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Abstract
Let X®(n) be the indicator function of the set fth power free integers. In this
paper, we study refinements of the density theo(m) := (1/N) N, X®(m +
n) — 1/¢(k), ¢ being the Riemann zeta function. The following is one of @sults;

M

lim 3 (N (sﬁ)(m) — i))z = Nk,
M=o M 2=~ ¢(K)

The method we take here is a compactificationZofwe extendé\'f) to a random

variable on a probability spacé (%) in a natural way, wheré is the ring of finite
integral adeles and is the shift invariant normalized Haar measure. Then we in-

vestigate the rate of 2-convergence OS\',‘), from which the above asymptotic result
is derived.

1. Introduction

Fork e {2,3,...}, let X®¥(n), n € Z, be the indicator function of the set &th
power free integers, i.e.,

@y . JL (Yp: prime, p { n),
X¥(n) := {0, Ap: prime, gk | )

and IetS\'f)(m), m € Z, denote the frequency d&fth power free integers between+ 1
andm+ N, i.e.,

N
() := % > X®(m + n).
n=1

Then it is well known that for eacim € Z,
1
¢(k)’

where¢ is the Riemann zeta function (cf. [4]).

(1) Jim sP(m) =

2000 Mathematics Subject Classification. Primary 60F25pSaary 60B10, 60B15, 11N37.
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Many researchers have been interested in estimating the Sﬂ?t()m) — 1/¢(K).
Under the Riemann hypothesis, there is a conjecture abayt th

2) Ve > 0, N(sb)(m) - le)) = O(NYZ+8) N — oo,

As is mentioned in [8], this conjecture should hold, but itgisite unlikely that it will

be proved in near future, because it is related to the Rientgpothesis so closely.

In particular, in the case df = 2, there have been many challenges to this conjecture,
assuming the Riemann hypothesis, such as [1, 2, 3, 5, 7].r Ref@] for an overview

of this topic.

In this paper, we study the probabilistic aspects of thislenm. We take here a
compactification method which has been developed by [9,1€].us give an overview
of this paper.

In Section 2, the ring of finite integral adel@ which is a well-known compact-
ification of Z in number theory, as well as some related basic notions,tieduced.
SinceZ is a compact metric group with respect to addition, therstexa unique nor-
malized Haar measure defined on the Borel field3 of Z. In Section 3, it is noted
that the mappingx — x + 1 is a A-preserving ergodic shift on the probability space
(Z, B, 1). By this fact, since we can extend the functiox&(n) and é\',‘)(n) onZto
LY(Z, B, 1)-functions in a natural way, we get the following law of largumbers

(3) Jim S x) = E[x®] = le) r-a.e. Xe€Z,

which is the adelic version of (1).

The main aim of this paper is to study the convergence ratéheflaw of large
numbers (3). With the help of the explicit formula for the dam variabIeS(\',‘) given
in Section 4, we can estimate the rate of convergence in @eétias follows;

{o(r- )]

Finally, in Section 6, the last estimate is translated ifite language ofZ as

1 1\)\?
Jim = Z(N(S(,,\'f)(m) - m)) = NV (Corollary 6.3).

m=1

This may be called as a mean square version of the conje@rét (should be noted
that we do not need the Riemann hypothesis to prove this awertheless get the
same exponent as in the conjecture.
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2. Basic notions

This section deals with some basic notions and some knowtsaseeded for this
paper. For proof of lemmas, see [10].
For a primep, the p-adic metricd, is defined by

dp(x, y):=inf{p™: p' | (x—V)}, X ye€Z.

The completion ofZ by d, is denoted byZ,. By extending the algebraic operations
‘+’ and ‘x’ in Z continuously to those iIZ, the compact metric spacé& g, dp) be-
comes a ring, called the ring gf-adic integers. In particularz, d,) is a compact
abelian group with respect tet" According to the general theory of compact groups,
there is a unique normalized Haar meashpewith respect to 4+’ on the measurable
space Z,, B(Z,)), where B(Z,) denotes the Borel field o .

