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1. Introduction

Let G be a group with lower central series G=G13G23G33
GΛ+12 , and define

where 2 runs over all non-negative integers al9 a2, •-,&„ such that ^Σiai=n9

and Spai(GilGi+ι) is the arth symmetric power of the abelian group GilGi+ί.

Let I(G) be the augmentation ideal of G in ZG. We denote by Qn(G) the
additive groups In(G)/In+l(G) for n^l. Some results are known about the
structure of Qn(G).

It is well known that Q^Gή—W^G) for any group G. G. Losey [3]

proved that Q2(G)—W2(G) for any finitely generated 'group G. Tahara [6], [7]

proved that £3(G)— PF3(G)/Λ? and Q,(G)—W,(G)/Rf hold for any finite group
G, where R* and Λ* are precisely determined subgroups of W3(G) and W4(G).
Furthermore Sandling and Tahara [5] proved that Qn(G)— Wn(G) (n^l) if
Gi/Gf+i is free abelian for any i ̂  1.

Let p be a prime number. In the first half of this paper we restrict our
attention to groups of exponent p, and prove that

where Rn+1 is a precisely determined subgroup of Wn(G) (Theorem 8). As
its corollaries we have a well known result 1), and a new result 2) as follows:

1) Dn(G)=Gn for any such group G, where Dn(G) is the n-th dimension
subgroup of G (Corollary 9).

2) Let G be a finite group with lower central series

G - GiSG^ . 2G,2GC+1 = 1 .

If this series is an Λ^-series then Qn(G)~Wn(G) for n<p (Remark 12).
In the latter half we prove that <^(G)— P^(G) if the lower central series

of G is an Λ^-series (Theorem 13). Furthermore we construct a subgroup
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Rp+2 of WP+1(G) for which Qp+l(G)—Wp+1(G)/Rp+2 holds if the lower central
series of G is an Λ^-series (Theorem 14). As for dimension subgroup problem,
we will show that Dn(G)=Gn for all w^l, if the lower central series of G is
an Λ^-series (Theorem 15).

2. Notations and definitions

Let G be a finite p-gtoup of order pm, and let ξ> be a fixed finite Λ^-series

that is [Hi9 Hj]^Hi+j for all ί, ^l, and Hp

{^Hip for all ί^l. The series

ξ> defines a weight function ω of G in the usual way; ω(g)=ί if g^Hj— Hi+ly
ω(S)= °° if £— 1 Conditions of Λ^-series imply that ω([g, h])^
for all gy λeG, and ω(gp)^pω(g) for all £^G. Since each factor

is an elementary abelian p-group, we can put

t{ = rank(tf,./tf,+1) , i = 1, 2, -, c .

We fix an ordered uniqueness basis Φ for G;

Φ = {*ι, X29 ••-, Λ?J , ω(xl)^ω(x2)^

Let ΛΛ be the -Z'-linear span in ^G of all the elements

(ft
Then

is a series of ideals of ZG with the property that Λ, Λ; £Λ t +y for all i, j^l.

This filtration determines a family of ^G-modules Qn(ξ?)=Λn/An+1 for all
w^l. These modules are called the augmentation quotients of G relative to ξ>.

K proper sequence a=(al, α2, •••, <xm) is an ordered w-tuple of non-negative
integers αt ; a is basic if 0^α, <p for all ί. The weight of a=(a^ α2, •••, αw)

is W(ά)=^Σίω(xi)ai. Let ^Λ be the set of all proper sequences of weight n.

Corresponding to each proper (basic) sequence a=(aly a2, •••, <xm), we have the
proper (basic) product

P(a) = (̂ -l)-̂ -!)-. - (*.-!)*- .

We define zΛ=max{/: α, φO} if a=(al9 a2, •••, αw)φO=(0, 0, * ,0) and ,̂= 1.
»

We set Wn(^)=^Σ®Spai(Hi/Hi+1)9 where 2 runs over all non-negative inte-

gers al9 a2, " 9an such that 2 **#,-=#, and Spaί(Hi/Hi+1) is the α,-th symmetric
power of the abelian group Hi/Hi+l. Define mα(w) to be the least non-negative

integer such that W(a)+mΛ(n)(p—l)ω(XiΛ)'^n.
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G. Losey and N. Losey [3] proved the following:

Lemma 1. For any n"^ 1, An has a free Z-basίs

Bn = {pm«wp(a): αφO basic} .

