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Abstract
Let X(k)(n) be the indicator function of the set ofk-th power free integers. In this

paper, we study refinements of the density theoremS(k)
N (m) WD (1=N)

PN
nD1 X(k)(mC

n)! 1=� (k), � being the Riemann zeta function. The following is one of our results;

lim
M!1 1

M

MX
mD1

�
N

�
S(k)

N (m) � 1� (k)

��2 � N1=k.

The method we take here is a compactification ofZ; we extendS(k)
N to a random

variable on a probability space (OZ, �) in a natural way, whereOZ is the ring of finite
integral adeles and� is the shift invariant normalized Haar measure. Then we in-

vestigate the rate ofL2-convergence ofS(k)
N , from which the above asymptotic result

is derived.

1. Introduction

For k 2 {2, 3, : : : }, let X(k)(n), n 2 Z, be the indicator function of the set ofk-th
power free integers, i.e.,

X(k)(n) WD �
1, (8p: prime, pk ­ n),
0, (9p: prime, pk j n),

and letS(k)
N (m), m2 Z, denote the frequency ofk-th power free integers betweenmC1

and mC N, i.e.,

S(k)
N (m) WD 1

N

NX
nD1

X(k)(mC n).

Then it is well known that for eachm 2 Z,

(1) lim
N!1 S(k)

N (m) D 1� (k)
,

where� is the Riemann zeta function (cf. [4]).
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Many researchers have been interested in estimating the error S(k)
N (m) � 1=� (k).

Under the Riemann hypothesis, there is a conjecture about this;

(2) 8" > 0, N

�
S(k)

N (m) � 1� (k)

� D O(N1=2kC"), N !1.

As is mentioned in [8], this conjecture should hold, but it isquite unlikely that it will
be proved in near future, because it is related to the Riemannhypothesis so closely.
In particular, in the case ofk D 2, there have been many challenges to this conjecture,
assuming the Riemann hypothesis, such as [1, 2, 3, 5, 7]. Refer to [8] for an overview
of this topic.

In this paper, we study the probabilistic aspects of this problem. We take here a
compactification method which has been developed by [9, 10].Let us give an overview
of this paper.

In Section 2, the ring of finite integral adelesOZ, which is a well-known compact-
ification of Z in number theory, as well as some related basic notions, is introduced.
Since OZ is a compact metric group with respect to addition, there exists a unique nor-
malized Haar measure� defined on the Borel fieldB of OZ. In Section 3, it is noted
that the mappingx 7! x C 1 is a �-preserving ergodic shift on the probability space
( OZ, B, �). By this fact, since we can extend the functionsX(k)(n) and S(k)

N (n) on Z to

L1( OZ, B, �)-functions in a natural way, we get the following law of large numbers

(3) lim
N!1 S(k)

N (x) D E[X(k)] D 1� (k)
, �-a.e. x 2 OZ,

which is the adelic version of (1).
The main aim of this paper is to study the convergence rate of the law of large

numbers (3). With the help of the explicit formula for the random variableS(k)
N given

in Section 4, we can estimate the rate of convergence in Section 5 as follows;

E
��

N

�
S(k)

N � 1� (k)

��2� � N1=k.

Finally, in Section 6, the last estimate is translated into the language ofZ as

lim
M!1 1

M

MX
mD1

�
N

�
S(k)

N (m) � 1� (k)

��2 � N1=k (Corollary 6.3).

This may be called as a mean square version of the conjecture (2). It should be noted
that we do not need the Riemann hypothesis to prove this and nevertheless get the
same exponent as in the conjecture.
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2. Basic notions

This section deals with some basic notions and some known results needed for this
paper. For proof of lemmas, see [10].

For a primep, the p-adic metricdp is defined by

dp(x, y) WD inf{p�l I pl j (x � y)}, x, y 2 Z.

