<table>
<thead>
<tr>
<th>Title</th>
<th>Mass distributions on the ideal boundaries of abstract Riemann surfaces. I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kuramochi, Zenjiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Mathematical Journal. 8(1) P.119–P.137</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1956-06</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5271</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5271</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
We shall extend some theorems of potential theory in space to abstract Riemann surfaces. In the present article we shall be concerned with Evans-Selberg's theorem on Riemann surfaces with null-boundary.

G. C. Evans and H. Selberg\(^2\) proved the following theorem. \textit{Given a closed set }\(F\) \textit{of capacity zero in space, then there exists a positive mass distribution on }\(F\) \textit{whose potential is positively infinite at every point of }\(F\). We shall extend this theorem to abstract Riemann surfaces with null-boundary.

Let \(R^*\) be a Riemann surface with null-boundary and \(\{R_n\} (n=0, 1, 2, \ldots)\) be its exhaustion with compact relative boundaries \(\{\partial R_n\}\). Put \(R=R^*-R_0\). Let \(G_n(z, p)\) be the Green's function of \(R_n-R_0\) with pole at \(p\). Clearly, \(G_n(z, p) \uparrow G(z, p)\) as \(n \to \infty\). Since \(\frac{\partial G_n(z, p)}{\partial n} ds \leq 2\pi\) for every \(n\), \(G(z, p)\) is not constant infinity and harmonic in \(R\) except at \(p\) where \(G(z, p)\) has a logarithmic singularity.

Take \(M\) large so that the set \(V_M(p)=E[z \in R: G(z, p) \geq M]\) is compact in \(R\). Let \(\omega_n(z)\) be a harmonic function in \(R_n-R_0-V_M(p)\) such that \(\omega_n(z)=0\) on \(\partial R_0+\partial V_M(p)\) and \(\omega_n(z)=M\) on \(\partial R_n\). Then since \(R^*\) is a Riemann surface with null-boundary, \(\lim_{n \to \infty} \omega_n(z)=0\). Let \(\bar{G}_n(z, p), G_n(z, p)\) and \(G_0(z, p)\) be harmonic functions in \(R_n-R_0-V_M(p)\) such that \(\bar{G}_n(z, p)=G_n(z, p)=M\) on \(\partial V_M(p)\), \(\bar{G}_n(z, p)=G_n(z, p)=G_n(z, p)=0\) on \(\partial R_0\) and \(\bar{G}_n(z, p)=M, \frac{\partial G_n'(z, p)}{\partial n}=0\) and \(G_n(z, p)=0\) on \(\partial R_n\) respectively. Since \(0<G_n'(z, p)<M\) on \(\partial R_n\), we have by the maximum principle

\[
G_n(z, p) \leq G_n'(z, p) \leq \bar{G}_n(z, p), \quad G_n(z, p) \leq G(z, p) \leq \bar{G}_n(z, p)
\]

and

\[
0 \leq \bar{G}_n(z, p) - G_n(z, p) = M \omega_n(z).
\]

\(^1\) Resumé of this part is reported in Proc. Japan Acad. 32, 1956.

Hence
\[\lim_{n \to \infty} G(z, p) = \lim_{n \to \infty} G_n^\prime (z, p) = \lim_{n \to \infty} G_n(z, p) = G(z, p). \]

Then by Green's formula and by the compactness of \(V_M(p) \)
\[\int_{\partial R_0} \frac{\partial G(z, p)}{\partial n} \, ds = \int_{\partial R_0} \lim_{n \to \infty} \frac{\partial G_n'(z, p)}{\partial n} \, ds = - \int_{\partial V_M(p)} \lim_{n \to \infty} \frac{\partial G_n'(z, p)}{\partial n} \, ds = 2\pi. \]

\(G(z, p) \) is called the Green's function of \(R \) with pole at \(p \).

After R. S. Martin\(^3\) we shall define the ideal boundary points as follows: let \(G(z, p) \) be the Green's function of \(R \) with pole at \(p \). Then by definition, the flux of \(G(z, p) \) along \(\partial R_0 \) is \(2\pi \) and \(G(z, p) \) is positive. Consider now a sequence of points \(\{ p_i \} \) of \(R \) having no point of accumulation in \(R + \partial R_0 \). In any compact part of \(R \), the corresponding functions \(G(z, p_i) \) \((i = 1, 2, \ldots) \) form, from some \(i \) on, a bounded sequence of harmonic functions—thus a normal family. A sequence of these functions, therefore, is convergent in every compact part of \(R \) to a positive harmonic function. A sequence \(\{ p_i \} \) of \(R \) having no point of accumulation in \(R + \partial R_0 \), for which the corresponding \(G(z, p_i) \)' have the property just mentioned, that is, converges to a harmonic function—will be called fundamental. Two fundamental sequences are called equivalent if their corresponding \(G(z, p_i) \)' have the same limit. The class of all fundamental sequences equivalent to a given one determines an \textit{ideal boundary point} of \(R \). The set of all the ideal boundary points of \(R \) will be denoted by \(B \) and the set \(R + B \), by \(\bar{R} \). The domain of definition of \(G(z, p) \) may now be extended by writing \(G(z, p) = \lim_{i \to \infty} G(z, p_i) (z \in R, p \in B) \), where \(\{ p_i \} \) is any fundamental sequence determining \(p \). For \(p \) in \(B, G(z, p) \) is positive, harmonic and \(\int_{\partial R_0} \frac{\partial G(z, p)}{\partial n} \, ds = 2\pi \) and further \(G(z, p) \) is unbounded in \(R \), because if \(G(z, p) \) is bounded in \(R, G(z, p) \equiv 0 \) by the maximum principle. This contradicts \(\int_{\partial R_0} \frac{\partial G(z, p)}{\partial n} \, ds = 2\pi \). Evidently, the function \(G(z, p) \) is characteristic of the point \(p \) in the sense that the identity of two points of \(\bar{R} \) is equivalent to the equality of their corresponding \(G(z, p) \)' as a function of \(z \). The function \(\delta(p_1, p_2) \) of two points \(p_1 \) and \(p_2 \) in \(\bar{R} \) is defined by
\[
\delta(p_1, p_2) = \sup_{z \in \bar{R} - R_0} \left| \frac{G(z, p_1)}{1 + G(z, p_1)} - \frac{G(z, p_2)}{1 + G(z, p_2)} \right|.
\]

\(^3\) R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 39, 1941.
Evidently, \(\delta(p_1, p_2) = 0 \) is equivalent to \(G(z, p_1) = G(z, p_2) \) for all points \(z \) in \(R_1 - R_0 \). Therefore we have \(G(z, p_1) = G(z, p_2) \) for all points in \(R \), that is \(\delta(p_1, p_2) = 0 \) implies \(p_1 = p_2 \) and it is clear that \(\delta(p_1, p_2) \) satisfies the axioms of distance. Therefore \(\delta(p_1, p_2) \) can be considered as the distance between two points \(p_1 \) and \(p_2 \) of \(\overline{R} \). The topology induced by this metric is homeomorphic to the original topology when it is restricted in \(R \). Since \(G(z, p_1)(p_1 \in \overline{R}) \) is also a normal family, both \((R - R^1) + \partial R^1 + B \) and \(B \) are closed and compact. For fixed \(z \), \(G(z, p) \) is continuous with respect to this metric (we denote shortly it by \(\delta \)-continuous) as a function of \(p \) in \(\overline{R} \) except at \(z = p \).

