

Title	On multiply transitive groups. XII
Author(s)	Oyama, Tuyosi
Citation	Osaka Journal of Mathematics. 1974, 11(3), p. 595–636
Version Type	VoR
URL	https://doi.org/10.18910/5342
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Oyama, T. Osaka J. Math. 11 (1974), 595-636

ON MULTIPLY TRANSITIVE GROUPS XII

TUYOSI OYAMA

(Received January 21, 1974)

1. Introduction

The known 4-fold transitive groups are the symmetric groups S_n $(n \ge 4)$, the alternating groups A_n $(n \ge 6)$ and Mathieu groups M_n (n=11, 12, 23, 24). The main purpose of this paper is to characterize these known 4-fold transitive groups. The result is as follows.

Theorem. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$. Assume that

(*) t is the maximal number of fixed points of involutions of G.

Furthermore assume that G contains a 2-subgroup Q which satisfies the following conditions:

(1) |I(Q)| = t and Q is a Sylow 2-subgroup of $G_{I(Q)}$,

(2) $N(Q)^{I(Q)} = S_t \text{ or } A_t$.

Then G is one of the following groups; $S_n (n \ge 4)$, $A_n (n \ge 6)$ or $M_n (n = 11, 12, 23, 24)$.

This theorem is a generalization of theorems of M. Hall ([2], Theorem 5.8.1), H. Nagao [10] and the author [11]: the case t < 4 has been proved by M. Hall, the case t=4 or 5 by H. Nagao and the case t=6 or 7 and $N(Q)^{I(Q)}=A_t$ by the author.

The followings are corollaries.

Corollary 1. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$, and P a Sylow 2-subgroup of a stabilizer of four points in G. Assume that n is even and $P \neq 1$.

(1) If I(P)=I(Z(P)), where Z(P) is the center of P, then G is one of the following groups; S_n $(n \ge 6)$, A_n $(n \ge 8$ and $n \equiv 0 \pmod{4}$ or M_{12} .

(2) For any point i of $\Omega - I(P)$ if P_i is semiregular (± 1) on $\Omega - I(P_i)$ or 1, then G is one of the following groups; S_6 , S_8 , A_8 , A_{10} , M_{12} or M_{24} .

Corollary 2. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$ and P a Sylow 2-subgroup of a stabilizer of four points in G. If P is a transitive group

 (± 1) on $\Omega - I(P)$, then G is one of the following groups; $S_{2^{k}+4}$ $(k \ge 1)$, $S_{2^{k}+5}$ $(k \ge 1)$, $A_{2^{k}+4}$ $(k \ge 2)$, $A_{2^{k}+5}$ $(k \ge 2)$, M_{12} or M_{23} .

Corollary 2 is a generalization of Theorem 1 and Theorem 2 in [7] and Theorem in [8]. In the proof of Corollary 1 we make use of the following

Lemma. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$. Assume that the maximal number of fixed points of involutions of G is twelve. Then for any 2-subgroup Q fixing exactly twelve points $N(Q)^{I(Q)} \neq M_{12}$.

We shall use the same notations in [12].

2. Proof of the theorem

We proceed by way of contradiction. From now on we assume that G is a counter-example to our theorem of the least possible degree. Since there is no 4-fold transitive group of degree less than thirty-five except known ones ([2], P. 80), the degree n of G is not less than thirty-five. Set $I(Q) = \{1, 2, \dots, t\}$ and $\Delta = \Omega - I(Q)$. For any point t+i of Δ set i'=t+i, $1 \le i \le n-t$.

2.1. $t \ge 6$. In particular if $N(Q)^{I(Q)} = A_t$, then $t \ge 8$.

Proof. If t < 4, then by a theorem of M. Hall ([2], Theorem 5.8.1) $G = S_4$, S_5 , A_6 , A_7 or M_{11} , which is a contradiction since $n \ge 35$. If t = 4 or 5, then by a theorem of H. Nagao [10] $G = S_6$, S_7 , A_8 , A_9 or M_{12} , which is also a contradiction. Thus $t \ge 6$.

Suppose that $N(Q)^{I(Q)} = A_t$, t=6 or 7. Since Q is a Sylow 2-subgroup of $G_{I(Q)}$, Q is a Sylow 2-subgroup of a stabilizer of four points of I(Q) in G. Hence by a theorem of [11] $G=M_{23}$, which is also a contradiction. Thus if $N(Q)^{I(Q)} = A_t$, then $t \ge 8$.

2.2. $|\Delta| \ge 17$.

Proof. G is a 4-fold transitive group and $n \ge 35$. Hence by a theorem of W. A. Manning [5]

$$|\Delta| \ge \frac{n-1}{2} \ge \frac{35-1}{2} = 17$$
.

2.3. Let R be a 2-subgroup of N(Q) containing Q, and X a 2-subgroup of N(Q). If $\langle R, X \rangle^{I(Q)}$ is a 2-group, then there is a 2-subgroup X' in N(Q) such that $X^{I(Q)} = X^{I(Q)}$, $\langle R, X' \rangle$ is a 2-group and $\langle Q, X' \rangle$ is conjugate to $\langle Q, X \rangle$ in N(Q).

Proof. Let P be a Sylow 2-subgroup of $\langle R, X \rangle$ containing R. Since $\langle R, X \rangle^{I(Q)}$ is a 2-group, $P^{I(Q)} = \langle R, X \rangle^{I(Q)}$. Then P contains a 2-group X' such that $X^{I(Q)} = X'^{I(Q)}$. Then $\langle R, X' \rangle$ is a 2-subgroup of P. Since Q is a Sylow 2-subgroup of $G_{I(Q)}$ and $\langle Q, X \rangle^{I(Q)} = \langle Q, X' \rangle^{I(Q)}$, both $\langle Q, X \rangle$ and $\langle Q, X' \rangle$ are

Sylow 2-subgroups of $\langle Q, X, X' \rangle$. Hence $\langle Q, X' \rangle$ is conjugate to $\langle Q, X \rangle$ in $\langle Q, X, X' \rangle$. Thus $\langle Q, X' \rangle$ is conjugate to $\langle Q, X \rangle$ in N(Q).

2.4. If
$$N(Q)^{I(Q)} = S_t$$
, then $N(Q)$ has a 2-group $\langle Q, x_1, x_2, \dots, x_k \rangle$, where $x_i = (1) \ (2) \cdots (2i-2) \ (2i-1 \ 2i) \ (2i+1) \cdots (t) \cdots$,

 $1 \le i \le k$, $k = \frac{t}{2}$ if t is even and $k = \frac{t-1}{2}$ if t is odd.

Furthermore since $N(Q)^{I(Q)} = S_t$ or A_t , N(Q) has a 2-group $\langle Q, y_1, y_2, \dots, y_k, y_1' \rangle$, where

$$y_i = (1 \ 2) \ (3) \ (4) \cdots (2i) \ (2i+1 \ 2i+2) \ (2i+3) \cdots (t) \cdots,$$

 $y_i' = (1 \ 3) \ (2 \ 4) \ (5) \ (6) \cdots (t) \cdots,$

 $1 \le i \le k, \ k = \frac{t-2}{2}$ if t is even and $k = \frac{t-3}{2}$ if t is odd. In either case $k \ge 3$.

Proof. Since $N(Q)^{I(Q)} = S_t$ or A_t , this follows immediately from (2.1) and (2.3).

From now on we denote that $\langle Q, x_1, x_2, \dots, x_k \rangle$ and $\langle Q, y_1, y_2, \dots, y_k, y_1' \rangle$ are the groups in (2.4).

2.5. Suppose that N(Q) has the 2-group $\langle Q, x_1, x_2, \dots, x_k \rangle$ in (2.4), which is abelian and fixes a subset Δ' of Δ . If $\langle Q, x_1, x_2 \rangle$ is semiregular on Δ' , then $\langle Q, x_1, x_2, \dots, x_k \rangle$ is semiregular on Δ' .

Proof. Suppose that $\langle Q, x_1, x_2, \dots, x_i \rangle$, $i \geq 2$, is semiregular on Δ' and $\langle Q, x_1, x_2, \dots, x_{i+1} \rangle$ is not semiregular on Δ' . Then $\langle Q, x_1, x_2, \dots, x_i \rangle x_{i+1}$ has an element x fixing a $\langle Q, x_1, x_2, \dots, x_i \rangle$ -orbit of length $2^i \cdot |Q| (\geq 2^{i+1})$ in Δ' pointwise since $\langle Q, x_1, x_2, \dots, x_{i+1} \rangle$ is abelian and $\langle Q, x_1, x_2, \dots, x_i \rangle$ is semiregular on Δ' . Then since x has at most i+1 2-cycles in I(Q) and $i\geq 2$, $|I(x)|\geq t-2(i+1)+2^{i+1} > t$, contrary to the assumption (*). Thus if $\langle Q, x_1, x_2, \dots, x_i \rangle$, $i\geq 2$, is semiregular on Δ' , then $\langle Q, x_1, x_2, \dots, x_{i+1} \rangle$ is semiregular on Δ' . Then since $\langle Q, x_1, x_2, \dots, x_i \rangle$, $i\geq 1$, is semiregular on Δ' , this implies by induction that $\langle Q, x_1, x_2, \dots, x_k \rangle$ is semiregular on Δ' .

2.6. N(Q) has the 2-group $\langle Q, y_1, y_2, \dots, y_k \rangle$ in (2.4). Suppose that $\langle Q, y_1, y_2, \dots, y_k \rangle$ is abelian and fixes a subset Δ' of Δ . If $\langle Q, y_1, y_2, y_3 \rangle$ is semiregular on Δ' , then $\langle Q, y_1, y_2, \dots, y_k \rangle$ is semiregular on Δ' .

Proof. Suppose that $\langle Q, y_1, y_2, \dots, y_i \rangle$, $i \ge 3$, is semiregular on Δ' and $\langle Q, y_1, y_2, \dots, y_{i+1} \rangle$ is not semiregular on Δ' . Then $\langle Q, y_1, y_2, \dots, y_i \rangle y_{i+1}$ has an element y fixing a $\langle Q, y_1, y_2, \dots, y_i \rangle$ -orbit of length $2^i \cdot |Q| (\ge 2^{i+1})$ in Δ' pointwise

since $\langle Q, y_1, y_2, \dots, y_{i+1} \rangle$ is abelian and $\langle Q, y_1, y_2, \dots, y_i \rangle$ is semiregular on Δ' . Then since y has at most i+2 2-cycles in I(Q) and $i \ge 3$, $|I(y)| \ge t-2(i+2)+2^{i+1}>t$, contrary to the assumption (*). Thus if $\langle Q, y_1, y_2, \dots, y_i \rangle$, $i \ge 3$, is semiregular on Δ' , then $\langle Q, y_1, y_2, \dots, y_{i+1} \rangle$ is semiregular on Δ' . Then since $\langle Q, y_1, y_2, \dots, y_{i+1} \rangle$ is semiregular on Δ' . Then since $\langle Q, y_1, y_2, \dots, y_{i+1} \rangle$ is semiregular on Δ' .

2.7. $|\Delta| \equiv 0 \pmod{4}$.

Proof. Since Q is semiregular (± 1) on Δ , $|\Delta|$ is even, i.e., $|\Delta| \equiv 0$ or 2 (mod 4). Suppose by way of contradiction that $|\Delta| \equiv 2 \pmod{4}$. Then |Q| = 2. Hence we may assume that $Q = \langle a \rangle$ and

$$a = (1) (2) \cdots (t) (1' 2') (3' 4') \cdots (n-1 n).$$

Then N(Q) = C(Q) = C(a) and $C(a)^{I(a)} = S_t$ or A_t . We treat these cases separately.

(i) Suppose that $C(a)^{I(a)} = S_t$. Then C(a) has the 2-group $\langle a, x_1, x_2, \dots, x_k \rangle$ in (2.4). First we show that $\langle a, x_1, x_2, \dots, x_k \rangle$ has exactly one orbit Γ of length two in Δ and is semiregular on $\Delta - \Gamma$.

Since $|\Delta| \equiv 2 \pmod{4}$ and Δ is a union of $\langle a, x_1, x_2, \dots, x_k \rangle$ -orbits, $\langle a, x_1, x_2, \dots, x_k \rangle$ has at least one orbit of length two in Δ . Hence we may assume that $\{1', 2'\}$ is the $\langle a, x_1, x_2, \dots, x_k \rangle$ -orbit of length two. Then x_i or ax_i , $1 \leq i \leq k$, fixes $\{1', 2'\}$ pointwise. Hence we may assume that x_i fixes $\{1', 2'\}$ pointwise. Then $I(x_i)$ contains $(I(a) - \{2i - 1, 2i\}) \cup \{1', 2'\}$ of length t. Hence by the assumption $(*) |I(x_i)| = t$ and $I(x_i) \cap \Delta = \{1', 2'\}$. Since $I(x_i^{x_j} \cdot x_i)$ contains $I(a) \cup \{1', 2'\}$ of length t + 2, $1 \leq i, j \leq k, x_i^{x_j} \cdot x_i = 1$ by the assumption (*). Thus $x_i^2 = 1$ and $x_i x_j = x_j x_i$. Hence $\langle a, x_1, x_2, \dots, x_k \rangle$ is elementary abelian.

Since a and x_i , $1 \le i \le k$, has no fixed point in $\Delta - \{1', 2'\}$ and $|\Delta - \{1', 2'\}$ $|\equiv 0 \pmod{4}$, $|I(ax_i) \cap (\Delta - \{1', 2'\})| \equiv 0 \pmod{4}$. On the other hand since $|I(ax_i) \cap I(a)| = t-2$, $|I(ax_i) \cap \Delta| = 2$ or 0 by the assumption (*). Hence $|I(ax_i) \cap (\Delta - \{1', 2'\})| = 0$. Thus $\langle a, x_i \rangle$ is semiregular on $\Delta - \{1', 2'\}$.

Suppose that $\langle a, x_1, x_2 \rangle$ is not semiregular on $\Delta - \{1', 2'\}$. Then $\langle a, x_1, x_2 \rangle$ has an orbit Δ' of length four in $\Delta - \{1', 2'\}$. Since $\langle a, x_1, x_2 \rangle$ is an elementary abelian group of order eight, there is exactly one element (± 1) in $\langle a, x_1, x_2 \rangle$ fixing Δ' pointwise. Since $\langle a, x_1 \rangle$ and $\langle a, x_2 \rangle$ are semiregular on $\Delta - \{1', 2'\}$, x_1x_2 or ax_1x_2 fixes Δ' pointwise. Since $I(x_1x_2)$ contains $(I(a) - \{1, 2, 3, 4\}) \cup \{1', 2'\}$ of length t-2, x_1x_2 does not fix Δ' pointwise by the assumption (*). Hence ax_1x_2 fixes Δ' pointwise. Then $|I(ax_1x_2)| = t$ and so ax_1x_2 has no fixed point in $\Delta - (\{1', 2'\} \cup \Delta')$. This shows that $\langle a, x_1, x_2 \rangle$ is semiregular on $\Delta - (\{1', 2'\} \cup \Delta')$. By (2.4) $k \ge 3$ and so C(a) has x_3 in (2.4). Since x_3 normalizes $\langle a, x_1, x_2 \rangle$, x_3 fixes Δ' . Then by the same argument as above ax_1x_3 fixes Δ' pointwise. Thus $I(ax_1x_2 \cdot ax_1x_3) = I(x_2x_3)$ contains $(I(a) - \{3, 4, 5, 6\}) \cup \{1', 2'\} \cup \Delta'$ of length t+2, contrary to the assumption (*). Thus $\langle a, x_1, x_2 \rangle$ is semire-

gular on $\Delta - \{1', 2'\}$. Hence by (2.5) $\langle a, x_1, x_2, \dots, x_k \rangle$ is semiregular on $\Delta - \{1', 2'\}$.

On the other hand a normalizes $G_{1'2'3'4'}$, which is even order. Hence a commutes with an involution u of $G_{1'2'3'4'}$. Since $C(a)^{I(a)} = S_t$, $\langle a, x_1, x_2, \dots, x_k \rangle$ has a subgroup which is conjugate to $\langle a, u \rangle$ in C(a). Since u fixes at least four points of Δ , $\langle a, x_1, x_2, \dots, x_k \rangle$ has an element (± 1) fixing at least four points in Δ , which is a contradiction. Thus $C(a)^{I(a)} \pm S_t$.

(ii) Suppose that $C(a)^{I(a)} = A_t$. Let y be a 2-element such that $y^{I(a)}$ is an involution consisting two 2-cycles. Since $|I(y)| \le t$, $|I(y) \cap \Delta| = 0$, 2 or 4.

(ii.i) First assume that $|I(y) \cap \Delta| = 4$. By (2.4) C(a) has the 2-group $\langle a, y_1, y_2, y_3 \rangle$. Since $\langle a, y_1 \rangle$ is conjugate to $\langle a, y \rangle$ in C(a), y_1 or ay_1 is conjugate to y. Hence we may assume that y_1 is conjugate to y and

$$y_1 = (1 \ 2) \ (3 \ 4) \ (5) \ (6) \cdots (t) \ (1') \ (2') \ (3') \ (4') \cdots$$

Since $|\Delta - \{1', 2', 3', 4'\}| \equiv 2 \pmod{4}$ and $\Delta - \{1', 2', 3', 4'\}$ is a union of $\langle a, y_1 \rangle$ -orbits, the number of $\langle a, y_1 \rangle$ -orbits of length two in $\Delta - \{1', 2', 3', 4'\}$ is odd. Hence we may assume that $\{5', 6'\}$ is the orbit of length two. Then $y_1 = (5' 6')$ on $\{5', 6'\}$, and $\langle a, y_1 \rangle$ is semiregular on $\Delta - \{1', 2', \dots, 6'\}$ since $|I(ay_1)| \leq t$. Furthermore C(a) has a 2-element

$$y_2' = (1) (2) (3 4) (5 7) (6) (8) (9) \cdots (t) \cdots$$

By (2.3) we may assume that $\langle a, y_1, y_2' \rangle$ is a 2-group. Then y_2, y_3 and y_2' normalize $\langle a, y_1 \rangle$. Since $|I(y_1)| \neq |I(ay_1)|, y_1^{y_2} = y_1^{y_3} = y_1^{y_2'} = y_1$. Thus y_2, y_3 and y_2' centralize $\langle a, y_1 \rangle$, and so fix $\{1', 2', 3', 4'\}$ and $\{5', 6'\}$. Since y_i or ay_i , $i=2, 3, and y_2'$ or ay_2' fix $\{5', 6'\}$ pointwise, we may assume that y_2, y_3 and y_2' fix {5', 6'} pointwise. Since $I(y_i^{y_i} \cdot y_i)$ contains $I(a) \cup \{5', 6'\}$ of length t+2, $2 \le i, j \le 3, y_2^2 = y_3^2 = 1$ and $y_2 y_3 = y_3 y_2$ by the assumption (*). Similarly y_2' is of order two. Thus $\langle a, y_1, y_2, y_3 \rangle$ and $\langle a, y_1, y_2' \rangle$ are elementary abelian. Since y_2, y_3 and y_2' fix {1', 2', 3', 4'}, y_2, y_3 and y_2' are (1') (2') (3') (4'), (1' 2') (3') (4'), (1') (2') (3' 4'), (1' 2') (3' 4'), (1' 3') (2' 4') or (1' 4') (2' 3') on $\{1', 2', 3', 4'\}$. Since $I(y_2)$ contains $(I(a) - \{1, 2, 5, 6\}) \cup \{5', 6'\}$ of length $t-2, y_2$ does not fix $\{1', 2', 3', 4'\}$ pointwise. Similarly y_3 and y_2' do not fix $\{1', 2', 3', 4'\}$ pointwise. If $y_2 = (1' 2') (3' 4') \cdots$, then $I(ay_1 y_2)$ contains $(I(a) - \{3, 4, 5, 6\}) \cup \{1', 2', \cdots, 6'\}$ of length t+2, contrary to the assumption (*). Thus $y_2 \neq (1' 2') (3' 4') \cdots$. Similarly y_3 and $y_2' \neq (1' 2') (3' 4') \cdots$. Next suppose that $y_2 = (1' 2') (3') (4') \cdots$. The proof in the case $y_2 = (1') (2') (3' 4') \cdots$ is similar. Since y_3 commutes with $y_2, y_3 = (1' 2') (3') (4') \cdots$ or $(1') (2') (3' 4') \cdots$. If $y_3 = (1' 2') (3') (4') \cdots$, then $I(y_2 y_3)$ contains $(I(a) - \{5, 6, 7, 8\}) \cup \{1', 2', \dots, 6'\}$ of length t+2, contrary to the assumption (*). Thus $y_3 = (1') (2') (3' 4') \cdots$. On the other hand as we have seen above $y_2' = (1'2')(3')(4')(5')(6'), (1')(2')(3'4')(5')(6'), (1'3')(2'4')(5')$ (6') or (1' 4') (2' 3') (5') (6') on $\{1', 2', \dots, 6'\}$. If y_2' is of the first form, then

 $(y_2 y_2')^3$ is of even order and $|I((y_2 y_2')^3)| \ge t+2$, contrary to the assumption (*). If y_2' is of the second form, then $(y_3 y_2')^3$ is of even order and $|I((y_3 y_2')^3)| \ge t+2$, contrary to the assumption (*). If y_2' is of the third or fourth form, then $(y_2 y_2')^6$ is of even order and $|I((y_2 y_2')^6)| \ge t+2$, contrary to the assumption (*). Thus $y_2 \ne (1' 2') (3') (4') \cdots$ and so $y_2 \ne (1') (2') (3' 4') \cdots$. Finally suppose that $y_2 =$ $(1' 3') (2' 4') \cdots$. The proof in the case $y_2 = (1' 4') (2' 3') \cdots$ is similar. Then by the same argument as is used for y_2 , y_3 and y_2' are (1' 3') (2' 4') or (1' 4') (2' 3') on $\{1', 2', 3', 4'\}$. If y_3 or $y_2' = (1' 3') (2' 4') \cdots$, then $|I(y_2 y_3)|$ or $|I((y_2 y_2')^3)|$ $\ge t+2$ respectively, contrary to the assumption (*). Thus y_3 and $y_2' = (1' 4')$ $(2' 3') \cdots$. Then $(y_3 y_2')^3$ is of even order and $|I((y_3 y_2')^3)| \ge t+2$, contrary to the assumption (*). Thus if y is a 2-element of C(a) such that $y^{I(a)}$ is an involution consisting of two 2-cycles, then $|I(y) \cap \Delta| = 4$.

(ii.ii) By (ii.i) for any 2-element y of C(a) such that $y^{I(a)}$ is an involution consisting of two 2-cycles, $|I(y) \cap \Delta| = 0$ or 2. By (2.4) C(a) has the 2-group $\langle a, y_1, y_2, \dots, y_k \rangle$. First we show that $\langle a, y_1, y_2, \dots, y_k \rangle$ has exactly one orbit Γ of length two in Δ and is semiregular on $\Delta - \Gamma$.

Since $|\Delta| \equiv 2 \pmod{4}$ and Δ is a union of $\langle a, y_1, y_2, \dots, y_k \rangle$ -orbits, $\langle a, y_1, y_2, \dots, y_k \rangle$ has at least one orbit of length two in Δ . We may assume that $\{1', 2'\}$ is the $\langle a, y_1, y_2, \dots, y_k \rangle$ -orbit of length two. Then y_i or ay_i , $1 \leq i \leq k$, fixes $\{1', 2'\}$ pointwise. Hence we may assume that y_i fixes $\{1', 2'\}$ pointwise. Since $|I(y_i) \cap \Delta| = 0$ or 2, $I(y_i) \cap \Delta = \{1', 2'\}$. Since $I(y_i^{y_j} \cdot y_i)$ contains $I(a) \cup \{1', 2'\}$ of length t+2, $1 \leq i, j \leq k, y_i^{y_j} \cdot y_i = 1$ by the assumption (*). Hence $y_i^2 = 1$ and $y_i y_j = y_j y_i$. Thus $\langle a, y_1, y_2, \dots, y_k \rangle$ is an elementary abelian group.

Since a and y_1 has no fixed point in $\Delta - \{1', 2'\}$ and $|\Delta - \{1', 2'\}| \equiv 0 \pmod{4}$, $|I(ay_1) \cap (\Delta - \{1', 2'\})| \equiv 0 \pmod{4}$. Hence by (ii.i) $|I(ay_1) \cap (\Delta - \{1', 2'\})| = 0$. Thus $\langle a, y_1 \rangle$ is semiregular on $\Delta - \{1', 2'\}$.

Suppose that $\langle a, y_1, y_2 \rangle$ is not semiregular on $\Delta - \{1', 2'\}$. Then $\langle a, y_1, y_2 \rangle$ has an orbit Δ' of length four in $\Delta - \{1', 2'\}$. Since $\langle a, y_1, y_2 \rangle$ is an abelian group, there is an involution y' in $\langle a, y_1 \rangle y_2$ fixing Δ' pointwise. Then $y'^{I(a)}$ is an involution consisting of two 2-cycles and $I(y') \cap \Delta \supseteq \Delta'$, contrary to (ii.i). Thus $\langle a, y_1, y_2 \rangle$ is semiregular on $\Delta - \{1', 2'\}$.