The completion ofZ by dp is denoted byZp. By extending the algebraic operations
‘C’ and ‘�’ in Z continuously to those inZp, the compact metric space (Zp, dp) be-
comes a ring, called the ring ofp-adic integers. In particular, (Zp, dp) is a compact
abelian group with respect to ‘C’. According to the general theory of compact groups,
there is a unique normalized Haar measure�p with respect to ‘C’ on the measurable
space (Zp, B(Zp)), whereB(Zp) denotes the Borel field ofZp.

DEFINITION 2.1. (i) Let {pi }
1
iD1, 2 D p1 < p2 < � � � , be the sequence of

all primes.
(ii) Put

OZ WD 1Y
iD1

Zpi , � WD 1Y
iD1

�pi .

For x D (xi ), y D (yi ) 2 OZ, we define

d(x, y) WD 1X
iD1

1

2i
dpi (xi , yi ), x C y WD (xi C yi ), xy WD (xi yi ).

By these definitions,OZ becomes a ring, calledthe ring of finite integral adeles.
( OZ, d) is again a compact metric space, and both ‘C’ and ‘�’ are continuous. In par-
ticular, (OZ, d) is a compact abelian group with respect to ‘C’ and its normalized Haar
measure on the Borel fieldB is nothing but�.

DEFINITION 2.2. (i) We identify Z with the diagonal set{(n, n, : : : ) 2 Z �Z � � � � } � OZ.
(ii) For N 3 m� 2 and l 2 {0, 1, : : : , m� 1}, we definem OZC l WD {mxC l I x 2 OZ}.
Then we haveOZDSm�1

lD0 (m OZC l ), which is a disjoint union (Lemma 2.5 (iii)). So, for

x 2 OZ andN 3 m� 2, there exists a uniquel 2 {0, 1,: : : , m�1} such thatx� l 2 m OZ.
This l is denoted byx modm. For m D 1, we always setx modm WD 0. Obviously,
if x 2 Z, this definition coincides with the usual modulo operation.
(iii) For x, y 2 OZ, we define the greatest common divisor ofx and y by

gcd(x, y) WD sup{m 2 N I (x modm) D (y modm) D 0}.
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Obviously, for x, y 2 Z, this definition coincides with the usual gcd.

Lemma 2.3. N 0 WD {(n, n, : : : ) 2 OZI n 2 N} is dense inOZ.

Lemma 2.4. (i) Let p be a prime and j2 N. Then pjZp is closed and open.
(ii) Let p, q be distinct primes and j2 N. Then we have pjZq D Zq.

Lemma 2.5. Let m2 N and l 2 {0, 1, : : : , m� 1}.
(i) The set(m OZC l ) is closed and open.

(ii) �m W OZ! {0, 1} is continuous, where�m(x) D �
1 if x modmD 0,
0 otherwise.

(iii) OZ DSm�1
lD0 (m OZC l ), which is a disjoint union.

Corollary 2.6. For any l 2 Z, the mapping

OZ 3 x 7! (l C x) modm

m
2 [0, 1)

is continuous.

Lemma 2.7. For any l 2 Z n {0} and any A2 B, we have l A2 B and

�(l A) D 1jl j�(A).

Lemma 2.8. If f W OZ! C is continuous, then

Z
OZ f (x)�(dx) D lim

N!1 1

N

n0CN�1X
nDn0

f (n), 8n0 2 Z.

The convergence is uniform in n0 2 Z.

3. The law of large numbers

In what follows, we fix an integerk � 2. Let X(k) W ( OZ,B, �) ! {0, 1} be a natural
extension ofX(k)(n) defined by

X(k)(x) DY
p

(1� �pk (x)).

If we put

B(k) WD\
p

( OZ n pk OZ) � OZ,
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then it is clear thatX(k) D 1B(k) , and thus,

E[X(k)] D �(B(k)) DY
p

�
1� 1

pk

� D 1� (k)
.