First we shall prove the following

Lemma 1. Let \(G_i \) be a compact or non-compact domain with an analytic relative boundary \(\partial G_i \) (\(i = 1, 2, \ldots, k \)). Let \(U_i(z) \) (\(i = 1, 2, \ldots, k \)) be a function which is harmonic in \(R - G_i \) and on \(\partial G_i \), such that the Dirichlet integral of \(U_i(z) \) taken over \(R - G_i \) is finite. Then there exists a sequence of compact curves \(\{\gamma_n\} \) such that \(\gamma_n \) separates \(B \) from \(dR \), \(\{\gamma_n\} \) clusters at \(B \) and that \(\int_{\gamma_n \cap G_i} \frac{\partial U_i(z)}{\partial n} \) ds tends to zero as \(n \to \infty \), for every \(i \).

Proof. Let \(\omega_n'(z) \) be a harmonic function in \(R_n - R_0 \) such that \(\omega_n'(z) = 1 \) on \(\partial R_n \) and \(\omega_n'(z) = 0 \) on \(\partial R_0 \). Then \(\lim_{n \to \infty} \omega_n'(z) = 0 \), since \(R^* \) is a Riemann surface with null-boundary. Hence, for any given number \(n' \) there exists a number \(n_0 \) such that \(\omega_n'(z) < \frac{1}{2} \) in \(R_{n'} - R_0 \), for any \(n \geq n_0 \). We denote by \(\omega_n(z) \) a harmonic function in \(R_n - R_0 \) which vanishes on \(\partial R_0 \) and assumes a constant value \(M_n \) on \(\partial R_n \) and whose flux along \(\partial R_0 \) is \(2\pi \). It is evident that \(\omega_n(z) = M_n \omega_n'(z) \) and \(\lim_{n \to \infty} M_n = \infty \). Then for a number \(n' \) chosen in the manner above stated, the niveau curve with height \(\geq \frac{M_n}{2} \) is contained in \(R_{n'} - R_0 \).

Put

\[
\rho_n(z) = \rho e^{i\theta},
\]

where \(\rho_n(z) \) is the conjugate harmonic function of \(\omega_n(z) \).

Let \(U(z) \) be one of \(U_i(z) \) and put

\[
L(r) = \int_{C_r} \left| \frac{\partial U(z)}{\partial r} \right| rd\theta = \int_{C_r} \left| \frac{\partial U(z)}{\partial n} \right| ds,
\]

where \(C_r \) is the part of the niveau curve \(C_r \) of \(\omega_n(z) \) with height \(r \) contained in \(R - G_i \).

Suppose that there exist two positive constants \(\eta \) and \(\delta \) and infinitely many numbers \(n \) with the property as follows: there exists a
closed set F_n in the interval $(e^{M_n}, e^{M_n/2})$ such that \(\lim_{n \to \infty} \frac{\text{mes } F_n}{(e^{M_n} - e^{M_n/2})} = \eta \) and that \(L(r) \geq \delta \) for any \(r \in F_n \). Since \(\int_{C_r} d\theta = 2\pi, \int_{C_r} d\theta \leq 2\pi \). Then by Schwarz's inequality, we have

\[
D_{R-G}(U(z)) = \int \int \left(\frac{1}{r} \left(\frac{\partial^2 U(z)}{\partial r^2} \right) + \frac{1}{r^2} \left(\frac{\partial U(z)}{\partial \theta} \right) \right) r dr d\theta \geq \frac{1}{2\pi} \int_1^{e^{M_n}} \frac{L^2(r)}{r} dr,
\]

\[
> \frac{1}{2\pi} \frac{e^{M_n}}{r} \frac{L^2(r)}{r} dr \geq \frac{1}{2\pi} \frac{e^{M_n}}{e^{M_n/2}} \frac{\delta^2}{r^2} dr = \frac{M_n}{4\pi} \eta \delta^2.
\]

Let \(n \to \infty \). Then the right hand side diverges. This contradicts the finiteness of \(D(U(z)) \). Hence there exists a sequence of exceptional sets \(\{E_n\} \) in the intervals \((e^{M_n}, e^{M_n/2})\) such that \(\lim_{n \to \infty} \frac{\text{mes } E_n}{(e^{M_n} - e^{M_n/2})} = 0 \) and that \(r \notin E_n \) implies \(L(r) < \delta_n \), where \(\lim \delta_n = 0 \).

Returning to case of \(U_i(z) \), let \(\{E_{i,n}\} \) be a sequence of exceptional sets corresponding to \(U_i(z) \) and \(\{\delta_{i,n}\} \) be the corresponding quantities of \(\{E_{i,n}\} \). Then we see that \(\sum_{i=1}^k \text{mes } E_{i,n} \) and \(\max \delta_{i,n} \) tend to zero as \(n \to \infty \). On the other hand, the niveau curves with height \(\geq \frac{M_n}{2} \) are are contained in \(R-R_\gamma \), since \(\omega_\gamma(z) < \frac{M_n}{2} \) in \(R_n-R_\gamma \). It follows that every \(C_r \) with \(r \in (e^{M_n}, e^{M_n/2}) \) clusters at \(B \) as \(n \to \infty \) and that \(\sum_{i=1}^k E_{i,n} \) clusters at \(B \) as \(n \to \infty \). Consider a niveau curve \(C_r \) above mentioned as \(\gamma_n \). Then we have the lemma.

Next, we shall consider the behaviour of \(G(z, p) \) \(\langle p \in R \rangle \).

Lemma 2. Put \(V_m(p) = \{z \in R : G(z, p) \geq m\} \). Then \(\int_{V_m(p)} \frac{\partial G(z, p)}{\partial n} d\sigma < 2\pi m \) and the Dirichlet integral \(D_{R-V_m(p)}(G(z, p)) \leq 2\pi m \), where \(p \in R \) and \(m \geq 0 \).

Proof. We shall prove the lemma in three cases:

Case 1. \(p \in R \) and \(V_m(p) \) is compact.

Case 2. \(p \in R \) and \(V_m(p) \) is non-compact.

Case 3. \(p \in B \).

Case 1. \(p \in R \) and \(V_m(p) \) is compact. Let \(\omega_n(z) \) be a harmonic function in \(R_n-R_\gamma-V_m(p) \) such that \(\omega_n(z) = 1 \) on \(\partial R_n \) and \(\omega_n(z) = 0 \) on

4) In the sequel, \(\frac{\partial}{\partial n} \) means derivative with respect to inner normal with the exception that \(\frac{\partial G(z, p)}{\partial n} \) on the niveau curves of \(G(z, p) \) means derivative with respect to inner or outer normal so that \(\frac{\partial G(z, p)}{\partial n} \geq 0 \).
\[\partial R_0 + \partial V_m(p) \]. Since \(R^* \) is a Riemann surface with null-boundary, \(\lim_{n \to \infty} \omega_n(z) = 0 \). Let \(\bar{G}_n(z, p) \) and \(G_n(z, p) \) be harmonic functions in \(R_n - R_0 - V_m(p) \) such that \(\bar{G}_n(z, p) = G_n(z, p) = m \) on \(\partial V_m(p) \), \(\bar{G}(z, p) = G_n(z, p) = 0 \) on \(\partial R_0 \) and \(\bar{G}_n(z, p) = m \) on \(\partial R_n \) and \(G_n(z, p) = 0 \) on \(\partial R_n \) respectively.

Then

\[\bar{G}_n(z, p) > G(z, p) > G_n(z, p) \] and \(0 < \bar{G}_n(z, p) - G_n(z, p) = m \omega_n(z) \).

Hence \(\lim_{n \to \infty} \bar{G}_n(z, p) = G(z, p) = \lim_{n \to \infty} G_n(z, p) \).

The Dirichlet integral of \(G_n(z, p) \) taken over \(R_n - R_0 - V_m(p) \) is

\[m \int_{\partial V_m(p)} \frac{\partial G_n(z, p)}{\partial n} ds \].

