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1. Introduction

The purpose of this paper is to determine the J-groups of the suspensions
of the stunted lens spaces. In order to state our theorem, we recall some nota-
tion in [3] and [7].

Let p be a prime and S**! be the unit (2t41)-sphere in the complex
(t+1)-space. Then the (2t41)-dimensional standard lens space mod p is the
orbit space

Li(p) = S**Z,, Z,= {exp(2zu/—1/p)|lu=0,1, -+, p—1}

where the action is given by =2(=y, *+, 2;)=(22y, **+, 22;). Let [y, -, 2]EL}(p)
denote the class of (2, +, 2,)=S¥*. The space L¥p) (k%) is naturally im-
bedded in L(p) by identifying [z, -, 2;] with [2q, **+, 24, 0, +++, 0]. Denote the
subspace

Li(p) = {[20, ***» 2] ELH(p) | 2, real, 2, =0} .

Then L*p)—L&(p) and L§(p)—L*'(p) (k=t) are (2k+1)- and 2k-cells respec-
tively, which make L(p) a finite CW-complex.

Let »,(s) denote the exponent of the prime ¢ in the prime power decom-
position of s and m(s) the function defined on positive integers as follows:

0 if g#2, s2=0 (mod(g—1))
ey — | 1178 i g2, =0 (mod(g—1))
v(m(s)) = | if =2, s%0 (mod 2)

2+wy(s) if g=2, s=0 (mod 2).
For non-negative integers 7, ¢ and # with t>n, we set

min {v,(r)+1, [¢+7)/(p—D]—[(n+7)/(p—1D]} (r>0)

Mot = { [¢/(p—1)]—[nl(p—1)] =0).



482 S. Kéno aND A. TAMAMURA

Main result is the following theorem.
Theorem. For an odd prime p, we have
(1) J(S*(LEP)/LE(p))==0.
(2)  J(S(LYP)LYD)))=Zphcrntinr,
(3) J(S*H(Li(p)/L ()= J(S*+¥+?).
#) i) If ntr+10 (mod(p—1)), then
J(S*(LY@)IL' (D))= Zyprtmo @ J(S7+2r47)
ii) If n+r+1=0 (mod(p—1)), then
J(S*(LAD)L" (D))= ZyD Zintusrsvpcrtns D=1
where i=min{h(r, t, n-+1), v,(n+1)}.
(5) J(STHLA) L) = J(S* )
(6) J(S*(L(D)ILA(P))=Zypcrton® J(SH+4).
(7) J(SHLAR)(L(p))= T (S*H )@ J(S*+**9).
®) JSH LGN =T (S L)L (PN J(SH).

ReMARK 1. The J-groups of the spheres are well known (cf. [3, Examples
(3.5) and (3.6)] and [12]):
Zuwp  (n=0(mod 4))
J(ShH={ Z, (n=1, 2 (mod 8))
0 (otherwise) .
REMARK 2. The partial results for the case r=n=0 in the parts (2) and
(6) or the case #=0 in the part (2) have been obtained in [7, Theorem 2] and

[10, Theorem 3.8]. The corresponding result for the case p=2 we have been
shown in [11].

The paper is organized as follows. In section 2 we give preliminaries. In
section 3 we give proofs of parts (2) and (4) i). In section 4 we prove the part
(4) ii). The proofs of the other parts are given in the final section.

2. Preliminaries

In this section we prepare some lemmas which are needed to prove the
theorem. From now on, p denotes an odd prime.

Lemma 2.1. Let r be a positive integer and let k and j be integers with
k=j (mod p), then
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K —j =r(k—j)j " (mod p*s"*?%) .
Proof. Since 2= (mod p), we have
K = (k) Sabkij
= (k—j)Xi0j""  (mod p?)

= r(k—j)i""
This proves the lemma for the case »,(r)=0. Moreover
SRR = SRR Gy (mod £

= 2WSo(r(R—p) G T HG)) (7 (mod p7)
= (B(p—D)[2)yr(k—j)" ('Y +p(") ™
= (Y (mod p?).
Assume that
KF—j"=r(k—j)yr™" (mod p*»®"*%),
Then we have
Bt = (K =) S
= r(k—j)y" ey (mod p*)%)
= pr(k—j)"".

