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Abstract
The classical theorem of Shub and Sullivan states that aesegquof local fixed
point indices of iterations of & self-map of R™ is periodic. The paper generalizes
this result to a wider class of maps.

1. Introduction

Let ind(f, 0) be a local fixed point index at 0, whereis a self-map ofR™. If O
is an isolated fixed point for each”, then {ind(f", 0)}2, is well-defined.

The sequence of indices of iterations is a very useful insént in periodic point
theory. Its applications are specially fruitful if it is kwa that {ind(f", 0)}%2, is a peri-
odic sequence. This knowledge can be successfully appliettiecting periodic points
(cf. [8], [9]), estimating the number of orbits (cf. [1], [0 finding orbits with the
special pattern (cf. [11]) and studying dynamical progsrtdof f in a neighborhood
of a fixed point (cf. [6], [12]).

Thus, the important task is to identify classes of maps foictvla sequence of lo-
cal indices of iterations is periodic. Among such classes @mtinuous self-maps of
the real line, planar homeomorphisms (cf. [5]), simpligighps of smooth type (cf. [4],
[14]). In 1974 Shub and Sullivan proved that al€d self-maps ofR™ have periodic
indices of iterations (cf. [13]). It is worth pointing outahin 1983 Chow, Mallet-Paret
and Yorke found additional relations among the elementgirmf(f", 0)}52, in C!-case
(cf. [2]).

The core of the reasoning applied by Shub and Sullivan wagpooaimate |d—g*
by (Id+B + B2 + -.. + B<"1)(Ild —g), where B is a linear map, in such a way that
ij;g Bl is a diffeomorphism, which implies that ingl{, 0) = ind(g, 0). These au-
thors gave also an example of a continuous nfiawhich is differentiable in all points
of the unit ball except of its center 0, bfind(f", 0)}72, is unbounded, which shows
that their theorem cannot be extended on all continuous mapkterature the theo-
rem of Shub and Sullivan is presented as a consequence ofiwoms differentiability,
for example in well-known monograph of dynamical systemsif7s discussed in the
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chapter entitledThe role of smoothnes$Ve show in this paper that the main idea of
Shub and Sullivan, mentioned above, can be successfullgtedidor a larger class of
maps, which we call Shub-Sullivan class.

The paper is organized as follows. In the first section weothice notation and
formulate the main result. Next, we give the proof of it, whis based on some lem-
mas. Finally, we discuss how large Shub-Sullivan class @& distinguish its subclass,
called orbital class for which an effective estimate of the period @fRd(f", 0)}22, is
possible.

2. The statement of the result

For the rest of the paper we make a general assumption thatonsder only
such continuous map$: U — R™, whereU ¢ R™ andU is an open neighborhood
of 0, that f(0) =0 and 0 is an isolated fixed point for eaéR, n > 0.

DEFINITION 2.1. Let f: U — R™ We will say that a mapf is deviated from
a linear mapA: R™ — R™ if it satisfies the following condition:

(2.1) [ 00 — £2(x) — Ax = )] = o(lix = f ()

Form > 1 we definePyn = FixX(f™) \ Ugznem FIX(f"). If Pn(f) 7 9, thenm
is called a minimal period off. The set of all minimal periods of is denoted by
Per(f).

The main result of the paper is the generalization of Shub Smidlvan theorem
to the following class of maps:

SEmM) = {f: U — R™: IpVicper f' is deviated fromA'}.

The period of a sequence of indices of iterations of a ma@¥m) will be ex-
pressed in terms of PeX|. On the other hand the form of P&) is known, it can be
described by a use of eigenvalues Af(cf. [1], [2], [9]), namely:

Per(A) = {LCM(K): K C a1(A)},

whereoy(A) is the set of degrees of all primitive roots of unity contdnin the spec-
trum o(A), LCM(K) denotes the number equal to the least common multiple of all
elements inK, we define LCM@) = 1.

