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1. Introduction

Let X be a finite dimensional complex. We consider the general problem
of classifying real n-plane bundles over X, which are in a natural one-to-one
correspondence with [X; BO(n)], the set of homotopy classes of maps from
X to BO(n). Alternatively, if £is a real stable bundle over X, we consider
the problem of classifying fl-plane bundles stably equivalent to &, which are in
one-to-one correspondence with [X; BO(n);f] = (&) '[f1<[X; BO(n)], where
f: X— BO is any map which classifies &

Line bundles over X are classified by w,& H'(X;Z,), while 2-plane bundles
are classified by w, and W,e H¥(X;Z[w,]), a (twisted if ft"@O) integer class
which reduces to w,. Oriented 3-plane bundles over a 4-complex were classified
by Dold and Whitney [3], while James and Thomas enumerated n-plane bundles
over an n-complex for n odd, n-plane bundles over an (n-1)-complex for
n =23(4), and oriented n-plane bundles over an n-complex for n even. [4] (Note
that "oriented" and “‘orientable’ are equivalent concepts for bundles of odd,
but not even, dimensions.) In [9] this result was extended to the case of n-
plane bundles over an n-complex for all » while in [6] the James and Thomas
result was restated for a few low-dimensional cases in a somewhat more explicit
form.

In [7], a spectral sequence approach was used, which (in theory) com-
pletely enumerates [X Y] in all cases where X is a finite complex and z,(Y)
is Abelian. In fact, all real and complex bundles over P,, k<5, are tabulated.

Nomura [16] has classified #-plane bundles over P, ., for n=1(4) in most
cases, and zn-plane bundles over P,,, for n =3(4) is some cases.

In the present paper, we use the approach of affine actions, developed in
[9]. For the sake of space, it shall be assumed here that the reader is familiar
with the constructions and notations of that paper. A general enumeration
result is given for n-plane bundles over X of dimension, m, provided m<2n—2
(the metastable assumption), and provided m<n-+2. We give specific results
for X=P,,, real projective m-space, if m=n-+1, n>=3, or if m<n+2, n=3(4),
n>7.
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After Nomura, let N,(¢ X)be the number of equivalence classes of #-plane
bundles over X stably equivalent to & Let % be the Hopf bundle over P,,, if

m>=1. Clearly N,(kn;P,,)=0 if m>n and ( ) is odd, since w,4,(k7)=0.

In the cases covered by Theorems 1.1 and 12 that is the only obstruction
to n-dimensionality, in effect.

Theorem 1.1. Let n>3, < k ) even.
n-+1

Case I [James and Thomas]: f n=3(4)

zf( %) 1s even
N(kn; P,.,) = b1
14f (n 1) is odd

Case Il [Nomura, except for the last case]: if n=1(4)

Lif (’5) odd, (%~ %) odd
2 i <k> odd, (ﬁ:%) even

zf( )even I<k 1} odd

3f <2> even, (ﬁ:%) even

Nn(kn; Pn+1) =

Case II1: if n=0(4)
2 if k odd
3 if k=0(4), (

Nn(kn; PlH—]) -

5 if k=2(4), (ﬁ) even

Case IV: if n=2(4)
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1ifk odd, n=6

2 if k even, n="0, (Lé) even
\IP

2 fft=3(4), n=10

4 if k=14), n=10
Nn(k’7§ Pn+1) = . h—1
6 if ft even, n>10, (n 1) even

3

4 if k even, n>10, 1) odd

(.
1 if k even, n=6, ( odd
Theorem 1.2. Let n=3(9), z>7, and\flil) even. Then

24 <ﬁ:%> odd [Nomura]

.
l3 if <ﬁ:%) even

Theorems 1.1 and 1.2 are condensed versions of 3.8 and 3.10, below.

Ny(kn; P

2. The Main theory

We shall utilize the tecniques of Becker, McClendon, and the author with
regards to constructions over, and over-and-under a fixed space. [2, 8, 12]

If : E—Bis a fibration and f: X—Bis a map, let [X; E] be the set of
fiber-homotopy classes of liftings of fto E, and let [X; E; fl1=(m) [ f1C [XE]
be the set of homotopy classes of liftings of fto E. Recall that [X; E; f]is
the set of orbits of a left action [9, 15]:

prm(BX, )X[X ; E], — [X; E];

Furthermore, if dim X <2#n, where each fiber of & is n-connected (the meta-
stable assumption), [X; E],is an Abelian affine group and u is an affine action,
i.e., u(a, ) is an affine automorphism for each ae€x,(B¥, f). In that case, we
also have a left action y of =(B¥, fpn [X E]/°, the difference group of [X; E] .
Writing ax for v(a, x) for all xe[X; E]°, we have a(a+x)=a+axfor all
ac[X;E],,xe[X;E],. More generally, if #* is any B-twisted cohomology
theory, a left action

v: m(BY, ) XWHX, 4, /) = h¥(X, 4, /)

can always be defined, for a subcomplex A; and 7 is functorial in all the obvious
ways.
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Let G=0, U,or Sp, and let r=1, 2, or 4, respectively. Let z: BG(n)—BG
be a fibration replacing the usual inclusion, and let S,=S,G be the Qpg-
spectrum associated with 7 (see [8]). Let T""'eH(BGS,) be the single
obstruction to section of z. If £ is a stable vector bundle over a complex X
of dimension m, classified by /: X -BG,we can define a characteristic class
e H'(X; f'S, the single (metastable) obstruction to n-dimensionality of
£ We have [2, 8]:

REMARK 2.1. Ifg.d. £<n (g.d.=geometric dimension), T""*£=0. This
condition is sufficient if m < 2rn-+2r— 3.

