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Abstract
Let G be a connected reductive group overFq, where q is large enough and

the center ofG is connected. We are concerned with Lusztig’s theory ofcharacter
sheaves, a geometric version of the classical character theory of the finite group
G(Fq). We show that under a certain technical condition, the restriction of a
character sheaf to itsunipotent support(as defined by Lusztig) is either zero or an
irreducible local system. As an application, the generalized Gelfand-Graev characters
are shown to form aZ-basis of theZ-module of unipotently supported virtual
characters ofG(Fq) (Kawanaka’s conjecture).

1. Introduction

Let G be a connected reductive algebraic group overF̄p, an algebraic closure of
the finite field with p elements wherep is a prime. Letq be a power ofp and as-
sume thatG is defined over the finite fieldFq � F̄p, with corresponding Frobenius
map F : G ! G. Then it is an important problem to determine and to understand
the values of the irreducible characters (in the sense of Frobenius) of the finite group
GF . For this purpose, Lusztig [12] has developed the theory ofcharacter sheaves;
see [15] for a general overview. This theory produces some geometric objects overG
(provided by intersection cohomology with coefficients in̄Ql , wherel 6= p is a prime)
from which the irreducible characters ofGF can be deduced for anyq. In this way,
the rather complicated patterns involved in the values of the irreducible characters of
GF are seen to be governed by geometric principles.

In this paper, we discuss an example of this interrelation between geometric prin-
ciples and properties of character values. On the geometricside, we will be concerned
with the restriction of a character sheafA to the unipotent variety ofG. Under some
restriction on p, Lusztig [14] has associated toA a well-defined unipotent classOA

of G, called its unipotent support. We will be interested in the restriction ofA to
OA. Under a certain technical condition (formulated in [4], following a suggestion of
Lusztig) the restriction ofA to OA is either zero or an irreducibleG-equivariant local
system onOA (up to shift); see Section 3. The verification of that technical condition
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can be reduced to a purely combinatorial problem, involvingthe induction of characters
of Weyl groups, the Springer correspondence and the data on families of characters in
Chapter 4 of Lusztig’s book [10]. The details of the somewhatlengthy case-by-case
verification are worked out in the second author’s thesis [6]; the main ingredients will
be explained in Section 2.

On the character-theoretic side, we will consider thegeneralized Gelfand-Graev
representations(GGGR’s for short) introduced by Kawanaka [7], [8]. In Section 4, as-
suming thatp, q are large and the center ofG is connected, we deduce that Kawanaka’s
conjecture [9] holds, that is, the characters of the variousGGGR’s of GF form a
Z-basis of theZ-module of unipotently supported virtual characters ofGF . As a fur-
ther application, in Proposition 4.6, we obtain a new characterisation of GGGR’s in
terms of vanishing properties of their character values.

2. The Springer correspondence, families and induction

In this section, we deal with the combinatorial basis for thediscussion of the
unipotent support of character sheaves. We keep the basic assumptions of the intro-
duction: G is a connected reductive algebraic group overF̄p; we assume throughout
that p is a good prime forG and that the center ofG is connected. LetB � G be a
Borel subgroup andT � B a maximal torus. LetW = NG(T)=T be the Weyl group of
G, with set of generatorsS determined by the choice ofT � B.

Let Irr(W) be the set of irreducible characters ofW (over an algebraically closed
field of characteristic 0). The Springer correspondence associates with eachE 2 Irr(W)
a pair (u,  ) where u 2 G is unipotent (up toG-conjugacy) and is an irreducible
character of the group of components AG(u) = CG(u)=CG(u)Æ; see [10, §13.1]. We
write this correspondence asE$ (u,  ).

Now we can define three invariantsaE, bE and dE for E 2 Irr(W).
• bE is the smallesti > 0 such thatE appears with non-zero multiplicity in thei -th
symmetric power of the reflection representation ofW; see [10, (4.1.2)].
• aE is the largesti > 0 such thatui divides the generic degreeDE(u) 2 Q[u]
defined in terms of the generic Iwahori-Hecke algebra overQ[u1=2, u�1=2]; see [10,
(4.1.1)].
• dE is dimBu whereBu is the variety of Borel subgroups containing a unipotent
u 2 G such thatE$ (u,  ) for some 2 Irr(A G(u)); see [10,§13.1].
We will be interested in several compatibility properties of these invariants.