DEFINITION 2.1. (i) Let{p}2,, 2= p1 < p2 < ---, be the sequence of
all primes.
(i) Put

[o.¢] (o9}
Z::HZP‘, A:znkpi.
i=1 i=1

For x = (%), Y = (y) € Z, we define

o]

1
d(x,y) := Edp‘(xi,yi), X+y:=&+¥), Xy:=Xy).
i=1

By these definitionsZ becomes a ring, callethe ring of finite integral adeles
(2, d) is again a compact metric space, and both and ‘x’ are continuous. In par-
ticular, (Z, d) is a compact abelian group with respect ' ‘and its normalized Haar
measure on the Borel fielB§ is nothing buta.

DEFINITION 2.2. (i) We identify Z with the diagonal sef(n,n,...) € Z x
Zx---}C Z.
(i) For Nsm>2andl €{0,1,...,m—1}, we definemZ +1 := {mx+1; x € Z}.
Then we haveZ = Ul'“:’ol(mZ—H), which is a disjoint union (Lemma 2.5 (iii)). So, for
X € Z andN > m > 2, there exists a uniquee {0, 1,...,m—1} such thatx—| € mZ.
This | is denoted byx modm. For m = 1, we always sek modm := 0. Obviously,
if X € Z, this definition coincides with the usual modulo operation.
(iii) For x, y € Z, we define the greatest common divisorofandy by

ged, y) := sugm € N; (x modm) = (y modm) = 0}.
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Obviously, forx, y € Z, this definition coincides with the usual gcd.
Lemma 2.3. N’ :={(n,n,...)€Z; ne N} is dense inZ.

Lemma 2.4. (i) Let p be a prime and § N. Then pZ, is closed and open.
(i) Let p g be distinct primes and § N. Then we have [Zq = Z,.

Lemma 2.5. LetmeN and l€{0,1,...,m—1}.
() The set(mZ +1) is closed and open.
1 if xmodm =0,

(i) pm: Z — {0, 1} is continuous where pm(X) = {0 otherwise.

(i) Z = U™ (MmZ + 1), which is a disjoint union.
Corollary 2.6. For any | € Z, the mapping

N (I + x) modm
H—

Z > X €[0, 1)

is continuous.

Lemma 2.7. For any | € Z\ {0} and any A< B, we have |Ac B and

A(IA) = ﬁk(A).

Lemma 2.8. If f:Z — C is continuousthen
1 no+N-1
= lim = v .
/z FeOAdx) = fim = > f(n), Vnpez

n=np

The convergence is uniform iy & Z.

3. The law of large numbers

In what follows, we fix an integek > 2. Let X®: (Z, B, ) — {0, 1} be a natural
extension ofX®(n) defined by

X0 = [T = ppex):
p

If we put

B9 = (@ \ p'2) C Z,
p
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then it is clear thatX® = 1w, and thus,

1 1
E[X®] = 1(BW) = 1- =) =—.
1:[( pk)

Next, we consider a shif
0:(Z, B, ) = (Z, B, 1),

Xt X+ 1.

Recall that{6"(1)}n=0,12,.. (= N’) is dense inZ (Lemma 2.3). Therefore, according
to [11, Theorem 1.9], the shii@ is ergodic. Now applying the ergodic theorem for
X® yields

N N
1 1
SH(x) := N > X®(x+n) = N > x®(e"x)
n=1 n=1

N—oo 1 N
E[X¥W] = — (rae.xeZ),
R EXY) = s )

which is the adelic version of (1).

4. Explicit formula for #uk)

For eachL € N, let

X = [TA- ppx).

p=p.
1 N
(%) := ~ > xPx +n),
n=1
M, ={u= pzl---pal‘ eEN;0<ouqg,...,ap <L}

REMARK 1. From now on, if there is no confusion, we will onfft in formulas.
For example,X will be considered ax® and so on.

Lemma 4.1. For each Ne N,

(4) SN,L(X)L_)—O%SN(X) (pointwise convergenge
1 1 /(N+x)moduk x moduX
B - T (3 (e sy

ueMp

where i denotes the Modbius function.
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Proof. The convergence (4) is obvious. We now prove (5). Taénition of
Sv.L(X) gives

N
S000 =5 3 [T~ pptx+ 1)

n=1 p=pL

N
% Z<1+ > (—1) oge (X + 1) - pp (X + n))

n=1 r=11<i;<-<i; <L

r=11<i;<-<i;<L

N
© % Z(l + Z R G N O n))
n=1
N
2

1
=2 2 HWpux+n)
n=1u|py-pL
1 N
= M(W(N > pu(x + n))
ueM n=1
Here we have
N
1 1| N+ x moduX
N 2 o) = ﬂTJ
n=1
@) 1 /N+xmodu® (N + x) moduX
"N uk uk
1 1((N+x)modu® x modu*
S uk N uk uk '
Therefore, substituting (7) into (6), we obtain (5). The feanis proved. ]

The following lemma is a key in this paper.