Proof. The fiber of BG(n)—BGis r(n+1)— 2 connected.

Now let 4,(¢; X)=[X;BG(n)],,the set of n-plane bundles stabilized to E,
an Abelian affine group in the metastable range, i.e., m<2rn-+2r—4.

REMARK 2.2. (I) If a, b 4,(£;X), a unique difference class A(a, b)e
H(X; f'S,)is defined, such that A(a, ¢)=A(a, b)+A(d, ¢) for all a, b, cc
A4,.3;X) (D) If m<2rn+2r—4, A(a, b)=0 if and only if a=b; while for any
acA,E;X) and xeH(X; f7S,)there exists b=a+xesA4,(E; X) such that
A(a, b)y=x. Tt follows that (IT1) If m<2rn+2r—4, H(X; f~*S,)corresponds
in a natural way to 4,°(&; X), the difference group of 4,(¢ X); provided the
latter is non-empty.

Recall that Ag: KG'(X)=n,(BG*f) in a natural way [4]. We thus have
a left action:

i KG (X)X ASEX) — AE X)

and V(¢ X), the set of equivalence classes of n-plane bundles stably equivalent
to £, corresponds in a natural way to the set of orbits of u. Write aa for
wla, a), for any a=KG(X),acA4,(£;X). Thus NLE;X) is simply the
cardinality of V,(&; X).

We summarize our general results for classification of real bundles in low
codimension cases. Throughout, let £ be a real stable bundle over a complex
X ofdimension m, classified by f: X— BO; let Y=K(Z,, 1) X K(Z,2), and let
B: BO—Y bea map such that 8*(;,;@1)=w,and B*(1Q¢,)=w,. Without loss
of generality, X is connected, thus we may identify H%X; Z,) with Z,.

Theorem 2.3. Letm<2n—2,m<n+2. Then (I) There is an Qy-spectrum

U, such that H(X; (Bf) 'D)=H{(X;f'S,) fif i=0 (canonical isomorphism)

(1) There is a universal characteristic class ¢"*=H'(BO;B™'4d,) such that ¢pt=
fre* ' =1""E.  (III) The constructions of I,, ¢*** are independent of X and E.

Proof. Let S,® be the second stage of the Postnikov tower for S,0 S,
has homotopy width three or less. By McClendon [14], S,®=B"'9, for some



REAL #n-PLANE BUNDLES 329

Qy-spectrum 9, since f§ is a 3 -equivalence. Let ¢"=PF,I"", where P: §,—S,®
is the projection. The remaining details are trivial, and we are done.

Let hy=ow,,, = H(OZ,) for all =0, where o is the looping suspension.
We have a short exact sequence:

hO’ hl
@D 0—=[X; Spin]—> KO (X) — HX; Z,)+ H'(X; Zo)=m(Y*, Bf)—0
From 2.3 and [9, diagram (3-1)], we have

REMARK 2.4. Let m<2rn—2, m<n-+2. Then there is a homomorphism
ve: [X; Spin]—A4,%&; X)such that u(a, @) = a+v:a for all o< [X;Spin],
ac A, &; X).

We may express vy in a very specific way. For any a= KO~ (X)S Fj;,=
Befopx, where Fi,: XXS—BO is a homotopy of f representing Agcx, and
Px: X X S—Xis the projection. Thus

Hi(XXS; (BoFya)"'dy) = HAX; (Bof)7 L)+ HI(X X S,X(Bofopx) D)
and vgacan be uniquely defined by the equation
Fy *¢" = ¢"Q1+viaQ0

where o= x3(S)is the fundamental class of S in stable cohomotopy.
We now consider the action

v: KONXXANE X) — AE X)
where we write ax for v(«, x). 2.5 can be restated as follows:

REMARK 2.5. For m<2n—2, m<n-+2, and fixed x€ 4,°(§ X), ax depends
only on h, and k. Equivalently, If kyo=h,a=0, ax=x for all x& 4,°(&;X).

We now give very specific expressions for ¢ in the case m=n-+1, and
the case m=n—+2 for m=3(4). We shall assume that the reader is familiar
with the procedure for construction of the first two stages of the relative modi-
fied Postnikov tower for BO(n)— BO in all cases.

Generally, for any ue H(X;Z,), let Zfu] be the sheaf of integers over X
twisted by u; thus Z[0]=Z, and Z[u+v]=2Z[u]QZ[v]. Let p: H(X; Z[u])—
Hi(X; Z,) be reduction modulo 2, and let 8[u]: Hi(X; Z,)—H (X ;Z[u]) be
the Bokstein homomorphism associated with the exact sequence of sheaves
Zu)l—>Z[u]l—Z,. Let w,=w.k, the ¢* Stiefel Whitney class of &, for all z>0.