Notice that the set Ped) is closed for the operation of taking the least
common multiple, i.e. ifs € Per(A) andt € Per(A) then LCMG, t) € Per(A). Thus
LCM(Per(A)) = maxX! € Per(A)}.
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By v_ we will denote the number of eigenvalues Afless than—1, counting with
multiplicity. Let

[ = max{l € Per@A)} if 2|v_,
2maxl € Per@d)} if 24v_.
Now we may formulate our main theorem:

Theorem 2.2. If f e S§m), then {ind(f", 0)}72, is periodic and its period is
not greater than r

3. Proof of the main theorem
In the proof of Theorem 2.2 we will need some lemmas.

Lemma 3.1. If for some natural i there is|g(x) — g *}(x) — B(x — g (x))|| =
o(|Ix — g (x)|), then for each natural j

|9’ () — g () — B (x = g' (%)) | =o(]|x = g'(x)])-

Proof. Assume inductively that the thesis is valid fpr- 1, we prove it forj.
First notice that by the assumption of the lemma for arblyrathosene there isU,,
a neighborhood of 0, such that for evexye U,: [lg(x) — g " (X)|| < IB(x — g (X))|| +
ellx—g (X)|l < (e+]BI)lIx—g'(x)]l. By this and inductive hypothesis we get for every
x € V,, whereV, c U, sufficiently small neighborhood of O:

lo'@0) — ¢ H(g(9) — BIH(g(0) — g (0) | < e 900 — g7 ()|
<e(e+IBI[x — g ™).

Finally:
|9 (x) — g!*' (x) — BI (x — g (x)) + B 7*(g(x) — g'**(x)) — B~ (g(x) — o' ™ (x)) |

< |g'(x) — g (x) = BI (g(x) — g (x)) | + | B (900 — g+ (x)) — Bl (x — g' (%)) |
<ee+IBI)|x—g' xX)|+ B e]x - g (x)

’

where in the last inequality we used the assumption of themlenThis ends the proof.
U

Takingi =1 in Lemma 3.1 we obtain the following corollary:

Corollary 3.2. If g is deviated from Bthen for each natural j there is

o' (x) — g1 (x) — BI(x — g(x))| = o(lIx — g(x)I))-
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Lemma 3.3. Let g be deviated from a linear map B and the mﬁﬁ;& Bl be
non-singular Then

k-1
(3.2) ind@*, 0) = sgn de(z Bi) -ind(g, 0).

j=0

Proof. We use the following well-known fact: let h: U — R" be continuous
maps,s1(0) = {0} and ||s(x) — h(X)|| < lIs(X)|| for x € U \ {0}, thenh=1(0) = {0}
and deg(s) = degy(h), where deg(s) denotes the topological degree sfat 0. This
statement is a consequence of the observation that the liveaotopy betweers and
h has no zeros iU \ {0}.

Now we takes(x) = Z‘;;& Bi(x — g(x)), h(x) = x — gk(x).

We define the mam; by the following equation:

g' () — g (g(x)) = B! (x — g(x)) + wj(x.)

We have:

k-1 k-1 k-1
33)  x—d‘®) =) (g'x) - ") = {Z B,} (X —g0Q) + ) wj(x).
j=0 =0

j=0

By Corollary 3.2 for everye and j < k there is a neighborhood, j of O such
that for eachx e U, ; there is:

(3.4) lw; GOl < ellx — g(x)]I.

Thus, forx e U,-sufficiently small neighborhood of 0 there i3 23 w;(X)] <
ke[| x —g(X)|l. As the linear mapZ'j‘;& B/ is non-singular, we get fos which is small

enough:
k=1
(Z B,) (x — g(x))

j=0

<

’

k—1
> wi()
j=0

which is equivalent td|s(x) — h(x)|| < |Is(x)| for x € U, \ {0}.
Finally by the multiplicativity of topological degree we tge

k—1
ind(g*, 0) = deg(ld —g") = deg, [(Z B") (x — g(x))}

j=0

k-1 k-1
= sgn de[(z Bi) degy(Id —g) = sgn de[(z Bi) ind(g, 0). O

j=0 j=0
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Now, for a given linear mapA we define the functiomg: N — N by: q(n) =
max{l € Per(A): | | n}.
The proof of the following lemma may be found in [9] (cf. alsmPosition 3.2.30

in [6]).

Lemma 3.4. Let b = n/(q(n)), then for each natural nZ?;Ol AYMI s non-
singular and

b-1 .
sgndet(z Aq(n)j) _ !;1 if 2n, 2fa(n), 2fv,

= in the opposite case.

Proof of Theorem 2.2. By the assumption of the theorem foryevee Per(A)
f! is deviated fromA'. On the other hand for every natumal q(n) € Per(A), thus the
thesis of Lemma 3.3 is valid fok = b, the mapg = 9™ and B = AYM. Applying
also Lemma 3.4 we get:

—ind(fa™, 0) if 2|n, 2fq(n), 2¢4v,

ind(f", 0) = ind(g"9™, 0) =
( ) (9 ) ind(f9™, 0)  in the opposite case.

