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In October 1994 a flurry of activity started around a set of equations discovered
by Seiberg and Witten [7]. By November there were three papers published on
the Seiberg-Witten equations. One of those papers was Kronheimer and Mrowka’s
proof of the Thom conjecture [4]. The Thom conjecture was independently proved
by Morgan, Szabo, and Taubes, and generalizations and variants of the Thom
conjecture will be appearing soon [5], [2], [6]. The result in this paper is a
three-dimensional version of the Thom conjecture.

The Thom conjecture is that an algebraic curve in CP? realizes the minimal
genus in a given homology class. In a general algebraic surface,

) 2¢—2>|K-F|+F-F

when F is an embedded surface of genus g with positive self intersection and K
is the canonical class. The same inequality holds when there is an algebraically
non-trivial number of solutions to the equations

) Fi=.9)
@¢=0

on a line bundle with first Chern class K. The equations in (2) are the Seiberg-Witten
equations, which we mentioned previously.

In 1986 Thurston defined a norm on the second homology of irreducible,
atoroidal, 3 manifolds [9]. The norm of any non-trivial integral homology class
is defined to be the minimum of 2g—2 over all embedded surfaces representing
the class. Our main theorem is exactly a lower bound on this quantity.

Theorem. If the algebraic number of solutions to the 3D Seiberg-Witten
equations is non zero, then

2g—2>|c(L)nF]|

! Research supported in part by a National Science Foundation postdoctoral fellowship.
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where F is an embedded surface of genus g.

The arguments in this paper are very similar to the arguments in
Kronheimer-Mrowka, so we will give short arguments for the points which are
essentially already made there. We begin by defining Spin, -structures. The group
SO, has a 2-fold cover called Spin(n), which is used to make a group Spin(n) x 7,5,
called Spin(n). In three dimensions we have

Spin,(3)=(Sp; xS")/ ~ (g A)~(£q +A)

where Sp, is the group of unit quaternions. We are especially interested in the
following four representations of Spin(3).

Hsp, :SPin(3) X spy — 5py (g, Aa=gag ™"

un:Spin(3) x H - H;(q,A)x=gxA~!
3) ua:Spin(3) x H - H;(q,)x=Axq ™"

U :Spin(3) x C— C;(q,A)z =2z
Recall the definition of a twisted product. Namely, PX V=PxV/~ where
(»,v)~(pg~',gv), when P is a right G-space and V is a left G-space.

DEFINITION.  Let P be a principle Spin (3) bundle over M 3, then a Spin_-structure
is an orientation preserving isomorphism
E:PXsp, » T*M

where

W=P%XH is the bundle of spinors,
W=P%H is the bundle of conjugate spinors, and

L=Px C is the associated line bundle.
There are three interesting maps between these vector bundles: Clifford
multiplication, conjugation, and a spinor pairing.
c:T*MROIW - W,
¢ Hp,2D®[p,x] > [p,ax]
—W-W
@ e
G): WRQW - T*M
[P x®@y] > ¢GEIm(xiy)).
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It is easy to check that the above maps are well defined. It is also important to
realize that {«,f)>=Re(af) is a natural pairing on P X sp,, so that a Spin, structure
automatically gives a manifold a Riemannian metric.

A Spin, structure is very rich. There are two other principal bundles which
may be constructed from a Spin, structure. The maps

S!' s Sp; xS! - Spin(3)
Sp, s Sp; xS — Spin,(3)
may be used to define principal bundles,
Oso=P/S"' and Q,=P/Sp,

and a diagram:

Tso

P - Qs
] !
o - M

The bundle of orthonormal frames of the cotangent bundle of M is isomorphic
Qso by the Spin, structure, so we have a metric connection

wel(T*Qs5o®sp,y) -
Let AeT(T*Q,®iR) be a connection on L, then
B=n,w+nfA

is a connection on P. This gives us covariant defivatives on all of the associated
vector bundles.