Theorem 2.6. Let n=1(4),n>5, dimX=m<n+1, and assume w,.,=0.
Let 0=Sq¢*+w,U. Then (I) We have an exact sequence:

H""(X;Zz)—ea H™\(X;2) S 4% 0 D HX 2)—0
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() IfxeH™X;Z,) and z= p~'x,then 2z=nSq'x.
(I1I)  If xe H"(XZ,) and z< p~'x,and if a= KO™(X),

ag = 2+ M(ha+wU ha) U x)

Theorem 2.7. Let r¢c*3(4), n=>7, m<n+2; and assume w,,,—=0. Let
0 =(S¢*+w, U +w, U)Sq'. (I) We have an exact sequence:

H™(X3Z,) — t£75(X; Z,) — A,E; X) 5 HY(X; Z) ~0

n

(1) IfxeHXXZ,) and z€p %, then 2z8=7\(S¢"+w, J+w,>U)x
T  IfxeHYXZ,) and z€ p~'x, and a= KO~ (X), then

az =z+N(ha+w, Uka) U Sq'x)

Theorem 2.8. Let n=04), n>4, m<n+1; and assume S[w,|w.=0.
Let 0(x, y)=(S¢*+w,U )px+w, U y. (I) We have an exact sequence:

H™ (X 2+ HYX; Z) 0 He iz A0 )b

H"X;Z[w]))+H*"'(X; Z,) — 0

an // xeH"X;Z[w]), yeH"(X; Z,), 2x=0;, and z< p~\(x,y), pick
we H* (X Z,) such that §,[w,Jw=x. Then 23=n(Sq' px+(Sg*+w, U )w).
(III) IfxeH"X;Z[w]),ye H*"(X; Z,) and 3= p~(x, ), and if e = KO™(X),
then az=(—1)""z+\((ha+w, Uha)Ux+hoaUy) (Recall H(X; Z,)=2Z,; let
(—1y=1, (—1y=—1)

Theorem 2.9. Letn=2(4), n>6, m<n+1; and assume §[w,]w,=0. Let
0(x,»)=(Sg*+w,U)px+Sq'y. (1) We hate an exact sequence:

4
H™(X; Z[w))+HYX; Z) SH™(X;2) 5 43¢ x) &

H"X; Z[w])+H"(X; Z,) -0
(D // xeH"(X;Z[w,)]), yeH"(X;Z,), 2x =0, and z< p~'(x, y), pick
we H* Y (X;Z,) rocA that 8[w,Jlw=x. Then
2z =N(Sq' px+(S¢*+w, U )w+y).

(ITII)y // xeH*X; Z[w,)), ye H*"'( Z,), and z<p~'(x,y), then for any
ae KO (X)) pz=(—1)""z2+N((haa+w| ha) U x+ha U y)

Proof of 2.6-29. (I) is obtained from the McClendon spectral sequence
[12], while (I1) is computed using the extension results of [11]. (III) follows
from 4.2, 4.6, and 4.7. (Note that “w,=h,a, “w,=h,a+wU h,x,in the notation
of §4.)
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In the range m<2n—2, m<n-+2, knowledge of the three things suffices to
enumerate V,(£;X): namely, »g, 7, and a function s,: HY(X;Z,)+H' (X Z,)—
A,L(; X), for any fixed a4, X). [9, Thm 3.1] We shall see that s, is
determined by its values on generators, although it is not a homomorphism.

Without loss of generality, X is connected. Let pe KO™}(X)be classified
by a map which takes Xto a single point of O which does not lie in the identity
component. For any e HY(X;Z,), let J[u]le KO (Xpe classified by the

u W
composition X — P, — SOwhere W isthe Whitehead map: recall that W*h,=u’
for all .. We define (for fixed ac 4,(£;X)), for (x, y)e H(X:Z,)+HX;Z,);

RVIEY! if x=0
S.(%, ¥) = a,,a—a where @ = X -
Py if x=1
For any (», y)e HY(XZ,)+H'(XZ,), and any z€4,%&; X), let ¥'(x, y, 2)=
(%, )7 =p, 2= AE;X). 1t is clear that o’ is an action if m<2n—2 and
m<nt+2.
From 2.4 and Theorem 3.1 of [9], we immediately have:

REMARK 2.10. Let X be a connected complex of dimension m, where
m<2n—2, m<n+2; and let £ be a real stable vector bundle over X which has
an n-dimensional stabilization a. Let TCH'(X;Z,) be any generating set.
Then, in order to enumerate V,(&;X), it is sufficient to compute

(i) the Abelian group 4,%(¢ X)

(ii) the homomorphism v¢: [X; Spin] — A,(€;X)

(iii) the action ov": HY(X; Z,)+H'(X; Z,) X A, (&; X)—A(&:X)

(V) s,(1, 0)=s,p= 4,%&; X),and s5,(0, u)=sp[u]€ 4,°(&; X) forall ucT.

The following lemma, which follows from James and Thomas [4, 1.4] will
be a useful aid in computing s,. Let p: 4,°(&; X)—H™(X;Z,) be the reduc-
tion defined in the obvious way, to wit, if x=a—b, where a and b are stabilized
vector bundles, classified by liftings g,, g,:X — BO(n) of f: X —BO, p/x is the
difference class of g, and g, defined by w,,,, in BO.

Lemma 2.11. [Let £ be a real stable bundle over a connected complex X of
dimension m, m<2n—2, and let ac A,(£; X). (1) If ac KO™(X), paa—a)=
SheohaUw, ;£ (1) If m<n+2p"s,p=w,E, and ps,d[u]=>"1-1u' Uw,_;E
for all ue H\(X; Z,).

Proof. (I) follows immediately from the James and Thomas formula, and
(IT) is an immediate corollary of (I).

3. Applications to projective spaces

Tensor products. Let £ be a stable real, or complex vector bundle over a
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complex X, and let L be a line bundle over X. Let £™ be the virtual ra-plane
bundle representing £; we define L&Q,£to be the stable bundle represented by
the virtual #-plane bundle LQE™. Let ¢ and ¢,, respectively, classify ® and
Q. such that we have a commutative diagram:

t
BG(1) X BG(n) —> BG(n)
1X7 ; 4
BG(1)x BG - s EG

If ac 4,(&; X), we can thus define LQacsA4,(LR,E;X) as follows: ifg: X —
BG(n) classifies a, t(], g) classifies L&a; where /: X —BG(1) classifies L.

