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1. Introduction

In the present paper we are mainly concerned with infinite Markov particle
systems (Xt, Pμ) with singular immigration associated with absorbing Brownian
motion (w\t\ Px) in a half space H = Rd~lx(0, oo), starting from μ^M1 '. Here
MI^MI(H} is the spece of all (J-finite counting measures μ^*ΣnδXn on H. It is
constructed out of infinitely many independent absorbing Brownian particles
starting from points of the support of μ and another independent particles which
immigrate uniformly from boundary at random time and move according to the
excursion law Q°. The immigration part is obtained as the limit by putting the
starting points of independent absorbing Brownian particles which immigrate in H
at random times, close to the boundary with infinite mass. From this construction
the generator <£ of this process should be expressed as the sum of no immigration
part <£° and immigration part £1 . That is, for some suitable functional F(μ) of
integer-valued discrete measures μ,

-2^m, S)dF(μ )U*=o+>,

where m = dx is the Lebesgue measure on Rd~1, Sbk is a kind of differential
operator defined as

\im}lG(μ + δXΛ(»-δx', xh(h))-G(μ\ x}]
A-»0 ϊl

with Xk(ti) = (xι, •••, Xk + h, Xk+ι, " , Xd), and £)i=£)k0£)k for k = l, 2, ••-, d. Note
that if G(μ\ x) = F(μ\ then

S)kF(μ x} =
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We first formulate this operator and give the martingale characterization for

(Xt, Pμ). To treat this process as a diffusion, we introduce a subspace Mp (p>d)
of M1 with weak topology so that Xt can be continuous in it. Moreover we

investigate Holder continuity of the sample paths. It is very interesting that the
exponent of Holder continuity changes from 1/4 to 1/2 according to the starting

point μ.
By using this process we can construct an equilibrium process with immigration

(Xt, P), which is a stationary Markov particle system with immigration associated

with (w°(t\ Px} in H and the Lebesgue measure m(dx) = dx on H. This process
is also constructed by using a Kuznetsov measure Qm, which is a stationary tf-finite

Markov measure with the same transition law as the absorbing Brownian motion
in H. This measure is defined as the integration of the time-shift of excursion law
Q° with respect to the time in R1.

On the other hand for Brownian motion (w(t\ Px) in Rd, F. Spitzer [16]

showed that, in case of d = 39 if B is a compact set with a positive capacity C(B\
then

as £— »°o, where Pm= ]dxPx and TB is the first hitting time for B (note that, in case

of fl?=4 the second term is log t C(B)2/(4π}2, which is given by R.K. Getoor [3],

and in case of d>5 it is JPX(0< TjB<00)2ife<00, which is also given in [16]).

This result can be applied to an equilibrium process (Xt, P} introduced by Shiga
and Takahashi [17], which is a stationary Markov particle system associated with
the Lebesgue measure m(dx) = dx on Rd. Let Xt(NB) denote the number of

paticles of the euilibrium process hitting B during the time interval (0, t ) , where
N*={Q< TB< t}. By the subadditive ergodic theorem [10], it holds that X(NB)/
t-+C(B) P-a.s. and in Ll(f) as f— >oo. Furthermore

X(Nt

B)-tC(B) (N(MB, CCB)) if rf=
VT" (N(Q, CCB)) if

in law as t— »°o, where MB=4C(B)2/(2π)3/2 and N(u, v) is the Gaussian distribu-
tion with mean u and variance v.

So secondly we consider a hitting rate for Brownian excursions and give the
asymptotic behavior under Qm. For a fixed compact set B in H, let

σB(w)=mί{t >0 : w(t)^B}.

If the capacity C°(B) associated with (w\t\ Px, m) is positive, then

with f(t} = fΣΓΪπ + a(B} + o(l) (rf = l), Φ(B)log ί + o(log ί) (rf =
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as £— »oo5 where a(B\ Φ(B) are certain constants. By applying the result to the

equilibrium process with immigration, we derive limit theorems for it (see §3.1).

Now we define infinite Markov particle systems (Xt, Pμ) with immigration
starting from μ associated with absorbing Brownian motion in a half spece H.

Fix an extra point Δ^H and set HΔ = H U{J}. Let W° be the set of all

mappings w° from [0, oo) to HΔ such that w° : [0, ζ(w°))^H is continuous and

w\t]=Δ ift>ζ(w°) for a certain constant ξ(w°)>Q. Let (w\t\ PS) be absorb-

ing Brownian motion starting from x in H with the transition semi-group (P?). We

use the same symbol P? and P? for the probability and the semi-group, for it is

convenient and there is no possibility of confusion. Let W1 be the set of all

mappings w1 from [0, oo) to HΔ such that w1 : (#(&/), /?(&/))— •>//" is continuous

and wI(t)=A if t^(a(wj\ β(w1}} for a certain non empty open interval (a(w!\

^(w1)). Set W=W°(J W1. For r>0, u>0, let

,J
where />?(«, #) is the transition density of absorbing Brownian motion on (0, oo)?

and

vr(dx) = ι>r(xd)dx on H.

Then vrPί=ι>r+s holds for r >0, s>0, thus v = (^r)r>o is an entrance law for (P?).

Moreover we define the following (7-finite measure on W:

Then Q° is supported on [a=ύ] (see [?]) and governs excursions starting uniform-

ly from boundary of H. Q° is called the Brownian excursion law. Let the

following be given :

Ω is the space of <7-finite measures ω = *Σnδwn,

Xt(ω) = ω(t}\H for

We define a probability measure Pμ for μ^M1 as follows : For w = 'ΣnδWn^Ω9 let

ω° (resp. ω1) denote *Σn .wnewoδWn (resp. *Σn .mf=wδwn)9 and set
and ΩI = {

) = ey°(OU : the no immigration part,
} = ωI(t)\H : the immigration part.

Hence Xt = Xt+Xt and we can identify

So we set
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where

and

/•oo
1 is the / <9-s(Q°)ώ-Poisson measure,

Jo

/•oo

i.e., the distribution of the Poisson random measure with intensity / θ-s(Q°}ds.

Then it satisfies that

for positive measurable functions / on H, where

Under Pμ, {Xt} is an ./^-valued Markov process starting from μ with immigration
from boundary. Each particles dies when it reaches boundary of H9 and infinitely
many particles are born from the boundary. Thus (Xt, Pμ) is called the infinite
Markov particle system with singular immigration associated with (w°(t), PJ?, Q°).
Note that Xt can be also defined as the following :

ϊ= Γ f
Jo Jw

Xi

where

N°(ω dsdw}=#{n : a(wn)^ds, wn( — a(wn}}^dw] if ω =

Then N°(dsdw) is a Poisson random measure with intensity dsQ°(dw). Let m(dx)
= dx be the Lebesgue measure on H and 77m be the w-Poisson measure on M1, i.
e., the distribution of the Poisson random measure with intensity m. Define

P=fπm(dμ)Pμ.

Then (Xt, P) is a stationary Markov process such that

Γ ίt 1JE'fexpί — <Xf, />}]=exp — <m, 1 — e~Vtfy— \ (vr, l — e~fy

=exp[ — <ra, —β-/>]

This process is also defined by using a stationary (7-finite measure Qw. We extend
W to the set of all maps w : R-^HΔ such that there is a nonempty open interval

(<ar(w), β(wΐ) on which ^ is //-valued and continuous, with w(f)=Δ if t<a(w)
or t>β(w), and a constant map [zf], i.e., \_Δ](t} = Δ for all /. We use the same
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notation W for this set.

Then (w(t\ Qm) is a sationary Markov process with the same transition probabil-
ity (P?) as absorbing Brownian motion. Qm is called the Kuznetsov measure
associated with (w°(t\ Px, m). If we restrict the time interval to [0, oo)? then P
can be also defined as the Q^-Poisson measure on Ω. (Xt, P) is called the
equilibrium process with immigration associated with (w\t\ Px, m) or (w(t\ Qm).

In §2 we give a martingale characterization for (Xt, Pμ) (cf. [8], [ll]) and
consider Holder continuity of sample paths.

In §3 we give asymptotic behavior of hitting rates for Brownian excursions and
their applications to the equilibrium process with immigration. We first investigate
asymptotic behavior of ζ)m(0<(7β< t) as ί— >oo and limit theorems for the equilib-
rium process with immigration associated with (w(t\ Qm). We also consider some
asymptotic behaviors corresponding to Pm and Q° (See §3.3). Moreover since the
excursion law Q° governs excursions starting uniformly from the boundary of H,
we also discuss the non-uniform case and give some results (see §3.4).