Therefore, we have by Fatou's lemma
\[D_{R-V_m(p)}(G(z, p)) \leq \lim_{\nu \to \infty} D_{R_n-R_0-V'_m(p)}(G(z, p)) = \lim_{n \to \infty} m \int_{V'_m(p)} \frac{\partial G(z, p)}{\partial n} \, ds \]

\[= m \int_{\partial V'_m(p)} \frac{\partial G(z, p)}{\partial n} \, ds = 2\pi m, \]

because \(\int_{\partial V'_m(p)} \frac{\partial G(z, p)}{\partial n} \, ds = 2\pi \) is clear by the compactness of \(V_m(p) \).

Case 2. \(p \in R \) and \(V_m(p) \) is non-compact. Take \(M \) large enough so that \(V_M(p) \) is compact. Then by the results of the case 1, \(2\pi M \geq D_{R-V_M(p)}(G(z, p)) > D_{R-V_m(p)}(G(z, p)) \). Consider \(G(z, p) \) as \(U(z) \) in lemma 1. Then there exists a sequence of compact curves \(\{\gamma_n\} \) clustering at \(B \) such that \(\gamma_n \) separates \(B \) from \(\partial R_0 \) and \(\lim_{n \to \infty} \int_{\gamma_n-V'_m(p)} \frac{\partial G(z, p)}{\partial n} \, ds = 0. \)

Denote by \(R_n' \) the compact component of \(R \) bounded by \(\gamma_n \) and \(\partial R_0 \). On the other hand, it is obvious that

\[\int_{\gamma_n-V'_m(p)} \frac{\partial G(z, p)}{\partial n} \, ds = \int_{\partial V'_m(p)} \frac{\partial G(z, p)}{\partial n} \, ds + \int_{\gamma_n-V'_m(p)} \frac{\partial G(z, p)}{\partial n} \, ds = 0. \]

Since \(\{\gamma_n\} \) clusters at \(B \) and \(\frac{\partial G(z, p)}{\partial n} \geq 0 \) on \(\partial V_m(p) \), by mentioning to the above equality, we have

\[\int_{\partial V'_m(p)} \frac{\partial G(z, p)}{\partial n} \, ds = 2\pi. \]

The Dirichlet integral of \(G(z, p) \) is

\[D_{R_n-V'_m(p)}(G(z, p)) = \int_{V'_m(p)} G(z, p) \frac{\partial G(z, p)}{\partial n} \, ds + \int_{\gamma_n-V'_m(p)} G(z, p) \frac{\partial G(z, p)}{\partial n} \, ds. \]

Since \(\{\gamma_n\} \) clusters at \(B \) and the second term on the right hand side tends to zero as \(n \to \infty \), we have

\[D_{R-V_m(p)}(G(z, p)) = 2\pi m. \]

Case 3. \(p \in B \). Let \(\{p_i\} \) be a fundamental sequence determining \(p \). Consider the Dirichlet integral \(D_{R_n-R_0-V_m(p)}(G(z, p)) \). For any given positive number \(\varepsilon \), we can find a narrow strip \(S \) such that the interior of \(S \) contains \(\partial V_m(p) \cap (R_n-R_0) \), \(D_{R_n-R_0-S-V_m(p)}(G(z, p)) \geq D_{R_n-R_0-V'_m(p)}(G(z, p)) - \varepsilon \) and that \(R-V_m(p) \supset R_0 - R_0 - S - V_m(p) \) for any \(i \geq i_0(S, \varepsilon) \), where \(i(S, \varepsilon) \) is a suitable number depending on \(S \) and \(\varepsilon \), because \(G(z, p_i) \) converges uniformly to \(G(z, p) \) and hence the niveau curves \(\partial V_m(p) \) tend to \(\partial V_m(p) \) as \(i \to \infty \), (Fig. 1). Since the derivatives of \(G(z, p_i) \) converge uniformly to those of \(G(z, p) \) as \(i \to \infty \), we have
Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces. I

\[D_{R_n - R_0 - \mathcal{V}_m(p)}(G(z, p)) \leq \lim_{i \to \infty} D_{R - \mathcal{V}_m(p)}(G(z, p)) \leq 2\pi m. \]

By letting \(\varepsilon \to 0 \) and then \(n \to \infty \),

\[D_{R - \mathcal{V}_m(p)}(G(z, p)) \leq 2\pi m. \]

Hence, by lemma 1, we can prove the existence of a sequence of compact curves \(\{\gamma_n\} \) such that \(\gamma_n \) separates \(B \) from \(\partial R_0 \) and \(\{\gamma_n\} \) clusters at \(B \) and that \(\lim_{n \to \infty} \int_{\gamma_n - \mathcal{V}_m(p)} \frac{\partial G(z, p)}{\partial n} \, ds = 0 \). Therefore we have

\[\int_{\gamma_n - \mathcal{V}_m(p)} \frac{\partial G(z, p)}{\partial n} \, ds = \int_{\gamma_n - \partial R_0} \frac{\partial G(z, p)}{\partial n} \, ds = 2\pi. \]

Thus we have the lemma.

Lemma 3. (Extension of Green's formula). Let \(q \) be a point in \(R - \mathcal{V}_m(p) \). Then for every point \(p \in R \),

\[\frac{1}{2\pi} \int_{\partial \mathcal{V}_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds = G(q, p). \] (1)

Proof. Since \(q \in R \), there exists a number \(r' \) such that \(R - R_0 \ni q \), whence there exists a constant \(L \) such that \(G(z, q) \leq L \) in \(R - R_0 \). Hence by lemma 2, \(D_{R - R_0}(G(z, q)) \leq D_{R - \mathcal{V}_m(p)}(G(z, q)) \leq 2\pi L \) and \(D_{R - \mathcal{V}_m(p)}(G(z, p)) \leq 2\pi m \). Therefore by lemma 1, there exists a sequence of compact curves \(\{\gamma_n\} \) such that \(\gamma_n \) separates \(B \) from \(\partial R_0 \), \(\{\gamma_n\} \) clusters at \(B \) and that both \(\int_{\gamma_n - \mathcal{V}_m(p)} \frac{\partial G(z, q)}{\partial n} \, ds \) and \(\int_{\gamma_n - \partial R_0} \frac{\partial G(z, p)}{\partial n} \, ds \) tend to zero as \(n \to \infty \).

Denote by \(R_n \) the component bounded by \(\gamma_n \) and \(\partial R_0 \). Suppose \(R_n \subset R_0 \). Apply the Green's formula to \(G(z, p) \) and \(G(z, q) \) in \(R_n - \mathcal{V}_m(p) \). Then

\[\int_{\partial \mathcal{V}_m(p) \cap R_n} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds = 2\pi G(q, p) + \int_{\partial \mathcal{V}_m(p) \cap R_n} G(z, p) \frac{\partial G(z, q)}{\partial n} \, ds \]

\[+ \int_{\gamma_n - \mathcal{V}_m(p)} G(z, p) \frac{\partial G(z, q)}{\partial n} \, ds - \int_{\gamma_n - \mathcal{V}_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds. \]

We shall see that every term, except the first, on the right hand side tends to zero as \(n \to \infty \). In fact,

\[| \int_{\partial \mathcal{V}_m(p) \cap R_n} G(z, p) \frac{\partial G(z, q)}{\partial n} \, ds | \leq | G(z, p) | \int_{\partial \mathcal{V}_m(p) \cap R_n} G(z, q) \, ds | \leq m \int_{\gamma_n - \mathcal{V}_m(p)} \frac{\partial G(z, q)}{\partial n} \, ds \leq m \int_{\gamma_n - \partial R_0} \frac{\partial G(z, q)}{\partial n} \, ds, \]

\[| \int_{\gamma_n - \mathcal{V}_m(p)} G(z, p) \frac{\partial G(z, q)}{\partial n} \, ds | \leq m \int_{\gamma_n - \mathcal{V}_m(p)} \frac{\partial G(z, q)}{\partial n} \, ds \text{ and } | \int_{\gamma_n - \partial R_0} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds | \leq L \int_{\gamma_n - \mathcal{V}_m(p)} \frac{\partial G(z, p)}{\partial n} \, ds. \]

On the other hand, \(G(z, q) \frac{\partial G(z, p)}{\partial n} \geq 0 \) on
\[\partial V_m(p). \] Therefore we have the lemma.

