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Introduction

Our main concerns in the theory of mathematical statistics have
been “efficient estimates” and “most powerful tests”.!> But from the point
of view of economy, it seems reasonable to inquire whether the output
of information is comparable in value to the input measured in money,
man-hours, or others. Alternatively we may inquire whether comparable
results could have been obtained by smaller expenditures.

Recently Dr. Frederick Mosteller? has proposed the use of systematic
statistics for such purposes, basing on the fact that, however large the
sample size is, all individuals of the sample are easily (with low costs
and quickly) ordered by punched-card equipment. F. Mosteller considered
the estimations of the mean and standard deviation of an univariate
normal population and the estimation of the coefficient of correlation of
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a bivariate normal population. After that Prof. Ziro Yamanouchi®
contributed greatly in the former case. Yamanouchi’s results are, from
the point of view of our present stage, essentially that best linear
unbjased estimates are considerably more efficient than those used by
F. Mosteller. ‘

The purposes of this paper are to extend the results already obtained
by F. Mosteller and Z. Yamanouchi on the basis of the general theory
of statistical estimation (Chapter I) on one hand, and on the other hand,
to develop the theory of testing statistical hypotheses concerning un-
known parameters of an univariate normal population in the case of
systematic statistics (Chapter II).

Soon later, in a separate paper, we shall deal with problems
concerning Dosage-Mortality Curves and Time-Mortality Curves® as
applications of the theory here developed.

The author expresses here his hearty thanks to Mr. Y. Miyamoto,
and Mr. F. Maruyama who born part in the computations of Tables 6. 1-
6.6, and to Prof. Z. Yamanouchi and others for their valuable advices.
And the author was also much indebted to Prof. K. Kunugi for the en-
couragement during the time when he was preparing the manuscript.

Chapter I. Theory of Estimation

In this chapter we shall deal with estimation of parameters specifying
a normal population by means of systematic statistics. In §1, §2, we
summarize the necessary results from the general theory of statistical
estimation®.

§ 1. Regular unbiased estimates. For the sake of simplicity of

explanations, we assume that the parent population under consideration
is of the continuous type, i.e., the distribution of the population has the
density function which is continuous almost everywhere. The reasonings
given below will, of course, be valid for populations of the discrete
type, provided the necessary modifications being made. -

We shall consider here two cases when the number of parameters
to be estimated is one and two. The arguments for cases when the

parameters to be estimated are more than two are essentially the same
as those for cases when unknown parameters two, but we shall not

need such cases for the time being.

Case I. The case when the number of parameters to be estimated
is one. Let the frequency function of the population under consideration
be f(x;«), where the functional form of f is assumed to be known,
and « the unknown parameter to be estimated, the region of considera-
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tion of « being a certain non-degenerate interval A.
Let 2,,2,,...,%, be a random sample of size n drawn from the
population. The statistic

a* = (@, Tgs veu s Xn)

which is Borel-measurable and independent of «, is called a regular
estimate of «, when it satisfies the following conditions 1 and 2.

Condition 1. We can choose a new system of variables &,,&,,...,&._1
such that the transformation of variables

a*: a* (xly cee 9 xw)
51 :‘_El (w19 cee xn)

........................

Ew—l - En—-l (xla ven sy xn) (1° 1)

has the following properties :

(1a) a*(®1, .00 s )y E1(@1y eee s Xu)y oen s Eno1(@, ..., 2,) are one-valued
and continuous functions of z,, @,, ..., &, everywhere in the wx-space,
and have continuous partial derivatives

oa* £
ox,’ o’

i=12, ...,n;i=12,...,n-1

in all points, except possibly in certain points belonging to a finite
number of hypersurfaces.

(1b) The transformation (1.1) defines one-to-one correspondence
between the points (2, ..., «,) and («*, &1, ..., £, ,).

Remarks: Consider a point (, ..., «,) which does not belong to
any of the exceptional hypersurfaces, and is-such that the Jacobian
8(a*, El’ cee 3 En—l)

O (X1, Loy vy Ty)
(X1, Byy vuy X4)
(a*, &1y ey Enly)
corresponding to the point (x,, ..., 2,), since we have

0(a*, £yy e £an) O (@) Doy vy Ba) g

8 (xly x29 ""':"a»;n) a (“*;gly '." ’ En—]) o
Therefore, it follows that

f(xl s C() vee f(xn 5 a) dml cee dxn - f(xl ’ C() “ee f(xn 5 CX) * [Jlda*dél vee dfn—l
(1.2)
where in the right-hand side of (1.2), «,, ..., «, should be represented
in terms of a*, &, ..., En ;-
Now, let the frequency functions of the marginal distribution of a*

is non-vanishing. The Jacobin of the inverse trans-

formation J =

is then finite in the point (&, £1, ..., £4_1)
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and the conditional distribution of &, ..., £,.; given «* be g(a*; a) and
h(&, ..., &, 1| a*; a) respectively, then we have

f(wl ;O’) cee f(xn! (X)IJIda*dfl cee dén—-l == g(“*; a) da*h(ézl’ ceey fn—-l
la*; a) dél cee dgn—l (1- 3)

Condition 2. For almost all values of (2, ..., ,); &%, &5 ooy Enis
there exist partial derivatives

of 9g oh

oa’ oa’ o«

in each point « in A, and the following relations
| i
Tl<r@. | Z]< 6@, |2 |< B tanlay @)

hold, where F,(x), G,(a*), Hy(%,, ..., E,,|*) are all independent of
« and

Fo(x), Go(a*), a*Gy(a*), Hy(&1, oo s Enoy|@®) (1.5)
are integrable in the whole space of of their variables.

Remark : By the Condition 2, we can interchange integration and
differentiation, when it is necessary, for example,

é%gw f(a:;a)dx=r aé&f(a;;a)dx .

-0 —o0

In the sequel, we consider only such estimates as regular, so we shall
omit the adjective “regular ”.
If an estimate «* of « has the property, that

r’ a*g(a*; a)da* =« (1.6)

holds for all values of « in A, then we call a* the unbiased estimate
of «a. ‘
Differentiating both sides of (1.6) with respect to «, we have
©oglar;a),
RZINT 2 ) K= .
La &5 Ddar =1 . 1.7
Since, of course,
r gla*; a)da* =1,
it follows that

© ogla*;a), 4 __
L, O3 Qg =0, (1.8)

From (1.7) and (1.8), we have
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r (a*-a)?%;_‘”da% —1,

which will be rearranged as follows :

B PP 1 9g(a*; a)
*— a*; a) x A da*=1, .
| e a@ @ ot W e =1, 1.9)
assuming that g(a*; a) >0 for all values of a*, when otherwise the
interval of integration should be chosen such that g(a*;«a)>0. By
means of Schwarz’s inequality, we have
D (a*)- E(@L‘)&Q@fiﬁ)f =1,
oa
whence it follows that

. ~ 1
2 k
D?(a*) = E(@logg(a_* __CQ (1.10)
o« )
The equality sign holds when and only when
ogla*;a) _ 40 s
Sa Ela*—a), (1.1
where k is a constant independent of z,, ..., x,.
From (1.2) and (1.3), we have after some easy calculations
olog f(x; a))z__ olog g\? (8 log h>2
"E<"—a‘a'“ = (232 )+ () (1.12)
Hence, we have
0y > 1
D?(a* , 1.13
= nE(a log f\* f)2 ¢ )
o«
where the equality sign holds when and only when (1.11) and further
oh
Sa = =0 (1.149)

hold, i.e., A(%, ..., &, , | @*; a) is independent of «.