3. The structure of £>„(€>) and its applications

In this section we deal only with groups of exponent p. Let G be a finite
p-gΐoup of order pm with exponent p. Then any AΓ-series £>: G=
^Hc^Ξ>Hc+1=l is an Λ^-series.

DEFINITION 2.
1) Define the ^-sequences of numbers {fl°}Γ=o,

follows:
-o as

and

ί M
«!.,

ak \- 1

*̂ k 4- 1

/α

0

α

=

8 ) m
S o
§ = 9

0 0 •••

0 0 »•

0 1
-.c

0 '
0

'«? x

«}

' α.?

0

0 -(

) ^

"'-(

0

t)
2)
'p

0^

1

0

.

Λ

ί° !l
«ί

ai

lί-
fork^l.

Note that the next identity holds for any
negative integer n:

of order p and for any non-

2) Let «=(«!, Cί2y •••, o:w) be a proper sequence and β=(βι, β2, •••, ^w)
be a basic sequence. We define the integer C£ as C^a^a^ a^.

We can express P(α) as a ^-linear combination of basic products by the
following :

Lemma 3. Let a=(aly a2> •"> < ι̂«) ̂  Λ proper sequence with W(a)=n, then

β : basic
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2) p Vn) I C 2 for any basic sequence β,
3) if a is basic then Cf Φθ if and only if β=a.

Proof. Expand each (#,-— !)**• as in Definition 2. Then we have

= { Σ *2i(*ι-i)*H Σ *£2

2(*2-i)β*} { Σ «&(*.-
Pi-0 02~° 0m = 0

= Σ
01*02* '"»P>Λ

= Σ
β : basic

Thus 1) is obtained. Since {pmβ(n^P(β) \ β Φ 0 : basic} is a basis system of
Λn, P(ά) is uniquely expressed as a 2Γ-linear combination of pmβwP(β) with
/3ΦO basic. On the other hand (P(/5) |/S: basic} is a basis system of ZG. So
P(α) is uniquely expressed as a ^-linear combination of P(/3), yS basic. Then
uniqueness of coefficients implies that pmβ(n)\C% for all basic sequence β.
3) is trivial from 1).

DEFINITION 4. Let a be a proper sequence with W(ά)=n. For any
basic sequence /5, we put D%=C%/pmβ(n)^Z. Therefore

β : basic

Note that Dj^l if yβ is a basic sequence with

Lemma 5 (Passi and Vermani [4]). Let p be a prime number and
be a cyclic group of order pm. Then

forallr^Q.

Corollary 6. Let #eΦ, then

Λ(r{ί_1)+2)ωω

Proof. We set wz=l in Lemma 5, then we have

forallr^O. This trivially holds for r= — 1. Then we have

(*-l)r<»-1>+1=(- !)'/>'(*-!) mod /r«-1)+2«Λ;» for r^O.
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Since /^-1)+2«Λ» = (Λ-iχc*-i)+»z<*>, we have /r(ί-1)+2

So the result follows.

Lemma 7.
1) WΛ(Φ) is an elementary abelian p-group of order pr, where r=Σ Π X

( a**^ *~ ), and 2 runs over all non-negative integers aly α2, , an such
ai /

that 2ίlι i&ι=n.
<*\ <*2 <*m

2) Regard Wn($8) as vector space over Z\pZ> then {©^©#2 " ©Λ«

n} is a basis system of Wn(tQ), where

ί V — VΛί®*ί+ι V

Proof. Easy to prove.