We shall consider the behaviour of the topology induced by \(\delta \)-metric.

Corollary. Let \(v_n(p) \) be a \(\delta \)-neighbourhood of \(p \in \bar{R} \), that is \(v_n(p) = \{ z \in R : \delta(z, p) < \frac{1}{n} \} \). Then for any given \(V_m(p) \), there exists a neighbourhood \(v_n(p) \) such that

\[V_m(p) \supset (v_n(p) \cap R). \]

Proof. The assertion is evident for \(p \in R \), because our topology is homeomorphic to the original one in \(R \). Hence it is sufficient to prove the corollary for \(p \in B \). Suppose that the assertion is false. Then there exists a number \(m_0 \) such that \(V_m(p) \supset (v_n(p) \cap R) \) for infinitely many numbers \(n \). Hence we can find a sequence of points \(\{ q_i \} \) in \(R - V_m(p) \), tending to \(p \) with respect to \(\delta \)-metric. Let \(m \geq 3m_0 \). Then we can find a number \(n_0 \) by lemma 2, such that

\[\int \limits_{\partial V_m(p) \cap (R_n - R_0)} \frac{\partial G(z, p)}{\partial n} ds \geq \pi. \]

Since \(q_i \in R - V_m(p) \), we have by (1),

\[\int \limits_{\partial V_m(p) \cap (R_n - R_0)} G(z, q_i) \frac{\partial G(z, p)}{\partial n} ds < \int \limits_{\partial V_m(p)} G(z, q_i) \frac{\partial G(z, p)}{\partial n} ds = 2\pi G(q_i, p) \leq 2\pi m_0. \]

Since \(\frac{\partial G(z, p)}{\partial n} \geq 0 \) on \(\partial V_m(p) \), there exists one point \(z_i \) on \(\partial V_m(p) \cap (R_n - R_0) \) such that \(G(z_i, q_i) \leq 2m_0 \). Let \(i \) tend to \(\infty \). They by the compactness of \(\partial V_m(p) \cap (R_n - R_0) \), we have \(G(z_0, p) \leq 2m_0 \), where \(z_0 \) is one of limiting points of \(\{ z_i \} \). This contradicts \(G(z_0, p) = m \geq 3m_0 \). Therefore we have the corollary.

If two points \(p \) and \(q \) are contained in \(R \), we have, by definition \(G_n(p, q) = G_n(q, p) \), where \(G_n(z, p) \) and \(G_n(z, q) \) are Green's functions of \(R_n - R_0 \) with pole \(p \) and \(q \) respectively. Hence, by letting \(n \to \infty \), we have \(G(p, q) = G(q, p) \). Next, suppose \(p \in B \) and \(q \in R \). Let \(\{ p_i \} \) be one of fundamental sequences determining \(p \). Then, since \(G(p_i, q) = G(q, p_i) \) and since \(G(z, p_i) \) converges to \(G(z, p) \) uniformly in every compact set of \(R \), \(G(p_i, q) \) has a limit denoted by \(G(p, q) \) as \(p_i \to p \). More generally, suppose that a sequence \(\{ p_i \} \) of \(\bar{R} \) tends to \(p \) with respect to \(\delta \)-metric and that \(q \) belongs to \(R \). Then we have

\[G(q, p) = \lim_{i \to \infty} G(q, p_i) = \lim_{i \to \infty} G(p_i, q). \]

Hence \(G(z, q)(q \in R) \) has a limit when \(z \) tends to \(p \in \bar{R} \) with respect to
δ-metric. In this case we define the value of \(G(z, q) \) at \(p \) as this limit denoted by \(G(p, q) \). Thus we have the following

Lemma 4. If at least one of two points \(p \) and \(q \) is contained in \(R \), then
\[
G(p, q) = G(q, p). \tag{2}
\]

\(G(z, q) \) is defined in \(\overline{R} \) for \(q \in R \) but \(G(z, q) \) has been defined only in \(R \) for \(q \in B \). In what follows, we shall define \(G(z, q) \) in \(\overline{R} \), even in case \(q \in B \). For this purpose, we shall prove the following

Lemma 5. Suppose that \(p \) and \(q \) are contained in \(\overline{R} \). Let \(V_m(p) = E[z \in R : G(z, p) \geq m] \) and \(V'_m(p) = E[z \in R : G(z, p) \geq m'] \), where \(m < m' \), i.e. \(V_m(p) \supset V'_m(p) \). Then
\[
2\pi G_{V'_m(p)}(p, q) = \int_{\partial V'_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds \geq \int_{\partial V_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds = 2\pi G_{V_m(p)}(p, q).
\]

Proof. At first, if \(p \in R \), since \(G(z, q) \) is harmonic in \(\overline{R} \) for \(q \in R \), \(2\pi G(p, q) = \int_{\partial V_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds \) for every \(V_m(p) \) such that \(V_m(p) \nsubseteq q \). Next, if \(p \in B \) and \(q \in R \), we have also by (1), \(2\pi G(p, q) = \int_{\partial V_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds \) for \(V_m(p) \nsubseteq q \). Hence our assertion

![Fig. 2.](image-url)
is clear if either p or q, at least belongs to R. Therefore it is sufficient to prove the lemma when both p and q belong to B. Let $\{q_i\}$ be a fundamental sequence determining q. $V_m(p)$ may consist of at most a enumerably infinite number of domains D_l $(l = 1, 2, \cdots)$, (Fig. 2).

Let D be one of them. Let $G_{D,n}(z, q_j)$ be a harmonic function in $D \cap (R_n-R_0)$ such that $G_{D,n}(z, q_j)=G(z, q_j)$ on $\partial D \cap (R_n-R_0)$ and $G_{D,n}(z, q_j) = 0$ on $\partial R_n \cap D$. Then we have by Green’s formula

$$G(z, q_j) > G_{D,n}(z, q_j) = \frac{1}{2\pi} \int_{\partial D \cap (R_n-R_0)} G(\xi, q_j) \frac{\partial G^D(\xi, z)}{\partial n} \, ds,$$

where $G^D(\xi, z)$ is the Green’s function of $D \cap (R_n-R_0)$ with pole at z.

Since $G^D(\xi, z)$ is increasing with respect to n, $\frac{\partial G^D(\xi, z)}{\partial n} > \frac{\partial G^D(\xi, z)}{\partial n}$ at every point ξ on ∂D, where $G^D(\xi, z)$ is the Green’s function of D. Hence

$$G(z, q_j) \geq G_D(z, q_j) = \lim_{n \to \infty} G_{D,n}(z, q_j) = \frac{1}{2\pi} \int_{\partial D} G(\xi, q_j) \frac{\partial G^D(\xi, z)}{\partial n} \, ds.$$

We call $G_D(z, q_j)$ the solution of Dirichlet problem in D with boundary value $G(z, q_j)$ on ∂D. Let q_j tend to q. Then, since $G(\xi, q_j)$ tends to $G(\xi, q)$ at every point ξ on ∂D, we have by Fatou’s lemma

$$G(z, q) = \lim_{j \to \infty} G(z, q_j) \geq \lim_{j \to \infty} G_D(z, q_j) \geq \frac{1}{2\pi} \int_{\partial D} \lim_{j \to \infty} G(\xi, q_j) \frac{\partial G^D(\xi, z)}{\partial n} \, ds = G_D(z, q), \quad (3)$$

where $G_D(z, q)$ is the solution of Dirichlet problem in D with the boundary value $G(z, q)$.