A notion of Kuznetsov measures is introduced by S.E. Kuznetsov [12] and
recently studied by many authors in relation with capacity theory, e.g., Fitzsim-
mons and Maisonneuve [2], Getoor [5], and Getoor Steffens [?]. They treat the
Kuznetsuv measures in more general situation, thus we give definitions of infinite
Markov particle systems with immigration and equilibrium processes with immi-
gration in the general situation (see §2.2). We can also consider the same probrem
as Spitzer for the general Kuznetsov measure and give the first term of the
asymptotic for it (see §3.2).

2. Martingale Problems and Holder Continuity

In this section we consider the infinite Markov particle system (Xt, Pμ) with
immigration starting at a counting measure μ, associated with absorbing Brownian
motion (w\t\ Px) in the half space H and the Lebesgue measure m(dx) = dx on
H. We give martingale caracterization of (Xt, Pμ) and investigate the Holder
continuity of sample paths.

2.1. Results
First we define some spaces of functions and measures. Fix p>d. Set

gp(x) = (l + \x\2)-pl2 and gp.o(x)=gP(x)ho(xd),

where ho(v) is a fixed C°°-function in v>0 satisfying the following properties :
(a) ho is non-decreasing and 0</Zo^l,
(b) h0(v) = v for 0G(0, 1/2] and ho=l on [2, oo).
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Then gp,0(x) satisfies that for x = (x, Xd)^Rd~l^(Q, °°), g p , o ( x , Q + ) = ddgp,o(x, 0
+ ) = 0 and ddgp,o(x, Q + ) = gp(x, 0 + ), where dd =

Let C=C(H) be the space of all continuous functions in H.

The following function space Dp is stable under Pt (see §2.3) :

^ /GΞ C2, /, ddf£= Cp,o and other partial derivatives are in Cp.

We denote CC=CC(H) the space of all continuous functions with compact support

and Cϊ?=Cΐ(H) the space of all C°°-functions with compact support.

Let MI=MI(H) be the space of all counting measures on H.

Then Mp^MpdM1. The topology of Mp is defined by the weak topology with

respect to C/>,o, i.e.,

μn~^μ in ^ίp ^± <//π, />— Kμ, /> for all f^Cp,o as

This is equivalent to that <μ«, />^<μ, /> for all /^ Cc and f=gp,o as ^^oo. Then

ί̂̂  is Polish, i.e., metrizable, complete and separable.

N o w f i x £ > β f . Set

C\Rn\ \Φ(ί\x)\ < C(l + \x\)k,
= 0, 1, 2 for some C>0, ^>0, and /^^, ; = 1, 2, — , »},

and for F(μ)=Φ((μ, /ι>, •••, <μ, Λ>)^D/>, μ^Mp, we define an operator ^ by

ί=l

+4 Σ %

where di = d/dxi, m = dx is the (ί/ — l)-dimensional Lebesgue measure, A is the

generator of (P?) and Γ(/, g)=Afg-fAg-gAf, i.e., A/=yJ/ and Γ(/, g) =

Pf Fg for /,

Moreover set Ωp=C([Q, o°)-^Mp), which is a Polish space.

Theorem 1. Fix p>d and μ^Mp. Then under Pμ, {Xt} is an Mp-valued
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Markov process having a continuous sample paths relative to the topology in Mp
and satisfies that

(i) Pμ(X0 = μ) = l,

(ii) for each FϊΞDp, t>0 and £>1, F(Xt\ fQ\£F(Xs)\ds^Lk(Pμ},

(iii) for each F^DP, Mt

F=F(Xt)-F(Xo)- f*£F(X8)ds is a Pμ-

martίngale. Moreover if a probability measure Pμ on Ωp satisfies (i) and if Mi
is a local P μ-martίngale for any F(μ) = <μ, /> and <μ, />2 with f^Dp, then Pμ

= Pμ on Ωp.

REMARK 1. (i) When μ^Mp—Mp, £F(μ) may not be well-defined because

of <μ, Γ(/, , /,-)> being possibly infinite. But for all / >0, f*£F(X8)ds is

well-defined P^-a.s..

(ii) We can see that <Xt, &>>, f*<X*> gp>ds^Ll(Pμ} for all t >0 (see §2.3).

Hence

Pμ«Xt, gp><°° for countable numbers of t) = l

and

Pμ«Xt, ^><°° for Λ-a.a.ί) = l.

However we can show that for any time interval (a, b)

Pμ«Xt, gpXoo for some

We shall prove this result in §2.4.

Theorem 2. _Fix p>d. Set Γf=Γ(f, f } = \Pf\2 for
(i) If μ^Mp, then Xt is locally (I /^ — e) -Holder continuous in t^[Q, °°)

for all 0<e<l/4 under Pμ, i.e., for each χ=l/4-e, f^DP and T>0, there is
a constant C=C(μ, /, T, χ)>0 such that

ω SUD \<Xt(w)-Xs(ω),f>\ Γ\_
W . blip i , \γ ^{_s ] — 1

$<\t-s\<η(ω),s, /e[0, T] |ί~5| /

α.5. positive random variable.
(ii) // μ^Mp, then Xt is locally (l/2-e)-Hόlder continuous in ί^[0, oo)

for all 0<β<l/2 under_Pμ.

(iii) Eve« // μ^Mp—Mp, Xt is locally (1/2 — e) -Holder continuous in t<^
(0, oo) for all 0<_ε<l/2 under Pμ.

(iv) // //e^, then for ftΞDp such that <μ, Γ/»0, <X, /> is not I/
2-Hόlder continuous at t = 0. Furthermore if f^Dp such that Kf = {Γf=ύ] is a

compact subset in H, and if μ^Mp satisfies one of the following conditions :
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(d = l =* μ({x>a}} = c° for some
(d>2 => <μ, Γ/»0, i.e

then (Xt, />, £^0, is nowhere I/2-Hόlder continuous under Pμ, i.e.,

{ω:\<Xt+h(ω)-Xt(ω),f>\<C(ω)Jk
for some ί^[0, oo) and for all λe[0, «(ω

is α Pμ-null set, where C(ω) and u(ω) are a.s. positive random variables.

When μ^Mp—Mp, it seems to be difficult to completely determine the expo-
nent of Holder continuity at t = Q. However we can give some sufficient conditions
for them. Set Sa = {\Xi\^a, i = l, —, d}Γ\H.

Theorem 3. Let
(i) Suppose that for some T > 0, 1 < θ < 2,

(2.1) <μ\Sl, P!l>xί ^rPϊl(x) for all 0</<T,
JS\ Xd

where g(t)Xh(t)9 0<t<T means Ch(t)<g(t}<Ch(t], 0<t<T for some
positive constants C, C" depending only on T, then Xt is ((3— #)/4 — e)-Hόlder
continuous at t = G for all 0<ε<(3— l9)/4, moreover for each f^Dp such that
Γ f ( Q , 0 + )>0, <Xt, f> is not (3- θ)/ 4 -Holder continuous at t = 0 under Pμ.

(ii) Suppose that for some T>0 and Kθ<2, ??>0 or θ = 2, η>l,

(2.2) <μ\Slln P 9 l > ~ , P ! l W f o r a l l

then Xt is (3— θ)/ 4 -Holder continuous at ^ = 0, moreover for each f^Dp such
that Γ f ( Q , 0 + )>0, <Xt, /> is not ((3- θ)/ 4 + e) -Holder continuous at t = Q for
all ε>0 under Pμ.

REMARK 2. In the later half of (ii) we can show the following :

lim sup p- J/ϊ(*g{/f)-*/2 =°° Λ-a.s. if Kθ<2,

lim sup 1 / 4 - 1 - 1 ) 7 2 =°° Λ-a.s. if 5=2,

Here we give some examples of μ = 'Σn>2δXn€ΞMIt>—Mp which satisfy the
conditions (2.1), (2.2) : For simplicity let d = ί.

(a) xn = rn (0<r<l)-Φ θ = l in (2.1),
(b) xn = n~p (p>ί) =Φ θ = l + l/p in (2.1),
(c) Λrn = w~ / )(logw)" ς (p>l, q>$ or p=2<q) => 0 = 1 + !//>, τ? = ̂ /ί in

(2.2).
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Now we can datermine the exponent of Holder continuity of sample paths of
the equilibrium process associated with absorbing Brownian motion in H, since
under P, Xt has an innitial distribution Πm(dμ) and <m, cfa><oo for all p>d. Set
Dd+ = (Jp>dDp, Md+ = C\p>dMp and Ωd+ = (~}p>dΩp=C([Q, °°)^Md+). Then we
have the following :

Corollary 1. (Xt, P) is an Md+-valued stationary Markov process having
continuous sample paths relative to the topology in Md+ with initial distribution
Πm(μ). Furthermore Xt, t>0 is locally (l/2 — e}-Hόder continuous for all 0<ε
<l/2, and for each f^Dd+ such that Kf = {Γf=Q} is compact in H, <Xt, />, t
>0 is nowhere l/2-Hδlder continuous.