For convenience we write xt instead of #f . Let « = («!, a2, •••, α^J
be a basic sequence. Then we call α to be regular for n if W(ά)+nιΛ(n)(p— 1)

Theorem 8. L ί̂ .RΛ+1 iβ fA^ submodule of Wn(!Q) generated by the elements
of the form

a, a2 am A βz Λβ-ι ί<β+mβ(n)(ί-l)

© ι̂© 2̂ ©^m— Σ β2(— l)mβ(w)©^ι©^2" © ^ίβ-ι © XiB,β : regular for n P P

where a=(aly a2, •••, αw) rwwί oz ̂ r all elements of An. Then ΛW/ΛW + 1 is isomorphic

Proof. We shall divide the proof in the following four steps.
Step 1. We define a homomorphism ι/τn from ΛΛ to Wn($&)/Rn+1 which

is defined on the basis of Λn. Let a=(aly a2y •••, cίm) be a basic sequence with
W(ά)^\. Then

P(ά) = (̂ -l)̂ -!)̂ ...̂ .,-!)̂ -̂ -!)̂  .

Define the image of pm<*WP(ά) under ψ>w as follows:
1) If a is regular for n then
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2) If α is not regular for w then

Then we shall show that τ]rn(An+1)=Rn+1 and hence ψw induces a homo-
morphism ψ? from ΛM/ΛW+1 to P7ί(($)//?ίl+1.

It suffices to prove it on the Z-basis of Λn+1. Let ^>m*(Λ+1)P(α)e5n+1.
By the definition of ma(ri) we have mΛ(n)^mΛ(n+l)^mΛ(n)+l. If jwΛ(n+l)=

WΛ(W) then a is not regular for n since PF(α)-f-tfiΛ(«)(/>— l)ω(^t ) = W/r(α)+
mΛ(n+l)(p—l)ω(xiΛ)^n-{-l. Therefore by the definition of ι/rM we have

If mΛ(n+l)=mΛ(n)+l then

since ^(Φ) is an elementary abelian p-group. So the result follows.
Step 2. We define a linear transformation φn from PF^φ) to ΛM/Λn+1

«1 «2 «!»

as follows: By Lemma 7 {©^©Λk •"©#*; a^An} is a basis system of
WJ$). Note that G. Losey and N. Losey proved that ΛW/ΛΛ + 1 is an ele-

«1 «2 «m

mentary abelian ^-group. Define the image of ©Λ?!©^- ••©#„, under φn as

the element

and extend it Z/p2Γ-linearly.
Then we shall show that φll(jRΛ+1)=ΛΛ+1, so φn induces a homomorphism

φϊ from Wn(&)/Rn+l to ΛΛ/Λn+1. Let a=(aly a2, ••-, am) be a proper sequence
with W(a)=n. Then

Φ«(^ι©^ 2 «- Σ
β : regular for n

Λβ_! fiβ+n*β(n)(p-l)

— © %-ι © •%)

- (^-ir^-ir- K-i)^- Σ
β : regular for «

Y : basic

Σ
β : regular for n
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= Σ
β : regular for n P P

-(-IJ βW^-l^ βWί*-1)} +ΛB+1 .

By Corollary 6 we have

^>(%-l)^-(-l)V»>(^

Therefore

belongs to Λr) where r = W(β) + mβ(n) (p—l )ω(xiβ) + ω(xiβ) ^ «+ 1 . Thus we have

ΦB(©*ι©*2 ©k,- Σ (̂-i)̂ ©*!©^
β : regular for n

βiβ-ι βiβ + mβ(n)(p-l)

— © %-ι © *•>) = Λ«+ι

Consequently we have φn(Rn+1)= Λn+1, and so φn induces a homomorphism φ*
from Wς(ξ))/Λn+1 to Λn/Λn+1.

Step 3. We shall prove that ψ*oφ* is the identity map on Wn(&)IRn+1.

Since Wn($)/Rn+1 is generated by {©#i©#2'"©**+^i+i: αe^4M}, it suffices
to prove

for any αe^4w. Let α=(αu α2, •••, or^) be a proper sequence with W(ά)=ny

namely a^An. Then we have

= Ψϊ( Σ
/3 : regular for w

Σ
β : regular for »

© ^ -ι

Step 4. Finally we shall prove that φ?0^* is the identity map on ΛΛ/Λn+1.
Since Λn/ΛM+1 is generated by {pm*(n)P(a)+Λn+1\a: regular foi n}, it suffices
to prove
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for such an a. Let a=(aly a2,

have

by using Corollary 6.
Step 1 — Step 4 imply that

be a sequence regular for n. Then we

©

-!)"'. -f Λ_

for all

Corollary 9 (P.M. Cohn [1]). Lei G be a group of prime exponent p. Let
be an N -series for G and {Λ;} the canonical filtration of 1(G) relative to

Then D(Kn}^Hnfor all n^l.