Put $G^M(z, q) = \min \{M, G(z, q)\}$. Then $G^M(z, q)$ is superharmonic in R. Let $\bar{G}^M_n(z, q)$, $G^M_n(z, q)$ and $\bar{G}^M(z, q)$ be harmonic functions in $D \cap (R_n-R_0)$ such that $\bar{G}^M_n(z, q) = G^M_n(z, q) = G^M(z, q) = G^M(z, q)$ on $\partial D \cap (R_n-R_0)$ and $\bar{G}^M_n(z, q) = M$, $G^M_n(z, q) = G^M(z, q)$ and $G^M(z, q) = 0$ on $\partial R_n \cap D$ respectively. Then $\bar{G}^M_n(z, q) > G^M_n(z, q) > G^M_n(z, q)$ and $G^M(z, q) \leq M \omega_n(z)$, where $\omega_n(z)$ is a harmonic function in R_n-R_0 such that $\omega_n(z) = 0$ on ∂R_0 and $\omega_n(z) = 1$ on ∂R_n, whence

$$G^M_D(z, q) = \lim_{n \to \infty} \bar{G}^M_n(z, q) = \lim_{n \to \infty} G^M_n(z, q) = \lim_{n \to \infty} G^M(z, q).$$

Evidently, $G^M_D(z, q)$ is the solution of Dirichlet problem in D with the boundary value $G^M(z, q)$ on ∂D and $G^M_D(z, q) = \frac{1}{2\pi} \int_{\partial D} G^M(\xi, q_j) \frac{\partial G^M(\xi, z)}{\partial n} \, ds$.

Evidently, $G^M_D(z, q)$ is the solution of Dirichlet problem in D with the boundary value $G^M(z, q)$ on ∂D and $G^M_D(z, q) = \frac{1}{2\pi} \int_{\partial D} G^M(\xi, q_j) \frac{\partial G^M(\xi, z)}{\partial n} \, ds$.

Evidently, $G^M_D(z, q)$ is the solution of Dirichlet problem in D with the boundary value $G^M(z, q)$ on ∂D and $G^M_D(z, q) = \frac{1}{2\pi} \int_{\partial D} G^M(\xi, q_j) \frac{\partial G^M(\xi, z)}{\partial n} \, ds$.

Evidently, $G^M_D(z, q)$ is the solution of Dirichlet problem in D with the boundary value $G^M(z, q)$ on ∂D and $G^M_D(z, q) = \frac{1}{2\pi} \int_{\partial D} G^M(\xi, q_j) \frac{\partial G^M(\xi, z)}{\partial n} \, ds$.

Evidently, $G^M_D(z, q)$ is the solution of Dirichlet problem in D with the boundary value $G^M(z, q)$ on ∂D and $G^M_D(z, q) = \frac{1}{2\pi} \int_{\partial D} G^M(\xi, q_j) \frac{\partial G^M(\xi, z)}{\partial n} \, ds$.
Therefore
\[
\lim_{k \to \infty} G_D^M(z, q) = G_D(z, q).
\]

In the sequel, we denote briefly by \(G_{V_{m'} \cdot p}(z, q) \) the function which is equal to \(G_{D_{l}}(z, q) \) which is the solution of Dirichlet problem in \(D_l \) with boundary value \(G(z, q) \), in every domain \(D_l \) \((l=1, 2, \ldots)\).

Consider the Dirichlet integral of \(G_{V_{m'} \cdot p}^M(z, q) \) which is equal to the solution of Dirichlet problem \(G_{D_l}^M(z, q) \) with the boundary value \(G^M(z, q) \), in every domain \(D_l \). Then by Dirichlet principle
\[
\sum_l D_{D_l \cap \left(R_n - R_0\right)}(G_{n}^M(z, q)) \leq \sum_l D_{D_l \cap R}(G_{n}^M(z, q)) = D_{V_{m'} \cdot q}(G_{m'}^M(z, q)) \leq 2\pi M,
\]
because the Dirichlet integral of \(G^M(z, q) \) over \(R \) equals \(D_{R - V_{m} \cdot q}(G(z, q)) \leq 2\pi M \). Let \(n \to \infty \). Then
\[
D_{V_{m'} \cdot p}(G_{V_{m'} \cdot p}^M(z, q)) \leq \lim_{n \to \infty} \sum_l D_{D_l}(G_{D_l, n}^M(z, q)) \leq 2\pi M.
\]
Since \(D_{V_{m'} \cdot p}(G_{V_{m'} \cdot p}(z, q)) \) and \(D_{R - V_{m'} \cdot p}(G(z, p)) (\leq 2\pi M') \) are bounded, there exists, by lemma 1, a sequence of compact curves \(\{\gamma_n\} \) separating \(B \) from \(0 \) such that \(\{\gamma_n\} \) clusters at \(B \) and that both \(L_1(\gamma_n) = \int_{\gamma_n \cap V_{m'}(p)} \frac{\partial G(z, p)}{\partial n} \ ds \)
and \(L_2(\gamma_n) = \int_{\gamma_n \cap V_{m'}(p)} \frac{\partial G_M(z, p)}{\partial n} \ ds \) tend to zero as \(n \to \infty \). Denoting by \(R_n \) the compact component of \(R \) bounded by \(\gamma_n \) and \(\partial R_0 \), apply the Green's formula to \(G_{V_{m'} \cdot p}^M(z, q) \) and \(G(z, p) \) in \((V_{m}(p) - V_{m'}(p)) \cap R_n \). Then
\[
\int_{\gamma_n \cap V_{m'}(p)} G_{M}^M(z, q) \frac{\partial G(z, p)}{\partial n} \ ds - \int_{\gamma_n \cap V_{m'}(p)} G_{m'}^M(z, q) \frac{\partial G(z, p)}{\partial n} \ ds
\]
\[
= \int_{\gamma_n \cap V_{m'}(p)} G(z, p) \frac{\partial G_{m'}^M(z, q)}{\partial n} \ ds + \int_{\gamma_n \cap V_{m'}(p)} G(z, p) \frac{\partial G_{m'}^M(z, q)}{\partial n} \ ds.
\]
It can be proved, as in lemma 3, that every term on the right hand side tends to zero as \(n \to \infty \), by the fact that \(L_i(\gamma_n) \) \((i=1, 2)\) tends to zero. Now \(G_{V_{m'} \cdot p}(z, q) \) \(\frac{\partial G(z, p)}{\partial n} \geq 0 \) on \(\partial V_{m}(p) + \partial V_{m'}(p) \). Hence
\[
\int_{\gamma_n \cap V_{m'}(p)} G_{V_{m'} \cdot p}(z, q) \frac{\partial G(z, p)}{\partial n} \ ds = \int_{\gamma_n \cap V_{m'}(p)} G_{V_{m'} \cdot p}(z, q) \frac{\partial G(z, p)}{\partial n} \ ds.
\]
By letting \(M \to \infty \) and by (3)
Thus we have the lemma.

Definition of \(G(z, q) \) for \(z \) and \(q \) belonging to \(\bar{R} \).

