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ABSTRACT: 

Six amylose-2-acetyl-3,6-bis(phenylcarbamate) (AAPC) samples ranging in weight-average 

molar mass Mw from 1.8  104 to 1.1  106 have been prepared from enzymatically 

synthesized amylose samples.   Static light scattering, small-angle X-ray scattering, 

sedimentation equilibrium, and viscosity measurements were made for the samples in 1,4-

dioxane (DIOX), 2-ethoxyethanol (2EE), and 2-butanone (MEK) all at 25 °C to determine 

particle scattering functions, z-average radii of gyration, intrinsic viscosities as well as Mw.   

The data were analyzed in terms of the wormlike cylinder model mainly to yield the helix 

pitch per residue h and the Kuhn segment length -1, which corresponds to twice of the 

persistence length.   The latter parameters (-1) in 2EE (11 nm) and MEK (12 nm) are quite 

smaller than those for amylose tris(phenylcarbamate) (ATPC) in the same solvent (16 nm in 

2EE and 18 nm in MEK) whereas those for AAPC (21 nm) and ATPC (22 nm) in DIOX are 

essentially the same as each other.   This indicates that the chain stiffness of AAPC is more 

strongly influenced by the solvents since the number of intramolecular H-bonds of AAPC is 

more changeable than that for ATPC. 
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INTRODUCTION 

Interaction among the neighbor units in a polymer chain or between the polymer and solvent 

molecules determines the local and global conformation of the polymer chain in solution.   

For example, specific conformations of biopolymers1 (fibrous proteins, nucleic acids, and 

polysaccharides) or some synthetic foldamers2,3 are influenced by intra- and inter-molecular 

hydrogen bonds.  Dimensional and hydrodynamic properties of a polymer in a solvent is still 

hardly to be predicted precisely only from their chemical structures whereas these properties 

for almost all linear polymers can be modeled by the Kratky-Porod (KP) wormlike chain4 (or 

more generally, the helical wormlike chain5,6), in which polymer chains are characterized by 

the stiffness parameter -1 (Kuhn segment length, which is equal to twice of the persistence 

length) and the helix pitch per residue h (a parameter of the local chain length).   Systematical 

work to determine these parameters for well-defined polymers in various solvents is thus still 

desired.   Linear polysaccharide derivatives may be suitable to investigate the relationship 

because some derivatives are easily prepared from native polysaccharides and furthermore 

their main chain has almost perfect stereoregularity compared with vinyl polymers. 

In those polymers, we have recently paid attention to amylose carbamates since the 

amylosic main chain has helical nature and both -1 and h may be influenced by hydrogen 

bonding of carbamate groups.   Indeed, amylose and its derivatives have various h values 

from 0.10 to 0.40 nm in the crystal structure.7,8,9   Dilute solution properties have been thus 

studied for amylose tris(phenylcarbamate) (ATPC) and amylose tris(n-butylcarbamate) 

(ATBC), for which the chemical structures are illustrated in Figure 1.   We found that both -1 

and h significantly depend on the side group and solvents, and furthermore, the 

intramolecular hydrogen bond (H-bond) between C=O and NH groups plays an important 

role in the high chain stiffness.10,11,12   As seen from infrared adsorption, about 50% polar 

groups are, however, still free in tetrahydrofuran (THF) and 1,4-dioxane (DIOX) even when 

the polymer has high stiffness, suggesting that such residual polar sites do not contribute to 



the chain stiffness.   Therefore, regioselective carbamate derivatives having fewer carbamate 

groups may be helpful to understand the relationship between chain stiffness and number of 

polar groups on a glucosidic unit.   However, few studies have been reported on 

conformational properties of regioselective amylose carbamates in solution. 

 

 

FIGURE 1  Chemical structures of (1) AAPC, (2) ATPC, and (3) ATBC. 

 

Recently, Dicke 13  reported quantitative synthesis of 2-acetylamylose under a mild 

condition.   This allowed us to obtain some regioselective derivatives of amylose.   We 

therefore synthesized a regioselective amylose bis(phenylcarbamate), that is, amylose-2-

acetyl-3,6-bis(phenylcarbamate) (AAPC, 1 in Figure 1), which has two phenylcarbamate 

groups on C-3 and C-6 position and a small acetyl group on C-2 group.   We made light and 

small-angle X-ray scattering (SAXS), viscosity measurements on AAPC in DIOX, 2-

ethoxyethanol (2EE), and in 2-butanone (MEK) and furthermore circular dichroism and 

infrared absorption measurements in the former two solvents.   The obtained molecular 

parameters are compared with those for ATPC how the number of H-bonding sites are 

affectable to the chain stiffness.   