DEFINITION. The composition §=coV, is the twisted Dirac operator where
V. T(W) - I(T*M® W) is the covariant derivative and ¢ is Clifford multiplication.

We can now write down the three-dimensional Seiberg-Witten equations. The
equations are for a connection A, a scalar function ¢, and a spinor field y. The
equations are:

(5.1) *F, =id¢+i0 +2i(y, )

(-2) du =y .

There equations are just the 4-dimensional equations on the manifold R x M with a
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connection of the form A'=A4+4¢dr. It turns out that any solution of these
equations has ¢=0. We include ¢ so that we will have an elliptic complex later.

Lemma. If (A,¢,Y) is a solution to the 3D Seiberg-Witten equations (5), and ¢ is
divergence free, then ¢ =0 or Yy =0.

Proof. Clearly (4,¢,¥) is a solution if and only if I(A4,¢,)=0, where
I,,(A,(ﬁ,xp)zf li % By +dp+ 6+ 20,9 + 218 — Y bl dvol .
M
By expanding the norms, we get

]a(A’¢,¢)=j [FA? +1de|> +161* + 3yl
M

+2AG W1 + 302 + 4G * Fy (4, )
+2(i # Fy,6) + 40, ), )] dvol

+ J 4 Y (Gdi))dvol
M
+J 2idp N Fy+2dp N\ +6 +4dp \ {y,Y) .
M
An easy computation shows that

du(.P)= —%@l//,!ﬁz)dvol .

Integration by parts will thus cancel out the last term in the last integral and
the second-to-last integral. Integration by parts and the Bianchi identity kill the
first term in the last integral. Using integration by parts and the fact that ¢ is
divergence free will then show:

I(A4, —p,¥) =144, ¢’ '//)

We conclude that if (4,¢,Y) is a solution to the é equations, then (4, —¢@,¥) is a
solution to the d equations. Looking at the equations we see that ¢yy=0. To finish
the proof we need to know that y(U)={0} for an open set U implies that =0,
so that either ¢=0 or Yy=0. This isolated singularities result follows from a
theorem of Agmon and Nirenberg [1]. The relevant theorem states that if P, is
a family of self-adjoint operators satisfying
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dP
< — Jo,0 )| <K |IPwolv],
dt

<K |wl

and if

— —Pw
dt

with w vanishing for some initial interval, then w is zero for all time. When A4
is in radial gauge ¢,=Z+L, where L, is self-adjoint with respect to the metric
on the sphere of radius . By conjugating by appropriate metric factors we can
get a family of operators that is self-adjoint with respect to a specific metric. The
spinor field will no longer be in the kernel of the operator, but it will satisfy the
right inequalities. O

We will now discuss the symmetries of these equations. The gauge group is
the group of sections of the adjoint bundle. In our case the adjoint bundle to
Q, is trivial since S' is abelian. The gauge group is therefore % =Maps(M,S?).
The gauge group acts on the triples (4, ¢,{) by

(6) (Asd)’w)'g:(A_Zg_1dga¢awg_l)

One can check that (4,¢,) g is a solution to the 3D equations (5) whenever
(4,0,¥) is a solution. In the next few parts of this paper we will show that there
are a finite number of gauge equivalence classes of solutions to the 3D equations;
that the classes come with signs; and that the algebraic number of solutions only
depends on the first Chern class of the line bundle L.

The first step in defining the algebraic number of solutions is to show that
the moduli space of 3D solutions is compact. One might think that the compactness
follows from the 4D compachness result, because the 3D equations are just a
dimensional reduction of the original equations, but there really is something to
check, because there are examples of dimensional reduction that do not preserve
compactness. See Hass [H]. The heart of the compactness result is the following
bound on the size of .

Lemma. If (A,¢,¥) is a solution to the 3D equations (5), then
™ /| < max{0, 2|6| —s}.

Proof. We will use the Bochner-Lichnerowicz-Weitzenbock formula:
* * s 1
d* W=V vy +4—1¢_5 *Fy .