Suppose that $\langle a, y_1, y_2, y_3 \rangle$ is not semiregular on $\Delta - \{1', 2'\}$. Then $\langle a, y_1, y_2, y_3 \rangle$ has an orbit Δ' of length eight in $\Delta - \{1', 2'\}$. Since $\langle a, y_1, y_2, y_3 \rangle$ is an abelian group of order sixteen, there is exactly one involution y' in $\langle a, y_1, y_2, y_3 \rangle$ fixing Δ' pointwise. Since $|\Delta'| = 8$, y' has at least four 2-cycles on I(a). Thus $y' = y_1 y_2 y_3$ or $ay_1 y_2 y_3$. If $y' = y_1 y_2 y_3$, then I(y') contains $(I(a) - \{1, 2, \dots, 8\}) \cup \{1', 2'\} \cup \Delta'$ of length t+2, contrary to the assumption (*). Thus $y' = ay_1 y_2 y_3$. Then $I(ay_1 y_2 y_3) = (I(a) - \{1, 2, \dots, 8\}) \cup \Delta'$ since $|(I(a) - \{1, 2, \dots, 8\}) \cup \Delta'| = t$. Furthermore this shows that $\langle a, y_1, y_2, y_3 \rangle$ has no orbit of length eight in $\Delta - (\{1', 2'\} \cup \Delta')$. On the other hand C(a) has a 2-element

$$y_1' = (1 \ 3) \ (2 \ 4) \ (5) \ (6) \cdots (t) \cdots$$

By (2.3) we may assume that $\langle a, y_1, y_2, y_3, y_1' \rangle$ is a 2-group. Then y_1' normalizes $\langle a, y_1, y_2, y_3 \rangle$ and so y_1' fixes $\{1', 2'\}$ and Δ' . Set $R = \langle a, y_1, y_2, y_3, y_1' \rangle_i$, where $i \in \Delta'$. Then the order of R is four and so R is cyclic or elementary abelian. Since $\langle a, y_1 \rangle$ is contained in the center of $\langle a, y_1, y_2, y_3, y_1' \rangle$ and semiregular on Δ' , any element of R fixes at least four points of Δ . Suppose that R is a cyclic group generated by an element z. Then since $ay_1 y_2 y_3$ is the involution of R, $z^2 = ay_1 y_2 y_3$. Thus $z^{I(a)}$ has two 4-cycles since $(ay_1 y_2 y_3)^{I(a)} = (1 \ 2) \ (3 \ 4) \ (5 \ 6) \ (7 \ 8)$. However this is impossible since $\langle a, y_1, y_2, y_3, y_1' \rangle^{I(a)}$ has no such element. Next suppose that R is elementary abelian. Since $R_{I(a)} = 1$, $R^{I(a)}$ is also an elementary abelian group of order four. Furthermore since any element of R fixes at least four points of Δ , every element (± 1) of $R^{I(a)}$ has at least three 2-cycles by the assumption (*) and (ii.i). This is a contradiction since $\langle a, y_1, y_2, y_3, y_1' \rangle^{I(a)}$ has no such group. Thus $\langle a, y_1, y_2, y_3 \rangle$ is semiregular on $\Delta - \{1', 2'\}$. Hence by $(2.6) \langle a, y_1, y_2, \cdots, y_k \rangle$ is semiregular on $\Delta - \{1', 2'\}$.

On the other hand a normalizes $G_{1'2'3'4'}$, which is of even order. Hence a commutes with an involution u of $G_{1'2'3'4'}$. Since $C(a)^{I(a)} = A_t, \langle a, y_1, y_2, \dots, y_k \rangle$ has a subgroup which is conjugate to $\langle a, u \rangle$ in C(a). Since u fixes at least four points of Δ , $\langle a, y_1, y_2, \dots, y_k \rangle$ has an element (± 1) fixing at least four points of Δ , which is a contradiction. Thus $C(a)^{I(a)} \pm A_t$. Hence $|\Delta| \equiv 0 \pmod{4}$.

2.8. Let x be a 2-element of N(Q) such that $x^{I(Q)}$ is an involution consisting of m 2-cycles. If x fixes r Q-orbits in Δ , then $r \leq 2m$ and Qx has at least $\frac{r}{2m} |Q|$ involutions which have fixed points in Δ .

Proof. Assume that x fixes r Q-orbits $\Delta_1, \Delta_2, \dots, \Delta_r$ in Δ . Set $\Gamma = \Delta_1 \cup \Delta_2 \cup \dots \cup \Delta_r$. Then

$$r \cdot |\langle Q, x \rangle| = \sum_{u \in \langle Q, x \rangle} |I(u^{\Gamma})|$$
.

Since $\langle Q, x \rangle = Q + Qx$ and $|Q| = |\Delta_1| = \cdots = |\Delta_r|$,

$$r \cdot 2 \cdot |Q| = \sum_{u \in Q} |I(u^{\Gamma})| + \sum_{u \in Q} |I((ux)^{\Gamma})|$$
$$= r \cdot |Q| + \sum_{u \in Q} |I((ux)^{\Gamma})| .$$

Hence

$$\sum_{u\in Q}|I((ux)^{\Gamma})|=r\cdot |Q|.$$

On the other hand $|I(x) \cap I(Q)| = t-2m$. Hence for any element u of $Q |I(ux) \cap \Delta| \le 2m$ by the assumption (*). Hence $|I((ux)^{\Gamma})| \le 2m$. Suppose that Qx has s elements which have fixed points in Γ . Then

$$\sum_{u\in Q}|I((ux)^{r})|\leq 2ms.$$

Hence $r \cdot |Q| \leq 2ms$. Thus $\frac{r}{2m} \cdot |Q| \leq s$. Furthermore since $s \leq |Q|$, $\frac{r}{2m} \cdot |Q| \leq |Q|$. Hence $r \leq 2m$.

Let x' be any element of Qx such that $|I(x') \cap \Delta| \neq 0$. Then $|I(x'^2)| > t$. Hence $x'^2 = 1$ by the assumption (*).

We use the following notations: Assume that the *Q*-orbits on Δ consist of $\Delta_1, \Delta_2, \dots, \Delta_r$. For any element $x \in N(Q)$ let \bar{x} be the permutation on $\{\Delta_1, \Delta_2, \dots, \Delta_r\}$ induced by x,

$$\bar{x} = \begin{pmatrix} \Delta_1 & \Delta_2 & \cdots & \Delta_r \\ \Delta_1^x & \Delta_2^x & \Delta_r^x \end{pmatrix}.$$

Then \overline{x} form a permutation group $\overline{N(Q)}$ on $\overline{\Delta} = \{\Delta_1, \Delta_2, \dots, \Delta_r\}$.

2.9. Suppose that N(Q) has the 2-group $\langle Q, x_1, x_2, \dots, x_k \rangle$ as in (2.4), and $\langle Q, x_1, x_2, \dots, x_k \rangle$ fixes a subset Δ' of Δ . If $\langle Q, x_1, x_2, x_3, x_4 \rangle$ is semiregular on Δ' , then $\langle Q, x_1, x_2, \dots, x_k \rangle$ is semiregular on Δ' .

Proof. Suppose that $\langle Q, x_1, x_2, \dots, x_i \rangle$, $i \ge 4$, is semiregular on Δ' and $\langle Q, x_1, x_2, \dots, x_{i+1} \rangle$ is not semiregular on Δ' . Then $\langle Q, x_1, x_2, \dots, x_i \rangle x_{i+1}$ has an element x having fixed points in Δ' . Since $\langle \bar{x}_1, \bar{x}_2, \dots, \bar{x}_{i+1} \rangle$ is abelian and $\langle \bar{x}_1, \bar{x}_2, \dots, \bar{x}_i \rangle$ is semiregular on the set of the Q-orbits contained in Δ' , \bar{x} fixes at least 2^i Q-orbits in Δ' . On the other hand since $x \in \langle Q, x_1, x_2, \dots, x_{i+1} \rangle$, x has at most i+1 2-cycles on I(Q). Hence by (2.8) $2^i \le 2(i+1)$, so $i \le 3$, which is a contradiction. Thus if $\langle Q, x_1, x_2, \dots, x_i \rangle$, $i \ge 4$, is semiregular on Δ' , then $\langle Q, x_1, x_2, \dots, x_{i+1} \rangle$ is semiregular on Δ' . Since $\langle Q, x_1, x_2, x_3, x_4 \rangle$ is semiregular on Δ' , this implies by induction that $\langle Q, x_1, x_2, \dots, x_k \rangle$ is semiregular on Δ' .

2.10. Suppose that $\langle Q, y_1, y_2, \dots, y_k, y_1' \rangle$ as in (2.4) fixes a subset Δ' of Δ . If $\langle Q, y_1, y_2, y_3, y_4, y_1' \rangle$ is semiregular on Δ' , then $\langle Q, y_1, y_2, \dots, y_k, y_1' \rangle$ is semiregular on Δ' .

Proof. Suppose that $\langle Q, y_1, y_2, \dots, y_i, y_1' \rangle$, $i \ge 4$, is semiregular on Δ' and $\langle Q, y_1, y_2, \dots, y_{i+1}, y_1' \rangle$ is not semiregular on Δ' . Then there is an element y (± 1) in $\langle Q, y_1, y_2, \dots, y_{i+1}, y_1' \rangle$ such that \bar{y} fixes Q-orbits in Δ' . Then $y^{I(Q)}$ is of order four or two. If $y^{I(Q)}$ is of order four, then $y^{I(Q)}$ consists of exactly one 4-cycle (1 3 2 4) or (1 4 2 3) and some 2-cycles. Hence $(y^2)^{I(Q)} = y_1^{I(Q)}$ and so $\bar{y}^2 = \bar{y}_1$. This is a contradiction since \bar{y}_1 has no fixed point in the set of the Q-orbits in Δ' . Thus $y^{I(Q)}$ is of order two and consists of at most i+2 2-cycles. Then \bar{y} centralizes $\langle \bar{y}_1, \bar{y}_2 \bar{y}_3, \bar{y}_2 \bar{y}_4, \dots, \bar{y}_2 \bar{y}_i, \bar{y}_1' \rangle$ or $\langle \bar{y}_1, \bar{y}_2, \dots, \bar{y}_i \rangle$, which is semiregular on the set of Q-orbits in Δ' and so by (2.8) $2^i \le 2(i+2)$. Hence $i \le 3$, which is a contradiction. Thus if $\langle Q, y_1, y_2, \dots, y_i, y_1' \rangle$, $i \ge 4$, is semiregular on Δ' , then $\langle Q, y_1, y_2$.

..., y_{i+1} , y_1' is semiregular on Δ' . Since $\langle Q, y_1, y_2, y_3, y_4, y_1' \rangle$ is semiregular on Δ' , this implies by induction that $\langle Q, y_1, y_2, \dots, y_k, y_1' \rangle$ is semiregular on Δ' .

2.11. G is not 5-fold transitive on Ω .

Proof. If G is 5-fold transitive on Ω , then G_1 is 4-fold transitive on Ω -{1} and satisfies the assumptions of the theorem. Hence by the minimal nature of the degree of G, G_1 contains A_{n-1} , so G contains A_n . This is a contradiction. Thus G is not 5-fold transitive.

2.12. Let x be an involution of N(Q). If there is a Q-orbit Δ' in Δ such that $|I(x) \cap \Delta'| = 2$, then $C(Q)^{I(Q)} = A_t$ or S_t .

Proof. Since x is an involution and $|I(x) \cap \Delta'| = 2$, x induces an involutory automorphism of Q which fixes exactly two elements. By a theorem of H. Zassenhaus ([16], Satz 5) Q contains a cyclic group of index two. Then the automorphism group of Q is S_3 , S_4 or a 2-group (cf. H. Zassenhaus [17], IV, §3, Exercise 4). Since $N(Q)^{I(Q)} = A_t$ or S_t , $t \ge 6$ and $N(Q)^{I(Q)}/C(Q)^{I(Q)}$ is involved in the automorphism group of Q, $C(Q)^{I(Q)}$ contains A_t .

2.13. Let x be a 2-element of N(Q). If $x^{I(Q)}$ is an involution consisting of exactly one 2-cycle, then $|I(x) \cap \Delta| = 0$.

Proof. Since $|I(x)| \le t$, $|I(x) \cap \Delta| = 0$ or 2. Suppose by way of contradiction that $x^{I(Q)}$ is an involution consisting of exactly one 2-cycle and $|I(x) \cap \Delta| = 2$. Then $|I(x^2)| \ge t+2$. Hence $x^2=1$. Since $x^{I(Q)}$ is an odd permutation, $N(Q)^{I(Q)} = S_t$. Furthermore by (2.12) $C(Q)^{I(Q)} = S_t$ or A_t . We treat these cases separately.

(i) Suppose that $C(Q)^{I(Q)} = S_t$. Then C(Q) has a 2-element x' such that $x'^{I(Q)} = x^{I(Q)}$. Since Q is a Sylow 2-subgroup of $G_{I(Q)}$, $\langle Q, x \rangle$ and $\langle Q, x' \rangle$ are Sylow 2-subgroups of $\langle Q, x, x' \rangle$. Hence $\langle Q, x \rangle$ is conjugate to $\langle Q, x' \rangle$. Thus x is conjugate to x'c, where $c \in Q$, and so $|I(x'c) \cap \Delta| = 2$. Hence x'c commutes with exactly one element of Q other than 1, which is a central involution of Q. On the other hand since $x' \in C(Q)$, x' commutes with c. Hence x'c commutes with c. Thus c is 1 or a central involution of Q. Hence $x'c \in C(Q)$ and so Q is of order two. Set $Q = \langle a \rangle$. Then we may assume that

$$a = (1) (2) \cdots (t) (1' 2') (3' 4') \cdots (n-1 n).$$

Since $|\Delta| \equiv 0 \pmod{4}$ and $|I(x) \cap \Delta| = 2$, $|I(ax) \cap \Delta| \equiv 2 \pmod{4}$. Hence $|I(ax) \cap \Delta| = 2$ because $|I(ax)| \leq t$. Since $C(a)^{I(a)} = S_t, C(a)$ has the 2-group $\langle a, x_1, x_2, \dots, x_k \rangle$ as in (2.4). Since $\langle a, x_i \rangle$, $1 \leq i \leq k$, is conjugate to $\langle a, x \rangle$ in $C(a), \langle a, x_i \rangle$ is elementary abelian and $|I(x_i) \cap \Delta| = |I(ax_i) \cap \Delta| = 2$. Hence we may assume that

 $x_1 = (1 \ 2) \ (3) \ (4) \cdots (t) \ (1') \ (2') \ (3' \ 4') \ (5' \ 7') \ (6' \ 8') \cdots$

Then $\langle a, x_1 \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$.

Now we show that $\langle a, x_1, x_2, \dots, x_k \rangle$ is elementary abelian and semiregular on $\Delta - \{1', 2', 3', 4'\}$, where $\{1', 2'\}$ and $\{3', 4'\}$ are $\langle a, x_1, x_2, \dots, x_k \rangle$ -orbits of length two. Since x_2 normalizes $\langle a, x_1 \rangle$, $x_1^{x_2} = x_1$ or ax_1 . Suppose that $x_1^{x_2} = ax_1$. Then $(x_1 x_2)^2 = a$. Hence $\langle x_1 x_2 \rangle$ is a cyclic group of order four and contains a. On the other hand since $C(a)^{I(a)} = S_t$, $\langle a, x_1, x_3 \rangle$ is conjugate to $\langle a, x_1, x_2 \rangle$ in C(a). Hence $x_1^{x_3} = ax_1$. Thus $x_1^{x_2x_3} = x_1$ and so $x_2 x_3$ centralizes $\langle a, x_1 \rangle$. Furthermore since $I(x_1) \cap \Delta = \{1', 2'\}$ and $I(ax_1) \cap \Delta = \{3', 4'\}$, $x_2 x_3$ fixes $\{1', 2'\}$ and $\{3', 4'\}$. Thus $I((x_2 x_3)^2)$ contains $I(a) \cap \{1', 2', 3', 4'\}$ of length t+4. Hence $(x_2 x_3)^2 = 1$. This is a contradiction since $\langle a, x_2 x_3 \rangle$ is conjugate to the cyclic group $\langle x_1 x_2 \rangle$. Thus x_2 commutes with x_1 and so $\langle a, x_1, x_2 \rangle$ is elementary abelian. Furthermore $\langle a, x_1, x_2 \rangle$ is conjugate to $\langle a, x_i, x_j \rangle$, $i \neq j$ and $1 \leq i, j \leq k$. Hence $\langle a, x_i, x_j \rangle$ is also elementary abelian. Thus $\langle a, x_1, x_2 \cdots, x_k \rangle$ is elementary abelian. Since $I(x_1) \cap \Delta = \{1', 2'\}$ and $I(ax_1) \cap \Delta = \{3', 4'\}$, $\{1', 2'\}$ and $\{3', 4'\}$ are $\langle a, x_1, x_2, \dots, x_k \rangle$ -orbits of length two. Since x_i or $ax_i, 2 \leq i \leq k$, fixes $\{1', 2'\}$ pointwise, we may assume that x_i fixes $\{1', 2'\}$ pointwise.

Suppose that $\langle a, x_1, x_2 \rangle$ is not semiregular on $\Delta - \{1', 2', 3', 4'\}$. Then $\langle a, x_1, x_2 \rangle$ has an orbit Δ' of length four in $\Delta - \{1', 2', 3', 4'\}$. Since $\langle a, x_1, x_2 \rangle$ is an elementary abelian group of order eight, there is exactly one involution x' in $\langle a, x_1, x_2 \rangle$ fixing Δ' pointwise. Since $|\Delta'| = 4$, x' has at least two 2-cycles in I(a). Hence $x' = x_1 x_2$ or $ax_1 x_2$. If $x' = x_1 x_2$, then I(x') contains $(I(a) - \{1, 2, 3, 4\}) \cup \{1', 2'\} \cup \Delta'$ of length t+2, contrary to the assumption (*). Thus $x' = ax_1 x_2$. Then $I(ax_1 x_2) = (I(a) - \{1, 2, 3, 4\}) \cup \Delta'$ since $|(I(a) - \{1, 2, 3, 4\}) \cup \Delta'| = t$. This shows that $\langle a, x_1, x_2 \rangle$ is semiregular on $\Delta - (\{1', 2', 3', 4'\} \cup \Delta')$. By (2.4) C(a) has x_3 . Then x_3 normalizes $\langle a, x_1, x_2 \rangle$ and so fixes Δ' . Hence by the same argument as above $ax_1 x_3$ fixes Δ' pointwise. Thus $I(ax_1 x_2 \cdot ax_1 x_3) = I(x_2 x_3)$ contains $(I(a) - \{3, 4, 5, 6\}) \cup \{1', 2', 3', 4'\} \cup \Delta'$ of length t+4, contrary to the assumption (*). Thus $\langle a, x_1, x_2 \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$. Hence by (2.5) $\langle a, x_1, x_2, \cdots, x_k \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$.

On the other hand $\langle a, x_1 \rangle$ normalizes $G_{5'6'7'8'}$, which is even order. Hence a and x_1 commute with an involution u of $G_{5'6'7'8'}$. Since $I(x_1) \cap \Delta = \{1', 2'\}$ and $I(ax_1) \cap \Delta = \{3', 4'\}$, $\langle a, u \rangle$ has at least four orbits $\{1', 2'\}$, $\{3', 4'\}$, $\{5', 6'\}$ and $\{7', 8'\}$ of length two in Δ . Since $C(a)^{I(a)} = S_t$, $\langle a, x_1, x_2, \dots, x_k \rangle$ has a subgroup $\langle a, u \rangle$ which is conjugate to $\langle a, u \rangle$ in C(a). This is a contradiction since $\langle a, u \rangle$ has exactly two orbits $\{1', 2'\}$ and $\{3', 4'\}$ of length two in Δ . Thus $C(Q)^{I(Q)} \neq S_t$.

(ii) Suppose that $C(Q)^{I(Q)} = A_t$.

(ii.i) We show that x fixes exactly one Q-orbit in Δ . Since $|I(x) \cap \Delta| = 2$, x fixes at least one Q-orbit in Δ . On the other hand by (2.8) x fixes at most two Q-orbits. Suppose that x fixes exactly two Q-orbits Δ_1 and Δ_2 in Δ . Let u be

any element of Q. Then by (2.8) ux is an involution having fixed points in Δ_1 or Δ_2 . Since ux consists of one 2-cycle on I(Q), ux fixes two points and these two points are contained in either Δ_1 or Δ_2 . Hence $\langle Q, x \rangle$ is semiregular on $\Delta - (\Delta_1 \cup \Delta_2)$. Since $(ux)^2 = 1$, $u^x = u^{-1}$. In particular if u is an involution, then x commutes with u. On the other hand since $|I(x) \cap \Delta| = 2$, x commutes with exactly one involution of Q. Hence Q has exactly one involution and so Q is a cyclic or generalized quaternion group. Let u and u' be any two elements of Q. Then $(uu')^x = (uu')^{-1}$, and $(uu')^x = u^x u'^x = u^{-1}u'^{-1} = (u'u)^{-1}$. Hence uu' = u'u and so Q is a cyclic group. Furthermore since $C(Q)^{I(Q)} = A_t$, any 2-element of N(Q)whose restriction on I(Q) is an even permutation belongs to C(Q).

N(Q) has the 2-group $\langle Q, x_1, x_2, x_3 \rangle$ as in (2.4). Since $\langle Q, x_1 \rangle$ is conjugate to $\langle Q, x \rangle$, we may assume that $x_1 = x$,

$$x_1 = (1 \ 2) \ (3) \ (4) \cdots (t) \ (1') \ (2') \ (3' \ 4') \cdots$$

and $\{1', 2'\} \subset \Delta_1$. Since x_2 normalizes $\langle Q, x_1 \rangle$ and $\langle Q, x_1 \rangle$ has exactly two orbits Δ_1 and Δ_2 of length |Q|, $\Delta_1^{x_2} = \Delta_1$ or Δ_2 . First assume that $\Delta_1^{x_2} = \Delta_1$. Since $\langle Q, x_1, x_3 \rangle$ is conjugate to $\langle Q, x_1, x_2 \rangle$ in N(Q), $\Delta_1^{x_3} = \Delta_1$. Hence $\Delta_1^{x_2x_3} = \Delta_1$. Next assume that $\Delta_1^{x_2} = \Delta_2$. Then similarly $\Delta_1^{x_3} = \Delta_2$. Hence $\Delta_1^{x_2x_3} = \Delta_1$. Thus in either case $\Delta_1^{x_2x_3} = \Delta_1$. Hence there is an element y in $Qx_2 x_3$ such that $|I(y) \cap \Delta_1| \neq 0$. Since $y^{I(Q)} = (3 \ 4) (5 \ 6)$, $|I(y) \cap \Delta_1| = 2$ or 4. Furthermore as we have seen above $y \in C(Q)$. Hence |Q| = 2 or 4. However we assume that $N(Q) \neq C(Q)$. Hence |Q| = 4. Let $Q = \langle b \rangle$. Since $b^{x_1} = b^{-1}$, we may assume that

$$b = (1) (2) \cdots (t) (1' 3' 2' 4') (5' 7' 6' 8') \cdots$$

 $\Delta_1 = \{1', 2', 3', 4'\}$ and $\Delta_2 = \{5', 6', 7', 8'\}$. Then

$$y = (1) (2) (3 4) (5 6) (7) (8) \cdots (t) (1') (2') (3') (4') (5' 6') (7' 8') \cdots$$

On the other hand C(Q) has a 2-element

 $y' = (1) (2) (3 5) (4 6) (7) (8) \cdots (t) \cdots$

By (2.3) we may assume that $\langle Q, x_1, y, y' \rangle$ is a 2-group. Since $\langle Q, x_1, y' \rangle$ is conjugate to $\langle Q, x_1, y \rangle$ in $N(Q), \Delta_1^{y'} = \Delta_1$ and $\Delta_2^{y'} = \Delta_2$. Then Qy' has an element

$$y'' = (1) (2) (3 5) (4 6) (7) (8) \cdots (t) (1') (2') (3') (4') (5' 6') (7' 8') \cdots$$

Then yy'' is of even order and I(yy'') contains $(I(Q) - \{3, 4, 5, 6\}) \cup \Delta_1 \cup \Delta_2$ of length t+4, contrary to the assumption (*). Thus x_1 fixes exactly one Q-orbit in Δ .