Lemma 2.1. We have aE 6 dE 6 bE for all E 2 Irr(W).

Proof. See [14, Corollary 10.9] for the first inequality and [18, §1.1] for the sec-
ond. The inequalityaE 6 bE was first observed by Lusztig; see [10, 4.1.3].

Recall that Irr(W) is partitioned intofamiliesand that each family contains a unique
special E2 Irr(W), that is, a character such thataE = bE; see [10, 4.1.4]. Furthermore,
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in [10, Chapter 4], Lusztig associates with any familyF � Irr(W) a finite groupGF ,
case-by-case for each type of finite Weyl group. (The groupsGF form a crucial ingre-
dient in the statement of the Main Theorem 4.23 of [10].) IfG is simple modulo its
center, thenGF

�= S3, S4, S5 or (Z=2Z)e for somee> 0.
Now let G� be the Langlands dual ofG, with Borel subgroupB� and maximal

torus T� � G�. Let W� = NG�(T�)=T� be the Weyl group ofG�, with generating set
S� determined byT� � B�. We can naturally identifyW andW�. Note thataE andbE

are independent of whether we regardE as a representation ofW or of W�. However,
it does make a difference as far asdE is concerned.

Let s 2 G� be semisimple andWs be the Weyl group of CG�(s). (Note that CG�(s)
is a connected reductive group since the center ofG is connected.) Replacings by a
conjugate, we may assume thats2 T�. ThenWs is a subgroup ofW� and, hence, may
be identified with a subgroup ofW. So we can consider the induction of characters
from Ws to W.

Proposition 2.2. Let s2 G� be semisimple andF � Irr(Ws) be a family. If E0

is the special character inF , then we have

IndW
Ws

(E0) = E0
0 + a combination ofẼ 2 Irr(W) with bẼ > dẼ > bE0,

where E00 2 Irr(W) is such that bE0
0

= dE0
0

= bE0; furthermore, E0
0 $ (u, 1) under the

Springer correspondence, where1 stands for the trivial character.

Proof. See [14,§10] and [10,§13.1].

We are now looking for a condition which guarantees that allẼ 6= E0
0 occurring

in the decomposition of IndWWs
(E0) havedẼ > bE0. Following a suggestion of Lusztig,

such a condition has been formulated in [4, 4.4]. In order to state it, we introduce the
following notation.

Let SG be the set of all pairs (s,F ) wheres 2 G� is semisimple (up toG�-conjugacy)
andF � Irr(Ws) is a family. Following [10,§13.3], we define a map

8G : SG ! funipotent classes ofGg,
as follows. Let (s, F ) 2 SG and E0 2 F be special. Then consider the induction
IndW

Ws
(E0) and let E0

0 be as in Proposition 2.2. Now defineO = 8G(s, F ) to be the
unipotent class containingu where E0

0$ (u, 1) under the Springer correspondence.

Proposition 2.3 (Hézard [6]). Assume that s2 G� is semisimple and isolated,
that is, CG�(s) is not contained in a Levi complement of any proper parabolicsubgroup
of G�. Let F � Irr(Ws) be a family and assume that

jGs,F j = jAG(u)j where u2 O = 8G(s, F ).(�)
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Then the following sharper version ofProposition 2.2holds: If E0 is the special char-
acter in F , then we have

IndW
Ws

(E0) = E0
0 + a combination ofẼ 2 Irr(W) with dẼ > bE0.

Proof. In the setting of Proposition 2.2, let us write

IndW
Ws

(E0) = E0
0 + E00

0 + a combination ofẼ 2 Irr(W) with dẼ > bE0

where E00
0 is the sum of allẼ 2 Irr(W) such thatdẼ = bE0, Ẽ 6= E0

0 and Ẽ appears in
IndW

Ws
(E0). Thus, we must show thatE00

0 = 0 if (�) holds. By standard arguments, this
can be reduced to the case whereG is simple modulo its center.

The reflection subgroups ofW which can possibly arise asWs for some semi-
simple elements 2 G� are classified by a standard algorithm; see [2].