Let us consider now the case when B, 21 q(n) and 2t v_. Remind that for
2 + v_ we definedr = 2maxl € Per(A)}. It is obvious thatq(n) = q(n +r), thus
2tq(n) iff 2+tq(n+r) and, as 3r, 2| niff 2 | (n+r). Finally, again by Lemma 3.3
and Lemma 3.4:

ind(f™", 0) = —ind( ", 0) = —ind(f%", 0) =ind(f",0).
Analogously we prove the periodicity in the remaining case. ]

4. On the Shub-Sullivan class

Let U ¢ R™ be a neighborhood of 0. We define the following classes of maps

By a standard way, we denote I64(m) smooth maps otJ.

By C(m) we denote mapg : U — R™ such thatf is differentiable inU and the
derivative Df is continuous at 0. In the forthcoming definitiodsis a linear self-map
of R™,

Z(m) = {f:3al f(x) = £(y) = A(x =yl = o(lIx = yl)}-
OC(m) = { f: FaVicpery | F(¥) — F71(x) — A(x — F1(x))|| =o(|x — ' (X))}

which we callorbital class Remind that bySYm) we denote:

SEm) = { f: IaVicren | () = 20 = A (x = F109) | = o([[x = '(9)}.
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DEFINITION 4.1. Let f belong to one of the classes given above, then we will
say that a mapA, which appears in the definition of the class, correspond$.to

Theorem 4.2. The following inclusions hold and are proper
c(m) c C(m) c Z(m) Cc OC(m) C SSm).

Proof. First we show that all inclusions hold.

1. CY(m) c C(m) is obvious.

2. C(m) c z(m).

Let f € CNZ(m), f = Df(0) +s. Then, by the assumption,Ds(x)| = [|Df(x) —
Df(0)] — 0, whenx converges to 0. By Mean Value Theorem fory in a small
enough and closed ball with the center at O &nth an open line segment joining
andy there is:|Is(x) — s(y)ll < IDs)llIx — yll, thus [Is(x) — s(y)Il = o(lIx — yl).
Taking A = Df(0) we finally obtain:| f(x) — f(y) — A(X — )|l = o(|Ix — VI).

REMARK 4.3. Notice that if f € Z(m) and A corresponds tof, then f(x) =
A(X) +s(x), wheres € Z(m) and Ds(0) = 0. As a consequencé must be differen-
tiable at 0.

3. Z(m) c OC(m).

If f e Z(m), then there is a linear map such that| f (x) — f(y) — AX — y)|| =
o(x — y|I). Leti e Per(A) and let us takey = f'(x). We get]| f(x) — f"*1(x) — A(x —
FLOI = o(Ix — f1(x)I)), thus f € OC(m).

4. OC(m) C S§m).

If f € OC(m), then there is a linear map such that for each € Per(A) there
is: || f(x) — FI*3(x) — A(x — FI(X)|l = o(lIx — fI (X)), so f satisfies the assumption
of Lemma 3.1. Now, in the thesis of this lemma we pgut f, B=A andj =i and
state thatf € SIm).

This ends the proof of first part of Theorem 4.2. Now we showt #giainclusions
are proper.

1. C(m)\ CY(m) # 4 is obvious.

2. z(m)\ C(m) # ¢. We puts(1/n) = 1/n? and extends to a piecewise linear
map s: [0, 1] — R. The functions is not differentiable at any neighborhood of 0, but
satisfies|s(x) — s(y)| = o(|x — y|). Now definesyp(x): B(0, 1) — R™ by the formula:
sm(x) = s(||x]|)x, where B(0, 1) is the unit ball inR™. There is:|sn(X) — sm(y)| =
ISCUXI) o= y) +[s(Ix ) = sy I < IsCIXIE = y) I +o(lxll =y Il = o(llx = ylI).
For any linear mapA, we put f(x) = A(X) +sn(x). Then f € Z(m), but f ¢ C(m).

3. OC(m)\ Z(m) # @.

Let f: U — R™ be given by the formula:

f(x,y) = (x+x>+1yl.y).
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where &, y) € R x R™1, Let us take asA identity map, Perd) = {1}.
We have: f(x, y) = f3(x,y) = —((x + x>+ [lyl)? + llyl, 0), A(x,y) — f(x,y)) =
—(X2+ |yl 0). Thus:

| (% 9) = F206, y) = A%, ) = F(x, )
= |23+ 2xIlyll + 23]yl + x* + 1y1%] = o(x* + Iyll) = o(ll(x, y) = f(x, V).
We see thatf € OC(m) but, as f is not differentiable at 0, by Remark 4.3,
f ¢ Z(m). It is not difficult to observe thay: U — R, given by the formulag(x) =

x2sin(1/x) for x # 0 andg(0) = 0 satisfiesg € OC(1) \ Z(1).
4, S§m)\OC(m) #@. Let f: R >R

1
—Zx—x® if x>0,
f(x) = 2

—2x+x2 if x<0.