 

EXPERIMENTAL 

Samples and Solvents 

AAPC samples were synthesized from an excess amount of phenylisocyanate and 2-

acetylamylose, which had been prepared from six enzymatically synthesized amylose 



samples14 for which the weight-average molar mass Mw ranges from 6  103 to 5  105 and 

the dispersity index (the ratio of Mw to the number-average molar mass Mn) is less than 1.2.   

A procedure to prepare an AAPC sample is as follows.  It should be noted that similar 

regioselective derivatives have been synthesized by Kondo et al.15 

 

Synthesis of 2-acetylamylose.13  An amylose sample (3.0 g) dissolved into dehydrated 

DMSO (40 – 60 mL) in a reaction vessel at 80 °C.   Vinyl acetate (4 mL) and Na2HPO4 (60 

mg) as a catalyst were added into the resultant solution at room temperature and then it was 

stirred at 40 °C for 70 hours.   After the catalyst was removed by centrifuge, the supernatant 

was added to a large amount of 2-propanol to precipitate 2-acetylamylose, which was dried in 

a vacuum oven at 60 – 80 °C.   Yield: 4 – 9 g. 

 

Synthesis of AAPC.   A dried 2-acetylamylose sample was dissolved into dry pyridine 

including lithium chloride (ca. 7 g).   An excess amount of phenylisocyanate (three times of 

OH groups of 2-acetylamylose) was added and stirred at 80 – 100 °C for 12 – 15 hours.   The 

reaction mixture was poured into a large amount of methanol to precipitate AAPC.   Each 

AAPC sample was further purified by successive fractional precipitation with acetone or THF 

as solvents and methanol as a precipitant to remove impurities including unreacted isocyanate.  

Appropriate middle fractions from respective AAPC samples were reprecipitated from THF 

to methanol and dried in vacuum.   The obtained six samples were designated as 

AAPC1100K, AAPC500K, AAPC200K, AAPC100K, AAPC50K, and AAPC20K based on 

the molar mass.   Mass ratio of carbon to nitrogen for each sample measured by elemental 

analysis was consistent with the calculated value from the chemical structure within 3%, 

indicating that C-3 and C-6 positions were fully substituted by phenylcarbamate groups.   The 

chemical structure was also confirmed by 1H-NMR in acetone-d6 as well as solid-state IR 

spectra.   The dispersity index (Mw/Mn) was estimated to be between 1.02 and 1.11 by using 



the size exclusion chromatography equipped with a multi-angle lager light scattering: both 

Mw and Mn were determined from the scattering intensity and concentration (by refractive 

index detector) at each elution volume.   DMSO (dehydrate grade), Na2HPO4, and vinyl 

acetate were used without further purification.   Lithium chloride was dried in vacuum at 

90°C for 2 hours.   Pyridine, DIOX, 2EE, and MEK were purified by fractional distillation 

over CaH2.   

 

Static Light Scattering (SLS) 

SLS measurements were made on a Fica-50 light scattering photometer for AAPC1100K, 

AAPC500K, AAPC200K, and AAPC100K in DIOX, 2EE, and MEK, and for AAPC50K in 

DIOX all at 25 °C.   Five solutions with different polymer mass concentrations c were 

measured.   Procedures including optically clean and calibration of the photometer were 

described in ref 10.   Vertically polarized incident light of 436 nm wavelength was used and 

the reduced scattering intensities R,Hv and R,Uv was measured with or without analyzer in 

the horizontal direction, respectively, in a scattering angle  ranging from 22.5° to 150°.   

Optically anisotropic effects were not negligible for AAPC50K, AAPC100K, and 

AAPC200K as is the case of amylose tris(3,5-dimethylphenylcarbamate) (ADMPC)16 and 

cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC).17    Indeed, the optical anisotropy 

factor  was at most 1.00  10-2, which causes 7 % error to Mw from R,UV.  Based on the 

current theories for light scattering data with the anisotropic effects,18,19,20 the following 

equations were used to determine , Mw, the second virial coefficient A2, and an apparent 

radius of gyration <S2>*, which is related to the z-average mean square radius of gyration 

<S2>z (see RESULTS AND DISCUSSION). 
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Here, K and q are the optical constant and the magnitude of the scattering vector.  The 

obtained Mw’s in the different solvents are consistent within 4% for AAPC500K and 