Thus the lemma is proved by the induction on (7). q.e.d.

Lemma 2.2. Let r be a positive integer with r=0 (mod (p—1)). Then,
for each k prime to p, we have

F—1=r(1—k*"") (mod p"»"*?).
Proof. Since #7'=1 (mod p) for each & prime to p, we have

BF—1= (kp—l)r/(ﬁ—l)__lr/(p—l)

= (r/(p—1)) (R7'—1) (mod pYs"+2)
= (1—2) (rl(p—1)) (#7—1)  (mod p4®*)
=r(1—FkY)
by Lemma 2.1 and the equality »,(r/(p—1))=w,(7). ged.

The following equalities in the polynomial ring Z[x] are obtained by making
use of the binomial theorem.

(1) Seslh Do () (— 14t = o
(2.3) . :
@ Shad) () s =
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In the rest of this paper we fix a positive integer 2. Set C*+'=L*p)—L{(p)
and C*=L{(p)—L*(p) for 0<k=t. Then the lens space L(p) has the cell de-

composition
LI(P) — CO U Cl U CZ U e U C2!+1 s
6(CZ’1+1) — O, 6(C2k) — pczk"l .
Denote by ¢* the dual cochain of C*. Then we have the following lemma.
Lemma 2.4. For each integer n with 0=n<t, we have
(1) EHHLYP), LAP) =S nsrZ )
where Z,{c*'} means the cyclic group of order p generated by c*.
(2) H*Ly(p), Ls(p); Z:)=0.

The following lemma can be obtained by making use of Lemma 2.4 and
the Atiyah-Hirzebruch spectral sequence for K-theory and KO-theory (cf. [8]).

Lemma 2.5. The orders of K~"(L(p)/Li(p)) and IEB"(Lé(p)/LS(p)) are
divisors of p*~*. Precisely,
(r: odd)
(r: even) ,

— 1 (r: 0dd)
(2) ord KO (Lo(P)/Lo(P)) = {P[(zt+r)l4]-[(2n+r)l4] (r: e,ven)

_ 1
(1) ord R-"(Lip)/Li(p)) = { -

where ord G means the order of a finite group G.
Considering the Z,-action on S**' X C given by
exp(2zv/ —1/p) (2, u) = (z-exp(2z /' —1/p), u-exp(2z/1—p))
for (2, u)=S** x C, we have a complex line bundle
n: (S¥Y'XC)|Z, — LY (p) .
Set
o = n—1€K(LX(p)).

We also denote by o the restriction of o to Lj(p). Then the following
proposition is well known.

Proposition 2.6 (Kambe [6, Theorem 1 and Lemma 2.5]).

(1) K(Li(p)=Z[s]/(c*", (s+1)—1).
(2) K(Li(p)) is the direct sum of cyclic groups generated by o, c*, -+, a*™". The
order of o' is pl¢=H/@-11+1,
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From this we obtain the following result.

Corollary 2.7. Let u be a positive integer with u=s(p—1)+j for 1=j=
p—1.  Then, in K(L{(p)),

o*=(—p)'d’
modulo the subgroup generated by
{P"“la-l’ ., P’Ho'i, Psa‘iﬂ, ...’P‘o-i’-l} .
Proof. By making use of the relation (¢+1)?=1, we obtain inductively
ot = (S 1)7H l(I’—H k- 1) (z—k—}—l))"'
- i p—i+j—2 i—1\
=-YETTH A @,

for 1<j<p—1. Setintegers B; ; (1=i<p—1,1=j=<p—1) by

(-1 ) asi<))

B..‘.:
e e YA (i=isp—1).
Then we have
!+P—1 — f:i i,jo-i

and
0 (mod p?) (1=1<j)
B ={—p (modp’) (i=j)
0 (mod p) (j<i=p—1).

This proves the case s=1. Now suppose the result true for some value of s,
that is

oIS — ‘,3:{.4,-0'"
with
0 (mod p**Y)  (1=1<y)
4, =1{(—p) (modp™) (i=j)
0 (mod p*)  (j<i<p—1).