Since \(G_{v_{m,p}}(p, q) = \frac{1}{2\pi} \int_{\partial V_{m,p}(q)} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds \) is increasing with respect to \(m \), \(G_{v_{m,p}}(p, q) \) has a limit as \(m \to \infty \) which we denote by \(G(p, q) \). We define the value of \(G(z, q)(q \in R) \) at \(p \in \bar{R} \) by this limit. It is easily seen that this definition of \(G(p, q) \) coincides with what was given previously in case either \(p \) or \(q \) is contained in \(R \). In fact, it is evident that \(G_{v_{m,p}}(p, q) = \frac{1}{2\pi} \int_{\partial V_{m,p}(q)} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds = G(p, q) \) for \(p \in R \) and \(V_{m}(p) \notin q \) and that, by (1) \(G_{v_{m,p}}(p, q) = \frac{1}{2\pi} \int_{\partial V_{m,p}(q)} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds = G(q, p) = \lim_{m \to \infty} G(q, p) = \lim_{m \to \infty} G(p, q) = G(p, q) \) for \(p \in B \) and \(q \in R \), where \(\{p_i\} \) is a fundamental sequence determining \(p \).

Definition of Superharmonicity at a point \(p \in \bar{R} \).

Suppose a function \(U(z) \) in \(\bar{R} \). If \(U(p) > \frac{1}{2\pi} \int_{\partial V_{m,p}(q)} U(z) \frac{\partial G(z, p)}{\partial n} \, ds \) holds for the niveau curves of \(G(z, p) \), we say that \(U(z) \) is superharmonic in the weak sense at a point \(p \).

In what follows, we shall show that \(G(z, q) \) (\(z \) and \(q \in \bar{R} \)) defined as above, has the essential properties of the logarithmic potential in the plane. Now we have the following

Theorem 1. The Green's function in \(\bar{R} \) has the following properties:

1) \(G(p, p) = \infty \).
2) \(G(z, q) \) is lower semicontinuous in \(\bar{R} \) with respect to \(\delta \)-metric.
3) \(G(z, q) \) is superharmonic in the weak sense at every point of \(\bar{R} \).
4) \(G(p, q) = G(q, p) \).

Proof. 1) and 3) are clear by the definition of \(G(z, q) \).

Proof of 2). Suppose that \(\{p_i\} \) tends to \(p \) with respect to \(\delta \)-metric. Since \(G_{v_{m,p}}(p, q) = \frac{1}{2\pi} \int_{\partial V_{m,p}(q)} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds \), there exists a number \(n_0 \) for any given positive number \(\varepsilon \) such that

\[
G_{v_{m,p}}(p, q) \leq \frac{1}{2\pi} \int_{\partial V_{m,p}(q) \cap (R_N - R_0)} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds + \varepsilon, \text{ for } n \geq n_0.
\]

Here \((R_{n_0} - R_0) \cap \partial V_{m}(p) \) is composed of at most a finite number of
analytic curves. We make a narrow strip S in $R_{n_0+1} - R_0$ such that the interior of S contains $\partial V_m(p) \cap (R_{n_0} - R_0)$ and ∂S cuts $\partial V_m(p)$ orthogonally at the end points of $\partial V_m(p) \cap (R_{n_0} - R_0)$. We divide S into a finite number of narrow strips S_l ($l = 1, 2, \cdots, k$) so that ∂S_l intersects $\partial V_m(p)$ with angles being not equal to 0 or π and map S_l onto a rectangle: $0 \leq \text{Im} \xi \leq \delta$ (δ is sufficiently small), $-1 \leq \text{Re} \xi \leq 1$, on the ξ-plane so that every vertical line: $\text{Re} \xi = s$ ($-1 \leq s \leq 1$) intersects only once $\partial V_m(p_l)$ for $j = J_0$, where J_0 is a suitable number. This is possible, because $G(z, p_l)$ tend to $G(z, p)$ that is, $\partial V_m(p_l)$ tends to $\partial V_m(p)$ and the derivatives of $G(z, p_l)$ tend to those of $G(z, p)$ on $R_{n_0} - R_0$. We make a point α_j of $\partial V_m(p_l)$ correspond to a point α of $\partial V_m(p)$ so that $\text{Re} \alpha_j = \text{Re} \alpha$. Then we have

$$\lim_{j \to \infty} \left(\int_{\partial V_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} \right) \to \partial G(\alpha, p) \frac{\partial n}{\partial n}$$

because $\frac{\partial G(\alpha_j, p_l)}{\partial n} ds \geq 0$ and uniformly bounded in S, $\frac{\partial G(\alpha_j, p_l)}{\partial n} ds$ tends to $\partial G(\alpha, p) \frac{\partial n}{\partial n} ds$ and $G(\alpha_j, p_l) \to G(\alpha, p)$. Hence

$$\lim_{j \to \infty} 2\pi G_{V_m(p_l)}(p_l, q) = \lim_{j \to \infty} \left(\int_{\partial V_m(p_l)} G(z, q) \frac{\partial G(z, p)}{\partial n} \right) \frac{\partial n}{\partial n}$$

$$\geq \lim_{j \to \infty} \left(\int_{\partial V_m(p_l)} G(z, q) \frac{\partial G(z, p)}{\partial n} \right) \frac{\partial n}{\partial n} \geq \int_{\partial V_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} \frac{\partial n}{\partial n}$$

$$-\varepsilon = 2\pi G_{V_m(p)}(p, q) - \varepsilon,$$
whence by letting $\varepsilon \to 0$,
\[
\lim_{\varepsilon \to 0} G_{V_m(p)}(p, q, \varepsilon) \geq G_{V_m(p)}(p, q).
\]
Hence $G_{V_m(p)}(p, q)$ is lower semicontinuous at p for fixed m. Since $G_{V_m(p)}(p, q) \uparrow G(p, q)$, $G(p, q)$ is also lower semicontinuous at p. Therefore $G(z, q)$ is lower semicontinuous in \bar{R}.

Proof of 4). If p or q belongs to R, 4) is clear by (2). We suppose that both p and q belong to B. Let ξ and η be points in R. Then by (1) and (2) we have the following

\[
G(p, \eta) = G(\eta, p) = \frac{1}{2\pi} \int_{\partial V_m(p)} G(z, \eta) \frac{\partial G(z, \eta)}{\partial n} ds \quad \text{for} \quad \eta \notin V_m(p), \quad (4)
\]

\[
G(p, \eta) = G(\eta, p) \geq \frac{1}{2\pi} \int_{\partial V_m(p)} G(z, \eta) \frac{\partial G(z, \eta)}{\partial n} ds \quad \text{for} \quad \eta \in V_m(p). \quad (5)
\]

Since $G_{V_m(p)}(p, q) = \frac{1}{2\pi} \int_{\partial V_m(p)} G(\xi, q) \frac{\partial G(\xi, q)}{\partial n} ds$ and since $\{V_m(q)\}$ clusters at B as $n \to \infty$, there exists a number n for any given positive number ε, such that

\[
G_{V_m(p)}(p, q) - \varepsilon \leq \frac{1}{2\pi} \int_{\partial V_m(p)} G(\xi, q) \frac{\partial G(\xi, q)}{\partial n} ds,
\]

where $\partial V_m(p)$ is the part of $\partial V_m(p)$ outside of $V_n(q)$.