Now, if G is of exceptional type,E00
0 can be computed in all cases using explicit

tables for the Springer correspondence [18] and induce/restrict matrices for the charac-
ters of Weyl groups; see [6,§2.6] where tables specifyingE00

0 can be found for each
type of G. By inspection of these tables, one checks that if (�) holds, thenE00

0 = 0.
If G is of classical type, the induction of characters of Weyl groups and the Springer

correspondence can be described in purely combinatorial terms, involving manipula-
tions with various kinds of symbols ([11,§13]). The condition (�) can also be formu-
lated in purely combinatorial terms. Using this information, it is then possible to check
that, if (�) holds, thenE00

0 = 0. For the details of this verification, see [6, Chapter 3].
We remark that, forG of type Bn, Lusztig [13, 4.10] has shown thatE00

0 = 0 even
without assuming that (�) holds.

Finally, the following result settles the question of when condition (�) is actually
satisfied.

Proposition 2.4 (Lusztig [10, 13.3, 13.4]1; see also Hézard [6]).Let O be a unip-
otent class. Then

jGs,F j 6 jAG(u)j for all (s, F ) 2 SG such that u2 O = 8G(s, F ).

Furthermore, there exists some(s, F ) where s is isolated and we have equality. If O

is F-stable(where F is a Frobenius map on G), then such a pair(s,F ) can be chosen
to be F-stable, too.

1Note added January 2008: A new recent preprint by Lusztig [16] provides a detailed proof of the
statements in [10, 13.3, 13.4].
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Proof. Again, this can be reduced to the case whereG is simple modulo its cen-
ter, where the assertion is checked case-by-case along the lines of the proof of Propo-
sition 2.3. The existence of suitable semisimple elementss 2 G� with centralisers of
the required type is checked using the tables in [1], [2] (forG of exceptional type)
or using explicit computations with suitable matrix representations (forG of classical
type). Again, see [6] for more details.

It would be interesting to find proofs of Propositions 2.3 and2.4 which do not
rely on a case-by-case argument.

3. Unipotent support

Recall thatG is assumed to have a connected center and that we are working over
a field of good characteristic. Now let̂G be the set of character sheaves onG (up to
isomorphism) overQ̄l where l is a prime, l 6= p. By Lusztig [12, §17], we have a
natural partition

Ĝ =
a

(s,F)2SG

Ĝs,F where Ĝs,F
1-1 !M(GF ).

Here, as in Section 2,GF is the finite group associated to a familyF � Irr(Ws) as
in [10, Chapter 4]. Furthermore, for any finite group0, the setM(0) consists of all
pairs (x, � ) (up to conjugacy) wherex 2 0 and � 2 Irr(C0(x)).

Also recall that we have a natural map8G : SG ! funipotent classes ofGg, de-
fined as in [10,§3.3]. From now on, we assume thatp is large enough, so that the
main results of Lusztig [14] hold. (Here, “large enough” means that we can operate
with the Lie algebra ofG as if we were in characteristic 0, e.g., we can use exp to
define a morphism from the nilpotent variety in the Lie algebra to the unipotent vari-
ety of G.)

Theorem 3.1 (Lusztig [14, Theorem 10.7]). Let (s, F ) 2 SG and O = 8G(s, F )
be the associated unipotent class. Then the following hold.
(a) There exists some A2 Ĝs,F and an element g2 G with Jordan decomposition
g = gsgu = gsgu (where gs is semisimple and gu 2 O) such that Ajfgg 6= 0.
(b) For any A2 Ĝs,F , any unipotent classO0 6= O with dimO0 > dimO, and any
g0 2 G with unipotent part inO0, we have Ajfg0g = 0.

Consequently, the classO is called theunipotent supportfor the character sheaves
in Ĝs,F . Note that it may actually happen thatAjO = 0 for A 2 Ĝs,F .

Given a unipotent classO, we denote byIO the set of irreducibleG-equivariant
Q̄l -local systems onO (up to isomorphism).
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Theorem 3.2 (Geck [4, Theorem 4.5]; see also the remarks in Lusztig [13, 1.6]).
Let s 2 G� be semisimple andF � Irr(Ws) be a family. Let O = 8G(s, F ) be the
associated unipotent class and assume that condition(�) in Proposition 2.3is satis-
fied. Then, for any A2 Ĝs,F , the restriction AjO is either zero or an irreducible
G-equivariant local system(up to shift). Furthermore, the map A7! AjO defines a
bijection from the set of all A2 Ĝs,F with AjO 6= 0 onto IO.

(Note: In [4, Theorem 4.5], the conclusion of Proposition 2.3, i.e., the validity of
the sharper version of Proposition 2.2, was added as an additional hypothesis; this can
now be omitted.)