Next, we consider a shift�
� W ( OZ, B, �) ! ( OZ, B, �),

x 7! x C 1.

Recall that{�n(1)}nD0,1,2,::: (D N 0) is dense in OZ (Lemma 2.3). Therefore, according
to [11, Theorem 1.9], the shift� is ergodic. Now applying the ergodic theorem for
X(k) yields

S(k)
N (x) WD 1

N

NX
nD1

X(k)(x C n) D 1

N

NX
nD1

X(k)(�nx)

N!1����! E[X(k)] D 1� (k)
(�-a.e. x 2 OZ),

which is the adelic version of (1).

4. Explicit formula for S(k)
N

For eachL 2 N, let

X(k)
L (x) WD Y

p�pL

(1� �pk (x)),

S(k)
N,L (x) WD 1

N

NX
nD1

X(k)
L (x C n),

ML WD {u D p�1
1 � � � p�L

L 2 N I 0� �1, : : : , �L � L}.

REMARK 1. From now on, if there is no confusion, we will omit(k) in formulas.
For example,X will be considered asX(k) and so on.

Lemma 4.1. For each N2 N,

SN,L (x)
L!1���! SN(x) (pointwise convergence),(4)

SN,L (x) D X
u2ML

�(u)

�
1

uk
� 1

N

�
(N C x) moduk

uk
� x moduk

uk

��
,(5)

where� denotes the Möbius function.
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Proof. The convergence (4) is obvious. We now prove (5). The definition of
SN,L (x) gives

(6)

SN,L (x) D 1

N

NX
nD1

Y
p�pL

(1� �pk (x C n))

D 1

N

NX
nD1

 
1C LX

rD1

X
1�i1<���<i r�L

(�1)r �pk
i1

(x C n) � � � �pk
ir
(x C n)

!

D 1

N

NX
nD1

 
1C LX

rD1

X
1�i1<���<i r�L

(�1)r �pk
i1
���pk

ir
(x C n)

!

D 1

N

NX
nD1

X
ujp1���pL

�(u)�uk (x C n)

D X
u2ML

�(u)

 
1

N

NX
nD1

�uk (x C n)

!
.

Here we have

(7)

1

N

NX
nD1

�uk (x C n) D 1

N

�
N C x moduk

uk

�

D 1

N

�
N C x moduk

uk
� (N C x) moduk

uk

�

D 1

uk
� 1

N

�
(N C x) moduk

uk
� x moduk

uk

�
.

Therefore, substituting (7) into (6), we obtain (5). The lemma is proved.

The following lemma is a key in this paper.

Lemma 4.2 (cf. [10, Lemma 8]). For u, v 2 N and y, z 2 OZ, we have

E
��

(yC x) modu

u
� x modu

u

��
(zC x) modvv � x modvv

��

D (y mod (u, v)) ^ (z mod (u, v))

{u, v}
�

1� (y mod (u, v)) _ (z mod (u, v))

(u, v)

�
,

where the expectationE works on x, and

(u, v) D gcd(u, v),

{u, v} D lcm(u, v) D the least common multiple of u andv.
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Proof. We divide the proof into four steps.
STEP 1. For a, b, c 2 N with (b, c) D 1 and for x 2 Z, it holds that

(8)
1

b

b�1X
sD0

(x C sac) modab

ab
D x moda

ab
C b� 1

2b
.

This is shown in the following way. Since (b, c) D 1, by a similar argument of [4,
Theorem 56], we have

{(x C sac) modabI sD 0, 1, : : : , b� 1}

D {(x C sa) modabI sD 0, 1, : : : , b� 1}.

Thus, it is enough to prove (8) only forcD 1. Moreover, we have

{(x C sa) modabI sD 0, 1, : : : , b� 1}

D {(x C aC sa) modabI sD 0, 1, : : : , b� 1},

so that we have only to prove (8) forx D 0,1,: : : ,a�1. But then, forsD 0,1,: : : ,b�1,
we have (x C sa) modabD x C sa, consequently,

1

b

b�1X
sD0

(x C sa) modab

ab
D 1

b

b�1X
sD0

x C sa

ab
D x

ab
C b� 1

2b
.