Proof. We prove it by induction on n. By standard reduction argu-
ments we may assume that Hn+1=l, D(An)=Hn and G is finite. Define the
homomorphism / from Hn to ΛM/ΛW+1 by f(χ)=(χ— l)-(-Λn+1. Then D(Λn+1)=

ker/. Let x^Hn be an element of Z)(ΛW+1). Write # as #=Π xej* (Qί^Cj<p)
using elements of uniqueness basis of weight n. Then f(x)=*ΣlCj(xj—l)-\-An+1

and ^i(f(x))=^CjXj+Rn+1. Since /(Λ?)=ΛΛ+1, Σ CΛ can be expressed as
a 2Γ-linear combination of generators of jRn+1. But the elements of uniqueness
basis of weight n do not appear in the generators of Rn+ί. We shall prove it.
If an element of uniqueness basis of weight n is in the generators of Rn+ι, there
must exist some proper sequence a = (Q, ••-, 0, 1, 0, •••,()) of weight n such
that

β : regular for n

Now a is a basic sequence, so by Lemma 3 £)£ΦO if and only if β=a. Trivial-
ly mΛ(n)=Q and D%=1, so

mwfiι
β : regular for n

Thus any element of uniqueness basis of weight n does not appear in the gen-

erators of RΛ+I. If some r, ΦO, Σ^Λ *s not able to be expressed as a ^-linear
combination of generators of Rn+ί. This implies £y=0 for all j, and x=ΐί occji
= \. Therefore the result follows.

Passi and Vermani [4] proved the following
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Theorem 10. Let M=Zpmί$Z1tm2® ••• 0Z.»»* r= Min \mi—mj\ and
i£i<J£k

k>l. Then Γ(G)/In+1(G)—Sp"(G) if and only ifn^p+r(p-l).

As a special case of this result we have that if G is an elementary abelian
p-group of order ̂ p2 then Γ(G)/In+1(G) — Sρn(G) if and only if n^p. Our
method is available for non-abelian p-group of exponent p and we have a simi-
lar result as follows.

Corollary 11. Let G be a finite p-group of exponent p with N -series ξ>:
G=£f12fl22-2fl'e2fle+1 = l with l^/^l^/. Then ΛW/ΛW + 1 ̂  PFM(£>) z/
and only ίfn^p.

Proof. Let Φ={#ι, #2> •"> #m} be the uniqueness basis for G relative to
ξ>. By Theorem 8 ΛM/ΛΛ+1— WΛ(ξ>)/ΛΛ+1. We shall prove that Rn+1=Q for
n^p and ΛW+1ΦO for n>p.

Case 1. w<^>.
Let a=(alί a2> •••, tfw) be a proper sequence of weight n. Then α is a

basic sequence. By Lemma 3, D£ΦO if and only if β=a. Trivially mΛ(ri)=Q
and D*= 1. These conditions imply that

β : regular for «
p.! tβ + fnβn

© -l ©

Therefore 7?Λ+1=0 for
Case 2. n=p.
Let α=(αu α2> •"> <*w) be a proper sequence of weight p. If α is a basic

sequence it follows as above that

|3 : regular for p

Λ

— © %-ι © % = 0.