Now let q be a power ofp and assume thatG is defined overFq � F̄p, with cor-
responding Frobenius mapF: G! G. We translate the above results to class functions
on the finite groupGF .

If A is a character sheaf onG then its inverse imageF�A under F is again a
character sheaf. There are only finitely manyA such thatF�A is isomorphic toA;
such a character sheaf will be calledF-stable. LetĜF be the set ofF-stable character
sheaves. For anyA 2 ĜF we choose an isomorphism� : F�A

��! A and we form the
characteristic function�A,� . This is a class functionGF ! Q̄l whose value atg is
the alternating sum of traces of� on the stalks atg of the cohomology sheaves ofA.
Now � is unique up to scalar hence�A,� is unique up to scalar. Lusztig [12,§25] has
shown that

f�A,� j A 2 ĜF g is a basis of the vector space of class functionsGF ! Q̄l .

Let O be an F-stable unipotent class ofG. We denote byIF
O the set of allE 2 IO

such thatE is isomorphic to its inverse imageF�E under F . For any suchE , we can
define a class functionYE : GF ! Q̄l as in [12, (24.2.2)–(24.2.4)]. We haveYE (g) = 0

for g =2 OF and YE (g) = Trace( , Eg) for g 2 OF , where : F�E ��! E is a suitably
chosen isomorphism. On the level of characteristic functions, Theorem 3.2 translates
to the following statement (see [13,§2, §3], where such a translation is discussed in
a more general setting):

Corollary 3.3. Let (s, F ) 2 SG be F-stable andO = 8G(s, F ) be the associated
unipotent class(which is F-stable). Assume that condition(�) in Proposition 2.3holds.
Then, for any F-stable A2 Ĝs,F , we have either�A,�(g) = 0 for all g 2 OF or � can
be normalized such that�A,�(g) = YE (g) for all g 2 OF whereE = AjO.

Now let us consider the irreducible characters ofGF . Lusztig [10] has shown that
we have a natural partition

Irr(GF ) =
a

(s,F)2SF
G

Irrs,F (GF ).
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Furthermore, each piece Irrs,F (GF ) in this partition is parametrized by a “twisted” ver-
sion of the setM(GF ); see [10, Chapter 4]. Lusztig [12] gave a precise conjecture
about the expression of the characteristic functions ofF-stable character sheaves as
linear combinations of the irreducible characters ofGF . Since we are assuming that
G has a connected center (andp is large), this conjecture is known to hold by Shoji
[17]. In particular, the following statement holds:

Proposition 3.4 (Shoji [17]). Let (s, F ) 2 SF
G and A2 Ĝs,F be F-stable. Then�A,� is a linear combination of the irreducible characters inIrrs,F (GF ).

We can now deduce the following result, whose statement onlyinvolves the values
of the irreducible characters ofGF , but whose proof relies in an essential way on the
above results on character sheaves.

Corollary 3.5. Let O be an F-stable unipotent class and u1, : : : , ud be repre-
sentatives for the GF -conjugacy classes contained inO. Let (s, F ) 2 SG be F-stable
such thatO = 8G(s, F ) and condition(�) in Proposition 2.3holds. Then there exist�1, : : : ,�d 2 Irrs,F (GF ) such that the matrix(�i (u j ))16i , j6d has a non-zero determinant.

Proof. By the proof of [12, 24.2.7], there are preciselyd irreducibleG-equivariant
local systemsE1,:::,Ed on O (up to isomorphism) which are isomorphic to their inverse
image underF ; furthermore, the matrix (YEi (u j ))16i , j6d is non-singular.

By Theorem 3.2, we can findA1, : : : , Ad 2 Ĝs,F such thatAi jO = Ei for all i .
Since eachEi is isomorphic to its inverse image underF , the same is true forAi as
well. (Indeed, since (s, F ) is F-stable, we haveF�Ai 2 Ĝs,F for all i ; furthermore,
F�Ai jO �= F�Ei

�= Ei . So we must haveF�Ai
�= Ai by Theorem 3.2.) By Corol-

lary 3.3, we have�Ai ,�i = YEi for all i (where�i is normalized suitably). It follows
that the matrix (�Ai ,�i (u j ))16i , j6d has a non-zero determinant.