2.2. Kuznetsov Measures and Infinite Markov Particle Systems with
Immigration

In this subsection we give a general theory of Kuznetsov measures according
to [2], [5] and [7], and define the infinite Markov particle systems with immigra-
tion induced by Kuznetsov measures. We also discuss the Markov property of
equilibrium processes with immigration.

Let 5 be a Lusin space, i.e., a Borel measurable subset of a separable metric
space, and fix a point Δ&S. Set Sj = SU{J}. Let (W°, 3\ 3\, w\t\ P£), t>
0, #€ΞS, be a Borel right process with transition semi-group (P?)^0. That is, (P?)^o
is a Borel right semi-group, W° is the set of all right-continuous paths w° :
[0, oo)- ,̂ θtw\s) = w°(t + s), J°=a(w°(t): ^>0), &ϊ=σ(w°(s) : 0<s<0 and
ζ(w°)=mf{t : w\t}=Δ] is the lifetime of w°. Set PΪ=d{Δ}.

Let W be the of all maps w : R^>Sj such that there is a nonempty open
interval (ct(w), β(w}) on which w is S-valued and right-continuous, with w(t}~
Δ if t<a(w} or t>β(w}, and a constant map [//], i.e., [Δ](t)=Δ for all t. Set
$Q=σ(w(t):tίΞR) and $°t=0(w(s): -°o<s<t). Moreover let /*, t^R, be
mappings from W to W° defined by

for 5>0 if t>a(w\

Then the following hold: γt = γo°θt for t^R. If a<t<β, then ζ°γt = /3°θt.
Moreover γt is ^S+ίly^-measurable for 5>0, t^R.

A family of tf-finite measures ζ — (ζt)te=R on S is called an entrance rule if
ξsPt-s^ξt for 5<^ and ξsPt-s T ξ t as 5 T t. Moreover ξ=(ξt\^κ is called an
entrance law if ζ = (ζt)tf=R is an entrance rule and satisfies that ξsPt-s = ξt for s<
t.

The following result by Kuznestov [12] is well-known (see [2], [5] and [?]) :
For an entrance rule ξ=(ξt) there exists a unique tf-finite measure Q$(dw) on W
not charging [Δ] such that for -oo< tι< fe< < ί«< +°°
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In particular (w(t\ */?, Qξ) is Markov in the sense that if t^R and V^J\ then

on

DEFINITION 1. Qξ is called the Kuznetsov measure associated with (w\t\ P£,

If ξt — m a (7-finite measure on 5 for all t€=.R then we write Qm for ζ)<?, and
then Qm is stationary, i.e., (?>»[/( w(0)] = 7w(/). We denote the class of excessive
(resp. invariant, purely excessive) measures by Exc (resp. Inv, Pur). That is, for
a <7-finite measure m

m(ΞExc if mP?<m for all
if mP?=m for all ί
if m^Exc and limί

may be deconmposed uniquely as πi — πiί^mp, where m^Inv and m/>
. If m^Pur, then there exists a unique entrance law ^ = (vί)ί>o such that

From now on we fix m£ΞExc (may be infinite) and also mz , m/>, v = (vt)t>o9

which are uniquely determined by m as above. Then there are Kuznetsov measures

Qm, Qmi9 Qmp, and QQ=Qv on W,

which satisfy that

Qm Qπii i (cjmp

and

Qmp= ί θ-s(Q°)ds= f θs(Q°)ds.
J R J R

In [7] it is shown that ζ)°(ff=*=0) = 0.

Now we consider the infinite Markov particle systems induced by Kuznetsov
measures. We restrict the time interval to [0, °°) and the following are defined by
the same way as in case of absorbing Brownian motion (see §1): μ = "Σn^iδxn^M1

=M'(S\ ω = ΣnSWn^Ω (wn^ W), X*(ώ) = ω(t)\s, 3, 31, P^ = Pί®P7, Πm(dμ)

and P = jΠm(dμ)Pμ. Then (Xtj Pμ) is an ^-valued stationary Markov process

with a stationary measure Πm.
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DEFINITION 2. (i) (Xty Pμ) is called the infinite Markov particle system
associated with (w\t\ Pχ\ In particular if Q°^=0, then (Xtj Pμ) is called the
infinite Markov particle system with immigration associated with (wQ(t\ P°, ζ)°).

(ii) (Xty P) is called the equilibrium process associated with (w\t\ Px, m)
or (w(t\ Qm). In particular if m^Exc\Inv, then (Xt, P) is called the equilibrium
process with immigration associated with (w°(t), Px, m) or (w(t\ Qm).

REMARK 3. (i) P is also denned as the Qm-Poisson measure 77ρm, i.e, P =
ΠQm in the sense of finite-dimensional distributions.

(ii) When m^Inv, we can identify Qm = Pm( = m(dx)PxY so the definition

of equilibrium processes is the same as in [17] by T. Shiga and Y. Takahashi.

The Markov property of Pμ and the identification of P = ΠQm can be proved
similarly to [17],

2.3. Proofs
Before proceeding the proofs we give two fundamental properties of the

transition semi-group (P?) of absorbing Brownian motion in H. Note that P? is

given by P?f(x) = fpξ(x, dy)f(y) with Pξ(x, dy)=p°t(x, V^dy and

P°t(χ, y}=Pt(χι,

where for u, v^R,

f,(u, ,)=

and for u, v>0,

p°t(u, v)=pt(u, υ)—pt(u, —υ)
2Ί Γ (v + uYΊ\
\ -expr 2 t \ J

The following first claim is easily obtained from the proof of Proposition 2.3 in
[8] : Let p>d. If f^Cp, /^O and lim\x\~«, x\pf(x) = I exists, then

(2.3)
X^κx> t^O

The second is that if /eC2 and f ( x , 0 + ) = 0, then

9 θxd]
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for some 0e(0, 1). This follows from that P?/( , 0 + ) = 0 if t >0 and
dx], and that d2

d(P?f) = P?(ddf) if /^C2 /(•, 0 + ) = 0. Thus we also see that Dp
is stable under Pi, i.e., Pξ(Dp)c:Dp.

From these fact we get the following :

(2.4)
(2.5)

and for all s>0, Pίgp^CP,o, hence

(2.6) sup
S<.t<co

Proof of Theorem 1.
(i) is trivial. The integrabilities in (ii) are reduced to the following : For each

, &>0 and t>0,

(2.7) Eμ[<Xt, gP>
kl Eμ\( Γ<XU, gP,0>

J<Xu,

Lemma 1. Let p>d. Fix £>0, e>0. Then, for each k>0,
1 1 _! dk

<OO.

Proof. This is deduced to (2.6) by computing (dk/dak) Vt(agp).

From this lemma it is easy to see that if μ^Mp, then the Laplace transform

φt(a\ f ) =

-<μ, Vt(af)>-

is C°° at β = 0+ if />0 and f^Dp. Hence the first claim follows. For instance,
we have for /,

Eμ<Xt, /> = <//, A°/> + j <i/r, f>dr,

Eμ[<Xt, f><Xt, g>] = Eμ<Xt, f>Eμ<Xt, g>

r, fg>dr.

More generally we can give the explicit formula of Eμ[(Xt, f\> m (Xt, Λ>] But it's
too tedious to describe it. By using the formula one can easily see the following :

Proposition 1. For all ΰ<tι<~ <tn and fi
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εμ[<χtl, fι> <χtn, fn>]
+ α*' Σ. π <μ, n/j> +•••+ CΆ Σ <μ, p?/,

i\*i2J*il,iz J=l

where C(n\ k = l, •••, n are positive constants, independent of {ti}.

Proof. In case of tι = ~ = tn = t it is easily obtained. Then by using the
Markov property we can get the general case, of course by induction on n.

To show the second claim in (2.7), we need the following lemma :

Lemma 2. Let μ^Mp. For each T>0, there exists a constant Cr>0 such

that

Proof. For simplicity we only consider the case of d = l. Suppose that <μ,
gp,o><°°. It is clear that for all e>0, supXμ, l(e,oo)Pί%X°o by (2.3) and it is easy
to see that

V t τ-»o / \ ^ I ̂sup ——Ptgp(x)<>J —
t^o,o<x<€ X V 7Γ

The general cases d>2 can be proved by a similar way.

Hence by (2.5) and Proposition 1 we have (2.7). Thus (ii) in Theorem 1 is proved.
Moreover it is easily seen that

Lemma 3. Let μ^Mp. Fix T>0. For each

Eμ\( Γ<XU, gP>du}k]<Cτtk/2

Lwo / J

This lemma is used to show the Holder continuity of Xt later.