REMARK 3.1. (I) L®: A, &; X)—»A4,(LR,E;X) is one-to-one and onto:
in fact its inverse is L’®, where L/ is the line bundle conjugate to L (note that
L’=L in the real case). (II) In the metastable range, i.e., dim X <2rn-+2r—4,
L® is an affine isomorphism.

Proof. (I) is obvious; (II) requires some manipulation of the base spaces;
we leave the details to the reader.

Let I®,: BGX¥—BGXbe given by IQ, f'=t,(/") for any f': X—BG. If
/: X— BG classifies &, and A¢: 7z (BGX f)=KG™'(X)is the James-Thomas
isomorphism, let 8¢, ,: KG(X)—KG™'(Xbe the composition

KG™(X) (A‘ifﬂl(BGX, 1) Q%ﬁ w(BGX, 12,1 2% KG(X)

In the metastable range, define LQxeA4,(LR®,E;X) for all x4, X) by
LR(a—b)=LRa—LQ?, for all a, b= 4,(£;X). By simply chasing the defini-
tions, we can easily check that:

REMARK 3.2. (I) For all a4,(¢; X)and all ac KG™'(X), LQxaa =
8¢ Lwa(L®a). (I1) If m<2mr+2r—4, LQax =98¢ ,(LQx) for all xe
A¢; X) and ac KG™(X).

And from the splitting theorem, we can compute

Lemma 3.3. [n the real case, i.e., G=0, tjw,= ;;0("_?_'—1)&)11'

Qw,_;.  (Where it is understood that if a<0, b>=0, (?) is defined (modulo 2) to
/9N 1o\ o
be far sufficiently large N.)
N
The null-element.  Let § be real, henceforth. We define »¢,= KO~ '(X}o
be the element corresponding to N¢ ,&=,(BO%, f)where N¢ , is the composition

S DEf tw
X>.S — 23 BO(1)x BO —» BO
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where &, represents the generator of ;BO(1), and T reverses coordinates. We
call the v , null-element of £ in dimension #,

Lemma 3.4. Let £ be real. Then (1) vg, is functorial in X, i.e., if
g: X'»>Xis a map and & =g ¢, then vy ,—=g'v¢,. (1) For all ac A,&;X),

ve wa—a. (I11) For all k>0, h,,yg,,,z(”jk)w,eg.

Proof. (I) is obvious. (II) holds since, if gz X—BO(n) is a lifting of f
which represents a, N, lifts to zo(§, X g)oT X X S—BO(n), a self-homotopy
ofg. (III) follows immediately from 3.3.

Projective spaces. Henceforth, let P, be real projective r-space for any
integer r>0, and let us H'(P,;Z,)be the generator, if r>1. Let Jy=+[u]le
KO~(P,). It is well-known and easily computable that

Lemma 3.5. Let r>1. Then (1) ifr=3(4), KO\ (P,)=Z,+Z,with
generators p and . (1) If r=3(4), KO (P,)=Z,+Z,+ Zyith generators p,

vr, and T, where T<[P,; Spin] is classified by P,— ,/P,_1=§’ZSpiwhere &,
represents the generator of r,(Spin)=Z. (1II) KO°(P,)=[P,; BOl=Z,, gener-
ated by m, the canonical line bundle over P, (i.e., wn=u), where s is the number
of positive integers less than or equal to r which are equivalent to 0, 1, 2, or 4
modulo 8. (IV) For all i=1, h,p=0,and hpr=u’; while h,p=1 and hr=0.
If t=2(4), h,v=u" for r=2 or 6; while hy =0 if i%=r or ¥r>6. (V) For any

0<k<2’, wi(kn)z(];)u" for all i >0.

Lemma 3.6. Forr>1 and 0<k<2° (where s is computed as in 3.5 (I1I)),
D 8kn,n,n‘!"=‘l" (II) Skn,n,np:P+\b" (III) Ifr=2(4’): Bkn,n,nT:T-

Proof. Clearly 84,4, and &y, , »p must be 2-torsion elements; the stated
results for (I) and (II) are the only answers which agree with 3.3. To prove
(IIT), consider the covering map c¢: S"™—P,. Now c¢ =1, the trivial line
bundle, and Ker ¢' is generated by p and 4. Thus OknnnT=T-FNp+Nfor
Ay MEZ,. Again by 3.3, A, =x,=0.

Lemma 3.7. Letr>1, 0<k<2’. Then

(0 ifn is even
Vinw = \ P ifn odd, k even
([ p+r ifn odd, k odd

Proof. For r=42(4), the stated result is the only possible which agrees with
3.3.  If r=2(4), the result still holds, by 3.4(I), since k% lives in P,,,.
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Notation. We give standard names, x,,, %,, and x,,, for generators of the
Abelian group 4,°(kn; P,) (which can be computed by one of the theorems
2.6-2.9), for r=n+1, n>=3. If n=E3(4), let x,=nu"", while if n=3(4), let
x,=0. Let x,, be defined by the equationpx,,=u" if n is odd, px,=(du""*, 0)
if n and k are both even. If n is even and k is odd, x,, shall not be defined.
If n is even, x,, shall be defined by the equation px,,=(0, #"**). For odd n, x,,
is not defined.