(ii.ii) We show that |Q| = 4. Since $N(Q)^{I(Q)} \neq C(Q)^{I(Q)}$, $|Q| \neq 2$. Suppose by way of contradiction that $|Q| \ge 8$. By (2.4) N(Q) has the 2-group $\langle Q, x_1, x_2, y_2, y_3, y_4 \rangle$.

 x_{3} . Since $\langle Q, x_{1} \rangle$ is conjugate to $\langle Q, x \rangle$, we may assume that $x_{1} = x$ and

$$x_1 = (1 \ 2) \ (3) \ (4) \cdots (t) \ (1') \ (2') \ (3' \ 4') \ (5' \ 7') \ (6' \ 8') \cdots$$

Then there is exactly one involution a in Q commuting with x_1 . Then we may assume that

$$a = (1) (2) \cdots (t) (1' 2') (3' 4') (5' 6') (7' 8') \cdots (n-1 n).$$

By (ii.i) there is exactly one Q-orbit Δ_1 in Δ fixed by x_1 . Since $|\Delta_1| = |Q| \ge 8$, we may assume that $\Delta_1 \supseteq \{1', 2', \dots, 8'\}$. Since x_2 and x_3 normalizes $\langle Q, x_1 \rangle, x_2$ and x_3 fix Δ_1 . Thus Qx_2 and Qx_3 have elements fixing 1' of Δ_1 . We may assume that x_2 and x_3 fix 1'. Then $I(x_i^{x_j} \cdot x_i) \supseteq I(a) \cup \{1'\}, 1 \le i, j \le 3$. Hence $x_2^2 = x_3^2 = 1$ and x_i commutes with x_i . Since $I(x_1) \cap \Delta = \{1', 2'\}$ and $|I(x_i)| \le t, i=2, 3,$ $I(x_i) \cap \Delta = \{1', 2'\}$. This implies that x_2 and x_3 commute with a. Thus $\langle a, x_1, a, a \rangle$ x_2, x_3 is elementary abelian. Furthermore $I(ax_1) \cap \Delta = \{3', 4'\}$. Hence x_2 and $x_3 = (1') (2') (3' 4')$ on $\{1', 2', 3', 4'\}$. On the other hand $|\Delta_1 - \{1', 2', 3', 4'\}| \equiv 4$ (mod 8). Hence $\langle a, x_1, x_2, x_3 \rangle$ has an orbit of length four in $\Delta_1 - \{1', 2', 3', 4'\}$. Hence we may assume that $\{5', 6', 7', 8'\}$ is the $\langle a, x_1, x_2, x_3 \rangle$ -orbit of length four. Since $|\langle a, x_1, x_i \rangle| = 8$, i=2, 3, there is an involution x_i' in $\langle a, x_1, x_i \rangle$ fixing $\{5', 6', 7', 8'\}$ pointwise. Since $|I(x_i)| \le t, x_i = x_1 x_i$ or $ax_1 x_i$. If $x_i = x_1 x_i$, then $I(x_1, x_i) \cap \Delta \supseteq \{1', 2', \dots, 8'\}$ and so $|I(x_1, x_i)| \ge t+4$, contrary to the assumption (*). Thus $x_i' = ax_1x_i$. Hence $I(ax_1x_2 \cdot ax_1x_3) = I(x_2x_3)$ contains $(I(a) - ax_1x_3) = I(ax_1x_2 \cdot ax_3)$ $\{3, 4, 5, 6\} \cup \{1', 2', \dots, 8'\}$ of length t+4, contrary to the assumption (*). Thus |Q| = 4.

(ii.iii) We show that |Q| = 4 implies a contradiction. N(Q) has the 2-group $\langle Q, x_1, x_2, \dots, x_k \rangle$ as in (2.4). Since $\langle Q, x_1 \rangle$ is conjugate to $\langle Q, x \rangle$, we may assume that $x_1 = x$ and

 $x_1 = (1 \ 2) \ (3) \ (4) \cdots (t) \ (1') \ (2') \ (3' \ 4') \ (5' \ 7') \ (6' \ 8') \cdots$

Let a be an involution of Q commuting with x_1 . Then we may assume that

$$a = (1) (2) \cdots (t) (1' 2') (3' 4') \cdots (n-1 n).$$

Then by (ii.i) and (ii.ii) $\{1', 2', 3', 4'\}$ is a $\langle Q, x_1 \rangle$ -orbit and $\langle Q, x_1 \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$. Since x_i normalizes $\langle Q, x_1 \rangle$, $2 \leq i \leq k$, x_i fixes $\{1', 2', 3', 4'\}$. Hence Qx_i has an element fixing 1'. We may assume that x_i fixes 1'. Then $I(x_i^{x_j} \cdot x_i)$, $1 \leq i, j \leq k$, contains $I(Q) \cup \{1'\}$ of length t+1. Hence $x_i^{x_j} \cdot x_i=1$. Thus $x_i^2 = 1$ and $x_i x_j = x_j x_i$. Furthermore $I(x_1) \cap \Delta = \{1', 2'\}$. Hence $I(x_i) \cap \Delta$ $= \{1', 2'\}$, $i \geq 2$. This implies that x_i commutes with a. Thus $\langle a, x_1, x_2, \cdots, x_k \rangle$ is elementary abelian and $x_i = (1')$ (2') (3' 4') on $\{1', 2', 3', 4'\}$, $1 \leq i \leq k$. Furthermore since $x_i x_j$, $1 \leq i, j \leq k$, fixes $\{1', 2', 3', 4'\}$ pointwise, $\langle a, x_i x_j \rangle \langle Z$ ($\langle Q, x_1, x_2, \cdots, x_k \rangle$).

Now we show that $\langle Q, x_1, x_2, \dots, x_k \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$.

Suppose that $\langle Q, x_1, x_2 \rangle$ is not semiregular on $\Delta - \{1', 2', 3', 4'\}$. Then there is a $\langle Q, x_1, x_2 \rangle$ -orbit Δ' of length eight. Since $\langle Q, x_1 \rangle$ and $\langle Q, x_2 \rangle$ are semiregular on $\Delta - \{1', 2', 3', 4'\}$, there is an element u in Q such that $ux_1 x_2$ has fixed points in Δ' . If u=1 or a, then $ux_1x_2 \in Z(\langle Q, x_1, x_2 \rangle)$. Thus ux_1x_2 fixes Δ' pointwise and so $|I(ux, x_0)| \ge t+4$, contrary to the assumption (*). Thus $u \ne 1, a$. Since $0 < |I(ux_1x_2) \cap \Delta'| \le 4$ and $ux_1x_2 \in C(Q)$, ux_1x_2 fixes exactly four points of Δ' . Since $|\Delta'|=8$, there is an element u' in Q such that $u'x_1x_2$ fixes exactly four points of Δ' which are not fixed by ux_1x_2 . By the same reason as above $u' \neq 1, a$. Hence u'=ua. Furthermore this shows that $\langle Q, x_1, x_2 \rangle$ is semiregular on Δ - $(\{1', 2', 3', 4'\} \cup \Delta')$. By (2.4) N(Q) has x_3 . Then x_3 normalizes $\langle Q, x_1, x_2 \rangle$ and so fixes Δ' . Hence by the same argument as above $u''x_1x_3$, where u''=u or ua, fixes the same points of Δ' that $ux_1 x_2$ fixes. Then $ux_1 x_2 \cdot u'' x_1 x_3 = uu'' x_2 x_3$ has fixed points in Δ' . Since $uu''=u^2$ or u^2a and $u^2=1$ or a, uu''=1 or a. Hence $uu''x_2x_3 \in C(\langle Q, x_1, x_2 \rangle)$ and so $uu''x_2x_3$ fixes Δ' pointwise. Thus $|I(uu''x_2x_3)|$ $\geq t+4$, contrary to the assumption (*). Thus $\langle Q, x_1, x_2 \rangle$ is semiregular on $\Delta \{1', 2', 3', 4'\}.$

Suppose that $\langle Q, x_1, x_2, x_3 \rangle$ is not semiregular on $\Delta - \{1', 2', 3', 4'\}$. Then there is a $\langle Q, x_1, x_2, x_3 \rangle$ -orbit Δ' of length sixteen. Since $\langle Q, x_1, x_3 \rangle$ and $\langle Q, x_2, x_3 \rangle$ are conjugate to $\langle Q, x_1, x_2 \rangle$ in N(Q), $\langle Q, x_1, x_3 \rangle$ and $\langle Q, x_2, x_3 \rangle$ are semiregular on $\Delta - \{1', 2', 3', 4'\}$. Hence there is an element x' in $Qx_1x_2x_3$ such that x' has fixed points in Δ' . Since $\langle a, x_1x_2, x_1x_3 \rangle \langle Z(\langle Q, x_1, x_2, x_3 \rangle), x' \in C(\langle a, x_1x_2, x_1x_3 \rangle)$. On the other hand $\langle Q, x_1, x_2 \rangle$, $\langle Q, x_1, x_3 \rangle$ and $\langle Q, x_2, x_3 \rangle$ are semiregular on Δ' . Hence $\langle a, x_1x_2, x_1x_3 \rangle$ is semiregular on Δ' . Since x' has fixed points in Δ' and $|\langle a, x_1x_2, x_1x_3 \rangle| = 8$, x' fixes at least eight points of Δ' . Thus $|I(x')| \geq t - 6 + 8$ = t + 2, contrary to the assumption (*). Thus $\langle Q, x_1, x_2, x_3 \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$.

Suppose that $\langle Q, x_1, x_2, x_3, x_4 \rangle$ is not semiregular on $\Delta - \{1', 2', 3', 4'\}$. Then $\langle Q, x_1, x_2, x_3, x_4 \rangle$ has an orbit Δ' of length 2⁵. Since $\langle Q, x_2, x_3, x_4 \rangle$, $\langle Q, x_1, x_2, x_4 \rangle$ and $\langle Q, x_1, x_3, x_4 \rangle$ ar conjugate to $\langle Q, x_1, x_2, x_3 \rangle$ in N(Q), these groups are semiregular on $\Delta - \{1', 2', 3', 4'\}$. Hence there is an element x' in $Qx_1 x_2 x_3 x_4$ such that x' has fixed points in Δ' . Since $\langle Q, x_1 x_2, x_3 x_4 \rangle < C(Q)$, $x' \in C(Q)$. Furthermore since $x_1 x_2$ and $x_3 x_4 \in Z(\langle Q, x_1, x_2, x_3, x_4 \rangle)$, $x_1 x_2$ and $x_1 x_3$ commute with x'. Thus $x' \in C(\langle Q, x_1 x_2, x_1 x_3 \rangle)$. Since $\langle Q, x_1 x_2, x_1 x_3 \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$ and of order 2⁴, x' fixes at least 2⁴ points in Δ' . Then $|I(x')| \ge t - 2 \cdot 4 + 2^4 = t + 8$, contrary to the assumption (*). Thus $\langle Q, x_1, x_2, x_3, x_4 \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$. Hence by (2.9) $\langle Q, x_1, x_2, \cdots, x_k \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$.

On the other hand $\langle a, x_1 \rangle$ normalizes $G_{5'6'7'8'}$, which is even order. Hence a and x_1 commute with an involution u of $G_{5'6'7'8'}$. Then $\langle a, x_1, u \rangle$ normalizes $G_{I(Q)}$. Hence there is a Sylow 2-subgroup Q' of $G_{I(Q)}$ such that $\langle a, x_1, u \rangle$ normalizes Q'. Since Q' is conjugate to Q in $G_{I(Q)}$ and $N(Q)^{I(Q)} = S_t, \langle Q', a, x_1, u \rangle$

is conjugate to a subgroup of $\langle Q, x_1, x_2, \dots, x_k \rangle$ in $N(G_{I(Q)})$. Then $\langle Q', a, x_1, u \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$ since $I(x_1) \cap \Delta = \{1', 2'\}$ and $I(ax_1) \cap \Delta = \{3', 4'\}$. This is a contradiction since $I(u) \cap \Delta \supseteq \{5', 6', 7', 8'\}$. Thus $C(Q)^{I(Q)} \neq A_t$ and so we complete the proof of (2.13)

2.14. Let y be a 2-element of N(Q). If $y^{I(Q)}$ is an involution consisting of exactly two 2-cycles, then $|I(y) \cap \Delta| \neq 2$.

Proof. Suppose by way of contradiction that $y^{I(Q)}$ is an involution consisting of exactly two 2-cycles and $|I(y) \cap \Delta| = 2$. Then $|I(y^2)| \ge t+2$. Hence $y^2 = 1$. We may assume that

$$y = (1 \ 2) \ (3 \ 4) \ (5) \ (6) \cdots (t) \ (1') \ (2') \ (3' \ 4') \cdots$$

Then by (2.12) $C(Q)^{I(Q)} = S_t$ or A_t . Then since $y^{I(Q)}$ is an even permutation, $y^{I(Q)} \in C(Q)^{I(Q)}$. Thus there is an element *a* of *Q* such that $ay \in C(Q)$. Hence *ay* commutes with *a* and so *y* commutes with *a*. On the other hand *y* commutes with exactly one involution of *Q*, which is a central involution of *Q*. Hence $a \in Z(Q)$ and so $y \in C(Q)$. Thus |Q| = 2 and so $Q = \langle a \rangle$. Since $I(y) \cap \Delta = \{1', 2'\}$ and $|\Delta - \{1', 2'\}| \equiv 2 \pmod{4}$, $|I(ay) \cap \Delta| \equiv 2 \pmod{4}$. Hence $|I(ay) \cap \Delta| = 2$. Thus we may assume that

 $a = (1) (2) \cdots (t) (1' 2') (3' 4') \cdots (n-1 n)$.

Then $\langle a, y \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$. Since $C(a)^{I(a)} \ge A_t$, there is an element z in C(Q) of the form

$$z = (1 \ 3 \ 2 \ 4) \ (5 \ 6) \cdots (t) \cdots$$

By (2.3) we may assume that $\langle a, y, z \rangle$ is a 2-group. Then $z^2 = y$ or ay, and so $I(z^2) \cap \Delta = \{1', 2'\}$ or $\{3', 4'\}$. Thus z consists of 4-cycles on $\Delta - \{1', 2'\}$ or $\Delta - \{3', 4'\}$. Hence $|\Delta| \equiv 2 \pmod{4}$, contrary to (2.7). Thus we complete the proof.

2.15. Let y be a 2-element of N(Q). If $y^{I(Q)}$ is an involution consisting of exactly two 2-cycles, then $|I(y) \cap \Delta| = 0$.

Proof. Since $|I(y) \cap I(Q)| = t-4$, $|I(y) \cap \Delta| = 0$, 2 or 4. By (2.14) $|I(y) \cap \Delta| = 2$. Hence suppose by way of contradiction that $|I(y) \cap \Delta| = 4$. By (2.4) N(Q) has the 2-group $\langle Q, y_1, y_2, \dots, y_k, y_1' \rangle$. Since $\langle Q, y_1 \rangle$ is conjugate to $\langle Q, y \rangle$, we may assume that $y_1 = y$.

First we show that y_1 fixes at least two Q-orbits in Δ . Suppose by way of contradiction that y_1 fixes exactly one Q-orbit Δ_1 in Δ . Then $|I(y_1) \cap \Delta_1| = 4$, so $|Q| = |\Delta_1| \ge 4$.

Since $N(Q)^{I(Q)} = S_t$ or A_t , first assume that $N(Q)^{I(Q)} = S_t$. Then N(Q) has

a 2-element

$$x = (1 \ 2) \ (3) \ (4) \cdots (t) \cdots$$

By (2.3) we may assume that $\langle Q, y_1, x \rangle$ is a 2-group. Then x normalizes $\langle Q, y_1 \rangle$. Hence x fixes Δ_1 , contrary to (2.13). Thus $N(Q)^{I(Q)} \neq S_t$.

Hence $N(Q)^{I(Q)} = A_t$. First we show that $\langle Q, y_1, y_2, \dots, y_k, y_1 \rangle$ fixes Δ_1 and is semiregular on $\Delta - \Delta_1$. Since y_1' normalizes $\langle Q, y_1 \rangle$, y_1' fixes Δ_1 . Since $\langle Q, y_1' \rangle$ and $\langle Q, y_1 y_1' \rangle$ are conjugate to $\langle Q, y_1 \rangle$ in N(Q), $\langle Q, y_1' \rangle$ and $\langle Q, y_1 y_1' \rangle$ are semiregular on $\Delta - \Delta_1$. Thus $\langle Q, y_1, y_1' \rangle$ are semiregular on $\Delta - \Delta_1$.

Since $(y_i y_j)^{I(Q)} = (y_j y_i)^{I(Q)}$, $1 \le i, j \le k, \bar{y}_i \bar{y}_j = \bar{y}_j \bar{y}_i$. Thus $\langle \bar{y}_1, \bar{y}_2, \dots, \bar{y}_k \rangle$ is elementary abelian. Similarly since $(y_1 y_1')^{I(Q)} = (y_1' y_1)^{I(Q)}$ and $(y_i y_j \cdot y_1')^{I(Q)} = (y_1' \cdot y_i y_j)^{I(Q)}$, $2 \le i, j \le k, \langle \bar{y}_1, \bar{y}_1', \bar{y}_i \bar{y}_j \rangle$ is elementary abelian. Since \bar{y}_1 fixes exactly one Q-orbit Δ_1 in $\bar{\Delta}, \langle \bar{y}_1, \bar{y}_2, \dots, \bar{y}_k, \bar{y}_1' \rangle$ fixes Δ_1 . Thus Δ_1 is the $\langle Q, y_1, y_2, \dots, y_k, y_1' \rangle$ -orbit.

Suppose that $\langle Q, y_1, y_2, y_1' \rangle$ is not semiregular on $\Delta - \Delta_1$. Then there is an element y' in $\langle Q, y_1, y_1' \rangle y_2$ such that \bar{y}' has fixed points in $\bar{\Delta} - \{\Delta_1\}$. Then $y'^{I(Q)}$ is of order two or four. If $y'^{I(Q)}$ is of order two, then $y'^{I(Q)}$ consists of two 2-cycles. Thus $\langle Q, y' \rangle$ is conjugate to $\langle Q, y_1 \rangle$ which fixes exactly one Q-orbit Δ_1 . This is a contradiction. Thus $y'^{I(Q)}$ is of order four and consists of one 4cycle and one 2-cycle. Then y'^2 consists of two 2-cycles on I(Q) and fixes at least two Q-orbits in Δ , which is also a contradiction. Thus $\langle Q, y_1, y_2, y_1' \rangle$ is semiregular on $\Delta - \Delta_1$.

Suppose that $\langle Q, y_1, y_2, y_3, y_1' \rangle$ is not semiregular on $\Delta - \Delta_1$. Then there is an element y' in $\langle Q, y_1, y_2, y_1' \rangle y_3$ such that \bar{y}' has fixed points in $\bar{\Delta} - \{\Delta_1\}$. Then $\langle Q, y' \rangle$ is not conjugate to any subgroup of $\langle Q, y_1, y_2, y_1' \rangle$. Hence $y'^{I(Q)} = (y_1 y_2 y_3)^{I(Q)}$, $(y_1' y_2 y_3)^{I(Q)}$ or $(y_1 y_1' y_2 y_3)^{I(Q)}$. Suppose that $y'^{I(Q)} = (y_1 y_2 y_3)^{I(Q)}$. Then $\bar{y}' = \bar{y}_1 \bar{y}_2 \bar{y}_3$ commutes with \bar{y}_1, \bar{y}_2 and \bar{y}_1' . Since $\langle \bar{y}_1, \bar{y}_2, \bar{y}_1' \rangle$ is semiregular on $\bar{\Delta} - \{\Delta_1\}, \bar{y}'$ fixes at least eight Q-orbits in $\bar{\Delta} - \{\Delta_1\}$. Thus y' fixes at least eight Q-orbits other than Δ_1 . However since $y'^{I(Q)}$ consists of four 2-cycles, y'fixes at most eight Q-orbits in Δ by (2.8). Thus we have a contradiction. Hence $y'^{I(Q)} = (y_1 y_2 y_3)^{I(Q)}$. Suppose that $y'^{I(Q)} = (y_1' y_2 y_3)^{I(Q)}$ or $(y_1 y_1' y_2 y_3)^{I(Q)}$. Then $\langle Q, y' \rangle$ is conjugate to $\langle Q, y_1 y_2 y_3 \rangle$ in N(Q) and so semiregular on $\Delta - \Delta_1$, which is a contradiction. Thus $\langle Q, y_1, y_2, y_3, y_1' \rangle$ is semiregular on $\Delta - \Delta_1$.

Suppose that $\langle Q, y_1, y_2, y_3, y_4, y_1' \rangle$ is not semiregular on $\Delta - \Delta_1$. Then there is an element y' in $\langle Q, y_1, y_2, y_3, y_1' \rangle y_4$ such that \bar{y}' has fixed points in $\bar{\Delta} - \{\Delta_1\}$. Then $\langle Q, y' \rangle$ is not conjugate to any subgroup of $\langle Q, y_1, y_2, y_3, y_1' \rangle$. Hence y'consists of one 4-cycle and three 2-cycles on I(Q). Then $\langle Q, y'^2 \rangle = \langle Q, y_1 \rangle$, which is semiregular on $\Delta - \Delta_1$. Thus we have a contradiction. Hence $\langle Q, y_1, y_2, y_3, y_4, y_1' \rangle$ is semiregular on $\Delta - \Delta_1$. Hence by (2.10) $\langle Q, y_1, y_2, \cdots, y_k, y_1' \rangle$ is semiregular on $\Delta - \Delta_1$.

Let a be an involution of Q commuting with y_1 and $\{i_1, i_2, i_3, i_4\}$ be any

 $\langle a, y_1 \rangle$ -orbit in $\Delta - \Delta_1$. Then $\langle a, y_1 \rangle$ normalizes $G_{i_1 i_2 i_3 i_4}$, which is of even order. Hence a and y_1 commute with an involution u of $G_{i_1 i_2 i_3 i_4}$. Then the 2-group $\langle y_1, u \rangle$ normalizes $G_{I(Q)}$. Hence $\langle y_1, u \rangle$ normalizes a Sylow 2-subgroup Q' of $G_{I(Q)}$. Since Q' is conjugate to Q in $G_{I(Q)}$ and $N(Q)^{I(Q)} = A_t, \langle Q', y_1, u \rangle$ is conjugate to a subgroup of $\langle Q, y_1, y_2, \dots, y_k, y_1 \rangle$ in $N(G_{I(Q)})$. Hence $I(y_1) \cap \Delta$ and $\{i_1, i_2, i_3, i_4\}$ are contained in the same Q'-orbit. Since $\{i_1, i_2, i_3, i_4\}$ is any $\langle a, y_1 \rangle$ -orbit in $\Delta - \Delta_1$, $G_{I(Q)}$ is transitive on Δ . Hence G_{1234} is transitive or has two orbits $\{5, 6, \dots, t\}$ and Δ on $\Omega - \{1, 2, 3, 4\}$. If G_{1234} is transitive on $\Omega - \{1, 2, 3, 4\}$, then G is 5-fold transitive on Ω , contrary to (2.11). Hence G_{1234} has two orbits {5, 6, ..., t} and Δ on $\Omega - \{1, 2, 3, 4\}$. Since $N(Q)^{I(Q)} = A_t$, for any four points j_1, j_2, j_3, j_4 of I(Q) the $G_{j_1 j_2 j_3 j_4}$ -orbits on $\Omega - \{j_1, j_2, j_3, j_4\}$ consist of two orbits $I(Q) - \{j_1, j_2, j_3, j_4\}$ and Δ . Furthermore since G is 4-fold transitive, for any four points k_1, k_2, k_3, k_4 of $\Omega \ G_{k_1 k_2 k_3 k_4}$ has two orbits Γ_1 and Γ_2 , where $|\Gamma_1| = t - 4$, $|\Gamma_2| = |\Delta|$. By a theorem of W. A. Manning [5] $|\Gamma_2| > t$ $|\Gamma_1|$. Set $\Gamma(k_1, k_2, k_3, k_4) = \Gamma_1 \cup \{k_1, k_2, k_3, k_4\}$. Since $|I(y_1) \cap \Delta| = 4$ and y_1 commutes with a, we may assume that

$$a = (1) (2) \cdots (t) (1' 2') (3' 4') \cdots,$$

$$y_1 = (1 2) (3 4) (5) (6) \cdots (t) (1') (2') (3') (4') \cdots.$$

Let *i*, *j* be any two points of $I(Q) - \{1, 2, 3, 4\}$. Then $y_1 \in G_{1'2'ij}$ and *a* normalizes $G_{1'2'ij}$. Since $|\Gamma(1', 2', i, j) - \{1', 2', i, j\}| \neq |\Omega - \Gamma(1', 2', i, j)|$, a fixes $\Gamma(1', 2', i, j)$. Suppose that $\Gamma(1', 2', i, j)$ contains $\{1, 2\}$. Then as we have seen above $\Gamma(1, 2, i, j)$ contains $\{1', 2'\}$. This is a contradiction since $\Gamma(1, 2, i, j) = I(Q)$. Similarly $\Gamma(1', 2', i, j)$ does not contain $\{3, 4\}$. On the other hand since $N(G_{\Gamma(1',2',i,j)})^{\Gamma(1',2',i,j)} = A_i$, *a* and y_1 are even permutations on $\Gamma(1', 2', i, j)$. Hence $\Gamma(1', 2', i, j)$ contains $\{3', 4'\}$. Hence $\Gamma(1', 2', 3', 4')$ contains $\{i, j\}$. Since *i*, *j* are any two points of $I(Q) - \{1, 2, 3, 4\}$, $\Gamma(1', 2', 3', 4')$ contains $I(Q) - \{1, 2, 3, 4\}$. By (2.1) $|I(Q)| \ge 8$. Hence $\Gamma(5, 6, 7, 8)$ contains $\{1', 2', 3', 4'\}$. This is a contradiction since $\Gamma(1', 2', 3', 4')$. This is a contradiction since $\Gamma(1', 2', 3', 4')$. This is a contradiction since $\Gamma(5, 6, 7, 8) = I(Q)$. Thus y_1 fixes at least two *Q*-orbits in Δ .

Since $C(Q)^{I(Q)} = S_t$, A_t or 1, we treat the following two cases separately:

Case 1.
$$C(Q)^{I(Q)} = S_t$$
 or A_t .

Case 2. $C(Q)^{I(Q)} = 1$.

Case 1. $C(Q)^{I(Q)} = S_t$ or A_t . Then we may assume that

$$y_1 = (1 \ 2) \ (3 \ 4) \ (5) \ (6) \cdots (t) \ (1') \ (2') \ (3') \ (4') \cdots ,$$

$$a = (1) \ (2) \cdots (t) \ (1' \ 2') \ (3' \ 4') \cdots (n-1 \ n) ,$$

where *a* is a central involution of Q commuting with y_1 .

(i) Assume that $y_1 \notin C(Q)$. Since $C(Q)^{I(Q)} \ge A_i$, there is an element b in Q such that $by_1 \in C(Q)$. Then by_1 commutes with b, so y_1 commutes with b.

