

Title	On the structure of the augmentation quotients relative to an $N_{\rm p}\mbox{-}series$
Author(s)	Shinya, Kazunari
Citation	Osaka Journal of Mathematics. 1984, 21(4), p. 707–720
Version Type	VoR
URL	https://doi.org/10.18910/5316
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Shinya, K. Osaka J. Math. 21 (1984), 707-720

ON THE STRUCTURE OF THE AUGMENTATION QUOTIENTS RELATIVE TO AN N_p -SERIES

KAZUNARI SHINYA

(Received January 30, 1984)

1. Introduction

Let G be a group with lower central series $G=G_1\supseteq G_2\supseteq G_3\supseteq \cdots \supseteq G_n\supseteq G_n\supseteq G_n \supseteq G_n \supseteq G_n \subseteq G_{n+1}\supseteq \cdots$, and define

$$W_n(G) = \sum \bigotimes_{i=1}^n Sp^{a_i}(G_i/G_{i+1})$$
,

where \sum runs over all non-negative integers a_1, a_2, \dots, a_n such that $\sum ia_i = n$, and $Sp^{a_i}(G_i/G_{i+1})$ is the a_i -th symmetric power of the abelian group G_i/G_{i+1} . Let I(G) be the augmentation ideal of G in $\mathbb{Z}G$. We denote by $Q_n(G)$ the additive groups $I^n(G)/I^{n+1}(G)$ for $n \ge 1$. Some results are known about the structure of $Q_n(G)$.

It is well known that $Q_1(G) \simeq W_1(G)$ for any group G. G. Losey [3] proved that $Q_2(G) \simeq W_2(G)$ for any finitely generated 'group G. Tahara [6], [7] proved that $Q_3(G) \simeq W_3(G)/R_4^*$ and $Q_4(G) \simeq W_4(G)/R_5^*$ hold for any finite group G, where R_4^* and R_5^* are precisely determined subgroups of $W_3(G)$ and $W_4(G)$. Furthermore Sandling and Tahara [5] proved that $Q_n(G) \simeq W_n(G)$ $(n \ge 1)$ if G_i/G_{i+1} is free abelian for any $i \ge 1$.

Let p be a prime number. In the first half of this paper we restrict our attention to groups of exponent p, and prove that

$$Q_n(G) \simeq W_n(G)/R_{n+1} \qquad (n \ge 1),$$

where R_{n+1} is a precisely determined subgroup of $W_n(G)$ (Theorem 8). As its corollaries we have a well known result 1), and a new result 2) as follows:

1) $D_n(G) = G_n$ for any such group G, where $D_n(G)$ is the *n*-th dimension subgroup of G (Corollary 9).

2) Let G be a finite group with lower central series

$$G = G_1 \supseteq G_2 \supseteq \cdots \supseteq G_c \supseteq G_{c+1} = 1.$$

If this series is an N_p -series then $Q_n(G) \simeq W_n(G)$ for n < p (Remark 12).

In the latter half we prove that $Q_p(G) \simeq W_p(G)$ if the lower central series of G is an N_p -series (Theorem 13). Furthermore we construct a subgroup

 R_{p+2} of $W_{p+1}(G)$ for which $Q_{p+1}(G) \simeq W_{p+1}(G)/R_{p+2}$ holds if the lower central series of G is an N_p -series (Theorem 14). As for dimension subgroup problem, we will show that $D_n(G) = G_n$ for all $n \ge 1$, if the lower central series of G is an N_p -series (Theorem 15).

2. Notations and definitions

Let G be a finite p-group of order p^m , and let \mathfrak{H} be a fixed finite N_p -series

$$G = H_1 \supseteq H_2 \supseteq \cdots \supseteq H_c \supseteq H_{c+1} = 1,$$

that is $[H_i, H_j] \leq H_{i+j}$ for all $i, j \geq 1$, and $H_i^{\flat} \leq H_{ip}$ for all $i \geq 1$. The series \mathfrak{G} defines a weight function ω of G in the usual way; $\omega(g) = i$ if $g \in H_i - H_{i+1}$, $\omega(g) = \infty$ if g = 1. Conditions of N_p -series imply that $\omega([g, h]) \geq \omega(g) + \omega(h)$ for all $g, h \in G$, and $\omega(g^{\flat}) \geq p\omega(g)$ for all $g \in G$. Since each factor H_i/H_{i+1} is an elementary abelian p-group, we can put

$$t_i = \operatorname{rank}(H_i/H_{i+1}), \quad i = 1, 2, \dots, c.$$

We fix an ordered uniqueness basis Φ for G;

$$\Phi = \{x_1, x_2, \cdots, x_m\}, \quad \omega(x_1) \leq \omega(x_2) \leq \cdots \leq \omega(x_m).$$

Let Λ_n be the **Z**-linear span in **Z**G of all the elements

$$(g_1-1)(g_2-1)\cdots(g_k-1), \quad \sum \omega(g_i)\geq n.$$

Then

$$I(G) = \Lambda_1 \supseteq \Lambda_2 \supseteq \cdots \supseteq \Lambda_n \supseteq \cdots$$

is a series of ideals of $\mathbb{Z}G$ with the property that $\Lambda_i\Lambda_j \subseteq \Lambda_{i+j}$ for all $i, j \geq 1$. This filtration determines a family of $\mathbb{Z}G$ -modules $Q_n(\mathfrak{Y}) = \Lambda_n/\Lambda_{n+1}$ for all $n \geq 1$. These modules are called the *augmentation quotients of G relative to* \mathfrak{Y} .

A proper sequence $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ is an ordered *m*-tuple of non-negative integers α_i ; α is basic if $0 \leq \alpha_i < p$ for all *i*. The weight of $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ is $W(\alpha) = \sum \omega(x_i)\alpha_i$. Let A_n be the set of all proper sequences of weight *n*. Corresponding to each proper (basic) sequence $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$, we have the proper (basic) product

$$P(\alpha) = (x_1 - 1)^{\omega_1} (x_2 - 1)^{\omega_2} \cdots (x_m - 1)^{\omega_m}.$$

We define $i_{\alpha} = \max\{i: \alpha_i \neq 0\}$ if $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m) \neq 0 = (0, 0, \dots, 0)$ and $i_0 = 1$. We set $W_n(\mathfrak{H}) = \sum_{i=1}^{n} Sp^{a_i}(H_i/H_{i+1})$, where \sum runs over all non-negative integers a_1, a_2, \dots, a_n such that $\sum ia_i = n$, and $Sp^{a_i}(H_i/H_{i+1})$ is the a_i -th symmetric power of the abelian group H_i/H_{i+1} . Define $m_{\alpha}(n)$ to be the least non-negative integer such that $W(\alpha) + m_{\alpha}(n)(p-1)\omega(x_{i_{\alpha}}) \ge n$. G. Losey and N. Losey [3] proved the following:

Lemma 1. For any $n \ge 1$, Λ_n has a free Z-basis

$$B_n = \{p^{m_{\alpha}(n)}P(\alpha) \colon \alpha \neq 0 \text{ basic}\}.$$

3. The structure of $Q_{s}(\mathfrak{P})$ and its applications

In this section we deal only with groups of exponent p. Let G be a finite p-group of order p^m with exponent p. Then any N-series $\mathfrak{F}: G=H_1\supseteq H_2\supseteq \cdots$ $\supseteq H_c\supseteq H_{c+1}=1$ is an N_p -series.

DEFINITION 2.