Then we have
oI tEtHo-1) 211—1 A o.i+p-1
1::} A (2£=1 Bk i )
- 2221 (22821 4By i)a* .
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It follows from the inductive hypothesis that

0 (mod p**?) (k<7 or 1<)
AiBy; = 1 (—p)'™  (mod p**?)  (i=k=j)
0 (mod p**') (otherwise) .
Hence
0 (mod p**?) (1=k<))
I514:Byi = { (—p)™  (mod p**?) (k=))
0 (mod p**)  (j<k=p—1).

Thus the proof is completed by the induction with respect to s.
We define the function
(2.8) u:Z—>27Z
by setting u(k) to be the remainder of k divided by p for every k&Z. Set

(1) x; = I'(4—1)eK(S¥Li(p)) for each integer i,

2.9 :
(29) (2) y;=TI'(p—1)}eKR(S”Li(p)) for each positive integer 7

where I denotes the isomorphism defined by the Bott periodicity. Then, fol-
lowing properties are obtained by the proof of [10, Theorem 3.8] and the
equalities of (2.3).

(1) x = %

@ 3= Sul) (D (>0).
(2.10) .
B) * =S (i>0).

(4) For Adams operation \*, we have
‘I"h(xi) =k .
For each ¢ prime to p, N(z) denote the integer chosen to satisfy the property
(2.11) iIN@) =1 (mod p’)
Let w be the remainder of » divided by p—1 and set v=p—1—w. Then 1=v
<p—1,and
11(5) (=17 NG) = 30a0() (— 1) (mod p)
= v
*£0 (mod p)
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by [10, Lemma 3.7]. For 1=<j=p—1, we put
(2.12) Y; = y;— ) (— 1 NG,
where N,=N(2',f-1(';-}) (—1)""iN(#*")). 'Then we have the following.

Lemma 2.13. Let j be an integer with 1= j<p—1 and k an integer prime
to p, then we have

(1) Y;=y; (modpy,) (j>v).
2 Y,=0.

(3) Yi=—NZ5u(5) (=1 N (' — 1)y, -
@) Y= o) (1P NG) (W — Dt V).
(5) (W—1) )=k D) (— 1 epFyy, 1y,

0 (mod p*»M 1y (j<v)
= { (1—k*Yry, (mod p"»"*?y,) (j=v)
0 (mod p"»"*2y ) (j>0).

Proof. (1) Since
fi]) (— 1 INE) = s (-1 =0 (mod p)

by [10, Lemma 3.7], (1) is obtained by the definition (2.12).
(2) From the definition of N,, we have

Y, = 30—(28-(}) (=1 NG)N,p, = 0.

(3) By making use of the properties (2.10) and the definition of N(z), we
have
Yi=n—N,y,

= —N,(yy—Z(5) (— 1) NE#")y,)
= =N (— 1) (o —N(*)p)
= —N,1(D) (— 1) NG) (7 — )
= —N,24a(5) (— 1IN (v — 1), .
(4) Similarly, we have
Y) = 55— Su(l) (—1-NG) (32— V)
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= -1(],-) (=174, —N@#) (2,— Y7)

= Sl (—1NE) (B — Dt ¥
by the properties (2.10).
(5) It follows from the definition (2.12), by making use of the properties
(2.10) and the equalities (2.3), that

sV = = Sa() S (B (— )= INE)N,g,
= x;—N(j"")N,y, .
Hence we have
1)y = (Shaa(]) (— 1)) —y,
= (i) (— 1) F ),
= (i) (17 (P EN ¥, 4 NOu(Riyr) N, )~
= KSia() (e,
+H s (— 1 N(u(liy) Ny,
— ¥~ Sual)) (1Y NN,
= ¥l (— sy, v,
+ Shal) (1Y (i) — NG )N,
by the properties (2.10). Lemma 2.1 shows
=1~ K () (—17 Py, 4- Y,
= SHesl) (1) N(u(eiING?) (K — (ki) )N.,
= S3esld) (— YNGR ING?) (K i#—(ki")N,, (mod ps*2y,)
= Saa) (1 Nk k=R Ny, (mod g%y,
= Sl (— )R Ny, (mod ps¥2y,) .

