, B.(a)—Gy(a) > 0 on 9 (with strict
inequality fora rational in the interior of the cone).

Now, let us compute the intersectios;(; + - - - + aux)“*2 on a minimal surface
of general typeX as in the hypotheses: of course, such a surface cannot be @acbm
unramified quotient of the balB,. In this case we have;(X)? < 3cy(X), and so

(@au + - - - +au)*? = Fe(@)er(X)? — Gr(@)ea(X)

> %Gk(a)(cl(x)z — 3¢2(X)).
— ————
<0

Thus, if there exists a poin’ € 9t such thatGg(a) < 0, we would have gu; +
-~ -+acu)**? > 0 and hence, by Proposition 7.@x,(1) big, contradiction. Finally, if
Gk =0, fix a rational pointa in the interior of the con&t: such ana gives Fy(a) > O.
Then, for such a point we would have;( + - - - + acuK)<*? = F(a)ci(X)? > 0, again
contradiction. O

REMARK 7.3. Call ¢) the first hypothesis of Lemma 7.5. If)(is not satisfied,
then we would have that there existka> 1 such that for each minimal surface of
general typeX, the line bundleOx, (1) is big. In this case, we would already have
the global sections we are looking for.

Now, let =, c R¥ the zero locus of3. By the above lemma)t\ =y is dense in
IN. Set

m % Fc(a)
asM\ Tk Gk(a) .

If () holds, thenmy < +oo: otherwise, for eactM > 0 we would find anay € 91\ 2k
such thatF¢(am) > M Gg(am) and so

Fi(@m)ea(X)? — Gi(am)ez(X) > MGy(am)eu(X)? — Gr(@am)ca(X)
= Gi(am)(Mc1(X)? — ca(X)).

We would then contradicti], by choosingM > cx(X)/c1(X)2.
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On the other hand, obviously, ifi, > cy(X)/c1(X)?, thenOy, (1) is big. Moreover,
for eachk > 1, we have I3 < mg < mg+;. The inequalitymy > 1/3 follows directly
from Lemma 7.5. To see the monotonicity, notice theatug + - - - + akuk)k+2|ak=o =0
(just for dimension reasons) and so

1
(quy +- - - + &) % = ay - P CUIRE au) 2.

well defined forax =0
But then,

)k+2 )k+2

1 d
—(aguy +- - - +acug = —(aquy +- - - +acUk
a dax

=0 =0
= (k+2)(@quy + - - - +ag 1Uk 1) - ug

= (k+2)(@quy + - - - +ag_1Uk_1) ",

where the last equality is simply obtained by integratingngl the fibers ofXy —
Xk—1. Hence, we have that

Fe(@, ... a1, 0) _ Fea(a, ... &)
Gk(a, ..., &-1,0) Gy_1(as,...,a-1)

and monotonicity follows.

Finally, if we setmy, to be the sup., my, we find that, forX a given minimal
surface of general type, ifn,, > cx(X)/ci(X)?, then there exist &, € N such that
Ox,, (1) is big.

REMARK 7.4. For the moment, we are not able to compute or even to @&stim
in a satisfactory way the limit terrm,,. Of course, a divergent sequence would im-
ply the existence of global invariant jet differentials @fnse order on every surface of
general type. A less ambitious aim could be, for example, foompass the case of
hypersurfacesX of P2 of degree greater than or equal to five (which is the minimum
degree forX to be of general type). In this case, a simple Chern classepwiation
shows thatm,, > 11 would be sufficient.

7.2.1. Comparison with lower bounds of [5]. For low values ofk, one can
compute directly the intersection product

(aqUy + - - - + ayUy)<?

either algebraically, by means of sequences (1) and (2)simgwur curvature formula
and computing the corresponding integrals (for more detaiée [6]), on some partic-
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ular k-tuple a. For instance, a natural choice is given by the sequencdy, (%5, 2, 1),
(18, 6, 2, 1) and so on. These supply the estimates

1195 442243

13
>1 > —~144 > ——~1.61 > ~1.63
M=25 M2=-g M= 275 M= 501697 ’

which give the existence of global invariant jet differatdi on a minimal surface of
general type whose Chern classes satisfy the followingualgips:

order 1 jet differentials if ci(X)? > c,(X),

order 2 jet differentials if 18,(X)? > 9c,(X),

order 3 jet differentials if 1195 (X)? > 742,(X),
order 4 jet differentials if 442243(X)? > 27169%,(X).

Unfortunately, these first terms are still very far from lgeiclose even to 11.

We would like to remark here, that, even if we are dealing \lith same relatively
nef bundles of [5], we get considerably better lower bouratstlie degree in the case
of hypersurface irP3.

The reason is quite subtle: from a Hermitian point of view,pioving Theorem 2
of [5], we tacitly used the restriction of the Fubini-Studyetric of the projective space
the hypersurface is embedded in, to the tangent bundle ohypersurfaces. This is
why he had to “correct” this metric by adding some positiviigming from ©(2) and
thus loosing some effectivity.

Using instead the differential-geometric approach of thesent paper, we were
able to take advantage of the full strength of the Kahlesteim metric, which reflects
directly the strong positivity properties of varieties lwihmple canonical bundle.

ACKNOWLEDGMENTS.  We would like to thank Stefano Trapani for his sugges-
tions, comments and remarks which have finally lead to theemteversion of Theo-
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