Since $y_1 \notin C(Q)$, $b \notin Z(Q)$. Thus Q is non-abelian and so |Q| > 4. Since b fixes $\{1', 2', 3', 4'\}$ and commutes with a, b is an involution or $b^2 = a$. Furthermore $Z(\langle Q, y_1 \rangle) \ge \langle a, by_1 \rangle$. Let y' be any element of $Z(\langle Q, y_1 \rangle)$. Since $I(y_1) \cap \Delta = \{1', 2', 3', 4'\}$, y' fixes $\{1', 2', 3', 4'\}$. Furthermore since $\langle a, b \rangle$ is regular on $\{1', 2', 3', 4'\}$, $y'^{\{1', 2', 3', 4'\}} \in \langle a, b \rangle^{\{1', 2', 3', 4'\}}$. Hence there is an element u in $\langle a, b \rangle$ such that uy' fixes $\{1', 2', 3', 4'\}$ pointwise. Thus $uy' \in \langle y_1 \rangle$ because $\langle Q, y_1 \rangle_{1'} = \langle y_1 \rangle$. Hence uy'=1 or y_1 . If uy'=1, then $y' \in \langle a, b \rangle \cap Z(\langle Q, y_1 \rangle)$ since $y' \in Z(\langle Q, y_1 \rangle)$ and $u \in \langle a, b \rangle$. Hence y'=a or 1. Next suppose that $uy'=y_1$. If u=a or 1, then $y_1=uy' \in C(Q)$ since $y' \in C(Q)$. This is a contrdiction since $y_1 \notin C(Q)$. Thus u=b or ab. Hence $y'=by_1$ or aby_1 . Thus in either case $y' \in \langle a, by_1 \rangle$. Hence $Z(\langle Q, y_1 \rangle) = \langle a, by_1 \rangle$.

Since $C(Q)^{I(Q)} \ge A_t$, Qy_2 has an element which belongs to C(Q). Hence we may assume that $y_2 \in C(Q)$. Since y_2 normalizes $\langle Q, y_1 \rangle$, y_2 normalizes the center $\langle a, by_1 \rangle$ of $\langle Q, y_1 \rangle$. Hence $(by_1)^{y_2} = by_1$ or a aby_1 . First assume that $(by_1)^{y_2} = by_1$. Since y_2 commutes with b, y_2 commutes with y_1 . Hence y_2 fixes $\{1', 2', 3', 4'\}$. Since $\langle a, by_1, y_2 \rangle$ is an abelian group of order eight and $\langle a, by_1 \rangle$ is regular on $\{1', 2', 3', 4'\}$, there is an element u in $\langle a, by_1 \rangle y_2$ which fixes $\{1', 2', 3', 4'\}$ pointwise. Thus u consists of exactly two 2-cycles on I(Q) and so $I(u) \cap \Delta =$ $\{1', 2', 3', 4'\}$ by the assumption (*). On the other hand $\langle a, by_1, y_2 \rangle \leq C(Q)$. Hence $u \in C(Q)$. Thus $|Q| \leq 4$, which is a contradiction. Next suppose that $(by_1)^{y_2} = aby_1$. Then by the same argument as is used for y_2 we may assume that $y_1' \in C(Q)$ and $(by_1)^{y_1'} = aby_1$. Hence $(by_1)^{y_2y_1'} = by_1$. Since $y_2y_1' \in C(Q)$, y_2y_1' commutes with b. Hence $y_2 y_1'$ commutes with y_1 . Thus $y_2 y_1'$ fixes $\{1', 2', 3', 4'\}$. Thus $\langle a, by_1, y_2 y_1' \rangle$ is an abelian group fixing $\{1', 2', 3', 4'\}$. Hence there is an element $u (\pm 1)$ in $\langle a, by_1, y_2y_1' \rangle$ which fixes $\{1', 2', 3', 4'\}$ pointwise. Thus uconsists of two 2-cycles or one 4-cycle and one 2-cycle on I(Q). Hence $|I(u) \cap$ $\Delta \leq 6$ by the assumption (*). On the other hand $u \in C(Q)$ and |Q| > 4. Hence $|I(u) \cap \Delta| \ge 8$, which is a contradiction. Thus $y_1 \in C(Q)$. Hence |Q| = 4 or 2.

(ii) Assume that |Q|=4. Then Q is elementary abelian or cyclic. (ii.i) Assume that Q is elementary abelian. Then we may assume that $Q=\langle a, b \rangle$ and

$$\begin{aligned} a &= (1) \; (2) \cdots (t) \; (1' \; 2') \; (3' \; 4') \; (5' \; 6') \; (7' \; 8') \cdots , \\ b &= (1) \; (2) \cdots (t) \; (1' \; 3') \; (2' \; 4') \; (5' \; 7') \; (6' \; 8') \cdots . \end{aligned}$$

As we have proved above, y_1 fixes at least two Q-orbits in Δ . Hence we may assume that

$$y_1 = (1 \ 2) \ (3 \ 4) \ (5) \ (6) \cdots (t) \ (1') \ (2') \ (3') \ (4') \ (5' \ 6') \ (7' \ 8') \cdots$$

Since $\langle Q, y_2 \rangle$ and $\langle Q, y_1, y_2 \rangle$ are conjugate to $\langle Q, y_1 \rangle$, both groups are elementary abelian. Hence $\langle Q, y_1, y_2 \rangle$ is elementary abelian. Thus y_2 fixes $\{1', 2', 3', 4'\}$ and $\{5', 6', 7', 8'\}$. Hence Qy_2 has an element which fixes $\{1', 2', 3', 4'\}$ point-

wise. We may assume that y_2 fixes $\{1', 2', 3', 4'\}$ pointwise. Thus $I(y_2)=(I(Q) - \{1, 2, 5, 6\}) \cup \{1', 2', 3', 4'\}$ since $|(I(Q)-\{1, 2, 5, 6\}) \cup \{1', 2', 3', 4'\}|=t$. Furthermore since $|I(y_1y_2)| \le t$, $y_2=(5' 7') (6' 8')$ or (5' 8') (6' 7') on $\{5', 6', 7', 8'\}$. Since $\langle Q, y_1 \rangle$ and $\langle Q, y_1 y_1 \rangle$ are conjugate to $\langle Q, y_1 \rangle$, $\langle Q, y_1, y_1 \rangle$ is elementary abelian and by the similar argument as above we may assume that $y_1'=(1') (2') (3') (4') (5' 7') (6' 8')$ or (1') (2') (3') (4') (5' 7') on $\{1', 2', \cdots, 8'\}$. Then in either case the order of $(y_2 y_1')^2$ is even and $|I((y_2 y_1')^2)| \ge t+4$, contrary to the assumption (*). Thus Q is not an elementary abelian group.

(ii.ii) Assume that Q is cyclic. Then we may assume that $Q = \langle b \rangle$, $b^2 = a$ and

$$b = (1) (2) \cdots (t) (1' 3' 2' 4') (5' 7' 6' 8') \cdots$$

As we have proved above, y_1 fixes at least two Q-orbits in Δ . Hence we may assume that

$$y_1 = (1 \ 2) \ (3 \ 4) \ (5) \ (6) \cdots (t) \ (1') \ (2') \ (3') \ (4') \ (5' \ 6') \ (7' \ 8') \cdots$$

Then $I(ay_1) \cap \Delta = \{5', 6', 7', 8'\}$. Hence $\langle Q, y_1 \rangle$ is semiregular on $\{9', 10', \dots, n\}$. Since y_2 normalizes $\langle Q, y_1 \rangle, y_1^{y_2} = y_1$ or ay_1 . Suppose that $y_1^{y_2} = y_1$. Then y_2 fixes $\{1', 2', 3', 4'\}$ and $\{5', 6', 7', 8'\}$. Furthermore since $\langle Q, y_2 \rangle$ is abelian, $\langle Q, y_2 \rangle$ has an element

$$y_2' = (1 \ 2) \ (3) \ (4) \ (5 \ 6) \ (7) \ (8) \cdots (t) \ (1') \ (2') \ (3') \ (4') \ (5' \ 6') \ (7' \ 8') \cdots$$

Then $|I(y_1y_2')| \ge t+4$, contrary to the assumption (*). Thus $y_1^{y_2}=ay_1$. Since $\langle Q, y_2 \rangle$ is conjugate to $\langle Q, y_1 \rangle$, Qy_2 has an involution. Hence we may assume that y_2 is an involution. Furthermore by the same argument as is used for y_2 , $y_1^{y_1'}=ay_1$. Thus $y_1^{y_2y_1'}=y_1$. Hence y_2y_1' fixes $\{1', 2', 3', 4'\}$ and $\{5', 6', 7', 8'\}$. Hence Qy_2y_1' has an element u fixing $\{1', 2', 3', 4'\}$ pointwise. Then $I(u^2)$ contains $(I(Q)-\{1,2,3,4\})\cup\{1',2',3',4'\}$ of length t. Hence u is a 4-cycle on $\{5', 6', 7', 8'\}$. Since $u \in C(Q)$, u=b or b^{-1} on $\{5', 6', 7', 8'\}$. Furthermore since $y_1^{y_2}=ay_1, y_2$ interchanges $\{1', 2', 3', 4'\}$ and $\{5', 6', 7', 8'\}$. Furthermore since $y_1^{y_2}=ay_1, y_2$ interchanges $\{1', 2', 3', 4'\}$ and $\{5', 6', 7', 8'\}$. Furthermore since $y_1^{y_2}=ay_1, y_2$ interchanges $\{1', 2', 3', 4'\}$ and $\{5', 6', 7', 8'\}$ as a set. Hence $u^{y_2}u$ =b or b^{-1} . This means that $(y_2u)^2=b$ or b^{-1} . Thus y_2u is of order eight. On the other hand since $(y_2u)^{I(a)}=y_1'^{I(a)}, \langle Q, y_2u\rangle=\langle Q, y_1'\rangle$. Thus we have a contradiction since $\langle Q, y_1 \rangle$ is conjugate to $\langle Q, y_1 \rangle$ which has no element of order eight. Thus Q is not cyclic. Hence |Q| = 4.

(iii) Assume that |Q|=2. Then $Q=\langle a \rangle$. Since $C(a)^{I(a)}=S_t$ or A_t , we treat these cases separately.

(iii.i) Assume that $C(a)^{I(a)} = S_t$. Then C(a) has a 2-element

$$x_1 = (1 \ 2) \ (3) \ (4) \cdots (t) \cdots$$

By (2.3) we may assume that $\langle a, x_1, y_1, y_2, \dots, y_k, y_1 \rangle$ is a 2-group. Then x_1

normalizes $\langle a, y_1 \rangle$. Hence $y_1^{x_1} = ay_1$ or y_1 .

First suppose that $y_1^{x_1} = ay_1$. Since $x_1^2 \in \langle a \rangle$, $x_1^2 = 1$ or a. Suppose that $x_1^2 = 1$. Then $\langle a, x_1 \rangle$ is an elementary abelian group of order four. On the other hand since $y_1^{x_1} = ay_1$, $(x_1y_1)^2 = a$. Thus $\langle x_1y_1 \rangle$ is a cyclic group of order four. This is a contradiction since $\langle x_1y_1 \rangle$ is conjugate to $\langle a, x_1 \rangle$. Suppose that $x_1^2 = a$. Then $\langle x_1 \rangle$ is a cyclic group of order four. On the other hand since $y_1^{x_1} = ay_1$, $(x_1y_1)^2 = 1$. Thus $\langle a, x_1y_1 \rangle$ is conjugate to $\langle a, x_1 \rangle$. Suppose that $x_1^2 = a$. Then $\langle x_1 \rangle$ is a cyclic group of order four. On the other hand since $y_1^{x_1} = ay_1$, $(x_1y_1)^2 = 1$. Thus $\langle a, x_1y_1 \rangle$ is an elementary abelian group of order four. This is a contradiction since $\langle a, x_1y_1 \rangle$ is conjugate to $\langle a, x_1 \rangle$. Thus $y_1^{x_1} = ay_1$.

Next suppose that $y_1^{x_1} = y_1$. Then $\langle a, x_1, y_1 \rangle$ is an abelian group of order eight. By (2.14) $|I(ay_1) \cap \Delta| = 0$ or 4. Assume that $|I(ay_1) \cap \Delta| = 4$. Then we may assume that $I(ay_1) \cap \Delta = \{5', 6', 7', 8'\}$ and

$$y_1 = (1 \ 2) \ (3 \ 4) \ (5) \ (6) \cdots (t) \ (1') \ (2') \ (3') \ (4') \ (5' \ 6') \ (7' \ 8') \cdots$$

Then $\langle a, y_1 \rangle$ is semiregular on $\{9', 10', \dots, n\}$. By (2.13) $\langle a, x_1 \rangle$ and $\langle a, x_1 y_1 \rangle$ are semiregular on Δ . Hence $\langle a, x_1, y_1 \rangle$ is semiregular on $\{9', 10', \dots, n\}$. Since $\langle a, y_2 \rangle$ and $\langle a, y_1 y_2 \rangle$ are conjugate to $\langle a, y_1 \rangle$, $\langle a, y_2 \rangle$ and $\langle a, y_1 y_2 \rangle$ are elementary abelian. Hence $\langle a, y_1, y_2 \rangle$ is elementary abelian. Furthermore since $\langle a, y_2, x_1 \rangle$ is conjugate to $\langle a, y_1, x_1 \rangle$, $\langle a, y_2, x_1 \rangle$ is also abelian. Hence $\langle a, x_1, y_1, y_2 \rangle$ is abelian. Since $\langle a, y_2 \rangle$ is conjugate to $\langle a, y_1 \rangle$ in C(a), $|I(y_2) \cap \Delta| = |I(ay_2) \cap \Delta| = 4$. If y_2 has fixed points in $\{9', 10', \dots, n\}$, then since $y_2 \in C(\langle a, x_1, y_1 \rangle) y_2$ fixes at least eight points in $\{9', 10', \dots, n\}$, contrary to the assumption (*). Similarly ay_2 has no fixed point in $\{9', 10', \dots, n\}$. Thus y_2 or ay_2 fixes $\{1', 2', 3', 4'\}$ pointwise. Hence y_2 or $ay_2 = (1') (2') (3') (4') (5' 6') (7' 8')$ on $\{1', 2', \dots, 8'\}$. Thus $|I(y_1y_2)|$ or $|I(ay_1y_2)| \ge t+4$, contrary to the assumption (*).

Hence $|I(ay_1) \cap \Delta| = 0$. Then $\langle a, x_1, y_1 \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$. Since $\langle a, y_i \rangle$ and $\langle a, y_i y_j \rangle$, $i \neq j$ and $1 \leq i, j \leq k$, are conjugate to $\langle a, y_1 \rangle$, $\langle a, y_i \rangle$ and $\langle a, y_i y_j \rangle$ are elementary abelian. Hence $\langle a, y_1, y_2, \dots, y_k \rangle$ is elementary abelian. Furthermore since $\langle a, x_1, y_i \rangle$, $2 \leq i \leq k$, is conjugate to $\langle a, x_1, y_1 \rangle$, $\langle a, x_1, y_i \rangle$ is abelian. Thus $\langle a, x_1, y_1, y_2, \dots, y_k \rangle$ is abelian. Hence y_i fixes $\{1', 2', 3', 4'\}$, $1 \leq i \leq k$. Since $\langle a, y_i \rangle$, $2 \leq i \leq k$, is conjugate to $\langle a, y_1 \rangle$, y_i or ay_i has fixed points in Δ . Hence we may assume that y_i has fixed points in Δ . Since $y_i \in C(\langle a, x_1, y_1 \rangle)$ and $\langle a, x_1, y_1 \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$, if y_i has fixed points in $\Delta - \{1', 2', 3', 4'\}$, then y_i fixes at least eight points of $\Delta - \{1', 2', 3', 4'\}$, contrary to the assumption (*). Hence y_i fixes $\{1', 2', 3', 4'\}$ pointwise.

Assume that $\langle a, x_1, y_1, y_2, \dots, y_i \rangle$, $i \ge 1$, is semiregular on $\Delta - \{1', 2', 3', 4'\}$. If $\langle a, x_1, y_1, y_2, \dots, y_{i+1} \rangle$ is not semiregular on $\Delta - \{1', 2', 3', 4'\}$, then $\langle a, x_1, y_1, y_2, \dots, y_{i+1} \rangle$ has an element $y' (\pm 1)$ fixing a $\langle a, x_1, y_1, y_2, \dots, y_i \rangle$ -orbit of length 2^{i+2} pointwise. Then since y' consists of at most i+2 2-cycles on I(a) and $i\ge 1$, $|I(y')|\ge t-2(i+1)+2^{i+2}>t$, contrary to the assumption (*). Thus $\langle a, x_1, y_1, y_2, \dots, y_{i+1} \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$ and this implies by induction that $\langle a, x_1, y_1, y_2, \dots, y_k \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$.

Furthermore y_1' fixes $\{1', 2', 3', 4'\}$. Suppose that $\langle a, x_1, y_1, y_2, \dots, y_k, y_1' \rangle$ is not semiregular on $\Delta - \{1', 2', 3', 4'\}$. Then there is an element y' in $\langle a, x_1, y_1, y_2, \dots, y_k \rangle y_1'$ which has fixed points in $\Delta - \{1', 2', 3', 4'\}$. Then $y'^{I(a)}$ is of order four or two. If $y'^{I(a)}$ is of order four, then $\langle a, y'^2 \rangle = \langle a, y_1 \rangle$ and y'^2 has fixed points in $\Delta - \{1', 2', 3', 4'\}$, which is a contradiction. Thus $y'^{I(a)}$ is of order two. Then y' is (1 3) (2 4) or (1 4) (2 3) on $\{1, 2, 3, 4\}$. Hence $y' \in \langle a, y_1', x_1y_2, x_1y_3, \dots, x_1y_k \rangle$ or $\langle a, y_1y_1', x_1y_2, x_1y_2, \dots, x_1y_k \rangle$. Thus $\langle a, y_1', x_1y_2, x_1y_3, \dots, x_1y_k \rangle$ is semiregular on neither $\{1', 2', 3', 4'\}$ nor $\Delta - \{1', 2', 3', 4'\}$. This is a contradiction since $\langle a, y_1, ', x_1y_2, x_1y_3, \dots, x_1y_k \rangle$ in C(a) which is semiregular on $\Delta - \{1', 2', 3', 4'\}$.

On the other hand $\langle a, y_1 \rangle$ normalizes $G_{5'6'7'8'}$, which is even order. Hence there is an involution u in $G_{5'6'7'8'}$ commuting with a and y_1 . Since $C(a)^{I(a)} = S_t$, $\langle a, y_1, u \rangle$ is conjugate to a subgroup of $\langle a, x_1, y_1, y_2, \dots, y_k, y_1' \rangle$ in C(a). This is a contradiction since for any point of $\{1', 2', \dots, 8'\}$ of length eight $\langle a, y_1, u \rangle$ has an element (± 1) fixing this point. Thus $C(a)^{I(a)} \neq S_t$.

(iii.ii) Assume that $C(a)^{I(a)} = A_t$. Since $\langle a, y_1 y_2 \rangle$, $\langle a, y_1 y_3 \rangle$ and $\langle a, y_2 y_3 \rangle$ are conjugate to $\langle a, y_1 \rangle$, these groups are elementary abelian. Hence $\langle a, y_1, y_2, y_3 \rangle$ is elementary abelian. Since $I(y_1) \cap \Delta = \{1', 2', 3', 4'\}$, y_2 and y_3 fix $\{1', 2', 3', 4'\}$. Thus y_2 and y_3 are (1')(2')(3')(4'), (1'2')(3'4'), (1'3')(2'4'), (1'4')(2'3'), (1')(2')(3'4') or (1'2')(3')(4') on $\{1', 2', 3', 4'\}$. Furthermore by (2.14) $|I(ay_1) \cap \Delta| = 0$ or 4.

Assume that $|I(ay_1) \cap \Delta| = 4$. Then we may assume that

$$a = (1) (2) \cdots (t) (1' 2') (3' 4') \cdots (n-1 n),$$

$$y_1 = (1 2) (3 4) (5) (6) \cdots (t) (1') (2') (3') (4') (5' 6') (7' 8') (9' 11')$$

$$(10' 12') (13' 15') (14' 16') \cdots .$$

Suppose that $y_2 = (1') (2') (3') (4')$ on $\{1', 2', 3', 4'\}$. The proof in the case $y_2 = (1'2') (3'4') \cdots$ is similar since if $y_2 = (1'2') (3'4') \cdots$ then $ay_2 = (1') (2') (3') (4') \cdots$. Since $\langle a, y_2 \rangle$ and $\langle a, y_1 y_2 \rangle$ are conjugate to $\langle a, y_1 \rangle$, any element of $\langle a, y_1 y_2 \rangle - \langle a \rangle$ has four fixed points in Δ . Hence we may assume that

$$y_2 = (1 \ 2) \ (3) \ (4) \ (5 \ 6) \ (7) \ (8) \cdots (t) \ (1') \ (2') \ (3') \ (4') \ (5' \ 7') \ (6' \ 8') \ (9' \ 10') \ (11' \ 12') \ (13' \ 16') \ (14' \ 15') \cdots .$$

Thus $\langle a, y_1, y_2 \rangle$ has two orbits of length two and three orbits of length four in Δ . The remaining $\langle a, y_1, y_2 \rangle$ -orbits are of length eight in Δ . Since $\langle a, y_3 \rangle$ is conjugate to $\langle a, y_1 \rangle$, y_3 has four fixed points in Δ . Since $\langle a, y_1, y_2, y_3 \rangle$ is abelian, y_3 fixes $\{1', 2', 3', 4'\}$ or one of the $\langle a, y_1, y_2 \rangle$ -orbits of length four pointwise. Moreover y_3 fixes the $\langle a, y_1, y_2 \rangle$ -orbits of length four setwise. Thus y_3 fixes $\{1', 2', 3', 4'\}$ pointwise or has no fixed point in $\{1', 2', 3', 4'\}$. First suppose

that y_3 fixes $\{1', 2', 3', 4'\}$ pointwise. Then $\langle y_1, y_2, y_3 \rangle$ fixes $\{1', 2', 3', 4'\}$ pointwise, and $\{5', 6', 7', 8'\}$ and $\{9', 10' 11', 12'\}$ are $\langle y_1, y_2, y_3 \rangle$ -orbits of length four. Hence $\langle y_1, y_2, y_3 \rangle$ has exactly one element $y' (\pm 1)$ fixing $\{5', 6',$ $7', 8'\}$ pointwise. Thus $I(y') \cap \Delta \supseteq \{1', 2', \dots, 8'\}$. Hence $y'=y_1y_2y_3$ by the assumption (*). Similarly $\langle y_1, y_2, y_3 \rangle$ has exactly one element (± 1) fixing $\{9',$ $10', 11', 12'\}$ pointwise, which is also $y_1y_2y_3$. Thus $|I(y_1y_2y_3)| \ge t+4$, contrary to the assumption (*). Thus y_3 does not fix $\{1', 2', 3', 4'\}$ pointwise. Similarly $y_3 \pm (1' 2') (3' 4') \cdots$ since if $y_3 = (1' 2') (3' 4') \cdots$ then $ay_3 = (1') (2') (3') (4') \cdots$. Next suppose that $y_3 = (1' 3') (2' 4') \cdots$ or $(1' 4') (2' 3') \cdots$. Since $\langle a, y_1, y_3 \rangle$ is conjugate to $\langle a, y_1, y_2 \rangle$, $\langle a, y_1, y_3 \rangle$ has exactly two orbits of length two in Δ . Hence y_3 fixes $\{5', 6'\}$ and $\{7', 8'\}$. Then $\langle a, y_1, y_2 y_3 \rangle$ has no orbit of length two in Δ . On the other hand C(a) has a 2-element

$$y' = (1) (2) (3) (4) (5 7) (6 8) (9) (10) \cdots (t) \cdots$$

By (2.3) we may assume that $\langle a, y_1, y_2y_3, y' \rangle$ is a 2-group. Since $\langle a, y_1, y' \rangle$ is conjugate to $\langle a, y_1, y_2y_3 \rangle$ in C(a), $\langle a, y_1, y' \rangle$ has no orbit of length two in Δ . Hence y'=(1'3')(2'4') or (1'4')(2'3') on $\{1', 2', 3', 4'\}$. Then $\langle a, y_1, y_2y_3y' \rangle$ has two orbits $\{1', 2'\}$ and $\{3', 4'\}$ of length two in Δ . This is a contradiction since $\langle a, y_1, y_2y_3y' \rangle$ is conjugate to $\langle a, y_1, y_2y_3 \rangle$ in C(a). Thus $y_2 \pm (1')(2')(3')(4')\cdots$ and so $y_2 \pm (1'2')(3'4')\cdots$.