Thus (8) is valid.
STEP 2. By the fact that forz 2 OZ,

(zC sac) modabD (z modabC sac) modab,

(z modab) moda D z moda,

and by Step 1, it is easy to see that fora, b, c 2 N with (b, c) D 1 and x, y 2 OZ,

1

b

b�1X
sD0

�
(yC x C sac) modab

ab
� (x C sac) modab

ab

�

D 1

b

�
(yC x) moda

a
� x moda

a

�
.

Therefore, for any periodic functionf W OZ! R with period ac, we have

E
��

(yC x) modab

ab
� x modab

ab

�
f (x)

�
(by the shift invariance of�)

D 1

b

b�1X
sD0

E
��

(yC x C sac) modab

ab
� (x C sac) modab

ab

�
f (x C sac)

�
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D E

"
1

b

b�1X
sD0

�
(yC x C sac) modab

ab
� (x C sac) modab

ab

�
f (x)

#

D 1

b
E
��

(yC x) moda

a
� x moda

a

�
f (x)

�
.

STEP 3. Seta WD (u, v), b WD u=a, c WD v=a and f to be

f (x) WD (zC x) modvv � x modvv .

Then Step 2 implies that

E
��

(yC x) modu

u
� x modu

u

��
(zC x) modvv � x modvv

��

D E
��

(yC x) modab

ab
� x modab

ab

��
(zC x) modac

ac
� x modac

ac

��

D 1

b
E
��

(yC x) moda

a
� x moda

a

��
(zC x) modac

ac
� x modac

ac

��
.

By letting y, b, c and f (x) in Step 2 bez, c, 1 and

(yC x) moda

a
� x moda

a
,

respectively, we see that the last line above is equal to

1

bc
E
��

(yC x) moda

a
� x moda

a

��
(zC x) moda

a
� x moda

a

��
.(9)

STEP 4. Without loss of generality, we assume thaty moda� z moda. By Corol-
lary 2.6, the integrand of (9) is continuous, and it is periodic with perioda. Therefore,
Lemma 2.8 implies that

(9)D 1

bc

1

a

a�1X
sD0

�
(yC s) moda

a
� s moda

a

��
(zC s) moda

a
� s moda

a

�
.(10)

Moreover, it is clear that

(yC s) moda

a
� s moda

a
D
8��<
��:

y moda

a
if 0 � s< a� y moda,

y moda

a
� 1 if a� y moda � s< a,
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and that

(zC s) moda

a
� s moda

a
D
8��<
��:

z moda

a
if 0 � s< a� z moda,

z moda

a
� 1 if a� z moda � s< a.

Finally, dividing the sum (10) into three parts and using theabove expressions, we
arrive at

(10)D 1

bc

1

a

 X
0�s<a�z moda

y moda

a

z moda

a

C X
a�z moda�s<a�y moda

y moda

a

�
z moda

a
� 1

�

C X
a�y moda�s<a

�
y moda

a
� 1

��
z moda

a
� 1

�!

D 1

bc

1

a

�
y moda

a

z moda

a
(a� z moda)

C y moda

a

�
z moda

a
� 1

�
(z moda� y moda)

C �
y moda

a
� 1

��
z moda

a
� 1

�
(y moda)

�

D 1

bc

1

a
(y moda)

�
1� z moda

a

�

D y mod (u, v)

{u, v}
�

1� z mod (u, v)

(u, v)

�

D (y mod (u, v)) ^ (z mod (u, v))

{u, v}
�

1� (y mod (u, v)) _ (z mod (u, v))

(u, v)

�
.

The lemma is proved.

A small modification of [10, Lemma 9] gives the following.