1) Define the *p*-sequences of numbers $\{a_k^0\}_{k=0}^{\infty}$, $\{a_k^1\}_{k=0}^{\infty}$, \dots , $\{a_k^{p-1}\}_{k=0}^{\infty}$ as follows:

$$\begin{pmatrix} a_0^0 \\ a_0^1 \\ a_0^2 \\ \vdots \\ a_0^{p-1} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \begin{pmatrix} a_1^0 \\ a_1^1 \\ a_1^2 \\ \vdots \\ a_1^{p-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

and

$$\begin{pmatrix} a_{k+1}^{0} \\ a_{k+1}^{1} \\ a_{k+1}^{2} \\ \vdots \\ a_{k+1}^{p-1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & -\binom{p}{1} \\ 0 & 1 & -\binom{p}{2} \\ & \ddots & 0 & \vdots \\ 0 & \ddots & \vdots \\ 0 & & 1 & -\binom{p}{p-1} \end{pmatrix} \begin{pmatrix} a_{k}^{0} \\ a_{k}^{1} \\ a_{k}^{2} \\ \vdots \\ a_{k}^{p-1} \end{pmatrix}$$

for $k \geq 1$.

Note that the next identity holds for any $x \in G$ of order p and for any non-negative integer n:

$$(x-1)^{n} = a_{n}^{0} \cdot 1 + a_{n}^{1}(x-1) + \dots + a_{n}^{p-1}(x-1)^{p-1}$$

2) Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_m)$ be a proper sequence and $\beta = (\beta_1, \beta_2, ..., \beta_m)$ be a basic sequence. We define the integer C^{β}_{α} as $C^{\beta}_{\alpha} = a^{\beta_1}_{\alpha_1} a^{\beta_2}_{\alpha_2} ... a^{\beta_m}_{\alpha_m}$.

We can express $P(\alpha)$ as a Z-linear combination of basic products by the following:

Lemma 3. Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ be a proper sequence with $W(\alpha) = n$, then 1) $P(\alpha) = \sum_{\beta : \text{ basic}} C^{\beta}_{\alpha} P(\beta)$,

- 2) $p^{m_{\beta}(n)}|C^{\beta}_{\alpha}$ for any basic sequence β ,
- 3) if α is basic then $C^{\beta}_{\alpha} \neq 0$ if and only if $\beta = \alpha$.

Proof. Expand each $(x_i-1)^{\alpha_i}$ as in Definition 2. Then we have

$$\begin{split} P(\alpha) &= (x_1 - 1)^{a_1} (x_2 - 1)^{a_2} \cdots (x_m - 1)^{a_m} \\ &= \{\sum_{\beta_1 = 0}^{p-1} a_{\alpha_1}^{\beta_1} (x_1 - 1)^{\beta_1}\} \{\sum_{\beta_2 = 0}^{p-1} a_{\alpha_2}^{\beta_2} (x_2 - 1)^{\beta_2}\} \cdots \{\sum_{\beta_m = 0}^{p-1} a_{\alpha_m}^{\beta_m} (x_m - 1)^{\beta_m}\} \\ &= \sum_{\beta_1, \beta_2, \cdots, \beta_m = 0}^{p-1} a_{\alpha_1}^{\beta_1} a_{\alpha_2}^{\beta_2} \cdots a_{\alpha_m}^{\beta_m} (x_1 - 1)^{\beta_1} (x_2 - 1)^{\beta_2} \cdots (x_m - 1)^{\beta_m} \\ &= \sum_{\beta : \text{ basic}} C_{\alpha}^{\beta} P(\beta) \,. \end{split}$$

Thus 1) is obtained. Since $\{p^{m_{\beta}(n)}P(\beta)|\beta \neq 0$: basic} is a basis system of Λ_n , $P(\alpha)$ is uniquely expressed as a \mathbb{Z} -linear combination of $p^{m_{\beta}(n)}P(\beta)$ with $\beta \neq 0$ basic. On the other hand $\{P(\beta)|\beta$: basic} is a basis system of $\mathbb{Z}G$. So $P(\alpha)$ is uniquely expressed as a \mathbb{Z} -linear combination of $P(\beta)$, β basic. Then uniqueness of coefficients implies that $p^{m_{\beta}(n)}|C_{\alpha}^{\beta}$ for all basic sequence β . 3) is trivial from 1).

DEFINITION 4. Let α be a proper sequence with $W(\alpha) = n$. For any basic sequence β , we put $D^{\beta}_{\alpha} = C^{\beta}_{\alpha}/p^{m_{\beta}(n)} \in \mathbb{Z}$. Therefore

$$P(\alpha) = \sum_{\beta: \text{basic}} D^{\beta}_{\alpha} p^{m_{\beta}(n)} P(\beta) .$$

Note that $D_{\beta}^{\beta} = 1$ if β is a basic sequence with $W(\beta) \ge 1$.

Lemma 5 (Passi and Vermani [4]). Let p be a prime number and $H = \langle a \rangle$ be a cyclic group of order p^m . Then

$$p^{m-1}(a-1)^{(r+1)(p-1)+1} \equiv (-1)^{(r+1)} p^{m+r}(a-1) \mod I^{(r+1)(p-1)+2}(H)$$

for all $r \ge 0$.

Corollary 6. Let $x \in \Phi$, then

$$(x-1)^{r(p-1)+1} \equiv (-1)^r p^r(x-1) \mod \Lambda_{\{r(p-1)+2\}\omega(x)}$$

for all $r \ge 0$.

Proof. We set m=1 in Lemma 5, then we have

$$(x-1)^{(r+1)(p-1)+1} \equiv (-1)^{(r+1)} p^{(r+1)}(x-1) \mod I^{(r+1)(p-1)+2}(\langle x \rangle)$$

for all $r \ge 0$. This trivially holds for r = -1. Then we have

$$(x-1)^{r(p-1)+1} \equiv (-1)^r p^r(x-1) \mod I^{r(p-1)+2}(\langle x \rangle) \quad \text{for } r \ge 0$$

Since $I^{r(p-1)+2}(\langle x \rangle) = (x-1)^{r(p-1)+2} \mathbb{Z}\langle x \rangle$, we have $I^{r(p-1)+2}(\langle x \rangle) \subseteq \Lambda_{\{r(p-1)+2\}\omega(x)}$. So the result follows.

Lemma 7.

- 1) $W_n(\mathfrak{D})$ is an elementary abelian p-group of order p^r , where $r = \sum_{i=1}^{n} \times \binom{a_i + t_i 1}{a_i}$, and \sum runs over all non-negative integers a_1, a_2, \dots, a_n such that $\sum_{i=1}^{n} ia_i = n$.
- 2) Regard $W_n(\mathfrak{Y})$ as vector space over $\mathbb{Z}/p\mathbb{Z}$, then $\{ \bigotimes_{n=1}^{\alpha_1} \widehat{x}_1 \bigotimes_{n=1}^{\alpha_2} \widehat{x}_2 \cdots \bigotimes_{n=1}^{\alpha_m} \widehat{x}_m : \alpha \in A_n \}$ is a basis system of $W_n(\mathfrak{Y})$, where