When the equality in (1.13) holds, we call a*, after H. Cramér,
the efficient estimate of «. For any unbiased estimate a* of «, the
quantity

e(a*) = — L

D (%) nF'(a 1805 f )

lies between 0 and 1. We shall define the efiiciency of the unbiased
estimate a* be e(a*) of (1.15). Of course, for efficient estimate a* of «,

(1.15)
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e(a®)=1.

Now, let us suppose a* = a*(x,, ..., &,) is defined for all sufficiently
large values of =, and «a* converges in probability to « as » tends to
infinity, i.e., a* is a consistent estimale of «. In many important cases
the standard deviation of the estimate a* is of order » /2 for large =,
s0 that we have D(a*)occen V%, where ¢ is a constant independent of
n. In such cases we define asymptotic efficiency of «* by

1

U

and the estimate for which e,(a*)=1 is called an asympiotically efficient
estimate.
The quantity

e, (a*)= (1.16)

(28]

is named by R. A. Fisher an intrinsic accuracy of the pupulation and

2
nE(a é(;g f ) amount of informalion of the sample given®, and these

give the upper bound of information, in a certain sense, which the
sample will possibly offer.

of " dax =0 under the integral sign with

If we can differentiate j
Da

-0

respect to «, we have

E(%‘fl) E(a%%l> . (1.17)

We shall mention two examples which will be necessary in the
following.

Example 1. For the normal population with unknown mean m and
unit variance, as is well known, the frequency function is

fa; m) = (27)"2 exp {—(x—m)Z/Z} ,

When we take the sample mean z = ;1;2" x; as an estimate of m, it is
t=1
easily seen that regularity conditions are satisfied. Since

Olog f(a;m)__

—m
om !

the amount of information is

(a log f(m m)) (1.18)
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Hence the lower bound of variances of any unbiased estimate of m is 1/%.
Consequently, the sample mean % is an efficient estimate of m.

Example 2. For the normal population with 0 mean and unknown
variance o, the frequency function is
(5 o) = (270%)" V2 exp {—xz/zf;?} ,

Then, we have
olog f(x;0)__ 1 _ a?

o o + o3’
hence the amount of information is
élog f(z; 2 2n
nEB <_—a;_£?) =, (1.19)

The lower bound of variances of any unbiased estimate of o is 2n/s2.
If we take the statistic

_ F(ﬁ)
* — _73**3#,( ' z=1 N a2
= 211(12—{-1)%’ where sj= 2127,
2

then the variance of o* is for large values of »

()
o p im0 (d).

Dz(o'*): -2~F2‘<‘7ﬂ:—1->——1 o Z%—{- 7_?,5
\ 2

hence, +* is an asymptotically efficient estimate of o.

Case II. The case when the number of parameters to be estimated
is two. Let the frequency function of the population be f(x;«, /),
where the functional form of f is assumed to be known and « and g
are the unknown parameters to be estimated. The regularity conditions
for a pair of estimates «*(a,, ...,«,) and B*(&,, ..., 2,) of @ and B
are as follows:

Condition 1. We can choose a new system of variables &, ..., &,_,
such that the transformation of variables

(1. 20)

........................
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have the following properties :

(13) a*(xls ooy .’)Jn), B*(xly cee y x"): El(wl 9 ceey xn)) cee 9 5n—2 (xly TR} a:,,)
are one-valued and continuous functions of z,, ..., #, everywhere in the
xz-space, and have continuous partial derivatives

oa* OFF 0L . ;1
oz, ' om, ' ow, ' L2,
for all values of x,, ..., 2,, except possibly in certain points belonging
to a finite number of hypersurfaces.
(1b) The transformation (1.20) defines one-to-one correspondence:
between the points (x,, ..., «,) and (a*, 8%, &, ..., E,_»).

Remark: The Jacobian

wony 1=12,...,n-2,

J: a(a’.l’ xzr x3r coe )’3275
a(a*, B*sfly coe :Eu—z)

is non-vanishing almost everywhere, hence we have

l} f(xb ; A B)-dwl L de, :::/:7i f(a,“ «, [3’) lJ|~da*d,8*d§1 . dfn—z , (121)

and

ﬁ f@g; a, B)-|J|-da*dF¥dE, ... dE,_, = g(a*, B*; a, B)da*dB* x
i=1
h(fl’ see )y fn—Z I a*9 Bk , a’ /3) dé] see dfn_g 9 (1- 22)
where g(a*, 8% ; a, ) is the frequency function of the marginal distri-

bution of «* and B* and A(&,, ..., &, | a*, B%;a, B) is the conditional
frequency function of &, ..., &,_, with given a%*, B*.
Condition 2. For almost all values of (21, ..., #,), a*, 8% &, ...,&,
in each point («, 3) of the region of parameters, exist partial derivatives
of of . 99 99 . 9h Oh
oa’ 9B’ oa’ 9B’ 9a’ OB’

which satisfy the following restrictions;

of |_- . of N -

S| < @) ’ \8/5,!<F2(9«),

og | - ¢ o |0 ok

ai < Gl(a*’ BL) ’ lé%!< Gz(a{*) 18*‘> y

oh | o l

8a;< Hl(él’ e é:n_g I C(H‘, '8}‘) ’ )§EJ< H2(§19 cee ,én—2 I aﬂi’ 8*) ’

Where Fyl(x)9 ﬁvz(“’): Gl(a*’ /3#)’ Gz(a*s B:“)’ a*Gl: a*GZ’ B*Gly B.KGZ’
H,, H, are all independent «, B and are integrable in the whole space
of variables.
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In this case, the important results will be sketched as follows:
(1) The ellipse of concentration of the unbiased estimates a*, 8%
of a,3

1 ((u- ac)2 (u—a)v— ,8) (v— ,6’)2
1—_p %\ O—I. 2 0107y § ’ (1' 24)
where

= Dz(a*) ’ 0':.-; == DZ(B;K) y 01090 — C(a*, ,8*‘) ,

contains a fixed ellipse

1E,<810gf> (u—a)2+21zF<@%I2193f> (u—c.t)(v—~/9’)

C] o8
+nE(ag)§f) (v—B2 =4 (1.24)

in its interior™.
(2) Comparing areas of two ellipses, we have

2A o 1
wA & oroy(1—p)’
L olog f (alogf 2<810gf olog f
where A__E’< e ) E 98 ) —F So "—8‘,8’*)’ hence the
quantity
e(a*, B¥) = L (1.25)

WA (1—p?)

lies between 0 and 1. If two ellipses (1.23) and (1.24) coincide, it is

obvious that
e(a*, B¥)=1.

We define by the quantity e(a*, 8%) the efficiency of the joint estimates
a*, 8% of a, B3, and, when
e(a*,B*)=1,
we say that a*, B* are jointly efficient estimates of «a, .
3 Now let a¥, B% be a system of jointly efficient estimates of
a, B, then by the definition, we get

Py = L B(POI) L D= L m (78T
oy, piy = ~p (21081 210 1) ¢E<§19g_f> B(P1BIY . (.26
(24

Hence, it follows at once

1 1

T 1-pat, ) aB (2181

D (ak (1.27)
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Consequently, the variance of any one of the jointly efficient esti-
mates is greater than that of the efficient estimate of the corresponding
parameter assuming that the other being known, provided the coefficient
of correlation p(ay, BF) is not zero.