Since (1—k?~)r=0 (mod p"»®*'), (5) is obtained by [10, Lemma 3.7].
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Lemma 2.14. Let u and j be integers with 1 Su=<j<p—1. Then, for each
k prime to p, we have

) 1yt = [0 (mod2) (<)
: v )= (modp) (u=j).
Proof. From [10, Lemma 3.7], we have
ulx D) (—177E) = D) () ey @mod p)
=k {:_1(];) (—1y-%* (mod p)
_ {O (u<<y)
LR W) (u=)). q.e.d.
3. Proofs of parts (2) and (4) i) of Theorem
We begin with the method which is used in the proof of [7, Theorem 2].

Lemma 3.1. Let X be a finite CW-complex and assume that IZ?)’(X ) has an
odd order. Then the real restriction

p: K(X) — KO(X)
is an epimorphism. In particular, if K(X) also has an odd order, then
ker p = (1—7)K(X),
and
ker Jop = (NK(W*—1K(X))
where T: K(X)—>K(X) is the conjugation and J: Eé(X)e J(X) is the natural pro-
jection.

Proof. Let c: KO(X)—>R(X)be the complexification. Since poc—2: KO(X)
—>I’<\5(X) is an isomorphism, ¢ is a monomorphism and p is an epimorphism.
We now turn to the case in which K(X) also has an odd order. Since p=
por, p(1—7)K(X))==0. Conversely, assume p(y)=0 for some yeK(X), then
y+7(y)=cop(y)=0. Since K(X) has an odd order, y=2x for some x=K(X),
and the equality 2y=y—7(y)=2(1—7)x implies y=(1—7)x. Therefore
ker p = (1—7)K(X) .

Since I?é(X) has a finite order,
ker ] = S( N K(¥h—DKO(X) .

It follows from the compatibility of the Adams operations with the real restriction
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(cf. [4, Lemma A 2]), that ker Jop coincides with the subgroup generated by the
elements of ker p and S}(NE(P*—1)K(X)). Since r=+"': K(X)—K(X), we
have )

ker p = (1—n)R(X) S N (*—1DK(X)) .
Therefore,
ker Jop = Su(NA(¥*—1)K(X)).
This completes the proof.
From Lemma 2.5, we have
K(L(p)/L5(p)) =K (Li(p)) =0
for each odd integer 7. Therefore we have a short exact sequence
(3.2) 0 R(S*(Li)La(p)) 25 RS™(Li(p)) 3 R(S*(LKp)) — 0.

We now put

V,=keri,
(3.3) B )
k==0(mod p)

Then we have the following property.
(3.4) The group V, is the direct sum of cyclic groups generated by
PLA=DI@-DI+L (G — 1 oo p—1).
The order of prr=H/®=DI+ly, js plG=D/G=DI-[(x=i/(¢=1)],
Moreover we have the following.
Lemma 3.5. Assume r>0. Then U, is the subgroup of V, generated by
PLO=NOVIHY (G =1, e, p—1) and pLA—WE-DIHp042y,
In the case r=0, U, is the subgroup of V, generated by
PO-D-DIY, (=1 e p—1).

Proof. Put s=[n/(p—1)] and j=n—s(p—1), and consider the case r>0.
The lemma is true for U, by (2.12), Lemma 2.13 and Proposition 2.6. Assume
that the lemma is true for U,,,, that is

Upr = <MY [1=i<j+ 1} U {p°Y | jH2=i<p—1}
U {p"pHLoi=a/o=D142, 1%,

Then, by Lemmas 2.13 and 2.14, we have
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(k’+j+1_ I)Ps Yj+1 (mOd U’l+l) (j+ 1 =I=‘Z))
— (B —1)rp'y, (mod U,,)) (j+1=v).

Since U,=<{U,;U {(¥*—1) (p°y;+1) k%0 (mod p)}>, the lemma is true for U,.
The proof of the case =0 is similar to the above proof. q.e.d.