By Proposition 3.4, every�Ai ,�i can be expressed as a linear combination of the
characters in Irrs,F (GF ). Hence there must exist�1, : : : , �d 2 Irrs,F (GF ) such that the
matrix (�i (u j ))16i , j6d has a non-zero determinant.

4. Kawanaka’s conjecture

Kawanaka [8] has shown that, assuming we are in good characteristic, one can
associate with every unipotent elementu 2 GF a so-calledgeneralized Gelfand-Graev
representation0u (GGGR for short). They are obtained by inducing certain irreducible
representations from unipotent radicals of parabolic subgroups of GF . At the extreme
cases whenu is trivial or a regular unipotent element we obtain the regular represen-
tation of GF or an ordinary Gelfand-Graev representation, respectively. Subsequently,
assuming thatp, q are large, Lusztig [14] gave a geometric interpretation of GGGR’s
in the framework of the theory of character sheaves.
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Conjecture 4.1 (Kawanaka [7, (3.3.1)]). The characters of the various GGGR’s
of GF form aZ-basis of theZ-module of unipotently supported virtual characters of GF .

By Kawanaka [9, Theorem 2.4.3], the conjecture holds if the center of G is con-
nected andG is of type An or of exceptional type. In this section, assuming thatp, q
are large enough, we will show that it also holds forG of classical type.

Given a unipotent elementu 2 GF , denote by
u the character of the GGGR0u.
The usual hermitian scalar product for class functions onGF will be denoted byh , i.
The following (easy) result provides an effective method for verifying that the above
conjecture holds.

Lemma 4.2. Let u1, : : : , un be representatives for the conjugacy classes of unipo-
tent elements in GF . Assume that there exist virtual characters�1, : : : , �n of GF such
that the matrix of scalar products(h�i , 
u j i)16i , j6n is invertible overZ. ThenConjec-
ture 4.1holds.

Proof. Since the above matrix of scalar products is invertible, 
u1, : : : , 
un are
linearly independent class functions onGF . Consequently, they form a basis of the
Q̄l -vectorspace of unipotently supported class functions onGF . In particular, given any
unipotently supported virtual character� of GF , we can write� =

Pn
i =1 a j 
 j where

a j 2 Q̄l , and it remains to show thata j 2 Z for all j .
To see this, consider the scalar products of� with the virtual characters�i . We

obtain
P

j a j h�i ,
 j i = h�i ,�i 2 Z for all i = 1,:::,n. Since the matrix of scalar products
(h�i , 
 j i) is invertible overZ, we can invert these equations and conclude thata j 2 Z
for all j , as desired.

Let DG be the Alvis-Curtis-Kawanaka duality operation on the character ring of
GF . For any� 2 Irr(GF ), there is a sign"� = f�1g such that

�� := "�DG(�) 2 Irr(GF ).

The following result will be crucial for dealing with groupsof classical type. We as-
sume from now on that the center ofG is connected and thatp, q are large, so that
the results in Section 3 can be applied.

Proposition 4.3. Let O be an F-stable unipotent class and u1, : : : , ud be repre-
sentatives for the GF -conjugacy classes contained inO. Let (s, F ) 2 SG be F-stable
such thatO = 8G(s, F ) and condition(�) in Proposition 2.3holds.

Assume thatGF is abelian. Then there exist�1, : : : , �d 2 Irrs,F (GF ) such thath��i , 
u j i = Æi j for 16 i , j 6 d.
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Proof. The following argument is inspired by the proof of [3,Proposition 5.6].
By [14, Theorem 11.2] and the discussion in [5, Remark 3.8], we have

dX
i =1

[A G(ui ) : AG(ui )
F ]h��, 
ui i =

jAG(u1)j
n� for any � 2 Irrs,F (GF ),

where n� > 1 is an integer determined as follows; see [10, 4.26.3]. LetE0 2 Irr(Ws)
be the special character inF . Then

�(1) =�n�1� qaE0 N where N is an integer,N � 1 modq;

note also thatn� is divisible by bad primes only.
Now, Lusztig [10, 4.26.3] actually gives a precise formula for the integern� , in

terms of a certain Fourier coefficient. In the case whereGF is abelian, this Fourier
coefficient evaluates tojGF j�1. Thus, we haven� = jGF j�1. So, since (�) is assumed
to hold, we obtain

dX
i =1

[A G(ui ) : AG(ui )
F ]h��, 
ui i = 1 for any � 2 Irrs,F (GF ).