(4) In a case when there are two unknown parameters «, 3, it
often arrives that we are only interested in estimating one of them,
say «, and we then ask if it should be possible to find some pair of
unbiased estimates o, 8%, yielding D?*(a*)< D*(a¥), no matter how

large the corresponding D?(3*) becomes. However, from the result of
(1), we get for any pair of unbiased estimates

i'*{(z—-a)z gpu=a)v=p)  (v— B)2§<%E(@£f).(u_a>z

1—P2 o1 0107y
+20m (21087 D10RTY .y B)+aB (PR8I ) w—pp, (1.28)

it follows that

" 1 8 log f *
M) =¢ = - 2
D}a¥)=o}= = E ) D(a) .
(5) Thus far, we have assumed that z,, ..., #, are mutually inde-
pendent, but if they are dependent, and let the joint frequency function
be
f@1, cons Ty ) O f(@1, o0, Tus @, 3),

then the whole arguments go parallel with slight modifications, for
example, the inequality (1.13) becomes in this case
1
2( ¥ _
D*(« )2E<alogf
oa

Example 3. Let the population be normal with unknown mean m

and unknown standard deviation o, then the frequency function is

(1.29)

f(x;m, o)=(27a?)" V2 exp {—(m—m)2/2cr2§ .
In this case, it is easily seen that the amount of information is

2t (1. 30)

o

If we take as a pair of joint estimates of m and o

8,
()

m* =, and o*=
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where
2 1< 2 __:—v)z ,
N i=1
then, as is easily calculated, their variances and covariance are
-1
pz(”__-
-1 2

2 *_Z_ 2( oK) — _ 222'3 l N
D*(m*) D (o) 1jor=7 4 o(nz),C(m ,0)=0.

n’ R 2 AN

re _)

(3

Hence, when » tends to infinity, we have
e(m*, %) - 1,

therefore, m*, o* are a pair of asymptotically efficient estimates of m, o.

§2. The best linear unbiased estimates and extensions of A.
Markoff’s theorem on least squares. When an estimate a*(x,, ..., 2,)
of unknown parameter « satisfies the following three conditions,
J. Neyman® named it the best linear unbiased estimaie of « :

(1) a*(zy,...,&,) is a linear form of a random sample z,, ..., z,, and

(2) it is unbiased, i.e.,

E(a®)=«

holds identically for all values of «.

(3) «a*(2;,...,%,) has the smallest variance among those which
satisfy the conditions (1) and (2).

Because of the fact that in many cases of practical impoertance
distributions of the linear estimates are asymptotically normal for large
values of %, the sample size, we frequently make use of the best linear
unbiased estimates.

As a powerful tool of obtaining the best linear unbiased estimates
in cértain important situations, we have the famous theorem due to
A. Markoff. »

Theorem 2. 1. (Extension of Markoff’s Theorem by J. Neyman and
F. N. David®)

(i)Y =, ..., 2, are mutually independent ramdom variables.

(ii) The mean values of «,...,x, are linear forms of s(< =)
unknown parameters 6,, ..., 0,, i.e,

E(x)=m,=a,0,+ - +a,0,, i=1,2,...,n, 21

where the coefficients a,; are known constants.
(iii) The rank of the coefficient matrix
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Q11 Gyg oo Uys

A:: a’21 a’22 “oe azs (2. 2)
a‘nl “nz . a’ns
is s.
(iv) The variances of #;,(i=1,2, ..., n) are of the following forms,
i.e.,
Dz(wi)=«r;"=%z, i=12,..,n, (2.3)

where P, (1=1,2, ..., %) are all known constants and 2 unknown.
Yf the above four conditions are satisfied, then () the best linear
unbiased estimate F' of a linear form of 0., ..., 9,

Dby - +D0,

with known constant coefficients b,, ..., b, is
F =060+ - +b,00, (2.4)
where 69, ..., ) are the values of 0,, ..., 0, for which the quadratic form
| S =§13 Py(— 0,0y — - — a0, ) (2.5)

takes its minimum value.
And (Z7) denoting the minimum value of S by S,, i.e,
So———i‘.Pi(%—anf)?— e —a05)?, (2.6)
i-1
the statistic
So/ ('n—s)
is an unbiased estimate of 2.

For the convenience of later uses, we extend the above theorem
slightly, and state as follows:

Theorem 2. 2.1%

(i) =, ..., 2, are distributed according to the n-dimensional non-
singular distribution with means m,, ..., m, and the variance-covariance
matrix

(c*diy), 65=1,2 ..., n; 2.7)
where d;; are known constants and o2 unknown.

'(ii) The means m,, ..., m, are linear forms of s(<_») unknown
parameters 6,, ..., 0, with known constant coefficients, i.e.,

E@)=m,=a,6,+ - +a;6,, i=12,...,7n. (2.8)
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(iii) The rank of the coefficient matrix 4 = (q,;) is s.
 (iv) Let
(dip) ' =(Dyy)
If the above four conditions are satisfied, the following two proposi-
tions (¢) and (é7) are valid. '
() The best linear unbiased estimate F’ of a linear form of 6., ..., 6,
with known constant coefficients

b0, + - +b,0;

is
F =0b,0)+ --- +0,67, 2.9
where 6, ..., 6} are the values of 4,, ..., 6, for which the quadratic
from
S = E Dij(xi—z a’imga)(xj_z a‘.fﬂgﬁ) ’ (2 10)
i=1J=1 @=1 p=1

takes its minimum value.
(1) Denoting the minimum value of S by S,, i.e.,

I
M

So

i=13=

-
—

22 Dis(=; —Z.‘{ a[ﬁg)(wr;:}l a;08) , (2.11)
the statistic :
So/ (n—s)

is an unbiased estimate of 2.

§3. Order statistics and their limiting distributions, Systematic
statistics. Rearranging a random sample <, ...,%,, of size #, in
ascending order of their magnitudes, we write

(1)< 2(2)< ... < x(n)

and call them order statistics. If we consider the parent population of
the continuous type, then

Pa(@)=w2()=0, for all is=7,
hence we may disregard the cases when equalities occur.

Now, let the frequency function of the parent population be g(x),
and for any given number ), which is

0N,

we define the \-quantile or 100 )\ percent point of the population as
the value x =2 for which
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S"* g(t)dt =2 (3.1)

holds. For example, when A = 0.5, the 50 percent point of the popula-
tion z,.. is the so-called ““ median ” of the population.
For the sake of simplicity, assuming that #) is not an integer, we
call the order statistic
z, = x([(en]+1) (3.2)
the A-quantile of the sample, where the symbol [ 7] is Gauss’.

Theorem 3. 1. If g(&) is differentiable in the neighbourhood of
r=2a, and

o() -0 , (3.3)
then the distribution of the statistic

[ ) (e

~ 7\‘(1_7\‘) g(a')\) (Z,\ a’/\) (3' 4)

tends asymptolically normal N (0, 1) according as n tends to infinily.
Hence the frequency function of the distribution of z is asymptotically

/= : _ng?®) )
Vet 9@ exp | =208 (o, (3.5)

for sufficiently large values of n.
As an extension of the above theorem, we have the following
Theorem 3.2. (F. Mosteller)'® For k given real numbers
0T N TR <o e < T

let the \,-quantile of the population be z,,i=1,2, ..., k, i.e.