Suppose that $y_2=(1')(2')(3' 4')$ on $\{1', 2', 3', 4'\}$. The proof in the case $y_2=(1' 2')(3')(4')$ on $\{1', 2', 3', 4'\}$ is similar since if $y_2=(1' 2')(3')(4')\cdots$ then $ay_2=(1')(2')(3' 4')\cdots$. Since $\langle a, y_1 y_2 \rangle$ is elementary abelian and $|I(y_2) \cap \Delta| = 4$, we may assume that

$$y_2 = (1 \ 2) \ (3) \ (4) \ (5 \ 6) \ (7) \ (8) \cdots (t) \ (1') \ (2') \ (3' \ 4') \ (5') \ (6') \ (7' \ 8') \cdots$$

Since $\langle a, y_1, y_2, y_3 \rangle$ is elementary abelian, y_3 fixes $\{1', 2'\}$. $\{3', 4'\}$. $\{5', 6'\}$ and $\{7', 8'\}$. Furthermore $|I(y_3) \cap \Delta| = 4$ and $|I(y_2y_3) \cap \Delta| = 4$. Hence we may assume that

$$y_3 = (1 \ 2) \ (3) \ (4) \ (5) \ (6) \ (7 \ 8) \ (9) \ (10) \cdots (t) \ (1') \ (2') \ (3' \ 4') \ (5' \ 6') \ (7') \ (8') \cdots$$

Then

$$y_1y_2y_3 = (1\ 2)\ (3\ 4)\ (5\ 6)\ (7\ 8)\ (9)\ (10)\cdots(t)\ (1')\ (2')\cdots(8')\cdots$$

Thus $\langle a, y_1, y_2 y_3 \rangle$ has exactly one involution $y_1 y_2 y_3$ fixing four $\langle a, y_1 \rangle$ -orbits of length two pointwise. On the other hand C(a) has a 2-element

$$y' = (1) (2) (3) (4) (5 7) (6 8) (9) (10) \cdots (t) \cdots$$

By (2.3) we may assume that $\langle a, y_1, y_2y_3, y' \rangle$ is a 2-group. Since $\langle a, y_1, y' \rangle$ is conjugate to $\langle a, y_1, y_2y_3 \rangle$ in C(a), $\langle a, y_1, y' \rangle$ has exactly one element y'' (± 1) fixing four $\langle a, y_1 \rangle$ -orbits of length two pointwise.

Then

$$y'' = (12) (34) (57) (68) (9) (10) \cdots (t) (1') (2') \cdots (8') \cdots$$

Thus $|I(y_1y_2y_3y'')| \ge t+4$, contrary to the assumption (*). Hence $y_2 \ne (1') (2') (3'4') \cdots$ and so $y_2 \ne (1'2') (3') (4') \cdots$.

Suppose that $y_2=(1'3')(2'4')$ on $\{1', 2', 3', 4'\}$. The proof in the case $y_2=(1'4')(2'3')$ on $\{1', 2', 3', 4'\}$ is similar since if $y_2=(1'4')(2'3')\cdots$ then $ay_2=(1'3')(2'4')\cdots$. Since $I(ay_1) \cap \Delta = \{5', 6', 7', 8'\}$, if y_2 or y_3 has fixed points in $\{5', 6', 7', 8'\}$, then by the same argument as above we have a contradiction. Hence we may assume that

$$y_2 = (12) (3) (4) (56) (7) (8) \cdots (t) (1'3') (2'4') (5'7') (6'8') \cdots$$

Similarly y_3 or ay_3 is (1'3')(2'4') on $\{1', 2', 3', 4'\}$. Hence we may assume that $y_3=(1'3')(2'4')$ on $\{1', 2', 3', 4'\}$. Furthermore y_3 is (5'7')(6'8') or (5'8')(6'7') on $\{5', 6', 7', 8'\}$. Since $|I(y_2y_3)| \le t$,

$$y_3 = (12) (3) (4) (5) (6) (78) (9) (10) \cdots (t) (1'3') (2'4') (5'8') (6'7') \cdots$$

and so

$$y_1 y_2 y_3 = (12) (34) (56) (78) (9) (10) \cdots (t) (1') (2') \cdots (8') \cdots$$

Hence by the same argument as in the case $y_2 = (1') (2') (3'4') \cdots$, we have a contradiction. Thus $y_2 \neq (1'3') (2'4') \cdots$ and so $y_2 \neq (1'4') (2'3') \cdots$. Hence $|I(ay_1) \cap \Delta| \neq 4$.

Thus $|I(ay_1) \cap \Delta| = 0$. Then we may assume that

$$y_1 = (12) (34) (5) (6) \cdots (t) (1') (2') (3') (4') (5'7') (6'8') \cdots$$

Since $\langle a, y_2 \rangle$ is conjugate to $\langle a, y_1 \rangle$ in C(a), either y_2 or ay_2 has four fixed points in Δ . Hence we may assume that y_2 has four fixed points in Δ . Then y_2 fixes $\{1', 2', 3', 4'\}$ or one of the $\langle a, y_1 \rangle$ -orbits of length four pointwise.

First suppose that y_2 fixes $\{1', 2', 3', 4'\}$ pointwise. Since $\langle a, y_2 \rangle$ and $\langle a, y_1 y_2 \rangle$ are conjugate to $\langle a, y_1 \rangle$ in C(a), $\langle a, y_2 \rangle$ and $\langle a, y_1 y_2 \rangle$ are semiregular on $\Delta - \{1', 2', 3', 4'\}$. Hence $\langle a, y_1, y_2 \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$. Since $\langle a, y_i \rangle$ and $\langle a, y_i y_j \rangle$. $i \neq i$ and $1 \leq i, j \leq k$, are conjugate to $\langle a, y_1 \rangle$, $\langle a, y_i \rangle$ and $\langle a, y_i y_j \rangle$ are elementary abelian. Hence $\langle a, y_1, y_2, \cdots, y_k \rangle$ is elementary abelian. Moreover y_i or ay_i , $3 \leq i \leq k$, has four fixed points in Δ . Hence we may assume that y_i has fixed points in Δ . Since $y_i \in C(\langle a, y_1, y_2 \rangle)$ and $\langle a, y_1, y_2 \rangle$ is of order eight and semiregular on $\Delta - \{1', 2', 3', 4'\}$, y_i fixes $\{1', 2', 3', 4'\}$ pointwise.

Now we show that $\langle a, y_1, y_2, \dots, y_k \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$. Suppose that $\langle a, y_1, y_2, y_3 \rangle$ is not semiregular on $\Delta - \{1', 2', 3', 4'\}$. Then there is exactly one element $y' (\pm 1)$ in $\langle a, y_1, y_2, y_3 \rangle$ fixing a $\langle a, y_1, y_2 \rangle$ -orbit Δ' in $\Delta - \{1', 2', 3', 4'\}$ pointwise. Since $|\Delta'| = 8$, $|I(y') \cap I(a)| \le t - 8$. Hence

 $y'=y_1y_2y_3$ or $ay_1y_2y_3$. If $y'=y_1y_2y_3$, then I(y') contains $(I(a)-\{1, 2, \dots, 8\}) \cup \{1', 2', 3', 4'\} \cup \Delta'$ of length t+4, contrary to the assumption (*). Thus $y'=ay_1y_2y_3$ and $I(y')=(I(a)-\{1, 2, \dots, 8\}) \cup \Delta'$ since $|(I(a)-\{1, 2, \dots, 8\}) \cup \Delta'|=t$. Furthermore this shows that $\langle a, y_1, y_2, y_3 \rangle$ is semiregular on $\Delta - (\{1', 2', 3', 4'\} \cup \Delta')$. Hence $\langle a, y_1, y_2, y_3 \rangle$ has two orbits $\{1', 2'\}$ and $\{3', 4'\}$ of length two and two orbits of length four whose uion is Δ' in Δ , and the remaining orbits in Δ are of length eight. On the other hand C(a) has a 2-element

$$y'' = (1) (2) (3) (4) (57) (68) (9) (10) \cdots (t) \cdots$$

By (2.3) we may assume that $\langle a, y_1, y_2, y_3, y'' \rangle$ is a 2-group. Then y'' normalizes $\langle a, y_1, y_2, y_3 \rangle$ and so y'' fixes $\{1', 2', 3', 4'\}$ and Δ' . Since $\langle a, y_1, y'' \rangle$ is conjugate to $\langle a, y_1, y_2 y_3 \rangle$ in C(a), $\langle a, y_1, y'' \rangle$ is elementary abelian and has two orbits $\{1', 2'\}$ and $\{3', 4'\}$ of length two and two orbits of length four in Δ . Hence we may assume that y'' fixes $\{1', 2', 3', 4'\}$ pointwise and ay_1y'' has eight fixed points in $\Delta - \{1', 2', 3', 4'\}$. Furthermore since y'' fixes Δ' , ay_1y'' fixes Δ' pointwise or $\langle a, y_1, y'' \rangle$ is regular on Δ' . If ay_1y'' fixes Δ' pointwise, then $I(ay_1y_2y_3 \cdot ay_1y'') = I(y_2y_3y'')$ contains $(I(a) - \{5, 6, 7, 8\}) \cup \{1', 2', 3', 4'\} \cup \Delta'$ of length t+8, contrary to the assumption (*). Thus $\langle a, y_1, y'' \rangle$ is regular on Δ' . Hence $\langle a, y_2, y_3 \rangle$ has an element u such that $u^{\Delta'} = y''^{\Delta'}$. Thus $uy'' \in \langle a, y_2, y_3, y'' \rangle$ and I(uy'') contains Δ' of length eight. Hence $|I(uy'') \cap I(a)| \leq t-8$. This is a contradiction since any element of $\langle a, y_2, y_3, y'' \rangle$ fixes at least t-6 points of I(a). Thus $\langle a, y_1, y_2, y_3 \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$. Hence by (2.6) $\langle a, y_1, y_2, \cdots, y_k \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$.

Since y'_1 normalizes $\langle a, y_1, y_2, \dots, y_k \rangle$, y'_1 fixes $\{1', 2', 3', 4'\}$. Suppose that $\langle a, y_1, y_2, \dots, y_k, y'_1 \rangle$ is not semiregular on $\Delta - \{1', 2', 3', 4'\}$. Then there is an element y' in $\langle a, y_1, y_2, \dots, y_k \rangle y'_1$ which has fixed points in $\Delta - \{1', 2', 3', 4'\}$. Then $y'^{I(a)}$ is of order four or two. If $y'^{I(a)}$ is of order four, then $\langle a, y'^2 \rangle =$ $\langle a, y_1 \rangle$ and y'^2 has fixed points in $\Delta - \{1', 2', 3', 4'\}$, which is a contradiction. Hence $y'^{I(a)}$ is of order two. Thus y' is (13) (24) or (14) (23) on $\{1, 2, 3, 4\}$. Hence $y' \in \langle a, y'_1, y_2 y_3, y_2 y_4, \dots, y_2 y_k \rangle$ or $\langle a, y_1 y'_1, y_2 y_3, y_2 y_4, \dots, y_2 y_k \rangle$. Thus $\langle a, y'_1, y_2 y_3, y_2 y_4, \dots, y_2 y_k \rangle$ or $\langle a, y_1 y'_1, y_2 y_3, y_2 y_4, \dots, y_2 y_k \rangle$ is semiregular on neither the orbit $\{1', 2', 3', 4'\}$ of length four nor $\Delta - \{1', 2', 3', 4'\}$. This is a contradiction since these groups are conjugate to $\langle a, y_1, y_2 y_3, y_2 y_4, \dots, y_2 y_k \rangle$ in C(a) which is semiregular on $\Delta - \{1', 2', 3', 4'\}$. Thus $\langle a, y_1, y_2, \dots, y_k, y_1' \rangle$ is semiregular on $\Delta - \{1', 2', 3', 4'\}$.

On the other hand $\langle a, y_1 \rangle$ normalizes $G_{5'6'7'8'}$, which is of even order. Hence there is an involution u in $G_{5'6'7'8'}$ commuting with a and y_1 . Then $\langle a, y_1, u \rangle$ is conjugate to a subgroup of $\langle a, y_1, y_2, \dots, y_k, y_1' \rangle$ in C(a). This is a contradiction since for any point of $\{1', 2', \dots, 8'\}$ of length eight $\langle a, y_1, u \rangle$ has an element (± 1) fixing this point. Thus $y_2 \pm (1') (2') (3') (4') \cdots$.

Next suppose that y_2 fixes a $\langle a, y_1 \rangle$ -orbit of length four pointwise. Then we may assume that y_2 fixes $\{5', 6', 7', 8'\}$ pointwise and

$$y_2 = (12) (3) (4) (56) (7) (8) \cdots (t) (1'3') (2'4') (5') (6') (7') (8') \cdots$$

Since $\langle a, y_1, y_3 \rangle$ is conjugate to $\langle a, y_1, y_2 \rangle$, y_3 or ay_3 is (1'3')(2'4') on $\{1', 2', 3', 4'\}$. Hence we may assume that $y_3 = (1'3')(2'4')\cdots$. Since $\langle a, y_2, y_3 \rangle$ is conjugate to $\langle a, y_1, y_2 \rangle$, y_3 is (5'7')(6'8') or (5'8')(6'7') on $\{5', 6', 7', 8'\}$. On the other hand C(a) has a 2-element

$$y_2' = (1) (2) (3) (4) (57) (68) (9) (10) \cdots (t) \cdots$$

By (2.3) we may assume that $\langle a, y_1, y_2, y_3, y'_1, y'_2 \rangle$ is a 2-group. Since $\langle a, y'_1 \rangle$ and $\langle a, y'_2 \rangle$ are conjugate to $\langle a, y_1 \rangle$, $\langle a, y'_1 \rangle$ and $\langle a, y'_2 \rangle$ are elementary abelian. Since $\langle a, y_2 y_3, y'_1 \rangle$ and $\langle a, y_1, y'_2 \rangle$ are conjugate to $\langle a, y_1, y_2 y_3 \rangle$ and $I(y_1) \cap \Delta =$ $I(y_2 y_3) \cap \Delta = \{1', 2', 3', 4'\}$, y'_1 or ay'_1 , i=1, 2, fixes $\{1', 2', 3', 4'\}$ pointwise. Hence we may assume that y'_1 and y'_2 fix $\{1', 2', 3', 4'\}$ pointwise. Thus $y_1, y_2 y_3, y'_1$ and y'_2 fix $\{1', 2', 3', 4'\}$ pointwise. Hence $\langle a, y_1, y_2 y_3, y'_1, y'_2 \rangle$ is elementary abelian.

If y_1' or y_2' fixes $\{5', 6', 7', 8'\}$, then $(y_2y_1')^2$ or $(y_2y_2')^2$ is of order two and fixes $(I(a) - \{1, 2, 3, 4\}) \cup \{1', 2', \dots, 8'\}$ of length t+4 pointwise, contrary to the assumption (*). Thus $\{5', 6', 7', 8'\}^{y_i'} \neq \{5', 6', 7', 8'\}$, i=1, 2.

Since $y_3 = (5'7') (6'8') \cdots$ or $(5'8') (6'7') \cdots$, first suppose that $y_3 = (5'7')$ (6'8').... Then $I(y_1y_2y_3) \cap \Delta = \{1', 2', ..., 8'\}$. Since $I(y_1') \cap \Delta = \{1', 2', 3', 4'\}$ and y_1' commutes with $y_1y_2y_3$, y_1' fixes {5', 6', 7', 8'}, which is a contradiction. Next suppose that $y_3 = (5'8') (6'7') \cdots$. Since $\{5', 6', 7', 8'\}^{y_1'} \neq \{5', 6', 7', 8'\}$, we may assume that $\{5', 6', 7', 8'\}_{1}^{y_1'} = \{9', 10', 11', 12'\}$, where $\{9', 10', 11', 12'\}$ is a $\langle a, y_1 \rangle$ -orbit. Since $ay_1y_2y_3$ fixes {5', 6', 7', 8'} pointwise and commutes with y_1' , $ay_1y_1y_2$ fixes {9', 10', 11', 12'} pointwise. Then $I(ay_1y_2y_3) \cap \Delta =$ $\{5', 6', \dots, 12'\}$ since $|I(ay_1y_2y_3)| \leq t$. Furthermore y_2' commutes with $ay_1y_2y_3$. Hence $\{5', 6', 7', 8'\}^{\nu_2'} = \{9', 10', 11', 12'\}$. Thus $\{5', 6', \dots, 12'\}$ is a $\langle y_1, y_2y_3, y_1', y_2' \rangle$ -orbit of length eight. Since the order of $\langle y_1, y_2y_3, y_1', y_2' \rangle$ is sixteen, there is an element $y' (\pm 1)$ in $\langle y_1, y_2y_3, y_1', y_2' \rangle$ fixing $\{5', 6', \dots, 12'\}$ since $I(\langle y_1, y_2y_3, y_1', y_2' \rangle) \supseteq \{1', 2', 3', 4'\}, I(y') \supseteq$ pointwsie. Moreover $\{1', 2', 3', 4'\}$ and so $|I(y') \cap \Delta| \ge 12$. This contradicts the assumption (*) since $y'^{I(a)}$ is an involution consisting of at most four 2-cycles. Thus $C(Q)^{I(Q)} \not\cong A_t$. Case 2. $C(O)^{I(Q)} = 1.^{1}$

(i) Since $|I(y_1) \cap \Delta| = 4$, $I(y_1) \cap \Delta$ is contained in one or two Q-orbits in Δ . If $I(y_1) \cap \Delta$ is contained in two Q-orbits, then y_1 fixes exactly two points of a Q-orbit. Then by (2.12) $C(Q)^{I(Q)} \ge A_t$, which is a contradiction. Thus $I(y_1) \cap \Delta$ is contained in one Q-orbit.

¹⁾ The proof in this case is due to the suggestion of Dr. E. Bannai. The proof was first more complicated.

(ii) Let $\Phi(Q)$ be the Frattini subgroup of Q. Then since y_1 is an automorphism of Q and $\Phi(Q)$ by conjugation, y_1 induces an automorphism of $Q/\Phi(Q)$, which we denote by y_1^* . For an element a of Q, $a^{-1}a^{y_1}$ is in $\Phi(Q)$ if and only if the image in $Q/\Phi(Q)$ of a is in $C_{Q/\Phi(Q)}(y_1^*)$. Hence the number of elements a in Q such that $a^{-1}a^{y_1}$ is in $\Phi(Q)$ is $|C_{Q/\Phi(Q)}(y_1^*)| \cdot |\Phi(Q)|$. On the other hand for elements a and b of Q, ab^{-1} is in $C_Q(y_1)$ if and only if $a^{-1}a^{y_1}=b^{-1}b^{y_1}$. Hence the number of elements a in Q such that $a^{-1}a^{y_1}$ is in $\Phi(Q)$ is at most $|C_Q(y_1)| \cdot |\Phi(Q)| = 4 \cdot |\Phi(Q)|$. Thus $4 \cdot |\Phi(Q)| \ge |C_{Q/\Phi(Q)}(y_1^*)| \cdot |\Phi(Q)|$ and so $4 \ge |C_{Q/\Phi(Q)}(y_1^*)|$. Since $Q/\Phi(Q)$ is elemtary abelian, $|Q/\Phi(Q)| \le (2^2)^2 = 2^4$ by Lemma of [6]. Thus the automorphism group of $Q/\Phi(Q)$ is contained in GL(4, 2). Furthermore if an element of odd order in N(Q) acts trivially on $Q/\Phi(Q)$ by conjugation, then this element belongs to C(Q) ([1], Theorem 5.1.4). Since $C(Q)^{I(Q)} = 1$ and $N(Q)^{I(Q)} = S_t$ or A_t , $N(Q)^{I(Q)} = S_6$ or A_8 .

(iii) Suppose that $N(Q)^{I(Q)} = S_6$. Let H be the normal subgroup of G consisting of all even permutations of G. Then for any point i of Ω , H_i is normal in G_i . Since G_i is 3-fold transitive on $\Omega - \{i\}$ and $|\Omega - \{i\}|$ is odd, H_i is 3-fold transitive on $\Omega - \{i\}$ by a theorem of Wagner [15]. Hence H is 4-fold transitive on Ω . Let x be a 2-element of $N_G(Q)$ such that

$$x = (1) (2) (3) (4) (56) \cdots$$

Then x has no fixed point in Δ by (2.13). Hence the number of Q-orbits in Δ is even and so $Q \leq H$. If x is an odd permutation, then $x \notin N_H(Q)$. Hence Q is a Sylow 2-subgroup of $H_{1_{234}}$ and |I(Q)|=6, which is a contradiction by [12]. Thus x is an even per- mutation. Hence x^{Δ} is an odd permutation. On the other hand since x has no fixed point in Δ and $x^2 \in Q$, every cycle of x in Δ has the same length and \bar{x} consists of 2-cycles. Thus x consists of cycles of length 2|Q| in Δ since x^{Δ} is an odd permutation. Thus |x|=2|Q|. Hence $|x^2|=|Q|$. Since $x^2 \in Q$, $Q = \langle x^2 \rangle$. Hence the automorphism group of Q is a 2-group. This is a con-tradiction since $N(Q)^{I(Q)}=S$ and $N(Q)^{I(Q)}$ is involved in the automorphism group of Q. Thus $N(Q)^{I(Q)} \neq S_6$.

(v) Suppose that $N(Q)^{I(Q)} = A_{s}$.

(v. i) $y_1^{I(Q)}$ is an involution consisting of exactly two 2-cycles. Hence by (2.8) y_1 fixes at most four Q-orbits in Δ . Furthermore we have proved that y_1 fixes at least two Q-orbits in Δ . Thus y_1 fixes two, three or four Q-orbits in Δ .

(v. ii) Suppose that y_1 fixes exactly four Q-orbits in Δ . Then by (2.8) every element of Qy_1 is an involution. Since $\langle Q, y_2 \rangle$ and $\langle Q, y_1 y_2 \rangle$ are conjugate to $\langle Q, y_1 \rangle$, every element of Qy_2 and Qy_1y_2 is an involution. In particular y_1, y_2 and y_1y_2 are involutions. Hence y_1 and y_2 commute. Let u be any element of Q. Then uy_1 and $uy_1 \cdot y_2$ are also involutions. Hence y_2 commutes with uy_1 and

so commutes with u. Thus $y_1 \in C(Q)$, which is a contradiction since $C(Q)^{I(Q)} = 1$.

(v. iii) Suppose that y_1 fixes exactly three Q-orbits in Δ . Then by (2.8) there are at least $\frac{3}{4} |Q|$ involutions in Qy_1 . Since y_2 normalizes $\langle Q, y_1 \rangle$, y_2 fixes at least one $\langle Q, y_1 \rangle$ -orbit of length |Q|. Then for a point *i* of the $\langle Q, y_1, y_2 \rangle$ -orbit of length $|Q| Qy_1$ and Qy_2 have elements fixing *i*. Hence we may assume that y_1 and y_2 fix *i*. Then $y_1^2 = y_2^2 = 1$ and $y_1 y_2 = y_2 y_1$. Let *T* be a set of elements *u* in *Q* such that both uy_1 and uy_1y_2 are involutions. Since $\langle Q, y_1y_2 \rangle$ is conjugate to $\langle Q, y_1 \rangle$, there are at least $\frac{3}{4} |Q|$ involutions in Qy_1y_2 . Hence $|T| \ge \frac{1}{2} |Q|$. Since y_2 is an involution, y_2 commutes with uy_1 , where $u \in T$. Furthermore y_2 commutes with y_1 . Hence y_2 commutes with *u*. On the other hand $|I(y_2) \cap \Delta| = 4$. Hence y_2 commutes with exactly four elements of *Q*. Thus $|T| \le 4$. Hence $4 \ge |T| \ge \frac{1}{2} |Q|$ and so $8 \ge |Q|$. Then the automorphism group of *Q* is a 2-group, S_3 , S_4 or SL(3,2) (see [3]). Since $N(Q)^{I(Q)} = A_8$ and $N(Q)^{I(Q)}$ is involved in the automorphism group of *Q*, we have a contradiction.

(v. iv) Thus y_1 fixes exactly two Q-orbits in Δ . Then any 2-element of N(Q) which is an involution consisting of exactly two 2-cycles on I(Q) fixes two Q-orbits in Δ . Set $\overline{\Delta} = \{\Delta_1, \Delta_2, \dots, \Delta_r\}$, where $\Delta = \Delta_1 \cup \Delta_2 \dots \cup \Delta_r$ and Δ_i , $1 \le i \le r$, is a Q-orbit. Then we may assume that

 $\bar{y}_1 = (\Delta_1) (\Delta_2) (\Delta_3 \Delta_4) (\Delta_5 \Delta_6) \cdots$

and y_1 fixes four points 1', 2', 3', 4' of Δ_1 .