Lemma 4.3. For any bounded function HW N ! R, it holds that

1X
u,vD1

j�(u)�(v)j
{u, v}k

jH ((u, v))j D 1X
nD1

j�(n)jjH (n)j
nk

Y
p­n

�
1C 2

pk

� <1,

1X
u,vD1

�(u)�(v)

{u, v}k
H ((u, v)) D 1X

nD1

j�(n)jH (n)

nk

Y
p­n

�
1� 2

pk

�
.



1036 T.K. DUY

Lemma 4.4. For each N2 N,

(11)
1X

uD1

�(u)

�
(N C x) moduk

uk
� x moduk

uk

� DW T(x, N)

is convergent in L2( OZ, B, �).

Proof. Fix anN 2 N. For finite setsL andM such thatL �M � N, Lemma 4.2
and Lemma 4.3 imply that

E

" X
u2M �(u)

�
(N C x) moduk

uk
� x moduk

uk

�

�X
u2L �(u)

�
(N C x) moduk

uk
� x moduk

uk

��2
#

D X
u,v2MnL �(u)�(v)E

��
(N C x) moduk

uk
� x moduk

uk

�

� � (N C x) modvk

vk
� x modvk

vk

��

D X
u,v2MnL �(u)�(v)

N mod (u, v)k

{u, v}k

�
1� N mod (u, v)k

(u, v)k

�

� N
X

u,v2MnL
j�(u)�(v)j

{u, v}k

� N
X

u,v2NnL
j�(u)�(v)j

{u, v}k
! 0 as L% N.

The lemma is proved.

By letting M% N in the proof of Lemma 4.4, and thenL% N, it follows that

(12)
X
u2L �(u)

�
(N C x) moduk

uk
� x moduk

uk

�
L2�! T(x, N) as L% N.

On the other hand,

(13)
1X

uD1

�(u)

uk
D 1� (k)

(absolute convergence),

and SN,L
L2�! SN by the bounded convergence theorem. Therefore, using theseconver-

gences in the formula (5), we have an explicit formula forS(k)
N as in the following theorem.
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Theorem 4.5. For each N2 N, as an equality in L2( OZ,B,�), the following holds;

(14) S(k)
N (x) D 1� (k)

� 1

N

1X
uD1

�(u)

�
(N C x) moduk

uk
� x moduk

uk

�
.

5. Estimate of the L2-norm and limit points in L2

In Section 4, we proved thatN(SN(x) � 1=� (k)) D �T(x, N) and

T(x, N)
L2D 1X

uD1

�(u)

�
(N C x) moduk

uk
� x moduk

uk

�
.

We are now in position to give the explicit formula for theL2-norm of T(x, N). By
using Lemma 4.2 and Lemma 4.3, we have

E[jT(x, N)j2] D lim
U!1 E

" X
u�U

�(u)

�
(N C x) moduk

uk
� x moduk

uk

�!2#

D lim
U!1 E

" X
u,v�U

�(u)�(v)

�
(N C x) moduk

uk
� x moduk

uk

�

� � (N C x) modvk

vk
� x modvk

vk

�#

D lim
U!1

X
u,v�U

�(u)�(v)

{u, v}k
(N mod (u, v)k)

�
1� N mod (u, v)k

(u, v)k

�

D X
u,v2N

�(u)�(v)

{u, v}k
(N mod (u, v)k)

�
1� N mod (u, v)k

(u, v)k

�

D 1X
nD1

j�(n)j
nk

(N modnk)

�
1� N modnk

nk

�Y
p­n

�
1� 2

pk

�
,

(15)

where in the last line, we have applied Lemma 4.3 for

H (n) D HN(n) WD (N modnk)

�
1� N modnk

nk

�
.

The following estimate gives us the upper bound ofE[jT(x, N)j2].