REMARK 4. When μ^Mp—Mp, it holds that

ί<0° if * = 1,(=oo

On the other hand if μ&M'p, then for each T>0 and k>l, supos sX^, Ptffpy is
finite because of (2.4). Thus Cτ=sup<,<t<;τEμ[(Xt, gp>k] is finite and it holds that

<Cτt
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Next we show the martingale property (iii) in Theorem 1.

Lemma 4.

(i) s u p ^ - - F , / <°° for each
t>Q || Ui ||oo

(ii) sup<y r, gp,o><°° for each T>0.
$<r<,T

Proof. Since for h = l-e~f and Γ/=Γ(/, /) =
PΪAh _ APΪh_t/_ττ- /• J- t^^n I ^T.̂  t ft Λ T r f £_

dt Vtf~ i-Pΐh \ i-m ~Λ Vtf 2
and ||l-P?/2||-1<exp[||/||oo]<oo? (i) js deduced to (2.4). (ii) follows from

rι / oo / oo
supr>o / y^r(y)d/y = l/2 and / y~pvr(y}dy< / vr(y)dy<l/</2πr .

yo yi yi

Let fζ^Dp. Since

if jc/e^ίέ, then

?-<μ,f>

When μ^Mp, £e~<''f>(μ) may not be well-defined. However it holds that Pμ(Xu

^Mp for ί/w-a.a. u >0) = 1 as mentioned in Remark 1. Hence by Lemma 4, nothing
that

θ (n>2\

if μ^Mp and F^Dp, then we can get

•^• [̂F(XB)|X.] = ̂ [JSF(XB)|Xβ] forί/w-a.a.w>s, P^-a.s.

Therefore from this equation and by using the Markov property we can see that for
each F<=Dp and

J=0.

That is, (iii) in Theorem 1 holds. In particular, we have
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Lemma 5. For each

t(f) = <Xt, />-CX>, />- Γe
Jo

= <Xt, f>-<Xo, f>-f\Xu, Af>du~<

is a square integrable Pμ-martingale with quadratic variation

<M(f)>t= Γ<Xu, Γfydu.JQ

Now we prove that Xt is continuous relative to the topology in Mp. We use
an approximation by finite particle systems. Set Hn = {x^H : \x\ < n, Xd^l/n} for
n>l. Then μ(Hn)<°° whenever μ^Mp. Fix T>0 and for each n>l, we set

and Q2=0°(

Then QW = f$θ-8(Q$ds and QW(W}=Tvlln({\x\<n}}<™ (note that Q°(
0). Now for each n>l, we define

X(n\ω)= Σ δW Λ+ Σ δwk Ίfω = ΣkδWk.k;w*($)&Hn k:w,^Wn

Then under Pμ, X(

t

n} is a finite Markov particle system, that is, Pμ(X(n\ W) < oo)
= 1 and

,[exp(-<Xί+s, /»|yβ]=exp[-CX2n),

Clearly Xtn} is continuous relative to the topology in Mp and Xtn\(ϋ) converges to
Xt(co) as n-^oo for every ω and £>0. Fix f^Dp and let Mtn} = Mtn\f), Mt =
Mt(f] be the martingale part of Xin\ Xt respectively defined as in Lemma 5. By
Doob's maximal inequality and Lebesgue's dominated convergence theorem we see
that

f ^^0 (n, w—>oo).

Hence there is a continuous process Mt = Mt(f) such that \imk^supt^τ\M^nk) — Mt

= 0, P^-a.s. for some suitable subsequence {M(

t

nk)}~=ι. This implies Pμ(Mt = Mt for
all t< T) = l, that is, Mt is continuous. This implies the continuity of Xt in Mp.

Finally we prove the uniqueness of Pμ on Ωp for the martingale problem.

Lemma 6. // /eC?, ίAe/i yί/eC°°nZ)p /or every />0, ^>rf, flwrf the
following hold : For each t > 0,

(i) ~ϊrVtf is continuous in t with respect to the norm || /<7/>,o||oo,



160 S. HIRABA

(ii) ΓVtf is continuous in t with respect to the norm || /<7/>ll«>.

Proof. Set h = l-e~f^C?. Since Ah^Cc,

and 111 — j

(i) is reduced to the continuity of P?f for /<E C?, i.e., ||(/?/-/)/&>,o||oo->0 (f->0).
To prove this it suffices to show that, for each /€Ξ Cc,

however it is not difficult, (ii) is reduced to the following : For each /

lloo^o ί=ι, 2, -, d (f->

The second follows from the continuity of the transition semi-group (Pt)t>o of
Brownian motion in Rd. Because if we extend / to on Rd by setting /=0 on Hc,
then

for z
for ί = rff

where f(x)=f(x, —χd). One can more easily see that ||(Pι/— /)/Λ>||<»— »0 (^~^0)
for each /e Ccί^01).

Let Pμ be a probability measure on Ωp, under which Xo = μ a.s. and F(Xt)

-F(Xo)-f*£F(X,)ds is a local martingale for F(μ)=<Xt, />, <.&, />2 (/e

Γ ί ~
Dp). We first assume that <Xt, gp,o>, I (Xs, gp>ds^L2(Pμ) for each t >0 and that

Jo

the above local martingale is a martingale. Then by using Lemma 6 carefully and
nothing <^r-s, 1 — ^~/> = <^r, Fr-s/>r=o, we see that for each /€ΞC? and T>0,

Xs9 ΓVτ-sf>ds- vτ-s, l-e~f>dsyo

is a square integrable continuous /Vmartingale with quadratic variation

Γ<X8, ΓVτ-sf>ds
Jo

in 0<t<T. Hence by using Ito's formula we see that

is a Pμ-martingale. Thus by taking T = t we have
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Therefore Pμ = Pμ in the sense of finite-dimensional distributions, hence it holds
on ΩP, because Ωp is Polish. In case of a local martingale by using a localization
method we can also show Pμ = Pμ on Ωp.

Proof of Theorem 2.
We first show that Xt, t>0 is locally /-Holder continuous under Pμ in each

cases of (i) μ^Mp, 7^(0, 1/4) and (ii) μ^Mp, 7^(0, 1/2). We apply the
following lemma which can be easily proved (cf. Theorem 2.2.8 in [9]) :

Lemma 7. Fix T>0. Suppose that for each f€ΞDp, there are some
constants a, b, OO such that

Eμ[\<Xt-X8, f>\a]<C(t-s)l+b for all 0<s<t<T.

Then Xt, 0<t<T is locally (b/ a — e) -Holder continuous for every e^(0, bid) in
the sense of (i) in Theorem 2.

Now fix μGΞ Mp. Then for each &>1, T>0 and f^Dp there is a constant Cτ =
Cr(/)>0 such that

(2.8) Eμ[<Xt-Xs, f>2k]<Cτ(t-s)k/2

for all Q<s<t<T. In fact, for any fixed f^Dp and s>0, Nt

s(f) = M t v s ( f )
— Ms(f} is a continuous (^^-martingale with quadratic variation ^iNs(f)^>t — <€.
M(f)^>tys~<^M(f)^>s. Hence by the martingale moment inequality and Lemma
3 we have

Eμ[{Mt(f)-Ms(f)}2k]<στEμ[{<M(f)>t-<M(f)>s}
k]

<Cτ(t-sY12 fo

Furthermore by \Af\<Cgp,o and Remark 4 we have

Eμ\( Γ<Xu, \Af\>duT]<Cτ(t-s)2k for
L\Js / J

Therefore inequality (2.8) holds. Moreover if μ^Mp, then it can be seen that

Eμ[<Xt-Xs, f>2k]<Cτ(t-s}k

for all
Next we show (iii). Let μ^Mp-Mp. Since for each r >0, Pμ(Xr^Mp) = l, it

holds that, by (i) in Theorem 2, Xt, t>0 is locally (1/2 — e)-Hόlder continuous for
every e^(0, 1/2) under Pχr(a» for JFVa.a.ω. Thus letting r i 0, the claim follows.

Finally we prove (iv). It suffices to consider the martingale part Mt(f)
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f>-<X>, />- [*£<-, fy(Xs)ds. First let μ^M'p and fix /eD, such that <μ, Γ/>
Jo

>0. We also fix /o^Cp.o such that 0</0<Γ/ and <//, /o»0. By the continuity
of <Xί, /o> there exist a.s. positive random variables C, u such that <M(/)>*>

, fo>ds>Ct for all 0<t<u, /Va.s. By the time change for martingale,Γ/

Mt(f) = B<<M(f)»t holds a.s., where £?* is a standard one-dimensional Brownian
motion. Since Bt, t>0 is nowhere 1/2-Hόlder continuous, <X, /> is not I/
2-Hόlder continuous at ί = 0. Next fix f^Dp such that K=Kf = {Γf=Q} is
compact in /f. We also fix /o£Ξ C/>,o such that 0<f0<Γf and /o>0 on Jίc. Let μ
e JΐJ such that μ({x>a}) = °° for some α>0 if rf = l, and that X^c)^l if
Then <μ, /o»0 for every 6/^1, more strongly we have

Lemma 8. Under the above conditions, it holds that

Iτ(fo)= inf <Xt, /0»0 Pμ-a.s. for each Γ>0.