(v. v) Since y_2 normalizes $\langle Q, y_1 \rangle$, \bar{y}_2 fixes $\{\Delta_1, \Delta_2\}$, Assume that $\bar{y}_2 = (\Delta_1 \Delta_2) \cdots$. Since $\langle Q, y_2 \rangle$ and $\langle Q, y_1 y_2 \rangle$ are conjugate to $\langle Q, y_1 \rangle$, y_2 and $y_1 y_2$ fix exactly two Q-orbits in Δ . Since $\bar{y}_1 = (\Delta_1) (\Delta_2) (\Delta_3 \Delta_4) (\Delta_5 \Delta_6) \cdots$ and \bar{y}_2 commutes with \bar{y}_1 , we may assume that

 $ar{y}_2 = (\Delta_1 \Delta_2) (\Delta_3) (\Delta_4) (\Delta_5 \Delta_6) \cdots.$

Then $\langle \bar{y}_1, \bar{y}_2 \rangle$ is semiregular on $\{\Delta_7, \Delta_8 \cdots\}$. Since $\langle \bar{y}_1, \bar{y}_2, \bar{y}_3 \rangle$ is elementary abelian, \bar{y}_3 fixes $\{\Delta_1, \Delta_2\}$, $\{\Delta_3, \Delta_4\}$ and $\{\Delta_5, \Delta_6\}$. Furthermore since $\langle Q, y_1 y_3 \rangle$ and $\langle Q, y_2 y_3 \rangle$ are conjugate to $\langle Q, y_1 \rangle$, $y_1 y_3$ and $y_2 y_3$ fix exactly two Q-orbits in Δ . Hence

 $\bar{y}_3 = (\Delta_1 \Delta_2) (\Delta_3 \Delta_4) (\Delta_5) (\Delta_6) \cdots$

Since $\bar{y}_2 \bar{y}_3$ fixes Δ_1 , there is an element in Qy_2y_3 fixing 1' of Δ_1 . Hence we may assume that y_2y_3 fixes 1'. Then $I((y_2y_3)^2)$ and $I((y_2y_3)^{y_1} \cdot y_2y_3)$ contains $I(Q) \cup$ {1'} of length t+1. Hence by the assumption (*) $(y_2y_3)^2=1$ and $y_1 \cdot y_2y_3=$ $y_2y_3 \cdot y_1$. Let T be a set of elements u of Q such that both y_2y_3u and $y_1y_2y_3u$ are involutions. Since $\bar{y}_2\bar{y}_3$ fixes Δ_1 and Δ_2 , by (2.8) there are at least $\frac{|Q|}{2}$ involutions in y_2y_3Q having fixed points in Δ . Furthermore since $\bar{y}_1\bar{y}_2\bar{y}_3$ fixes $\{\Delta_1, \Delta_2, ..., \Delta_6\}$ pointwise and $y_1y_2y_3$ consists of four 2-cycles on I(Q), by (2.8) at least $\frac{3}{4}|Q|$ involutions of $y_1y_2y_3Q$ have fixed points in Δ . Hence $|T| \geq \frac{1}{4}|Q|$. Since for any element u of $T y_2y_3u$ and $y_1 \cdot y_2y_3u$ are involutions, y_1 commutes with y_2y_3u . Furthermore y_1 commutes with y_2y_3 . Hence y_1 commutes with u. Since $|I(y_1) \cap \Delta| = 4$, y_1 commutes with exactly four elements of Q. Hence $|T| \leq 4$. Thus $\frac{1}{4}|Q| \leq 4$ and so $|Q| \leq 16$. Since $C(Q)^{I(Q)}=1$, $N(Q)^{I(Q)}=A_t$ is involuted in the automorphism group of Q. Hence Q is an elementary abelian group of order sixteen (see [3]). As we have seen above, at least $\frac{3}{4}|Q|$ elements of $y_1y_2y_3Q$ are involutions. Then since $y_1y_2y_3$ is an involution and Q is elementary abelian, $y_1y_2y_3$ commutes with at least $\frac{3}{4}|Q|$ elements of Q. Hence $y_1y_2y_3$ centralizes Q. This is a contradiction since $C(Q)^{I(Q)}=1$. Thus we may assume that $\bar{y}_2=(\Delta_1)(\Delta_2)(\Delta_3\Delta_5)(\Delta_4\Delta_6)\cdots$. Similarly \bar{y}_3 fixes $\{\Delta_1, \Delta_2\}$ pointwise.

Suppose that $\langle \bar{y}_1, \bar{y}_2, \bar{y}_3 \rangle$ is not semiregular on $\bar{\Delta} - \{\Delta_1, \Delta_2\}$. Then we may assume that \bar{y}_3 fixes $\{\Delta_3, \Delta_4, \Delta_5, \Delta_6\}$. Then $\bar{y}_1 \bar{y}_2 \bar{y}_3$ fixes $\{\Delta_1, \Delta_2, \dots, \Delta_6\}$ pointwise. Hence by the same argument as above we have a contradiction. Thus $\langle \bar{y}_1, \bar{y}_2, \bar{y}_3 \rangle$ is semiregular on $\bar{\Delta} - \{\Delta_1, \Delta_2\}$.

Since $\langle Q, y_1' \rangle$ is conjugate to $\langle Q, y_1 \rangle$, y_1' fixes exactly two Q-orbits in Δ . Since $\langle \bar{y}_1, \bar{y}_2 \bar{y}_3, \bar{y}_1' \rangle$ is abelian and $\langle \bar{y}_1, \bar{y}_2 \bar{y}_3 \rangle$ is semiregular on $\overline{\Delta} - \{\Delta_1, \Delta_2\}, \bar{y}_1'$ fixes Δ_1 and Δ_2 .

Suppose that $\langle \bar{y}_1, \bar{y}_2, \bar{y}_3, \bar{y}_1' \rangle$ is not semiregular on $\bar{\Delta} - \{\Delta_1, \Delta_2\}$. Then there is an element y' in $\langle Q, y_1, y_2, y_3 \rangle y_1'$ such that \bar{y}' has fixed points in $\bar{\Delta}$ other than Δ_1 and Δ_2 . Then $y'^{I(Q)}$ is of order four or two. If $y'^{I(Q)}$ is of order four, then $\bar{y}'^2 = \bar{y}_1$. This is a contradiction since \bar{y}_1 has no fixed point in $\bar{\Delta} - \{\Delta_1, \Delta_2\}$. If $y'^{I(Q)}$ is of order two, then $y'^{I(Q)}$ has exactly two or four 2-cycles. Hence $\langle Q, y' \rangle$ is conjugate to $\langle Q, y_1 \rangle$ or $\langle Q, y_1 y_2 y_3 \rangle$. This is a contradiction since \bar{y}_1 and $\bar{y}_1 \bar{y}_2 \bar{y}_3$ have exactly two fixed points Δ_1 and Δ_2 . Thus $\langle \bar{y}_1, \bar{y}_2, \bar{y}_3, \bar{y}_1' \rangle$ is semiregular on $\bar{\Delta} - \{\Delta_1, \Delta_2\}$.

Since \bar{y}_2 , \bar{y}_3 and \bar{y}_1' fix Δ_1 , Qy_2 , Qy_3 and Qy_1' have elements fixing 1' of Δ_1 . Hence we may assume that y_2 , y_3 and y_1' fix 1'. Then $\langle y_1, y_2, y_3 \rangle$ and $\langle y_1, y_2y_3, y_1' \rangle$ are elementary abelian. Since $I(y_1) \cap \Delta = \{1', 2', 3', 4'\}$, $\langle y_1, y_2, y_3, y_1' \rangle$ fixes $\{1', 2', 3', 4'\}$. Set $R = C_Q(y_1)$. Then R is of order four and has an orbit $\{1', 2', 3', 4'\}$. Hence $\langle y_1, y_2, y_3, y_1' \rangle$ normalizes R. Since $y_1 \notin C(Q)$, |Q| > 4. Hence the number of the R-orbit in Δ_1 is even. Since $\langle y_1, y_2, y_3, y_1' \rangle$ fixes the R-orbit $\{1', 2', 3', 4'\}$ in Δ_1 , we may assume that $\langle y_1, y_2, y_3, y_1' \rangle$ fixes one more R-orbit $\{5', 6', 7', 8'\}$ in Δ_1 .

(v. vi) Let *a* be an involution *R* commuting with y_1, y_2 and y_3 . Then $\langle a, y_1 \rangle$ -orbits in $\Delta - (\Delta_1 \cup \Delta_2)$ are of length four. Let $\{i_1, i_2, i_3, i_4\}$ be any $\langle a, y_1 \rangle$ -orbit in $\Delta - (\Delta_1 \cup \Delta_2)$. Then $\langle a, y_1 \rangle$ normalizes $G_{i_1i_2i_3i_4}$. Hence there is an involution *u* in $G_{i_1i_2i_3i_4}$ commuting with *a* and y_1 . Then $\langle y_1, u \rangle$ normalizes $G_{I(Q)}$ and so a Sylow 2-subgroup *Q'* of $G_{I(Q)}$. Since $N(Q)^{I(Q)} = A_8, \langle Q', y_1, u \rangle$ is conjugate to a subgroup of $\langle Q, y_1, y_2, y_3, y_1' \rangle$ in $N(G_{I(Q)})$. Hence y_1 fixes exactly two *Q'*-orbits Δ_1' and Δ_2' in Δ and $\{i_1, i_2, i_3, i_4\}$ is contained in Δ_1' or Δ_2' . Furthermore since $\langle Q', y_1 \rangle$ is conjugate to $\langle Q, y_1 \rangle^{y_1} = \langle Q, y_1 \rangle$. Then $(\Delta_1' \cup \Delta_2')^v = \Delta_1 \cup \Delta_2$. Since $v^{I(Q)}$ or $(y_1v)^{I(Q)} = 1$ and $\langle Q', y_1 \rangle^{y_1v} = \langle Q, y_1 \rangle$, we may assume that $v^{I(Q)} = 1$. Then $v \in G_{I(Q)}$ and $(\Delta_1' \cup \Delta_2')^v = \Delta_1 \cup \Delta_2$. Since $\{i_1, i_2, i_3, i_4\}$ is contained in a $G_{I(Q)}$ -orbit which contains Δ_1 or Δ_2 . Since $\{i_1, i_2, i_3, i_4\}$ is any $\langle a, y_1 \rangle$ -orbit in $\Delta - (\Delta_1 \cup \Delta_2)$, any $\langle a, y_1 \rangle$ -orbit in $\Delta - (\Delta_1 \cup \Delta_2)$ is contained in the $G_{I(Q)}$ -orbit which contains Δ_1 or Δ_2 . Hence $G_{I(Q)}$ is transitive or has two orbits Γ_1 and Γ_2 on Δ , where $\Gamma_1 \supseteq \Delta_1$ and $\Gamma_2 \supseteq \Delta_2$.

Since y_1 fixes exactly two Q-robits in Δ , the number of Q-orbits in Δ is even. Hence $|\Delta|$ is divisible by $2|\Delta_1|=2|Q|$. If $G_{I(Q)}$ is transitive on Δ , then the order of $G_{I(Q)}$ is divisible by 2|Q|. This is a contradiction since Q is a Sylow 2-subgroup of $G_{I(Q)}$. Hence $G_{I(Q)}$ has two orbits Γ_1 and Γ_2 on Δ .

Since $y_1 \notin C(Q)$, |Q| > 4. Hence $\langle Q, y_1, y_1' \rangle$ is a Sylow 2-subgroup of G_{5678} . Since G is 4-fold transitive, any Sylow 2-subgroup P of a stabilizer of four points in G is conjugate to $\langle Q, y_1, y_1' \rangle$ and so has exactly one orbit of length four. Furthermore a stabilizer of a point of this orbit of length four in P is conjugate to Q.

We may assume that

$$y_{1} = (1 \ 2) \ (3 \ 4) \ (5) \ (6) \ (7) \ (8) \ (1') \ (2') \ (3') \ (4') \ (5' \ 6') \ (7' \ 8') \cdots,$$

$$a = (1) \ (2) \cdots (8) \ (1' \ 2') \ (3' \ 4') \cdots.$$

Since y_2 and y_3 fix 1' and commute with a and y_1 , y_2 and y_3 are (1') (2') (3') (4') or (1') (2') (3' 4') on {1', 2', 3', 4'}.

Assume that $y_2 = (1') (2') (3') (4')$ on $\{1', 2', 3', 4'\}$. Since $|I(y_1y_2)| \le t$, we may assume that

 $y_2 = (1 \ 2) \ (3) \ (4) \ (5 \ 6) \ (7) \ (8) \ (1') \ (2') \ (3') \ (4') \ (5' \ 7') \ (6' \ 8') \cdots$

Thus $\langle y_1, y_2 \rangle$ is semiregular on $\{5', 6', \dots, n\}$. Suppose that y_3 has fixed points in $\{5', 6', \dots, n\}$. Since $\langle y_1, y_2, y_3 \rangle$ is abelian, y_3 has at least four fixed points in $\{5', 6', \dots, n\}$. This is a contradiction since $I(y_3) \supset \{1'\}$ and $|I(y_3)| \leq 8$. Hence y_3 fixes $\{1', 2', 3', 4'\}$ pointwise. Since $\langle y_1, y_2, y_3 \rangle$ fixes the *R*-orbit $\{5', 6', 7', 8'\}$, there is an element (± 1) in $\langle y_1, y_2, y_3 \rangle$ fixing $\{5', 6', 7', 8'\}$ pointwise. Since $I(\langle y_1, y_2, y_3 \rangle) \supseteq \{1', 2', 3', 4'\}$, this element is $y_1y_2y_3$. Hence

$$y_3 = (1 \ 2) \ (3) \ (4) \ (5) \ (6) \ (7 \ 8) \ (1') \ (2') \ (3') \ (4') \ (5' \ 8') \ (6' \ 7') \cdots$$

Then $\langle y_1, y_2, y_3 \rangle$ normalizes $G_{1 \ 2 \ 1' \ 2'}$. Hence as we have seen above, $\langle y_1, y_2, y_3 \rangle$ normalizes a 2-subgroup Q'' of $G_{1 \ 2 \ 1' \ 2'}$ which is conjugate to Q. Then |I(Q'')| = 8 and $N(Q'')^{I(Q'')} = A_8$. Hence $y_1^{I(Q'')}, y_2^{I(Q'')}$ and $y_3^{I(Q'')}$ are even permutations. Since y_1, y_2 and y_3 are (1 2) (1') (2') on $\{1, 2, 1', 2'\}, y_1, y_2$ and y_3 have exactly one more 2-cycle other than (1 2) in I(Q''). This is impossible. Hence $y_2 \neq (1') (2') (3') (4') \cdots$.

Thus y_2 and y_3 are (1')(2')(3'4') on $\{1', 2', 3', 4'\}$. Since |R|=4, R is cyclic or elementary abelian. First assume that R is cyclic. Then $R=\langle b \rangle$ and

$$b = (1) (2) \cdots (8) (1' 3' 2' 4') (5' 7' 6' 8') \cdots$$

Then $\langle R, y_1 \rangle$ is semiregular on $\{9', 10', \dots, n\}$. Since $\langle a, y_1, y_2 \rangle$ is abelian, if y_2 has fixed points in $\{9', 10', \dots, n\}$, then y_2 fixes at least four points of $\{9', 10', \dots, n\}$. This is a contradiction since $I(y_2)$ contains $\{3, 4, 7, 8\} \cup \{1'\}$ of length five. Thus y_2 has no fixed points in $\{9', 10', \dots, n\}$. Similalry y_3 has no fixed points in $\{9', 10', \dots, n\}$. Hence y_2 and y_3 have exactly two fixed points in $\{5', 6', 7', 8'\}$. Next assume that R is elementary abeliain. Then $R = \langle a, b' \rangle$ and

$$b' = (1) (2) \cdots (8) (1' 3') (2' 4') \cdots$$

Then $b' y_2$ and $b' y_3$ are of order four and so 4-cycle on $\{5', 6', 7', 8'\}$. Hence y_2 and y_3 have exactly two fixed points in $\{5', 6', 7', 8'\}$. Thus in both cases we may assume that

$$a = (1) (2) \cdots (8) (1' 2') (3' 4') (5' 6') (7' 8') \cdots .$$

$$y_2 = (1 2) (3) (4) (5 6) (7) (8) (1') (2') (3' 4') (5') (6') (7' 8') \cdots ,$$

$$y_3 = (1 2) (3) (4) (5) (6) (7 8) (1') (2') (3' 4') (5' 6') (7') (8') \cdots .$$

Since $\langle a, y_1, y_2, y_3 \rangle$ normalizes $G_{1_2 1' 2'}$, as we have seen above $\langle a, y_1, y_2, y_3 \rangle$ normalizes a 2-subgroup Q'' of $G_{1_2 1' 2'}$ which is conjugate to Q. Then |I(Q'')| = 8 and $N(Q'')^{I(Q'')} = A_8$. Hence $a^{I(Q'')}, y_1^{I(Q'')}, y_2^{I(Q'')}$ and $y_3^{I(Q'')}$ are even permutations. Since a = (1) (2) (1' 2') and $y_i = (1 2) (1') (2')$, i = 1, 2, 3, on $\{1, 2, 1', 2'\}$, a and y_i have exactly one more 2-cycle other than (1' 2') and (1 2) respectively in I(Q''). Since the lengths of $\langle a, y_1, y_2, y_3 \rangle$ -orbits in $\{9', 10', \dots, n\}$ are at elast eight, $|I(Q'') \cap \{9', 10', \dots, n\}|=0$. Hence $I(Q'')=\{1, 2, 3, 4, 1', 2', 3', 4'\}, \{1, 2, 5, 6, 1', 2', 5', 6'\}$, or $\{1, 2, 7, 8, 1', 2', 7', 8'\}$.

First assume that $I(Q'') = \{1, 2, 3, 4, 1', 2', 3', 4'\}$. Then a Sylow 2-subgroup of G_{1234} containing Q or Q'' has exactly one orbit $\{5, 6, 7, 8\}$ or $\{1', 2', 3', 4'\}$ of lengh four respectively. Since Sylow 2-subgroups of G_{1234} are conjugate, $\{5, 6, 7, 8\}$ and $\{1', 2', 3', 4'\}$ are contained in the same G_{1234} -orbit. Since $\Gamma_1 \supset$ $\{1', 2', 3', 4'\}$, $\{5, 6, 7, 8\}$ and Γ_1 are contained in the same G_{1234} -orbit. By (2.11) G is not 5-fold transitive. Hence G_{1234} has two orbits $\{5, 6, 7, 8\} \cup \Gamma_1$ and Γ_2 on $\Omega - \{1, 2, 3, 4\}$.

Next assume that $I(Q'') = \{1, 2, 5, 6, 1', 2', 5', 6'\}$. Then by the same

argument as above G_{1256} has two orbits $\{3, 4, 7, 8\} \cup \Gamma_1$ and Γ_2 . Since $N(Q)^{I(Q)} = A_8$, there is an element $z = (1) (2) (3 5) (4 6) (7) (8) \cdots$. Then $G_{1234} = (G_{1256})^z$ has two orbits $\{5, 6, 7, 8\} \cup \Gamma_1^z$ and Γ_2^z . Since Γ_1 and Γ_2 are $G_{I(Q)}$ -robits, $\Gamma_1^z = \Gamma_1$ or Γ_2 . On the other hand G is 4-fold transitive on Ω . Hence G_{1278} has two orbits $\{3, 4, 5, 6\} \cup \Gamma_i$ and Γ_j , where $\{i, j\} = \{1, 2\}$. Since $z \in G_{1278}$, z fixes Γ_1 and Γ_2 . Hence G_{1234} has two orbits $\{5, 6, 7, 8\} \cup \Gamma_1$ and Γ_2 . Similarly if $I(Q'') = \{1, 2, 7, 8, 1', 2', 7', 8'\}$, then G_{1234} has two orbits $\{5, 6, 7, 8\} \cup \Gamma_1$ and Γ_2 .

On the other hand Δ_2 is contained in Γ_2 and fixed by y_1 . Hence there is an element in Qy_1 fixing four points of Δ_2 . Then by the same argument as above $\{5, 6, 7, 8\}$ and Γ_2 are contained in the same G_{1234} -orbit. Thus G_{1234} is transitive on $\Omega - \{1, 2, 3, 4\}$, contrary to (2.11). Thus $N(Q)^{I(Q)} \neq A_8$. Hence we complete the proof of (2.15).

2.16. $N(Q)^{I(Q)} \neq S_t$.

Proof. Suppose by way of contradiction that $N(Q)^{I(Q)} = S_t$. Then by (2.4) N(Q) has the 2-group $\langle Q, x_1, x_2, \dots, x_k \rangle$. Now we show that $\langle Q, x_1, x_2, \dots, x_k \rangle$ is semiregular on Δ . By (2.13) and (2.15) $\langle Q, x_1, x_2 \rangle$ is semiregular on Δ .

Suppose that $\langle Q, x_1, x_2, x_3 \rangle$ is not semiregular on Δ . Then x_3 fixes $a \langle Q, x_1, x_2 \rangle$ -orbit Δ' of length 4|Q| in Δ . Then by (2.13) and (2.15) $\bar{x}_1 \bar{x}_2 \bar{x}_3$ fixes Q-orbits in Δ' . Furthermore $\langle \bar{x}_1, \bar{x}_2, \bar{x}_3 \rangle$ is abelian and $\langle \bar{x}_1, \bar{x}_2 \rangle$ is semiregular on $\overline{\Delta}$. Hence $\bar{x}_1 \bar{x}_2 \bar{x}_3$ fixes four Q-orbits in Δ' . By (2.8) $\bar{x}_1 \bar{x}_2 \bar{x}_3$ fixes at most six Q-orbits in $\overline{\Delta}$. Hence $\bar{x}_1 \bar{x}_2 \bar{x}_3$ does not fix any Q-orbit in $\Delta - \Delta'$. Hence $\langle Q, x_1, x_2, x_3 \rangle$ is semiregular on $\Delta - \Delta'$. Since $N(Q)^{I(Q)} = S_t$, N(Q) has a 2-element

$$y_1' = (1 \ 3) \ (2 \ 4) \ (5) \ (6) \cdots (t) \cdots$$

By (2.3) we may assume that $\langle Q, x_1, x_2, x_3, y_1' \rangle$ is a 2-group. Then y_1' normalizes $\langle Q, x_1, x_2, x_3 \rangle$. Hence y_1' fixes the $\langle Q, x_1, x_2, x_3 \rangle$ -orbit Δ' . Thus Δ' is $a \langle Q, x_1, x_2, y_1' \rangle$ -orbit. Hence $\langle Q, x_1, x_2, y_1' \rangle$ has an element $x \ (\pm 1)$ fixing a point of Δ' . Then by (2,13) and (2.15) $x^{I(Q)}$ is of order four and has exactly one 4-cycle (1 3 2 4) or (1 4 2 3). Hence $(x^2)^{I(Q)} = (1 2) \ (3 4)$ and has fixed points in Δ , contrary to (2.15). Thus $\langle Q, x_1, x_2, x_3 \rangle$ is semiregular on Δ .

Suppose that $\langle Q, x_1, x_2, x_3, x_4 \rangle$ is not semiregular on Δ . Then x_4 fixes $a \langle Q, x_1, x_2, x_3 \rangle$ -orbit Δ' of length 8 |Q| in Δ . Since $\langle \bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4 \rangle$ is abelian and $\langle \bar{x}_1, \bar{x}_2, \bar{x}_3 \rangle$ is semiregular on $\bar{\Delta}$, by (2.8) $\bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4$ fixes exactly eight Q-orbits in Δ , whose union is Δ' . Thus $\langle Q, x_1, x_2, x_3, x_4 \rangle$ is semiregular on $\Delta - \Delta'$. Since $N(Q)^{I(Q)} = S_t$, N(Q) has a 2-element

$$y_1' = (1 \ 3) \ (2 \ 4) \ (5) \ (6) \cdots (t) \cdots$$

By (2.3) we may assume that $\langle Q, x_1, x_2, x_3, x_4, y_1' \rangle$ is a 2-group. Then y_1' normalizes $\langle Q, x_1, x_2, x_3, x_4 \rangle$. Hence y_1' fixes Δ' . Then Δ' is $a \langle Q, x_1, x_2, x_3, y_1' \rangle$ - orbit. Hence there is an element x in $\langle Q, x_1, x_2, x_3 \rangle y_1'$ fixing a point of Δ' . Since $\langle Q, x \rangle$ is not conjugate to any subgroup of $\langle Q, x_1, x_2, x_3 \rangle$, $x^{I(Q)}$ is of order four and has exactly one 4-cycle (1 3 2 4) or (1 4 2 3). Hence $(x^2)^{I(Q)} = (1 2)$ (3 4) and x^2 has fixed points in Δ , contrary to (2.15). Thus $\langle Q, x_1, x_2, x_3, x_4 \rangle$ is semi-regular on Δ . Hence by (2.9) $\langle Q, x_1, x_2, \cdots, x_k \rangle$ is semiregular on Δ .

On the other hand Q has an involution $a=(1) (2)\cdots(t) (ij)\cdots$. Then a normalizes G_{12ij} and so commutes with an involution u of G_{12ij} . Then u normalizes $G_{I(Q)}$. Hence u normalizes a Sylow 2-subgroup Q' of $G_{I(Q)}$. Since Q' is conjugate to Q in $G_{I(Q)}$ and $N(Q)^{I(Q)} = S_t, \langle Q', u \rangle$ is conjugate to a subgroup of $\langle Q, x_1, x_2, \cdots, x_k \rangle$ in $N(G_{I(Q)})$. Hence $\langle Q, x_1, x_2, \cdots, x_k \rangle$ has an element (± 1) which has fixed points in Δ . This is a contradiction. Thus $N(Q)^{I(Q)} = S_t$.

2.17. We show that $N(Q)^{I(Q)} \neq A_t$ and complete the proof of the theorem.

Proof. Suppose by way of contradiction that $N(Q)^{I(Q)} = A_i$. First suppose that t=8 or 9. Let a=(1) $(2)\cdots(t)$ $(ij)\cdots$ be an involution of Q. Then a normalizes G_{12ij} and so commutes with an involution u of G_{12ij} . Since $N(Q)^{I(Q)} = N(G_{I(Q)})^{I(Q)} = A_s$ or A_s and $|I(u)| \le t$, $u^{I(Q)}$ consists of exactly two 2-cycles. This contradicts (2.15) since $|I(u) \cap \Delta| = 0$.

Thus $t \ge 10$. Then by (2.4) N(Q) has the 2-group $\langle Q, y_1, y_2, \dots, y_k, y_1' \rangle$, $k \ge 4$. Now we show that $\langle Q, y_1, y_2, \dots, y_k, y_1' \rangle$ is semiregular on Δ . By (2.15) $\langle Q, y_1, y_2 \rangle$ is semiregular on Δ .

Let y be any element of $\langle Q, y_1, y_2, y_1' \rangle - Q$. Then $y^{I(Q)}$ is of order two or four. If $y^{I(Q)}$ is of order two, then $y^{I(Q)}$ consists of exactly two 2-cycles. Hence by (2.15) y is semiregular on Δ . If $y^{I(Q)}$ is of order four, then $(y^2)^{I(Q)} = y_1^{I(Q)}$. Hence y is semiregular on Δ . Thus $\langle Q, y_1, y_2, y_1' \rangle$ is semiregular on Δ .