For x > 0 there is:x — f(x) = (3/2)x + o(x), f(x) — f2(x) = —(3/2)x +0o(x), f?(x) —
f4(x) = —(9/4)x% + 0(x?), x — f?(x) = —(9/4)x? + o(x?).

For x < 0 there is:x— f(x) = 3x+0(x), f(x)— f?(x) = =3x+0(x), f2(x)— f4(x) =
(9/2)x2 + 0(x?), x — f2(x) = (9/2)x? + o(x?).

The assumption thaf is in Shub-Sullivan class implies thdt must be deviated
from some linear mapA, the only possibility here isA(x) = —x. We have then:
Per(A) = {1,2}. Then two conditions equivalent t6 € S1) are satisfied] f(x) —
fF2(x) = (=1)(x = f(x))| = o(Ix = F(x)I) and | F2(x) = F4x) — (=1 (x — F3(x))| =
o(lx = fF2(x)]).

On the other hand ¢ OC(1) as we conclude by the following calculation.

For x > 0 there is: f(x) — f3(x) = (9/8)x? + o(x?), for x < O there is: f(x) —
f3(x) = —9x2 + 0(x?). In both cases we takie= 2 and see that the conditigrf (x) —
f3(x) — A(x — f2(x))] = o(jx — f2(x)|) is satisfied only forA such thatA(x) = —(1/2)x
if x>0 andA(x)=-2x if x <O.

In m-dimensional case we take a continuous mgpS™! — R such that
g(x)g(—x) = 1 with g(x) # 1 at somex, and forx # 0 define f: B(0,1) — R™,
where B(0, 1) is the unit ball inR™, by:

() =— (g (ﬁ) ¥ ||x||) X.

It is easy to see thaf maps each diameter onto itself, acting in the same way as in
the one-dimensional case. As a consequerce: — Id and f € S§m). On the other
hand for some directions (such thg{x) # 1) f is not in the orbital class in this
direction, thusf ¢ OC(m). ]

The examples which are given above illustrate that it istiredly easy to find el-
ements of the each class that do not belong to the previousHmeever, sequences
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{ind(f", 0)}°2, given in the examples have very simple form: a mlaglefined in4’ is
a source type and so generates the sequence of period 1 goehdileg on the dimen-
sion. On the other hand, it is known that in general cfisd(f", 0)}52, cannot take
arbitrary integer values, but must satisfy some congruerestablished by A. Dold
(cf. [3]). In [2] there are further restrictions for possibsequences i€!-case. There-
fore a natural question is:

Problem 1. Which integer sequences can be realized as indices of inesafor
a map f in Shub-Sullivan class

5. Estimation of a period

Let f be a fixed map which belongs to one of the classes under coataleand
let A corresponds tdf (cf. Definition 4.1). ThenA is unique for maps irnZ(m) and is
not uniquely determined for maps @C(m) and S§m). This interesting phenomenon
is clearly visible for f given in the example8' of the previous sectionn{ > 2). Not
only A =1Id, but every mapA’: R x R™? — R x R™?! of the form: A' = [ *] cor-
responds tof € OC(m). On the other hand, the greater is the number of eigenvalues
which are primitive roots of unity contained m(A’) the worse is the estimate for the
period of {ind(f", )}, given in Theorem 2.2. The motivation to distinguish orbital
class is the fact that fof € OC(m) we may determine “minimal” subspadé c R™
and a linear mapgs: V — V without unessential eigenvalues such that eéckhat
corresponds tof is an extension ofs (Theorem 5.3).

Leti be a natural number, we define the set:

_ s
\Z:{xeRm:x: lim M
n—oo || — f1(xn)ll

where x, — O} .

Next we define a mag: |J;.y Vi — R™ in the following way: ifv € Vi i.e. there
is a sequence, which converges to zero such that= lim,_ (X, — f'(Xn))/IIXn —
fi(xa)ll, then we putG(v) = liMnooo(f(Xn) — FI2(%0))/ %0 — fi(Xa)ll. We say that
@(v) is well-defined if this limit exists and is independent baththe choice ofx,
andi.