Proof. Recall that Xt = X? + Xl and Pμ = PΪ® P1 (see § 1 ). For a > 0, set Ha

= {xd>a}. Since

and y r(ffα) = °o if and only if ^/>2 for each r >0, it holds that P7(X/(#fl) = oo)
= 1 for every ^>0, β>0 if rf>2. Moreover if μ^Mp such that μ(Ha) = °° for some

= <*> for all

Because for each fixed T>0,
Xk,d)^ΐlk .XM>aP(\Bτ\^a) = Q, where (5ί, P) is a standard one-dimensional Brow-
nian motion and Xk,d is d-ih coordinate of Xk. By a similar way it can be easily
seen that for each integer n>ϋ, Pμ(XQ

τ(H} = n) = $. Thus Pμ(Xt(H) = oo for all t
<T)>Pμ(Xτ(H) = oo) = l. since Γ>0 is arbitrary, the above equation holds.
Therefore under the given assumption on μ, we have

= ™ for all ^>0) = lim Pμ(Xt(H) = oo for all t>\/n)
n-»oo

= \imEμ[PXιm(Xt(H) = π> for all
n-*oo

= 1.

On the other hand Pμ(Xt(K)<oo for all ί>0) = l by the Jί ̂ continuity of Xt.
Now if /r(/o) = 0, then by the continuity of CX*, /o> and <//, /o»0 we can find a
number f e(0, T] such that < ,̂ /o> = 0, i.e., Xt(K) = Xt(H). These facts imply
that PAI(/Γ(/0)=0) = 0.
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REMARK 5. When d = l, the condition on μ in Lemma 8 can not be weakened
to the same as in d^2. For example if μ is finite or μ = 'Σn>ιδXn with xn = np (p
>1), then Pμ(Xt(H)=ti)>0 for each f >0, which implies Λ(/r(/o)=0)>0 for
every T>0.

In virtue of this lemma, we see that <X*, /> is nowhere 1/2-Hόlder continuous in
fe[0, oo).

Proof of Theorem 3.
We shall prove (i). Suppose that μ^Mp—Mp satisfies the condition (2.1) with

Γ>0, 1<5<2. Then for each tf >0, there exists a small 0< Γ'<1 such that

(2.9) <μ, PϊgP»«μ, P?lsa>
X<μ\Sl,_(,_

~tlogl/f (5 = 1),

for all 0<t<Tf. In fact by (2.3) we see that sup*<//|sf, Ptgp> and sup*<μ,
Pt(gpls!)> are finite for each a>0. By (2.1),

<μ\Sl, Pi

•/Si Xd

when 1< θ < 2, the right hand side is equal to

1
θ-l

When 5 = 1, the asymptotic log(l/0 is similarly obtained. Hence by the same way
as in the proof of Theorem 2, we can show the ((3— #)/4 — β)-Hόlder continuity at
£ = 0 for every ee(0, (3~5)/4).

On the other hand the non-Holder continuity is proved in the following
manner: When 5 = 1, we've already shown the non 1/2-Hόlder continuity. So it

is enough to consider the case 1< 5<2. Fix f^Dp such that Γ f ( Q , 0 + )>0 and

let Mt = Mt(f) be the martingale part of <Xί, />. By the same way as in the proof
of Proposition 1 if 0<s< u, then for fo=Γf9 we have

Eμ[<X8, /0><X«, fθ>] = Eμ<Xu, /0>+ V(S, U)

with

V(s, u) = <
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+ Γ<ι/r, foPZ-sfo>dr + Eμ<Xs, fo> Γ S<^r, fo>dr.
Jo Jo

Hence for all 0<£<T,

Eμ[<M>2

t]-(Eμ<M>t)2=2 if V(s, u)dsdu
JJ 0<,s<u<.t

<: C /T <
JJ Q^s<u^t

< C't Γ<μ, PίΓfϊds
Jo

where C, Cr are constants, independent of 0<t< T. Moreover by (2.9) and Γf>
c on Sa for some constants a, c>0, we have

Therefore for some Cr>0,

Thus for a sequence tn

 = l/2n, we have

lim π ^ yiΛ-4? =1 /Va.s..

Hence it is easily seen that

liminf-p—^^~- >0 /Va.s..

Now by

and the well-known result

lim sup—7^=00 /Va.s.,
MO y /

it holds that

(2.10) lim sup L-tl/i =00 P^-a.s..
t Ί. 0 ί

Hence Af*(/) is not (3—^)/4-Hόlder continuous at t = Q, so is not <Xt, />.
Next we show (ii). Suppose that μ^Mp—Mp satisfies the condition (2.2) with
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Γ>0, K#<2and ?>0 (1< θ<2) or η>l(θ = 2\ Then for 0<β<l, there exists
0<T /<1 such that

(2.11) <μ, P?gP»«μ, P?lsa>

X<μ\sa, P?l>

(ι<θ<2,
(#=2, ?>ι),

for all 0< £< T". In fact in this case for a small

/•α

<"'»- p?1>xί
-l), q=η/(θ-l) and set x =

and

X-xl+llp(logl/x)qlpdz,

that is, Λ:~θ(log I/x)~ηdxX—dz. Hence for some &>1 α = b~p(\og b}~q,

/•oo / Z-P(lθgZ)-Q ~ ~

if y^^^(log ,j)-^ then ^= A(ί)xr1/(2p)(log ι/ί) ς/p=r(β-1)/2(log I/O''. We
divide the integral area of z at h(t). Note that z^(b, h ( t ) ) if and only if ̂

z)~q>JT. Thus it easy to see that

A(ί)

and

/ z-P(logz)-«

Jiogh(t) V

If p>l, ^>0, i.e., 1< ^<^, ?7>0, then the right hand side is equal to or less than

1

I ( Λ . qg h(t)r Jtog

Xh(t)

If p=l<q, i.e., (9=2, η = q>\, then the right hand side is equal to

Ίogλ(f) V

xr1/2(iog i//)-
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Therefore (2.11) holds. Now nothing that

U(3-')/2(iog i/O' xr(β-1)/2(iogi/f )-*

and

'-»)' xr1/2(iog ι//)-"-»

we have the following : For each 0<<2<1, there exists a constant 0< T"<1 such
that

f <μ, PsgP>dsX Γ<μ, P$lsa>ds
Jo Jo

X Γ<μ\s,, PSl>ds
Jo

ff ( 3-β ) / 2(logl//)-* (Kθ<2,η>0),

~U1/2(log 1/ί)-"-" (θ = 2, η>\\

We shall show that for each

(2.12)

which implies the (3— $)/4-Hόlder continuity of X; at t = Q. We first consider the
case 1< θ<2, η>0. For simplicity of notations we set Mt=Mt(f\ r=(3— 0)/4.
Fix an integer ,/V ̂ 1 such that Nη>\. By a martingale moment inequality we have

€'

σ t
^e2^ (log 1/f)"*

for all ε>0 and small t >0, where C, C' are independent of (e, O For each fixed
k, n>\, set t = l/2n and e=tγ/k. Then the right hand side is equal to
C'k2Nn~Nη(log 2)~Nri. This is the general term of a convergent series. Hence by
Borel-Cantelli's lemma, for /Va.a. &>, it holds that for each #>1, there is an
integer-valued random variable N(ω) such that if n>N(ω), then sups^2-"|Ms(a))|<
2~nγk~\ that is,

\Ms(ω}\ ̂
se(2-«-ι,2-n] S7 k

Therefore the equation (2.12) follows. The case of 0 = 2, η>\ can be proved by
the same way.

We can show the equations in Remark 2 by the same way as the proof of (2.
10). These imply the non-Holder continuity in (ii) of Theorem 3..

Corollary 1 immediately follows from Theorem 1 and Theorem 2.
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The proofs are complete.

2.4. Further Remarks

In this subsection we give some more properties of X? and XL Also we shall

prove the unboundedness of (Xt, gp>.
(a) The results of Theorem 1, Theorem 2 (except the later half in (iv)) and

Theorem 3 are also valid for the infinite Markov particle system Xt with no

immigration. Of course all terms related to the immigration part are deleted.
Moreover if we assume μ({xd^a}) = °° for some <2>0 and each d >1, then the

same result as the later half in (iv) of Theorem 2 is also valid, because this
guarantee Pμ(Xt(H) = ̂ o for all t>0) = l, and hence Lemma 8 holds.