Suppose that ξ is on $\partial V_m(p)$, then $\xi \notin V_n(q)$, whence

\[
G(\xi, q) = G(q, \xi) = \frac{1}{2\pi} \int_{\partial V_m(q)} G(\eta, \xi) \frac{\partial G(\eta, q)}{\partial n} ds.
\]

Accordingly we have

\[
G_{V_m(p)}(p, q) - \varepsilon \leq \frac{1}{4\pi^2} \int_{\partial V_m(p)} \int_{\partial V_m(q)} G(\eta, \xi) \frac{\partial G(\eta, q)}{\partial n} ds \frac{\partial G(\xi, p)}{\partial n} ds \leq \frac{1}{4\pi^2} \int_{\partial V_m(p)} \int_{\partial V_m(q)} G(\eta, \xi) \frac{\partial G(\xi, q)}{\partial n} ds \frac{\partial G(\eta, p)}{\partial n} ds.
\]

Now by (4) and (5)

\[
\frac{1}{2\pi} \int_{\partial V_m(p)} G(\xi, \eta) \frac{\partial G(\xi, p)}{\partial n} ds \leq \frac{1}{2\pi} \int_{\partial V_m(p)} G(\xi, \eta) \frac{\partial G(\xi, p)}{\partial n} ds = G(\eta, p) = G(p, \eta) \quad \text{for} \quad \eta \notin V_m(p).
\]

\[
\frac{1}{2\pi} \int_{\partial V_m(p)} G(\xi, \eta) \frac{\partial G(\xi, p)}{\partial n} ds \leq \frac{1}{2\pi} \int_{\partial V_m(p)} G(\xi, \eta) \frac{\partial G(\xi, p)}{\partial n} ds \leq G(\eta, p) = G(p, \eta) \quad \text{for} \quad \eta \in V_m(p).
\]
On the other hand,
\[G_{V_n}(q, p) = \frac{1}{2\pi} \int_{\partial V_n(q)} G(p, \eta) \frac{\partial G(\eta, q)}{\partial n} \, ds. \]

Hence
\[G_{V_m}(p, q) \leq \frac{1}{4\pi^2} \int_{\partial V_m(p)} \left(\int_{\partial V_m(q)} G(\xi, \eta) \frac{\partial G(\eta, p)}{\partial n} \, ds \right) \frac{\partial G(\eta, q)}{\partial n} \, ds \leq \frac{1}{2\pi} \int_{\partial V_m(p)} G(\eta, p) \frac{\partial G(\eta, q)}{\partial n} \, ds = G_{V_n}(q, p). \]

Thus by letting \(\varepsilon \to 0 \),
\[G_{V_m}(p, q) \leq G_{V_n}(q, p). \]

Since the inverse inequality holds for the other pair of \(V_m(p) \) and \(V_n(q) \) and since \(G_{V_m}(p, q) \uparrow G(p, q) \) and \(G_{V_n}(q, p) \uparrow G(q, p) \), we have 4).

Transfinite Diameter. Let \(A \) be a \(\delta \)-closed subset of \(B \) (closed with respect to \(\delta \)-metric). We define the transfinite diameter of \(A \) of order \(n \) as follows:
\[1/\alpha D_n = \frac{1}{2\pi n C_2} \left(\inf_{p_2, p_1 \in A} \sum_{s \leq t, s = 1}^{n \times n} G(p_s, p_t) \right). \]

Then we have the following:

a) *From the definition, it is clear that \(A_i \supseteq A_j \) implies \(A_i D_n \supseteq A_j D_n. \)

b) *Put \(\bar{\Omega}_m = \bar{R} - R_m + \partial \Omega_m \) and let \(1/\alpha D_n = \frac{1}{2\pi n C_2} \left(\inf_{p_2} \sum_{p_1 \in \bar{\Omega}_m} G(p_s, p_t) \right). \)

Then every \(p_t \) is situated on \(\partial \Omega_m. \)

In fact,
\[\sum_{s \leq t} G(p_s, p_t) = \sum_{s \leq t} G(p_s, p_t) + \sum_{t \leq s} G(p_s, p_t). \]

The sum of the first term does not depend on \(p_s \) and by 2) of Theorem 1, \(\sum_{t \leq s} G(p_s, p_t) = U(p_s) \) is superharmonic at every point \(p_s \) of \(\bar{R} \) for fixed \(p_t. \) We make \(V_M(p_i) \) correspond to every point \(p_i \) such that \(U(p_i) \geq M \) in \(V_M(p_i) \), where \(M \geq \min U(p_s) + 1. \) Since \(U(p_i) \) is \(\delta \)-lower semicontinuous, \(U(p_i) \) attains its the minimum \(m_0 \) at \(z_0 \) on a \(\delta \)-closed set \(\bar{\Omega}_m \) (\(\bar{\Omega}_m \) is the closure of \(\Omega_m \)). We show that \(z_0 \in \partial \Omega_m. \) \(U(p_i) \) does not attain its minimum in \(\{ \bar{\Omega}_m - \sum_{t \leq s} V_M(p_t) \} \cap R \) by the minimum principle, because \(U(p_i) \) is harmonic and bounded in \(\{ \bar{\Omega}_m - \sum_{t \leq s} V_M(p_t) \} \cap R \) and \(R^* \) is a Riemann surface with null-boundary. Next, suppose, \(U(z_0) \leq m_0 = \min_{p_s \in \partial \Omega_m} U(p_s) \) \((z_0 \in B). \) Then by 3) of Theorem 1, \(U(z_0) \geq \frac{1}{2\pi} \int_{\partial V_M(z_0)} U(z) \)
where M' is large so that $V_M'(z) = E[z \in R : G(z, z) \geq M']$ is contained in Ω_m, whence there exists at least one point z' in $\Omega_m \cap R$ such that $U(z') \leq m$. This contradicts the minimum principle. Hence $U(p)$ attains its minimum on $\partial \Omega_m$. Therefore every p_i is on $\partial \Omega_m$.

We can discuss mass distributions on R by $G(z, p)$, that is, the potential of an unit mass at p is given by $G(z, p)$ and we can define also the energy integral of mass distributions as in space. In our case, since $\partial \Omega_m$ is compact, it is easily proved that there exists the unique unit mass distribution μ on Ω_m called the equilibrium distribution, whose energy $I(\mu)$ is minimal and that whose potential $U(z) = \int G(z, p) \, d\mu(p)$ is a constant on $\partial \Omega_m$, that is, $U(z) = \omega_m(z)$, where $\omega_m(z)$ is a harmonic function in $R_m - R_0$ such that $\omega_m(z) = 0$ on ∂R_m, $\omega_m(z) = M_m$ on ∂R_m and $\int_{\partial R_m} \omega_m(z) \, ds = 2\pi$. Moreover, it is easily proved by (b) as in space that the transfinite diameter $\delta_m = \lim_{m \to \infty} \delta_m D_n$ is equal to $1/I(\mu) = 1/2\pi M_m$.

Given a system of n points p_1, p_2, \ldots, p_n on A, we can choose an $(n+1)_s$ point $p (p = p(p_1, p_2, \ldots, p_n))$ on A such that

$$V(p) = (\sum_{i=1}^n G(p, p_i))/2\pi n$$

is minimal, because the above function is δ–lower semicontinuous on A. Let V_n be the least upper bound of the minimum above defined as p_1, p_2, \ldots, p_n vary on A. Then there exists a system $(p_1^*, p_2^*, \ldots, p_n^*)$ such that

$$V(p, p_1^*, p_2^*, \ldots, p_n^*) \geq V_n - \frac{1}{2\pi n}$$

for p on A.

Denote by $V(z)$ the potential

$$V(z) = \frac{1}{2\pi n} \left(\sum_{i=1}^n G(z, p_i^*) \right).$$

This is the potential of a certain distribution of equal point mass on A of total mass unity and it is clear that $V(z) \geq V_n - \frac{1}{2\pi n}$ for all points of A admitting ∞ as a possible value of either member. Furthermore, since $V(z)$ is δ–lower semicontinuous, $\lim_{z_j \to q \in A} V(z_j) \geq A V_n - \frac{1}{2\pi n}$ for every sequence $\{z_j\}$ tending to A with respect to δ–metric.

Now, since $G(p_i, p_j) = G(p_j, p_i)$,

$$\left(\frac{n+1}{2} \right) D_{n+1} \leq \frac{1}{2\pi} \min_{p_{i\neq j}} \left(\sum_{i=1}^{n+1} G(p_i, p_j) \right) \leq 2 \cdot \frac{1}{2\pi} \sum_{k=1}^{n+1} \left(\sum_{i=1}^{n+1} G(p_i, p_k) \right).$$
Hence \(A V_n \geq 1/A D_{n+1} \), whence
\[
V(z) \geq 1/A D_{n+1} - \frac{1}{2\pi n}
\]
on \(A \).