Note that x,, is always uniquely defined, but may be zero, while x,, and x,,
are not always defined, have intederminacy x,,, and are never zero. Intuitively,
if * and e*** are the bottom two cells of the Stiefel manifold V,, and ¢, » are
the generators of the stable 0- and 1-stems in the homotopy of spheres, we may
write X, =e"RQu", x,,=e"QRnRu"***, and x,,=e"" QnRQu""".

Define endomorphisms X, and X, on 4,(kn; P,) for r=n+l, n>=3, as
follows: XoXo;=X,%,,=0 in all cases; XoX,==x, and X,x,=0 if x, exists; and
Xox0=0 and X,x,,=ux,, ifx,, exists.

Theorem 38. Letn>3, and let k be any integer such that | / ,k4 )‘ is even.

() If n6, the homomorphism vy,: [P,..; Spin]—A,(kn;P,.,) is zero, while if
n=0, vy, T==xx, (1) The group A,°(kn;P,.,), the automorphisms v(p, ) and
v(r, ) on A(kn; Py, the elements s,p, splre A, (kn; P,,y,) (for some choice of
acs A, (kn; P,..)), and the resulting value of N,(kn; P,.,) are as in Table A.

Proof. The groups 4,°%(kn; P,.,), with their generators and relations, come
from theorems 2.5-2.8, (I) and (II). The actions y(p, ) and (v, ) are
then from 2.5-2.8 (I11). If n£2(4), v4,=0 since [P,,; Spin]=0. Ifn =2(4),
[P,i.; Spin]==Zgenerated by r (cf. 3.5) and v,,7==%x,, by 2.11 if n=6. If
n>14, v,,=0 since P,,,—S""'—Spin can be lifted to Spin(n)(see Barratt and
Mahowald [1]). If =10 and k= 3(4), ve,=0 since p": A, (kn; P,)—
HY(P,; Z,) is mono. Let n=10, ft=4i+A 0<j<2. Since ., (BSp)—
o (BSpin) is onto, &,: S¥*—BSpin classifies a quaternionic bundle. Let
(Agn) s KO'(P,)=m,(BOP1, fhe the James-Thomas isomorphism. Then
(Agq)7'7 is represented by F. ,,: P, X S—BO which classifies O® jn, where Q is
a bundle with a quaternionic structure. One may easily verify that ¢,0=0,
hence g.d.0<8. Thus F, 4, lifts to BO(10), whence v,,=0.

The values of s,p and s,J» can now be computed up to the natural in-
determinacy caused by the choice of @, using 2.11, 3.1, 3.2, 3.3, 3.6, and 3.7,
and in the case n=2(4), by lemma 3.9 below. This completes the proof of 3.8.

Lemma 39. (I) Let n=2(4), (g\)even, ( ¢.)even. Then pa= a for some

[l

€Ak Pu). (D) Let n=2(4),k=1(4), (, il) even. Then (p+r)a—gor
some ac A (kn, P,,,).
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Table A: n-plane bundles over P, jof stable type k»,for n>3, (nlil) even.
MG Py )] RSN | 10, ) | 10 ) | w0 | s | NaGkmiPasd)
n=3(4) | z, #00, #01 1 1 i (ﬁ)xoo (Z::%)xoo 2 if(ﬁ %) even
x01=2%00=0 (k=1
1if(571) odd
n=1@)| Z, oo, #01 1 147 |0 (=)o |3i(521) even
k=0(4) 2x00=2%01 o(k—1
2.X'01=0 2 lf(n"‘l) odd
n=1<4) | Z, #00, #01 \ 14 % 1+ x0 (ﬁ)xoo (Z:)xoo 3 if (ﬁ:%) even
k= 1(4) 2x =X01 .

2% —0 2if(571) odd
n=14)| Z» #00, #01 1 1 0 (ﬁ:})xoo 2if(£71) even
k=2(4) 2x00=%01=0 .Afk—1

1if(371) odd
n=14) | Z, #00, #01 1 1 (ﬁ)xoo (ﬁ:%)xoo 2if (s:}) even
A=3(4) 2x00 =01 =0 _

' 1if (ft_}) odd
n=0(4)| Z; #10, #01 1 1 0 0 2
k odd 2x10=x01=0
n=04)| Z,+ 2, %00, #01, #10 | 1+ o= x1f 1+ Xo (ﬁ)xoo (ﬁ:%)xoo 3 lf(::%) odd
k=0(4) 2x00=%01 k—1 (R
2x10=2x01 +( n )xm 2if (‘n)Odd
=0 & (ﬁ:%) even
5 if both even
— , k T - K
n=0(4) | Z2+2Z5+2Z5| #00, #10, #01 | 1+ 21 1+ 20 (n)xoo ( . )xw 5 if 0 even
k=2(4) 2x00=2x10 AR

20, =0 2if(%) odd
n=24) | Z, #10, #01 1 1 0 0 2if n>10
k=34) 2x10=%01=0 1 ifn=6
n=2(4)| Z, #10, #01 1 1 0 0 4 ifn>10
k=1(4) 2x10="%01 1ifn=6

2x01=0
n=2(4)| Z,+ 2, #00, #01, #10 | 1 ‘ 1+2 |0 (}:1:}1 X | 6if 2>10,
k=0(4 2x10= : ‘ k—1
(4) xm_ Xo N (k_l)xm (nv—l) even
2x00=2%01 | n 2 if n=6,

=0 \ ::%) even
n=28)| Zo+Z | woo o0 | 1420 | 1tz | (B)me [ (B2])we |4 ifn 210,
k=2(4) 2x00=2x%10 (n—l) odd

=X01 I 1 ifn=6,

2% =0 | (B=1) oda
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Proof. (I) Let >} be the line bundle classified by P,,+1><S?§SQBO(1).