E[jT(x, N)j2] D 1X
nD1

j�(n)j
nk

(N modnk)

�
1� N modnk

nk

�Y
p­n

�
1� 2

pk

�

D X
nk�N

( � � � )C X
nk>N

( � � � )
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� X
nk�N

j�(n)j
nk

� nk � 1 � 1C N
X

nk>N

1

nk

� X
n�N1=k

1C N
Z 1

N1=k

1

(t � 1)k
dt

� N1=k C N
1

k � 1

1

(N1=k � 1)k�1

D �
1C 1

k � 1

1

(1� N�1=k)k�1

�
N1=k

� c2N1=k (N � 2),

wherec2 D 1C (1=(k � 1))(1� 2�1=k)�kC1.
For the lower bound, we need the following lemma.

Lemma 5.1. Let {an}n be a complex sequence. Put sn WD a1 C � � � C an. Assume
that there exists a constant c2 C such that

(16)
sN

N
! c as N!1.

Then, for any s2 (0,1),

(17) Ns
1X

nDN

an

nsC1
! 1

s
c as N!1.

Proof. Let sx D P
l�x al , (x 2 RC), be an extension ofsn as a function onRC.

Clearly limx!1 sx=x D c. First, we check the convergence of
P

n an=nsC1. For N, M 2N, N < M,X
N�n�M

an

nsC1
D X

N�n�M

sn � sn�1

nsC1

D X
N�n�M�1

sn

�
1

nsC1
� 1

(nC 1)sC1

� � sN�1

NsC1
C sM

MsC1

D X
N�n�M�1

sn

Z nC1

n

�� 1

xsC1

�0
dx� sN�1

NsC1
C sM

MsC1

D X
N�n�M�1

sn

Z nC1

n

sC 1

xsC2
dx� sN�1

NsC1
C sM

MsC1

D (sC 1)
Z M

N

sx

xsC2
dx� sN�1

NsC1
C sM

MsC1

D (sC 1)
Z M

N

sx

x

dx

xsC1
� sN�1

N � 1

N � 1

N

1

Ns
C sM

M

1

Ms
.
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This tells us that
P

n an=nsC1 is convergent. Next, lettingM !1 in the above, and
then multiplying this byNs yield that

Ns
1X

nDN

an

nsC1
D (sC 1)Ns

Z 1
N

sx

x

dx

xsC1
� sN�1

N � 1

N � 1

N

D (sC 1)
Z 1

N

sx

x

1

(x=N)sC1

dx

N
� sN�1

N � 1

N � 1

N

D (sC 1)
Z 1

1

sN y

N y

dy

ysC1
� sN�1

N � 1

N � 1

N
.

From Lebesgue’s dominated convergence theorem, the assertion follows immediately.

It is noted that
Q

p(1� 2=pk) DW c > 0. In order to find the lower bound, we use
the following;

E[jT(x, N)j2] D 1X
nD1

j�(n)j
nk

(N modnk)

�
1� N modnk

nk

�Y
p­n

�
1� 2

pk

�

� X
nk�2N

( � � � )
� c

X
nk�2N

j�(n)j
nk

N

�
1� N

nk

�

� c

2 � 2(k�1)=k N1=k (2N)(k�1)=k X
n�(2N)1=k

j�(n)j
nk

!

� c1N1=k (9c1 > 0) (for N being large enough).

The last inequality holds, because

(18) Nk�1
X
n�N

j�(n)j
nk

! 1

k � 1

6�2
as N !1,

by applying Lemma 5.1 fors D k � 1 and the sequence{an D j�(n)j}n with
N�1(a1 C � � � C aN) ! 6=�2 as N !1.

Therefore, forN being large enough, it holds that

(19) c1N1=k � E
��

N

�
SN(x) � 1� (k)

��2� � c2N1=k.
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Consequently, the scaled process

YN(x) WD � 1

N1=2k
T(x, N) D 1

N1=2k

NX
nD1

�
X(x C n) � 1� (k)

�

may be good to consider the limit behavior asN !1.