S"" gt =2, i=12 .., k. (3.6)
And assume that the frequency function g(x) of the population is differen-
tiable in the neighbourhoods of v =ua,, i=1,2, ..., k, and

g, =9@)==0, =12 ...k, (3.7

then the joint distribution of k order statistics x(n,), (1), ..., 2(n,),
where
n,=[wrJ+1, 1=12,...,k,

tends to k-dimensional mormal distribution with means x,, ..., &) and
variance-covariance matiia
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/ M(I—=21) 7L1(1_%2) >\_'1(1_>\'k)
[ ng% ngag, n—glgk
MAAD AN A=)
1 1ng19, ng: T G205 , (3.8)
i .............................................
‘Lxlu—x,,) MA=N) M)
1g19y 1G9y gy

according as n tends to infinity. Hence the frequency function of the
limiting distribution becomes

(27’)_76/291 gk‘:kl(xﬂ—xl) (7\ "‘7\1.-1)(1“7\%)]_1/2 N

e""[ m(mﬁxxx v L <x("z)_¢é>z

—2&% L ()~ @ ()~ |- (3.9)

In particular, if we consider a normal population N(m, o), then the
frequency function of the population is

() = (270%)"1/2 exp { —(x—m)2/2<rz§ i (3.10)

Let the frequency function of the standard normal population N(0, 1)
be

f(@)=Q2=) V2exp(—2%/2), (3.1

and let the )\;,-quantile and the ordinate at that point of the standard
normal population be %, and f, respectively, i.e.,

(™ eyt =n,,
e i=1,2 ..,k (3.12)

flu)="1:,
then (3.6) can be written as follows

[
) fdt=x, i=12 .., k.

Comparing these with (3.12), we obtain relations
r,=m+uoc, 1=12,..,k. (3.13)

Consequently, the frequency function of the limiting distribution of
x(n,), ..., x(n,) becomes
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-1/2

h(@(n), ..,zn)=_2=xs®)*2f ... fk[xl(xz—xl) (1_7%)] b2

X exp [ { E ()\.L_,.l)\%;\,l)()\a: l)\’i_l)ff' (x(nt.)-m—.ui()')z

22 ff’ =1 (”v(n,-)—m—ui(r)(x(nik1)~nz—ui_lo)}] . (3.14)

F. Mosteller'®> named such statistics as are functions of order satis-
tics systematic ones. In the following, we shall develop the large sample
theory of such systematic statistics as are linear functions of z(n,), ...,
().

§4. The efficiencies of systematic statistics for estimating para-
meters of a normal population. We shall be concerned with the theory
of estimation of the mean and standard deviation of a normal population
N (m, o), making use of the limiting distribution of & (%), ..., #(n,), when
the sample size is sufficiently large. In this section, we shall consider
the efficiencies of systematic statistics for estimating the mean m and
standard deviation o separately and for estimating m and o jointly.

Case 1. The case when o is known. Let

I+1_A-i 1 2, — o)
S= 2(7\4+1 A — A‘i—l)fi (w(n,)—m—u,0)

z\jxff L @) —m— o) @) —m ), (D)

then we have from (3.14)
log A= —nS/2s%+terms independent of m.

Hence, it follows that

_ o logh__ n 028 n
8mg2 T ostom: gt (4.2)
where
(f 1)
K, = )3 izl fio (4.3
AN Ve )

=1
assuming that

)&0=0_, 7\‘k+1=1’ f0=fk+1=0'
Hence the efficiency of estimation by means of systematic statistics is

o2log h

m=—F (", 8") /=K. (4.4)
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Case 2. The case when m is known. In this case
log # = —k log 0 —nS/26%+terms independent of o,
hence it follows that
o*logh __ k 317,9 2n9S_ n 823

52 o2 gt 3o 20% Oo?
If we put
(fowi—Fiauy 1)’
2 k —Nio1 (4.5)

where, as before,
=0, =1, fo=7F.:.=0,

it is easily seen that

oS oS\ __ ot
= K,, E(fa&)_o, B(S)="F,

O'

whence we have

o%logh 2k n n I o
~p(T8M 2t = k(142 R ) (4.6)
Here, of course, k is very small compared with %, so we may put
ko
"

Consequently, we have

= 7‘2 2 .

2
_F(a _‘logrh . 7
The efficiency 4, of systematic statistics for estimating o is
n 2n 1
7].7=O—-§K2/;§=—2‘K2 . (4- 7)

Case 3. The case when both m and o are unknown. In this case,
we have
log # = —klog o —nS /202 +terms independent of m and o .

If we put )

k+1
K3_:2(fi—fi-—])(fi,ui_fi-lui—l), where V=0, Voy=1, fo=7F =0,

N — N
i i-1 (4.8)
and

A=K,K,—Kj}, (4.9)
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then the intrinsic accuracy of the joint estimates of m and & by means
of systematic statistics is

p(TL08hy. p(loghy _pa(TIoBIY_W A\ 20, (410)

Hence, the efficiency of the joint estimates of m and ¢ by means of
systematic statistics is

20k, \ /202 I 1
n_(& ﬁ} K, / an’ _ A+—nK1 <A (4.11)

8 5. The best linear unbiased estimates of the mean and standard
deviation of a normal population by means of systematic statistics.
The basic frequency function of x(n,), ..., 2(n,) is given by A(z(n,),...,
z(n,)) of (3.14), and to obtain the best linear unbiased estimates of m
and o, we can apply the extended Markoff’s theorem (Theorem 2.2).
In this case, the quadratic form S corresponding to (2.10) is given by
(4.1).

We shall consider step by step three cases of the preceeding section.

Case 1. The case when ¢ is known. Let the best linear unbiased
estimate of m be 1%0, then it should be obtained by solving the equation

oS | _
57% I m=1’r\10_ 0.
Whence we have
o n NV fi—for _fua—10)
K, mo_EI(M e o) R CICORUTOR (5.1)
Put
(fi—=fio)(fi- () —fioy- 2 (0, 1))
X = 5.2
5‘ X A«g 1 ( )
then, (5.1) is written in the form
K, - o= X—oK; . (5.1
Hence, it follows that
rn X K,
mo-—j{—1 o (5.3)

Since the variance of X is
DZ(X)—- - Kl , (5.4)

it follows at once that
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D2 () = %2 I%l , (5.5)

whence we see readily that m, is an efficient estimate of m so far as
we use systematic statistics.

Case 2. The case when m is known. Let the best linear unbiased
estimate of « be &,, then it should be obtained by solving the equation

e

80' ﬂ=30

=0.

Whence we have

Ky = Y| (Tt it _fitin= Tt 1 (@(a)—m) . (5.6)
=1

A=Ay Niv1— A
Put
k+1
y — NV Fau—Fiw ) (fe- 2 () — fioy - @(n4)) .
¢21 A=Ay ’ (5 7)
then (5.6) is written in the form
K,.-6,=Y—mK, . (5.6
Hence, it follows that
A Y K,
O'O—R—z m fz . (5-8)
Since the variance of Y is )
DY) = En.sz , (5.9)
it follows at once that
d(dy— " L
D*(6y) = 2K, (5.10)

Whence we may consider the estimate &, as an efficient one so far as
we use systematic statistics.