If k=4i+jj= 0 or 1, 44y has a quaternionic structure, and e, ,(47)=0, thus
gd.kn<n—1. F,,,: P, xXS—BO classifies k7P>", hence can be lifted to
BO(n). Thus pa=a for some a. (II) Ifk=1(4), (k—1)(n®>]) has aquater-

nionic structure, hence Fy.y z, which classifies R(n®>)), lifts to BO(n):thus
pa=nJra for some a.

Theorem 3.10°. Let n=13(4), n=7, and let k be any integer such that
(..—If—l) is even. Let x,, be an element of A, (kn; P,..)with pox= u" and let
X, =Au"tE, Then

(1) Al(kn; P,y)=Z, 2x0=2%, fork =0, 3(4),

Al kn; Ppyo)s=Zyp+Z,,2500=2x,=0 fok =1, 2(4);
Surthermore A,°(kn; P ,.5)—> A (k7n; Pyy,) is onto.
(i) Y(Y¥, Xo0)=%0+%y,, and v(p, xoo)zxoo‘Jr‘(lit)xu.
(iiliy For any acAykn; P,.,), salr= ( :: Xo, With indeterminacy x,,
Ay

(based on the choice of a). Furthermore, s,p=0jor k even, s,p=s,\r for k odd;
both with no indeterminacy.

Proof. Similar to 3.8.
For the sake of uniformity, the above information is displayed in table B.

Table B®: #n-plane bundles over P, +3o0f stable type k for n=3(4), n>7, ( . 1‘) even.

|
An®(k7 Py+2) %flrfl?tti(())rr?s r(,) | (W) 540 sa¥ N, (k7; Pya2)

k=0(4)| Z, oo, %11 1 1+x |0 (fl:})xoo 3if(ﬁ:}) even

k—1
n—1

2x00=x%11
2%1,=0 2 1f( ) odd

k=1(4) | Z,+ Z, #00, #11 11z Itz (ﬁ)"""
2x00=2%11
=0

k=24)| Z,+ Z, #00, #11 1 1+x 0
2x00=2xn
=0

k=34) | Z, #00, #11 1+x 1+ (ﬁ)xoo
2x00=2%11
2x11=0

1), 2) The corrected statement of Theorem 3.10, and a corresponding correction of Table B,
were supplied by the referee.
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4. Actions

Let A* be any Y-twisted cohomology theory satisfying the axioms given
in [2]. Fix, for the moment, a C.W.-pair (X,4) and a map /: X—=Y. We
have a natural left action

v: AXh¥(X, 4, ) - h*(X, 4, f)

where H=mr, (Y= f), defined as follows: if o= His represented by F,: XX §
—Y, where F,(x, x)=f(x)for all xeX, let F, also denote the composition

D
XxI—-XX S=Y. We have isomorphisms, where i, and 7,: X—>XX1I are
the inclusions along 0 and 1, respectively:

i
WX x /, Ax/, F)) = h*(X, 4, f)
i

Let v(a, x)=ax=1i*(@*) 'x for all x€h*(X, 4, f).
Let é€Z,: we shall write (—1F=+1Z. For a€ Y, we shall define a
long exact action sequence for the pair (&, a) and the theory A* :

(1) B, 4, 1) D e, 4, )

X
> XX T,y XX jSUAX T, Fa) = h*(X4, f)

E.,hk(X’ A, f) l,

where T, is the torus if £=0, the Klein bottle if €=1, S - TE—ZS is the fibra-

tion, and j: S—T is the section. By a slight abuse of notation, write
1w

E
F,: XXT - XxS— 5Y. For * € k%X, A, f), ¢.x is given to be
ax—(—1)°*x. We let » be the composition

1 X2)*
(X X T, XXjSUAX TE,FM)—( Akt % R (Xx 1S, A XS UX, fopx)
=25

h¥ (X, A4, f)

where pyx is projection to X and s is suspension. Let X be defined by com-
mutativity of the diagram:

X
hk—l(X) A, /) — hk+1(X X TE’ X XjS U AX Te’ Fm)
~ J*
(X xiS, X U AXiS, fopx) R XX T Xx SV S)UAX T, Fo)
o~ = \‘a*
SEN ¥

WX XISX L, X XLUAXIS X1, F)) ———> B (X XISXIXXLUAXiS X, F))
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where g: X XS XI—X X Tjs the obvious quotient map, L=iSx{0, 1} U
{*} xIciSx1I,and Fyx,y, u)=(F,oq)(xy, 1—t(1—u)) for all ¢, ucl, xeX,
yeis.

It is fairly straightforward to prove that the action sequence is exact and
natural with respect to stable Y-twisted cohomology operations, i.e., @, —
typu> vr=qv,and X+p=+rX for any such operation 4Jr. We leave the details
to the reader. 4

Now suppose that ‘A*, "A* are Y-twisted cohomology theories classified
by Qy-spectra ‘E, &, respectively. Let «r: ‘h*—"h* be a stable Y-twisted
cohomology operation of degree, say, rf, classified by an Qy-spectrum map
Jr: 'E="E. If we let A* be the Y-twisted cohomology theory classified by &,
the fiber of 4, we obtain the long exact sequence associated to Jr:

42) - WX, A, ) (X, A, ) 2 WX, A, f)

2 wx, 4, 1)L (X, 4, f)—

where A, p are now stable Y-twisted cohomology operations of degrees d—1
and 0, respectively,

We now examine the following question. Suppose we know the action
of K on 'h*(X,4, f)and "h*(X, A4, f). How can we determine the action of
Hon h*(X, A,/)? We give a partial answer, which suffices for our applica-
tions to vector bundles.