$$\overset{\alpha_1}{\bigotimes} \overset{\alpha_2}{x_1} \overset{\alpha_2}{\bigotimes} \overset{\alpha_m}{i_2} \cdots \overset{\alpha_m}{\bigotimes} \overset{\alpha_m}{x_i} = \begin{cases} \overset{\alpha_i}{\underset{i \vee \cdots \vee x_i \vee \overline{x_i \vee \cdots \vee x_i \vee \overline{x_{i+1} \vee \cdots \vee \overline{x_{i+1}} \otimes \cdots \otimes \overline{x_{i+1} \vee \cdots \vee \overline{x_{i+1}} \otimes \cdots \otimes \overline{x_i \vee \cdots \vee \overline{x_i} \otimes \overline{x_{i+1} \vee \cdots \vee \overline{x_{i+1}} \otimes \cdots \otimes \overline{x_i \vee \cdots \vee \overline{x_i} \otimes \overline{x_{i+1} \vee \cdots \vee \overline{x_{i+1}} \otimes \cdots \otimes \overline{x_i \vee \cdots \vee \overline{x_i} \otimes \overline{x_{i+1} \vee \cdots \vee \overline{x_{i+1}} \otimes \cdots \otimes \overline{x_i \vee \cdots \vee \overline{x_i} \otimes \overline{x_{i+1} \vee \cdots \vee \overline{x_i} \otimes \overline{x_i \vee \cdots \vee \overline{x_i} \otimes \overline{x_{i+1} \vee \cdots \vee \overline{x_i} \otimes \overline{x_i \vee \cdots \vee x_i} \otimes \overline{x_i \vee \cdots \vee \overline{x_i} \otimes \overline{x_i \vee \cdots \vee x_i} \otimes \overline{x_i \vee \cdots \vee \overline{x_i} \otimes \overline{x_i \vee \cdots \vee x_i} \otimes \overline{x_i \vee \cdots \vee \overline{x_i} \otimes \overline{x_i \vee \cdots \vee x_i} \otimes \overline{x_i \vee \cdots \vee x$$

and $\bar{x}_i = x_i H_{\omega(x_i)+1}$

Proof. Easy to prove.

For convenience we write x_i instead of \bar{x}_i . Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m) \neq 0$ be a basic sequence. Then we call α to be *regular for n* if $W(\alpha) + m_{\alpha}(n)(p-1) \times \omega(x_{i_{\alpha}}) = n$.

Theorem 8. Let R_{n+1} be the submodule of $W_n(\mathfrak{Y})$ generated by the elements of the form

$$\overset{\alpha_1}{\bigotimes} x_1 \overset{\alpha_2}{\bigotimes} x_2 \cdots \overset{\alpha_m}{\bigotimes} x_m - \sum_{\beta : \text{ regular for } n} D^{\beta}_{\alpha} (-1)^{m_{\beta}(n)} \overset{\beta_1}{\bigotimes} x_1 \overset{\beta_2}{\bigotimes} x_2 \cdots \overset{\beta_{i_{\beta}-1}}{\bigotimes} x_{i_{\beta}-1} \overset{\beta_{i_{\beta}}}{\bigotimes} x_{i_{\beta}}$$

where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ runs over all elements of A_n . Then $\Lambda_n / \Lambda_{n+1}$ is isomorphic to $W_n(\mathfrak{Y})/R_{n+1}$ for all $n \ge 1$.

Proof. We shall divide the proof in the following four steps.

Step 1. We define a homomorphism ψ_n from Λ_n to $W_n(\mathfrak{Y})/R_{n+1}$ which is defined on the basis of Λ_n . Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ be a basic sequence with $W(\alpha) \ge 1$. Then

$$P(\alpha) = (x_1 - 1)^{\omega_1} (x_2 - 1)^{\omega_2} \cdots (x_{i_{\omega} - 1} - 1)^{\omega_i} \sigma^{-1} (x_{i_{\omega}} - 1)^{\omega_i} \sigma.$$

Define the image of $p^{m_{\alpha}(n)}P(\alpha)$ under ψ_n as follows:

1) If α is regular for *n* then

$$\psi_n(p^{m_{\alpha}(n)}P(\alpha)) = (-1)^{m_{\alpha}(n)} \overset{\alpha_1}{\bigcirc} x_1 \overset{\alpha_2}{\bigcirc} x_2 \cdots \overset{\alpha_{i_{\alpha}-1}}{\bigcirc} x_{i_{\alpha}-1} \overset{\alpha_{i_{\alpha}}+m_{\alpha}(n)(p-1)}{\bigcirc} x_{i_{\alpha}} + R_{n+1}.$$

2) If α is not regular for *n* then

$$\psi_n(p^{m_{\alpha}(n)}P(\alpha))=R_{n+1}.$$

Then we shall show that $\psi_n(\Lambda_{n+1}) = R_{n+1}$ and hence ψ_n induces a homomorphism ψ_n^* from Λ_n/Λ_{n+1} to $W_n(\mathfrak{Y})/R_{n+1}$.

It suffices to prove it on the **Z**-basis of Λ_{n+1} . Let $p^{m_{\alpha}(n+1)}P(\alpha) \in B_{n+1}$. By the definition of $m_{\alpha}(n)$ we have $m_{\alpha}(n) \leq m_{\alpha}(n+1) \leq m_{\alpha}(n)+1$. If $m_{\alpha}(n+1) = m_{\alpha}(n)$ then α is not regular for n since $W(\alpha) + m_{\alpha}(n)(p-1)\omega(x_{i_{\alpha}}) = W(\alpha) + m_{\alpha}(n+1)(p-1)\omega(x_{i_{\alpha}}) \geq n+1$. Therefore by the definition of ψ_n we have

$$\psi_n(p^{m_{\alpha}(n+1)}P(\alpha)) = \psi_n(p^{m_{\alpha}(n)}P(\alpha)) = R_{n+1}.$$

If $m_{\alpha}(n+1) = m_{\alpha}(n) + 1$ then

$$\psi_n(p^{m_{\alpha}(n+1)}P(\alpha)) = p\psi_n(p^{m_{\alpha}(n)}P(\alpha)) = R_{n+1}$$

since $W_n(\mathfrak{H})$ is an elementary abelian *p*-group. So the result follows.

Step 2. We define a linear transformation ϕ_n from $W_n(\mathfrak{Y})$ to Λ_n/Λ_{n+1} as follows: By Lemma 7 $\{ \bigcirc^{\alpha_1} \alpha_2 x_2 \cdots \bigcirc^{\alpha_m} x_m; \alpha \in A_n \}$ is a basis system of $W_n(\mathfrak{Y})$. Note that G. Losey and N. Losey proved that Λ_n/Λ_{n+1} is an elementary abelian *p*-group. Define the image of $\bigcirc^{\alpha_1} \alpha_2 \cdots \bigcirc^{\alpha_m} x_m$ under ϕ_n as the element

$$(x_1-1)^{\omega_1}(x_2-1)^{\omega_2}\cdots(x_m-1)^{\omega_m}+\Lambda_{n+1}$$
,

and extend it Z/pZ-linearly.

Then we shall show that $\phi_n(R_{n+1}) = \Lambda_{n+1}$, so ϕ_n induces a homomorphism ϕ_n^* from $W_n(\mathfrak{Y})/R_{n+1}$ to Λ_n/Λ_{n+1} . Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ be a proper sequence with $W(\alpha) = n$. Then