(1) (0*9101) = {

We now turn to the proof of the part (2) of Theorem. From (3.4), Lem-
mas 2.13, 3.1 and 3.5 we obtain

JS*LAPLI)) = V.U,
CpLm=odp=1IHy S, (r=0)
= {<P[(”'")/(P"1)]+1yv>/<p’“p(f)+[(ﬂ-V)/(P-l)]+2y0> (1'>0) .
Then, the equality
([(t—o)/(— D]+ 1) —([(n—2)/(p—1)]+1) = [E-+n)/(p—D]—[(n+7)/(p—1)]
establishes the part (2) of Theorem.

We turn now to the proof of the part (4) i) of Theorem. By the above
proof, we have the following lemma.

Lemma 3.6. If n+r-+130 (mod p—1), then the quotient map
s S"(Lo(P)/L3(p)) — S™(Lo(p)/ L5 (p))
induces the isomorphism
J(@h): J(S¥(Li(p)IL5(p))) = J(S™(Li()/Ls(2))) -
In the exact sequence of triple (L(p), Ls*'(p), L*(p)), we have
KO "Y(L(p)/ L5+ () =<0

by Lemma 2.5. Hence, we have an exact sequence,

RO(S™(Li(p)/ L5 (2))) > KOWSHLi@)LA2))) S KOS+ 0.

Therefore, the row of the commutative diagram
/7(32’(L5(P)/L3(P)))
Jg) |
J(S*(Lip)ILs* () i(i)*](52’(116(P)/L"(P))) 44 J(s™2%) — 0
is exact by [3, Theorem (3.12)]. Since the map J(g}) is the isomorphism by

Lemma 3.6, we have a split short exact sequence

0 — J(S*(Li(p)/Ls*'())) = J(S*(Li(p)/IL*(p))) — J(S™*+*%) — 0.
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This completes the proof.

4. Proof of the part (4) ii) of Theorem

In this section we assume that n-+r+1=0 (mod (p—1)). We set (n+1—0v)/
(p—1)=s where v denotes the integer defined in section 2. By making use of
the isomorphisms

R(S*(Li(p)/Ls(p))=V
and
R(S™(Ls(p)/ L5 (p))=V a1 »
we obtain the following commutative diagram, in which the row is exact:

R(S¥(CP'|CP")) —> R(S*(CP**|CP")

~
=

#.1) 0— V,,+1—f—l> K(S¥(Li(p)/L*(p))) j_ra) R(S7+r+2) > 0

| 82
Ve 7.

It follows from Corollary 2.7 that we have x& K(S%(Li(p)/L"(p))) such that fy(x)
=p'y, and f(x) is a generator of K(S?#*?). Since K(S?**%*?) is isomorphic to
Z, we have a direct sum decomposition

R(S*(L§(p)IL"(p))) == fi( V pir) BZ {}

where Z {x} means the infinite cyclic group generated by x.
For the Adams operation, we have the following lemma.

Lemma 4.2. (1) For each integer k prime to p, we have

Y@ =R a— (R = 1) 4R 1) p)i(p* ")) (m0d fy(Unsa)) -
(2) If k=0 (mod p), then we have

YHE) =R e — (R )0 ys)  (mod fi(Upi)) -

Proof. (1) We necessarily have

1]'k(x) = afl(Ps+1yv)+ B’x (IIIOd fl( Un+1))

for some integers @ and @ by (2.12), (3.4), Lemmas 2.13 and 3.5. By using the
yJr-map f,, we see that 8=k"**1, Now project into V,; fi(p**'y,) maps into
p**y, and x into p’y,, and we see that

(B 4p2) (Py) =9@'y) - (mod Uy
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It follows from Lemma 2.13 that
(Rt pa) (p'y) =((1—=RNr+1)p%y, (mod Uly,)
This implies that

af(py)=— (k" =) 4k —=1))PAPy,)  (mod fi(Unsa))

and
V)= afy(pty)+R T (mod £y(Uss))
=R a— (R = 1) 4R = 1) p)fi(py,)  (mod fi(Upi)) -
(2) If k=0 (mod p), then

YHo') = ¥ (n—1) = W) —1) = (*—1) = (1-1)' =0,

and

Yy =0.
Hence, the desired result is obtained by using the similar method used in the
proof of (1). q.e.d.