AAPC200K but those for AAPC1100K and AAPC100K in 2EE were ~20% larger than those 

for the corresponding sample in DIOX and MEK, hence the data for the two samples in 2EE 

were not further analyzed in this paper.   The values of A2 were 3 – 5  10-4 mol g-2cm3 in 

DIOX, ~1  10-4 mol g-2cm3 in MEK, and ~0.4  10-4 mol g-2cm3 in 2EE, indicating that 

these are good solvents for AAPC at 25 °C.   The specific refractive index increments n/c 

for AAPC samples were determined to be 0.142 cm3g-1, 0.179 cm3g-1, and 0.152 cm3g-1 in 

DIOX, MEK, and 2EE, respectively, all at 436 nm wavelength at 25 °C. 

 

Ultracentrifugation 

Sedimentation equilibrium measurements were made for AAPC20K in DIOX at 25 °C by 

using a Beckman Optima XL-I ultracentrifuge at a rotor speed of 25,000 rpm to determine 

Mw, the z-average molar mass Mz, and A2 since we do not have enough amount to determine 

Mw by light scattering.   See refs 10 and 21 for experimental details and data analysis, 



respectively.   The partial specific volume and n/c at the used wavelength (675 nm) were 

determined to be 0.715 cm3g-1 and 0.125 cm3g-1, respectively, for AAPC in DIOX at 25 °C.   

The latter value is 12% smaller than that at the wavelength used for light scattering (436 nm).   

Similar wavelength dependence was also found for other polymer solvent systems22 including 

amylose carbamate derivatives.10,11,12,16  

 

Small-Angle X-Ray Scattering (SAXS) 

SAXS measurements were carried out for AAPC50K and AAPC20K in DIOX, MEK, and 

2EE at 25 °C at the BL40B2 beamline in SPring-8 (see ref 10 for experimental details) since 

the radii of gyration of the samples are too small to be determined by SLS.  The camera 

length and the wavelength were set to be 1500 mm and 0.1 nm, respectively.  The particle 

scattering function P(q) and <S2>z were determined from the excess scattering intensities for 

four solutions with different c in terms of the Berry square-root plot.18 

 

Viscometry 

Solvent and solution viscosities for the six AAPC samples in DIOX, MEK, and 2EE at 25 °C 

were measured using an Ubbelohde type viscometer.   The specific viscosity was evaluated 

by taking into account the difference between the solution and solvent densities.   The 

obtained Huggins constant ranges between 0.3 and 0.9 for the five larger Mw samples and the 

maximum value is 1.5 for AAPC20K in MEK and 2EE. 

 

Infrared Absorption (IR), Circular Dichroism (CD), and DFT calculations 

IR and CD measurements were made for AAPC in DIOX and 2EE at 25 °C on an FT/IR-

4200 (JASCO) with a solution cell made of CaF2 and having 0.05 mm path length and a 

J720WO spectropolarimeter (JASCO) with a rectangular quartz cell having 1 mm path length.  

The polymer mass concentration was adjusted to 1.5  10-2 g cm-3 for IR and 8  10-5 g cm-3 



for CD.   The calculations based on the density functional theory were performed using the 

Gaussian 03 program.23   Methyl acetate (MEA) was chosen as a model compound for the 

acetyl group of AAPC and methylphenylcarbamate (MPC) for the phenylcarbamate group.   

The conformation was optimized using the B3LYP/6-311+G(d,p) level theory with a scaling 

factor of 0.9679.24    The absorption band corresponding to the hydrogen bonding C=O 

stretching band was calculated when an NH group of a MPC molecule or an OH group of 

methanol (MeOH) molecule is placed nearby the C=O group. 

 

RESULTS AND DISCUSSION 

Dimensional and Hydrodynamic Properties 

Figure 2 illustrates q2 dependence of P(q)-1/2 (or P(q)app
-1/2 from SLS) for AAPC samples in 

DIOX, MEK, and 2EE at 25 °C.   The gyration radius <S2>z from SAXS and <S2>app from 

SLS were determined as initial slopes and the former values are summarized in Table I along 

with the intrinsic viscosities [] and the average Mw from different solvents.   The molar mass 

dependence of []M0 is displayed in Figure 3 along with those for ATPC in the 

corresponding solvents, 10,16 where M0 denotes the molar mass of the repeat unit.   The []M0 

data for the polymers in DIOX are almost equivalent in the investigated range of molar mass, 

indicating the almost the same main-chain conformation.   On the other hand, those for 

AAPC in MEK and 2EE are significantly smaller than that in DIOX for the same sample 

whereas those for ATPC in MEK and 2EE are only slightly smaller than those in DIOX.   