$$\begin{split} & \phi_n (\bigotimes_{x_1} \bigotimes_{x_2} x_2 \cdots \bigotimes_{x_m}^{\alpha_m} - \sum_{\beta : \text{ regular for } n} D_{\alpha}^{\beta} (-1)^{m_{\beta}(n)} \bigotimes_{x_1}^{\beta_1} \sum_{x_2}^{\beta_2} x_2 \\ & \xrightarrow{\beta_{i_{\beta}-1}} \beta_{i_{\beta}} + m_{\beta}(n)(p-1) \\ \cdots \bigotimes_{x_{i_{\beta}-1}} \bigotimes_{x_{i_{\beta}}} x_{i_{\beta}}) \\ & = (x_1 - 1)^{\alpha_1} (x_2 - 1)^{\alpha_2} \cdots (x_m - 1)^{\alpha_m} - \sum_{\beta : \text{ regular for } n} D_{\alpha}^{\beta} (-1)^{m_{\beta}(n)} (x_1 - 1)^{\beta_1} (x_2 - 1)^{\beta_2} \\ \cdots (x_{i_{\beta}-1} - 1)^{\beta_i} \beta^{-1} (x_{i_{\beta}} - 1)^{\beta_i} \beta^{+m_{\beta}(n)(p-1)} + \Lambda_{n+1} \\ & = \sum_{\gamma : \text{ basic}} D_{\alpha}^{\gamma} p^{m_{\gamma}(n)} (x_1 - 1)^{\gamma_1} (x_2 - 1)^{\gamma_2} \cdots (x_{i_{\gamma}-1} - 1)^{\gamma_{i_{\gamma}-1}} (x_{i_{\gamma}} - 1)^{\gamma_{i_{\gamma}}} \\ & - \sum_{\beta : \text{ regular for } n} D_{\alpha}^{\beta} (-1)^{m_{\beta}(n)} (x_1 - 1)^{\beta_1} (x_2 - 1)^{\beta_2} \cdots \\ (x_{i_{\beta}-1} - 1)^{\beta_i} \beta^{-1} (x_{i_{\beta}} - 1)^{\beta_i} \beta^{+m_{\beta}(n)(p-1)} + \Lambda_{n+1} \end{split}$$

STRUCTURE OF THE AUGMENTATION QUOTIENTS

$$= \sum_{\substack{\beta: \text{ regular for } n \\ -(-1)^{m_{\beta}(n)}(x_{i_{\beta}}-1)^{\beta_{i}}\beta^{+m_{\beta}(n)(p-1)}\} + \Lambda_{n+1}} D_{\alpha}^{\beta_{i}} (x_{i_{\beta}}-1)^{\beta_{i}}\beta^{+m_{\beta}(n)(p-1)} + \Lambda_{n+1}.$$

By Corollary 6 we have

$$p^{m_{\beta}(n)}(x_{i_{\beta}}-1)^{\beta_{i_{\beta}}}-(-1)^{m_{\beta}(n)}(x_{i_{\beta}}-1)^{\beta_{i_{\beta}}+m_{\beta}(n)(p-1)} \in \Lambda_{\{\beta_{i_{\beta}}+m_{\beta}(n)(p-1)+1\}\omega(x_{i_{\beta}})}.$$

Therefore

$$(x_1-1)^{\beta_1}(x_2-1)^{\beta_2}\cdots(x_{i_{\beta}-1}-1)^{\beta_i}\beta^{-1}\{p^{m_{\beta}(n)}(x_{i_{\beta}}-1)^{\beta_i}\beta^{-}(-1)^{m_{\beta}(n)}(x_{i_{\beta}}-1)^{\beta_i}\beta^{+m_{\beta}(n)(p-1)}\}$$

belongs to Λ_r , where $r = W(\beta) + m_{\beta}(n)(p-1)\omega(x_{i_{\beta}}) + \omega(x_{i_{\beta}}) \ge n+1$. Thus we have

$$\phi_n(\overset{\alpha_1}{\bigcirc} x_1 \overset{\alpha_2}{\bigcirc} x_2 \cdots \overset{\alpha_m}{\bigcirc} x_m - \sum_{\beta: \text{ regular for } n} D^{\beta}_{\alpha}(-1)^{m_{\beta}(n)} \overset{\beta_1}{\bigcirc} x_1 \overset{\beta_2}{\bigcirc} x_2$$
$$\overset{\beta_{i_{\beta}-1}}{\longrightarrow} x_{i_{\beta}-1} \overset{\beta_{i_{\beta}}+m_{\beta}(n)(p-1)}{\bigcirc} x_{i_{\beta}} = \Lambda_{n+1}.$$

Consequently we have $\phi_n(R_{n+1}) = \Lambda_{n+1}$, and so ϕ_n induces a homomorphism ϕ_n^* from $W_n(\mathfrak{Y})/R_{n+1}$ to Λ_n/Λ_{n+1} .

Step 3. We shall prove that $\psi_n^* \circ \phi_n^*$ is the identity map on $W_n(\mathfrak{Y})/R_{n+1}$. Since $W_n(\mathfrak{Y})/R_{n+1}$ is generated by $\{ \bigcirc^{\alpha_1} \alpha_2 x_2 \cdots \bigcirc^{\alpha_m} x_m + R_{n+1} : \alpha \in A_n \}$, it suffices to prove

$$\psi_n^* \circ \phi_n^* (\overset{\alpha_1}{\bigcirc} x_1 \overset{\alpha_2}{\bigcirc} x_2 \cdots \overset{\alpha_m}{\bigcirc} x_m + R_{n+1}) = \overset{\alpha_1}{\bigcirc} x_1 \overset{\alpha_2}{\bigcirc} x_2 \cdots \overset{\alpha_m}{\bigcirc} x_m + R_{n+1}$$

for any $\alpha \in A_n$. Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ be a proper sequence with $W(\alpha) = n$, namely $\alpha \in A_n$. Then we have

$$\begin{split} \psi_{n}^{*} \circ \phi_{n}^{*} (\bigotimes_{x_{1}}^{\alpha_{2}} \bigotimes_{x_{2}}^{\alpha_{m}} \bigotimes_{x_{m}}^{\alpha_{m}} + R_{n+1}) \\ &= \psi_{n}^{*} ((x_{1}-1)^{\alpha_{1}} (x_{2}-1)^{\alpha_{2}} \cdots (x_{m}-1)^{\alpha_{m}} + \Lambda_{n+1}) \\ &= \psi_{n}^{*} (\sum_{\beta: \text{ regular for } n} D_{\alpha}^{\beta} p^{m_{\beta}(n)} (x_{1}-1)^{\beta_{1}} (x_{2}-1)^{\beta_{2}} \cdots \\ & (x_{i\beta-1}-1)^{\beta_{i}} \beta^{-1} (x_{i\beta}-1)^{\beta_{i}} \beta + \Lambda_{n+1}) \\ &= \sum_{\beta: \text{ regular for } n} D_{\alpha}^{\beta} (-1)^{m_{\beta}(n)} \bigotimes_{x_{1}}^{\beta_{2}} x_{2} \cdots \\ & \beta_{i_{\beta}-1} \qquad \beta_{i_{\beta}} + m_{\beta}(n) (p-1) \\ & \bigotimes_{x_{i_{\beta}-1}}^{\alpha_{2}} \qquad x_{i_{\beta}} + R_{n+1} \\ &= \bigotimes_{x_{1}}^{\alpha_{1}} \bigotimes_{x_{2}}^{\alpha_{2}} \cdots \bigotimes_{x_{m}}^{\alpha_{m}} + R_{n+1} . \end{split}$$

Step 4. Finally we shall prove that $\phi_n^* \circ \psi_n^*$ is the identity map on Λ_n/Λ_{n+1} . Since Λ_n/Λ_{n+1} is generated by $\{p^{m_{\alpha}(n)}P(\alpha) + \Lambda_{n+1} | \alpha$: regular for $n\}$, it suffices to prove

$$\phi_n^* \circ \psi_n^*(p^{m_{\alpha}(n)}P(\alpha) + \Lambda_{n+1}) = p^{m_{\alpha}(n)}P(\alpha) + \Lambda_{n+1}$$

for such an α . Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ be a sequence regular for n. Then we have

$$\begin{split} \phi_{n}^{*} \circ \psi_{n}^{*}(p^{m_{a}(n)}(x_{1}-1)^{a_{1}}(x_{2}-1)^{a_{2}}\cdots(x_{i_{a}-1}-1)^{a_{i_{a}}-1}(x_{i_{a}}-1)^{a_{i_{a}}}+\Lambda_{n+1}) \\ &= \phi_{n}^{*}((-1)^{m_{a}(n)} \bigotimes_{x_{1}}^{\alpha_{2}} \bigotimes_{x_{2}}^{\alpha_{i_{a}-1}} \bigotimes_{x_{i_{a}}-1}^{\alpha_{i_{a}}+m_{a}(n)(p-1)} \bigotimes_{x_{i_{a}}}+R_{n+1}) \\ &= (-1)^{m_{a}(n)}(x_{1}-1)^{a_{1}}(x_{2}-1)^{a_{2}}\cdots(x_{i_{a}-1}-1)^{a_{i_{a}}-1}(x_{i_{a}}-1)^{a_{i_{a}}}+M_{n+1}) \\ &= p^{m_{a}(n)}(x_{1}-1)^{a_{1}}(x_{2}-1)^{a_{2}}\cdots(x_{i_{a}-1}-1)^{a_{i_{a}}-1}(x_{i_{a}}-1)^{a_{i_{a}}}+\Lambda_{n+1} \end{split}$$

by using Corollary 6.