We now recall some definition in [3]. Set Y=K(S¥(Li(p)/L"(p))) and let f
be a function which assigns to each integer k2 a non-negative integer f().
Given such a function f, we define Y, to be the subgroup of Y generated by
{RI®(*—1) (y) | keZ, yE Y}, that is

Y, = {RO(*—1) (y) | kEZ, yE ¥}>.

Then the kernel of the homomorphism J”: Y — J”(Y) coincides with ﬂ Y,
where the intersection runs over all functions f.
Suppose that f satisfies

(4.3) f(k)=t+max{v,(m(n+r-+1))|q is a prime divisor of &}

for every keZ. In the following calculation we put n+r+1=u for the sake
of simplicity. From Lemmas 4.2 and 2.2, we have

R ®O(YF—1) (x)
= ROk —1)x—k O(((k* —1)+r(k* 1) [p)fi(p**'y,)  (mod fy(Uys))
= RO Dy B ON(ufp®) (@l 1)-Hur (¥ D)) (5,
= RO D) R ON () (@l — 1) (B D)) (™)
(mod fy(Up+1))
= (WOE DR (50— Nalp's) (- DA (™72 -

By virtue of [3, Theorem (2.7) and Lemma (2.12)],
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{fi(Unn) U RO —1) (%) [kEZ}D
= {fi(Unn) U {(m(w)[p*»**) (" " 'a—N(u/p*»®) (n+ DA™ 3))}>
= {fi(Uns2) U {m(u)x—(m(w)/p*»“ ) N(u/p"s®) (n+DAGHy.)}> -

Therefore,
Y, = {fi(Uns) U {m(nt7+D)x—Mfy(py,)} >

where M=(m(n-++r-+1)/p*»**+NN((n+r4-1)[p*s®+rD) (n41). Since this is
true for every function f which satisfies (4.3), we have

(44) J'(Y) = YK{(Upr)) U {m(n+r+1)x—Mfy(p*y,)}> .
We now recall the notation of A(z, ¢, n41):

min {u,(r)+ 1, [(¢+))(p— D] —(a-+r-+1)/(p—1)} (>0)
[t/(p—1)]—(n+1)/(p—1) (r=0).

Then we have the following lemma.

hir, t,n+1) = {

Lemma 4.5.
T (RS (LABYL DY) =Zy® Ziusrapphcri -
where i=min{v,(n+1), h(r, t, n+1)}.
Proof. By (4.4), we have
J/(R(S*(Li(p)/L"(p))))
= A, ey )} DK m(n+r+Da—Mfy(p*y,), p*O D fi(p v} -

Since v,(M)=wv,(n+1), the greatest common divisor of M and p"¢-*#+1) equals to
p'. Choose integers a and b with

aM+bph(r,t,n+1) — Pi .
Then, it is easily seen that
Amrt-r+Dx—Mfi(p™y,), p*7""D L0 yo)} >
= {{m(n+r+1)p*"tm07%, pla(mntr+1)[p)x—f( YD
and
A A9k > = {dx, a(m(ntr+1)[p)x—fi(p 3.} > -

This proves the lemma.

Now, by virtue of the above lemma, the proof of Theorem (4) ii) is com-
pleted by the following lemma.
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Lemma 4.6. J(S*(Li(p)/L"(p)))=J"(R(S¥(Li(p)/L*(p))))-

Proof. In this proof we put A=S*(Li(p)/(L"(p)), B=S¥(Li(p)/Ls*'(p))
and C=S82"*2*2 for the sake of simplicity.
Consider the homomorphisms

Je)  —
J(R(B) f—“_) J/(&O(B))

where p, and ¢, are the real restriction and the complexification. Then, by

making use of Lemma 2.5, Lemma 3.1 and [3, Lemma (3.8) and Theorem

(3.12)], we see that J”(ker p,)=<0 and so J”(p,) and J”(c,) are the isomorphisms.