These indicate that AAPC has semiflexible backbone but dimensions of the main chain are 

more affectable by the solvent than those for ATPC.   This conformational feature was also 

seen in the P(q) data.   The Holtzer plots25 [qP(q) vs q] in Figure 4 are typical for the 

wormlike chain with finite thickness.   The peak at q ~ 0.2 nm-1 for AAPC50K in MEK and 

2EE are appreciably larger than that in DIOX, indicating less chain stiffness in MEK and 2EE 

comparing to that in DIOX.   



 

 

FIGURE 2  Angular dependence of P(q)app
–1/2 [from SLS, (a), (b), and (c)] and P(q)–1/2 [from 

SAXS, (d) and (e)] for indicated AAPC samples in DIOX (unfilled circles), MEK (filled 

circles), and 2EE (triangles) all at 25 C. 

 



Table I   Molecular Characteristics and Physical Properties of AAPC Samples in 1,4-

Dioxane (DIOX), 2-Butanone (MEK), and 2-Ethoxyethanol (2EE) at 25 °C 

Sample Mw/104 

(g mol-1) 

in DIOX in MEK in 2EE 

<S2>z
1/2 

(nm) 
[] 

(cm3g-1)
<S2>z

1/2

(nm) 
[] 

(cm3g-1)
<S2>z

1/2 

(nm) 
[] 

(cm3g-1)

AAPC1100K 108 a 61.0 a 312 47.5 a 173  139 

AAPC500K 48.4 a 34.6 a 221 28.3 a 128 27.1 a 110 

AAPC200K 23.0 a 24.2  0.3 a 122 19.3  0.2 a 70.3 18.0  0.2 a 66.2 

AAPC100K 11.1 a 15.3  0.4 a 60.5 14.9  0.2 a 45.3  40.8 

AAPC50K 5.43 a 8.6 b 30.7 8.5 b 26.6 7.9 b 24.0 

AAPC20K 1.79 c 3.50 b 14.1 3.55 b 12.0 3.35 b 10.7 
a SLS. 

b SAXS. 

c Sedimentation equilibrium. 

 

 

FIGURE 3  Molar mass dependence of []M0 for AAPC in DIOX (unfilled squares), MEK 

(unfilled circles), 2EE (unfilled triangles) along with our previous data [10,16] for ATPC in 

DIOX (filled squares), MEK (filled circles), and 2EE (filled triangles), all at 25 °C.  Solid 

curves, theoretical values for the wormlike cylinder model with the parameters listed in Table 

III. 

 



 

FIGURE 4  Holtzer plots from SAXS for (a) AAPC50K and (b) AAPC20K in DIOX 

(unfilled circles), in MEK (filled circles), and in 2EE (triangles) all at 25 C.  The ordinate 

values are shifted by A for clarity.  Solid and dashed curves represent theoretical values for 

the unperturbed wormlike cylinder with the parameters in Table III and those in the rod limit 

(-1 = ∞), respectively. 

 

 

Intramolecular H-bonding and Helical Structure 

As mentioned in our previous papers, intramolecular H-bonds stiffen and keep the locally 

helical structure of the main chain of amylose carbamates.10,11,12  These H-bonds can be 

observed as split amide I band in solution IR spectra.  Figure 5 shows the molar absorption 

coefficient  vs wavenumber for AAPC100K in DIOX and 2EE at 25 °C along with those for 

ATPC.   Two peaks at 1759 cm-1 and 1704 cm-1 are substantially the same as those observed 

for ATPC (at 1754 cm-1 and 1706 cm-1), corresponding to the free and intramolecular H-

bonding C=O groups, respectively.10   Since the calculated absorption band for free (or H-

bonding) acetyl and carbamate groups (see Table II) are quite close to each other, the degree 

of intramolecular H-bonding of AAPC in the two solvents may be estimated from the peak 



heights in the IR spectra.   The latter peak at 1704 cm-1 is appreciably lower in 2EE than in 

DIOX.  This should be reflected that a larger number of intramolecular H-bonding C=O 

groups in DIOX than in 2EE.  On the contrary, CD spectrum (molar circular dichroism  vs 

the wavelength 0 in vacuum) for AAPC in DIOX is substantially the same as that in 2EE 

(Figure 6), suggesting that the local helical structure in the two solvents are similar with each 

other.    Furthermore, the former peak at 1759 cm-1 in 2EE is appreciably smaller and the gap 

between the two peaks is shallower than that in DIOX as is the case with ATPC.   This is 

likely due to the increase in the degree of intermolecular H-bonding between C=O group of 

AAPC and OH group of 2EE (Figure 5). 