Step 1~Step 4 imply that $\Lambda_n/\Lambda_{n+1} \simeq W_n(\mathfrak{Y})/R_{n+1}$ for all $n \ge 1$.

Corollary 9 (P.M. Cohn [1]). Let G be a group of prime exponent p. Let $\{H_j\}$ be an N-series for G and $\{\Lambda_j\}$ the canonical filtration of I(G) relative to $\{H_j\}$. Then $D(\Lambda_n) = H_n$ for all $n \ge 1$.

Proof. We prove it by induction on *n*. By standard reduction arguments we may assume that $H_{n+1}=1$, $D(\Lambda_n)=H_n$ and *G* is finite. Define the homomorphism *f* from H_n to Λ_n/Λ_{n+1} by $f(x)=(x-1)+\Lambda_{n+1}$. Then $D(\Lambda_{n+1})=$ ker *f*. Let $x \in H_n$ be an element of $D(\Lambda_{n+1})$. Write *x* as $x=\prod x_j^{c_j}$ $(0 \le c_j < p)$ using elements of uniqueness basis of weight *n*. Then $f(x)=\sum c_j(x_j-1)+\Lambda_{n+1}$ and $\psi_n^*(f(x))=\sum c_jx_j+R_{n+1}$. Since $f(x)=\Lambda_{n+1}$, $\sum c_jx_j$ can be expressed as a **Z**-linear combination of generators of R_{n+1} . But the elements of uniqueness basis of weight *n* is in the generators of R_{n+1} , there must exist some proper sequence $\alpha = (0, \dots, 0, 1, 0, \dots, 0)$ of weight *n* such that

$$x_{k} - \sum_{\beta: \text{ regular for } n} D^{\beta}_{\alpha}(-1)^{m_{\beta}(n)} \bigotimes_{x_{1}}^{\beta_{1}} \bigotimes_{x_{2}}^{\beta_{2}} \cdots \bigotimes_{x_{i_{\beta}-1}}^{\beta_{i_{\beta}-1}} \bigotimes_{x_{i_{\beta}-1}}^{\beta_{i_{\beta}}+m_{\beta}(n)(p-1)} \bigotimes_{x_{i_{\beta}}} + 0.$$

Now α is a basic sequence, so by Lemma 3 $D^{\beta}_{\alpha} \neq 0$ if and only if $\beta = \alpha$. Trivially $m_{\alpha}(n) = 0$ and $D^{\alpha}_{\alpha} = 1$, so

$$x_{k} - \sum_{\beta: \text{ regular for } n} D^{\beta}_{\alpha}(-1)^{m_{\beta}(n)} \bigotimes_{x_{1}}^{\beta_{1}} \bigotimes_{x_{2}}^{\beta_{2}} \cdots \bigotimes_{x_{i_{\beta}-1}}^{\beta_{i_{\beta}-1}} x_{i_{\beta}}^{\beta_{i_{\beta}}+m_{\beta}(n)(p-1)} \bigotimes_{x_{i_{\beta}}} x_{i_{\beta}} = 0$$

Thus any element of uniqueness basis of weight *n* does not appear in the generators of R_{n+1} . If some $c_j \neq 0$, $\sum c_j x_j$ is not able to be expressed as a *Z*-linear combination of generators of R_{n+1} . This implies $c_j=0$ for all *j*, and $x=\prod_j x_j^{c_j}$ =1. Therefore the result follows.

Passi and Vermani [4] proved the following

Theorem 10. Let $M = \mathbb{Z}_{p^{m_1}} \oplus \mathbb{Z}_{p^{m_2}} \oplus \cdots \oplus \mathbb{Z}_{p^{m_k}}$ $r = \underset{1 \leq i < j \leq k}{\min} |m_i - m_j|$ and k > 1. Then $I^n(G)/I^{n+1}(G) \simeq Sp^n(G)$ if and only if $n \leq p + r(p-1)$.

As a special case of this result we have that if G is an elementary abelian p-group of order $\geq p^2$ then $I^n(G)/I^{n+1}(G) \simeq Sp^n(G)$ if and only if $n \leq p$. Our method is available for non-abelian p-group of exponent p and we have a similar result as follows.

Corollary 11. Let G be a finite p-group of exponent p with N-series $\mathfrak{D}: G = H_1 \supseteq H_2 \supseteq \cdots \supseteq H_c \supseteq H_{c+1} = 1$ with $|H_1/H_2| \ge p^2$. Then $\Lambda_n/\Lambda_{n+1} \simeq W_n(\mathfrak{D})$ if and only if $n \le p$.

Proof. Let $\Phi = \{x_1, x_2, \dots, x_m\}$ be the uniqueness basis for G relative to \mathfrak{H} . By Theorem 8 $\Lambda_n/\Lambda_{n+1} \simeq W_n(\mathfrak{H})/R_{n+1}$. We shall prove that $R_{n+1}=0$ for $n \leq p$ and $R_{n+1} \neq 0$ for n > p.

Case 1. n < p.

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ be a proper sequence of weight *n*. Then α is a basic sequence. By Lemma 3, $D^{\beta}_{\alpha} \neq 0$ if and only if $\beta = \alpha$. Trivially $m_{\alpha}(n) = 0$ and $D^{\alpha}_{\alpha} = 1$. These conditions imply that

$$\overset{\alpha_1}{\bigcirc} \overset{\alpha_2}{x_1} \overset{\alpha_m}{\bigcirc} x_2 \cdots \overset{\alpha_m}{\bigcirc} x_m - \sum_{\substack{\beta : \text{ regular for } n \\ \beta_{i\beta}=1 \\ \cdots \\ \bigcirc} D^{\beta}_{\alpha(n)} (-1)^{m_{\beta(n)}} \overset{\beta_1}{\bigcirc} x_1 \overset{\beta_2}{\bigcirc} x_2 \\ \overset{\beta_{i\beta}=1}{\xrightarrow{\beta_{i\beta}=1}} \beta_{i\beta} + m_{\beta(n)} (p-1) \\ \cdots \\ \overset{\beta_{i\beta}=1}{\bigcirc} x_{i\beta} = 0 .$$

Therefore $R_{n+1} = 0$ for n < p.

Case 2. n=p.