Lemma 4.2 (cf. [10, Lemma 8]). For u,v € N and y, z € Z, we have
E[((er x) modu X modu)((z+ x) modv X modv)}
u u
_ (ymod @, v)) A (zmod (U, v)) 1 (y mod U, v)) v (zmod (U, v))
- {u, v} ( - (U, v) )

v v

where the expectatioB works on x and
(u, v) = gcdu, v),

{u, v} = lem(u, v) = the least common multiple of u and
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Proof. We divide the proof into four steps.
Step 1. Fora,b,ce N with (b,c) =1 and forx € Z, it holds that

+sac) modab X moda n b—1

®) ab 2b

ol
M"

s=0

This is shown in the following way. Sinceéb,(c) = 1, by a similar argument of [4,
Theorem 56], we have

{(x+sag modab;s=0,1,...,b—1}
={(x +sa modab;s=0,1,...,b—1}.
Thus, it is enough to prove (8) only far= 1. Moreover, we have
{(x+sad modab;s=0,1,...,b—1}
={(x+a+sa modab;s=0,1,...,b—1},

so that we have only to prove (8) far=0,1,...,a—1. But then, fors=0,1,...,b—1,
we have X + sa) modab = x + sa, consequently,

1b2: x+sa)modab 12 x+sa X b-1

b &~ b “ab  ab 2b

Thus (8) is valid.
STEP 2. By the fact that forz € Z,

(z+ sag modab = (zmodab + sad modab,

(zmodab) moda = zmoda,

and by Step 1, it is easy to see that forb, c € N with (b, ¢) = 1 andx, y € Z,

128 (y + x +sag modab (x + sag modab
b2 -

= ab ab

B 1((y+ x) moda X moda)
== - i

a a

Therefore, for any periodic functiori : Z — R with period ac, we have

E[((y + x) modab  x m;dab) f(x )] (by the shift invariance of.)
1
b

ab

_ % E[((y+ x +sag modab _ (x +sag mOdab) f(x + sa@]
s=0

ab ab



1034 T.K. Duy

OEI1

1b (y+x+sac)modab (X + sag modab
efi5 et

s=0

[( y+x) moda  x m;da)f(x)]

Step 3. Seta:=(u,v), b:=u/a, c:=v/a and f to be

1
~b

(z+x)modv x modv
v v

f(x) =

Then Step 2 implies that
E[((y—|— x) modu X modu)((z+ X) modv X modv)}

u u v v

E[((er x) modab X modab)((z+ x) modac  x modac)}
ab ab ac ac

B }E[((y+ x) moda  x moda)((z+ x) modac  x modac)}

b a a ac ac '

By letting y, b, c and f(x) in Step 2 bez, c, 1 and

(y + x) moda  x moda
a a '

respectively, we see that the last line above is equal to

E (y+x)moda X moda (z+x)moda_xmoda)]
bc a a a a '

9)

STEP4. Without loss of generality, we assume tlyahoda < z moda. By Corol-
lary 2.6, the integrand of (9) is continuous, and it is peidodith perioda. Therefore,
Lemma 2.8 implies that

1122 +s)moda smoda z+s)moda smoda
10 = bca Z((y ?’:\ T a )(( 351 T a )
s=0

Moreover, it is clear that

y moda .
(y+s moda smoda a if 0=s<a-ymoda,
a a  |ymoda

-1 if a—ymoda<s<a,
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and that
zmoda .
< —
(z+ s) moda smoda_ a if 0=s<a-—zmoda,
a a  |zmoda .
3 -1 if a—zmoda<s<a.