In this formula s is the scalar curvature, and we are using a pairing,
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Ir'(T*MRC)R@T(W) - I(W), given by (x®z)@y > afz in the last term.

When |¢|? is at its maximum 0<{V,*V,/,y> by the second derivative
test. (V,*V, is the negative sum of the second derivatives) Now use the
Weitzenbock formula and the equations (5) to get the result. O

Compactness will now follow by an argument similar to the 4-dimensional case.

Lemma. If there are no solutions to the 3D equations with y =0, then the space
of gauge equivalence classes of solutions is compact.

Proof. Given a sequence of solutions (4,, @,,¥,), we will find a sequence of
gauge transformations, g,, so that (4,, ¢,,¥,) - g, has a convergent subsequence. We
have truly great bounds on ¢,, and the previous lemma gives us a good bound
ony,. Pickafixed smooth connection, B,on L. Hodge theory allows us to write

1
_.(An _B)=dan + 6bn +(U,,
1

where w, is harmonic. By picking a gauge transformation in the right component
of the gauge group we may arrange for all of the w, to be in the same fundamental
domain of the action of H'(M;Z) on H'(M;R). We can even pick a gauge
transformation g, so that

1
_.(An *&n —B)= 5bn +w,.
1

The first 3D Seiberg-Witten equation will then give a bound on 6b,. The equations
will then give bounds on all of the derivatives of (4,, ¢,,¥,) g, so that Rellich’s
lemma may be used to find a convergent subsequence. O

The next step is to show that the space of solutions mod gauge equivalence
is a collection of signed points. The following definition just establishes some useful
notation.

DEFINITION.
S(M, L)={(A4, §, ) | *F, =id +i5 + 2i(y, ), ¥ =Y (5¢)}
is the space of 3D Seiberg-Witten solutions, and
R(M, L)=S(M, L)/ Gauge

is the Seiberg-Witten character variety.
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We split the problem of showing that R(M,L) is a collection of signed points
into three parts: show that R(M,L) is a manifold, show that it zero-dimensional,
and show that it is oriented. To show that R(M,L) is a manifold, we will use the
implicit function theorem to see that S(M,L) is a manifold, and we will show that
the gauge group acts freely on S(M,L). The slice theorem will then imply that
R(M,L) is a manifold.

If (4, ¢, ) has non-trivial stabilizer, then

g =y

with g non-trivial (see Line (6)). This implies that y =0 on the open set where
g#1. The argument at the end of the ¢ =0 lemma now says that y=0. If we
plug this into the 3D equations and use c¢,(L)=3%; F,, we get:

2n xc(L)=d¢p + 9.
Projecting onto the harmonic subspace of I'(A'M) gives:

21PT p1g)(*C (L) = Prxl(g)(5)~

This motivates the following definition.

DEFINITION. A pair (£,0) is bad if 2npr . ,(* (L)) =pry,)(6). The pair is
good othervise. Here ¢ is a spin.-structure with associated line bundle, L, inducing
a metric, g.

The above discussion proves the following lemma.
Lemma. If (§,9) is good, then the gauge group acts freely on S(M,L).

It is really easy to show that good pairs and families of good pairs exist. Good
pairs and families of good pairs may even be constructed in such a way that ¢ is
divergence free.

Lemma. If dimH'(M;R)>1 and &, is a given spin, structure, then there is
a d, and an £>0 so that (o,9) is good whenever |6—dll 12, <€ Furthermore, if
dim H'(M;R)>2, and (&,,0,), (¢1,60,) are good pairs with &, and &, in the same
path component of the space of spin, structures then there are paths &, 0d,,¢,>0 so
that (£,,0) is good whenever ||6—6,|| 12y, <é&:

Proof. By Hodge theory, H'(M; R)= #(g,), so just pick J, to be any element
of H#(go) except 2mPr 1y (*cy(L)) and pick &= [27p1 o140\ (*co(L) — 0ol 2oy We
will construct a path of good pairs in four segments. In the first segment leave
¢ fixed at &, and define to be the straight path from J, to prys,(6,). To



744 D. AucCKLY

construct the next segment, start by using Hodge theory to show that
#! - (spin -structures) x [(A'M) is a vector bundle where

H1 ={(&0,a) e spin -structures x [(A'M) x T(A' M) | oe #(g(¢))}.