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ be a proper sequence of weight p. If α is a basic sequence it follows as above that

$$\overset{\alpha_1}{\bigcirc} x_1 \overset{\alpha_2}{\bigcirc} x_2 \cdots \overset{\alpha_m}{\bigcirc} x_m - \sum_{\beta: \text{ regular for } p} D^{\beta}_{\alpha} (-1)^{m_{\beta}(p)} \overset{\beta_1}{\bigcirc} x_1 \overset{\beta_2}{\bigcirc} x_2 \\ \overset{\beta_{i_{\beta}-1}}{\longrightarrow} y_{i_{\beta}-1} & \beta_{i_{\beta}} + m_{\beta}(p)(p-1) \\ \cdots & \bigcirc x_{i_{\beta}-1} & \bigcirc x_{i_{\beta}} = 0 .$$

If α is not a basic sequence then α has the form $\alpha = (0, \dots, 0, p, 0, \dots, 0)$ for some j and $\omega(x_j) = 1$. $C_{\alpha}^{\beta} = a_0^{\beta_1} \dots a_0^{\beta_{j-1}} a_p^{\beta_j} a_0^{\beta_{j+1}} \dots a_0^{\beta_m} \neq 0$ implies $\beta_j \neq 0$ and $\beta_k = 0$ $(k \neq j)$. Let β_0 be a basic sequence of the form $\beta_0 = (0, \dots, 0, 1, 0, \dots, 0)$. If β is any basic sequence different from β_0 , then $C_{\alpha}^{\beta} = 0$ or β is not regular for p. Clearly $m_{\beta_0}(p) = 1$ and $D_{\alpha}^{\beta_0} = a_p^1/p = -1$. Therefore

$$\overset{p}{\otimes} x_{j} - \sum_{\beta: \text{ regular for } p} D^{\beta}_{\sigma}(-1)^{m_{\beta}(p)} \overset{\beta_{1}}{\otimes} x_{1} \overset{\beta_{2}}{\otimes} x_{2} \cdots \overset{\beta_{i_{\beta}-1}}{\otimes} x_{i_{\beta}-1} \overset{\beta_{i_{\beta}}+m_{\beta}(p)(p-1)}{\otimes} x_{i_{\beta}} = 0$$

Thus we have $R_{p+1}=0$.

Case 3. n > p.

Since $|H_1/H_2| \ge p^2$, there exists a proper sequence $\alpha = (n-1, 1, 0, \dots, 0)$ in A_n . If $C_{\alpha}^{\beta} = a_{n-1}^{\beta_1} a_1^{\beta_2} a_0^{\beta_3} \dots a_0^{\beta_m} \ne 0$ for a basic sequence $\beta = (\beta_1, \beta_2, \dots, \beta_m)$, then $\beta_2 = 1$ and $\beta_3 = \beta_4 = \dots = \beta_m = 0$. Moreover if $\beta = (\beta_1, 1, 0, \dots, 0)$ is regular for *n*, then

$$\bigcirc x_1 \ \oslash x_2 = \bigotimes x_1 \ \oslash x_2 = \bigotimes x_1 \ \oslash x_2 = \bigotimes x_1 \lor x_2 + \bigotimes x_1 \lor x_2 \,,$$

since $\beta_1 . Thus$

$$\sum_{\alpha=1}^{n-1} \sum_{\beta: \text{ regular for } n} D_{\alpha}^{\beta}(-1)^{m_{\beta}(n)} \sum_{x_{1}}^{\beta_{2}} \sum_{x_{2}}^{\beta_{i_{\beta}-1}} \sum_{x_{i_{\beta}-1}}^{\beta_{i_{\beta}}+m_{\beta}(n)(p-1)} \sum_{x_{i_{\beta}}} \sum_{x_{i_{\beta}-1}}^{\beta_{i_{\beta}}+m_{\beta}(n)(p-1)} \sum_{x_{i_{\beta}}} \sum_{x$$

and hence $R_{n+1} \neq 0$ for all n > p. Therefore the result follows.

REMARK 12. When we determine the structure of $Q_n(\mathfrak{F})$ (n < p) for an N_p -series $\mathfrak{F}: G = H_1 \supseteq H_2 \supseteq \cdots \supseteq H_c \supseteq H_{c+1} = 1$, we may assume that $H_p = 1$. So we may assume that G has exponent p. Then by Corollary 11 we have $Q_n(\mathfrak{F}) \simeq W_n(\mathfrak{F})$ (n < p) for any N_p -series of a finite p-group G. (It is easy to see $R_{n+1} = 0$ for n < p if H_1/H_2 is a cyclic group of order p.)

4. The structure of Λ_p/Λ_{p+1} and $\Lambda_{p+1}/\Lambda_{p+2}$

In the previous section we proved that $\Lambda_n/\Lambda_{n+1} \simeq W_n(\mathfrak{H})$ holds for n < pand for any N_p -series \mathfrak{H} of the finite *p*-group *G*. In this section we determine the structure of Λ_p/Λ_{p+1} and $\Lambda_{p+1}/\Lambda_{p+2}$.

Theorem 13. Let G be a finite p-group with N_p -series \mathfrak{H} , and $\{\Lambda_j\}$ its canonical filtration of I(G) with respect to \mathfrak{H} . Then Λ_p/Λ_{p+1} is isomorphic to $W_p(\mathfrak{H})$.

Proof. The proof is similar to that of Theorem 8. Since $\{p^{m_{\alpha}(n)}P(\alpha) + \Lambda_{p+1} | \alpha$: regular for $p\}$ is a basis system of the vector space $\Lambda_p / \Lambda_{p+1}$, we can define a linear transformation $\psi \colon \Lambda_p / \Lambda_{p+1} \to W_p(\mathfrak{F})$ as follows: Let α be a regular sequence for p. Then $p^{m_{\alpha}(n)}P(\alpha)$ is either $p(x_i-1)$ with $\omega(x_i)=1$, or $P(\alpha)$ with $W(\alpha)=p$. We define to be $\psi(p(x_i-1)+\Lambda_{p+1})=-\bigotimes_{x_i}p^{\alpha_i}x_i + x_i^p$ and $\psi(P(\alpha)+\Lambda_{p+1})=\psi((x_1-1)^{\alpha_1}(x_2-1)^{\alpha_2}\cdots(x_m-1)^{\alpha_m}+\Lambda_{p+1})=\bigotimes_{x_i}p^{\alpha_1}\sum_{x_2}p^{\alpha_m}x_m$. Next we define a linear transformation $\phi \colon W_p(\mathfrak{F}) \to \Lambda_p / \Lambda_{p+1}$ by just the same way as ϕ_p which we defined in Step 2 of the proof of Theorem 8. Then we can easily show that $\psi_0 \phi$ and $\phi_0 \psi$ are the identity maps on $W_p(\mathfrak{F})$ and $\Lambda_p / \Lambda_{p+1}$ respectively, and hence $\Lambda_p / \Lambda_{p+1} \simeq W_p(\mathfrak{F})$.

Theorem 14. Let G be a finite p-group with N_p -series $\mathfrak{D} = \{H_j\}, \{\Lambda_j\}$ its canonical filtration of I(G) with respect to \mathfrak{D} and $\Phi = \{x_1, x_2, \dots, x_m\}$ its uniqueness basis. Then $\Lambda_{p+1}/\Lambda_{p+2}$ is isomorphic to $W_{p+1}(\mathfrak{D})/R_{p+2}$ where R_{p+2} is generated by the elements

$$x_i \bigotimes^p x_j - \bigotimes^p x_i \vee x_j - x_i \otimes x_j^p + x_j \otimes x_i^p + [x_i^p, x_j], i < j \text{ and } \omega(x_i) = \omega(x_j) = 1.$$

Proof. Tahara [6] proved that $\Lambda_3/\Lambda_4 \simeq W_3(\mathfrak{Y})/R_4^*$ holds for any N-series \mathfrak{Y} of the finite group G, where R_4^* is the submodule of $W_3(\mathfrak{Y})$ generated by the elements

$$\frac{d(j)}{d(i)} \binom{d(i)}{2} \overset{2}{\oslash} \bar{x}_{1i} \vee \bar{x}_{1j} - \binom{d(j)}{2} \bar{x}_{1i} \overset{2}{\oslash} \bar{x}_{1j} + \bar{x}_{1i} \otimes \bar{x}_{1j}^{d(j)} \\ - \frac{d(j)}{d(i)} \{ \bar{x}_{1j} \otimes \bar{x}_{1i}^{d(i)} \} - \frac{d(j)}{d(i)} \overline{[x_{1i}^{d(i)}, x_{1j}]}, \ i < j \,.$$

The case p=2 of Theorem 14 is directly obtained by this Theorem. Let p be an odd prime. We shall divide the proof in the following 4 steps.