Since p is an odd prime and n+7r+1=0 (mod p—1), there are following cases.
i) If n4+r+1=0 (mod 4), then we have the commutative diagram

0 0

y V
0 —s KO(B) —> KO(4) —> KO(C) —> 0

R PO

0 — BB -1 RA) — RC) — 0
V
0

of exact sequences. By making use of [3, Lemma (3.8) and Theorem (3.12)],
we have the following commutative and exact diagram:

0 0
2t __ t_
JRO®) — JEOA) — J'KO(C) —> 0
e e [
r&e) L peay — pwe) — o
| | |
0 0 0

Since J”(f) is a monomorphism by (4.4), J”(c,) is also an isomorphism. There-
fore we obtain

J(A)=J"(KO(4))=J"(R(4)).

ii) If n+r+1=2 (mod 4), then we have a commutative diagram
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0

f y
0 — R@B) —> KA —> RC) — 0

I N

0 —> KO(B) —> KO(4) —> KO(C) —> 0
V V
0 0
of exact sequences. Inspecting the diagram, we see that p, is an epimorphism
and
S lxer o,° ker p, — ker p,
is an isomorphism. By making use of [3, Lemma (3.8) and Theorem (3.12)]

we have the following commutative and exact diagram:

0 —> J'(kerp) —> J'(kerp) —> 0

l l |

J(KB) — J(RA) — J(KEC) — 0

|77t |70 [77e9
J/(KO(B)) —> J"(KO(A)) — J'(KO(C)) —> 0

} ! }

0 0 0

It follows from the first part of the proof that J”(ker p,)=<0. Thus we have
J(A)=:J"(KO(A))= J"(K(A)) -

This completes the proof of the lemma.

5- Proofs of the other parts of Theorem
In this section we complete the proof of Theorem. We begin with the part
(1). Since KO(S**(Lo(p)/Li(p)))==0, we have
J(S* (L) Lyp))=0 .

This proves the part (1).
Since 2KO(S***3)=~0 and KO(S¥(L§(p)/Ls**(p)) has an odd order by
Lemma 2.5, by making use of the exact sequences of the triple (Li(p), Ls*'(p),
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L"(p)), we have an isomorphism
(5.1) ﬁ(S2r+l(L6(P)/Ln(P)))gk\é(SZn+2r+3) .
Hence we obtain

TSP+ Lo()/L"(p)) == J(S*+5+9) .

This proves the part (3).
Similarly, by making use of the exact sequences of the triple (L¥(p), Li(P),
L3(p)), we have an isomorphism

TS (LA (p) L)) == J(S*+2r+%) .

This proves the part (5).
We now turn to the part (7). Put A=S¥*(LY(p)/L"(p)), B=S**(Ly(p)/
L"(p)), C=8%++2 and D=S**Y(L§*'(p)/L"(p)). Then, we have the commuta-

tive diagram

Kom) — Ko@)

| |

0 —s KO(C) —> KO(A) —> KO(B) —> 0

where the row is exact. It follows from (5.1) that 7 is an isomorphism and

I’-{\O’(B)glz?)’(S”‘*”“). Hence the row sequence splits as an exact sequence of
yr-groups. Thus we have

J(S* (LY (p)IL"(p))) =](C)D(B)
g_,.]( Sz:+2r+2)€B ]( S2n+2r+3)
This proves the part (7).
We now turn to the part (8). Put A=S*(L'(p)/L"(p)), B=S*(Li(p)/L"(p)),

C=S8%+*+1 D=S*(Ly*'(p)/L"(p)), and E=S%(Ls*'(p)/Li(p)). Then we have
the commutative diagram

KO(E) —> KO(D) —> KO(B)

b |

0 —> KO(C) —> KO(A) —> KO(B) —> 0

B .

KO(C) = KO(C)
of exact sequences. Since IZZ(E) has an odd order and ZI’C\(-)’(C)E;O, we have



498

S. Kéno AND A. TAMAMURA

](Eé(E))QO This implies that §,; is an isomorphism. Hence the middle row
sequence of the diagram splits as an exact sequence of +r-groups. Therefore
we have

TS (L)L (@) =J(S*(LiB) L (p))DT(S™*+) .

This proves the part (8).

(1]
(2]
[31
[4]
(5]
(6]
(7]
(8]
9
[10]
[11]

[12]

Finally we note that the proof of part (6) is similar to that of part (8). q.e.d.
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