Theorem 5.2. {YN}ND1,2,::: has no limit point in L2( OZ, B, �).

Proof. For 0< N < M, we consider

E[jYM � YN j2] D E[jYM j2] C E[jYN j2] � 2E[YMYN ].

Similarly as in showing the equality (15), by using Lemma 4.2and Lemma 4.3 again,
we have

E[T(x, M)T(x, N)] D lim
U!1 E

" X
u�U

�(u)

�
(M C x) moduk

uk
� x moduk

uk

�!

�
 X
v�U

�(v)

�
(N C x) modvk

vk
� x modvk

vk

�!#

D lim
U!1

X
u,v�U

�(u)�(v)E
��

(M C x) moduk

uk
� x moduk

uk

�

� � (N C x) modvk

vk
� x modvk

vk

��

D lim
U!1

X
u,v�U

�(u)�(v)

{u, v}k
HM,N((u, v))

D X
u,v2N

�(u)�(v)

{u, v}k
HM,N((u, v))

D 1X
nD1

j�(n)j
nk

HM,N(n)
Y
p­n

�
1� 2

pk

�
,

where

HM,N(n) WD ((M modnk) ^ (N modnk))

�
1� (M modnk) _ (N modnk)

nk

�
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is a bounded function. Together with the formula (15), we have

E[jYM � YN j2]

D 1X
nD1

j�(n)j
nk

Y
p­n

�
1� 2

pk

��
1

M1=k HM (n)C 1

N1=k HN(n) � 2

(M N)1=2k
HM,N(n)

�
.

Now, it is easy to see that

0� HM,N(n) � HN(n) ^ HM (n), 8n 2 N.

Thus, the above series is a positive term one. Moreover, fornk � 2M,

M modnk

nk
D M

nk
� 1

2
I N modnk

nk
D N

nk
< 1

2
I

HM,N(n) D N

�
1� M

nk

� � N,

and hence

HM (n) � 1

2
M I HN(n) > 1

2
N I HM,N(n) � N.

Therefore,

E[jYM � YN j2]

� c
X

nk�2M

j�(n)j
nk

�
1

2
M (k�1)=k C 1

2
N(k�1)=k � 2N

(M N)1=2k

�

D c

�
1

2
M (k�1)=k C 1

2
N(k�1)=k � 2N

(M N)1=2k

�

� 1

(2M)(k�1)=k
 

(2M)(k�1)=k X
n�(2M)1=k

j�(n)j
nk

!
.

Letting M !1 and using the convergence (18), we obtain

lim inf
M!1 E[jYM � YN j2] � 3c

(k � 1)2(k�1)=k�2
> 0.

This implies that{YN}N has no limit point inL2( OZ, B, �). The theorem is proved.

REMARK 2. (i) Even if eachYN is normalized,{YN=kYNk2}N has no limit point
in L2( OZ, B, �), either. Indeed, assume that there is a subsequence{YN j } j such that
{YN j =kYN j k2} j converges. Then, taking a subsequence if necessary, we can assume that
the subsequence{kYN jk2} j also converges. Consequently,{YN j} j D {kYN jk2 �YN j=kYN jk2} j

converges, which is a contradiction.
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(ii) On the other hand, since{kYNk2}N is bounded, the sequence of probability mea-
sures{� Æ Y�1

N }N on R is tight. Therefore, for any subsequence{N j } j there exists
a subsubsequence{N 0

j } such that{� Æ Y�1
N 0

j
} j converges weakly, or{YN 0

j
} j converges

in distribution.

6. Mean square convergence rate

We consider “distribution” of a functionU W Z! R as follows: If the limit

lim
M!1 1

M

MX
mD1

exp(
p�1tU (m)), t 2 R,

exists and it coincides with the characteristic function ofsome probability distribution
on R, then we call it the “distribution” ofU .