Now note that each term [AG(ui ) : AG(ui )F ] is a positive integer and each termh��,
ui i
is a non-negative integer. It follows that, given� 2 Irrs,F (GF ), there exists a unique
i 2 f1, : : : , dg such thath��, 
ui i = 1 andh��, 
i 0i = 0 for i 0 2 f1, : : : , dg n fi g. Thus,
we have a partition Irrs,F (GF ) = I1 q I2q � � � q Id such that

h��, 
ui i =

�
1 if � 2 I i ,
0 if � 2 I j where j 6= i .

Assume, if possible, thatIr = ∅ for somer 2 f1,:::,dg. This means thath�, DG(
ur )i =hDG(�), 
ur i = 0 for all � 2 Irrs,F (GF ). Thus, by the definition of the scalar product,
we have

0 =
1jGF j

X
g2GF

�(g)DG(
ur )(g) for all � 2 Irrs,F (GF ).

Let g 2 GF and assume that the corresponding term in the above sum is non-zero.
First of all, sinceDG(
ur ) is unipotently supported,g must be unipotent. LetO0 be
the conjugacy class ofg. By [14, 6.13 (i) and 8.6], we haveDG(
ur )(g) = 0 unless
O is contained in the closure ofO0. Furthermore, by [14, Theorem 11.2], we have�(g) = 0 unlessO0 = O or dimO0 < dimO. Hence, to evaluate the above sum, we
only need to letg run over all elements inOF . Thus, we have

0 =
dX

j =1

1jCGF (u j )j�(u j )DG(
ur (u j )) for all � 2 Irrs,F (GF ).
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In particular, this holds for the characters�1, : : : , �d in Corollary 3.5. The invertibility
of the matrix of values in Corollary 3.5 then implies that DG(
ur )(u j ) = 0 for 16 j 6
d. Thus, the restriction of DG(
ur ) to OF is zero. Now, the relations in [4, (2.4a)]
(which are formally deduced from the main results in [14]) imply that hDG(
ur ), YEi
equalsYE (ur ) times a non-zero scalar, for anyE 2 IF

O. Hence, we haveYE (ur ) = 0
for any E 2 IF

O. However, this contradicts the fact that the matrix of values (YE (u j ))
is invertible (see the remarks at the beginning of the proof of Corollary 3.5). This
contradiction shows that we haveI i 6= ∅ for all i . Now choose�i 2 I i for 16 i 6 d.
Then we haveh��i , 
u j i = Æi j for 16 i , j 6 d, as desired.

REMARK 4.4. In the setting of Proposition 4.3, let us drop the assumption that
GF is abelian and assume instead thatGF is isomorphic toS3, S4 or S5. (These
cases occur whenG is simple modulo its center and of exceptional type.) Then, by
the Main Theorem 4.23 of [10], we have a bijection Irrs,F (GF )$M(GF ).

Let u1, : : : , ud be representatives for theGF -conjugacy classes contained inOF .
Since condition (�) in Proposition 2.3 is assumed to hold, we can identifyM(GF )
with the set of all pairs (ui , � ) where 16 i 6 d and � 2 Irr(A G(ui )F ). Thus, via the
above-mentioned bijection, we have a parametrization

Irrs,F (GF ) = f�(ui ,� ) j 16 i 6 d, � 2 Irr(A G(ui )
F )g.

On the other hand, Kawanaka [8], [9] obtained explicit formulas for the values of the
characters of the GGGR’s (forG of exceptional type). Using these formulas, one can
check that

h��ui ,� , 
u j i =

�� (1) if i = j ,
0 otherwise.

Thus, setting�i := �(ui ,1) for 1 6 i 6 d (where 1 stands for the trivial character), we
see that the conclusion of Proposition 4.3 holds in these cases as well.

Theorem 4.5. Recall our standing assumption that p,q are large enough and the
center of G is connected. Then Kawanaka’sConjecture 4.1holds.

Proof. By standard reduction arguments, we can assume without loss of gener-
ality that G is simple modulo its center. IfG is of type An or of exceptional type,
the assertion has been proved by Kawanaka [9, Theorem 2.4.3], using his explicit for-
mulas for the character values of GGGR’s. The following argument covers these cases
as well.