Finally, dividing the sum (10) into three parts and using Himve expressions, we
arrive at

11 y moda zmoda
10)= ——
(10) bca( Z a

a
O<s<a—zmoda

y moda /zmoda
+ > - ( - —1)

a—-zmoda<s<a—y moda

. Z (ym;)da_l)(zm;da_l))

a—y moda<s<a

11
=__(ymodazmoda(a_zmoda)
bca a a
y moda [z moda
+ 3 3 —1)(zmoda—y moda)

n (y moda 1)(2 moda —1)(y moda))
a a
11 zmoda
= —— 1-—
bca(y moda)( )

_y mod (U, v) (1_ zmod (U, v))

{u, v} (u, v)
_ (ymod (u, v)) A (zmod (U, v)) 1. (y mod (u, v)) v (zmod (u, v))
- {u, v} ( (u,v) )
The lemma is proved. Ll

A small modification of [10, Lemma 9] gives the following.

Lemma 4.3. For any bounded function HN — R, it holds that

5 Oy Z ORI (14 2) <o

uv=1 pin

5 M(U)M()H((u »_Zm(n)m(n)l—[( 2)

uv=1 pin
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Lemma 4.4. For each Ne N,

1) i#(u)((N +x) modu¥  x modu¥

uk uk

) =: T(x, N)

u=1
is convergent in B(Z, B, 1).

Proof. Fix anN € N. For finite setdl. andM such thafL. ¢ M C N, Lemma 4.2
and Lemma 4.3 imply that

(N +x) modu®  x moduX
E (u) -
(T e)
(N +x) modu¥  x modu¥\)?
_Z“(u)( UK T )) ]

uell

Z M(U)u(v)E[((N +x) modu*  x mod uk)

uk uk
u,veM\L

vk vk

. ((N +x) modvf  x modv")}

B N mod u, v)k( ~ N.mod @, v)k)

=2 MR .o
| (u)u(v)]

N

- u v%\]L {U U}k
| (u)u(v)]

ENUE\;\L 0, o) —-0 as L /N.

The lemma is proved. ]

By letting M ' N in the proof of Lemma 4.4, and theh " N, it follows that

(N +x) modu¥ x moduky L2
12) u%Lju(u)( Lot XMOIE) KN as L,

On the other hand,

(13) Z # = le) (absolute convergence),

and Sy . L—> Sy by the bounded convergence theorem. Therefore, using tiweser-
gences in the formula (5), we have an explicit formulaﬂﬁ} as in the following theorem.
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Theorem 4.5. For each Ne N, as an equality in B(Z,5,1), the following holds

Wy . 11 ¢ (N—l-x)moduk_xmoduk)
a9 = Néu(u)( ) k)

5. Estimate of the L?-norm and limit points in L2

In Section 4, we proved thafl(Sy(x) — 1/¢(k)) = —T(x, N) and

T(x, N) £ iu(u)((N + lekmoduk X mj(duk)_

u=1

We are now in position to give the explicit formula for the&-norm of T(x, N). By
using Lemma 4.2 and Lemma 4.3, we have

. (N +x) moduk  x moduX ?
JT‘MEKU;“(“)( uk Tk )>:|

duk duk
U”LnooE|:Z M(U)M(v)((N + X) modu®  x mo u)

k k
u,v=<U u u

y ((N +x) modvf  x modvk)]

E[IT(x, N)I”]

vk vk

(15)
= lim_ MZEU %(N mod (u, v)k)(l— Nmod{ ”(]de(;k v)k)
-z pO R v mod g g (1- T v)k)
- é wrflr:)'(N modnk)(l— Nmn—c:dnk) ﬂ(l— &)
where in the last line, we have applied Lemma 4.3 for
H(n) = Hy(n) := (N modnk)(l— Nmn—‘zd”k)

The following estimate gives us the upper bound&pfT (x, N)|?].

BT N = 3 “‘rf—f”(w modnk)(l— Nmn_‘id”k) H(l— é)

n=1 pin

= Z(...).;. Z(...)

nk<N nk>N
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<2|M(n)| 11+NZ

nk<N nk>N
> =
=< 1+ N / —— dt
n=N/k Nk (t—1)¢
§N1/'<+N1 1

k—1(NVKk— 1)1

1 1
=(1 Nk
(+k—1a—N1MkJ

< cNYE (N > 2),

wherec, = 1+ (1/(k — 1))(1 — 2~ Vk)-k+1,
For the lower bound, we need the following lemma.

Lemma 5.1. Let {a,}, be a complex sequence. Pyt:s= a; + --- + a,. Assume
that there exists a constanteC such that

SN

(16) N —Cc as N-— oo.