Case 3. The case when both 72 and o are unknown. Let the best
linear unbiased estimates m and o be 7 and & respectively. Then they
should be obtained by solving a system of equations

S| . _g 0S|
om|n=h =0 oolm

=0.

Q> §>

If we use the notations introduced by (4.3), (4.5), (5.2), and (5.7), the
above equations may be written as follows;



194 Junjiro OGAWA

Kl'/)\’b +K36\‘ =X.
K:m+K,p =Y. (5.11)
Whence we have

P == % (K,X—K,Y),
&:%(—K3X+K1Y). (5.12)
From (5.4), (5.9) and the fact that
C(X,Y)= »‘;T;IQ , (5.13)
we have
200N — 1 272 > ___O"ZK
D)y = 1, (RKIDAX) 2K, K, CX, Y) + DY) = T At
D6) = Klz(KsiD?(X)-ZKsKl.C(X, Y)+K:D¥Y)) = %2% , (5.14)
Clin, &)= 15(— KB, DYX)+ (K Ky + KO, Y )~ KoK, DAY Y= — 2 5
Therefore it follows that
DD (5)—C2 (i, ) =T - L (5.15)

nZ A

Hence, in this case also, we may consider s, & are jointly efficient
estimates of m, s, so far as we use systematic statistics.
In particular, if the relations

N+N,_g=mn, t=1,2,...,k,
or in terms of A,
N+ =1, i=12,...,k, (5.16)

hold, we say that the order statistics x(n,), ..., x(n,) are symmetrically
spaced or in symmetric spacing. In such a case, it follows that

WAty =0, =12 ...k,

hence
K,=0.
Therefore
2(p :12-1_ 2(4 —gf_l_
D2 (m) n K, ’ D)= n K,’

hence, they coincide with the variances of #m, and &, respectively.
F. Mosteller and Z. Yamanouchi dealt solely with those cases.
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§ 6. Determination of the optimum spacing. We have seen in §5
that #,, &, and 7, & are efficient estimates in each case, given 1, ...,
\,, however, we may raise their efficiencies by choosing the spacing
suitably. The values of Ay, ..., A, for which the efficiencies of estimates
attain their maximum are called the optimum spacings. In this section
we shall consider the problems of determination of the optimum spacings.

Case 1. The case when o is known. The required optimum spacing
is such that it makes the efficiency 7, = K, maximum. Since

dfi______ f&j_ :
dui—— ui.fi: dui—fi» 2—1;2,.-.,1‘;

we have by differentiating K; with respect to v, i=1,2, ..., k,

Ok, _ g, (fen=fo_fifus fmfi  fin=h) o
=1 (xm-—x - )(2u+ ) i=12,..,k

Whence we have the followmg conditions for optimum spacings

fon—fi _fi=fiy L . '
T W i=12..,k, 6.1
and foefs . f
i i—-1 i+1 .fz —— y — -
2u, +k . 1+>\'i+1 " =0, i=L2,..,k. (6.2)

If we consider the ordinate f of the standard normal function as
a function of the cumulative frequency ), then its graph is convex up-
wards, as will be seen in the
next Fig. 6.1, therefore, (6. 1) Fig. 6.1. The graph of f as a function of 4.
is inconsistent unless any two
of fi_y, fi» fir1 coincide with 7
each other. Consequently, we 04 =
may consider only the equations
(6.2) for the determination of B/
the optimum spacing. :
We conjecture that the val- 027 : TN
ues of u, ..., u, which satisly EFSEEE A\
(6.2) are in symmetric spacing, 01 _ » ;‘
but at present, we can not ”/ NEENEEN i EN
prove it'®. 001 02 03 04 T A
. . . . . 65 06 &7 08 09 10
Assuming the symmetric
spacing of u,, ... ,u,, we solved ;
(6.2) numerically for k=1,2,...,10, and computed the maximum
efficiencies corresponding to those spacings. The results are shown in
Table 6.1. The two lowest rows of Table 6.1 are the values of
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1 1
1K =+
5 K and 5

In Table 6.2, there are comparisons of efficiencies corresponding to
the optimum spacings with those corresponding to equal probability

spacings (A;.;—\; = \;—\,_,) and with those corresponding to such

A corresponding to those spacings.

. (.1
spacing as A, = z—?)/k, i=12 ..,k.

Table 6. 1.

Table of the optimum spacings for estimating the mean » and the maximum efliciencies
(assuming symmetric spacings).

N~ R i ]

e 1| 1 3. 4 5 6 7 8 o | 10
i1 | 0500 | 0270 0163 { 0107 |- 0074 | 0055 | 0040 | 0031 | 0024 0020
uy | 0000 | —0613 -0982 -1243 -1447 —-1598 —1751 | —~1866 —1.977 | —2.054

Ty 0.730{ 0500 0351 | 0255 0195 0147 0115 0092 0076
 wy| 0613 0000 -0383 | —0659 0860 —1049 -1200 | -1320 | 1433
| ‘ ‘

ds | 0837 0649 | 0500 | 0395 0308 0247 0202|0167
us ' 0982 0383 0000 —0266  —0502  —0634 \ ~0834 | —0966

uy | 1243 | 0659 | 0266 0000 —0222 | —0.404 | —0559

‘ ' 4| 0893 | 0745 0605 | 0500 | 0.412? 0343 | 0283

As| 0926 | 0305| 0692 0538 | 0500 | 0427
us 1.447 0360 | 0502 0222 | 0.000 | —0.134

| ‘ ‘ A¢ 1 0945 | 0852 | 0753 | 0657 | 0573
! | ug | 1598 1.049| 0684 | 0404 0184

| | An| 0960 0gss| 079 | 0712
| i ‘ w7 | 17511 1200 0834| 0559

|
| | | ‘ | As rﬁogﬂ 0908 | 0833
| . ug | 1866 1329 0965

‘ | o | 0976 | 0924
! ‘ i ug | 1977 | 1433

i A10 0.980
. | ‘ l 300) 2.504

|
K, | 06365 | 08097 | 08800 1 09342 | 09420 \ 09559 | 09554 | 09722 | 09771 | 0.9808

&Kg ‘ 00000 0330'3 0.5320 | 06556 0 7392 07902 08516 0.5620 © 0.8858 0.9016

r}A \ 0000 10967 0469 | 0614 1 0696 | 0.752 “0.322 ; 0838 | 0.866 0.884
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Table 6. 2.

Comparisons of efficiencies corresponding to various spacings.

"~ Spacings Optimum Equal Probability 4 _ic12
Spacing Spacing ¢ &
\ -
1 06366 0.6366 0637
B 2 08097 0.7926 0.808
i 3 08300 0.8606 0878
4 0.9342 0s%9 | 0913
5 09420 ooz 0934
6 09559 o352 YT
7 0.9654 0.9450 0957
8 B 09722 0.9521 0.963
9 09771 09591 0.969
10 0.9808 o4 0973

Table 6. 3.

197

The expressions of the best linear unbiased estimates of the mean 2 corresponding to the
optimum spacings.