Let O1, : : : , ON be the F-stable unipotent classes ofG, where the numbering is
chosen such that dimO1 6 � � � 6 dimON . By Proposition 2.4, for eachi , we can find
an F-stable pair (si , Fi ) 2 SG such thatOi = 8G(si , Fi ) and condition (�) in Proposi-
tion 2.3 holds.
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For eachi , let ui ,1,:::,ui ,di be a set of representatives for theGF -conjugacy classes
contained inOF

i . Let �i ,1, : : : , �i ,di be irreducible characters as in Proposition 4.3 (ifG
is of classical type) or as in Remark 4.4 (ifG is of exceptional type). We claim that


��i1, j1, 
ui2, j2

�
= 0 if i1 < i2.

This is seen as follows. We have

��i1, j1

, 
ui2, j2

�
= �
�i1, j1, DG

�
ui2, j2

��
. By the definition

of the scalar product, we have


�i1, j1, DG
�
ui2, j2

��
=

1jGF j
X

g2GF

�i1, j1(g)DG
�
ui2, j2

�
(g).

We now argue as in the proof of Proposition 4.3 to evaluate this sum. First of all, it’s
enough to letg run over all unipotent elements ofGF . Now let g 2 GF be unipotent
and assume, if possible, that the corresponding term in the above sum is non-zero.
The fact that�i1, j1(g) 6= 0 implies that the class ofg either equalsOi1 or has dimension< dimOi1. Furthermore, the fact that DG

�
ui2, j2

�
(g) 6= 0 implies thatOi2 is contained

in the closure of the class ofg. Since we numbered the unipotent classes according
to increasing dimension, we conclude that dimOi1 = dimOi2; furthermore,g 2 Oi1 and
Oi2 is contained in the closure of the class ofg, which finally shows thatOi1 = Oi2, a
contradiction. Thus, our assumption was wrong, and the above scalar product is zero.

Together with the relations in Proposition 4.3 (or Remark 4.4), we now see that
the matrix of all scalar products


��i1, j2, 
ui2, j2

�
16i1,i26N, 16 j16di1 , 16 j26di2

is a block triangular matrix where each diagonal block is an identity matrix. Hence
that matrix of scalar products is invertible overZ and so Kawanaka’s conjecture holds
by Lemma 4.2.

Proposition 4.6 (Characterisation of GGGR’s).Recall that p,q are large enough
and the center of G is connected. Let O be an F-stable unipotent class in G and�
be a character of GF . Then� = 
u for some u2 OF if and only if the following three
conditions are satisfied:
(a) If �(g) 6= 0 for some g2 GF , then the conjugacy class of g is contained in the
closure ofO.
(b) If DG(�)(g) 6= 0 for some g2 GF , thenO is contained in the closure of the con-
jugacy class of g.
(c) We have�(1) = jGF jq�dimO=2.

Proof. If � = 
u for someu 2 OF , then (a) and (c) are easily seen to hold by
the construction of0u; see Kawanaka [8]. Condition (b) is obtained as a consequence
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of [14, 6.13 (i) and 8.6]. To prove the converse, by standard reduction arguments,
we can assume without loss of generality thatG is simple modulo its center. Assume
now that (a), (b) and (c) hold for� . Since� is unipotently supported, we can write� as an integral linear combination of the characters of the various GGGR’s ofGF ;
see Theorem 4.5.

Now, given anyF-stable unipotent classO0, the characters
u, where u 2 O0F ,
satisfy (a) with respect toO0. Hence, all characters
u, where u is contained in the
closure ofO, satisfy (a). One easily deduces thatany class function satisfying (a) is a
linear combination of various
u whereu is contained in the closure ofO. Similarly,
any class function satisfying (b) is a linear combination of various DG(
u) whereO is
contained in the closure of the class ofu. Hence, a class function satisfying both (a)
and (b) will be a linear combination of various
u such thatu 2 OF .

Let u1, : : : , ud be representatives for theGF -conjugacy classes inOF . Then the
above discussion shows that we can write� =

Pd
j =1 a j 
u j wherea j 2 Z for all i .

Now consider the characters�i in Proposition 4.3 (forG of classical type) or in
Remark 4.4 (forG of exceptional type). Taking scalar products of� with ��i , we
find that ai > 0 for all i and so� is a positive sum of characters of various GGGR’s
associated withOF . All these GGGR’s have dimensionjGF jq�dimO=2. Hence�(1) is
a positive integer multiple ofjGF jq�dimO=2. Condition (c) now forces that� = 
u for
someu 2 OF , as required.
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