Then for any se (0, o),

17 NED P N

(17) Z <17 a8 Nooo
n=N

Proof. Lets, =}, &, (x € R"), be an extension o, as a function orR*.
Clearly limy_., S¢/X = c. First, we check the convergence »f,a,/n*"1. For N,M €
N, N < M,

an S — S
Y o= X e

N=<n=M N=<n=M
. Z 1 B 1 B SN-1 I Swm
- N<n<M—151 ns+1 (n+ 1)s+1 Ns+1 Ms+1
n+1 1 / S S
_ Z / T [ P ..
v, . xS+ Ns+1 " Mstl
. Z n+l g + 1 SN-1 X Swm
- NeTh Xs+2 Ns+1 Ms+1
SN-1 Sm
=(s+ 1)/ Xs+2 T NS T v

S dx sNert N=-11 sy 1
s+ 1 — .
=6+ )/ Xxxs*1 N—-1 N NS—I—MMS
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This tells us that)_,, a,/ns*? is convergent. Next, lettind — oo in the above, and
then multiplying this byN? yield that

[o.¢]

an *® s dx Sn-1 N—1
N3 = (s+ 1)N?® — —
r; nS+l ( + ) /"\l X XS+1 N _ 1 N

®s 1 dx suiN-1
=(s+1)/ > .
v XO/NFIN  N-1 N

® syy d 12 N-1
=(s+1)/ s A .
1 Nyystl  N-1 N

From Lebesgue’s dominated convergence theorem, the iasséotlows immediately.
O

It is noted thath(l— 2/p) =:¢ > 0. In order to find the lower bound, we use

the following;
w(n N mod nk 2
0 ety 279 (1 2)

> Z(...)

E[T(, N) =)
n=1

nk>2N
lu(n)] N
=c Z nk N{1- nK
nk>2N
c 1/k (k—=1)/k ln(n)|
W = N <(2N) Z nk
n>(2N)Vk

> c:NYX (3¢, > 0) (for N being large enough).

The last inequality holds, because

k1N N 1 6

by applying Lemma 5.1 fors = k — 1 and the sequenc¢a, = |u(n)|}, with
N-%ay +---+ay) — 6/72 asN — oo.
Therefore, forN being large enough, it holds that

2
(19) cNVX < E[(N(sN(x) - le))) } < Nk,
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Consequently, the scaled process

1 1 1
YN(X) = —WT(X, N) = W Z(X(X + n) — m)
n=1
may be good to consider the limit behavior Bs— oc.

Theorem 5.2. {Yn}n=1,2.. has no limit point in I_Z(Z, B, ).

Proof. For O< N < M, we consider
ElYm — Yn I = E[IYmI?] + E[IYn[?] — 2E[Yi YN
Similarly as in showing the equality (15), by using Lemma 4ri Lemma 4.3 again,

we have
(M +x) modu¥  x moduk
Z ,u(U) Uk - Uk

u<u

doK doK
X<X3M(U)((N+x3kmo v _xmj( v ))]

. (M +x) modu¥  x moduk
- Jm, © (] (RS - X

E[T(x, M)T(x, N)] = lim E|:(

(N +x) modvk  x modoK
(B )]
=Jm > —“{(3?’:}(;’ o, )

p(u)(v)

= ————Hu,n((u, v))
PR L

(o]

3O o5 2),

n=1 pin

where

Hu.n(n) := (M modn®) A (N modnk))(l_ (M modnk) v (N modnk))

nk
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is a bounded function. Together with the formula (15), weehav

E[lYm — Ynl?]
= () 2\[_1 1 2

> e H(l‘ R)[W“M(”) R N = WHM‘”(”)}'
n= ptn

Now, it is easy to see that

0 < Hu.n(n) < Hn(n) A Hu(n), VneN.

Thus, the above series is a positive term one. Moreovem'far 2M,

Mmodn"_M<1 Nmodn* N 1

— =< —— == <z
nk nk — 2 nk nk 2

Hu(n) = N(l—%) <N,

and hence
1 1
HM(n)ZEMl HN(n)>§NZ Hm,n(n) < N.
Therefore,
E[IYm — Yn|?
lu(n)| [ 1 (k=1)/k 1 e 2N
> c LLad AN el / SNk =T
- kz nk 2 + 2 M N)1/2k
nk>2M
1 1 2N
— | IM®DA L Nk N
C[z *3 (MN)
1 ~ ln(n)|
- (k—1)/k
" 2MyEDK ((ZM) 2 nk )’
n=(2M)Vk