2 1 - L [(x(0.270.2) +2(0.7301)]
o 37@)' I 59)73(0 163n) +x(o 837;5]1r 0407-x(0.500m)
4| o 1970 . 10712) 42 (0.89312)] +0.303[x (0.3511) +(0.649n) ] -
5| o ]33[1’(0 074m) +x(0. 926m)] F0.233(x(0.255n) +x (O.746m)] +0.269-x(0. 5001)
6 0.099[x (0.085:2) +2(0.9457)] £ 0.181[x(0.1957) 2 (0.8051)]
+0. ‘720|_x(0 395n) {—x(O 6057) ]
. 0.071[x(0.0407) 42 (0.9502) ] + 0.140[x(0.147n) +-x (0.853n)] 7 )
+ 0.186[x (0.3087) +x(0 6927) ]+ 0.203-x(0.500:2)
g 0.049[x (0.03112) +(0.9692)] +0.111[x(0.1151) +x(0.8857)]
| +0.155{x(0.2477) 1-x(0.7532)] +-0.178[x(04121) +-x(0.588) ]
] 0.044[x(0.0247) +x(Q9761)]+0.091[x (0.0927) +(0.9037)] N
9 | +0.130[x(0.202°7) +-x(0.7987)]+0.155{x (0.343%) +x(0.65772)]
| +0.163-x(0.500%)
| 0.036[x(0.020:2) +3(0.9804Y] +0.075[x(0.076n) +-x(0.924n)]
10 +0.109[x(0.1671) +-x (0.8331) ] +-0.133{x (0.288n) +-x(0.712n)]

+0.147[x(0.427n) + 0.573n)]

n is the sample size.
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Case 2. The case when 22 is known. In this case the required
spacing is such that it makes the efficiency 7,= % K, maximum.
Differentiating K, with respect to «,, as in the former case, we have

X

aKz.__f (fz+1ui+1"“ftuz fiui_fi—lui—l)
ou, Nir1—Ny A=y

2u 2+fui f‘i lqu 1+fz+],ut+l fu , i:l,z’ vee ,k
( ¢ A—Ni_q A1 — ) ’

hence, it follows the conditions for the optimum spacing

fi+1ui+1’“'fiui fiui_'ft—-lu'—l ;

il St Ji Jim1Tiel o i =1,2,..,k. 6.4
x'i-l-l_)\'z k’i——/\'i——l ( )
and

2 % i—1%i+1 E+1%+1 P —— J— s
2ui—2+ WS + o =0, i=1L2..,k. (6.5

12

The graph of fu as a function of A is seen in the following Fig. 6.2,
this is symmetric with respect to A=0.5, and in the interval 0 <\ <0.5
it is convex upwards and in 0.5 <) < 1.0 convex downwards. We can
easily see that when k is odd, the solution of the system of equations
(6.5) is not in symmetric spacing!®. But the general characters of the
solutions of (6.4) and (6.5) are yet unknown to us'®. We solved (6.5)
numerically for k=1, ...,6. The results similar to the former case
are shown in Tables 6. 4-6.6.

Fig. 6.2. The graph ot fx as a function of 4.
fu

03

02|/

T

0




199

Contributions to the T'heory of S ystematic Statistics, I.

S9IOUDIOLYS WINWIXBW 9ALS J0U Op A9y} ‘9A0JR US3S

SI SY 4 ppo 101 (G'9) JO SUOHNIOS PIPIS-DUO (yxx) PUB Y USAS 10] (G'9) JO SUOHNIOS OLIPWILIAS-UOU I8 (yxxx) PUB Cxx) Cx)

LgL0 9890 1ST0 16850 | 2000 980 1900 | 7EE0 €000 vi
0 GE00F £28°0 L0 | 00g0F £6€°0 ot 1 0 880 31
7180 7920 8590 Lsizo | o0 S09°0 2ge0 2150 9720 4
€680 8580 §vL0 7280 66€0 6220 vLE0 ' 590 70€°0 et
g1ez | on
0660 | °Y :
685T | 928 | 096T | 7
760 | 0660 g0 | Y W ,
0560 | SIOT | ZIIT |998% |I9VT | S66T | 'm ,
6280 | Lv60 L9380 | 1660 | 8260  L.60 |7Y W
0%60— | 2860 | 2860— | G99T GHOT—: WI'T | LSPT | S8IU'I— | VE0T 89V | ®n
TLI0 | 2680 [ €9T'0 | 2960 i8I0 €80 |€660 iSII0 6260 |8260 | °¥
6851~ | GIT'T— | STOT- | G0T | Q99T— | TWI'T— | 29LT | goLT— | G8UT | 68U~ | TIET— | L60T | €8V | n
9500 | €8I0 [ €500 | 2980 i 8V00 | ZZL0 | 1960 : 6500 : g83'0 : SIT0 | G600 | 2860 1860 | T
8IEZ~ | 096T~ | 9767 | T9VI— | 98T~ | G66'I— | SSTT | LSVT— 9¥I— | PE0T— | 260T— | LIET | S8V | 6T | agT~ | n
0100 | G200 :0I00 | 2L00 [ 6000 : €200 | 2880 : 2000 200 ;1200 | 8100 G060 6000 |60 8300 |
(R¥¥¥) (%X WX‘*‘V‘ B H ﬁ*u o : )
9 g 4 ;, 3 4 I ¥

*S9IOURIOIYS wnwiIxXew Sulpuodsaliod Sy} Pue o UINRIASD piepuels SYy) Supewiisd 1oy ssuroeds wnwido sy3 JO 3[qe],

v 9 SlqelL




200 ) Junjiro OGAWA

Table 6.5
Comparisons of efficiencies corresponding to various spacings.
Spacings Optimum Equal Proba- A.__i—1/2
B : Spaicng bility Spacing Tk
1 0304 - 0.000 0.000
2 0.653 0.221 0.413
3 0.729 0.363 0.526
4 0.824 0.463 l 0619
5 0.358 0.541 0.681
6 0.893 0.595 0.725
Table 6.6

The expressions ot the best linear unbiased estimates c¢f the standard deviation s corres-
ponding to the optimum spacings. (# is the sample size)

k } Expression

2 ' 0.674[x(0.931n) — x(0.069n)] o
0.070724-0.305. x(0.928n) — 0.253-x(0.118) — 0.123-x(0.0211)

S —0.070m —0.305-x(0.0721) + 0.253-x (0.882n) 1 0.123-x(0.979n)

4 | 0.115[x (0.977n) — x(0.0232)] +0.237[x (0.873n) — x(0.1271)]

; [pozo-meo 117+ £(0.975) 4-0.230- x (0.86772)-0.186- (0.16972)-0.126- x(0.053)- 0.056x:(0.010r)

-0.020. 772-0.117- x(0.02572)~0.230- x(0.13372) + 0.186- x(0.83172) + 0.126- x(0.947 1) + 0.056x(0. 990n)

6 | 0.056[x(0.990m) —x(0.011%)] 1-0.126[x(0.9447) — x(0.0567)] +0.181[x(0.829m) - x(0.171n)]

Case 3. The case when both 2 and ¢ are unknown. In this case,
we must obtain the spacing which makes

— %A — —(KlK _K3)
maximum. Differentiating A with respect to «;, i=1, ..., k, as before,
we have

aKlK +K1?52—2K3 i=1,2 .., k.
ou ou,
It is difficult to solve the above equations numerically, even we
assume the symmetric spacings.