Let tfeKer-v/r in the sequence above, and suppose ax=(—1)'x for some
aedl, cez, Ifzeh¥(X,A4, /) and pz=x, it is clear that (— 1)’z differsfrom
az by Aw for some we”h¥*4"Y(X, 4, f). This element w=®,*x clearly has
indeterminancy. In fact (as is trivial to check), we have a homomorphism

D, = r"T1g, p7": Kerp N Ker ¢, — "h*(X, 4, f)/Im+p+1Im g,

Analogous to diagram (3-2) of [11] and Fig. 2 of [10], we have a commutative
diagram with exact rows and columns:

‘RN (X, 4, f)
v
Y pk+d =1 $a’ , sd-1
(X,4,f)y—"h*"Y (X, A,f)
2 but lx
(X, A4, f)—h(X, 4, f)

e X ) . y | 78 hLE, 124
RN X, A, f)——>'B X X Tey XXJSUAXTF,) — »'m(X, A, f)—>'h(XA4,f)
]

Loy , Jv=va |y
YR NX, A, f) TR XA, f) - R (X T, XX §S UAX Te,Fu) —>"he+4(X, Af)
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We define a homomorphism:
*@, = X" Keryr N Ker ¢,° — "h*(X, A4, f)/Imr+Im g,
and, analogous to Theorem 2.5 of [10] and Theorem 3.2 of [11], we have

Theorem 4.1. &, f'=—*P,°

Proof. Analogous to that of Theorem 2.5, [10].
The usefulness of ®,° as a computational tool is illustrated by the follow-
ing remark:

REMARK 4.2. Let &: J—Z, be a homomorphism such that (in sequence
(4-2)) ax=(—1)**x and ay=(—1)*yfor all asH and all x&’h¥X, A4, f),
ye”hdY(X, 4, /). IfT'C 4 is a generating set, knowledge of ®,*x for all
xeKeryC'h¥(X, 4, fland all a<T suffices to determine the action of 4 on
he (X, A, f).

Proof. We leave to the reader.

We proceed to compute *@®, in certain cases which are applicable to vector
bundles. Henceforth, assume that ’A* is an ordinary twisted cohomology
theory of type Z or Z,, i.e., with coefficients in a sheaf G over Y, where each
stalk of G is isomorphic to either Z or Z,. Thus G=Z, or G=Zfu] for some
uesH'Y; Z,). The same assumption shall be made concerning ”A*, namely
that it is also an ordinary twisted theory of type Z or Z,, and is determined by
a sheaf H over Y.

We shall make specific computations of the homomorphisms

v: "W XxT, X*xjSUAT,, F,) —'h*X, 4, f)

i WX X T,y XXJSUAXTLF,)—"h*(X X T\, X xXiS U4AXT,, F,)
X: 'h¥X, 4, f) > "X XT, XXjSUAXT,, F,)

g 'HH(X, 4, f) > WX, 4, f)

¢’ "hX(X, 4, f) = "h(X, 4, f)

in each possible case. If’A*, "h* are in fact direct sums of ordinary theories,
no additional complication ensues, since i will be a matrix of ordinary opera-
tions, and v, X, and ¢, shall each be a vector consisting of the corresponding
homomorphisms in the ordinary component cases.

Recall that F,; X X S—Y classifies a = 9(; as before, we let F,=F,o(1X =):
XXT—~Y. IfyetH(Y;Z), let ®yeH*(XZ,) be defined by the equation
F i y=f*y@14+"yQ@owhere o= H'(S; Z) is the fundamental class of S. We
shall assume X is connected, thus *uc H'X; Z,)=Z,if uecH\(Y;Z;,). If
*u=¢, and ye H¥Y; Z[u]), let *yeH* '(X;Z[f*u])be defined by F,*y=

[*y@1+%yQoe.
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The cohomology of T, is well-known and easily computed. Let a=pn*ao
eHT,; Z,), and let Be H'(T,;Z[€a])be uniquely defined by the equation
j*B=0, *B=0c; and let b=pB. We have:

REMARK 4.3. H*(T,; Z,) is generated by a and b, subject only to the re-
lations a*=0 and b’=¢&ab.

Lemma 44. We have isomorphisms (for any us H(Y; Z,)):

@)) o H¥ (X, A; Z)+H*¥X, A; Z,)=H*T., XX jSUA,; Z,),
where ¢ (%, &')=xQb-+x R ab.

(1) L: HY(X,A4; Z[f*u])+H**XA4; Z[f*u])=H¥X T,, XX jSU
A X Ty; Z[f*u)),where «(x, x')=xQ@B+x'Qn*c U B;if *u=¢.

(II1) ¢ H*(X,A4; Z,)=H¥X XTX XjSUA XT.; Z [f*u]), where
x=08[F*u](x®b); if “u=¢.

Lemma 4.5.  Consider the action sequencefor h*(X,4, f)=H*(X,A ; f'G),
where G=2Z,or Z[u], uc H'(Y; Z,). Then

() /) G=2,, ¢, x=0; Xx=1(0,x) and vi(x,x’)=x forany
x, ¥ e H*(X, 4; Z,).

a1  If G=Z[u), *u=¢, then ¢, x=0, Xx=¢(0,x), and vi(x, ¥")=xfor any
x, ¥’ e H*(X, A; Z[ f*u]).