The first Chern class of L defines a section of #!. As long as the fiber of #! is
non-trivial, #=#"—(image of the c,-section) will be a fibration.

For the second segment let & be any path from &, to &,, and A, be any path
from 6, to 8,. By the path-lifting property of fibrations there is a path in s, which
covers the path (£, A) starting at the point (&, 6o, Pra10)(00) [S]. Let 6, be the
o component of the covering path in the second segment.

In the third segment let &, be fixed and pick J, to be a path from the end
point of the second segment to prg.,,(6;) which does not go through
2RPTp1(y,)(cy(L)). We can do this because dim #(g,)>2. Finish with the straight
path from (&, pryei(y,)(01)) to (£4,04).

The set S(M,L) may be written as the roots of a function. By putting the
function into general position (choose a generic §) we can force zero to be a
regular value, thereby forcing S(M,L) to be a manifold. To be exact, define a
function:

G:.of x T(NM@N' M) x (T(W)—{0}) » [(A\'M@ W),

%*a—d¢—«s—2(w,¢)]_

A, P,0,¥)=
Gl4,9,5,9) [ B — Vi

Lemma. G f{0}.

Proof. Compute the derivative of G, T 445G
TG:T(N'M@ONMAN' MO W) - T(N'MO W),

sda —d f—Im(pis)—y ]
s —Setia®@y)—psi i |

We need to show that TG is surjective. Let (w,7)e TG'. Picking a, f and s all
to be zero, we see that w=0. Once w is known to be zero the right choice of
a will show that t must be zero. (Remember that y cannot be zero on an open
set) Thus, 7TG*+={0} and TG is onto.

TG(a,f,y,s):I:

The above lemma and the following corollary even work if we restrict to the
class of divergence free ds.

Corollary. If the pair (¢,,0) is good for all & within € of d,, then there is a
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0y so that R, s, (M,L) is a smooth manifold.

Proof. Let n:G ~'(0) > I'(A'M) be the projection onto the § component. By
the Sard-Smale theorem, there is a regular value of = within ¢ of §,. If §; is that
regular value, then S ;,(M,G)=n""(6,) is a smooth manifold freely acted on by
the gauge group. The slice theorem will then show that R(M,L) is a smooth
manifold. O

We will call (¢,,0,) a very good pair. As a small aside, notice that by repeating
the arguments from the previous lemma and corollary, we can prove the following
fact.

Fact. If £, and ¢, are two spin, structures in the same path component,
and (&,,9,), (£,,0,) are very good pairs, then there is a cobordism between
R, 50(M,L) and R, 5,(M,L).

The above fact and the following lemma are the main ingredients in the proof
that the number of points in R(M,L) only depends on the line bundle, L.

Lemma. Let &, and £, be two spin-structures with isomorphic line bundles. If
¢y and &, induce the same metric on M, then there is a bijection from R, 5(M,L)
to Ry, 5(M,L).

Proof. Let &,:P;Xsp; > T*M, i=1,2 be two spin, strucures. We will first
show that P,~P, Let AP, xP,={(x,y)eP,xP,|n(x)=n(y)}/ ~ where (x,y)
~(xg,yg). There is an isomorphism from P, to P, if and only if A}P, x P, has a
section. The relation between a section and an isomorphism is,

olx]=[x,{0)]

where 6 : M =P, /G — A§P,x P, and {:P, - P,. Now AP, x P, is a principal
Spin/(3) bundle with the action [x,y](¢q,4)=[(x(¢,4),y)]. There is no obstruction
to extending a section from the O-skeleton to the 1-skeleton since my(Spin/(3))=1,
and no obstruction to extending a section from the 2-skeleton to the 3-skeleton
since m,(Spin/(3))=1. The only relevant obstruction is therefore the first Chern
class of the line bundle (AP, x P,) % C.