If α is not a basic sequence then a has the form α=(0, •••, 0, p, 0, •••, 0) for

some/ and ω(#y)=l. C%=aξι aξj-ιafpjaξj+ι aξmΦ() implies /9yΦθ and βk=Q
(&Φ/). Let /90 be a basic sequence of the form /30— (0, •••, 0, 1, 0, ••-, 0). If

β is any basic sequence different from /30, then Cf =0 or β is not regular for
p. Clearly mβQ(ρ)=l and D^=al

pjp= — 1. Therefore

* A A ^V1

©*y- Σ ^(-i)^w©^©^2... © ̂  ._
β : regular for p P

Thus we have Λ+1=0.
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Case 3. n>p.
Since \H1/H2\'ϊ>p2, there exists a proper sequence a = (n— 1, 1, 0, •••,())

in ^4n. If C^aΪLia&afc aξ'H^Q for a basic sequence β=(βι, β2, •-, /3m)> then
/S2=l and β3 = βt=. =βm=Q. Moreover if β=(βι, 1, 0, — ,0) is regular

for n, then

© X2 = ©#i © Λ2Φ © #i

since βi<p^n—l. Thus

ii-l ft A Λβ-i Ap+«βM
©Λ^VΛfe- Σ u2(-l)^(n)©^l©^2- © *<fl-l ©

β : regular for n P

n-ί βl n-βj.

β : regular for Λ

and hence Λn+1Φθ for all n>p. Therefore the result follows.

REMARK 12. When we determine the structure of £>w(ξ>) (n<p) for an
Λ^-series φ: G^H^Hz^ SH^Hc+^l, we may assume that Hp=l.
So we may assume that G has exponent p. Then by Corollary 11 we have
£)„(£>) = PFΛ(ξ>) (n<p) for any Λ^-series of a finite ^-group G. (It is easy to

see Rn+1=0 for n<p if HJHz is a cyclic group of order ^>.)

4. The structure of APIAP+1 and Ap+1/λp+2

In the previous section we proved that Λn/ΛM+ι — H^(Φ) holds for n<p
and for any Λ/^-series ξ) of the finite p-gτoup G. In this section we determine

the structure of ΛA/Λj +1 and λp+l/Ap+2

Theorem 13. Let G be a finite p-group with Np-series ξ), and {Λy} its
canonical filtration of /(G) with respect to ξ>. Γfefl APJAP+1 is isomorphίc to

WJ®).

Proof. The proof is similar to that of Theorem 8. Since {pm*wP(a)

+Λp+1\a: regular for p} is a basis system of the vector space APlΛ.p+ι, we can

define a linear transformation -ψ : Ap/Ap+ι-^Wp(^) as follows: Let a be a
regular sequence for p. Then pm*wP(a) is either p(xi— 1) with ω(#t )=l,

ί
or P(α) with W(a)=p. We define to be ^(p(xi~l)+Ap+1)=—Q)xi+xp

i and

ΨίPM + Λ^H^fa-l)*^
Next we define a linear transformation φ: Wp(ίQ)-*APl Ap+ί by just the same
way as φ^ which we defined in Step 2 of the proof of Theorem 8. Then we
can easily show that ψ0φ and φ0ι/r are the identity maps on WP(!Q) and Ap/A.p+ι

respectively, and hence Λ.pIA.p+ι^Wp(!Q).
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Theorem 14. Let G be a finite p-group with Np-series ξ?={Hj}, {Λ,-} its

canonical filtration of I(G) with respect to φ and Φ={xly x2, •••, xm} its uniqueness

basis. Then Ap+ι/Ap+2 is isomorphic to Wp+ι(ξ))/Rp+2 where Rp+2 is generated by

the elements
D

ί and

Proof. Tahara [6] proved that Λ3/Λ4 ̂  W3(ξ))IRf holds for any TV-series

ξ> of the finite group G, where Rf is the submodule of W3($Q) generated by the

elements

^')\Λ. ,,. M»
v 2

The case p=2 of Theorem 14 is directly obtained by this Theorem. Let p

be an odd prime. We shall divide the proof in the following 4 steps.