(b) For any (short) time interval, infinitely many particles are born and die,
i.e., for all 0<s<α, PI(X!(s<a<β<t} = °o) = l. In fact, in case of d = l. Since

Qm(s<a<t}=
Jo

we see that the number of particles which are born in the time interval [s, t ) is

infinite, i.e., PIX!(s<a< 0 = °°) = 1. Moreover

Qm(s<a<t<β}= ΓQ\
J s

implies that the number of particles which are born after time s and survive until
time t is finite. Thus our claim follows. In general case (d>2), restrict on {|w(#

To prove the unboundedness of <Xί, <7/>> mentioned in (ii) of Remark 1, it
suffices to show the following result : Let d = l.

Theorem 4. For any T >0, P7(X/((0, l)) = oo for some £e(0, Γ)) = l.

Let W<>= WΓ}{a=Q} be the totality of excursions in H = (Q, oo). χ{((Q9 1)) can

be expressed as

Nt=N*(Dt) with Dt={(s, w)e[0, oo)χ W0 : «;(f-s)e(0, 1), 0<s<t}.

For each fixed &>1, we define a smaller process Sk,t as follows : Let ak = l/2k, t?

=j/4k O' = l, 2, -) and

with

Q, aΐ), w(a\-s\ w(2a\-
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where τa(w) is the passage time to a>Q of w. For each />!, if t*<t< tf+i, then

set

ξt=N*(Vjk) with Vf=θk-^(Vh)

(d)
(note that f? is undefined for 0<t<tf). It holds that ξt=ξk. In particular, if we

(d)
t=

set ξfj = ξΐt, then {?£:/ = l, 2, •••, £ = 1, 2, •••} are independent.

REMARK 6. ξk denotes the number of particles which are born during the time
interval [0, α|), stay in [ak, 2dk) at time points a\, 2al and die during the time
interval (2ai, 3#|], and also which never hit 2dk.

Now for each &>1, set Sk,t = Σn=kζ?. Clearly if t>tf( = ai=I/4k), then Sk,t<
Nt. Hence to prove Theorem 4 it is enough to show the following proposition :

Proposition 2. For each k, />!, P7(S^ί = oo for S0me tf^t<tl+ι) = l.

Proof. We define a random variable f/*'z for each k, i>l as follows : Set

and

/ι=4* + [4/1-3)U(4/ι-2)U(4/ι-l)U4/ι].

Also define

Ul'i= Uk^+maxξt*1.

If we have /«, /„, C7*+M, then set

/n+1=4A+;z + [(4/w +ι-3)U(4/n+ι-2)U(4/w +ι-l)U4Λ+ι]

and

£/r2''=<

So we define

We can show the following two claims :

Claim 1. λk = E!ξk = C/2k for all k>l
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Claim 2. For each k, z>l, JP7( W'0 = °° = l.

Obviously Claim 2 implies Proposition 2.

Proof of Claim 1. Let Vf denote the s-section of Vk.

= ds
J 0 Jdk

l, ζ< T2β.)
βft

AJw Γαftrfyιlim fakdxvr(x)pQu2ak(x, yi)
0 ./dZfe r i 0 JO

ί2a"dy2p^a'(y1, V2)Py2( T0 < a\, T0 < T2a>)
JCLk

r2ak r2ak

= dyΛ dy2pT'(yι, 3*)
Jdk Jdk

Γdulim Γ *dxvr(x}p¥a*(x,yι}Pyί(T^al, T0< Γ2β.)y 0 r A 0 y 0

/

2 /-2

ώi^ dz2p°άι2ak(akzι, akz2)

dulim Γkdxvr(x}pQύ2ak(x,akz^PakZ2(Tv<ai, T0< T

where pQtb(x, y) denotes the transition density for Brownian motion absorbed at 0
and b>0 (x, y>Q). Note that

P°tb(x, y)(=P%(wQ(t)--
^π ,n/

n=-oo

and

By using the scaling properties for any

va*s(ay)=^va(y) and Pα°

we can get

E'Sh = ah ί'dzi f2dz2pΐ2(zι, z2) Γdvlim f'yi yi Jo siQ Jo
= akE'ξ°.

Proof of Claim 2. We shall show that for each k, 2^1 and m>0, .?'(£/**''
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m) = 0 by mathematical induction.

(1) For each k, i>l, PI(U^i = 0) = 0.

In fact if *Λ*'Z = 0, then f?/π = 0 for all n>0, ±n<j<±n(ί + l}. But the sum of these

expectations is given as z(/U+4/ί/j+ι + 42/U+2H — ) and this is infinity by Claim 1.
Hence the probability of this event is 0.

(2) If we assume that PW< w-l) = 0 for all k, i>l, then

= Σ PI(ξk = mhγPI(Ut^^m-

by Claim 1. This implies P7(£Λ*''< w) = 0 for all k, i>l.

(3) From the above results (1) and (2) we have Claim 2.

3. Asymptotic Behavior of Hitting Rates for Brownian Excursions Appli-
cations to Equilibrium Processes

In this section we consider the Kuznetsov measure Qm(dw) and the canonical
process {w(t)}t^R associated with absorbing Brownian motion (w\t\ Pj?) in the
half space H and the Lebesgue measure m(dx) = dx on H. We give the asymptotic
behavior of Qm(G^aB< t) as t— »oo for the hitting time aB(w) = mf{t>0 : w(t)^
5}( = oo if {•}— 0) of a compact subset B in H . Moreover by applying the result
to the equilibrium process with immigration (Xt, P) associated with (w(t\ Qm),
we also give limit theorems for it.

3.1. Main Results

Let B be a compact subset of H and πB(dx} be the capacitary measure of B,
that is, πs is supported by dB and satisfies that

x, y)πB(dy\

with the potential kernel

%χ, y}dt,
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where p°t(x, y) is the transition density of (w°(t), P%). The capacity is defined by

C°(B) = πB(ϊ) = ί πB(dx).
Jd B

Moreover if we set τB(w) = mf{t^R : w(t)<^B}( = °° if { }=0), then

(see §3.3).
We shall use a symbol ζ)°[ ] as the integral by the measure Q°.
Our main result is the following :

Theorem 5. Let B be a compact subset of H with a positive capacity. Then
it holds that

with

if d = l,

logf Φ(B) + o(logf) if d=2,
l O(l) if d>3

as t—>oot where

b=mf{x:x^B} and c=sup{* : x^B} if d —

and

Φ(B) =

with w=(w(l\ wm) if d=2.

REMARK 7. If </ = !, then g°(x, y)=2(xf\y), πB(dx)=δt,(dx)/(2b) and C°(B)
= 17(26).

Let ({Xt}tΈs, P) be the equilibrium process associated with (w(t\ Qm). Set
N?={w^ W : Q^σB(w)<t}. Then X(Nf) is the number of particles hitting B

during time interval [0, /). Now we have the following result :

Theorem 6. Let B be a compact subset of H with a positive capacity. Then

X(Nf) _^co(B) p.as and m

as t—>co. Moreover
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X(N?}-tC\B} (Nj27π, C°(β)) if d = l,
if d>2

in law as £— »oo.

3.2. Kuznetsov Measures and Capacity Theory

In this subsection we consider the asymptotic of Q^(0< TB< t) in more general
situation and give the first term of the asymptotic.

The situation is the same as in §2.2. That is, 5 is a Lusin space, 5j = S U (A}(Δ
£S), (W°, 3\ 3 , w\t\ Pχ\ />0, *<ΞS, is a Borel right process with transition
semi-group (P?)/^o and let W be the set of all maps w : R—*Sj such that w is
5-valued right continuous on some (a(w\ β(w)) and w(t)=A for

$(w}}
We fix m^Exc. It is decomposed uniquely as m = mi +

Moreover there exists a unique entrance law v = (vt)t>Q such that

/•«
mp= \ vtdt.

Jo

Then there are Kuznetsov measures

Qm, Qmi, QmP and Q°=Q» on W,

which satisfy that

Qm = Qm<+QmP, and Qmp= ί θ-s(Q°)ds= ί θs(Q°)ds.
J R J R

Note that Qmi is supported on {a—— °°} and Q° is supported on {α=0}.
Let B be a Borel subset in S. Recall that τB(w) = mf{t^R : w(t}^B] and

note that τB0θs—TB — s for all s^R. According to [7] B is co-transient if QM(TB
= — oo) = 0, and for such B we define the following co-capacities :

Then

C(B) = C'(B) + CP(B) and

The last equation is due to

/• / s+ί
0= / ds / Q°

J R Js

= ( Q\τB^du)Γ ds
J R Ju-t
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Now recall aB(w} = ini{t >0 : w(t)^B] and note that under ζ)°, τB = σB and
τB°θ-s = σB0θ-s = σB + s for s>0, but in general τB°θs^σB

0θs for s>0. We have
the following result :

Theorem 7. If B is a co-transient set with a positive and finite co-capacity,
then

t as f->oo.