For k=2, assuming symmetricity, we have
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_oft _ o [iw
=25 B=iaeyy
hence
s —9 Nwi
TN -20)
In this particular case (6.6) becomes
2u1__1,,+_f.1_ ‘fl._ == . (6. 7)

Whence, solving (6.7) numerically, we get
A =0134, u,=-110768, f,=0,21601,
A, =0866, wu,= 110768, f,=0,21601.
Consequently the maximum efficiency is
Nmaz = 0,4066 .

Chap'ter II. Theorg of Testing Statistical Hypotheses.

§7. On tests of general linear hypotheses.!” Let there be given

»# normal populations N(m,, o), i=1,2, ..., n with common variance

o? and assume that population means m,(i =1, 2, ..., n) are linear forms

of s(<_n) unknown parameters 6,, ..., 6, with known constant coefficients
a; 1=L12,..,n; =12, ..,s, ie,

My =0+ -+ +Quf,, 1=12,...,n. (7.1)

The statistical hypothesis H that

by 0, + - +by0, = B}
........................... 0<r=<s), (7.2)
0,10+ - +bp0, = B

where b;; and B} are known constants, is called a general linear hypo-

thesis. General linear hypothesis contains as its special cases almost all
situations of practical importance!®.

Without any loss of generality, we can assume that the rank of
the matrix (b;;) is . Hence, solving (7.2) with respect to 6y, ..., 6,,
say, we get the following relations under the hypothesis H ;

0, =cuBl+ -+ + B+ Cipi10,01+ - +Cib,, i=12,...,7, (7.3)
where ¢;; are known constants. Substituting (7. 3) into (7.1), we have

mi=d“B‘{+ +d“'B?'+dtr+19”1+ e +dises , =1, 2,...,1, (7. 4)
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where the coefficients d;; are also known constants.
Consequently, without any loss of generality, we can substitute the
general linear hypothesis H by the hypothesis

Hy: 0,=0°,...,0,=0}, 0<r<s (7.5)

Let 2, =12, ..., n, be a random sample of size 1 drawn {rom
the population N(m,,s), i=1,2, ..., n respectively, then the frequency

function of the joint distribution of x,,«,, ..., &, is
(27a®)™"% exp {~2i;2 E (@, — @y 01— -+ aa;sb’s)z} ,
i1
Now, let it be

S = ﬁ}(wi—auel_ e G (7.6)
then, as is well known, the maximum likelihood estimates BAl, ey HAS of
0., ..., 0, and the minimum value

S, =§ (,— Gy 0 — - —ay00)° (7.7)

of S are stochastically independent. The joint distribution of (31, cees 58
is a k-dimensional normal distribution, and the variable S,/o? is distri-
buted according to X2-distribution of degrees of freedom (n—s), whether
the null hypothesis H, be true or not.

Under the null hypothesis H,, the frequency function of =z, ..., x,
becomes

(2”0_2)—91/2 €Xp. {—2%2 E (xi—a'ilg?_‘ e a’ireg—ais+107‘+1_ T —-(1,1,303)2} .
=1

A A
Let the maximum likelihood estimates of 6,,,, ..., 0, be 0%, ..., 6
respectively, and let the minimnm value of

S'= i (xz_a'il(}(l) _ e —(11”02 —ai?‘+107‘+1'— tee _a’isgs)z (7 8)
i=1
be
, ) A A,
SO = 2 (xi—a’ilg(l) e —(1:;792 _'a'tr'+107é'é+1—‘ cee —ai39§<)2 ’ (7- 9)
i=1

then ééil, s 9,;5 are jointly independent of S; in the sense of statistics.
S+/a? is distributed according to X2-distribution of degrees of freedom
(n—s+7). Hence under the null hypothesis H,, S;—S, and S, are mutu-
ally independent, and consequently (S;—S,)/¢? is distributed according
to X2-distribution of degrees of freedom 7.
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Whence, it follows that, under the null hypothesis' H,, the statistic

= ”T_SQS—OE‘O—SJ’ (7.10)
is distributed according to Snedecor’s F'-distribution with degrees of
freedom (r, n—7).

It is known that the test by means of statistic (7.10) is the most
powerful one in a certain sense.'®

Thus far, we have assumed that z,, ..., z, are mutually independent.
However, we can easily extend the above results to the case when
%y, ..., %, are distributed according to non-singular z-dimensional normal
distribution.

§ 8. Tests of statistical hypotheses concerning unknown parameters
of a normal population using systematic statistics. We shall consider
the tests of statistical hypotheses concerning unknown parameters of
the normal population N (m, o), using the limiting distribution of k order
statistics x(n,), ..., 2(n,). '

The frequency function of this limiting distribution is given by
(3.14), i.e,,

B(w(ny), ..., 8(0) = (22022 f, .. fk[xl(xz—xl) (1—7m»):|_1/2n’°/2 x

exp [“ 2%’2’ { El(xm 72;)—(;:__1M _1)7' (@ (n)—m—uo)
~2_2| %(w(ﬂi)—m—um)(x(m J——m—ui_la)}] . (8.1)

Case 1. We shall consider the test of Student’s hypothesis
H,:m=m, (8.2)

where m, is a certain specified value.
Let it be

Nar—2
S — RACZS bl 2 SR
E (A‘I:'Pl_)\’i)(ki_ki—])

t=1

i+ (@(n)—m—uo)?

i

__2;1 X—@‘f‘_}(w(w)~m—14,¢r)(x(n,_1)—m~u,_la) , (8.3)-

and determine 7, &, such that
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oS _ oS _
om nl=):7\z—0 ’ do m={7\z——0’
i.e.,
Em+Kb =X,
Km+Kb=Y , (8.4)

then m and & are given by (5.12). The minimum value S, of S is

k+1
8, = W) =i @)l (g gy ok s + K5, (8.5)
- )"‘L—A‘i—l
and it is stochastically independent of m, and &. S,/o? is distributed
according to X3*-distribution of degrees of freedom (k—2). The above
facts are valid independent of the null hypothesis H,.
Let

k
Ais1—N
S! = 141 i-1 2. (x ) — My —u;0 )

Z—l‘l(mﬂ—xi)m—.xz_l)i (@) =mo =tt:0)

—z;: Lo @m)—mo—uo) @ ) =my—u0),  (8.6)

and determine &* so as to satisfy the equation

28" .
5o w0
i.e.,
Kp* +Km, =Y , (8.7)

then the minimum value of S’ becomes

k+1 :
S(’) — Z‘ (fx .(nl))\,—fiil . x(ni—l))z_zmo(Kly/h +K,5)
= i N1

_{Ky(m— ﬁo)i{"ﬁ,}f +miK, . (8.8)
2

Under the null hypothesis H,, S| and &* are stochastically independent,
and S;/c%? is distributed according to X2?-distribution of degrees of
freedom (%—1). By the results of the general theory of §7, we see
that S;—S, and S, are stochastically independent, and (S;,—S,)/c? is
distributed according to X?-distribution of degree of freedom 1. Hence,
the statistic

g5 [Si=8, — [(E=2)A B —m,
b=k 2‘/—53_ Gt (8.9)
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is distributed according to Student’s ¢-distribution of degrees of freedom
(k—2).
In particular, if the spacing of z(n,), ..., #(n,) is symmetric, then
K; =0, hence (8.9) becomes
= F—DK, . =M 8.10
vV (E—2)K, s, (8.10)
Whence the confidence interval of confidence coefficient 100(1—«)2 for
the true mean m is given by

AN ,_So <m0 _SoA_
m t“‘/(k-—z)_K—l\m\m+t“~(k—2)K1 ,

where ¢, is the 100a¢% point of the ¢-distribution.