But we have

LiQL;'=(A¢P, x P,) X uryouL; (Cx C)=(AGP x P)) X C
[(X,y),21®zz]’—’[[X’J’],szz]

where L; is the line bundle associated to £. Thus



746 D. AuckLy

ci((AEP X P)) X C)=c,(L,®L3")
=¢,(Ly)—¢,(L;)=0.

If {: P, — P, is an isomorphism, then there is a unique section, h € I'(P; X ,4GL3 (R))
so that

¢1[p, el =&:[ L), Ap)a].
Varying the isomorphism gives us an identification:

spin -structures

=T(P, x 5aGL} (R))/T(Ad P
with line bundle L, (Py X AaGL3 (R)) /T 1)

The assumption that ¢, and £, induce the same metric means that we can take
hel'(Py x »gS03). There is a 1,(p)eSp, defined up to sign so that h(p)(a)
=1,(p)at,(p). This gives us a well defined section teI(P, %XS0,), by 1(p)
=[7,p), t,(p)] € Spy X 2,50, =S0,. This map 7 induces a bijection from the space
of solutions with spin -structure £, to the space of solutions with spin_-structure
¢, given by A,y — AW where y'={(z-y), and A’ is the unique connection so
that @,4'=0. O

We have already seen that R(M,L) is a manifold, so we need to show that it
is zero-dimensional and oriented. To show this we will use the general principal
that locally, a space looks just like its linearization. The implicit function is one
example of this principal, the slice theorem is another. If a group G acts on a
manifold, N then there is an evaluation map ev, :G— N. This linerizes to
Tev,,:T,G— T, N. The slice theorem says that N/G is locally homeomorphic
to coker(T,ev,,)/G,, at [xo], where G, ={geG|x, g=x,} is the stabilizer of
Xxo. In our case we have

g, - AxT(N°MOW)->T(NMOW)
(4o,$0,¥0) H

where

_[+*Fi—dp—5-20,7)
H(A"”"”‘[ dy —vG) ]

The above sequence linearizes to
Lo Ll
0-T(A°M) > T(NMAN'MOW) - T(N'MOW) -0

where
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0
Ly(u)= —2du
—Yoliu)

and

B xda—d f—TIm(sif o)
Lilhas)= [é’AoS ~3dia®y,) —%d’oﬂ'_%f‘//oi] '

The slice theorem implies that R(M, L) is locally homeomorohic to H'(L,)/ % 4y 600
=~ H'(L,) since the stablizer is trivial at a good pair.

At this point we can explain why we included the function ¢ in the equations
even though any solution has ¢ =0. The reason is that with ¢, L, is an elliptic
complex and without ¢ it is not. To briefly review, if D:T'(E) - I'(F) is an n-th
order differential operator, and =n:T*M — M then o(D):n*E — n*F, o(D)a,s)
=(a, D(f™"5s)) is the symbol of D, where f is a function so that d,,f=a and
f(())=0. A complex of differential operators is called an elliptic complex if the
symbol sequence is exact off of the zero section.

The symbol sequence of L is

a(Lo) a(Ly)
0- *\°M - T N°MOAN'MOW) - n¥(AN'MOW) -0,
where
o(Lo)et,u) =(0, — 2ua,0) ,

o(Ly)a.fsa,5)=(Ha N a)—fa,c(a®s)) .
We are now in a position to show that R(M,L) is zero-dimensional.
Lemma. dim R(M,L)=0 .
Proof. It is an easy exercise to show that HOL)=T,% 4, 400s=0 and
H*L,)=0 because ¢ is a regular value. Thus,
dim R(M,L)=dim H'(L )
= —(Zy(—1)'dim HX(L,)
= —Index L,
=Index(LEDL,) .