Proof. One can easily see that

and

Qmp(ϋ<aB<t) = ΓQ\Q<σB°θs<t)ds + ftQ\-s<σB<t-s)ds
Jo Jo

= fe°dsfv8(dx)Pi(0B<t) + ftQ°(σB<t-s)dsJo Js Jo

=P°mp(TB<ί) + ΓQ0(σB<s)ds.Jo

That is,

(3.1)

By Spitzer's formula ([?])

and clearly

Therefore our claim follows.

REMARK 8. According to [7] the capacity of B is defined by C(B)=Qm(^<
AB<1), where AB=suv{t^R : w(t)^B}(=-oo if ( }=0) is the last exit time of B

for w(t\ For a Borel set B in S, β is transient if £Uλβ = °o) = 0. If 5 is both
transient and co-transient, then C(B)=C(B). Let L5(w°)=sup{£>0 : w°(t)^

( = G if ( }=0) be the last exit time for w°. B is strongly transient if Pm(LB>

= 0, where ζ(w°) is the life time of WQ. If (w°, Px) and (M)°, Pi) are transient
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standard processes in weak duality relative to an excessive measure m and if B is
strongly transient with finite capacity, then there is a measure

πB(dx)=lim^Px(Q<LB<t)m(dx)=lim-\-Px(TB<t, TB°θt = °°)m(dx) on S
tiO I MO I

such that PQ

x(TB<^)m(dx} = fG\y, dx}πB(dy), where G°(y, dx) = fJ°dtP?(y,

dx] [4]. Moreover Qm(λB^dt, w(AB-)(Ξdy) = dtπB(dy) and hence Qm(0<AB<l)
= πB(ί). If B is strongly co-transient then Qm(τB^dt, w(τB)^dy) = dtπB(dy) and

Qm(Q<τB<ϊ)=ίίB(ϊ) hold [6].

3.3. Proof of Main Results

Recall that H = {xd>Q}, m(dx) = dx on H, (w\t\ Px) is absorbing Brownian
motion in H, (P?)^o is its transition semi-group. Q° is a Brownian excursion law,
Qm is a Kuznetsov measure associated with (wQ(t\ Px, m), and vr(dx) = vr(
with

for r >0, w>0. Here we give some useful results for the entrance law :

Γ°° Ce f l if n — l
lim / vr(dXd)=Q, 21im / Λ:3^r(ώ:d) = j Λ .Γr i O ^ e r i O ^ O 10 if

for all ε>0, and

/ vτ(dx)ρ*t(x, y}=
JH Jo

where vr(dxd) = Vr(xd)dXd on (0, oo).
Note that the facts in Remark 8 and that w° is symmetric relative to m, i.e., w°

= w°. For each compact subset B of H, it is strongly transient, it holds that

and this is finite (cf. Theorem 6.5.3 in [14]). We can show πB(l} = Q°

directly. In fact, since / p°t(x, y)vr(dx) = vr+t(yd) and / Vr(y<i)dr = \, we have
J H «/0

Q°(σB<°°)= lim riϋ ί vr(dx)Px(TB<oo)= lim r l o f πB(dy) fg°(x, y}
J H J d β J H

πB(l). Moreover we see that

= ΓQ°[w(τB)(Ξdy:s<τB<s + l]ds+ Γ Q°[w(τB)<^dy : τB<l-s]dsJo Jo
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By a simple computation one can get

Jo

Thus by the equation (3.1), nothing that m^Pur, we have

(3.2) Qm(Q<σB<t) = tC0(B) + P0

m(TB<t)-Q0[σBΛ

Now Theorem 5 can be proved as follows : First we consider the one-
dimensional case. In this case our claim is immediately obtained by the following
proposition :

Proposition 3. Let d = l and B be a non-empty compact subset of H =
(0, oo). Set b = infB and c=sup5. Then

as t—»oo9 and

Proof. It is easy to see that

Γp°x(TB<t)dx = Γp°x(Tb<t)dx + Γp°x(TB<t)dx + Γpx(Tc<t)dx.
JO JO Jb Jc

When t— >oo9 the first term of the right hand side goes to

Jθ

and the second term goes to

The last term is equal to

Γpx(To<t)dx=Jo Jo

where (Bty Px) is Brownian motion in R. Hence the first claim follows. To prove
the second claim we need some well-known results (cf. [9]). If 0<x<b, then

Ex[e-λτ> : Tb< Γ0] = si
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and

Px(Tb< T0)=x/b.

Thus for all 0<e<b it holds that

l]mf\tt(dx)E°Jίe-λτ*:Tb<oo]=
uioJo -J L s

and

lira fevu(dx)P°x(Tb«χ>)=l/(2b).
u iO JO

Now since λ~1(l-e~λffβ)=λ~2 f^e'^dvS σB as λ 4 0 we have
Jo

_ . i rb

= lιm-flim /
λlO A u 10 JO

_ _

6'

Therefore our claim follows.

We proceed with the proof of Theorem 5 in the higher dimensional case (d>
2). In this case we use a technique which is a kind of approximation by the
capacitary measure. We further decompose the equation (3.2) to

Qm(0<σB<t}-tC°(B)

Moreover

= fdxf
JH Jd

and

u i o JH

with

ί πB(dy] Γ
JdB Jo



PARTICLE SYSTEMS WITH SINGULAR IMMIGRATION 177

Q°[σB : ΰs< f]-lim ( vu(dx) f πs(dy) Γsp^x, y)ds.
u I 0 JH Jd B JO

The second equality is shown as follows :

P°m(TB<t)- fdx f πB(dy) Γp°s(x, y)ds
JH Jd B Jo

= fdx{p°x(TB<t)- f πB(dy) Γp°s(x, y)ds\
JH I, JdB Jo )

= fdx\ f πB(dy) Γp°s(x,
JH (Jdβ Jt

Furthermore we see that

fdx f πB(dy) Γpl(x, y)ds
JH Jd B Jo

= f πB(dy) Γds Γdr ί vr(dx}pl(x, y)
JdB Jo Jo JH

r rt /"oo
= / πB(dy) I ds / vu(y<ϊ)du

Jd B Jo Js

= I πB(dy)\t I Vu(yd)du+ / uvu(yd)du\,
JdB ( Jt JO )

= ( vt(dx) f πB(dy} f pl(x, y)ds
JH JdB JO

/• /"TO /"TO

= / πB(dy) I ds / Vt(dxd)p0s(xd, yd)
Jd B Jo Jo

= I πB(dy} I Vu(yd)du
JdB Jt

and

lim fvu(dx) ί πB(dy) I sp°s(x, y}ds
u ί o JH JdB Jo

= I πB(dy) I svs(yd)ds
Jd B JO

Therefore we have

Qm(0<σB<t)-tC°(B)
=Ά(TB<t, TB°θt<co)+tQ0(σB<t,
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Now we can prove that

(3.3)

and

ί-logf 0(B) + o(logf) iΐd=2,
\0(l) iίd>3

as £— »°o. Hence our claim follows.
To prove the above equations (3.3), (3.4) and (3.5) we need several lemmas.

Lemma 9. For each λ>0, Ch= I ydPy(TB<ti)dy is finite and it holds that
J H

for all f>0.

Proof. Since w°(t) is bounded on a finite time interval, for each t >0, there
is a bounded set Kt in H such that for all x<^B, P$(w\s)eKt for all se[0, /])
>l/2. Hence for each *e#, /?(«;0(ί)e/iΓt)^/ϊ(«'0(/)e/iΓt> TB< ί)S:£2[^«(ΓB)
(w0(ί-s)eXί)|s=rB: ΓB<ί]>Pί(Γfi</)/2, that is, P°x(TB<t)<2P°x(w0(t)eKt).
Therefore

=2 ίdxxd ί pl(x, y)dy
J H J Kh

=2 dy I Xdp*h(xd, yd)dxd
jKh JO

=2 ί yddy<°o
J Kh

and

fpx(TB°θt<h)dx
J H

= f dx ( dyp»t(x, y)P°(TB<h)
J H J n

= (dyP°y(TB<ti) Γdxdp°t(xd,JH Jo
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On the other hand

= f
J H

REMARK 9. From this lemma we see that Pm(TB< t}=O(<J~Γ) as £— »°o.