(8.11)

Case 2. Generalized Student’s hypothesis.—Test of the homogeneity
of several means. Let there be given s normal populations N (m,, o),
a=1,...,s with common unknown variance o? and unknown means
m,, «a=1,...,s, and let

x(a,‘(l)’ 113(“)(2), vees x(a)(,n) , o = 1’ 2’ s S,

be order statistics of size n», common to all populations, drawn from
N(m,,s), a =1, ..., s respectively. Further let

lim M=, i=12 ..,k.

nyoo N

We shall deal with the test of homogeneity of means, i.e., the test
of the null hypothesis

Hz: m1:m2:"'=7n3 (8- 12)
utilizing the limiting distributions of
(1), s 20, a=12,..,8.

Now let

k s >\‘ ——h
5= { Yo f3 (& (n)—m,—u
021 tZ]l(X“l—M)(M—M_I)f‘ (@ () )

—222 ﬁfﬁ (2% (1) — My —u,0) (2 (10, ) — My — 2, la“)tt , (8.13)

and let #,, ..., m,, & be such that

o8 0, a=1 s o8 0
om, M =0 A=l s g i =0,
ms = s ms'= s
6 == ¢ G = g



206 Junjiro OGAWA

ie,
K, m, +K56 =X, |
K, M, +K,b =X, [
........................ (8.14)
K,m, + Kb = X, I
Ky (Mg + - + i) +5Ky6 =Y+ -+ +7,
where
¢, — (9, A G
x,— Z (=t )= oy ()
a=1,2,..,s

Y —S‘(f ut'—ft 1uz 1)(f>\j’f;flnl) f1 1° a’\ao(%t l))

i=1

The minimum value of S becomes

D{I -

v
§ 7"i+1—>\'z 1 (@) 2 AN2
< (@ (n)—m,—u,
I)E(xm Ny ¢ ) = —é)

2 ftffle(a, (1) — g — ui{r)(x(mmi_l)_y’y‘;w—ui_l&)}, (8.15)

and this is stochastically independent of ., ..., #,, &. The variable
S,/c? is distributed according to X2-distribution of degrees of freedom
(sk—s—1). This results ss independent of- the null hypothesis H,.

If the null hypothesis H, is true, we put

ml my =— =ms=m,

and let

*

S =N 2SSy Tt () =~

i=1

_22Xfff,1 ()~ — )@ )= m—tp o)) - (8.16)

If we choose m*, &% such that

88’; =0,

amml ¥ do
6 = g% 6 = %

K, m* -
SK %+ sK,6% = X, + o + X, }’ (8.17)

T SKym* + sKyo* = Yy + e +y$
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then the minimum value S; of S’

R s k k-t-’- —“)'z‘— 2, (@ _/\ A
—E 32(K1+1—K1i)(7\:;—-17\.z_1) fir(x () —m* u0* )

23 fffi -1 (xm)(n) m*__ug-*)(ﬁ“\(qz )— m*——u[ 1 %, (8.18)

is independent of m*, 6* stochastically. S;/¢? is distributed according
to Xx2-distribution of degrees of freedom (sk—2) and” S;—S, and S, are
mutually independent. Since (S,—S,)/s? is distributed according to
X2-distribution of degrees of freedom (s—1), we have

s-1  _ Sk—s—18,-S,

Fo s = Ts—1 8, (8.19)
is distributed according to Snedecor’s F'-distribution of degrees of
freedom (s—1, sk—s—1).

In the particular case when s=2, it is easily seen that

2 k+1
EE f'ta’ ('n>ifi 1@( )(nt 1))2 1K1(”A’l1+”l\nz)2
-2K3 - (M +My) o —2K,67 (8.20)
hence _
So— Sy = (i — 8.2
07 Ko =g My —my)? . (8.21)

Consequently, (8.19) becomes

S;— S, 2k—3 (1, —m )2
1 — . o 0 — . . 1 2)”
Fiy = (2k—3) ) K, A ,

Taking square root, we have

t= 423 g M (8.22)
0

which is distributed according to Student’s ¢-distribution of degrees of
freedom (2k—3). Whence we have the confidence interval of confidence
coefficient 100(1—«)% for the true difference of means
o 28 e et /25, _
ml—mz—tm\/(%:g)—K; < my—my < My — Mg+t y 2h—3)K,’ (8.23)
where ¢, is the 100a% point of ¢-distribution of degrees of freedom
(2k—3).
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§9. Power functions of the tests mentioned in the preceding section
and the optimum spacings for them. In this section, we shall consider
the power functions of such tests as defined by (8.10) and (8.22). Now
let z be distributed according to N(0,1) and w be distributed according
to X2-distribution of degrees of freedom f, and further it is assumed
that they are mutually independent in the sense of statistics, then

f— #FO
Vw/f '
is distributed according to the so-called “ non-central t-distribution'®”
which has frequency function

(Q)’%e“ﬁ; - (3 (7+v+1)) ravin

80 (9.1)

Since the infinite series (9.2) can be integrated term by term, it follows
that

_ - (ﬁ)v
s =e - N 2r(gh LB, e

V=0

where 1(p, ¢ ; ) denotes K. Pearson’s incomplete Beta-function,?® i.e.,
s I (1—¢)1dt
1(pq;a)="°
) B(», q)

If in case I, the null hypothesis H, is not true and some alter-
native hypothesis

Hi: m=m' (=Fm,)

is true, then the statistic ¢ in (8.10) becomes

K_ﬁﬁ:@ Em’—m&;
t—_ K2 o K, o | (9. 4)
Sy
(F—2)o

hence the distribution of (9.4) is the non-central t¢-distribution (9. 3),
where

b=qp " "™ and f=rk-2. (9.5)

If in case II s=2, the null hypothesis H, is not true, and some
alternative hyrothesis
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Hy: my—my=m' (5-0)
is true, then, the statistic ¢ in (8.22) becomes
//E 797«17“7/'\lz*m'+ Kﬂl@l

Y2 . V2. (9.6)

Vo

hence the distribution of (9.6) is the non-central ¢-distribution (9. 3)
with

3=~“.?’, and f=2k—3.

Consequently, in each case the power function is given by

32 w@.1<v+l f . tg)’

P(jt|=t,)=1-e 7. ) -5 Y a 9.7)
v=0 @
where
S= A.m_'"’f”_‘), f=1Fk—2 in case ],
K, c
and .
6= I_{.!."l', f=2k—3 in case IL
2 o

Whence we can readily see that the test is more powerful according
as & becomes larger. In other words, the optimum spacings for testing
hypotheses H, and H, are such that they make K, and A/K, maximum
respectively. If we restrict ourselves to symmetric spacings, we have
the optimum spacings when we take the ones which make K, maximum.
Thus the spacings given in Table 6.1 are available.

(Received May 23, 1951)
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