Step 1. Bp+1={pm*(p+1)P(ά) |αφO: basic} is classified into following three

subsets a)~~c), and we define a homomorphism ψ from Ap+ί to Wp+ι(tQ)IRp+2 as
follows:

a) P(*i— 1)(XJ— !)ι ̂  and ω(Λ?ί)=ω(Λ?y)=l,

b) P(α)=(*1-l)

c) p*»»u+vp(a)y a not regular

Then in the same way as in Step 1 of the proof of Theorem 8, we can easily

show ψ(Ap+2)=Rp+2 and hence i/r induces the homomorphism ψ>*; Λp+1lAp+2-+

Step 2. We define a linear transformation φ from W^+1(ξ>) to Ap+1/Ap+2

by defining it on the basis of Wp+1(&) as follows:

where a=(aly cc2f •••, αί!l)e^+1. Then we shall prove that φ(Rp+2)—Ap+2 and

φ induces the linear transformation φ* from Wp+ι(^)IRp+2 to Λp+ι/Λp+2.

Since

and
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we have

(0*,.-l)*(*,-l)+Ai+2

Thus φ(Rp+2)—Ap+2 and φ* is induced.
Step 3. We shall prove that φ*oψ * is the identity map on Ap+1/Ap+2.

It suffices to prove it on {pm«(p+l)P(a)-}- Λp+2\a: regular for p+l} If
p* <p+1)p(a)=p(Xi—l)(xj—l) with i^j and ω(χi)=ω(χj)=lί then

If p»«wp(a)==(χl-l)«ί(χ2-l)*2...(χm-l)«>» where α = (αlf α2, -, am) and

ϊΓ(α)=ί+l, then

Now our assertion is proved.
Step 4. Finally we shall show that ψ*oφ* is the identity map on

Wp+ι(tQ)IRp+2 Let a=(aι, a2, •••, am)^Ap+l. Clearly a has one of the fol-
lowing 4 forms:

a) a=(0, —,0,/>+l, 0, —,0) and ω(Λ?,.)=l,

b) α=(0, -, 0, p, 0, .-, 0, 1, 0, -, 0) and ω(*,)=ω(*, )=l,

c) α=(0, -, 0, 1, 0, -, 0, p, 0, -., 0) and ω(x:)=ω(xj)=ly* j
d) a=(aiy α2, •••, αw), α basic and W(a)=p+l.

Let «=(«!, αr2, •••, am) be a proper sequence of type a). Since

p~l ί P \
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we have

P+l

P+l

P+l
= © Xi+Rp+2

Let α be a proper sequence of type b). Then

Let <2 be a proper sequence of type c). Then

Let α be a basic sequence of type d). Then

aι a2 am

Step 1— Step 4 imply that Λp+1/Ap+2 — Wp+1(&)/Rp+2.

Using Theorem 14 we can easily show that D(Λp+2)=Hp+2 for any Np-

series of the finite p-group G. But we can get more powerful result as follows.

Theorem 15. Let G be a finite p-group with Np-series ^={H{}y and

{Λt } its canonical filtration of I(G) with respect to ξ>. Then D(An)=Hn for
alln^l.

Proof. We prove it by induction on n. We may assume D(Λn)=Hn,

and Hn+1=l. We fix an ordered uniqueness basis Φ= {xλ, x2, •••, xm, yly •••, jγ|

ω(x1)^ω(x2)^ — ̂ ω(xm)<n, a>(y1)=ω(y2) = — = ω(yβ)=n} for G. Let

be an element of Z)(ΛΛ+1). Write x as x=HycjJ (O^Cj<ρ). Then
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'-l = Π

= Cι(;Vι— 1)H ----- K(:ys— l)+higher terms .

Note that each (yι— l)*1^""!)*2'"^""!)** is basic product. As #— 1 belongs

to ΛΛ+1, #— 1 is expressed as a -^-linear combination of ^>w*(n+1)P(α) tfΦO basic.

Write x— 1 as follows:

#— 1 = Σ3 aΛp
m«<n+1>P(a) (aΛ£ΞZ).

Λ : basic

Let /3; be a basic sequence such that P(βj)=(yj— 1) By uniqueness of coef-

ficients we have aβjp
mβjn =Cj for all/. Since mβy(n+l)=l, Cj is a multiple

of/). This gives c~Q for all/, because O^Cj<p. So #=Π^— 1 Thus

we have D(An+1)=Hn+1.

REMARK 16. Corollary 9 is also obtained from this theorem.
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