Lemma 10.

,.
ί P°s(X,y)ds\

J*

forallt>Q,

as

where the 0(t~dl2~1} -const ant is bounded whenever (x, y) is bounded.

Proof. Since

/•» /•» Γ | 5 r _ r r | 2 η /•(xd+yd)2

I p°s(x, y)ds= / ds(2πs -rf/2exp -^9/' /
Jt Jt L ^5 _\J(Xd-yd)2/(2/(2s)

where ^=(^1, •••, Λ d-i)^/?^"1, our first claim immediately follows. Moreover by
using Taylor's formula

where #>0 depends on (s, z, x, y), we see that

°* (2 ffii<* -£*%*> y}ds

(χd-yd)

Using these lemmas we can prove the following :

Lemma 11. Let d>2.
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P"m(TB<t, 7>&<°°) = | \ f t )

lθ(l/vT) if

and

as /—>oo.

Proof. We first prove the two-dimensional case.

P"m(TB<t, TB°θt«X>)

< f dxPQ

x(TB<[t}-l, 7>ft<°°) + f dxPQ

x([t}-l<TB<t}
J H J H

= (dx ίpx(w\t)^dy : TB<[t]-ϊ)P$(TB«x>) + 0(l/JΓ) by Lemma 9JH JH

= ( πB(dz) (dx ( Γt]'1dsPx(w\TB)Gdv : TB<s) fp?-s(v, dy)g°(y, z)
JdB JH Jv e 3 B JO JH

Γ Γ Γ f[t]-ι Γ°°
= / m,(dz) dx / d,PS(w0(TB)^dv : TB<s) \ pl(v, z)du

JdB JH JvedBjO Jt-S

By Lemma 10 the first term is equal or less than

— f πB(dz)z2 (dx ( v2 Γ]~l d s P ° x ( B B7Γ JdB JH J v e d B Jo t~S

-1 (c=sup{*2>0 :

Now by using Lemma 9 the first term and the second term are equal to

and O(log t/JT} as £— >°o? respectively. In fact,

f[t]-l

/ τβ/0 ΐ k = l ΐ

k

a t/2 rf~ ft 12 rfς

f + ί̂ -t
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Therefore

P°m(TB<t, TB°θt«χ>) = 0(\ogt/^ i f d = 2 .

Moreover

Q°(σB<t, to°

Γ Γ Γ Γ^J-1 /"°°
= ]imvτ(dx) πa(dz) / dsP"x(w0(TB}^dv : TB<s) \ pl(v,

riojH JdB JvedBjQ Jt-S

z)du

Thus

Q°(<fc<f, (7B°0*<oo) — Vί ^πB(dz)f V2Q\w°(σB)^dv : aB<[t]-ΐ)
TCI JdB JdB

Γ Γ Γ Γ [ t ] - i
=lim / vr(dx) / πB(dz) / / dsP°x(r i 0 JH JdB J V e 5 B Jo

Since by Lemma 10

as t—*co. Hence we have

\Q\ΰB<t, σB°θt«x>}-Φ(B}/t\

f
o JH

where C is a finite constant. By using Lemma 9 we can also see that the first term

is equal to 0(log t/ϊft*) and the second term is to O(l//?) as t— »oo. Thus

Q°(σB<t, 0B°θ<oo)=φ(B)/t + o(L/t) ifd=2.

In the higher dimensional cases (d^3) by a similar way our claim immediately
follows. In fact, by using Lemma 10 it is easy to see that

and

lim fvuw i o J H
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as t—>°°. From this we can get

PS,(TB<t, TB°θt«χ>)=θ(l/JΓ)

and

Q\ΰB<t, σB°θt<™} = 0(l/JΨ}

as f-»oo.

From this lemma the equations (3.3) and (3.4) are obtained.
Note that in the above computations we also have the following result :

Theorem 8. Let B be a compact subset of H with a positive capacity. Then

if d = l,

and

r^r ,
P°m(TB<t} = J-^r / 2xdπB(dx) +

V πjH 2 if

rod//) if d=l,
if d=2,

as

Note that if d = l, then / 2xdπB(dx) = l by Remark 7, and that Q°(σB<J H

as ί->oo. And if d>2, then

= fπB(dx} Γds
J Jθ Js

We prove the equation (3.5). It is enough to show that for all

(4) ifd=2,
-g(t)=

as ί—>oo. This can be proved by a similar way to the proof of Lemma 11. Since

= P°x(TB<t, TB°θt«*>),
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we have

=lim ίvu(dx)\E°JiTB : t<TB<t + h]- ί πs(dy) Γ+"sp0

s(x, y)ds\
uiϋjH { JdB Jt }

<:iim (vu(dx}\(t + ti)P°x(t<TB<t + h)-t ί πB(dy) Γ+"p^x, y)ds
uίβjH { JdB Jt

Γ ( Γ rt+h Λ
= Him / vu(dx)\ P°x(t<,TB<t + ti)- πB(dy) \ pl(x, y)ds

uiϋjH (. JdB Jt )

+ hlimf ' vu(dx}PQ

x(t<*TB<t + ti)
uio JH

= t\\mfvu(dx}{PQ

x(TB<t + h, TB°θt+h<™)-P0

x(TB<t, TB°θt<°°)}uio JH
+ hQ°(t<σB<t + h)

= t(Q\ΰB<t + h, σB°θt+h<<χ>)-Q\ΰB<t, aB°
+ hQ\t<σB<t + ti)

ifd=2,

as t-^oo by Lemma 9 and Lemma 11. A lower estimate is given by the same way :

-g(t)

as t— >°°. Therefore the equation (3.5) follows.

Finally we prove Theorem 6. Recall N? ={0< GB< t}. The first claim follows
by the subadditive ergodic theorem [10] and E[X(Nf)] = Qm(Nt). For the second
claim it is enough to show that if

as £-»°o? where Cι>0 and C2^0, then

E

as ί— >°o. However this can be easily obtained by using the following formula :

E
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for all //-functions F(w) on (W, Qm\ In fact, as

3.4. Further Results

The Brownian excursion law Q° can be also denned by the following : For x

and Q°= ί
J R"

So in this final subsection we change the Lebesgue measure dx on Rd~l = dH, the
boundary of H, to an arbitrary cr- finite measure μ(dx} and consider the same
problem as above. Let prd~l\y, x) denote the transition density of the (d
— l)-dimensional Brownian motion. Define

Q°μ= f
J Λ"-1

where Vr(dx)=Vr(x)dx with

Then vμ=(vr)r>o is an entrance law for (P?)/ao, i.e., v?Pt — Vr+t. Moreover set

mμ(dx)= Γdrvμr(dx} and Q»»= Γθ-,(Φds,
JO J-oo

Note that mμ(dx) = mμ(x)dx with

where .Γ is gamma function. Then mμ^Pur and Qm* is the Kuznetsov measure
associated with (w°(t), P%, mμ}. For this measure mμ, we have the hollowing:
The transition density pΐ(x, y)=p°t(x, y)/mμ(x\ the capacity measure πs(dx) =
mμ(x}πB(dx\ the capacity Cm(B) = πm(l\ the co-capacitary measure πβ(dx) =
Qm»(w(?B)^dx : 0< TB<l) = Q^w(aB)^dx : σB<°°) and the co-capacity Cm(dx}
= Qm«(Q< TB< 1) = QQμ(θB< °°). In this case w° is not symmetric relative to mμ, thus
in general Cm(B}*Cm(B\

Now fix a compact subset B of H with positive co-capacity. By the same
computation as in §3.3, we can get

Pm"(TB<t,
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where

πB(dy] Γpl(x, y}ds.
JO

We only consider the case that μ(dx) = δX(*-u(Q)(dx(k~1))dx(d~k) for a certain k
= 1, 2, •••, d and a certain fixed point x(k~l\G)^Rk~\ Then we have the follow-
ing :

Λx) - ** expΓ .l^-^-
Λ x)~(2π)k/2rl+k/2 PL 2r

and

^ -Γ(k/2) _ x,-

Note that if k=l, then ι/?=ι^r and mμ(x) = l. So it suffices to consider the case of
2< k<=d. In this case it can be seen that

and

(flT=2),

Q°μ(ΰB<t,

More exactly when ί/>4, we have

rexW

Furthermore

as ί— »°°, where

Φμ(B}=— ί
7ΐ J d B

=—f
πJdB JdB

Therefore we have the following result : For each 2<k<d,
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and Pmχ(TB< t ) is equal to

U=2),log tf-(

as t—*00. Moreover since

0 / - / Z / 2

we can get the asymptotic behavior of

However it is too tedious to describe it.

Of course we also apply the above result to the equilibrium process with

immigration and obtain a similar result to Theorem 6.
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