Let now V = spar J; . Vi. If G is well-defined onl J; Vi and extends to a linear
map onV, then we denote this extension & and say thaG is well-defined.

Remind thatA: R™ — R™ corresponds tof € OC(m) if

Vieper || f(x) = F7(x) = Ax = £100)] = o(]|x = f' ()]
Define Vi = sparV;.

Lemma 5.1. If A corresponds to fe OC(m), then for each ie Per(A) there is
A(M) C Vi.
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Proof. Letv € Vi, thenv = liMnoo(Xn — 1 (%n))/ 1% — f(Xn)ll. From the fact
that A corresponds tof we get:

- F(xn) — fi+1(xn) o Xn — fi(xn) _
©5) L T — TGl A(nxn : fi(xn)u) - A
On the other hand:
f(%n) — fi+1(xn)
e ¥ — 1)l |
_ F0n) = 1750q) 1F00) = P80l _
n—oo || f(Xn) — FI*H20)I 11Xa — F1(Xn)Il '

wherew € Vi, « € Ry, which is a consequence of the obvious fact that for a given
sequencela,} ¢ R™ anday # 0, there isian, — a iff ay/llan]l — ao/llal and
lanll = llaoll. Finally, we get thatA(v) € spanV. U

Lemma 5.2. If A corresponds to fe OC(m), then

V =span [ J V. = > Vi

i ePer(A) iePer(A)

Proof. Remind thaty(i) = max| € Per(A): | | i}. We defineb =i/(q(i)), because
q(i) i, sob is a natural number. We show th¥f C V().

Let v e Vi, v = liMno s — F1())/ %0 — £ (Xa)ll-

By the formulas 3.3 and 3.4 in the proof of Lemma 3.3 we obtainkf = b,
g= 90 and B = A%0) and each natural:

Xo— £ ) = PO | %= iam | (%0 — F9O0)
G T ||xn—fi(xn)||{ZAJq (m) =°

j=0

Because the sequenag = (X, — F90(xy))/lI% — F99(x,)| is contained in a sphere,
we may choose its subsequenceNWhich is convergent. Witlomst of generality as-
sume thatz, is convergent tow € Vq). Then, by Lemma 3.42?;01 Aj'q“)(w) # 0.
Repeating the argument from the proof of Lemma 5.1, we get(tha— f'(Xn))/IIXn—
i)l — v e Vi and (% — F )/ I% — F9O(x)| — « € R.. By the in-
equality (5.6)ver = Z?gol AldO(w) and by Lemma 5.1A preservesVy), thusv €
spaan(i) = Vq(i). O

Theorem 5.3. Let f € OC(m). A linear map A R™ — R™ corresponds to f if
and only if G is well-defined and A= G.
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Proof. Assume tha# corresponds tof .

By Lemma 5.2V = sparuleper(A)V. Let v € V; for some naturai € Per(d),
v = Ilm,Hoo(xn — f1(xn))/IIXn — f'(Xn)|l. Then, by the formula (5. 5)G(v) is well-
defined andG(v) = A(v), which shows thaG agrees withA on eachV,. Thus, asA
is a linear map, we obtain the thesis.

Assume thatG is well-defined andAjy = G. Suppose, contrary to our claim, that
A does not correspond té. Then there is € Per(A) ande > 0, such that for every
neighborhoodJ of 0, there isx, € U such that:

I (%) — (%) — Ae — T )l = ellXn — F1 (%)l

This is equivalent to:

(5.7)

H f(xn) — £*1(%n) _ A( Xn — f1(Xn) )H
%0 — 1 (%)l X — £1 (%)l

We choose a subsequence &f € f'(xn))/IIXn— f'(Xn)|| convergent tow € Vi. As G is

well-defined, the respective subsequence fi§) — f'*1(xn))/l1Xn — f'(Xn)|| converges

to G(v). Then, by (5.5) and the fact tha,, = G, the expression in the left-hand side

of the inequality (5.7) converges t0G(v) — A(v)|| = 0, which leads to contradiction.
O

REMARK 5.4. By the above procedure one can find the “minimal” (in thasge
of Theorem 5.3) linear maf whose eigenvalues affect the period of indices of iter-
ations for f € OC(m). Notice that, by Lemma 5.1 and Theorem 5@,is a self-map
of V, this implies in particular that the number of essentiakesiglues is not greater
than dimV (or more precisely (dinv)/2 + 1).

Problem 2. Let f be in Shub-Sullivan clasé&n open question remains whether
a similar procedure of finding &minimal’ linear map for a given f can be realized
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