But the index of a differential operator only depends on the highest order part
of the operator, and the highest order part of LF@®L, is self-adjoint (with the right
metric). So dim R(M,L)=Index(LEPL,)=0. O



748 D. AuckLY

The same ideas may be used to show that R(M,L) is oriented.
Lemma. R(M,L) is oriented.

Proof. An orientation is a section of the unit sphere bundle of the top
exterior power of the tangent bundle. Now,

ATPTR(M,L)=~AT*H(L,)
;ATOPHO(L*)*@ATOPHI(L*)@)AT”HZ(L*)*
~(det(L )*.

The determinant line bundle extends to a line bundle on & x [(A°M@ W)/,
which is a simply-connected space, so (det(L,))* is a trivial bundle. It is, therefore,
sufficient to pick a non-zero element of (det(L,))* Pick a connection B. Hodge
theory then shows that

(det(L ) *g.0.0) = ATPHO(M)*Q ATPHO(M)RQATPH (M)QATPH (M) *
*// 1(B,0,0)
® ATPkerd, ® AT°P(coker dg)*.

If V is any non-trivial vector space, then V*® ¥V has a special element correspoding
to the identity map, id: ¥ - V. Furthermore, the twisted Dirac operator ¢ is
complex linear, so both Kerd; and cokeré;’,, are naturally oriented. There is
therefore a natural element of (det(L,))* O

We have just shown that there is a collection of signed points associated to
any very good pair (£,8). In an aside we proved two lemmas which imply that
the number of points only depends on the first Chern class of the associated line
bundle. In other words, we have shown that quantity defined below is well-defined.

DErFINITON.  Let (M, L) be the number of points in R(M, L) counted with sign.

We may now prove our main theorem. The proof is easier than the analogous
proof in four dimensions. In four dimensions it is shown that the Seiberg-Witten
equations on R x M are the gradient flow equations of a certain functional. The flow
nature of the equations is then used to show that a family of solutions on a
4-manifold with an ever increasing neck gives rise to an R-invariant solution in
temporal gauge on the stretched out neck, R x M. The same results are true in the
3-dimensional case, but they are unnecessary. The only result that we need is
that ¢ =0 for any solution.

Theorem. If A(M,L)#0 then
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2g—2=>|c,(L)NF]|

where F is an embedded surface of genus g.

Proof. Since AMM,L) is well defined, we may pick a spin,structure which
induces any given metric on M. Pick a metirc with constant sectional curvature
equal to 0 or —1 on F and extend it to a metric on M with a metric product
neighborhood around F. Finally, squeeze the metric around F. This means
replace the metric with

dx®+((x*+R)/(x* +1)*gg .

By direct computation we see that max{0, —s} - oo as R —0. This means that
we may assume that the maximum of —s is obtained inside a neighborhood of
F. Further computations show that the area of F is 4n(g—1)R? and
max{0, —s} <16L-R_ 2K here K=0 or —1, depending on the genus. Pick a
solution to the Seiberg-Witten equations on M with a spin_-structure which induces
the above metric. Now,

1
|01(L)ﬁF|=|—f E’TEil
p2mi
1
= |f 27.(*"‘145"”2*(‘#,‘})‘*”1' *0)|
F2mi
S]J |, ¥)|darea+ IJ |6|darea
n)Fp 2n) p

SJ—J |¢|2darea+ij |6|darea
4n)p 2n)p

1 1
< ——| sdarea+—| |d|darea

UNE TJr
1 1— 2K 1
< lﬁ_(vv_R_)__.darea+~ |6|darea
4n)r R R? nJr

<2g—2+16(g— 1)(R—R2)+1J |d|darea
nJr

In the above lines we used the Chern-Weil definition of the Chern class, the fact
that ¢ =0, and the bound on |y|%. Since |c,(L)nF| is an integer and J, and R,
may be chosen arbitrarily small, we are done. O
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