 

 

FIGURE 5  IR spectra for (a) AAPC100K and (b) ATPC300K [10] in DIOX (solid curve) 

and in 2EE (dashed curve) at 25 C. 

 



Table II   Calculated IR Wavenumbers for C=O Stretching Band of AAPC Side Groups 
and in the Presence of MPC and MeOH 

System Interaction wavenumber (cm-1) 

MEA Free 1739
MEA+MPC C=O…H-N 1725

MEA+MeOH C=O…H-O 1714

MPC Free 1733

MPC+MPC C=O…H-N 1716

MPC+MeOH C=O…H-O 1718

 

 

 

FIGURE 6  CD and UV spectra for AAPC20K in DIOX (solid curve) and in 2EE (dashed 

curve) at 25 C. 

 

Wormlike Chain Analysis 

The Holtzer plots in Figure 4 were analyzed in terms of the Nakamura-Norisuye theory26 for 

the wormlike cylinder.  The molar mass per unit contour length ML, -1, and the chain 

diameter d characterize the model.  Since the experimental qP(q)’s have appreciable peaks at 

low q region and they cannot be explained by the theoretical rod-limiting values (dashed 

curves), the three parameters are unequivocally determined from the curve fitting procedure 

and listed in Table III.  Theoretical qP(q) values calculated from the three parameters 

reproduce the experimental values almost quantitatively. 



Table III   Wormlike Chain Parameters for AAPC in DIOX, MEK, and 2EE at 25 °C 

Determined by Three Different Methods from P(q), [], and <S2>z 

Method ML (nm-1) -1 (nm) d (nm)

in DIOX
P(q) 1340  30 21  2 1.1  0.1 

[] 1340  a 19.5  3 2.9  0.3 
<S2>z 1300  50 23  2  
in MEK 

P(q) 1230  30 14  3 1.65  0.1 

[] 1230  a 10.5  2 2.5  0.3 
<S2>z 1200  50 14  3  
in 2EE 

P(q) 1270  50 12  3 1.55  0.1 

[] 1270 a
9.5  2 2.4  0.3 

<S2>z 1260  50 12  5  
a Assumed values.  

 

Viscosity data are also analyzed by the wormlike cylinder model for which [] is 

formulated by Yamakawa and coworkers.5,27,28  Since the excluded-volume effect to [] 

might not be negligible for high Mw region, it was taken into account by the quasi-two-

parameter scheme5,29,30 combined with the Barrett function.31  Therefore theoretical [] is 

characterized by ML, -1, and d, and the excluded volume strength.   Assuming the ML value 

from P(q), -1 and d are determined as listed in Table III and the excluded volume effects 

were negligible in the Mw range investigated.   The obtained -1 in each solvent is fairly 

consistent with that from P(q) whereas the d value from [] is much larger than those from 

P(q).   This inconsistency is well known for amylose carbamates10,11,12,16,32,33 as well as for 

the other polymers5,34,35 because the d value from [] reflects the hydrodynamic friction 

while that from P(q) is determined from the electron density profile including side groups and 

solvent molecules around the chain contour.   



Now, let us consider the optical anisotropic effects on the radius of gyration <S2>.   

Assuming cylindrically symmetric polarizabilities of the main chain, <S2>* in the Nagai 

scheme36 is expressed in a good approximation as37 

 

 2 2* , ,S S f L  
 (7)

 

 

where  is the polarizability parameter and related to  which is obtained from SLS 

measurements using eq 3.   
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The theoretical  values calculated using the -1 and ML values in Table III and || = 1.9 fairly 

fit the experimental data as shown in Figure 7.   This || is the same order as those for 

CDMPC (|| = 2.8)17 and ADMPC (|| = 0.5 – 1.2).16   The second term of the right hand side 

in eq 7 is much smaller than <S2>*, that is at most  2.6 %.  Since the sign of  cannot be 

determined from SLS, we showed this small term as an error in the column for <S2>z in Table 

I.   The obtained <S2>z data plotted against Mw in Figure 8 are analyzed by using the Benoit-

Doty equation38 for the unperturbed wormlike chain 

 