Suppose that $\langle Q, y_1, y_2, y_3 \rangle$ is not semiregular on Δ . Then by (2.15) $\bar{y}_1 \bar{y}_2 \bar{y}_3$ has fixed points in $\overline{\Delta}$. Since $(y_1 y_2 y_3)^{I(Q)}$ is an involution consisting of exactly four 2-cycles $\bar{y}_1 \bar{y}_2 \bar{y}_3$ fixes at most eight Q-orbits by (2.8). On the other hand $\langle \bar{y}_1, \bar{y}_2, \bar{y}_3 \rangle$ is abelian and $\langle \bar{y}_1, \bar{y}_2 \rangle$ is a semiregular group of order four. Hence $\bar{y}_1 \bar{y}_2 \bar{y}_3$ fixes four or eight Q-orbits. Thus y_3 fixes one or two $\langle Q, y_1, y_2 \rangle$ -orbits in Δ .

Assume that y_3 fixes exctly one $\langle Q, y_1, y_2 \rangle$ -orbit Γ in Δ . Then since y_1' normalizes $\langle Q, y_1, y_2, y_3 \rangle$, y_1' fixes Γ . Hence Γ is also a $\langle Q, y_1, y_2, y_1' \rangle$ -orbit. This is a contradiction since $\langle Q, y_1, y_2, y_1' \rangle$ is semiregular on Δ . Thus y_3 fixes exactly two $\langle Q, y_1, y_2 \rangle$ -orbits in Δ , say Γ_1 and Γ_2 . Hence by (2.8) any element of $Qy_1y_2y_3$ is an involution and has exactly eight fixed points in Δ .

Suppose that $\Gamma_1 = \Delta_1 \cup \Delta_2 \cup \Delta_3 \cup \Delta_4$ and $\Gamma_2 = \Delta_5 \cup \Delta_6 \cup \Delta_7 \cup \Delta_8$, where Δ_i , $1 \le i \le 8$, is a Q-orbit. Set $\overline{\Gamma}_1 = \{\Delta_1, \Delta_2, \Delta_3, \Delta_4\}$ and $\overline{\Gamma}_2 = \{\Delta_5, \Delta_6, \Delta_7, \Delta_8\}$. Then we may assume that

$$ar{y}_1 = (\Delta_1 \ \Delta_2) \ (\Delta_3 \ \Delta_4) \ (\Delta_5 \ \Delta_6) \ (\Delta_7 \ \Delta_8) \cdots, \ ar{y}_2 = (\Delta_1 \ \Delta_3) \ (\Delta_2 \ \Delta_4) \ (\Delta_5 \ \Delta_7) \ (\Delta_6 \ \Delta_8) \cdots, \ ar{y}_3 = (\Delta_1 \ \Delta_4) \ (\Delta_2 \ \Delta_3) \ (\Delta_5 \ \Delta_8) \ (\Delta_6 \ \Delta_7) \cdots.$$

Since y_i , $i \ge 4$, normalizes $\langle Q, y_1, y_2, y_3 \rangle$, $\Gamma_1^{y_i} = \Gamma_1$ or Γ_2 . Suppose that $\Gamma_1^{y_i} = \Gamma_1$. Then Γ_1 is a $\langle Q, y_1, y_2, y_i \rangle$ -orbit. Hence $y_1 y_2 y_i$ fixes a Q-orbit in Γ_1 by (2.15). Since $\bar{y}_1 \bar{y}_2 \bar{y}_3$ is the identity on $\overline{\Gamma}_1, \bar{y}_1 \bar{y}_2 \bar{y}_3$. $\bar{y}_1 \bar{y}_2 \bar{y}_i = \bar{y}_3 \bar{y}_i$ fixes a Q-orbit in Γ_1 , contrary to (2.15). Thus $\Gamma_1^{y_i} = \Gamma_2$.

Suppose that $t \ge 12$. Then N(Q) has y_4 and y_5 . Since $\langle \bar{y}_1, \bar{y}_2, \bar{y}_4 \rangle$ is elementary abelian and $\Gamma_1^{y_4} = \Gamma_2$, we may assume that

 $ar{y}_4 = (\Delta_1 \ \Delta_5) \ (\Delta_2 \ \Delta_6) \ (\Delta_3 \ \Delta_7) \ (\Delta_4 \ \Delta_8) \cdots .$

Furthemore since $\Gamma_1^{y_5} = \Gamma_2$, $\overline{\Gamma}_1 \cup \overline{\Gamma}_2$ is a $\langle \bar{y}_1, \bar{y}_2, \bar{y}_4, \bar{y}_5 \rangle$ -orbit of length eight. Hence $\langle \bar{y}_1, \bar{y}_2 \rangle \bar{y}_4 \bar{y}_5$ has an element fixing $\overline{\Gamma}_1 \cup \overline{\Gamma}_2$ pointwise. Thus we may assume that $\bar{y}_1 \bar{y}_4 \bar{y}_5$ fixes $\overline{\Gamma}_1 \cup \overline{\Gamma}_2$ pointwise and so

$$ar{y}_{\scriptscriptstyle 5} = (\Delta_{\scriptscriptstyle 1} \; \Delta_{\scriptscriptstyle 6}) \; (\Delta_{\scriptscriptstyle 2} \; \Delta_{\scriptscriptstyle 5}) \; (\Delta_{\scriptscriptstyle 3} \; \Delta_{\scriptscriptstyle 8}) \; (\Delta_{\scriptscriptstyle 4} \; \Delta_{\scriptscriptstyle 7}) \cdots \, .$$

On the other hand N(Q) has 2-elements

$$y'_{4} = (1) (2) (3 4) (5) (6) (7) (8) (9 11) (10) (12) (13) \cdots (t) \cdots,$$

 $y'_{5} = (1) (2) (3 4) (5) (6) (7) (8) (9) (11) (10 12) (13) (14) \cdots (t) \cdots.$

By (2.3) we may assume that $\langle Q, y_1, y_2, y_3, y'_4, y'_5 \rangle$ is a 2-group. Then by the same argument as above $\Gamma_1^{y'_4} = \Gamma_1^{y'_5} = \Gamma_2$. If $\bar{y}_i = (\Delta_1 \Delta_5) \cdots, i=4, 5$, then $(y_4 y'_i)^3$ has the same form as y_1 on I(Q) and fixes Δ_1 , which is a contradiction. Similarly $\bar{y}_i = (\Delta_1 \Delta_6) \cdots, i=4, 5$, since $(\bar{y}_5 \bar{y}_i)^3 = \bar{y}_1$. Hence we may assume that

$$ar{y}_4' = (\Delta_1 \ \Delta_7) \ (\Delta_2 \ \Delta_8) \ (\Delta_3 \ \Delta_5) \ (\Delta_4 \ \Delta_6) \cdots, \ ar{y}_5' = (\Delta_1 \ \Delta_8) \ (\Delta_2 \ \Delta_7) \ (\Delta_3 \ \Delta_6) \ (\Delta_4 \ \Delta_5) \cdots.$$

Then $y_4y_5y_4'y_5'$ consists of exactly two 2-cycles on I(Q) and fixes Δ_1 , contrary to (2.15).

Thus t=10 or 11. Assume that t=10. The proof in the case t=11 is similar. Since $\langle Q, y_1, y_2, y_1' \rangle$ is semiregular on Δ , the lengths of $\langle Q, y_1, y_2, y_1' \rangle$ orbits on Δ are 8|Q|. On the other hand $\langle Q, y_1, y_2, y_1' \rangle$ fixes 7, 8, 9, 10 and has two orbits $\{1, 2, 3, 4\}$ and $\{5, 6\}$ on I(Q). Hence $\langle Q, y_1, y_2, y_1' \rangle$ is a Sylow 2-group of G_{78910} . Furthemore in $\langle Q, y_1, y_2, y_1' \rangle$ any element fixing ten points belongs to Q. Since G is 4-fold transitive, this shows that any element fixing ten points is conjugate to an element of Q. Set $z_1=y_1y_2y_3$. By what we have proved above every element of Qz_1 is an involution. Hence for any element uof $Q u^{z_1}=u^{-1}$. Furthermore N(Q) has a 2-element

$$z_2 = (1 \ 3) \ (2 \ 4) \ (5 \ 7) \ (6 \ 8) \ (9) \ (10) \cdots$$

By (2.3) we may assume that $\langle Q, z_1, z_2 \rangle$ is a 2-group. Since $\langle Q, z_2 \rangle$ and $\langle Q, z_1 z_2 \rangle$ are conjugate to $\langle Q, z_1 \rangle$, every element of Qz_2 and $Qz_1 z_2$ is an

involution. Hence for any element u of $Q u^{z_2} = u^{-1}$ and $u^{z_1 z_2} = u^{-1}$. On the other hand $(u^{z_1})^{z_2} = (u^{-1})^{z_2} = u$. Hence $u = u^{-1}$. Thus Q is elementary abelian and $z_1, z_2 \in C(Q)$. Then since $N(Q)^{I(Q)} = A_{10}$ and $C(Q)^{I(Q)}$ is a normal subgroup $(\pm 1), N(Q)^{I(Q)} = C(Q)^{I(Q)}$. In particular since Q is abelian, every 2-element of N(Q) belongs to C(Q).

Since $y_1^2 \in Q$, the order of y_1 is two or four. Suppose that y_1 is of order two. Then for any 2-cycle (i j) of y_1 in Δy_1 normalizes G_{12ij} . Hence y_1 normalizes a 2-subgroup Q' of G_{12ij} which is conjugate to Q. Since $N(Q')^{I(Q')} = A_{10}, y_1$ consist of exactly two or four 2-cycles on I(Q'). Suppose that y_1 consists of exactly four 2-cycles on I(Q'). Then $\langle Q', y_1 \rangle$ is conjugate to $\langle Q, z_1 \rangle$. Then $|I(y_1)|=10$, which is a contradiction. Thus y_1 consists of exactly two 2-cycles on I(Q'). Then $I(Q')=\{i, j, 1, 2, 5, 6, \cdots, 10\}$. Then Q and Q' are contained in G_{78910} and so conjugate in G_{78910} . Thus G_{78910} has an element which takes $\{1, 2, i, j\}$ into $\{1, 2, \cdots, 6\}$. Since $\{1, 2, \cdots, 6\}$ is contained in a G_{78910} -orbit and (i j) is any 2-cycle of y_1 in Δ , G_{78910} is transitive on $\Omega - \{7, 8, 9, 10\}$, contrary to (2.11). Thus y_1 is of order four. Hence every involution of N(Q) - Qconsists of exactly four 2-cycles on I(Q) and every involution of G fixes exactly ten points.

C(Q) has an involution

$$z_3 = (1 \ 3) \ (2 \ 4) \ (5 \ 6) \ (7) \ (8) \ (9 \ 10) \cdots$$

By (2.3) we may assume that $\langle Q, z_1, z_3 \rangle$ is a 2-group. Then since $z_1 z_3$ consists of exactly four 2-cycles on I(Q), $z_1 z_3$ is of order two. Hence $z_1 z_3 = z_3 z_1$. Since $I(z_1) \neq I(z_3)$ and any Sylow 2-subgroup of $G_{I(z_1)}$ is conjugate to Q, z_3 fixes exactly two points of $I(z_1)$. Hence $|I(z_1) \cap I(z_3) \cap \Delta| = 2$. Then since Q is semiregular on Δ and $\langle z_1, z_3 \rangle < C(Q)$, |Q| = 2. Set $Q = \langle a \rangle$.

Since $\langle a, y_3 y_4 \rangle$ is conjugate to $\langle a, y_1 \rangle$, $y_3 y_4$ is of order four and $(y_3 y_4)^2 = a$. Let (i j k l) be any 4-cycle of $y_3 y_4$ in Δ . Then $y_3 y_4$ normalizes $G_{i j k l}$. Hence $y_3 y_4$ commutes with an involution z of $G_{i j k l}$. Since z commutes with $(y_3 y_4)^2 = a$, z fixes I(a). Thus $y_3 y_4 z$ is of order four and $(y_3 y_4 z)^{I(a)}$ is of order two. Hence $y_3 y_4 z$ consists of exactly two 2-cycles on I(a). Then since $(y_3 y_4)^{I(a)} =$ (7 8) (9 10) and $z^{I(a)}$ consists of exactly four 2-cycles, z has 2-cycles (7 8) and (9 10). Hence $y_3 y_4 z \in G_{78910}$. Furthermore $y_3 y_4 z$ is (i j k l) on $\{i, j, k, l\}$. Hence $\{i, j, k, l\}$ is contained in a G_{78910} -orbit. Set $z_4 = y_1 y_3 y_4$. Then z_4 has 2-cycles (7 8) and (9 10). Since $C(a)^{I(a)}_{78910} = A_6$, C(a) has an involution z'which is conjugate to z under $C(a)_{78910}$ and has the same form as z_4 on I(a). Then $\langle a, z' \rangle$ and $\langle a, z_4 \rangle$ are Sylow 2-subgroups of $\langle a, z_4, z' \rangle_{I(a)}$ and so z'is conjugate to z_4 or az_4 under $\langle a, z_4, z' \rangle_{I(a)}$. Thus z is conjugate to z_4 or az_4 under $C(a)_{78910}$. Since $I(z) \cap \Delta \subset \{i, j, k, l\}$, there is an element in $C(a)_{78910}$ which takes $\{i, j, k, l\}$ into $I(z_4) \cap \Delta$ or $I(az_4) \cap \Delta$. On the other hand $z_4^{y_1'} = z_4a$.

Hence $(I(z_4) \cap \Delta)^{y_1'} = I(az_4) \cap \Delta$. Thus $C(a)_{78910}$ has an element taking $\{i, j, k, l\}$ into $I(z_4) \cap \Delta$. Furthermore $y_1' y_2$ is of order eight and commutes with z_4 . Hence $y_1' y_2$ consists of a 8-cycle on $I(z_4) \cap \Delta$. Thus $I(z_4) \cap \Delta$ is contained in a $C(a)_{78910}$ -orbit. Since (i j k l) is any 4-cycle of $y_3 y_4$ in Δ , Δ is entained in a $C(a)_{78910}$ -orbit and so in a G_{78910} -orbit. By (2.11) G_{78910} is intransitive on $\Omega - \{7, 8, 9, 10\}$. Hence G_{78910} has exactly two orbits $\{1, 2, \dots, 6\}$ and Δ on $\Omega - \{7, 8, 9, 10\}$. Since G is 4-fold transitive, any four points i_1, i_2, i_3, i_4 of Ω uniquely determine a subset $\Delta(i_1, i_2, i_3, i_4)$ of Ω which is the $G_{i_1 i_2 i_3 i_4}$ -orbit of lengt six.

For a 2-cycle (11 12) of *a* and any two points i_1, i_2 of $\{1, 2, \dots, 10\}$ four points 11, 12, i_1, i_2 uniquenly determine Δ (11, 12, i_1, i_2), on which *a* consists of exactly three 2-cycles. Conversely for any 2-cycle $(j_1 j_2)$ of *a* in $\Delta - \{11, 12\}$ four points 11, 12, j_1, j_2 uniquely determine Δ (11, 12, j_1, j_2) and *a* fixes exactly two points of Δ (11, 12, j_1, j_2) which are contained in $\{1, 2, \dots, 10\}$. Hence the number of 2cycles of *a* in $\Delta - \{11, 12\}$ is $\binom{10}{2} \cdot 3 = 135$. Hence $n = 12 + 135 \cdot 2 = 282$. On the other hand for any point *i* of $\Omega - \{1, 2, 3\}$ four points 1, 2, 3, *i* uniquely determine Δ (1, 2, 3, *i*). Hence $282 - 3 \equiv 0 \pmod{7}$, which is a contradiction. (In the case t = 11 for any two points i_1, i_2 of $\{1, 2, \dots, 11\} | \{1, 2, \dots, 11\} \cap \Delta$ (11, 12, $i_1, i_2 | = 3$. Hence $\binom{11}{2} \equiv 0 \pmod{3}$, which is a contradiction.) Thus $\langle Q, y_1, y_2, y_3 \rangle$ is semiregular on Δ .

Let y' be any element of $\langle Q, y_1, y_2, y_3, y_4, y_1' \rangle - Q$. Then $y'^{I(Q)}$ is of order two or four. If $y'^{I(Q)}$ is of order two, then $y'^{I(Q)}$ consists of two or four 2-cycles. Hence $\langle Q, y' \rangle$ is conjugate to a subgroup of $\langle Q, y_1, y_2, y_3 \rangle$ in N(Q). Hence y' is semiregular on Δ . If $y'^{I(Q)}$ is of order four, then $(y'^2)^{I(Q)} = y_1^{I(Q)}$. Hence y' is semiregular on Δ . Thus $\langle Q, y_1, y_2, y_3, y_4, y_1' \rangle$ is semiregular on Δ . Hence by $(2.10) \langle Q, y_1, y_2, \dots, y_k, y_1' \rangle$ is semireglar on Δ .

Let x be any 2-element of $N(G_{I(Q)})$. Then x normalizes a Sylow 2-subgroup Q' of $G_{I(Q)}$. Since Q is a Sylow 2-subgroup of $G_{I(Q)}$ and $N(Q)^{I(Q)} = A_t, \langle Q', x \rangle$ is cnjugate to a subgroup of $\langle Q, y_1, y_2, \dots, y_k \rangle$. Hence x is semiregular on Δ . On the other hand Q has an involution a=(1) (2)...(t) (ij).... Then a normalizes G_{12ij} , and so commutes with an involution u of G_{12ij} . Then $u \in N(G_{I(Q)})$ and $|I(u) \cap \Delta| \neq 0$, which is a contradiction. Thus $N(Q)^{I(Q)} \neq A_t$.

Thus we complete the proof of the theorem.

3. Proof of the lemma

In this section we assume that G is a permutation group as in Lemma. Suppose by way of contradiction that there is a 2-group Q in G such that |I(Q)| = 12 and $N(Q)^{I(Q)} = M_{12}$. Let \overline{Q} be a Sylow 2-subgroup of $G_{I(Q)}$. Since $N(\overline{Q})^{I(\overline{Q})} = N(G_{I(Q)})^{I(Q)} \ge N(Q)^{I(\overline{Q})} = M_{12}$, $N(\overline{Q})^{I(\overline{Q})} = S_{12}$, A_{12} or M_{12} . If $N(\overline{Q})^{I(\overline{Q})}$

= S_{12} , or A_{12} , then by Thereom $G=S_{14}$ or A_{16} . Hence $N(Q)^{I(Q)}=S_{12}$, which is a contradiction. Thus $N(\bar{Q})^{I(\bar{Q})}=M_{12}$. Hence we may assume that Q is a Sylow 2-subgroup of $G_{I(Q)}$.

Set $I(Q) = \{1, 2, \dots, 12\}$ and $\Delta = \Omega - I(Q)$. Then $n \ge 35$ ([2], p. 80) and so $|\Delta| \ge 23$.

Since $N(Q)^{I(Q)} = M_{12}$, we may assume that N(Q) has 2-element

 $x_1 = (1) (2) (3) (4) (5 6) (7 8) (9 10) (11 12) \cdots$, $y_1 = (1) (2) (3) (4) (5 7 6 8) (9 11 10 12) \cdots$,

 $y_2 = (1) (2) (3) (4) (5 10 6 9) (7 11 8 12) \cdots$

and $\langle Q, x_1, y_1, y_2 \rangle$ is a 2-group (see (2.3)). Then $\langle Q, y_1^2 \rangle = \langle Q, y_2^2 \rangle = \langle Q, y_1 \rangle$. Since Q is a normal subgroup of $\langle Q, y_1, y_2 \rangle$, Q has a central involution a of $\langle Q, y_1, y_2 \rangle$. Then we may assume that

 $a = (1) (2) \cdots (12) (13 \ 14) (15 \ 16) \cdots (n-1 \ n)$.

3.1. First we show hat $\langle Q, y_1, y_2 \rangle$ has at least one orbit of length eight in Δ on which $\langle Q, y_1, y_2 \rangle$ is a quaternion group.

Proof. Suppose by way of contradiction that $\langle Q, y_1, y_2 \rangle$ has no orbit of length eight in Δ on which $\langle Q, y_1, y_2 \rangle$ is a quaternion group. Then $\{5, 6, \dots, 12\}$ is the unique $\langle Q, y_1, y_2 \rangle$ -orbit of length eight and on which $\langle Q, y_1, y_2 \rangle$ is a quaternion group.

(i) We show that $\langle Q, y_1, y_2 \rangle$ is a Sylow 2-subgroup of G_{1234} and Q is a characteristic subgroup of $\langle Q, y_1, y_2 \rangle$. Let x be any 2-element of $N(\langle Q, y_1, y_2 \rangle)_{1234}$. Then x fixes $\{5, 6, \dots, 12\}$ and so I(Q). Hence $x \in N(Q)$. Since $(N(Q)_{1234})^{I(Q)} = \langle y_1, y_2 \rangle^{I(Q)}, x^{I(Q)} \in \langle y_1, y_2 \rangle^{I(Q)}$. Hence there is an element x' in $\langle Q, y_1, y_2 \rangle$ such that $x'^{I(Q)} = x^{I(Q)}$. Hence $(x'^{-1}x)^{I(Q)} = 1$ and so $x'^{-1}x \in Q$. Thus $x \in \langle Q, x' \rangle \leq \langle Q, y_1, y_2 \rangle$. This shows that $\langle Q, y_1, y_2 \rangle$ is a Sylow 2-subgroup of G_{1234} . Furthermore since any automorphism of $\langle Q, y_1, y_2 \rangle$ fixes I(Q) and $\langle Q, y_1, y_2 \rangle_{I(Q)} = Q$, Q is a characteristic subgroup of $\langle Q, y_1, y_2 \rangle$.

(ii) Let *i*, *j*, *k*, *l* be any four points of Ω and *X* be a 2-group such that $X \leq N(G_{ijkl})$. Then we show that G_{ijkl} has an involution *x* such that $X \leq C(x)$, |I(x)| = 12 and $C(x)^{I(x)} \leq M_{12}$. Since $X \leq N(G_{ijkl})$, *X* normalizes a Sylow 2-subgroup *P'* of G_{ijkl} . Since *G* is 4-fold transitive, *P'* is conjugate to $\langle Q y_1, y_2 \rangle$. Hence *P'* has a characteristic subgroup *Q'* which is conjugate to *Q*. Then $X \leq N(Q')$. Hence there is an involution *x* in *Q'* such that $X \leq C(x)$. Since |I(Q')| = 12 and $N(Q')^{I(Q')} = M_{12}$, |I(x')| = 12 and $C(x)^{I(x)} \leq M_{12}$. We remark that if *x* is the unique involution of *Q'* then $C(x)^{I(x)} = M_{12}$.

(iii) We show that Q is a cyclic or generalized quaternion group and $C(Q)^{I(Q)} = N(Q)^{I(Q)}$. Suppose by way of contradiction that Q has an involution b other than a. Then since a is a central involution of Q, we may assume that

 $b = (1) (2) \cdots (12) (13 \ 15) (14 \ 16) (17 \ 19) (18 \ 20) (21 \ 23) (22 \ 24) \cdots$

Then $\langle a, b \rangle \leq N(G_{13\,14\,15\,16})$. Hence by (ii) $G_{13\,14\,15\,16}$ has an involution u such that $\langle a, b \rangle \leq C(u)$, |I(u)| = 12 and $C(u)^{I(u)} \leq M_{12}$. Then $|I(a) \cap I(u)| = 0$ or 4. If $|I(a) \cap I(u)| = 4$, then $b^{I(u)}$ fixes the same four points that a fixes and commutes with $a^{I(u)}$. This is a contradiction since $C(u)^{I(u)} \leq M_{12}$. Hence $|I(a) \cap I(u)| = 0$. Then we may assume that

$$u = (1 \ 3) \ (2 \ 4) \ (5 \ 7) \ (6 \ 8) \ (9 \ 11) \ (10 \ 12) \ (13) \ (14) \cdots (24) \cdots$$

Since $\langle a, u \rangle \leq N(G_{131314})$, by (ii) G_{131314} has an involution v such that $\langle a, u \rangle \leq$ C(v), |I(v)| = 12 and $C(v)^{I(v)} \le M_{12}$. Let R be a Sylow 2-subgroup of $\langle a, b, u, v \rangle$ containing $\langle a, b, u \rangle$. Then $R^{I(Q)} = \langle u, v \rangle^{I(Q)}$. Hence R has an element v' such tha $v'^{I(Q)} = v^{I(Q)}$ and v' is conjugate to v. Since $u \in Z(\langle a, b, u, v \rangle)$, v' fixes I(u). Since v' fixes 1,3 which are not contained in I(u) and |I(v')| = 12, v' does not fix I(u) pointwise. Furthermore I(u) is a union of of $\langle a, b, u, v \rangle$ -orbits and v' is conjugate to v which has fixed points in I(u). Hence v' has fixed points in I(u) and so v' fixes exctly four points of I(u). Since $(bv')^{I(u)}$ is a 2-element of $C(u)^{I(u)} \leq M_{12}, (bv')^{I(u)}$ is of order two, four or eight. If $(bv')^{I(u)}$ is of order two, then b commutes with v'. Hence $\langle a, b \rangle^{I(v')}$ is a four group and $|I(\langle a, b \rangle^{I(v')})|$ =4. This is a contradiction since M_{12} has no such subgroup. If $(bv')^{I(u)}$ is of order four or eight, then $((bv')^{I(u)})^2$ or $((bv')^{I(u)})^4$ is an invlution fixing four points and so $I((bv')^2)$ or $I((bv')^4)$ contains $\{1, 2, \dots, 12\}$ and four points of I(u), contrary to the assumption. Thus Q has exactly one involution and so Q is a cyclic or generalized quaternion group. Hence the automorphism group of Q is a 2-group or S_4 . Since $N(Q)^{I(Q)} = M_{12}$ and $N(Q)^{I(Q)}/C(Q)^{I(Q)}$ is involuted in the automorphism grup of Q, $C(Q)^{I(Q)} = N(Q)^{I(Q)}$.