Step 1. $B_{p+1} = \{p^{m_{\alpha}(p+1)}P(\alpha) | \alpha \neq 0: \text{ basic}\}\$ is classified into following three subsets a) $\sim c$), and we define a homomorphism ψ from Λ_{p+1} to $W_{p+1}(\mathfrak{P})/R_{p+2}$ as follows:

a)
$$p(x_i-1)(x_j-1), i \leq j \text{ and } \omega(x_i) = \omega(x_j) = 1,$$

 $\psi(p(x_i-1)(x_j-1)) = -x_i \bigotimes_{x_j} x_j + x_i \otimes x_j^p + R_{p+2},$
b) $P(\alpha) = (x_1-1)^{a_1} (x_2-1)^{a_2} \cdots (x_m-1)^{a_m}, W(\alpha) = p+1,$
 $\psi(P(\alpha)) = \bigotimes_{x_1} x_2 \cdots \bigotimes_{x_m} x_m + R_{p+2},$

c) $p^{m_{\alpha}(p+1)}P(\alpha)$, α not regular for p+1, $\psi(p^{m_{\alpha}(p+1)}P(\alpha))=R_{p+2}$. Then in the same way as in Step 1 of the proof of Theorem 8, we can easily show $\psi(\Lambda_{p+2})=R_{p+2}$ and hence ψ induces the homomorphism ψ^* ; $\Lambda_{p+1}/\Lambda_{p+2} \rightarrow W_{p+1}(\mathfrak{H})/R_{p+2}$.

Step 2. We define a linear transformation ϕ from $W_{p+1}(\mathfrak{Y})$ to $\Lambda_{p+1}/\Lambda_{p+2}$ by defining it on the basis of $W_{p+1}(\mathfrak{Y})$ as follows:

$$\phi(\overset{\alpha_1}{\bigcirc} x_1 \overset{\alpha_2}{\bigcirc} x_2 \cdots \overset{\alpha_m}{\bigcirc} x_m) = (x_1 - 1)^{\boldsymbol{\omega}_1} (x_2 - 1)^{\boldsymbol{\omega}_2} \cdots (x_m - 1)^{\boldsymbol{\omega}_m} + \Lambda_{p+2},$$

where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m) \in A_{p+1}$. Then we shall prove that $\phi(R_{p+2}) = \Lambda_{p+2}$ and ϕ induces the linear transformation ϕ^* from $W_{p+1}(\mathfrak{Y})/R_{p+2}$ to $\Lambda_{p+1}/\Lambda_{p+2}$.

Since

$$(x_i-1)^p(x_j-1) = -\sum_{k=1}^{p-1} \binom{p}{k} (x_i-1)^k (x_j-1) + (x_i^p-1)(x_j-1)$$

and

$$\begin{aligned} &(x_i^p-1)(x_j-1) = (x_j-1)(x_i^p-1) + ([x_i^p, x_j]-1) + (x_j-1)([x_i^p, x_j]-1) \\ &+ (x_i^p-1)([x_i^p, x_j]-1) + (x_j-1)(x_j^p-1)([x_i^p, x_j]-1) , \end{aligned}$$

we have

$$\begin{split} \phi(x_i \bigotimes^p x_j - \bigotimes^p x_i \lor x_j - x_i \bigotimes x_j^p + x_j \bigotimes x_i^p + [x_i^p, x_j]) \\ &= (x_i - 1)(x_j - 1)^p - (x_i - 1)^p (x_j - 1) - (x_i - 1)(x_j^p - 1) \\ &+ (x_j - 1)(x_i^p - 1) + ([x_i^p, x_j] - 1) + \Lambda_{p+2} \\ &= -\sum_{k=2}^{p-1} {p \choose k} (x_i - 1)(x_j - 1)^k + \sum_{k=2}^{p-1} {p \choose k} (x_i - 1)^k (x_j - 1) + \Lambda_{p+2} \\ &= \Lambda_{p+2} \,. \end{split}$$

Thus $\phi(R_{p+2}) = \Lambda_{p+2}$ and ϕ^* is induced.

Step 3. We shall prove that $\phi^* \circ \psi^*$ is the identity map on $\Lambda_{p+1}/\Lambda_{p+2}$. It suffices to prove it on $\{p^{m_{\alpha}(p+1)}P(\alpha) + \Lambda_{p+2} | \alpha: \text{ regular for } p+1\}$. If $p^{m_{\alpha}(p+1)}P(\alpha) = p(x_i-1)(x_j-1)$ with $i \leq j$ and $\omega(x_i) = \omega(x_j) = 1$, then

$$\begin{split} \phi^* \circ \psi^* (p(x_i-1)(x_j-1) + \Lambda_{p+2}) &= \phi^* (-x_i \overset{p}{\bigotimes} x_j + x_i \otimes x_j^p + R_{p+2}) \\ &= -(x_i-1)(x_j-1)^p + (x_i-1)(x_j^p-1) + \Lambda_{p+2} \\ &= \sum_{k=1}^{p-1} \binom{p}{k} (x_i-1)(x_j-1)^k + \Lambda_{p+2} , \\ &= p(x_i-1)(x_j-1) + \Lambda_{p+2} . \end{split}$$

If $p^{m_{\alpha}(p+1)}P(\alpha) = (x_1-1)^{\alpha_1}(x_2-1)^{\alpha_2}\cdots(x_m-1)^{\alpha_m}$ where $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_m)$ and $W(\alpha) = p+1$, then

$$\begin{split} \phi^* \circ \psi^* ((x_1 - 1)^{\mathfrak{a}_1} (x_2 - 1)^{\mathfrak{a}_2} \cdots (x_m - 1)^{\mathfrak{a}_m} + \Lambda_{p+2}) \\ &= \phi^* (\bigotimes^{\alpha_1} x_1 \bigotimes^{\alpha_2} x_2 \cdots \bigotimes^{\alpha_m} x_m + R_{p+2}) \\ &= (x_1 - 1)^{\mathfrak{a}_1} (x_2 - 1)^{\mathfrak{a}_2} \cdots (x_m - 1)^{\mathfrak{a}_m} + \Lambda_{p+2} \,. \end{split}$$

Now our assertion is proved.

Step 4. Finally we shall show that $\psi^* \circ \phi^*$ is the identity map on $W_{p+1}(\mathfrak{H})/R_{p+2}$. Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m) \in A_{p+1}$. Clearly α has one of the following 4 forms:

a)
$$\alpha = (0, \dots, 0, p+1, 0, \dots, 0)$$
 and $\omega(x_i) = 1$,

b)
$$\alpha = (0, \dots, 0, p, 0, \dots, 0, 1, 0, \dots, 0)$$
 and $\omega(x_i) = \omega(x_j) = 1$,

c)
$$\alpha = (0, \dots, 0, \underset{i}{1}, 0, \dots, 0, \underset{j}{p}, 0, \dots, 0) \text{ and } \omega(x_i) = \omega(x_j) = 1,$$

d)
$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m), \alpha$$
 basic and $W(\alpha) = p+1$.

Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$ be a proper sequence of type a). Since

$$\begin{aligned} & (x_i-1)^{p+1} + \Lambda_{p+2} = (x_i-1) \left\{ -\sum_{k=1}^{p-1} \binom{p}{k} (x_i-1)^k + (x_i^p-1) \right\} + \Lambda_{p+2} \\ & = -p(x_i-1)^2 + (x_i-1)(x_i^p-1) + \Lambda_{p+2} \,, \end{aligned}$$

we have

$$\begin{split} \psi^{*} \circ \phi^{p+1} & (\bigotimes^{p+1} x_i + R_{p+2}) = \psi^{*} ((x_i - 1)^{p+1} + \Lambda_{p+2}) \\ & = \psi^{*} (-p(x_i - 1)^2 + (x_i - 1)(x_i^p - 1) + \Lambda_{p+2}) \\ & = \bigotimes^{p+1} x_i - x_i \otimes x_i^p + x_i \otimes x_i^p + R_{p+2} \\ & = \bigotimes^{p+1} x_i + R_{p+2} . \end{split}$$

Let α be a proper sequence of type b). Then

$$\begin{split} \psi^* \circ \phi^* (\bigotimes^p x_i \lor x_j + R_{p+2}) &= \psi^* ((x_i - 1)^p (x_j - 1) + \Lambda_{p+2}) \\ &= \psi^* (-p(x_i - 1)(x_j - 1) + (x_i^p - 1)(x_j - 1) + \Lambda_{p+2}) \\ &= x_i \bigotimes^p x_j - x_i \otimes x_j^p + x_j \otimes x_i^p + [x_i^p, x_j] + R_{p+2} \\ &= \bigotimes^p x_i \lor x_j + R_{p+2} \,. \end{split}$$

Let α be a proper sequence of type c). Then

$$\psi^* \circ \phi^*(x_i \bigotimes^p x_j + R_{p+2}) = \psi^*((x_i - 1)(x_j - 1)^p + \Lambda_{p+2})$$

= $\psi^*(-p(x_i - 1)(x_j - 1) + (x_i - 1)(x_j^p - 1) + \Lambda_{p+2})$
= $x_i \bigotimes^p x_j + R_{p+2}$.

Let α be a basic sequence of type d). Then

$$\psi^* \circ \phi^* (\bigotimes_{x_1} \bigotimes_{x_2} \cdots \bigotimes_{x_m} \bigotimes_{x_m} + R_{p+2})$$

= $\psi^* ((x_1 - 1)^{a_1} (x_2 - 1)^{a_2} \cdots (x_m - 1)^{a_m} + \Lambda_{p+2})$
= $\bigotimes_{x_1} \bigotimes_{x_2} \bigotimes_{x_2} \cdots \bigotimes_{x_m} X_m + R_{p+2} .$

Step 1~Step 4 imply that $\Lambda_{p+1}/\Lambda_{p+2} \simeq W_{p+1}(\mathfrak{H})/R_{p+2}$.

Using Theorem 14 we can easily show that $D(\Lambda_{p+2}) = H_{p+2}$ for any N_p -series of the finite *p*-group G. But we can get more powerful result as follows.

Theorem 15. Let G be a finite p-group with N_p -series $\mathfrak{D} = \{H_i\}$, and $\{\Lambda_i\}$ its canonical filtration of I(G) with respect to \mathfrak{D} . Then $D(\Lambda_n) = H_n$ for all $n \ge 1$.

Proof. We prove it by induction on *n*. We may assume $D(\Lambda_n) = H_n$, and $H_{n+1} = 1$. We fix an ordered uniqueness basis $\Phi = \{x_1, x_2, \dots, x_m, y_1, \dots, y_s | \omega(x_1) \le \omega(x_2) \le \dots \le \omega(x_m) < n, \ \omega(y_1) = \omega(y_2) = \dots = \omega(y_s) = n\}$ for *G*. Let $x \in H_n$ be an element of $D(\Lambda_{n+1})$. Write *x* as $x = \prod y_j^{c_j} (0 \le c_j < p)$. Then

$$\begin{aligned} x-1 &= \prod_{j} y_{jj}^{c_{j}} - 1 = \prod_{j} \{(y_{j}-1)+1\}^{c_{j}} - 1 \\ &= \prod_{j} \left\{ \sum_{k_{j}=0}^{c_{j}} {c_{j} \choose k_{j}} (y_{j}-1)^{k_{j}} \right\} - 1 \\ &= \sum_{k_{1}=0}^{c_{1}} \cdots \sum_{k_{s}=0}^{c_{s}} {c_{1} \choose k_{1}} {c_{2} \choose k_{2}} \cdots {c_{s} \choose k_{s}} (y_{1}-1)^{k_{1}} \cdots (y_{s}-1)^{k_{s}} - 1 \\ &= c_{1}(y_{1}-1) + \cdots + c_{s}(y_{s}-1) + \text{higher terms} \,. \end{aligned}$$

Note that each $(y_1-1)^{k_1}(y_2-1)^{k_2}\cdots(y_s-1)^{k_s}$ is basic product. As x-1 belongs to Λ_{n+1} , x-1 is expressed as a **Z**-linear combination of $p^{m_{\alpha}(n+1)}P(\alpha) \ \alpha \neq 0$ basic. Write x-1 as follows:

$$x-1 = \sum_{\boldsymbol{\omega}: \text{ basic}} a_{\boldsymbol{\omega}} p^{\boldsymbol{m}_{\boldsymbol{\omega}}(n+1)} P(\boldsymbol{\alpha}) \qquad (a_{\boldsymbol{\omega}} \in \boldsymbol{Z}) \,.$$

Let β_j be a basic sequence such that $P(\beta_j) = (y_j - 1)$. By uniqueness of coefficients we have $a_{\beta_j} p^{m_{\beta_j}(n+1)} = c_j$ for all j. Since $m_{\beta_j}(n+1) = 1$, c_j is a multiple of p. This gives $c_j = 0$ for all j, because $0 \le c_j < p$. So $x = \prod_j y_j^{c_j} = 1$. Thus we have $D(\Lambda_{n+1}) = H_{n+1}$.

REMARK 16. Corollary 9 is also obtained from this theorem.

Acknowledgment. The author wishes to express his appreciation to Professors H. Nagao and K. Tahara for their kind suggestions.

References

- P.M. Cohn: Generalization of a theorem of Magnus, Proc. London Math. Soc.
 (3) 2 (1952), 297-310 (see Correction at the end of the same volume).
- [2] G. Losey: On the structure of $Q_2(G)$ for finitely generated groups, Canad. J. Math. 25 (1973), 353-359.
- [3] G. Losey and N. Losey: Augmentation quotients of some non-abelian finite groups, Math. Proc. Cambridge Philos. Soc. 85 (1979), 261-270.
- [4] I.B.S. Passi and L.R. Vermani: The associated graded ring of an integral group ring, Math. Proc. Cambridge Philos. Soc. 82 (1977), 25-33.
- [5] R. Sandling and K. Tahara: Augmentation quotients of group rings and symmetric powers, Math. Proc. Cambridge Philos. Soc. 85 (1979), 247-252.
- [6] K. Tahara: On the structure of $Q_{s}(G)$ and the fourth dimension subgroups, Japan. J. Math. New Ser. 3 (1977), 381-394.
- [7] K. Tahara: The augmentation quotients of group rings and the fifth dimension subgroups, J. Algebra 71 (1981), 141–173.

Shimadzu Corporation 1 Nishinokyo, Kuwabara-cho Nakagyo-ku, Kyoto 604 Japan