As we expected, the distributions ofX, SN coincide with the “distributions” of the
original functions onZ, respectively, namely;

Theorem 6.1. Let U D X or SN (in the latter case, N 2 N is fixed). Then for
each t2 R, it holds that

(20) lim
M!1 1

M

MX
mD1

exp(
p�1tU (m)) D E[exp(

p�1tU (x))].

Proof. It is enough to show (20) forU D SN , since X Æ � D S1. The following
estimate is obvious.����� 1

M

MX
mD1

exp(
p�1t SN(m)) � E[exp(

p�1t SN(x))]

�����
�
����� 1

M

MX
mD1

{exp(
p�1t SN(m)) � exp(

p�1t SN,L (m))}

�����
C
����� 1

M

MX
mD1

exp(
p�1t SN,L (m)) � E[exp(

p�1t SN,L (x))]

�����
C ��E[exp(

p�1t SN,L (x))] � E[exp(
p�1t SN(x))]

�� DW I1 C I2 C I3.

It is easy to see that

jXL (x) � X(x)j � X
p>pL

�pk (x),

and hence

jSN,L (x) � SN(x)j � 1

N

NX
nD1

X
p>pL

�pk (x C n).
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Therefore,

I1 � 1

M

MX
mD1

jt jjSN,L (m) � SN(m)j
� 1

M
jt j MX

mD1

1

N

NX
nD1

X
p>pL

�pk (mC n)

D jt j
N

NX
nD1

X
p>pL

1

M

MX
mD1

�pk (nCm)

� jt j
N

NX
nD1

X
p>pL

1

M

N C M

pk
D jt j�1C N

M

� X
p>pL

1

pk
,

where in the last inequality, we have used the fact that the number of multiples ofpk

in the sequence{1, 2, : : : , N C M} is at most (N C M)=pk.
On the other hand, sinceSN,L (x) converges toSN(x) pointwise asL ! 1, it is

clear that I3 ! 0 as L ! 1 by the bounded convergence theorem. In addition, for
fixed L, I2 ! 0 as M !1 by applying Lemma 2.8 forf D SN,L .

Collecting all the above, we see

lim sup
M!1

����� 1

M

MX
mD1

exp(
p�1t SN(m)) � E[exp(

p�1t SN(x))]

�����
� jt j X

p>pL

1

pk
C ��E[exp(

p�1t SN,L (x))] � E[exp(
p�1t SN(x))]

�� L!1���! 0,

which completes the proof.

Corollary 6.2. For each N2 N,

(21) lim
M!1 1

M

MX
mD1

�
SN(m) � 1� (k)

�2 D E
��

SN � 1� (k)

�2�
.

Proof. If, for M 2 N, we define a probability measure�M on (OZ, B) as

�M D 1

M

MX
mD1

Æm,

whereÆm is the Dirac measure atm2 Z� OZ, then Theorem 6.1 forU D SN asserts that�M Æ S�1
N converges to� Æ S�1

N weakly asM !1. Thus, for any bounded continuous
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function f on R
lim

M!1
Z
R f (t)�M Æ S�1

N (dt)

D
lim

M!1 1

M

MX
mD1

f (SN(m))

D Z
R f (t)� Æ S�1

N (dt)

D
E[ f (SN(x))].

If we here take

f (t) D �
t � 1� (k)

�2 ^ �1C 1� (k)

�2

,

then f (SN(x)) D (SN(x) � � (k)�1)2, becausejSN(x) � � (k)�1j � SN(x)C � (k)�1 � 1C� (k)�1. Thus, the above convergence for thisf is just an assertion of Corollary 6.2.

The convergence (21) together with the estimate (19) gives us the estimate of the
mean square convergence rate, namely;

Corollary 6.3.

lim
M!1 1

M

MX
mD1

�
N

�
S(k)

N (m) � 1� (k)

��2 � N1=k.
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