Letting M — oo and using the convergence (18), we obtain

3c
. . 2
i inf ElIYm — Yl = oz > O

This implies that{Yy}n has no limit point inL%(Z, B, 1). The theorem is proved.C]

REMARK 2. (i) Even if eachYy is normalized{Yn/||Ynl2}n has no limit point
in L%(Z, B, 1), either. Indeed, assume that there is a subsequgviee; such that
{Yn;/lIYn; |2} converges. Then, taking a subsequence if necessary, wessama that
the subsequendd Yy, |12} also converges. ConsequenilYa}j = {IIYn,ll2- Yn,/IIYn,ll2}
converges, which is a contradiction.
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(i) On the other hand, sincé||Yn|2}n is bounded, the sequence of probability mea-
sures{i o Yyl}n on R is tight. Therefore, for any subsequentl;}; there exists
a subsubsequenc{d\ljf} such that{i o YN—,l},- converges weakly, o{YNi/}j converges

]

in distribution.

6. Mean square convergence rate

We consider “distribution” of a functiotd : Z — R as follows: If the limit

M
. 1
Jim = Z:lexp(«/—ltu(m)), teR,
exists and it coincides with the characteristic functionsofme probability distribution
on R, then we call it the “distribution” ofU.

As we expected, the distributions &f, Sy coincide with the “distributions” of the
original functions onz, respectively, namely;

Theorem 6.1. Let U = X or S (in the latter case N € N is fixed. Then for
each te R, it holds that

M
(20) Jim % rnX::lexp(«/—_ltU(m)) = E[exp(v'—1tU (x))].

Proof. It is enough to show (20) fdd = Sy, since X o6 = §. The following
estimate is obvious.

M
Y expl/ TSy (m) - E[eXp(\/—_ltSN(X))]‘
m=1

=

M
5 e IS ) - e T )

m=1

+

M
2 expl/ Sy (m) - E[exp(J—_ltsu,L(x»]‘
m=1

+ |Elexp(v/=1t S, (x))] — E[exp(v/ =L Sy(x)]| =: 11 + I + I3

It is easy to see that

IXLO) =Xl = Y ppe(),

p>pL

and hence
N

S0~ S001 = 30 D pplx 1),

n=1 p>pL
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Therefore,

M

= YIS m) — S(m)

m=1

M 1 N
[t 5 2o 2 pe(m+n)

m=1 n=1 p>pL

IA

1 N+M N 1
- = 14— il
T |t|( +M) >

where in the last inequality, we have used the fact that thebau of multiples ofpX
in the sequencé¢l, 2,..., N + M} is at most N + M)/ p.

On the other hand, sinc&y  (x) converges toSy(x) pointwise asL — oo, it is
clear thatl3 — 0 asL — oo by the bounded convergence theorem. In addition, for
fixed L, 1, - 0 asM — oo by applying Lemma 2.8 forf = Sy ..

Collecting all the above, we see

M—o00

M
lim Sup{ % > exp(/=1tSy(m)) — Efexp(v'—1t Sy(x))]
m=1

<1 Y o+ [Elexp(v/ TSy ()] ~ Elexp(y Sy (0)]| < 0

p>pL

which completes the proof. O

Corollary 6.2. For each Ne N,

1 & 12 12
21 lim — - —
D M M mz(s“( ) =55 ww) |
Proof. If, for M € N, we define a probability measuig, on (Z, B) as
1 M
)\'M = M Z 5m,
m=1

wheres,, is the Dirac measure ah € Z C Z, then Theorem 6.1 fo = Sy asserts that
v o S\t converges to. o St weakly asM — oco. Thus, for any bounded continuous
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function f on R
M“TOO/R f(t)am o Sy*(d) =/R f(t)r o SM(dt)
. h|A| I
Jim = m; f(Su(m)) ELf(Su())].

1\? 1\?
””Z(“m) “(”m)'

then f(Su(x)) = (Su(x) — ¢(k)*)?, becausdSy(x) — (k)| < Su(x) + ()t <1+
¢(K)7L. Thus, the above convergence for thisis just an assertion of Corollary 6.2.
O

If we here take

The convergence (21) together with the estimate (19) gigethea estimate of the
mean square convergence rate, namely;

Corollary 6.3.

M

g, 2 (- 5)) =

m=1
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