(III)  If G=2Z[u] u=%E, then ¢, x==x2x, Xx=cpx, and viz=238[f*ulzor
any xe H¥(X, 4; Z[f*u]),zeH*(X,A4; Z,).

Proof of 4.4 and 4.5. Straightforward; by 4.3 and the definitions of ¢,,
X, and v.

We give a useful way of expressing r: H¥(X X T, XxjSUAT,; F,'G)
- H¥(X X T XXjSUAT,; F,'H), for G and H both Z, or Z[u].

Let A be the mod 2 Steenrod algebra. Let «: A—W be the derivation of
degree —1 defined by Kristensen [5]; we write 8’=«0. The following pro-
perty also defines @' ":if xe H¥(W; Z,), ye H'(W; Z,), where W is any space,
O(x U y)=0xU y+0xU Sq'y.

Lemma 46. (I) Let G=H=Z,, =y U0 fosome yc H¥(Y; Z,))=U.
Thenforx€ H* (X, A Z,), ¥ cH* X XA Z,), yu(x, H=uf* U 0« f*U Ox'
+2yU Ox+Ef*UJ 0x). () Let G=Z[u], H=Z,, \r=p, reduction modulo 2. //
u=¢, Yu(x, tH=upx, px')forc H* (X, 4A; Z[f*ul))y' e H* *(X,A4; Z[f*u]).
If ®u=€, Yro(x, & )=u(x+(S¢+f*uV)*). (II1) Let G=2Z,, H=Z]v], =3[v].
If “v=¢€, Yu(x, ¥ )=ux+Sqg'x’'+f*vUx") far xeH* (X, A4; Z,), ¥eH**(X,
A3 Z,).  If o*=&,u(x, tf) = 1(0[f*v]x, S[f*vlxfor xcH* (X, A; Z,), ¥
H**X,4; Z,). (IV) Let G=Z[u],H=Z[v],r=DU, where De H¥*(Y ;Z[u
+9]). If "u=€, xeH*'(X,4; Z[f*u]), and ¥ €H**(X, A; Z[f*u))then
dre(x, ¥ )= f*DUx, f*DUx'+*DUx) 0=, while tyi(x, x')=u*(pD)xUx
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+ f*¥(pD)Ux')Yf v*+E.  On the other hand, if *u=¢, and xc H* *(X, A; Z,),
Y= 8[ f*v](pf*D U xS[ f*0](*(pD) U x)) far ®v=©€, while if “v=+E, Ynux=
(pf*DUx+*D U f*u Ux+*D U Sq'x).

Proof. Case (I) is elementary. For cases (II) and (III), the formulas
given are the only ones consistent with case (I) in the respective universal exam-
ples. Case (IV) is proved somewhat similarly (it is necessary to observe that if
“uz"v, (S¢*+ f*lJ + f*v U)*pD)=f*(pD))we leave the details to the reader.

If ‘h*, ”h* can both be expressed as direct sums of ordinary twisted coho-
mologies of types Z, and Z, ®,° can be easily computed using 4.1, 4.4, 4.5, and
4.6. We write the specific results in all cases where each has only one summand.

Corollary 4.7. Letf: X— Y, (X,A4) a C.W.-pair, X connected, a = H=
7(Y*, f), and €€ Z,. Let 'h*, "h* be twisted cohomology theories determined by
sheaves of local coefficients G and H, respectively, over Y , and let ~p: "h*—""h* be
a stable Y -twisted cohomology operation. Let xe H¥(X, A f'G), such that
V=0, ¢,*a=0. Then (where in each case, v H*(Y;Z,), 0, for each
e A, some finite indexing set; and u, ve H* (Y;Z,)): (1) If G=H=Z, and
V=20V U br. Then @, x=3"cr%, U Ox+EfU 0/x. (1) // G=Z[u],
H=2Z,, and r=>2"cay\U O,p, then

— 2 ey Ubrpx if € ="u
Sher®aUbwpx+ fryU by px+ f*y, Ul if £

uwhere, if E4="u, & H*(X,A; Z) is chosen such that 8[f*u]z=x. (1II) G=4Z,
H=Z[v],"r=>08[v] 2y U b\. Then

(ST F%47 XV B 1) Oy A8 h ey 119, ifg = %

I - -J 4—in=y

YT ] w8 %0] Shan ™ U+ Ef %y Ubx  if E+%

where, if E+"v,we H*(X, A; Z[f*v}y chosen such that pw=73 \cxf*yr10,x.
(IV) If G=Z[u], H=Z[v], and Y=DU +3[v]X sca¥rUbor some D&
H*(Y; Z[u+ v)), then

D jlx

DF

£9D U+ 8[f*0] Ther a U bupx+E /49, U px if € = "u =%
D Fx = { wH+S[[*V] DaeaVaUBEpx+Ef*y 0 px if £="ud%
L S[f*0](*(pDU 2+ Zaea f*1a U Oyz + “y, U Oxz+ Ef*y, U 0 px
if e+u
where (when necessary), we H*(X, A; Z[f*v]and z=H*(X, 4; Z,) are chosen
by the equations pw="pD)U px -+ f¥y, U Oypx, and 8] f*ule=x.

CALIFORNIA STATE COLLEGE, DOMINGUEZ HILLS
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