(iv) Thus *a* is the unique involution of *Q*. Since $a \in N(G_{1\,2\,13\,14})$, $G_{1\,2\,13\,14}$, has an involution *x* such that ax = xa, |I(x)| = 12 and $C(x)^{I(x)} = M_{12}$ by (ii). Then we may assume that $x = x_1$ and

$$x_1 = (1) (2) (3) (4) (5 6) (7 8) (9 10) (11 12) (13) (14) \cdots (20) \cdots$$

Since $\langle a, x_1 \rangle \leq N(G_{561314}), G_{561314}$ has an involution x_2 such that $\langle a, x_1 \rangle \leq C(x_2), |I(x_2)| = 12$ and $C(x_2)^{I(x_2)} = M_{12}$ by (ii). Then $\langle x_1, x_2 \rangle$ normalizes a Sylow 2-subgroup of $G_{I(Q)}$ containing a. Hence we may assume that $\langle x_1, x_2 \rangle$ normalizes Q. Furthermoe since $N(Q)^{I(Q)} = M_{12}$ and $C(x_1)^{I(x_1)} = M_{12}$, we may assume that

$$x_{z} = (1 \ 2) \ (3 \ 4) \ (5) \ (6) \ (7) \ (8) \ (9 \ 10) \ (11 \ 12) \ (13) \ (14) \ (15) \ (16) \ (17 \ 18) \ (19 \ 20) \cdots$$

or

$$x_2 = (1) (2) (3 4) (5) (6) (7 8) (9 11) (10 12) (13) (14) (15 16) (17 19) (18 20) \cdots .$$

(v) We show that $x_1, x_2 \notin C(Q)$. Suppose by way of contradiction that $x_1 \in C(Q)$. Since $\langle Q, x_2 \rangle$ is conjugate to $\langle Q, x_1 \rangle$ in N(Q), there is an element

u in *Q* such that x_2u is conjugate to x_1 in N(Q). Then $x_2u \in C(Q)$ and $|I(x_2u)| = 12$. Hence x_2u commutes with *u* and so x_2 commutes with *u*. Since x_2 and x_2u are of order two, $u^2=1$. Hence u=a or 1. Thus $x_2 \in C(Q)$. Since $\langle x_1, x_2 \rangle < C(Q)$ and $|I(x_1) \cap I(x_2) \cap \Delta| = 2$ or 4, *Q* is of order two or four. Thus *Q* is abelian. Then since $N(Q)^{I(Q)} = C(Q)^{I(Q)}$ by (iii), $y_i \in C(Q)$, i=1, 2. Since $y_i^2 \in \langle Q, x_1 \rangle$, there is an element u_i in *Q* such that $y_i^2 = u_i x_1$. Then y_i commutes with $u_i x_1$. Since y_i commutes with u_i, y_i commutes with x_1 . Hence y_i fixes $I(x_1) \cap \Delta$. Furthermore since $x_1 \in C(Q)$, *Q* fixes $I(x_1) \cap \Delta$. Thus $I(x_1) \cap \Delta$ is a union of $\langle Q, y_1, y_2 \rangle$ -orbits.

Suppose that Q is of order four. Since $\langle Q, y_1, y_2 \rangle^{I(x_1) \cap \Delta}$ is not a quaternion group and $C(x_1)^{I(x_1)} = M_{12}$, $\langle Q, y_1, y_2 \rangle^{I(x_1) \cap \Delta} = Q^{I(x_1) \cap \Delta}$. Hence $|\langle Q, y_1, y_2 \rangle_{I(x_1 \cap \Delta)}| = 8$ and so Qy_i , i=1, 2, has an element y_i' fixing $I(x_1) \cap \Delta$ pointwise. Then $I(\langle y_1', y_2' \rangle) = I(x_1)$. Since $N(G_{I(x_1)})^{I(x_1)} \ge C(x_1)^{I(x_1)} = M_{12}$, for the four points 1, 2, 3, 4 of $I(x_1)$ a Sylow 2-subgroup of $G_{1\,2\,3\,4}$ cotaining $\langle y_1', y_2' \rangle$ is of order at least 8.8. This is a contradiction since $\langle Q, y_1, y_2 \rangle$ is a Sylow 2-subgroup of $G_{1\,2\,3\,4}$ and of order 8.4.

Next suppose that Q is of order two. Then by the same reason as above $\langle Q, y_1, y_2 \rangle^{I(x_1) \cap \Delta}$ is a cyclic group of order two or four. Hence $\langle Q, y_1, y_2 \rangle$ has an element y which is of order four and fixes $I(x_1) \cap \Delta$ pointwise. Then by the same argument as above G_{1234} has a Sylow 2-subgroup containing y and of order at least 8.4. This is a contradiction since $\langle Q, y_1, y_2 \rangle$ is a Sylow 2-subgroup of G_{1234} and of order 8.2. Thus $x_1 \notin C(Q)$. Similarly $x_2 \notin C(Q)$.

(vi) Since $C(Q)^{I(Q)} = N(Q)^{I(Q)}$ and $x_1 \notin C(Q)$, Q is nonabelian. Hence by (iii) Q is a generalized quaternion group. Moreover there are elements b_1 and b_2 in Q such that b_1x_1 and b_2x_2 belong to C(Q). Then b_ix_i commutes with b_i , i=1, 2. Hence x_i commutes with b_i . Thus b_i fixes $I(x_i)$. Since $|I(x_i) \cap I(Q)|$ =4 and $C(x_i)^{I(x_i)} = M_{12}$, b_i fixes exactly four points of $I(x_i)$ and so b_i is of order two or four. If b_i is of order two, then $b_i = a$ since a is the unique involution of Q. This is a contradiction since $x_i \notin C(Q)$. Thus b_i is of order four. Furthermore this shows that $\langle Q, y_1, y_2 \rangle$ has exactly one central involution a.

Suppose that Q is of order at least sixteen. Then we may assume that $Q = \langle c, d \rangle$, where $c^4 = d^{2r} = 1$ and $r \ge 3$. Suppose that $b_1 \in \langle d \rangle$. Then since d commutes with b_1x_1 , d commutes with x_1 . Then d fixes $I(x_1) \cap \Delta$ of length eight. Since d is of order at least eight, d is of order eight. Thus $d^{I(x_1)}$ has four fixed points and one 8-cycle, which is a contradiction since $C(x_1)^{I(x_1)} = M_{12}$. Thus $b_1 \notin \langle d \rangle$ and so $Q = \langle b_1, d \rangle$. Similarly $Q = \langle b_2, d \rangle$. Hence $d^{b_i} = d^{-1}$, i = 1, 2, and so $d^{b_i x_i} = (d^{-1})^{x_i}$. On the other hand since $b_i x_i \in C(Q)$. Hence $d^{b_i x_i} = d$. Thus $d^{x_i} = d^{-1}$ and so $d^{x_1 x_2} = d$. Since $|I(x_1 x_2)| \le 12$, $|I(x_1 x_2) \cap I(Q)| = 4$ and $I(x_1 x_2) \cap \Delta \supseteq \{13, 14\}, 2 \le |I(x_1 x_2) \cap \Delta| \le 8$. Then since d is of order at least eight, $|I(x_1 x_2) \cap \Delta| = 8$ and d is of order eight. Thus $|I(x_1 x_2)| = 12$ and $d^{I(x_1 x_2)}$ has four fixed points and one 8-cycle. This implies that $C(x_1 x_2)^{I(x_1 x_2)} \le M_{12}$.

On the other hand for any four points i, j, k, l of $I(x_1x_2)$ let P' be a Sylow 2-subgroup of G_{ijkl} containing x_1x_2 . Then since G is 4-fold transitive, P' is conjugate to $\langle Q, y_1, y_2 \rangle$. Hence P' has the unique central involution a' which is conjugate to a. Then $P'_{I(a')}$ is conjugate to Q and $C(a')^{I(a')}=M_{12}$. If $x_1x_2=a'$, then $C(x_1x_2)^{I(x_1x_2)}=M_{12}$, which is a contradiction. Hence $x_1x_2\pm a'$. Then since $P'_{I(a')}$ has exactly one involution $a', x_1x_2 \notin P'_{I(a')}$. Hence $I(x_1x_2) \cap I(a')=\{i, j, k, l\}$ because $C(a')^{I(a')}=M_{12}$. Thus $a^{I(x_1x_2)}$ fixes exactly four points i, j, k, l. Then by a lemma of Livingstone and Wanger [4] $C(x_1x_2)^{I(x_1x_2)} \approx 4$ -fold transitive on $I(x_1x_2)$. Since $C(x_1x_2)^{I(x_1x_2)} \neq M_{12}$, $C(x_1x_2)^{I(x_1x_2)} \geq A_{12}$. Then by Theorem $G=S_{14}$ or A_{16} , which is a contradiction.

Thus Q is a quaternion group. Since $C(Q)^{I(Q)} = N(Q)^{I(Q)}$, Qy_1 has an element which belongs to C(Q). Hence we may assume that $y_1 \in C(Q)$. Hence $y_1^2(b_1x_1)^{-1} \in C(Q) \cap Q = \langle a \rangle$. Thus $y_1^2 = b_1x_1$ or ab_1x_1 and so y_1 is of order eight. Furthermore y_1 commutes with a and b_1 . Hence y_1 commutes with x_1 . Thus y_1 fixes $I(x_1)$ and so $y_1^{I(x_1)}$ has four fixed points and one 8-cycle. This is a contradiction since $C(x_1)^{I(x_1)} = M_{12}$. Thus we complete the proof of (3.1).

3.2. Next we show the Q is of order two and Qx_1 has an involution x_1' such that $|I(x_1')| = 12$ and $C(x_1')^{I(x_1')} = M_{12}$.

Proof. By (3.1) $\langle Q, y_1, y_2 \rangle$ has an orbit Γ in Δ such that $|\Gamma| = 8$ and $\langle Q, y_1, y_2 \rangle^{\Gamma}$ is a quaternion group. Then Q is a quaternion group or a cyclic group of order four or two. Hence the automorphism group of Q is S_4 or a 2-group. Furthermore $N(Q)^{I(Q)} = M_{12}$ and $N(Q)^{I(Q)} / C(Q)^{I(Q)}$ is involved in the automorphism group of Q. Hence $N(Q)^{I(Q)} = C(Q)^{I(Q)}$.

Suppose that Q is a cyclic group of order four. Then since $N(Q)^{I(Q)} = C(Q)^{I(Q)}$ and Q is abelian, any 2-element of N(Q) is contained in C(Q). Thus $Z(\langle Q, y_1, y_2 \rangle) \ge Q$. On the other hand $\langle Q, y_1, y_2 \rangle^{\Gamma}$ is a quaternion group. Hence Q has an element b of order four and $b^{\Gamma} \notin Z(\langle Q, y_1, y_2 \rangle^{\Gamma})$, which is a contradiction. Thus the order of Q is not four.

Since $\langle Q, y_1, y_2 \rangle_{\Gamma}$ is a quaternion group and $\langle Q, y_1, y_2 \rangle$ is of order at least $8 \cdot 2, \langle Q, y_1, y_2 \rangle_{\Gamma}$ has an involution, which is contained in Qx_1 . Hence we may assume that $x_1 \in \langle Q, y_1, y_2 \rangle_{\Gamma}$. Then $x_1 \in Z(\langle Q, y_1, y_2 \rangle)$ and $|I(x_1)| = 12$. Let x be any involution of $\langle Q, y_1, y_2 \rangle$ other than a and x_1 . Since Q has exactly one involution $a, x \notin Q$. Hence $x \in Qx_1$. Thus $x^{I(Q)} = x_1^{I(Q)}$ and so xx_1 is an involution of Q. Hence $xx_1 = a$ and so $x = ax_1$. Thus $\langle Q, y_1, y_2 \rangle$ has exactly three involution a, x_1 , and ax_1 , which are contained in $Z(\langle Q, y_1, y_2 \rangle)$.

Assume that $\langle Q, y_1, y_2 \rangle$ is a Sylow 2-subgroup of $G_{1\,2\,3\,4}$. For any four points, *i*, *j*, *k*, *l* of $I(x_1)$ let P' be a Sylow 2-subgroup of $G_{i\,j\,k\,l}$ containing x_1 . Since G is 4-fold transitive, P' is conjugate to $\langle Q, y_1, y_2 \rangle$. Since any involution of $\langle Q, y_1, y_2 \rangle$ is contained in the center of $\langle Q, y_1, y_2 \rangle$, x_1 is contained in the center of P'. Thus $P'^{I(x_1)} \leq C(x_1)^{I(x_1)}$ and $P'^{I(x_1)}$ fixes exactly four points *i*, *j*,

k, l. Then by a lemma of Livingstone and Wagner [4] $C(x_1)^{I(x_1)}$ is 4-fold transitive. Since $|I(x_1)| = 12$, $C(x_1)^{I(x_1)} = M_{12}$ by Theorem.

Assume that $\langle Q, y_1, y_2 \rangle$ is not a Sylow 2-subgroup of G_{1234} . Then $N(\langle Q, y_1, y_2 \rangle)_{1234}$ has a 2-element x' such that $x' \notin \langle Q, y_1, y_2 \rangle$. If x' fixes I(Q), then $x'^{I(Q)} \in \langle y_1, y_2 \rangle^{I(Q)}$ since $N(G_{I(Q)})^{I(Q)} = M_{12}$. Hence there is an element x'' in $\langle Q, y_1, y_2 \rangle$ such that $x'^{I(Q)} = x''^{I(Q)}$. Thus $x'x''^{-1} \in Q$ and so $x' \in \langle Q, y_1, y_2 \rangle$, which is a contradiction. Thus x' does not fix I(Q). Then $a^{x'} \neq a$. Hence $a^{x'} = x_1$ or ax_1 . Since $C(a)^{I(a)} = M_{12}$, $C(x_1)^{I(x_1)}$ or $C(ax_1)^{I(ax_1)} = M_{12}$. Thus Qx_1 has an element x_1' , where $x_1' = x_1$ or ax_1 , such that $|I(x_1')| = 12$ and $C(x_1')^{I(x_1')} = M_{12}$.

Since $N(Q)^{I(Q)} = M_{12}$, we may assume that N(Q) has a 2-element

 $x_2 = (1) (2) (3 4) (5) (6) (7 8) (9 12) (10 11) \cdots$

and $\langle Q, y_1, y_2, x_2 \rangle$ is a 2-group. Then $\langle Q, x_2 \rangle$ is conjugate to $\langle Q, x_1 \rangle$. Hence we may assume that $|I(x_2)| = 12$, $x_2 \in C(Q)$, $|I(x_2')| = 12$ and $C(x_2')^{I(x_2')} = M_{12}$, where $x_2' = x_2$ or ax_2 .

Since $x_2 \in N(\langle Q, y_1, y_2 \rangle)$, $x_1^{x_2} = x_1$ or a_1x . Suppose that $x_1^{x_2} = ax_1$. If Q is of order two, then $\langle Q, x_1 \rangle$ is an elementary abelian group of order four. On the other hand $\langle Q, x_1 x_2 \rangle$ is conjugate to $\langle Q, x_1 \rangle$ and $x_1 x_2$ is of order four, which is a contradiction. Thus Q is a quaternion group. Set $\Gamma' = I(ax_1) \cap \Delta$. Then $(I(x_1) \cap \Delta)^{x_2} = I(ax_1) \cap \Delta$. Hence $|\Gamma'| = 8$ and $\langle Q, y_1, y_2 \rangle^{\Gamma'}$ is a quaternion group. Since $|\langle Q, y_1, y_2 \rangle_{\Gamma}| = 8$, Qy_1 has an element y_1 fixing Γ pointwise. Then $y_1 \in C(Q)$. Since $Q^{\Gamma'}$ is a quaternion group, $y_1'^{\Gamma'}$ is the identity or an involution. Hence $y_1'^2$ is not the identity and fixes $\{1, 2, 3, 4\} \cup \Gamma \cup \Gamma'$ pointwise. This is a contradiction since $|\{1, 2, 3, 4\} \cup \Gamma \cup \Gamma'| = 20$. Thus $x_1^{x_2} = x_1$.

Then x_1' and x_2' commute. Since $C(x_1')^{I(x_1')} = M_{12}$, $I(x_2') \cap I(x_1') = \{1, 2, i, j\}$, where $\{i, j\} \subset \Delta$. Thus $\langle x_1', x_2' \rangle$ fixes exactly two points i, j of Δ . Then since $\langle x_1', x_2' \rangle \leq C(Q)$, Q is of order two.

3.3. Finally we show that $|Q| \neq 2$ and complete the proof.

Proof. By (3.2) |Q| = 2, and so $Q = \langle a \rangle$ and $\langle a, x_1 \rangle$ is an elementary abelian group of order four. Furthermore we may assume that $C(x_1)^{I(x_1)} = M_{12}$ and $I(x_1) = \{1, 2, 3, 4, 13, 14, \dots, 20\}$. Since $N(Q)^{I(Q)} = C(a)^{I(a)} = M_{12}$ and $C(a)^{I(a)} > \langle y_1, y_2 \rangle$, C(a) has 2-elements

> $x_2 = (1) (2) (3 4) (5) (6) (7 8) (9 11) (10 12) \cdots$, $x_3 = (1 2) (3 4) (5) (6) (7) (8) (9 10) (11 12) \cdots$.

Then we may assume that $\langle a, y_1, y_2, x_2, x_3 \rangle$ is a 2-group (see (2.3)). Since $\langle a, x_i \rangle$ is conjuagte to $\langle a, x_1 \rangle$ in C(a), i=2, 3, we may assume that $|I(x_i)|=12$ and $C(x_i)^{I(x_i)} = M_{12}$. Furthermore since $\langle a, x_i x_j \rangle$, $i \neq j$ and $1 \leq i, j \leq 3$, is conjugate to $\langle a, x_1 \rangle x_i x_j$ is of order two. Thus x_i and x_j commute and so $\langle a, x_1, x_2, x_3 \rangle$ is elementary ableian.

Since $a^{I(x_1)} = (1)(2)(3)(4)(13 14)(15 16)(17 18)(19 20)$ and $C(x_1)^{I(x_1)} = M_{12}$, we may assume that $x_2^{I(x_1)} = (1)(2)(3 4)(13)(14)(15 16)(17 19)(18 20)$ and $x_3^{I(x_1)} = (1 2)(3 4)(13)(14)(15)(16)(17 18)(19 20)$. Since $|I(x_2)| = 12$, we may assume that $I(x_2) = \{1, 2, 5, 6, 13, 14, 21, 22, \dots, 26\}$. Then since $a^{I(x_2)} = (1)(2)$ (5)(6)(13 14)(21 22)(23 24)(25 26) and $C(x_2)^{I(x_2)} = M_{12}$, we may assume that $x_1^{I(x_2)} = (1)(2)(5 6)(13)(14)(21 22)(23 25)(24 26)$ and $x_3^{I(x_2)} = (1 2)(5)(6)(13)$ (14)(21 22)(23 26)(25 24). Since $|I(x_3)| = 12$, we may assume that $I(x_3) = \{5, 6, 7, 8, 13, 14, 15, 16, 27, 28, 29, 30\}$. Then since $a^{I(x_3)} = (5)(6)(7)(8)(13 14)$ (15 16)(27 28)(29 30) and $C(x_3)^{I(x_3)} = M_{12}$, we may assume that $x_2^{I(x_3)} = (5)(6)$ (7 8)(13)(14)(15 16)(27 29)(28 30) and $x_1^{I(x_3)} = (5 6)(7 8)(13)(14)(15)(16)(27 28))(29 30)$. Then ax_1x_3 is of order two and $I(ax_1x_3)$ contains $\{9, 10, 11, 12, 17, 18, 19, 20, 23, 24, \dots, 30\}$ of length sixteen, which is a contradiction. Thus we complete the proof of the lemma.

4. Proof of Corollary 1

In this section we assume that G is a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$ and n is even. Let P be a Sylow 2-subgroup of a stabilizer of four points in G. Then |I(P)| = 4 by Corollary of [13].

Proof of (1) of Corollary 1. We proceed by way of contradiction. We assume that G is a counter-example to (1) of Corollary 1 of the least possible degree. Then $n \ge 35$ ([2],p.80). Set $I(P) = \{1, 2, 3, 4\}$. Let t be the maximal number of fixed points of involutions of G and Q be a Sylow 2-subgroup of $G_{I(Q)}$ such that |I(Q)| = t. For any four points i, j, k, l of I(Q) let P' be a Sylow 2-subgroup of G_{ijkl} containing Q. Since G is 4-fold transitive, P' is conjugate to P. Hence by the assumption $I(P')=I(Z(P'))=\{i, j, k, l\}$. Thus $C(Q)^{I(Q)} \ge Z(P')^{I(Q)}$ and $I(Z(P')^{I(Q)})=\{i, j, k, l\}$. Hence by a lemma of Livingstone and Wagner [4], $C(Q)^{I(Q)} \ge 4$. Hence by a theorem of H. Nagao [10] $G=S_6$, A_8 or M_{12} , which is a contradiction since $n \ge 35$. Hence $(C(Q)^{I(Q)})_{ijkl}$ is of even order. Then $C(Q)^{I(Q)} = stisfies$ the assumption of (1) of Corollary 1. Hence by the minimal nature of the degree of G, $C(Q)^{I(Q)}=S_i$, A_t or M_{12} . By Lemma $C(Q)^{I(Q)} = M_{12}$. If $C(Q)^{I(Q)} = S_t$ or A_t , then by Theorem $G \ge A_n$, which is a contradiction. Thus we complete the proof.

Proof of (2) of Corollary 1. If $P_i=1$, then by a theorem of H. Nagao [10] $G=S_6$, A_8 or M_{12} . Suppose that there is a point *i* of $\Omega - I(P)$ such that $P_i \neq 1$. Let *t* be the maximal number of fixed points of involutions of *G*. Since P_i is semiregular (± 1) , we may assume that $|I(P_i)| = t$. For any four points i_1, i_2, i_3, i_4 of $I(P_i)$ let P' be a Sylow 2-subgroup of $G_{i_1 i_2 i_3 i_4}$ containing P_i . Then $N_{P'}(P_i)^{I(P_i)}$ is semiregular (± 1) and fixes exactly four points i_1, i_2, i_3, i_4 . Hence by a lemma of Livingstone and Wagner [4] $N(P_i)^{I(P_i)}$ is 4-fold transitive on $I(P_i)$

and by a theorem of H. Nagao [10] $N(P_i)^{I(P_i)} = S_6$, A_8 or M_{12} . Hence by Theorem and Lemma, $G = S_8$ or A_{10} . Thus we complete the proof.

5. Proof of Corollary 2

In this section we assume that G is a permutation group as in Corollary 2. We may assume that P is a Sylow 2-subgroup of G_{1234} . Then by a corollary of [13] |I(P)| = 4, 5 or 7.

Suppose that |I(P)|=4. Then *n* is even. Furthermore since *P* is transitive on $\Omega - I(P)$, I(P)=I(Z(P)). Hence by Corollary 1, $G=S_{2^{k}+4}$ $(k\geq 1)$, $A_{2^{k}+4}$ $(k\geq 2)$ or M_{12} .

Next suppose that |I(P)|=5. Since P is transitive on $\Omega-I(P)$, by a theorem of H. Nagao [9] $G_{1\,2\,3\,4}$ is doubly transitive on $\Omega-\{1, 2, 3, 4\}$. Then G_1 satisfies the assumption of Corollary 2 and $|I(P)-\{1\}|=4$. Hence by what we have proved above, G_1 is one of the groups listed above. Hence $G=S_{2^{k+5}}$ $(k\geq 1)$ or $A_{2^{k+5}}$ $(k\geq 2)$.

Finally suppose that |I(P)| = 7. Then by a theorem of [12] $G = M_{23}$. Thus we complete the proof.

Osaka Kyoiku University

References

- [1] D. Gorenstein: Finite Groups, Harper and Row, New York, 1968.
- [2] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
- [3] M. Hall and J.K. Senior: The Groups of Order 2^n $(n \le 6)$, Macmillan, New York, 1964.
- [4] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393-403.
- [5] W.A. Manning: The degree and class of multiply transitive groups, Trans. Amer. Math. Soc. 35 (1933), 585-599.
- [6] H. Nagao: On multiply transitive groups I, Nagoya Math. J. 27 (1966), 15-19.
- [7] H. Nagao and T. Oyama: On multiply transitive groups II, Osaka J. Math. 2 (1965), 129-136.
- [8] H. Nagao and T. Oyama: On multiply transitive groups III, Osaka J. Math. 2 (1965), 319-326.
- [9] H. Nagao: On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
- [10] H. Nagao: On multiply transitive groups V, J. Algebra 9 (1968), 240-248.
- [11] T. Oyama: On multiply transitive groups VII, Osaka J. Math. 5 (1968), 319-326.
- [12] T. Oyama: On multiply transitive groups VIII, Osaka J. Math. 6 (1969), 315-319.
- [13] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
- [14] T. Oyama: On multiply transitive groups XI, Osaka J. Math. 10 (1973), 379-439.
- [15] A. Wagner: Normal subgroups of triply transitive permutation groups of odd order, Math. Z. 94 (1966), 219-222.

- [16] H. Zassenhaus: Kenzeichnung endlicher linear Gruppen als Permutation Gruppen, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 17-40.
- [17] H. Zassenhaus: The theory of Groups, second edition, Chesea Publishing Company, New York, 1958.