  L
LL

L
S 


2exp1

8

1

4

1

4

1

6 2432
2 

 (9)
 

 

since both the intramolecular excluded volume effects and chain thickness are negligible in 

the Mw range investigated; the latter was estimated as an addition of d2/8 to the right hand 



side in eq 9 39 with the d value determined from P(q).   The two parameters, ML and -1, are 

therefore unequivocally determined from the curve fitting procedure and listed in Table III; 

they are substantially the same as those determined from P(q) and [], showing the wormlike 

chain is a good model for this polymer in the three solvents.  The average parameters from 

the three methods are summarized in Table IV.   The obtained h values of AAPC are in a 

rather narrow range between 0.34 and 0.36 nm which are fairly close to the crystal structure 

of amylose esters (0.37 – 0.40 nm)9,40 and double helical amylose (0.35 nm),7,41 thus they 

should be reasonable. 

 

 

FIGURE 7  Molar mass dependence of the optical anisotropy factor  for AAPC in DIOX 

(unfilled circles), MEK (filled circles), and MEA (triangles) at 25 °C.  Curves represent the 

theoretical values calculated from eq 8 (see text for the parameters). 

 

Table IV   Values of the Helix Pitch per Residue h and the Kuhn Segment Length -1 for 

AAPC and ATPC in DIOX, MEK, and 2EE at 25 °C 

Polymer Solvent h (nm) -1 (nm) 
AAPC DIOX 0.34  0.01 21  2 

  MEK 0.36  0.02 12  2 
 2EE 0.35  0.02 11  2 

ATPC DIOX a 0.34  0.01 22  2 
  MEK b 0.39  0.02 18  2 
  2EE a 0.32  0.01 16  2 

a Ref. 10. 

b Ref. 16. 



 

 

FIGURE 8  Molar mass dependence of <S2>z
1/2 for AAPC in DIOX (squares), MEK (circles), 

and 2EE (triangles) all at 25 °C.   Solid curves, theoretical values for the wormlike chain 

model with the parameters in Table III. 

 

Comparison between AAPC and ATPC 

    Table IV includes our previous wormlike chain parameters for ATPC.10,16   In DIOX, both 

the two parameters as well as the IR spectra of the amide I band for AAPC are almost the 

same as those for ATPC, indicating that the difference in the substituent at the C-2 position 

does not cause an appreciable difference to the local and global conformation in the solvent.   

On the other hand, in higher polar solvents, that is 2EE and MEK, the chain stiffness -1 of 

AAPC is appreciably lower than those for ATPC.   This suggests that the intramolecular H-

bonds in AAPC are easier to be broken by polar solvents than in ATPC probably owing to the 

less bulkiness of side groups of AAPC and/or less numbers of NH group in each repeat unit 

of AAPC.   Indeed, the degree of intramolecular H-bonding C=O groups for AAPC in 2EE 

obtained by IR is appreciably smaller than that in DIOX whereas the difference in the two 

solvents is hardly distinguishable for ATPC.10 



  CONCLUSIONS 

The Kuhn segment length -1 and helix pitch per residue h were determined for AAPC (1 in 

Figure 1) in DIOX, 2EE, and MEK.   The latter parameter is in a narrow range between 0.34 

and 0.36 nm, which is close to that for crystal structure of amylose esters.   Though the chain 

stiffness in DIOX is as high as that for ATPC in the same solvents, those in 2EE and MEK 

are quite smaller than those for ATPC in the corresponding solvents, indicating that polar 

solvents may break the intramolecular H-bonds more easily than that for ATPC owing to the 

less bulkiness of side groups. 
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Bächinger, H. P.; Macromolecules 2008, 41, 7203-7210. 

36. Nagai, K. Polym J 1972, 3, 67-83. 

37. Sakurai, K.; Ochi, K.; Norisuye, T.; Fujita, H. Polym J 1984, 16, 559-567. 

38. Benoit, H.; Doty, P. J Phys Chem 1953, 57, 958-963. 

39. Konishi, T.; Yoshizaki, T.; Saito, T.; Einaga, Y.; Yamakawa, H. Macromolecules 1990, 

23, 290-297. 

40. Takahashi, Y.; Nishikawa, S. Macromolecules 2003, 36, 8656-8661. 



                                                                                                                                                        
41. Takahashi, Y.; Kumano, T.; Nishikawa, S. Macromolecules 2004, 37, 6827-6832. 