Since \(A \subset \Omega_m \) for every \(m \) and \(\lim_{m \to \infty} M_m = \infty \).
\[
\infty = 1/A D = \lim_{m \to \infty} 1/A D_n = \lim_{m \to \infty} \left(\sum_{i=1}^{n} G(p_i) / n G_e \right).
\]

Therefore, for any given large number \(M \), we can find a system of \(n(M) \) points \(p_1, p_2, \ldots, p_n \) such that the function
\[
V(z) = \frac{1}{2\pi n} \left(\sum_{i=1}^{n} G(z, p_i) \right) \geq M
\]
on \(A \).

Theorem 2. Let \(A \) be a \(\delta \)-closed subset of \(B \). Then there exists a potential \(U(z) \) such that
1. \(U(z) \) is harmonic in \(R \).
2. \(U(z) = 0 \) on \(\partial R_0 \).
3. The flux of \(U(z) \) along \(\partial R_0 \) is \(2\pi \).
4. \(\lim_{z \to A} U(z) = \infty \).

Proof. Let \(N \) be an integer larger than 3. Then since \(\lim_{n \to \infty} A D_n = 0 \), there exists, for any positive integer \(m, n(N, m) \) number of points \(p_1, p_2, \ldots, p_n \) such that
\[
V^m(z) = \frac{1}{2\pi n} \left(\sum_{i=1}^{n} G(z, p_i) \right) \geq M
\]
on \(A \).

Put \(\sum_{n=1}^{\infty} V^m(z)/2^m = U(z) \). Then, clearly \(U(z) \) is the function required.

For an \(F_\sigma \) set of \(R \), the capacity of \(F_\sigma \) is defined usually. Let \(A \) be an \(F_\sigma \) subset of \(R \) of capacity zero. Then both \(A \cap R \) (\(R \) is open) and \(A \cap B \) are \(F_\sigma \) sets. Hence we have at once the following

Corollary. Let \(A \) be an \(F_\sigma \) subset of \(R \) of capacity zero. Then there exists a potential \(U(z) \) satisfying the four conditions of Theorem 2.

Let \(\{G_n\} \) be a decreasing sequence of non compact subsurfaces of \(R \) with compact relative boundaries \(\{\partial G_n\} \) such that \(\bigcap_{n \geq 1} G_n = 0 \). Two such sequences \(\{G_n\} \) and \(\{G_n'\} \) are called equivalent if for given \(m \), there exists a number \(n \) such that \(G_m \supset G_n' \) and \(G_m' \supset G_n \). We consider that any equivalent sequences determine an unique ideal boundary component. Denote the set of all the ideal components by \(B \). A topology is introduced on \(R + B + \partial R_0 \) by the usual manner and it is easily seen that \(R + B + \partial R_0 \) and \(B \) are closed and compact. Let \(A \) be a closed subset of \(B \) and let \(A \) be the set of ideal boundary points on \(A \). Then since \(\{G(z, p_i)\} \) for \(p_i \in A \) is a normal family, \(A \) is also a \(\delta \)-closed set. Hence we have

Theorem 3. Let \(A \) be the subset of \(B \) on a closed subset \(A \) of \(B \).
Then there exists a harmonic function $U(z)$ satisfying the conditions of Theorem 2 and moreover 5°. $\lim_{z \to \partial A} U(z) < \infty$.

It is sufficient to prove that the condition 5° is satisfied, since the other four conditions are clearly satisfied. Let q be a point of the complementary set of A. Then there exists a component $G(q)$ of $R - R_m$ (m is a suitable number with a compact relative boundary $\partial G(q)$ such that $G(q) \ni q$ and $G(q) \cap A = 0$. Then $\max_{z \in \partial G(q)} U(z) \leq M$, which implies $\sup_{z \in \partial G(q)} U(z) \leq M$, by the maximum principle, because $U(z)$ is harmonic and bounded in $G(q)$ and R^* is a Riemann surface with a null-boundary.

Corollary. Let A be the subset of R on an F_σ subset of $R + B$ of capacity zero. Then there exists a harmonic function $U(z)$ satisfying the conditions of Theorem 3.

R. S. Martin defined the ideal boundary points by the use of the function $K(z, p) = \frac{G(z, p)}{G(0, p)}$, where 0 is a fixed point of R. However, in case R^* is a Riemann surface with null-boundary, since $G(z, 0) \geq \delta > 0$ in $R - R_s$, $K(z, p)$ is a multiple of $G(z, p)$, where $R_s \subseteq 0$. $G(z, p)$ plays consequently the same role as $K(z, p)$. Hence Martin's assertions hold even in our case.

Let $U(z)$ be a positive harmonic function in R vanishing on ∂R_s. If $U(z) \geq V(z) \geq 0$ implies $V(z) = KU(z)$ for any harmonic function $V(z)$ in R, $U(z)$ is called a minimal function. Martin proved that every minimal function is a multiple of some $G(z, p)$ ($p \in B$) and that every positive harmonic function vanishing on ∂R_s is represented uniquely by an integral form of minimal functions.

The condition 5° of Theorem 3 is not always satisfied under the assumptions of Theorem 2, that is, a positive harmonic function $U(z)$ such that $U(z) = \infty$ on a δ-closed set A and $U(z) < \infty$ except on A does not always exist.

Example. Suppose that there exist n minimal function $G(z, p_i)$ ($i = 1, 2, \ldots, n$) with pole p_i on a boundary component p. Then every Green's function $G(z, p^*)$ with pole p^* on p, being not minimal, must be a linear from $G(z, p^*) = \sum_{i=1}^{n} c_i G(z, p_i)$ ($c_i \geq 0$, $\sum_{i=1}^{n} c_i = 1$). Put $A = \bigcup_{i=1}^{n} p_i$. Then clearly A is a δ-closed set and $\delta(p^*, A) > 0$. Denote by $U(z)$ a positive harmonic function in Theorem 2, that is, $U(z) = 0$ on ∂R_s, $\int_{\partial R_s} \frac{\partial U(z)}{\partial n} ds = 2\pi$ and $U(z) = \infty$ at every point of A. Then

5) See 4).

6) Clearly, there exists a fundamental sequence $\{p_i^*\}$ determining p^*.
Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces, I

\[U(z) = \int G(z, q_a) \, d\mu(q_a) \quad (q_a \in B). \]

By the symmetry of the Green's function,

\[U(p^*) = \int G(p^*, q_a) \, d\mu(q_a) = \int \sum_{i=1}^{n} c_i G(q_{a_i}, p_i) \, d\mu(q_a) = \sum_{i=1}^{n} c_i U(p_i). \]

Hence \(U(z) = \infty \) on \(A \) implies \(U(p^*) = \infty \). Therefore any positive harmonic function that is infinite at every point of \(A \) must be infinite at any point of \(B \) lying on \(p \). Thus there exists no positive harmonic function infinite only on \(A \).

As an application to classification of types of Riemann surfaces, we have

Theorem 4. \(R^* \) is a Riemann surface with null-boundary, if and only if there exists a harmonic function \(U(z) \) with one negative logarithmic singularity at a point of \(R^* \) such that \(U(z) \) has limit \(\infty \) as \(z \) tends to \(B \).

Proof. If the function above stated exists, \(R^* \) is clearly a Riemann surface with null-boundary and it is easy to construct the function in this theorem from the function in Theorem 3, by putting \(A = B \) and by the alternating process of Schwarz.

Many other applications, for instance, to Nevanlinna's first and second fundamental theorems, will be omitted here.

(Received April 30, 1956)